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ABSTRACT

We present two new closed-form methods for mixed pixel/multipath interference separation in AMCW lidar
systems. The mixed pixel/multipath interference problem arises from the violation of a standard range-imaging
assumption that each pixel integrates over only a single, discrete backscattering source. While a numerical
inversion method has previously been proposed, no close-form inverses have previously been posited. The first
new method models reflectivity as a Cauchy distribution over range and uses four measurements at different
modulation frequencies to determine the amplitude, phase and reflectivity distribution of up to two component
returns within each pixel. The second new method uses attenuation ratios to determine the amplitude and phase
of up to two component returns within each pixel. The methods are tested on both simulated and real data and
shown to produce a significant improvement in overall error. While this paper focusses on the AMCW mixed
pixel/multipath interference problem, the algorithms contained herein have applicability to the reconstruction of
a sparse one dimensional signal from an extremely limited number of discrete samples of its Fourier transform.

Keywords: Mixed Pixels, Multipath Interference, AMCW, Lidar, Attenuation Ratio, Range Imaging, System-
atic Error, Multiple Return Separation

1. INTRODUCTION

Full-field Amplitude Modulated Continuous Wave (AMCW) lidar is an important new development in ranging
technology. AMCW lidar operates on the time-of-flight principle: by illuminating a scene with modulated lasers
or LEDs and measuring the delay introduced in the modulation envelope by varying target distances, it is
possible to produce high precision range measurements that can be converted to three dimensional point-clouds.
Whereas previous systems required a physical mechanism to explicitly scan a point across a scene, advanced new
systems such as the SwissRanger SR40001 and Canesta XZ-422 produce 2D matrices of range data in a single,
simultaneous measurement process. These ‘range images’ amount to instant 3D models of a target or scene
and could potentially be applied to such divergent applications as face recognition, computer gaming, robotics,
special effects production for movies and manufacturing process quality control.

However, full-field ranging is still a developing technology and there are a number of significant technical
problems to be overcome. In this paper we discuss two new approaches to the mixed pixel/multipath interference
problem.2 The simultaneous imaging of a large number of points drastically increases the problem of measurement
cross-talk, primarily caused by scattering within the imaging optics of full-field rangers.3, 4 Similar problems occur
due to the simultaneous illumination of the entire scene, whereby multiple reflections within the scene potentially
result in multipath interference,5 resulting in erroneous range measurements. Lastly, the imaging nature of full-
field systems increases the impact of mixed pixels, caused when a single pixel integrates over a region at the
boundary of an object and contains two or more target objects at different ranges.6 Despite many commercial
systems advertising sub-centimetre precision, in practice the accuracy can be one or more orders of magnitude
worse due to systematic errors, primarily due to multipath interference.

Mixed pixels have been long identified as a problem in point scanning systems,6 however research has primarily
focussed on detection and removal of perturbed points, rather than correction of points. More recent work on
full-field systems has applied diverse approaches to multipath reduction: several authors have assumed relatively
spatially homogeneous scattered light across the entire image and removed the impact of the scattered light by
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using calibration squares within the scene or by detecting how scene texture/patterning or structured illumination
affects the detected ranges to objects.7, 8 For example, for an object which is half black and half white, the black
region will appear more highly perturbed by any scattered light then the white region. Other authors have
attempted to model the cross-talk between measurements introduced by intra-camera scattering,3, 9 however
this problem is highly spatially variant, which makes accurate inversion an extremely difficult deconvolution
problem. Fuchs10 introduced a particularly interesting approach to ameliorating multipath due to intra-scene
scattering: by explicitly modelling the reflection of the modulated illumination within the scene, he estimated the
perturbations introduced by multiple reflections and removed them. However, this type of approach is limited
in that it is only possible to model the effect of scattering within the field-of-view, modelling occlusion is highly
computationally complex and the specularity of objects is unknown.

Whereas most previous amelioration methods have operated on either mixed pixels or multipath interference,
but not both, there are two other approaches which operate on both. The first method uses the harmonic
content of the AMCW correlation waveform to separate out different range sources or component returns within
each measurement;11, 12 if the darker components are likely to be cross-talk from other pixels, then a ‘correct’
unperturbed range value can be calculated. The second method uses measurements at two different modulation
frequencies to allow up to two different contributing component returns to be discriminated,13 which has a
distinct similarity to the methods presented in this paper except that the authors did not provide a closed-
form solution, instead relying on numerical optimisation to separate out the different backscattering component
returns. Relying on numerical optimisation makes analysis of the noise properties of the solution more difficult
in addition to dramatically increasing the computational complexity of the algorithm. A truly real-time solution
requires a closed-form solution.

While this paper focusses on the AMCW mixed pixel/multipath interference problem, the algorithms con-
tained herein have applicability to the reconstruction of any sparse one dimensional signal from an extremely
limited number of discrete samples of its Fourier transform.

In the next section we address the formation of AMCW lidar range measurements and demonstrate how
multiple backscattering sources within a pixel results in perturbed range and amplitude estimates. Section 3
introduces a model for distributed reflectivity/scattering, such as occurs when making measurements of scenes
subject to fog. By careful choice of model it is possible to derive a set of polynomial equations which can be
simultaneously solved in closed form, resulting in a new Cauchy distribution based separation method. Section
4 introduces attenuation ratios and derives a general class of polynomial equations based on these ratios. Si-
multaneous solution of these attenuation ratio polynomials gives a second closed-form mixed pixel/multipath
interference separation algorithm.

2. BACKGROUND

This section models the formation of AMCW range measurements. For the sake of simplicity, a minimalist model
is presented: for more detailed information on the AMCW lidar measurement formation process see2 and.14

We utilise the following conventions: the Fourier transform of a function f(x) is notated as F (u), square
brackets, [ ], are used to notate functions of a discrete variable, ∗ is the complex conjugate and j2 = −1.

2.1 Modelling Measurements

The focus of this paper is the recovery of a function fξ(r) ∈ R
+, representing the lidar signal returns within a

single pixel, from N samples of the Fourier transform, Fξ(u). A similar problem is addressed in full-waveform
lidar, where a similar model of backscattered returns is recovered; however, rather than measuring a convolution
of fξ with an impulse response, we only have a small number of measurements of discrete spatial frequencies of
the signal returns.

While it is relatively easy to find a closed-form inverse that estimates a discrete model of the function fξ(r),
it is much more difficult to find an inverse that produces continuous range information. As the number of
component returns/backscattering sources increases, the problem becomes substantially more difficult to solve
in closed-form. As a result, we concentrate on the case of two components and N measurements.
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Restating our measurement formation model from,2, 14 fξ(r) can be considered to be signal intensity as a
function of range for a single pixel. Let the illumination modulation waveform be ψi(φ), a function of relative
phase. As light travels from the camera to the scene and back it encodes distance travelled as a phase shift in
the illumination. If there is more than one backscattering source within a pixel, then the illumination waveform
measured at the sensor is a superposition of the illumination reflected by each of the backscattering sources,
hence the illumination measured at the sensor can be modelled as a convolution of the illumination modulation
waveform with the backscattering intensity as a function of range. This gives

Ψm(u) = Fξ

(
4π

λ
u

)
Ψi(u), (1)

where Ψm is the Fourier transform of the backscattered illumination at the sensor and λ is the wavelength of
the illumination modulation. This backscattered illumination is indirectly measured by correlating it with a
reference signal, ψs(φ), giving the correlation waveform defined by

H(u) = Ψm(u)Ψ
∗
s (u), (2)

where H(u) is the Fourier transform of the correlation waveform. By measuring the correlation waveform while
changing the relative phase of the reference signal, it is possible to measure a discrete spatial frequency of fξ(r)
and determine range and amplitude. In an ideal case an AMCW lidar measurement, ξ ∈ C, is formed by sampling
the fundamental frequency of the correlation waveform and correcting for the influence of modulation waveform
shape, namely

ξ =
H(−1/2π)

Ψi(−1/2π)Ψ∗
s (−1/2π)

= Fξ

(
−λ
2

)
, (3)

which is equivalent to sampling the −2/λ spatial frequency of the backscattering function, fξ(r). The standard
assumption for an AMCW lidar imaging system is that there is only ever a single component return within each
pixel, with amplitude a0 and range d0. In this case the backscattering function is expressed by

fξ(r) = a0δ(r − d0), (4)

subsequently, a calibrated AMCW measurement at a wavelength of λ is given by

ξ = Fξ(−2/λ) = a0e
4πjd0/λ, (5)

and the amplitude of, a0, and range to, d0, the object imaged by the pixel can be recovered from a complex
domain measurement by

d0 =
λ

4π
(arg(ξ) + 2πm) (6)

a0 = |ξ|, (7)

where m ∈ Z is a phase unwrapping constant. However, this method of range and amplitude recovery breaks
down in the presence of multiple component returns: these extra components are the source of the mixed pixel
and multipath interference problems.

2.2 The Mixed Pixel/Multipath Interference Case

In the simplest mixed pixel/multipath interference case, there are two backscattering sources, giving a measure-
ment that is the sum of contributions from two components,

ξ = a0e
4πjd0/λ + a1e

4πjd1/λ. (8)

We primarily focus on this case in this paper. The perturbation introduced in the AMCW measurement by the
second component can be modelled by a function Λf(b, θ), defined as

Λf(b, θ) =
ξ

a0e4πjd0/λ
= 1 + beθ, (9)
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where b = a1/a0 is the relative amplitude of the darker return (where a0 ≥ a1) and θ = 4π(d1 − d0)/λ is the
relative phase.

In order to deal with multiple component returns, it is necessary to develop a more advanced model for
fξ(r) and a manner to fit it to measured data. One way to address this is by taking multiple measurements at
different modulation frequencies. There are two ways to achieve this: one is to take explicit measurements at
different modulation frequencies,13 the other method is to implicitly take measurements at different modulation
frequencies using the harmonic content of the correlation waveform.11 Previous work has applied multiple
measurements at different modulation frequencies and the synthetic wavelength technique to the unwrapping
of range measurements;15 until recently, this was the only manner in which multiple measurements at different
modulation frequencies were utilised.

One simple way to recover fξ(r) from a sequence of measurements of the Fourier transform is to systematically
sample at different modulation frequencies and then use an inverse Fourier transform to reconstruct a model of
the signal returns. For example, Simpson et al.16 sampled from 10 MHz to 200 MHz at 10 MHz intervals and
reconstructed a model in this exact manner. However, this requires a large number of measurements across a very
large bandwidth, which is very challenging to achieve with high efficiency and accurate calibration, and does not
provide particularly high spatial resolution given the number of samples required. Another potential approach is
to use an explicit prior distribution (for example, a Gaussian intensity distribution) to help fill-in-the-blanks and
reconstruct a discrete model from an incomplete sequence of measurements at different modulation frequencies.
While this is a standard signal-processing approach to reconstruction, it does not appear to have been previously
applied to reconstruction of fξ(r) in AMCW lidar.

Another approach is to pose the recovery of fξ(r) as a sparse-spike-train deconvolution problem and apply
an off-the-shelf deconvolution method.11 In the case of,11 the Levy-Fullagar algorithm, although there are
many other possible approaches that could be applied such as L1 norm regularisation and single-most-likely
replacement type methods. However, all these methods are complicated iterative processes – a closed-form
inverse is preferable, in particular, a closed-form inverse that inherently determines continuous range, rather
than a discrete model of signal returns such as that returned by deconvolution. While it is possible to determine
continuous range values from a discrete model, it tends to be a difficult process fraught with assumptions.

3. INVERSESE MODELLING THE DISTRIBUTION OF REFLECTIVITY

For real scenes it is reasonable to assume that the backscattering function is sparse; reflective objects tend to
occlude other objects behind them and in any interesting scene there is space between the camera and the object.
On the other hand, it is näıve to assume that component returns are infinitesimal, such as assumed by eqn. 4.
Imaging an object, other than a perfect sphere centred at the camera, always results in collecting light from a
finite range of radial distances. In addition, there are also volumetric scattering sources such as fog, that result
in distributed component returns. Combining these two assumptions leads to a general model for fξ(r) of n
discrete component returns as

fξ(r) =

n−1∑
i=0

aigi(r − di), (10)

where ai is the amplitude of the ith component return, di is the range to the return and gi(r) is a model of
how diffuse the reflectivity is. In this case, making assumptions about the structure of the backscattered signal
returns allows a more accurate reconstruction.

Given N measurements, where measurement l is at modulation frequency fl = rlγ, where the relative
frequencies rl ∈ Z are coprime and γ is an arbitrary base frequency, a measurement ξl at a relative frequency
rl can be expressed in terms of component returns notated at a relative frequency of unity. The ith component
return, ηi ∈ C, is then

ηi = aie
4πdiγ/c, (11)

where ai and di are the amplitude and range to the return and c is the speed of light. This is the contribution to
the complex domain range measurement by the ith return if measured at a relative frequency of unity. From basic
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principles, if component return i is measured at relative frequency rl, it will have an apparent phase rl arg(ηi).
Using eqn. 10, ξl can be notated as

ξl = Fξ

(
−rl γ

2c

)
(12)

=
N−1∑
i=0

aiGi

(
−rl γ

2c

)
erl arg(ηi) (13)

=

N−1∑
i=0

Gi

(
−rl γ

2c

) ηrli
|ηl|rl−1

. (14)

Eqn. 14 ultimately leads to a class of simultaneous polynomials written in a Cartesian form, splitting the real
and imaginary parts of ηi. Using the ηi notation avoids either the removal or addition of any unnecessary
cyclic ambiguity; the number of possible solutions for H = {η0, η1, ..., ηn−1} given a set of measurements, Ξ =
{ξ0, ξ1, ..., ξN−1}, exactly corresponds to the number of physically possible solutions. Expressing each return in
a Cartesian form,

ηi = Ri + jIi, (15)

where Ri, Ii ∈ R, allows us to rewrite eqn.14 as

ξl =

n−1∑
i=0

(Ri + jIi)
rl

(R2
i + I2i )

(rl−1)/2
. (16)

In the simplest possible case of a Dirac delta model (g(r) = δ(r) thus G(u) = 1), two measurements and two
components, this equation can be converted to polynomial form by rearranging to remove the fractional powers,
with higher relative frequencies resulting in increased polynomial order. The two return case for positive, odd
values of the relative frequency, rl ∈ Z, expands to

ξlS
(rl−1)/2
0 S

(rl−1)/2
1 − U rl

0 S
(rl−1)/2
1 − U rl

1 S
(rl−1)/2
0 = 0, (17)

where Ui = Ri + jIi and Si = R2
i + I2i . This polynomial is rlth order over each of R0, R1, I0 and I1, and if

necessary can be written explicitly as separated real and imaginary equations. The same expansion for even
relative frequencies results in a polynomial of 4rlth order, which is substantially worse. Apart from a ratio of
3 :1, every single frequency ratio results in at least one polynomial of fifth order or more, even assuming that
there was some nice way to impose the constraint that each component is real there is unlikely to be a general
inverse. Writing out the equivalent polar form, however, is trivial. Rewriting eqn. 13 gives

ξl =

N−1∑
i=0

aiGi

(
−rl κ

2c

)
κrli , (18)

where aiκi = ηi, such that |κi| = 1 encodes the range information and ai the amplitude. A relative frequency
of rl gives a polynomial with order of rl over each κi. However, in the same way that there was no easy way to
impose the constraint that Ri and Ii be real in the case of the Cartesian model, there is no easy way to impose the
constraints that ai be real and κi be constrained to the unit circle. Even though two measurements at different
modulation frequencies is enough to exactly determine two component returns using optimisation, in order to
solve the problem as simple simultaneous polynomials requires that the problem be effectively overdetermined.

3.1 A Simple Inverse (Dirac Delta Model, Four Measurements, Two Returns)

Taking four measurements at relative frequencies, rl ∈ {ρ, ρ+1, ρ+2, ρ+3}, where ρ ∈ Z is an arbitrary constant,
allows the problem in the Dirac delta model case to be notated as

ξ0 = μ0 + μ1 (19)

ξ1 = μ0κ0 + μ1κ1 (20)

ξ2 = μ0κ
2
0 + μ1κ

2
1 (21)

ξ3 = μ0κ
3
0 + μ1κ

3
1, (22)
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Figure 1: Candidate diffuse-reflectivity return models

where μi = aiκ
ρ
i is an intermediate variable. From eqn. 19,

μ1 = ξ0 − μ0. (23)

⇒ a1 =
ξ0 − μ0

κρ1
. (24)

Substituting eqn. 23 into eqn. 20 gives

μ0 =
ξ0κ1 − ξ1
κ1 − κ0

, (25)

⇒ a0 =
ξ0κ1 − ξ1

(κ1 − κ0)κ
ρ
0

(26)

which combined with eqn. 21 allows the determination that

κ1 =
ξ1κ0 − ξ2
ξ0κ0 − ξ1

. (27)

Substituting these equations into eqn. 22 gives a polynomial equation, namely,

fκ20 + gκ0 + h = 0, (28)

where f = ξ0ξ2 − ξ21 , g = ξ1ξ2 − ξ0ξ3 and h = ξ1ξ3 − ξ22 . This can be trivially solved to give two different
solutions corresponding to the two different permutations of the same two component returns. This is a nice
solution in that there is a direct inverse, but is problematic in a practical sense because it requires four separate
measurements when two is enough to fully constrain the problem. One mitigating aspect, is that by measuring
the extent to which the positive real number constraints on {R0, R1, I0, I1} are broken, may give a measure of
how much error there is in the coefficient estimates.

3.2 Models For Diffuse-Reflectivity

There are many different plausible models for diffuse-reflectivity, several examples are plotted in fig. 1. A
Gaussian model is a very natural model for component returns that originate from a region of space. Gaussian
models are commonly fit to measurements in pulsed radar and lidar17 in order to determine the range and
amplitude of component returns. These systems typically involve direct sampling in the spatial domain, whereas
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AMCW lidar relies on sparse sampling directly in the Fourier domain and common numerical fitting approaches
such as Expectation Maximisation18 are not guaranteed to converge to the correct answer due to local minima.

The zero centred Gaussian distribution with a variance of σ2 is given by

N (0, σ2) =
1√
2σ

e−
x

2σ2 , (29)

with a Fourier transform of

F{N (0, σ2)}(u) = √
πe−2π2u2σ2

. (30)

The attenuation constant encodes the rate at which the specific Gaussian distribution attenuates modulation
frequencies as modulation frequency increases. From the preceeding equation, we can write the attenuation
constant in the Gaussian case as

ν = e−2π2σ2

, (31)

enabling eqn. 18, assuming Gaussian distributed returns, to be expressed as

ξl =

N−1∑
i=0

aiν
r2l
i κrli . (32)

However, like the Cartesian Dirac delta model, the order of the polynomial increases quickly as rl increases. In
the single component, three measurement case, there is an inverse given by

ν0 =

( |ξ2|
|ξ1|

) 1

r2
2
−r2

1
(33)

κ0 =

(
ξ1

ξ0ν
r21−r20
0

) 1
r1−r0

(34)

a0 =
ξ0

ν
r20
0 κr00

. (35)

However, there is no simple closed form for more than one component, making mixed pixel/multipath interference
separation difficult for a Gaussian model.

While many other distributions, such as a uniform distribution defined by a rectangular function of variable
width, do not have exact polynomial expressions, the Cauchy distribution does. The Probability Distribution
Function of a zero centred Cauchy-Lorentz distribution is given by

fC(x|0, λC) = λC
π(x2 + λC)

, (36)

where λC is the width of the distribution. The Fourier transformation of a Cauchy distribution is given by a zero
centred Laplace distribution, viz

F{fC(x|0, λC)}(u) = fL(u|0, λC) = 1

2λC
e
− |u|

λC . (37)

Whereas it was previously assumed that |κi| = 1, we now utilise the modulus of κi to encode the attenutating
properties of the Cauchy distribution in the Fourier domain. In other words, let |κi| be given as

|κi| = e−1/λC , (38)

thus the relationship between the modulii of measurements of a component return at relative frequencies r0 and
r1 are given by

fL(r1|0, λC)
fL(r0|0, λC) =

|κi||r1|
|κi||r0| , (39)
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allowing eqn. 18 to be expressed in the Cauchy case for positive rl as

ξl =

N−1∑
i=0

aiκ
rl
i , (40)

and for negative rl as

ξ∗l =

N−1∑
i=0

aiκ
|rl|
i . (41)

It can be clearly seen that the Dirac delta model is merely a degenerate case of the Cauchy model, when
|κi| → 1. Taking into account the conjugate relationship for negative relative frequencies, the inversion formula
from eqns. 23 to 28 is also applicable to the Cauchy model. Whereas for a Dirac delta model, three complex
and one positive real domain measurements are required in order to determine four positive real values, in this
case three complex and one positive real domain measurements are required in order to determine two real and
two complex domain values. This is significantly less inherently overdetermined, thus more efficient; albeit, in
practice all measurements must be treated as complex.

4. INVERSION VIA ATTENUATION RATIO POLYNOMIALS

In the previous section we introduced the idea of modelling range-diffuse measurements using simultaneous
multivariate polynomial equations. While in a number of overdetermined cases there are closed-form solutions,
generally the polynomial equations involved are too complicated and high order for a closed-form solution. This
section introduces a different representation for Dirac delta type point-returns using the attenuation ratio. This
allows the relationship between component returns to be analysed independently of the absolute phase and
amplitude; as a result, the polynomial order can be reduced.

4.1 The Attenuation Ratio

Let the attenuation ratio τl at a particular modulation frequency vrl be

τl =
|ξl|
ω

=

∣∣∣∑n−1
i=0 a0κ

rl

∣∣∣∑n−1
i=0 a0

, (42)

where ω is the total backscattered intensity, equal to the sum of the modulii of the component returns, and
assuming a Dirac delta model where |κi| = 1. Potentially, this can be approximated by taking the modulus of a
measurement at an extremely low modulation frequency. In the two return case, assuming that

ω = a0 + a1 = a0(1 + b), (43)

the attenuation ratio can be modelled using eqn. 9 by

τl =
a0|Λf(b, rlθ)|
a0(1 + b)

=
|Λf(b, rlθ)|

1 + b
. (44)

The attenuation ratio is the ratio of net amplitude to the sum of the component amplitudes and indicates how
much cancellation has occured between component returns for a particular pixel. A geometric interpretation of
eqn. 9 combined with the law of cosines gives

|Λf(c, θ)|2 = 1 + c2 + 2c cos(θ). (45)

Assume two measurements, ξ0 and ξ1, at relative frequencies, r0 and r1, with known attenuation ratios, τ0 and
τ1. Solving eqn. 44 to find |Λf(b, θ)| and combining with eqn. 45 gives

|Λf(b, rlθ)|2 = 1+ b2 + 2b cos(rlθ) = τ2l (1 + b)2, (46)
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hence

b2 + b
2 cos(rlθ)− 2τ2l

1− τ2l
+ 1 = 0. (47)

This is the attenuation ratio polynomial for a measurement at a particular relative frequency rl. Given a sequence
of attenuation ratios at different spatial frequencies, a set of polynomials is formed which can be simultaneously
solved; we now address the solution of these polynomial systems.

4.2 Determining Relative Phase

Eqn. 47 is separately valid for each measurement, thus

2 cos(r0θ)− 2τ20
1− τ20

=
2 cos(r1θ)− 2τ21

1− τ21
, (48)

or
α cos(r1θ)− β cos(r0θ) + γ = 0, (49)

where α = 1−τ20 , β = 1−τ21 and γ = τ20 −τ21 . Eqn. 49 rewritten in terms of cos(θ) using Chebyshev polynomials
gives the attenuation ratio relative phase polynomial

αTr1(cos(θ)) − βTr0(cos(θ)) + γ = 0, (50)

where Tn(x) is a Chebyshev polynomial of the first kind, defined by the trigonometric identity

Tn(x) = cos(n cos−1(x)). (51)

Chebyshev polynomials are equivalent to a cosine transform basis resampled using the function
√
1− x2 and are

commonly used for polynomial fitting because they offer a good approximation to the min-max polynomial and
avoid Runge’s Phenomenon.19 The first two Chebyshev polynomials are given by

T1(x) = x, (52)

T2(x) = 2x2 − 1. (53)

By rewriting eqn. 49 using Chebyshev polynomials, a seemingly difficult equation has been reduced to a relatively
simple polynomial. The order of the polynomial given by eqn. 50 is given by max(r1, r0). As the order increases,
closed-form solutions become less useful and eventually impossible. The simplest possible case is for a frequency
ratio of two to one. Given r1 = 2 and r0 = 1, eqn. 50 becomes

2α cos2(θ) − β cos(θ)− α+ γ = 0, (54)

which has the solutions

cos(θ) ∈
{
1,−2α− β

2α

}
. (55)

4.3 Determining Relative Amplitude

The relative amplitude, b, is determined from eqn. 47 by substituting the second solution from eqn. 55, giving

b =
τ20 − cos(θ) ±

√
(1− cos(θ))(2τ20 − cos(θ) − 1)

1− τ20
(56)

(57)

For valid (τ0, τ1), the positive square root variation gives b ≥ 1 and the negative variation gives b ∈ [0, 1] – the
alternative values for b being reciprocals of each other. At most there are two unique candidate solution tuples
(b, θ) and (b,−θ), since (b−1,−θ) and (b−1, θ) correspond to alternative normalisations of the same component
returns.
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4.4 Determining Absolute Phase and Amplitude

Given a known relationship between the two component returns, we now determine absolute phase and amplitude.
This can be considered a denormalisation operation in the case where the unnormalised sum of the component
returns and the normalised individual components are known. The component returns can be found for a
candidate solution tuple (b, θ) by

η0 = ζe2πjm/r0 (58)

η1 = bη0e
jθ (59)

where ζ ∈ C is the undisambiguated∗ first component return calculated by

ζ =
ξ

1
r0

0

|ξ0|
1
r0

−1
· |Λf(b, r0θ)|

1
r0

−1

Λf(b, r0θ)
1
r0

(60)

and the disambiguation constant, m ∈ Z, is determined by writing out the second measurement (ξ1) in terms of
eqns. 58 and 59, giving

ξ1 =
(ζe2πjm/r0 )r1

|ζe2πjm/r0 |r1−1
· Λ(b, r1θ) (61)

=
ζr1

|ζ|r1−1
· Λ(b, r1θ)e2πjmr1/r0 (62)

Valid candidate solution tuples can be discriminated from invalid tuples using m, which is an integer for a valid
solution in the absence of noise.

When this algorithm is implemented on real data, a substantial reduction in error can be achieved by cal-
culating (τ0, τ1) for each pixel and then constraining each value to a valid bound (e.g. τ0 ∈ [0, 1)) before any
further processing. This reduces the incidence of noise corrupted data values, that otherwise result in highly
erroneous estimates of component returns.

5. PERFORMANCE ANALYSIS/DISCUSSION

In order to provide a brief analysis of the performance of the two new mixed pixel/multipath interference
separation methods presented here, a series of simulatory and real-data experiments were performed. One of the
major challenges in providing a quantitative metric for precision is the long-tailed nature of the error distributions.
For example, fig. 2 gives the phase error distribution for a perfect single component return using the Cauchy
method. While the noise distribution at first appears to be Gaussian, the data are extremely long-tailed and
standard metrics like RMS error and variance have a tendency to produce non-representative results. There are
several possible alternatives, including: plotting explicit histograms, albeit these can make direct comparisons
difficult; plotting Cumulative Distribution Functions, such as utilised in fig. 3; and lastly, by fitting a parametric
distribution more suited to representing the true shape of the error. We have chosen the latter approach; given
that some of the error distributions appear nearly Cauchy distributed, a translated T-distribution has been fit
using a Maximum Likelihood approach to the processed data. This distribution has three parameters: a mean,
a width/spread coefficient and a degrees-of-freedom coefficient. The mean provides a measure of the accuracy of
the estimates, thus any systematic perturbations introduced by the processing. The width coefficient is analogous
to the standard deviation of a Gaussian distribution† and provides a measure of estimate precision, the error
due to random noise. The remaining parameter, the degrees-of-freedom coefficient, encodes how long-tailed the
distribution is.

∗Before removal of the cyclic phase ambiguity in the component return (disambiguation).
†In the limit, as the number of degrees-of-freedom increases, width becomes equal to the standard deviation.
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Figure 2: Error distribution of estimated phase in the
case of a perfect single return at an SNR of 100:1
using the Cauchy method. Note that while the distri-
bution appears similar to a Gaussian, it has extremely
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Figure 3: The Cumulative Distribution Function of
phase error for different mixed pixel/multipath inter-
ference separation methods, assuming two component
returns with distribution modelled by θ ∼ U(−π, π)
and b ∼ U(0, 1).

5.1 Simulatory Results

Assuming ρ = 1, a series of simulated measurements were produced at a specified SNR, assuming circularly
symmetric complex Gaussian noise measured relative to the sum amplitude of the component returns. It was
universally assumed that the brightest component return had a value of unity (η0 = 1) so that the phase of
each measurement naturally encoded the phase perturbation of the primary component return by the second
component. All the component returns were simulated as perfect Dirac deltas, without distributed reflectivity.
The measurements were processed by the attenuation ratio and Cauchy model algorithms presented in this
paper. Fig. 2 gives an example of the type of long-tailed error distribution typically produced, while fig. 3 gives
an overall comparison of the phase error performance of the two methods versus unprocessed noisy data and the
2:1 frequency ratio numerical optimisation based algorithm we presented in.13 The latter graph clearly indicates
that while both new methods substantially improve phase/range measurements in most cases, neither method
produces results of the same quality as the 2 :1 numerical method. In all cases, the processed data are particularly
long-tailed compared to the reference case: the ideal noisy single component return.

A more detailed break-down of the behaviour of the two new algorithms is presented in fig. 4. Plotting
systematic error as a function of relative phase shows that there is no improvement in systematic error until
the component returns are separated by a certain phase, which is a function of SNR. Past this point, as the
component returns begin to be separated out, precision is temporarily degraded, as indicated in fig. 4b. While
the Cauchy algorithm only requires that the returns be separated by a particular relative phase, the attenuation
ratio algorithm is also incapable of separating out component returns near θ = π, resulting in similar breakdown
behaviour. Fig. 4c shows the estimated attenuation coefficient, which is erroneous in the breakdown region, but
otherwise accurate, and the amplitude of the brightest component return, which has nonzero phase angle in
the breakdown region. This is contributed to by the inability to add additional non-linear constraints to the
inversion, such as constraining coefficients to be real: this is one particular advantage to a numerical approach,
allowing constraints which help improve resistance to noise. The final plot, fig. 4d, shows the estimated amplitude
of the brightest component for different relative intensities, b. It appears that as the relative amplitude of the
second component return influences the breakdown region: as the relative amplitude decreases, the threshold
moves farther away from θ = 0. Overall, the algorithms appear to trade off precision in order to achieve better
accuracy; given that most commercial range-imaging cameras quote high precision, but are unable to produce
equivalently high accuracy, this may be considered a suitable compromise in many circumstances.
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Figure 4: Estimates of component return properties as a function of relative phase. Unless otherwise specified,
the results assume a SNR of 40 dB and b = 0.1 and plot the mean/translation parameter of the T-distribution
model.

5.2 Real Data Results

A demonstration of the two algorithms was performed using the Canesta XZ-422 demonstrator camera. This
was achieved by custom configuring five different modulation frequencies: 11 MHz, 22 MHz, 33 MHz and
44 MHz configurations were created using four equispaced phase steps. An additional modulation frequency was
configured at 1.22 MHz in order to approximate a measurement of the zeroth spatial frequency. Ideally this
measurement would have been made at an even lower modulation frequency to avert systematic errors due to
partial cancellation, but it was not possible to achieve a more appropriate frequency, like 50 kHZ. One of the
primary problems with the approach utilised for this paper is that of aliasing of correlation waveform harmonics,
which are known to produce significant systematic errors.14 One potential approach to partial amelioration is
to utilise a larger number of phase steps, or apply harmonic cancellation.20 While it is possible to calibrate for
the errors introduced when there is only a single component return, for example by using a lookup table, it is
not possible to calibrate when performing a mixed pixel/multipath separation operation without incorporating
the calibration into the algorithm itself. Typical errors might be of the order of 30 milliradians phase error per
measurement, which could easily result in a phase error several times that in the processed output of a separation
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Figure 5: A scene processed by the Cauchy model algorithm. The spread coefficient (|κi|) has been rescaled so
that black = 0.95 and white = 1.05.

algorithm‡.

Images of a scene processed by the Cauchy algorithm are plotted in fig. 5. The algorithm has clearly detected
regions subject to intra-camera scattering, primarily light from foreground objects scattered onto pixels measuring
the background, however it has also introduced highly visible random noise. In particular, the bookcase in the
background is very clearly displayed in the phase image, due to the varying reflectivity of books on the shelf.
After processing, most of the perturbations have been removed. The phase of the darker components clearly
indicates that it is light from the bright objects in front causing the perturbations. Unfortunately, the spread
coefficient appears to be primarily overfitting noise, albeit one would expect there to be significant attenuation in
regions around objects, such as at the edge of the bookcase, where the surface is nearly orthogonal to the camera
and reflectivity would be spread over range. Fig. 6 is a plot of the boundary between two objects, showing how
the Cauchy method has separated out the two objects within each pixel due to a combination of mixed pixels,
defocus and intra-camera scattering; note that the darker return tends to be more noisy than the estimate of
the brighter return. Fig. 7 shows the results of applying the attenuation ratio algorithm to the same scene. For
the attenuation ratio algorithm, 22 MHz, 44 MHz and 1.22 MHz were utilised, so fig. 7a consists of a reference
phase image at 22 MHz. Fig. 7 shows how α is a very good indicator of mixed returns, having a high correlation
with estimates of b. Unfortunately, while some mixed pixels have been removed from the scene, the results are
generally not as good as for the Cauchy algorithm.

6. CONCLUSION

In this paper we have presented two new closed-form methods for mixed pixel/multipath interference separation
in AMCW lidar systems. One method models reflectivity as a Cauchy distribution over range and uses four
measurements at different modulation frequencies to determine the amplitude, phase and reflectivity distribution
of up to two component returns within each pixel. The other method uses attenuation ratios to determine the

‡There are also similar amplitude errors induced by aliasing.
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Figure 6: An example of the results from the Cauchy separation algorithm at an object boundary region subject
to mild defocus and mixed pixels.
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Figure 7: The scene from fig. 5 processed by the attenuation ratio algorithm; note the close coupling between
attenuation and estimated second component amplitude.

amplitude and phase of up to two component returns within each pixel. The methods were tested on both
simulated and real data and shown to produce a significant improvement in overall error, although not quite
as good as our previously published numerically based method. It was found that there is a particular relative
phase threshold below which component returns cannot be separated; this threshold is a function of SNR and
relative amplitude. Using simulation and real-data produced by the Canesta XZ-422 it was shown that both
algorithms were capable of improving range images by trading worsened precision for improved accuracy.
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ometry Mesure de distance par interférométrie à plusieurs longueurs d’onde,” Journal of Optics 29, 105–114
(June 1998).

[16] Simpson, M. L., Cheng, M.-D., Dam, T. Q., Lenox, K. E., Price, J. R., Storey, J. M., Wachter, E. A., and
Fisher, W. G., “Intensity-modulated, stepped frequency cw lidar for distributed aerosol and hard target
measurements,” Applied Optics 44, 7210–7217 (2005).

[17] Hofton, M. A., Minster, J. B., and Blair, J. B., “Decomposition of laser altimeter waveforms,” IEEE
Transactions on Geoscience and Remote Sensing 38, 1989–1996 (July 2000).

[18] Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006).

[19] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., [ Numerical Recipes 3rd Edition:
The Art of Scientific Computing], Cambridge University Press, New York, NY, USA, 3 ed. (2007).

[20] Payne, A. D., Dorrington, A. A., Cree, M. J., and Carnegie, D. A., “Improved measurement linearity and
precision for amcw time-of-flight range imaging cameras,” Applied Optics 49(23), 4392–4403 (2010).

SPIE-IS&T/ Vol. 8296  829618-15

Downloaded from SPIE Digital Library on 20 Jul 2012 to 130.217.40.45. Terms of Use:  http://spiedl.org/terms


