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Abstract

Data-driven problems have common characteristics: a large number of small

objects with complex dependencies. This makes the traditional parallel pro-

gramming approaches more difficult to apply as pipe-lining the task depen-

dencies may require to rewrite or recompile the program into efficient parallel

implementations. This thesis focuses on data-driven JStar programs that have

rules triggered by the tuples from a bulky CSV file or from other sources of

complex data, and making those programs run fast in parallel. JStar is a new

declarative language for parallel programming that encourages programmers

to write their applications with implicit parallelism.

The thesis briefly introduces the JStar language and the implicit default

parallelism of the JStar compiler. It describes the root causes of the poor

performance of the naive parallel JStar programs and defines a performance

tuning process to increase the speed of JStar programs as the number of cores

increases and to minimize the memory usage in the Java Heap. Several graphic

analysis tools were developed to allow easier analysis of bottlenecks in parallel

programs. The JStar compiler and runtime were extended so that it is easy

to apply a variety of optimisations to a JStar program without changing the

JStar source code. This process was applied to four case studies which were

benchmarked on different multi-core machines to measure the performance and

scalability of JStar programs.
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Chapter 1

Introduction

1.1 Goals

JStar is a new declarative language for parallel programming that encourages

programmers to write their applications with implicit parallelism.[4] With JS-

tar, programmers do not have to think how to make the program run in paral-

lel, and they can just focus on the semantic of their algorithms and the order

of execution. A key goal of JStar is that by applying optimization options,

the JStar compiler can translate a JStar program into efficient sequential or

parallel Java source code for a given architecture, without changing the JStar

source.

Computers are all composed of at least one central processing unit (CPU)

and a memory space for reading and executing the program instructions. Mod-

ern cores are implemented as silicon chips, which contain computing compo-

nents and small circuits on it. Due to a large number of required circuits, early

cores were large and power-consuming. Since the integrated circuit technology

was invented, the transistor size has greatly reduced each decade by the con-

tinuous drive of Moore law, allowing faster clock speeds and more sophisticated

architectures. By making the line width as small as 20 nano-meters, a CPU is

able to contain over billions of transistors and electronic components, and thus

the computing power can also be improved. However, this method is facing
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technological and financial challenges as the transistor size is approaching the

miniaturization limit.

Adding more cores on a single CPU is an alternative to increase the comput-

ing power. Ideally, the multi-core CPUs can multiply the speed of a program

by the number of cores and shorten the communication time by sharing the

same cache and bus interface. In fact, the parallel program often fails to scale

up to large number of cores and has difficulties to be portable across heteroge-

neous platforms. Before this thesis started, the JStar compiler could generate

sequential Java code, and a prototype parallel runtime based on the Fork/Join

library and splittable Hashsets has been developed, but this has only been

applied to one case study (matrix multiplication), where it showed the poor

scalability[1].

This project aims to improve the performance of parallel JStar programs

with concurrent data structures and efficient utilization of computing resources.

Our goals are described as follows:

Speed is the execution time that a JStar program completes a given problem.

The goal is to maximize the speed and minimize the total execution time

of a JStar program.

Scalability is the ability of a JStar program to increase its speed as the

number of cores increases. The goal is to make the scalability as linear

as possible.

Resource Usage is the total amount of computing resources which a JStar

program uses. The goal is to minimize the usage, including the heap

size, memory bandwidth, CPU usage, and garbage collection.

Portability is the ability of a JStar program to be run on multi-platforms.

The goal is to directly run a JStar program across different platforms

without extra efforts, such as rewriting the source codes or re-compilation.

All of our goals will be explained with a photovoltaic (PV) energy system

example in the next section.
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1.2 PvWatts Example

A photovoltaic (PV) station is a solar energy production system with arrays

of solar panels. It can continuously convert the sunlight into the direct current

electricity (DC Power). Compared to other power generation methods, the

PV energy generation method produces no pollution when operating and uses

sustainable energy sources. Furthermore, the solar panels are easily mounted

on the rooftop or on the ground. The solar power has many benefits to the

environment and human beings so that many people have started to be in-

terested in the PV station installation. But the energy production of a PV

station is mainly determined by the weather. Thus, the location becomes an

important issue for a PV system.

NREL(National Renewable Energy Laboratory) provides a tool to assist

people to make this decision. The PvWatts program1 is an energy calculator,

simulating a PV energy system in a area and estimating the hour-by-hour

power production.[24] The PvWatts program uses the historic weather data

in a location to determine the intensity of solar radiation on the PV arrays.

By using the parameters of solar arrays and the efficiency of power conversion,

the PvWatts program estimates the energy generation (in Watts) for each hour

of the year. And all the estimated records for a typical meteorological year

(TMY) are exported to a data file (a CSV file). This file consists of one year

of records, where each row in the table represents one energy record. The

hourly record is composed of the time data and the AC power. The time data

has 4 fields: year, month, day, and hour. And the AC power is the electricity

wattage generated during an hour.

The parallel JStar PvWatts program could make use of the multi-core com-

puting power to shorten the execution time and increase the speed. As this

program calculates the total power generation for each month of the year,

it reads each hourly record in the file and averages the monthly energy pro-

duction. The program starts by parsing command line arguments, and ends

1See http://www.nrel.gov/rredc/PvWatts/
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with printing out monthly power production for a PV station. Because the

PvWatts program uses readers to read each record in the table, I/O communi-

cation between the data file and system memory may limit its execution time.

Through the JStar parallelism, the speed of a JStar program could increase as

the number of employed cores.

The parallel JStar PvWatts program could reduce the memory usage during

the execution. As the input file contains a large number of hourly records,

the program could use most of the memory space to create the data objects,

which are used at one time. These short-lived objects may cause load on

the Java garbage collector, or worse, may lead to the out-of-memory error.

To avoid downgrading the performance from the busy garbage collector, the

JStar parallelism should efficiently utilize the memory space on the multi-core

machine and also ensure the program to function correctly.

The parallel JStar PvWatts program should be run on the multi-core ma-

chine without changing the original JStar source program but simply by setting

the number of cores (threads). As each parallel hardware has different charac-

teristics, porting a parallel program often requires the programmer to rewrite

and recompile the source code. But rewriting the program sometimes may

have a good performance but introduce unexpected errors during the execu-

tion. The JStar parallelism should implicitly hide the parallel hardware and

provide a simple mechanism to make use of the multiple cores.

1.3 Definitions

1.3.1 Workload

The Java application is a sequence of actions expressed in Java language. A

Java program needs to be compiled into the platform-independent byte-code,

so that the Java Virtual Machine (JVM) can execute it.[5] JVM is not real

hardware but a computer program. It provides a run-time environment for

the Java byte-code and can be run on heterogeneous computer systems. JVM
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makes the Java applications to be portable across a variety of platforms. Apart

from dynamic memory allocation, the JVM can use a fixed-size memory space

(heap) to store objects during the execution of a program. The JVM has three

definition for computation workload[5]:

Task is a set of the program instructions. It is the smallest unit to measure

the application’s workload. In JStar language, a task is regarded as a

Rule which use the input tuples to do some computation and output the

tuples. For example, one rule in the JStar PvWatts program is triggered

after a request from command line argument is received. It reads lines

from the input file, parses the fields and creates PvWatts tuples with the

the date and time and the hourly power production.

Thread is used to execute one or more tasks.

Process is an execution environment which can manage its own memory space

and execute many threads in parallel. A single process can execute the

threads in the thread pools to run tasks.

The process and thread both have many common characteristics.[18] They

both provide a execution environment. But a process has better control over

its memory space. The JVM is an example of a single process. As the threads

are created and executed in one pool inside the JVM, threads inside a process

can use the process’s memory space to communicate with each other. A thread

is a light-weight process, taking up fewer resources than a process and quickly

being created and destroyed. A thread can execute short-lived tasks efficiently

while a process can execute the threads concurrently.

Multi-process applications are more complicated. Because inter-process

communication requires additional implementations, such as the message pass-

ing interface, or the remote procedure calls. Thus exchanging the messages

among the processes takes longer than in an multi-threading application and

may cause latency problems.
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1.3.2 Executors

The Executors class is one of these high-level concurrent objects provided by

the Java platform.[5] The Executors class provides a separate way of launch-

ing and managing the threads in a Java concurrent application.[17] Using the

executor can separate the application from the thread management. The ex-

ecutor creates all the threads automatically in a pool. When a thread finishes

its task, the executor would either reuse it to do other tasks or destroy it

permanently. As the executor manages the threads from creation to termi-

nation, Java programmers do not need to write extra code to deal with the

thread life-cycle issues, which would sometimes cause dead lock. Two executor

implementations are:

Thread Pool is introduced in JDK 1.5 and widely used in concurrent applications.[5]

In the pool, the executor creates a number of worker threads, which are

able to perform tasks on behalf of the application. A worker thread can

normally execute multiple tasks, so the number of threads is often less

than the number of tasks. After a thread completes its task and returns

its result, it would continue taking up a new task until all the tasks have

been processed.

Fork/Join Framework is implemented on JDK 7 and tries to use all com-

puting power of the multi-cores machine.[5] Like other Java threading

frameworks, the Fork/Join framework uses a ForkJoinPool to host all

worker threads and distribute tasks to them. The ForkJoinTask is a

task that runs within the ForkJoinPool. At the beginning, an initial

ForkJoinTask is submitted to the pool and executed by a worker thread

automatically. This main ForkJoinTask is split into more ForkJoinTasks

by recursively calling the Fork method and these subtasks are asyn-

chronously executed by other available threads. When a worker thread

receives a task, the thread will either split the task or process it imme-

diately. If the task work is too heavy, then the thread will split this task
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into two sub-tasks, submit them to the pool for future execution (waiting

for their result). Otherwise, the thread will execute the task and return

its result immediately. The split-merge procedure will not stop until all

of the sub-tasks have been completed and the main task gets its results.

Join Join

Join Join

"Main" ForkJoinTask

Sub−ForkJoinTask

Sub−ForkJoinTask

A

C B

D E

Fork Fork

Fork Fork

Figure 1.1: The ForkJoinTask diagram

Figure 1.1 illustrates the procedure of the Fork/Join framework. When

the main ForkJoinTask is submitted to the ForkJoinPool, this main task will

be split into two sub-ForkJoinTasks (B and C) by one thread. When a thread

starts computing the left subtask, the right sub-task will be split into two sub-

tasks (D and E). When two individual threads start to run Task D and Task

E, Task B is being held and waiting for the completion of Task D and Task E.

After summing up the results of Task D and Task E, Task B rejoins the Task

A. Once Task C finishes, Task A aggregates the results of Task B and Task C,

and outputs the final result.

1.3.3 Dependency and Granularity

Dependencies define the execution sequence of tasks. Dependencies can ensure

that the behaviour of a program is run according to what users expected.
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Task #1.

Task #2.

Task #3.

Task #4.

CmdLineArg

processArg

TRIGGER

PvWatts

sorter

SumMonth

reducer

PvWattsRequest

reader

PrintOut

end

start

PUT

PUT

GET

PUT

GET

PUT

Figure 1.2: Task dependency graph of a JStar program.

We will demonstrate the task dependencies with the JStar PvWatts example.

Each JStar task is composed of one rule and its output tuples, and optional

the query tuple. The Rule is the task and sometimes needs tuples from other

tables (query tuples). After finishing the computation, each rule/task outputs

tuples which is used to trigger other tasks. The order of tuple execution are

formed in a connected graph, as shown in the Figure 1.2. Even though the

task dependencies may limit the parallelism, they provide a way of reasoning

the correctness of a JStar program. For example, sorters are used to categorize

the PvWatts tuples by the month value. The sorters in this program are used

to force the reducers to wait until the readers finish their work. Even though
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the sorters prevents the concurrent execution of the reducers and the readers,

they ensure that the reducers obtain a complete and full set of the PvWatts

tuples and output the correct final result.

The granularity can relax the constraint caused by the task dependencies.

Based on the frequency across the threads, the granularity is classified as coarse

or fine. The coarse-grain computation refer to the loose dependencies among

threads while the fine-grain one refer to the close dependencies. For example,

if the JStar PvWatts program uses two readers to read the input file in parallel,

then the file will be divided into two segments and two readers are created to

read each one of them concurrently. Since each reader just needs to read one

half of the whole records, the reading time can be shorten. However, if the

file is chopped too fine, then the program will create too many readers and

cause the increase of the overhead costs and reduce the benefits of granularity.

For example, if we use millions of parallel readers, then streaming each file

segment will take up a lot of time and slow down the performance. Besides,

compared with a single reader, the parallel readers need to spend the extra

time synchronizing records. So the level of granularity should be set up to

meet the hardware specification and the users’ needs.

1.3.4 Latency and Throughput

The latency refers to the amount of time to complete a unit of work and the

throughput are the amount of work that can be finished per unit time. They are

both used to measure the performance of a parallel program but have different

ways of achieving the parallelism. Figure 1.3 illustrates the difference between

the low and high latency. The low-latency runs each task one after one and the

high-latency run each task with an overlap of starting time. The low-latency

method has the shorter task time but a longer completion time than the high-

latency as the task needs to waiting for the last task. The low-latency method

can have a shorter task time but the high-latency have a better throughputs.

Note that the latency can be hidden by using the multi-core machine. When
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Figure 1.3: The Low-Latency and High-Latency diagram.

one thread is executing a high-latency task, the multi-core machine may create

two or more threads to do other tasks on the same core. As these threads share

the data in the cache of the core, the latency from the memory can be hidden

and thus the execution time will be shorten. But this method does not really

reduce the latency but the number of requests to the main memory.

1.3.5 Locality

The cache is the memory space between the cores and the main memory space

and has been implemented widely in the modern CPUs for its low-latency

performance. By pre-fetching the recent data off the main memory, a core

can directly read and write the data in the caches without the communication

between the memory buses and the controllers. As the cache increase accessing

speed, the overall performance can be improved. Figure 1.4 illustrates the

memory reference in a multiple cores environment.[13] According to the cache

block size, the caches are classified into three hierarchies: Level 1 (L1), Level
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Cache miss

Figure 1.4: The Intel multi-core processor diagram.

2 (L2) and Level 3 (L3).

• L1 cache is the smallest and fastest cache. It stores the copies of data

which are the most frequently used in main memory.

• L2 cache is the next larger but slower cache, compared with L1. It can

hold a chunk of data items near or next to the recently used data.

• L3 cache is the largest but slowest cache. It can hold a bigger chunk of

data items than L1 and L2.

L1 cache and L2 cache are usually located inside an core whereas the L3

cache is shared among multiple cores. After receiving a request for making

data reference, the core first checks L1 cache, followed by L2 cache and L3

cache. If the data reside in any local or shared cache, the core will make a

direct and fast reference (cache Hit). Otherwise, the core has to access the

data from the external main memory (cache Miss).[22]

The cache miss causes a higher latency than the cache hit for the requests to

access the main memory through the system bus. Besides, when the multiple
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threads update the same data in the memory, they may compete each other for

its ownership, which results in race conditions.[22] The effect of race conditions

may slow down the performance as threads are racing each other to access the

data. But using the mutex may avoid this problem. Assume that the PvWatts

program uses a mutex to ensure the mutual exclusion: only one thread can

access the shared data file. When a thread is reading the file, the file’s mutex is

set to be locked and other threads have to wait until its state becomes unlocked.

Even though the atomicity of this file is guaranteed by the mutex, the parallel

PvWatts program will run slower than the sequential one as each thread has

to spend the extra time waiting until the mutex becomes unlocked.

A program frequently reuses the data in the same location or within the

nearby memory space. Based on the time duration and data reference, the

locality of reference is divided into two categories:[22]

• Temporal locality: the program might reuse the specific data which have

been referenced recently.

• Spatial locality: the program might reuse the data items which are rel-

atively close to the recently accessed item.

The locality rule is to maximize the number of the local references and

minimize the number of non-local reference.[22] This rule tries to reduce the

dependency between the threads and tasks, so that the parallel program can

run faster because most of the communication latency and memory contention

are avoided. To illustrate the locality rule, consider the multiple PvWatts

reducers which are used to sum up the power for each month. Each reducer

queries the tuples from the same table in the database. The tuples of a month

are stored in the neighbouring area of the memory space, because they have

been sorted by their date and time field values. Thus, the program would

fetch a chunk of tuples to the CPU cache and the reducer might get the

tuples directly from the cache without the access of the main memory. The

performance can be improved as the cache provides the faster speed than the
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memory.

1.3.6 Speedup

The speedup is the main performance index for a parallel program. The execu-

tion time is from the time when the first core begin executing the program to

the time which the last core completes execution. But execution time does not

indicate how the parallelism scale up the program. The speedup is defined as

the execution time of a sequential program divided by the execution time of a

parallelized program that has the same result. But speedup has many issues

and may lead to wrong interpretation. The follows are some factors that may

affect the speedup and lead to performance loss.[22]

1. The different parallel machines may affect the speedup although they use

the same architecture. This is because some of the components they use

are slightly different or may have been upgraded with the new generation

of technology.

2. The JVM options would affect the speedup. For example, turning off

the compiler optimization may increase the execution times of a parallel

program. This change affects the speedup and leads to the incorrect in-

terpretation. To avoid this error, the compiler options should be reported

along with the program execution.

3. The relative speedup is the speedup relative to the execution time that

the program runs with a single core (thread). It is necessary when the

problem size is too large to be fit into a sequential program.

4. The JVM warm-up affects the final execution time. The cache behaviour

in the first few runs is not well-formed and have more chances of cache

misses than the later runs. So the total execution time in the first run

is always the longest one. Running the program several times or more

can warm up the caches and reduce the chances of cache misses. So
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averaging the execution time in the later runs can get a stable and real

speedup.

5. Some off-core activities (e.g. writing to/reading from disk) could domi-

nate the execution time and completely destroy the parallelism.

1.3.7 Efficiency

Figure 1.5: The efficiency chart of a program on a 8-core machine.

The efficiency of a program is the normalized speedup (the speedup divided

by the number of cores).[23] It shows how much time faster each CPU is used

on the parallel program than on the sequential one. The efficiency of 1.0

means that the speed increases linearly to the number of cores. The efficiency

is always less than 1 and decreases as the number of cores increase. As shown

in Figure 1.5, the parallel program using a single thread takes up most of CPU

time whereas the same program executed with 8 threads has the least amount

of CPU time.

Some programs can solve the problem faster by simply adding more number

of threads. But the speedup can not always be improved in such a way and

has a theoretical limitation, depending on how much a program is parallelized.

A parallel program contains a sequential part and a parallel part. Using a

multi-core machine can speed up the parallel part but not the sequential one.
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So the speedup of a parallel program is limited by the sequential part. The

more of a sequential part in a program relative to the parallel part, the poorer

speedup the program gets.

Amdahl’s law defines the maximal speedup a parallel program can achieve

with additional computing resources. Assume that we have a machine with N

cores and F is the sequential fraction of the program. The maximal/theoretical

speedup is[23]:

Speedup ≤ 1

F + (1−F )
N

As the N increases to an infinite, the speedup is close to 1/F . This means that

the speed of a parallel program would converge to a constant (the inversion

of its serial fraction) and could not have any improvement by adding more

number of cores to the machine. For example, the program with a quarter of

sequential parts can at best have a speedup of four regardless of the number

of cores.

1.3.8 Scalability

Deciding a problem size is difficult. If the problem size of a program is small

enough to fit or be handled on the single-core machine, then it is unreasonable

to run this program on the multi-core machine. In order to get a fairly good

performance on the multicore machine, the problem of a parallel program

should be scaled up as the number of cores increases. The scalability of the

problem implies[23]:

1. The design of the many-core or multi-core machine does not requires a

high-frequency CPU as the multicore machine with low-frequency CPU

can achieve a similar or close performance as the high-speed single core.

2. The software batching technique will be widely used in the parallel pro-

gram as it decreases the overhead costs of communication among threads

and improves the efficiency by performing the latency-hiding technique.
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3. The problem size of a parallel program should be scalable to maintain

the efficiency when more cores are added to run the program.

1.3.9 Performance Trade-Offs

The performance of a parallel program can be affected by a variety of factors,

e.g. the communication costs, task dependencies and the CPU idle time. And

the factors are dynamic as they may vary from one problem to another. And

each factor may have a trade-off relationship with the others. That is, lowering

one factor may result in an increase of others. The common performance trade-

offs in a parallel program are described as follows:[23]

1. Communication costs are reduced by the independent parallel tasks.

Each independent computation can be run by one thread without any

communication cost or waiting time among tasks. But the independent

task may create some redundant computations to remove the task de-

pendencies. For example, an input file needs to be split into several parts

so that each reader can take one part to process in parallel. Even though

the redundant computations increase the costs, the communication costs

can be reduced.

2. The parallelism often requires a large amount of memory.

If the data are too big to fit into the cache, then they will be moved

into the main memory space which has the slower speed than the cache.

To make use of the cache as much as possible, the privatization and

padding methods can be used to reduce the memory usage in a program.

The privatization is to replace the shared/global variables with the pri-

vate/local ones. The benefit is that the thread does not have to interact

with shared memories all the time even though the privatization requires

the additional memory costs. The padding is to make each thread to do

the same portion of a task so as to keep the variables on the same cache

line. Padding can make those dependent variables to be independent,
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that is, to remove the false sharing and improve the performance.[9]

3. Overhead costs prevent the parallelism.

Consider the following three trade-offs between the overhead cost and the

parallelism. a) The overhead cost occurs when one reducer accumulates

the results from all of the threads. This reducer can be the bottleneck for

the performance in this case. But if the intermediate combiners are used

to categorize the data before the reducer, then the summation workload

can be parallelized by using the multiple reducers. b) The fine-graned

task can improve the load balance than the coarse-grained one. The

coarse tasks have different workload and different completion time. This

unbalanced workload may cause some threads to be busy all the time

while some are idle and waiting for other threads. But over-decomposing

a task may lead to an increase in the communication costs. c) Batching

technique can improve the parallelism by performing a group of tasks

rather than one task at one time. But batching processing may cause

the contention or the race conditions and reduce the efficiency.

1.3.10 Perfect Parallelism

Perfect parallelism is when the execution time of a program is sped up in

proportion to the number of cores. The following reasons explain why it is

hard to achieve perfect parallelism.[23]

1. Parallelism has expensive overhead costs.

The overhead costs of parallelism are communication costs, synchroniza-

tion costs and memory usage. Some communication costs can be avoided

but some can not (e.g. the shared memory communication). Synchro-

nization costs are hard to detect as the messages are passed between

threads. And the memory size sometimes can constrain the performance

of a parallel program.

2. Some computations are non-parallelized.
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Non-parallelizable parts in a program are those which must be executed

in sequential. Amdahl law shows that the maximum performance of

a parallel implementation is determined by its sequential fraction (the

ratio of its sequential computations over all its computations). That is,

the sequential computation limits the maximal speedup of a program.

3. The idle time is never avoided.

The CPU idle time results from the unbalanced and memory-bound com-

putation. The unbalance load means that each core has different amount

of workloads. Running a sequential program on the multi-core machine

would incur this problem. The memory bandwidth constraint is still

a problem to the parallel programming when the CPUs write/read the

data from the memory.

4. Contention causes the slowdown of whole system.

Contention decreases the speed of a program because it increases the

workloads on the memory and shared memory bus.

1.4 Contributions

This section lists the main improvements to the JStar compiler, methods,

results, and tools that have been achieved. During this thesis, they include:

1. Added the -seq and -par options to the JStar compiler, so that users

can easily generate code for either sequential or parallel machines. Before

our thesis, a Fork/Join prototype was developed for JStar. It was based

on splitable hashsets of tuples, so this prototype had poor speedups and

significant overheads for tuples with small amount of computation.[1]

2. Defined two optimisations (noDelta and noGamma ) to reduce the num-

ber of tuples in the JStar data storages and the latency of triggering the

tuple rules.
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3. Extended the JStar runtime to allow users to specify the debugging ver-

bosity to report different kinds of runtime information about the execu-

tion of JStar programs.

4. Added tuple grouping feature to the JStar runtime so that Delta nodes

with many tuples can group multiple tuples into a single fork/join task,

to reduce the overhead of having many small tasks.

5. Extended the JStar runtime to allow users to choose between alternative

Gamma table and Delta tree data structures at runtime. This makes it

easy to measure the performance of alternative data structures.

6. Evaluated the performance of different Gamma data structures.

7. Developed a Task Dependency Graph Tool for visualising the dependen-

cies between rules and tables in an execution of a JStar program.

8. Added logging features to the JStar runtime, and wrote the JStar Tu-

ple Timing Graph that visualises the log output as a timeline of tuple

executions. This is helpful for identifying bottlenecks and performance

problems within some JStar programs.

9. Defined the standard operating procedure (S.O.P) to benchmark the

JStar programs on the Symphony cluster or the NeSI cluster.

10. Defined a performance tuning process for JStar programmers to follow.

11. Applied that tuning process to several case studies (with different styles

of parallelism) and demonstrated that it produces efficient programs,

usually with quite good speedup.

12. Used the Disruptor data structures to speed up one JStar program with-

out changing the JStar source code.



Chapter 2

Introduction to JStar

JStar is a new declarative language that aims to encourage implicit parallel

programming[28]. The semantics of JStar language is a subset of Datalog

with negation, and explicitly defines a causality ordering which ensures the

correct sequence of execution flow.[4] The JStar compiler has already been

implemented to translate a JStar program into a Java parallel implementation,

which can be executed on single-core or multi-core CPUs. Since the compiler

generates parallel codes by default, JStar programmers can focus on the design

of their program without making any parallelism strategy. The separation

of program and parallel implementation facilitates people, who have little or

no parallel programming knowledge, to aggressively make use of multi-core

computing power. The current version of JStar (V2.0) includes the following

features:[28]:

1. The Tuple Order Visualizer is a graphic user interface that displays the

execution sequence of tuples in a JStar program with a tree structure.

2. The Satisfiability Modulo Theories (SMT) Connector translates the the-

orems from JStar syntax to Standard SMT-LIB format, so that the con-

forming SMT theorem solvers can check their satisfiability and determine

their validity. The theorems in a JStar program include the execution

order of rules and tuple invariants. If the rule sequence conflicts with

the user-defined causality ordering declaration, or the tuple invariants
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are not preserved during the execution, then the SMT connector would

return the results and show any available counterexamples.

3. A Logging system that can record each table usage and provide a tool to

visualize the task dependencies.

2.1 The JStar Language (Delta Tree and Gamma

Database)

JStar stores all data in main memory rather than on disk as in-memory

database provides faster accessing speed. Since the performance is an im-

portant goal for JStar, an in-memory database is the preferable form of data

storage.

The JStar language supports a relational programming paradigm: data are

organized in a relational database. JStar shares most of the terminology of

SQL relational models. A tuple is used to describe a basic data object. An

attribute defines the property of a tuple, including values, data type and name.

A tuple is represented as an ordered list of attribute values. A set of tuples,

which have the same attributes, are grouped in one table.

Rules control the flow of a JStar program. Rules can add tuples to or query

tuples from these tables. But they cannot update or delete any existing tuple

in the tables. Since tuple values cannot be changed during the execution,

and the use of negation and aggregate operators is restricted to avoid data

races, the output of JStar program depends purely on the input values. Thus,

running a JStar program with the same input values would always produce the

same results, though possibly in a different order. This feature makes JStar

similar to a pure functional language, and the behaviours of a JStar program

are deterministic. The use of immutable tuples does not allow side effects

and makes JStar thread-safe. As tuples can not be changed or modified after

being created, there is no chance that a single tuple is updated by multiple
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threads. With the properties of the functional paradigm, determinism, and

thread safety, JStar programs can be aggressively parallelized and optimized

by the JStar compiler.

Tuples are inserted into the Delta Tree immediately after they are created

and initialized by rules. Then these tuples wait in order in the Delta tree for

being processed by the JStar runtime environment. According to the execution

order of tuples which has been declared in the causality expression, the JStar

runtime takes out a group of minimal number of tuples from the Delta Tree.

JStar processes the tuples in the same group with one of the three strategies,

which will be detailed in Section 2.3:

• Splitting the group into subgroups

• Iterating sequentially through the tuples in the group

• Creating a list of Fork/Join tasks and then processing them concur-

rently.

2.2 How the JStar Compiler Works

The JStar compiler translates a JStar program to source code written in Java.

By using the Java compiler and the Java virtual machine(JVM), these gener-

ated Java files are converted into Java byte codes and executed on the different

types of operation systems. With appropriate compiler options, the JStar com-

piler generates parallel Java code. Thus, JStar programs can be executed on

single-core machine or multi-core machine without changing the source code.

The JStar compiler is implemented with Xtext[10], which provides an open-

source framework for programming and domain-specific language development.

The JStar compiler is developed with Eclipse SDK and uses the Java Runtime

Environment (JRE) for compilation and execution. The JStar compiler trans-

forms each table declaration in the program into two classes for the tuple and

three classes for the table, and places all the Java source code into the src-gen

folder.
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Consider the compilation of the PvWatts table in the JStar PvWatts pro-

gram. The PvWatts table has 5 fields, ordered as year, month, day, time

and watts. Besides, it also adds invariants to each field as described in the

following:

1 table PvWatts(int year, int month, int day, String time, int watts)

2 orderby (PvWatts)

3 inv 1000<year && 1<=month && month<=12 && 1<=day && day<=31;

When the JStar compiler compiles this table declaration, it generates a

PvWatts class inherited from Tuple class and initializes its member variables

with the PvWattsBuilder class. The member variables of these two classes are

inferred from the expression of field declaration. The orderby clause imposes an

natural ordering on the PvWatts class, and generates the compareTo method

to compare all the fields. For the invariant, the JStar compiler creates and

overrides the invariant method of PvWatts class. This method checks whether

the member variables of each PvWatts tuple satisfy the conditions in the inv

declaration, so that each PvWatts tuple has valid date and time values.

2.3 The Default Delta Tree and Gamma Database

JStar uses a pool/queue pattern to process new tuples during the execution.

When a new tuple arrives, the JStar runtime does not process its task imme-

diately but adds this tuple into a temporary data set. This shared database is

called the Delta tree and acts like a queue. All new tuples are lined up in or-

der and waiting for processing. Thus, the JStar runtime can create and process

tuples at the same time without any waiting. JStar runtime take one or more

tuples from Delta tree and execute them concurrently. After being taken out

from the Delta tree, each tuple is moved to one table in the Gamma database

and then JStar runtime starts to execute the associated rules whose input

is this tuple kind. These rules can query tuples from Gamma database and

put more tuples to Delta tree. Since JStar runtime frequently interacts with
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the Delta tree and the Gamma database, efficient implementations of these

two databases are essential to improve the JStar performance. The following

subsections describe the default implementations of Delta tree and Gamma

set.

2.3.1 The Delta Tree

Listing 2.1: Source Code of the DeltaNode Class.

1 package nz.ac.waikato.jstar.runtime.delta;
2 import ...
3

4 public abstract class DeltaNode extends RecursiveAction {
5 final JStarProgram prog;
6 public DeltaNode(JStarProgram prog) {
7 this.prog = prog;
8 }
9 /∗∗

10 ∗ @return the program that this delta node is part of.
11 ∗/
12 public final JStarProgram getProgram() {
13 return prog;
14 }
15 protected void compute() {
16 process(prog);
17 }
18 /∗∗
19 ∗ Insert the given tuple into this subtree, and remove duplicates.
20 ∗ This subtree is the subtree for level ’depth’ of the orderby list.
21 ∗
22 ∗ @param toInsert the tuple to insert
23 ∗ @param depth
24 ∗/
25 public abstract void insert(Tuple toInsert, int depth);
26 /∗∗
27 ∗ Execute all the tuples within this subtree.
28 ∗ They are processed in minimum−first order.
29 ∗ Each tuple is removed after it is processed.
30 ∗ @param prog TODO
31 ∗ @return when the whole subtree is empty.
32 ∗/
33 public abstract void process(JStarProgram prog);
34 }

The Delta tree is organized as a multi-level priority queue and made up

of DeltaNode objects. The DeltaNode class is shown in Listing 2.1. As being

extended from the RecursiveAction class, the DeltaNode object is an typical

Fork/Join task which does not return any result. The DeltaNode class spec-

ifies the common behaviours which are performed by the JStar runtime. For
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example, the insertion method inserts a tuple into the Delta tree. For each

kind of tuple, the JStar runtime creates one single DeltaNode subtree of the

fixed tree-depth predefined in the order declaration, and then puts the tuple

of its kind to the leaf node. The branch-like data structure can increase the

speed to search for the set of minimal tuples. The reasons are described in the

follows: a) each leaf node in the Delta tree contains only one kind of tuples;

b) the Delta tree are indexed hierarchically; c) duplicate tuples are removed

from the Delta tree. Note that many different kinds of tuples are inserted

into the Delta tree, so it contains a heterogeneous set of tuples. The ordering

of subtree is determined by the order declarations of each kind of tuple with

the Nth level.

Listing 2.2: Table Declaration of the Delta Tree Example.

1 table CmdLineArg(int index, String value)
2 orderby (CmdLineArgs)
3 inv 0<=index;
4 /∗∗
5 ∗ A request to generate tuples: from (inclusive) .. to (exclusive)
6 ∗/
7 table GenTuples(int index, int from, int to)
8 orderby (Int, seq index)
9 inv 0 <= index;

10

11 table PvWatts(int year, int month, int day, String time, int watts)
12 orderby (Int, seq year, Int, seq month, PvWatts)
13 inv 1000<year && 1<=month && month<=12 && 1<=day && day<=31;
14

15 order CmdLineArg < GenTuples < PvWatts;

The Delta set is implemented as a fixed-depth tree and composed of four

kinds of DeltaNode objects: DeltaNodeNamed, DeltaNodeObject, DeltaNodeInt

and DeltaNodeSet. Consider an example of three tuple kinds (CmdLineArg,

GenTuples and PvWatts), and its table declaration and ordering of tuples are

listed in the Listing 2.2. The CmdLineArg tuple passes one program argument

to the JStar program; the GenTuples tuple requests the program to generate

a fixed number of PvWatts tuples; the PvWatts tuple represents a random

hourly PvWatts record. The CmdLineArg is the first prioritized tuple as it

is ordered by the default CmdLineArgs table, which has been already imple-

mented in JStar runtime. The GenTuples tuple is the second, followed by the



2.3. THE DEFAULT DELTA TREE AND GAMMA DATABASE 26

PvWatts tuple.

Figure 2.1: The Delta tree diagram with 3 tuple kinds of 5 tree-depths.

Figure 2.1 is the Delta tree of the above example. We will use this graph

to describe four DeltaNode objects:

DeltaNodeNamed is used as the root node of the Delta tree and the tu-

ple ordering indicator. According to the orderby declaration, it inserts

the same kind of tuples into one single subtree. As the root node of

a Delta tree, the DelteNodeNamed object contains a fixed-size array of

DeltaNode nodes whose length is determined by the total number of tu-

ple kinds in the program. For example, the above JStar program uses 5
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kinds of tuples, including three user-defined tuple kinds and two default-

implemented ones (CmdLineArgs and Int). Thus, the array size inside

the DeltaNodeNamed object is 5 and the array position indicates the

order declaration, as listed in the follows: 0) CmdLineArgs; 1) CmdLin-

eArg; 2) Int; 3) GenTuples; 4) PvWatts.

When a new tuple is inserted into the DeltaNodeNamed, its orderby list

determines the position in the array. For example, the CmdLineArg tu-

ples are ordered by the CmdLineArgs, as shown in the orderby declaration

of CmdLineArg table. The JStar runtime puts each new CmdLineArg

tuple on the first position of the array and forms the left subtree.

DeltaNodeInt is used as the intermediate node of the Delta tree and sorts

out the tuples whose the key field are declared as the integer type. It

stores the tuples with the TreeMap<Integer, DeltaNode> collection,

indexing by the tuple field. For example, the GenTuples tuple uses the

index field as the key. When a new GenTuple tuple is inserted into

the sorted TreeMap, the insertion method of the DeltaNodeInt uses its

index value as key and check whether this key has been existed in the

map. If not, then the method associates this key with a new DeltaNode

object, which is created with the tuple. As shown in Figure 2.1, each

GenTuples tuple is put into the DeltaNodeSet object (depth=2) next to

the DeltaNodeInt (depth=1).

In addition, this DeltaNodeInt node creates a DeltaNodeNamed node,

so that the PvWatts tuples are sorted on the next DeltaNodeInt node

(depth=3). As the PvWatts tuple uses two integer keys, the JStar run-

time creates two layers of DeltaNode nodes, which one layer contains the

DeltaNodeName node and the other has the DeltaNodeSet. With this

structure, all the PvWatts tuples are moved into the same leaf node of

the right subtree.
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DeltaNodeObject is used as the intermediate node of the Delta tree and

sort out the tuples whose the key field are declared as the object type.

Like the DeltaNodeInt, the DeltaNodeObject stores tuple with the

TreeMap<Object, DeltaNode> implementation. The key is the object

itself. For example, if the PvWatts tuples are ordered by PvWatts ob-

ject, then the position of a tuple is dynamically determined by all of its

key fields: the PvWatts tuples are sorted in a ascending order of year,

month, day, time and watts values. When a new tuple is inserted to this

tree map, the order of tuples must be re-ordered again and each tuple’s

position needs to be changed as well. Thus, both of the DeltaNodeObject

and the DeltaNodeInt objects needs to dynamically change their storage

size. The TreeSet is preferable to the Array because it provides a total

ordering on tuples and quickly resizes the capacity[16].

DeltaNodeSet is used as the leaf node of a subtree. Because of the branch

structure, the tuples of the same kind have been sorted and ordered

before they are moved into the DeltaNodeSet. Thus, the DeltaNodeSet

node can directly move these tuples to the storage.

The storage of the DeltaNodeSet must be implemented with an efficient

data structure. Inserting a tuple requires to check whether the tuple

exists in this storage. As the number of tuples increases , this check

takes more time to compares the new incoming tuple with the old ones

in the data storage. An efficient data structure is needed to ensure

the performance of insertion operation. The HashSet set is used to

store the tuples in the DeltaNodeSet for its stable insertion speed. It

offers a contant-time performance over the basic operations (add, remove,

contains and size)[15].
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2.3.2 The Gamma Database

The Gamma database needs to be efficient at adding new tuples, searching for

individual tuples and searching for a subset of tuples with some common field

values. The default implementation of each table in the sequential Gamma

database is TreeSet. When a new tuple is moved to Gamma database, JStar

runtime uses the compareTo method defined in the orderby declaration to check

if this tuple has been present before. This comparison method only compares

the key fields and each of the operations depends on the data type of the

compared key field. If the key field is an integer, then the comparison uses

the greater than (>) operator and the less than (<) operator to determine

the equality of two tuples. As for the String values, the comparison uses

the compareTo method of Java String class to compare two strings. If the

comparison results of all the key fields are the same, then the method returns

zero. Otherwise, it returns a non-zero value. The new or non-existing tuples

are moved to the Gamma database; the duplicate tuples, whose result is zero,

are discarded.

Consider the PvWatts example. The following procedure is used to insert

a new PvWatts tuple to the table in Gamma database. First, the year value

of this tuple is used to compare with one tuple in the Gamma database. If the

year value is greater than that of the other tuple, then the method returns the

positive one (+1). If the value is less than the other, then the negative one

(-1) is returned. When the result is equal, the next key field (the month value)

is used to compare these two tuples. This comparison method continues until

the result is returned or it has used all the key fields for comparison. Then

another tuple in Gamma is chosen to compare with this tuple and repeat the

above procedure until all of the tuples have been compared. If the final result

is zero, then the Gamma database adds this tuple. Otherwise, it ignores this

tuple without doing any action.



Chapter 3

Related Work

The parallel computing divides a great deal of computation into many tasks

which can be carried out in parallel. Having many computers to work on the

same problem can shorten the completion time and achieve the same or better

performance than using a single unit computer. To provide a large number of

the computing resources, the High Performance Computing (HPC) facility are

either the multi-core machines or clusters of small machines that are linked

together through the local network or interconnect to work together. And

currently the clusters of multi-core machines are preferable because their prices

are more affordable and have more computational power than the single-unit

machines [26].

The HPC parallel programming model employs the distributed or shared

memory design to parallelize the computation across the multiple processors.

The distributed memory programming model distributes the tasks and data

over the multi-core machine, where each processor owns one private memory

space to store the data locally. If the processor requires the non-local data,

it must communicate with other processors and move the remote data to its

local memory. Referencing the remote data takes some extra time to find the

data location and thus could lead to an unexpected delay. Instead of data

distribution, the shared memory programming model keeps all the data with

one public memory space where the processors can retrieve data from.
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The distributed memory offers the memory locality to allow each processor

to store the data in the closest (private) memory location. As each processor

mostly uses the local data, the distributed memory model can avoid the race

conditions but produce inevitable communication costs. Message Passing In-

terface (MPI) is the communication library for the distributed memory model.

The MPI can be called directly from C and Fortran, or packaged as a library

and imported into a Java project. The MPI program is efficient and portable

as the MPI interface has been widely adapted in every distributed memory

systems and also optimized to provide the good performance.

The shared memory system uses one single memory space to store the data

and provides the unified global memory addresses to quickly locate and retrieve

the data. As the same data are occasionally synchronized by more than one

processors, the shared memory program may have the performance problems,

such as the race conditions.

3.1 Library-based Shared Memory Program-

ming Languages

Java language is considered as a option for programming on parallel hardware.

With built-in multi-threading and networking APIs, Java programmers can

write a parallel application to utilize the computing power of the multi-core

machines in a cluster. But writing a low-level multi-threading application is

hard and buggy as the data synchronization requires the external mechanism

and the incorrect design of parallel tasks may lead to deadlock. Therefore, Java

from 1.5 specification supports the high-level shared memory programming

with several concurrency utilities, including the thread pools, the concurrent

collections and the atomic variables.[26]

Using Java for HPC may have some difficulties. Although the performance

of JVM has been continuously improved by experts and engineers, the per-

formance of Java HPC solutions may still be reduced by some unpredictable
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factors. For example, the excessive objects allocation increases the overhead

costs for the Java garbage collector and thus results in a longer execution time.

The poor cache performance from many object references may also increase

the running time.

Despite the above issues, Java is still an important parallel programming

language for some HPC application. The reasons are that: a) there has been a

number of projects developed in Java for HPC; b) Java programs can support

both of sequential and parallel implementations and achieve a good perfor-

mance; c) the recent development on Java, e.g. the low-latency communica-

tion, has overcome some performance issues. [26]

As OpenMP standard supports the multi-platform shared memory pro-

gramming (in C, C++ and Fortran), it provides the portability to the multi-

threading code across the heterogeneous hardware and operating systems.

But the OpenMP standard is not included in Java, and therefore, most Java

OpenMP-like projects are implemented in the form of a Java library to be

imported in the Java project. JOMP, for example, is a library for Java to

achieve the OpenMP-like parallelism.[25]

3.2 Partitioned Global Address Space Languages

3.2.1 Titanium and X10

Titanium uses Java as its base and adds extra features for high performance

parallel programming.[26] Titanium adopts Partitioned Global Address Space

(PGAS) programming model: all processes use one single memory space and

reference objects with global addresses. Each process allocates one region

of this spaces and stores all its data objects in its local region. Through

sharing the same memory, a process can read and write the data objects that

reside on others. Moreover, Titanium adopts lightweight synchronization to

ensure that single-value variables are only read and written by one process,

and have consistent values in all processes. Benchmark results show that
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Titanium implementations can have or often have the better performance than

the standard Fortran/MPI ones.[7]

X10 is also another Java-based shared memory programming language. It

uses APGAS (Asynchronous Partitioned Global Address Space) as its execu-

tion model for distributed processing.[20] The global memory space is split into

several places, each place is implemented by one instance of JVM. By having

multiple JVMs running on different computers and connecting them through

the network, X10 forms the distributed system. Thus, a large computation

work can be divided into many tasks, each of which can be distributed and

processed concurrently.

Regarding memory referencing, each JVM creates and stores its local data

objects in a specific location of the memory space. Thus, each object has a

global address and be remotely referenced from other places, using a mecha-

nism named GlobalRef. That is, all referenced objects can not be collected as

garbage even if there is no local reference to it.[20]

Both Titanium and X10 use the syntax of JAVA language, so they inherit

its imperative program paradigm: using statements to define the computa-

tion and assign values to variables. But JStar is a declarative language which

expresses the program’s computation without assignments. Regarding paral-

lelism, Titanium and X10 programmers need to explicitly specify where the

parallelism should go whereas JStar parallelism is implicitly determined by

the JStar compiler. Like the PGAS programming model, JStar uses a global

DeltaNode and Gamma database to store all local data objects in one memory

space. While it is possible to transparently distributed the JStar database

across multiple computers.[6] This thesis will focus on the shared memory

implementations.

3.2.2 Chapel

Chapel is an emerging parallel programming language that originated un-

der the DARPA High Productivity Computing Systems (HPCS) program.[3]
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Chapel also supports the PGAS memory model, which all the variables are

regarded as the local ones although some of them are stored in the global

memory space. And the Chapel runtime and compiler will implement the

network communication for these remote variables. Chapel also supports the

programmers to introduce the explicit parallelism on the single-core machine

or execute the code sequentially on the multithreaded machine.

The difference between JStar and Chapel is the way of how the users specify

the task parallelism. Chapel allows the programmers to specify the task paral-

lelism explicitly with the sync statements, the atomic variables and structured

parallelism.[3] But the JStar language use an implicit style of programming

to implement its parallel tasks. Regarding the data parallelism, as the ex-

plicit parallel programs would cause the race conditions or deadlock, Chapel

and JStar both uses similar and implicit features, such as forall loop, and

reducers.

3.3 Intel Concurrent Collections

Intel Concurrent collections (CnC) aims to provide users with high level paral-

lelism, so that users are able to write their algorithms without detailed paral-

lelism knowledge.[2] Writing an efficient parallel program is difficult. Parallel

programs may introduce new kinds of bugs which have never been found in se-

quential programming. One of the potential bugs is race conditions. Another

bug is when one thread is not able to lock the state of a shared resource, it

may infinitely block others from accessing the resources and lead to the dead-

lock. Besides, an inefficient parallel program may have performed once worse

than the sequential one. As many parallel programs usually divide one task

into a number of subtasks, they need to use a barrier to force all threads to

wait for each other until all results have been synchronized. But this barrier

results in higher synchronizing time as finished processes have to wait for un-

finished ones. Sometimes the synchronization overhead costs may dominate
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the benefits of parallel programming and cause longer execution time.

The concept of CnC is to make parallel programming accessible to domain

experts and tuning experts.[2] Because the CnC model hides the details of

parallelism, domain experts do not need to write low-level parallel programs,

but only need to identify the dependencies which need to be run in parallel.

The CnC program model specifies these relationship in a CnC specification

graph which defines these relationship graphically and statically.

Tuning experts can be involved in the team for improving the perfor-

mance of CnC programs. By mapping the CNC graph on a target parallel

architecture, tuning experts can improve the performance of CnC program

without needing to understand the application. And since the deterministic

semantics—the same inputs producing the same outputs— is adopted by CnC,

the correctness of the optimized CnC programs can also be ensured.

JStar and CnC have some similarities. They both use the determinism

program model to ensure the correctness of the program. They also provide

the dependency graph to visualize their programs, but the JStar graph is

dynamic. They separate the roles of domain experts and parallelism experts.

This allows the development team to include the people of different profession

to work together but still can make use of their expertises. For example, the

application developers can focus on the business logics without thinking about

the implementations while the programmers can merely concentrate on the

coding and debugging.

3.4 Domain-Specific Languages

Heterogeneous computing hardware is becoming an important trend in the

computer industry and can provide significant performance increase. But in

order to interact with these heterogeneous devices, application developers have

to learn a variety of programming models. These incompatible models make

the applications more complicated to deploy on different platforms and hard to
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maintain their source code. Therefore, a parallel heterogeneous programming

model is needed to help programmers to deal with different computing devices

across systems.

3.4.1 DSL Characteristics

The Delite framework developed by Stanford University’s Pervasive Parallelism

Laboratory (PPL) supports this goal and proposes the following characteristics

for a parallel domain specific language:[12]

Productivity. The application programmer can easily write the programs

without the use of explicit parallel constructs. DSLs (Domain-Specific

Languages) are used to satisfy these goals. Each DSL is a program-

ming language with high-level abstractions. For example, LaTeX is the

DSL for academic papers and SQL is for database querying. Because

each DSL is designed for a particular domain, application writers are

familiar with its notation and constructs. In addition, it can provide a

sequential-like programming model for writing parallel code and using

heterogeneous computing resources. So the productivity of application

writers can be improved.

Performance. Application writers often take a lot of effort to write low-

level code for better performance. But the new programming model

should not decrease their performance. The DSL approach can achieve

both productivity and performance because its compiler can trade off

the generality to generate the high performance code. General-purpose

compilers have to impose some restrictions on programmers to guarantee

the correctness of generated code. This sometimes leads to low perfor-

mance code. But the DSL uses implicit parallelism in a limited domain

to prevent programmers from writing inefficient programs; therefore, the

DSL compiler can use aggressive implementation of parallel patterns to

optimize the code without causing any safety issues.
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Portability and Scalability. The application should be able to run on var-

ious computing resources across different systems.

3.4.2 The Delite Framework

The Delite is implemented to run the same DSL programs on heterogeneous

systems without changing the source code. The workflow chart is described in

the following steps:

1. The application developers write their programs in a DSL and submit to

the Delite framework.

2. The Delite compiler starts to build IRs of all operations. IR is defined

by Lightweight Modular Stage (LMS), the framework designed for DSL

embedded in Scala.

3. When the DSL programs are compiled, the LMS translate each operation

into an IR node and forms symbolic representations of the original DSL

programs.

4. The Delite compiler then applies static optimizations to achieve high

performance on the IR nodes. For example, the Common Subexpres-

sion elimination (CSE) could remove redundant operations by reusing

existing ones. And the linear algebra simplification, a domain specific

optimization, is also applied in this process.

5. After optimizing the IR trees, the Delite compiler generates the ker-

nel code for any available target hardware and forms all IR nodes into

a Delite execution graph (DEG). The Delite framework also generates

kernels for different types of hardware while building the DEG.

The Delite runtime uses the machine specifications (the number of CPUs

and GPUs), DEG and DSL data structure to schedule the execution of this

application. The scheduling algorithm is designed to enable implicit paral-

lelization; therefore, a deferred execution model is proposed. The Delite run-
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time delays ops being received so that more ”run-ahead” ops are allowed to

be submitted. Then these ops are formed into a dynamic task graph and dis-

patched to a thread pool by a heuristic, which minimizes the costs of data

communication and scheduling overhead.

The Delite runtime provides the data-parallel operations and classes, which

can be extended. For example, the OptiML is a DSL aimed at Machine learn-

ing and provides various domain-specific control structures, such as a sum

construct. This function sums up the result of a block for each iteration and

is implemented by extending the DeliteOpMapReduce parallel pattern. More-

over, the Delite runtime assists in generating the GPU code if DSL authors

use the @GPU annotation to specify the operations that they want to ship to

graphics processing units (GPU) on a single machine.

In order to minimize the overhead of execution on heterogeneous hardware,

the Delite runtime generates execution plans for available computing resources

and compiles them with the respective kernels to create executable files. The

data transfers can be minimized because DEG provides detailed dependency

information. On the other hand, memory allocation is well managed by the

Delite runtime. For a CPU kernel, the Delite runtime uses the Java Virtual

Machine to manage the memory. For GPUs, the runtime pre-allocates all data

structures to address the GPU memory allocation issue.

The Delite framework shares similar goals with JStar. They use a runtime

environment to compile and execute parallel programs on different platforms.

And they both provide a graphic representation tool to optimize the compiled

programs. Delite framework generates a DEG to optimize the execution op-

erations on the heterogeneous parallel hardware and JStar can assist parallel

experts to tune the performance with a task dependency graph. Delite and

JStar[6] both support the GPU compilation features to generate code running

on GPUs. However, they have different purposes: JStar is a general-purpose

language based on Datalog with negation whereas Delite is a machine-learning

domain-specific programming language. JStar uses a declarative programming
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style and immutable data objects to guarantee the thread-safety of any JStar

operation but the Delite uses a mutable programming model, plus reducers to

concurrently sum up the values in an array.



Chapter 4

Generating Parallel Code

The JStar compiler provides several compiler flags to configure the code gen-

eration. The most important flags are the sequential and parallel flags, which

determine the kind of data structures used in the Gamma set and the Delta

Tree. Using non-thread-safe data structures in the parallel programs not only

affects its performance, but causes the race conditions, or using locks incor-

rectly can lead to the deadlock. Thus, this chapter introduces the compiler

flags and the performance of different data structures. In addition, we explore

the optimization options of JStar compiler for improving the performance of

JStar programs.

4.1 Sequential (-seq flag) versus Parallel Code

(-par flag)

The Delta tree and the Gamma database are the two main tuple storages

during the execution of a JStar program. When a new tuple is created by

the rule, it is not processed immediately by the JStar runtime but queued in

Delta tree in the defined order. After the JStar runtime removes a tuple from

the Delta tree, it inserts this tuple into the table in Gamma, and triggers all

of its associated rules. When the JStar runtime executes the rules, it may

make queries into the Gamma tables and return the query result. The result
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contains an iterable object, so that the rule can use a for statement to traverse

each tuples of the resulting set.

The Fork/Join framework is selected to execute the JStar programs in

parallel because it provides a good match for the semantics of the Delta tree.

To be able to execute tasks concurrently, we want to have the only one thread

to traverse all the Delta nodes in the tree, and then the other threads to

process the tasks on the behalf of the Delta nodes. Besides, by recursively

breaking down the size of tuples that needs to process at each iteration, the

Fork/Join framework can improve the efficiency of the JStar runtime: the

working threads in the ForkJoinPool can split large tasks into smaller tasks,

and the available threads which have finished their tasks can run the tasks

from other busy threads. The work stealing strategy used in the Fork/Join

framework can reduce the overhead costs of creating new threads and improve

the utilization of the existing threads in the pool.

4.1.1 Tuple Lifecycle

The lifecycle of a tuple has five phases: Created, Queued, Processed,

Stored and Retired (Figure 4.1) After a tuple is created and put into the

Delta tree, its status is moved from the Created phase to the Queued phase.

In the Queued phase, the tuples are queued in different or the same level of

the Delta tree, and waiting for their turn to be processed by the JStar run-

time. The JStar runtime takes a set of minimal tuples from the Delta tree and

executes these tuples in parallel, using the Fork/Join framework. When this

tuple is removed from the Delta tree, it is moved to the Processed phase.

In Processed phase, the JStar runtime uses this tuple to trigger and ex-

ecute its applicable rules, and then inserts it to its own table in the Gamma

database. Those tuples in the Gamma table are kept until the end of the pro-

gram, and could be queried by other rules. When one rule needs some tuples,

it makes a query request to the table in the Gamma database. After receiving

the request, the JStar runtime calls the corresponding query method with the
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Figure 4.1: The lifecycle of a JStar tuple.

values, which are parsed from the request. The query results are returned as a

SortedSet object, so that the rule can iterate through each tuple in the collec-

tion. These queried tuples are in Stored phase. At the end of the program or

when a tuple will never be queried again, the tuples enters the Retired phase.

The Java garbage collector can reclaim the retired tuples.

4.1.2 Optimisations

The optimisation strategies include noDelta and noGamma options. Apply-

ing noDelta optimisation on a specific tuple kind can omit the Delta tree

insertion. Thus, instead of entering the Queued phase, a noDelta tuple is

move to the Processed phase immediately after the Created phase (Figure

4.2 (a)). Similarly, the noGamma option omits the Stored phase. As shown in

the Figure 4.2 (b), those tuple applied with noGamma option enters the Re-

tired phase after the Processed phase. The details of optimisation strategies
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(a) noDelta optimiza-
tion.

(b) noGamma optimiza-
tion.

(c) noDelta and
noGamma optimizations.

Figure 4.2: The lifecyle graphs of a JStar tuple inlined with three optimisa-
tions.

will be described in Section 4.4.

4.1.3 Code Generation

The JStar compiler can generate different kinds of implementation with the

parallelism compiler flag and two optimization strategies. The parallelism

flag of the JStar compiler is to specify what kind of data structures that the

JStar compiler should use to create data storage during execution. When the

JStar compiler is given the -seq flag, it uses the non-synchronized TreeSet

class to create the tables in Gamma database and the primitive DeltaNode

implementations to create Delta node in Delta tree. If the compiler generates

Java code with -par flag, it uses ConcurrentSkipListSet class to construct

the Gamma table and the parallel version of the DeltaNode implementations
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to build up the Delta Tree.

The sequential version of a JStar program implements the Gamma database

and the Delta Tree with primitive Java collection classes:TreeSet and DeltaNode.

The advantages of these data structures is that they provide the guaranteed

log(n) time cost for the basic operations (add, remove and contains). Thus,

inserting a tuple to the Delta tree or adding it to the Gamma database does

not cause a long delay as the number of tuples increases. But these two classes

are not synchronized. If TreeSet or DeltaNode is accessed by multiple threads

without the external data synchronization, it would cause race conditions and

possible data corruption.

The parallel version of a JStar program uses ConcurrentSkipListSet and

ParallelDeltaNode as the data structures for the Gamma database and the

Delta tree respectively. The basic operations for these two collection classes

take the log(n) time on average and the operations are guaranteed to be

executed atomically.

4.2 Speed of the Gamma Database: PvWatts-

Gamma Results

The JStar PvWattsGamma program is a testing program to understand the

JStar system and provide a way of measuring the performance of the JStar

implementation. This example generates 16 million PvWatts tuples in total

and inserts each one of them to the table in Gamma database, and then ends

the program. To measure the execution time of Gamma database, PvWatts-

Gamma program must be compiled with noDelta optimisation on PvWatts

tuples. Besides, JStar PvWattsGamma program generates PvWatts tuples

with a number of parallel tasks, which each of them has its own number range

to produce a set of date time values for each PvWatts tuple. Thus, the key

values of any PvWatts tuple is unique in the whole Gamma table so that the

Gamma table does not filter out any tuple whose key values are the same as
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existing one. The source code is listed in Listing 4.1.

Listing 4.1: Source Code of the JStar PvWattsGamma Program.

1 package jstar.examples.pvwattsgamma;
2 /∗∗
3 ∗ This program measures the time taken to insert a given number of tuples
4 ∗ into the Gamma set.
5 ∗ To measure Gamma speed only, it should be compiled with −noDelta PvWatts.
6 ∗ Arguments: −−threads=1 −−benchmark=12 NNN
7 ∗ (NNN is the number of GenTuple tasks)
8 ∗/
9 val TOTAL TUPLES = 16000000;

10 table PvWatts(
11 int year, int month, int day, String time, int watts)
12 orderby (PvWatts)
13 inv 1000 < year && 1 <= month && month <= 12 && 1 <= day && day <= 31;
14 table CmdLineArg(int index, String value)
15 orderby (CmdLineArgs)
16 inv 0 <= index;
17 /∗∗
18 ∗ A request to generate tuples: from (inclusive) .. to (exclusive)
19 ∗/
20 table GenTuples(int index, int from, int to)
21 orderby (GenTuples)
22 inv 0 <= index;
23 order CmdLineArgs < GenTuples < PvWatts < Int;
24 foreach (CmdLineArg arg) {
25 val num = Integer::parseInt(arg.value);
26 for (i : 0 .. num−1) {
27 val from = TOTAL TUPLES / num ∗ i;
28 val to = TOTAL TUPLES / num ∗ (i + 1);
29 put new GenTuples(i, from, to)
30 }
31 }
32 foreach (GenTuples gt) {
33 val time = ”group” + gt.index;
34 for (v : gt.from .. gt.to − 1) {
35 val year = 1980 + (v % 9);
36 val month = v % 12 + 1;
37 val day = (v ∗ 3) % 32;
38 put new PvWatts(year, month, day, time, v)
39 }
40 }

In the PvWattsGamma example, all PvWatts tuple are inserted into the

same Delta tree, and then moved to the PvWatts table in Gamma database.

Because of the large number of PvWatts, insertion and query operation on

Gamma database take up most of the total execution time, and result in a

bottleneck and limit the speedup. Therefore, we need to have an efficient

Gamma database to improve the performance of JStar PvWatts program.
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4.2.1 The Gamma Table Data Structure Choices

The performance of a Gamma database depends on its table implementation,

which uses NavigableSet interface. Thus, the data structure choice for each

table affects the performance of overall Gamma database. As described in

previous section, the table implemented from different kinds of data structures

has different insertion time and query time. This section explores several JAVA

collection classes and choose an appropriate data structure for the Gamma

database.

TreeSet is implemented from NavigableSet interface, which is a sorted set

and provides several subset methods that are very useful for potential

key queries.[5] A new tuple is added to the Treeset if and only if it has not

been present before. The nature orderings is used to determine whether

a new tuple is equal to the existing tuples in a TreeSet. If PvWatts tuple

are inserted to the TreeSet, then they are first sorted by their year field,

then by the month, and then by the remaining primary key fields (from

the left to the right).

ConcurrentSkipListSet is the concurrent implementation of NavigableSet

class.[5] Like the TreeSet, PvWatts tuples in this set are sorted with their

natural ordering. The Insertion, removal and query operation of the

PvWatts tuples can be executed by multiple threads without causing any

Thread-safe issue. Although the size method cause delay in operation

as it needs to iterate through all tuples in the set.

HashMap is a Hash table based on Map interface.[5] It takes a constant

time to insert a new tuple and retrieval an existing tuple from its table.

Through its Hash function, the retrieval of tuples in a HashMap is similar

to an array. For example, PvWatts tuples can be keys in a HashMap

with the Boolean.True being used as the value (Figure 4.3). It is also

possible to use the HashSet class directly, but not all of the Map classes

in the Java library have the Set equivalents. So we prefer to consistently
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Figure 4.3: The HashMap insertion behaviour diagram.

use the Map implementations when generating parallel code. When a new

PvWatts tuple is put into a HashMap, the Hash function finds an index

in the array and then places it in the Key set. Instead of iterating all

elements in the set, the array index provides an easy and direct way of

accessing a tuple. But if there are the queries that return a subset of the

table, the HashMap iteration time is proportional to its total number of

elements, so a HashMap is unlikely to be a good choice of data structure

in this case. If there are too many elements, the total searching time

could be increased and thus the overall performance would be degraded.

Besides, another factor which affects the performance of the HashMap is

the initial capacity. When a large number of tuples are inserted into

a small-sized HashMap, it will frequently spend the time resizing its ta-

ble and therefore its performance will be slowed down. Like TreeSet,

HashMap is also not thread-safe, so they are only suitable for sequential

situation.

The performance of a HashMap depends on two factors: initial capacity

and load factor. The initial capacity is to set up the estimated size of

a HashMap instance. The load factor determines how full the HashMap
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instance should be before its capacity is increased. For example, the

PvWatts table is created with 8 million initial capacity and 0.75 load

factor. That is, the capacity threshold is 6 (8×0.75) million tuples. When

the total number of tuples in the PvWatts table exceeds this threshold,

then the HashMap has to double its bucket size (16 million) to accept more

insertion requests. Resizing a HashMap requires rebuilding its internal

data structure, and thus causes a delay in execution time.

ConcurrentHashMap is implemented from HashMap.[5] Its retrival and up-

date operations act like HashMap but provide the thread-safety. That

is, ConcurrentHashMap can be accessed by multiple threads at the same

time and still behaves correctly, but allow finer-grained concurrent access

than HashMap.

ConcurrentHashMapV8 is developed by JSR-166.[21] Its goal is to im-

prove the ConcurrentHashMap class and provide higher efficiency and

low memory usage. And its implementation obeys the method specifica-

tions of HashMap.

4.2.2 The PvWattsHashTable Gamma Table

The JStar built-in Gamma table implements the NavigableSet interface.

Those classes based on the Map interface can not be directly used to create

a PvWatts Gamma table. The PvWattsHashTable class is written as a con-

tainer to make use of all the Map implementations. It uses an array of Map

instances, each Map instance storing the PvWatts tuples of one month. For ex-

ample, the first Map instance whose array index is 0 stores the invalid tuples.

The second one (index=1) retains the tuples whose month field is January,

and followed by February, March, and so on. To measure the effects of initial

capacity on the performance, the PvWattsHashTable constructor can initialize

each Map instance with a specific capacity value. If the capacity is not set

or the Map implementation does not support to an initial capacity, the Map
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instance is constructed with the default configuration. Besides, this array is im-

plemented using the AtomicReferenceArray so that the PvWattsHashTable

can be guaranteed to be thread-safe and each Map instance can be read or

written atomically.

4.2.3 Benchmark Result of the Sequential Tuple Inser-

tion

Benchmarking the PvWattsGamma program requires several JStar runtime

flags, including table, debug, benchmark and threads. The table flag takes

a string which contains the property settings of a table and each property is

separated by a comma. The program arguments in the following list are one

example of the PvWattsGamma benchmarks.

Listing 4.2: The Benchmarking Program Arguments.

1 −−table,GenTuples,group=1

2 −−table,PvWatts,estimated=16000000,gamma=ConcurrentHashMap

3 −−benchmark=30 −−threads=4 24

The first argument means that each GenTuples will be treated as a separate

task rather than several tuple being grouped into one group. This is the

optimal setting for this program because each GenTuple triggers a rule that

does quite a lot of work, so it is best handled as a separate task. The second

table flag specifies ConcurrentHashMap as the data structure of the PvWatts

table in Gamma. And the initial capacity of PvWatts table is set to be 8

million. The benchmark flag specifies the number of repeated experiments.

The Threads flag creates 4 threads in the thread pool. The number 24 means

that JStar runtime creates 24 GenTuples separate tasks.

Figure 4.4 shows that the performance of the sequential version of the JStar

PvWattsGamma program. The JStar PvWattsGamma program is compiled

with the -seq flag to generate the Java code and use both of the synchronized

and non-synchronized Java collection classes, such as the HashMap. The experi-
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(a) Total execution time with varying initial capacity.

(b) Speedup with varying initial capacity.

Figure 4.4: Performance of inserting 16 million PvWatts tuples in sequen-
tial into the Gamma table with three data structures and varying the initial
capacity on dual-CPU Intel Xeon W5590 @ 3.33GHz (total of 8 cores.)
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ment creates the Gamma PvWatts table with different kinds of data structures,

including HashMap, ConcurrentHashMap and ConcurrentHashMapV8.

To realize the effect of resizing the capacity on the performance of a data

structure, the experiment vary the initial capacity from 0 to 16 million at seven

levels: i) 0(default), ii) 1 million, iii) 2 million, iv) 4 million, v) 8 million, vi) 12

million, vii) and 16 million. Each experiment is repeated 30 times. The average

execution time skips the first 6 runs and averages the remaining ones (from

7th to 30th). The speedup measures how many times faster than the average

time of default capacity (initial capacity = 0) for each data structure.

Figure 4.4(a) shows that ConcurrentHashMapV8 has the shortest total exe-

cution time at most initial capacity, except for the default value and 16 million.

The HasMap outperforms the other two data structures at the default value, and

the ConcurrentHashMap has the shortest running time at the 16 million. The

speedup graph is shown in Figure 4.4(b). The ConcurrentHashMapV8 achieves

the maximal speedup of 3.22 when the initial capacity is 4 million, but the

speedup decreases as the capacity increases from 4 million to 16 million. The

speedup of ConcurrentHashMap has the second best results, with the maximal

speed of 2.36 at 8 million. Similarly, the speedup decreases from 8 million to

16 million. The HashMap has the poorest speedup of 1.1 only when the initial

capacity is 1 million, and does not have any improvement on the speed at the

other levels. This speedup illustrates that the resizing capacity can affect the

performance both on the ConcurrentHashMap and the ConcurrentHashMapV8

but makes a little change to the HashMap.

The effect of resizing capacity may cause the bias on the benchmarking re-

sults, so a suitable capacity for all the Map based data structures is needed to

avoid this resizing effect. From the Figure 4.4, the total execution time and the

speedup of the ConcurrentHashMapV8 are approximately close to those of the

ConcurrentHashMap at both of 12 million and 16 million. The HashMap also

has nearly the same total execution time and speedups at these two levels.

Therefore, to fairly compare the performance of these three Map implemen-
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tations and avoid the resizing effect, the appropriate initial capacity should

be either 12 million or 16 million. That is, when the 12 or 16 million is

used as the initial capacity for the PvWatts table in the Gamma database, the

HashMap, ConcurrentHashMap and ConcurrentHashMapV8 will have the stable

performance.

4.2.4 Benchmark Result of the Parallel Tuple Insertion

The benchmarking experiment for the parallel version of JStar PvWattsGamma

program uses three kinds of concurrent data structures (that is,

ConcurrentSkipListSet, ConcurrentHashMap and ConcurrentHashMapV8),

and vary the number of threads in the pool for each one of the structures.

From the benchmarking results of the sequential PvWattsGamma programs,

the parallel experiment uses 16 million as the fixed initial capacity for both of

the ConcurrentHashMap and the ConcurrentHashMapV8. The HashMap is not

included in this experiments because it requires the external synchronization

to be used in the mult-threading environment.

The Figure 4.5(a) shows that the ConcurrentHashMap outperforms both

of the ConcurrentHashMapV8 and the ConcurrentSkipListSet on the to-

tal execution time and the speedup. When the number of threads increases,

the total execution time of ConcurrentHashMap decreases and achieves the

shortest time with 8 threads. Followed by the ConcurrentHashMapV8, the

ConcurrentSkipListSet has the longest time from 1 to 8 threads. There-

fore, With the initial capacity of 16 million, the ConcurrentHashMap is the

fastest data structure for the PvWatts Gamma table. And its running time

can be regarded as the baseline to obtain the speedups for the parallel JStar

PvWattsGamma program.

Figure 4.5(b) is the absolute speedup graph, related to the single-threaded

time of the ConcurrentHashMap. It shows that the performance of

ConcurrentHashMap and ConcurrentHashMapV8 can be scaled from 1 thread

upto 8 threads whereas the ConcurrentSkipListSet is scalable upto 7 threads.
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(a) Total execution time with varying Fork/Join pool size.

(b) Speedup with varying Fork/Join pool size.

Figure 4.5: Performance of inserting 16 million PvWatts tuples in parallel into
the Gamma table with three data structures and varying the Fork/Join pool
size on dual-CPU Intel Xeon W5590 @ 3.33GHz (total of 8 cores.).
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We conclude that the ConcurrentHashMap with the initial capacity of 16 mil-

lion and within the PvWattsHashTable is the best choice of concurrent data

structure for implementing the tables in Gamma database. (It would have

been better to do these experiments from 8 to 15 threads if possible. Maybe

ConcurrentHashMapV8 has the better scalability with more threads.)

4.3 Speed of the Delta Tree

The insertion time into the Delta tree is an important factor to consider for

the Delta tree data structure . As each tuple needs to be inserted into this

tree, longer insertion times will cause a delay in processing tuples and thus

increase the total execution time. Currently the Delta tree is implemented as

a tree structure with fixed depth. The orderby clause in the Table statements

of a JStar program defines the tree depth and the order of tuples.

The JStar Dijkstra program is used to measure the speed of Delta tree

data structures. The detailed program will be discussed in Chapter 7. This

program first generates a random graph of 1 million vertices connected with 2

million edges where each edge is assigned with a random length ranging from

1 to 10. Then it uses the Dijkstra algorithm to find the shortest path from the

root node (vertex=0) to the end node (vertex=1,000,000). This program uses

7 kinds of tuples, but there is only one tuple kind inserting into the Delta tree

after the optimisation. Therefore, using this program to measure the speed of

the Delta tree is more accurate than other JStar programs. The Delta tuple

is declared in the follows:

1 /∗∗ The estimated shortest−path distance from the origin to the given vertex. ∗/

2 table Estimate(int vertex, int distance) orderby (Int, seq distance, Estimate);

The Delta tree behaves like the priority queue in this test case. The

Estimate tuples are inserted into the Delta tree at the position in accordance

with the distance, which is what we need in the JStar Dijkstra program -

a priority queue ordered by distance from the starting vertex. The Estimate
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with the smallest distance value will be put in front of all the others. When the

JStar runtime takes out the tuples from the Delta tree, it will firstly process the

root node (distance=0) and then spans all the other nodes. The seq distance

expression defines their position in a subtree of the Delta tree: the tuple with

the small distance will be placed before the one with the large distance. As

the tuples in the front position will be processed earlier than those in the back,

the orderby clause can ensure that the distance of the Estimate tuple in the

Delta tree acts like the priority and turns the Delta tree into a priority queue.

Note that a sorting flag, the par e expression, allows tuples to be unsorted in

the subtree, and thus the delta subtree can be executed in parallel.

4.3.1 The DeltaNode Data Structure Choices

The performance of the Delta tree in the JStar Dijkstra program is determined

by the Estimate Delta nodes, which belong to the Integer data type. Three

kinds of Integer Delta tree data structures have been implemented in the

JStar runtime, as described in the follows:

DeltaNodeInt is the sequential implementation of the nodes of the Delta

tree. It stores the Delta nodes with a Java TreeMap<Integer,DeltaNode>,

which is indexed by the integer field. For example, the Estimate tu-

ple uses the distance field as its index, and thus the subtrees in the

DeltaNodeInt are also indexed by the distance. When a Estimate tuple

is inserted into the DeltaNodeInt node, the JStar runtime checks this

tuple’s distance and determines whether a subtree has been created in

the TreeMap. If so, then the runtime inserts this tuple to the existing

subtree. Otherwise, a new subtree is created and put into this TreeMap

with the tuple’s distance as the key.

The process method of the DeltaNodeInt retrieves and processes the

first Delta node from the TreeMap, and then removes the node from

the TreeMap. In the JStar Dijkstra program, the first delta node in the
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DeltaNodeInt is the Estimate tuple which has the shortest distance

among the others.

ParallelDeltaNodeInt is the parallel Delta node implementation, which stores

the Delta nodes with a Java ConcurrentSkipListMap<Integer,DeltaNode>.

Its insertion and processing behaviors are similar to those of the DeltaNodeInt,

except that it uses the thread-safe putIfAbsent method to put a subtree

into its data storage.

ParallelDeltaNodeIntRange is another parallel Delta node implementa-

tion, which stores the Delta nodes with a Java AtomicReferenceArray.

4.3.2 Benchmark Result

The benchmarking experiment measures the total execution times of the JS-

tar Dijkstra program, varying the data structures for the Delta tree. As the

DeltaNodeInt is not thread safe, we use its result as the baseline to calculate

the speeds for the two parallel Delta node implementations in a multi-core

machine. As shown in Section 7.4.3, benchmark results on a dual-CPU Intel

Xeon E5-2680 (total of 16 cores) show that ParallelDeltaNodeInt reaches the

absolute speedup of 6.37 and ParallelDeltaNodeIntRange has the absolute

speedup of 4.67 with 15 threads. We conclude that ParallelDeltaNodeInt

has a slightly better performance than ParallelDeltaNodeIntRange.

4.4 Optimisation Strategy

Tuples have different roles in a JStar program. In the PvWattsGamma exam-

ple, CmdLineArg tuples are considered as the trigger-only tuples. Their role

is to pass the information from command line arguments to JStar PvWatts-

Gamma. As the CmdLineArg table in the Gamma database is never queried

by other rules, there is no need to move the CmdLineArg tuples from the Delta

tree to the table in Gamma. On the other hand, PvWatts tuples should be
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moved into the Gamma set directly without needing any Delta tree insertion,

because the PvWatts tuples do not trigger any rule in this example. The cur-

rent version of JStar compiler supports two kinds of optimization strategy:

noDelta and noGamma.

4.4.1 noDelta Optimisation

The noDelta optimisation usage is to run the JStar compiler with the -noDelta

T flag to translate a JStar program to Java source code. For example, trans-

lating the PvWattsGamma JStar program with the -noDelta PvWatts flag

will generate the Java code, which puts each of the PvWatts tuples to the

table in the Gamma database and immediately fires any rules that use it as

the input.[28]

After the JStar runtime parses the program arguments, it labels the PvWatts

as one of the tuple kinds whose Delta tree insertion should be omitted. When

the JStar compiler translates the statements which inserts the PvWatts tu-

ples into Delta tree, the compiler will replace the statement, which inserts the

PvWatts to the Delta tree, with the direct-processing statement. So then the

JStar runtime executes PvWatts tuples directly instead of putting them into

the Delta tree and being executed later.

The advantages of the noDelta optimisation is that it reduces the total

number of Delta nodes in the Delta tree and improves the speedup. This

faster speedup results from the less workload of Delta tree and faster response

time of the comparison operation. As the Delta tree contains the smaller

number of Delta nodes, the JStar runtime spends less time on traversing each

level of the Delta nodes and searching for each new tuple. Thus, the total

execution time is shortened. This improvement becomes more significant when

one table greatly outnumbers the others in a program. For example, the

PvWattsGamma program generates over 16 million of PvWatts tuples in total.

Applying the noDelta flag on the PvWatts tuples avoids the insertion of all

PvWatts Delta nodes and reduces the total number of tuples in the Delta tree
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from millions to 24 (the total number of GenTuples).

The effect the noDelta optimisation is shown on the sequential JStar

PvWattsGamma program. The speedup is to measure how much the JStar

program with noDelta flag runs faster than the native one. Each program

was run 30 times. The results of first 6 runs are ignored because of the JVM

HotSpot warm-up and the remaining ones are take to calculate the averaged

execution time. The benchmark result reaches the 1.4X speedup with the

noDelta flag on the sequential JStar PvWatts program.

4.4.2 noGamma Optimisation

The noGamma optimisation usage is similar to the noDelta option. That is,

compiling a JStar program with -noGamma T flag can generate the Java code,

which omit the insertion of tuples from table T into Gamma.[28]

Consider the Dijkstra case, which finds the shortest path for the single-

source graph and will be described in Chapter 7. The Estimate tuples should

be applied with noGamma optimisation as they are never been queried by other

rules. With the noGamma optimisation, the JStar runtime can also reduce the

time processing the Estimate tuples. Before applying the noGamma optimisa-

tion, the JStar runtime has to take two actions for each Estimate tuple: mov-

ing the tuple to the Gamma database and executing the next rule. After com-

piling the program with noGamma Estimate flag, the generated Java source

code is optimized to directly trigger the rule associated with the Estimate

tuple without any insertion in Gamma when the JStar runtime processes each

Estimate delta node from the Delta tree.

The benchmark experiments measure the total execution of the sequential

JStar Dijkstra program with/without the noGamma optimisation. The bench-

mark results on the Intel(R) Xeon(R) CPU W5590 (total of 8 cores) shows

that the speedup is 1.6X. That is, the sequential JStar Dijkstra program with

the noGamma Estimate optimisation can run 1.6 times faster than its native

implementation.
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4.5 Summary

Compiler Flag Description Example of Usage

Output Folder specifies the output
folder where JStar
compiler generates the
Java source code.

-d < folder >

Verbose Mode details the process of
JStar compilation.

-v

Sequential Code generates sequential
code and uses the
non-synchronized
data structure.

-seq

Parallel Code generates parallel code
and uses concurrent
data structure.

-par

noDelta Optimisation generates the Java
code, which omit the
insertion of the Delta
tree.

-noDelta < tuple >

noGamma Optimisation generates the Java
code, which omit
the insertion of the
Gamma database.

-noGamma < tuple >

Table 4.1: The JStar compiler option list.



Chapter 5

Performance Tuning Process

This chapter introduces a series of steps aiming to improve the performance of

a JStar program. The process basically follows the quality improvement cycle:

assess-measure-modify-evaluate. First, assess the program and establish the

performance index. Second, measure the performance and analyze the prob-

lems to find the bottleneck. Third, modify the implementation and conduct

trial experiments. Last, evaluate the performance after the modification and

check whether the change has improved the performance. Repeat these above

four steps until the performance becomes better.

5.1 Performance Tuning Procedure

After experimenting with this process for a number of times, we summarize

the strategy in the following steps:

1. Analyze the task dependencies and identify tuple options.

(a) Generate the task dependency graph.

(b) In-line the Delta tuples : Look at the graph and add a -noDelta

T flag to for every table T that is NOT used as a trigger.

(c) In-line the Gamma tuples: Look at the graph and add a -noGamma

T flag to every table T that is never queried.
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2. Translate the JStar program to the equivalent Java implementation.

Compile the JStar program into a Java parallel program by specifying

the above options and the sequential (-seq ) / parallel (-par ) mode to

the JStar compiler. Then the Java compiler is used to convert all the

Java source code(.java) into the byte-code(.class).

3. Reduce the amount of the messages.

Make sure that the program does not display the unnecessary messages

as the println method bottlenecks the performance. Reduce the output

to a few lines/second if possible.

4. Repeat the experiment.

Make sure that the program runs 30 times (--benchmark=30 ) or more

to let the Hotspot compiler settle down, and get the reliable average by

ignoring at least the first 6 measurement.

5. Vary the number of threads.

Run the program by varying the Fork/Join pool size (--threads=N )

from 1. . . 8 or 1. . . 15. Plot the speedup curve and stop if the speedup is

good enough.

6. Avoid the performance bottleneck from Java garbage collection.

Run the Java program with the -verbose:gc option to print out the

information of Java garbage collector. Look at the GC times to see if

they take up a large percentage of the total running time. If so, try

running the program with a larger heap. Or think about how to change

the program so that fewer tuples are generated or garbage collected.

7. Tune the performance of Java virtual machine (JVM).

Run the program with a single thread and the HotSpot profiler (-Xprof ).

And Investigate what part of the program takes up most of the CPU

time.

(a) If it is in one of the data structure methods, think about how to
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make that generic data structure more efficient for this particular

program, e.g. using a fixed size array instead of the HashTable.

(b) If it is in one of the rules, check whether that rule is being executed

in parallel, or is it a sequential bottleneck. If the latter, rewrite the

JStar program so that rule is done in smaller parts, so that it can

be done in parallel.

5.2 Performance Tuning Tools

We developed some tools to ease the burden of the performance tuners. As

investigating the bottlenecks is not easy and sometimes time-consuming, our

tools provides some graphs or text messages to shorten the time of finding out

the tuple strategy and improving the performance of a JStar program. These

tools are described in the following sections.

5.2.1 Task Dependency Graph

Tuple transactions during the execution of a JStar program can be logged in

a plain text file by enabling the log option (--log=log.txt ). There are

two types of transactions: PUT and GET. After a tuple is inserted into the

Delta tree, the logger writes out a PUT message. When a rule queries tuples

from the Gamma database, the logger writes a GET message. The GET and

PUT messages contain the triggered rule name, input and output tuple names.

The following list is the snippet of the log file of the JStar PvWattsGamma

program.

1 PUT,CmdLineArg,Gamma

2 rule1,CmdLineArg

3 PUT,GenTuples,Delta

4 ...

5 PUT,GenTuples,Delta

6 PUT,GenTuples,Gamma

7 ..
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PvWatts

CmdLineArg

rule1

GenTuples

rule2

TRIGGER(Rule):−→ PUT (Gamma Database):− →
PUT (Delta Tree):−→ GET (Gamma Database):− →

Figure 5.1: The task dependency graph of the JStar PvWattsGamma Program.

The JStar dependency program reads this log file and outputs the task

dependency graph (output.dot), which shows the table usage. As the task

dependency graphs are written in the DOT language, the Graphviz is used to

view these graphs and to convert them to other graphics file formats, such as

EPS (Ecapsulated PostScript) file.[11] The following command can generate

a task dependency graph from the log file (log.txt), and convert it from the

dot file (output.dot) to a EPS file (dependency.eps). Figure 5.1 is the task

dependency graph of the JStar PvWattsGamma program.

1 java −cp Dependency.jar jstar.example.dependency.Main log.txt

2 dot −Tps output.dot −o dependency.eps

5.2.2 Debug Trace Output for Delta Tree, CPU Usage

and JStar Tuple Timing Graph

Debugging is commonly used in any programming language. By printing out

messages, programmers can easily track the value of a variable in each state

and verify the correctness of the program. But a multiple threading programs

introduces many potential bugs. For example, the JStar Delta tree is shared
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among all threads in the ForkJoinPool, but is allowed only one task (thread)

to add the Delta nodes at one time. If a task incorrectly locks the Delta tree,

then other tasks have to spend lots of time waiting for stall (a delay in the

execution time) to be free. To avoid this potential bug, we can implement the

synchronization of the Delta tree by using the Java Lock object or by retrying

the lock-free data structure. Two debug flags have been implemented on the

JStar runtime to display the Delta tree information, such as the delta tree

size and the CPU usage. In addition, we developed the tuple timing graph to

visualize the tuple processing time.

Delta Tree Size (--debug=delta ) flag enables the JStar runtime to display

the total number of tuples in each leaf node of the Delta tree.

CPU Usage (--debug=cpu ) flag enables the JStar runtime to display the

time that a tuple has been processed by a thread and its CPU time. This

flag outputs the tuple timing for each tuple in the Delta set, including the

CPU usage, the starting and ending wall clock time, and the tuple. The

starting wall clock time of a tuple is the time which the JStar runtime

takes it out from the Delta tree and starts to process its rules; the ending

time is when the JStar runtime finishes its task and moves this tuple to

the table in the Gamma database. The CPU usage is a ratio of the time

which the thread spends on executing the tuple’s tasks and moving to

Gamma, which tells us the computation time versus the wall time. The

formula is shown in the follows:

CPU Usage(%) =
CPU Time

Wall Clock T ime

The CPU usage is a performance index, indicating how efficient the CPU

processes a tuple in the Delta tree. Thus, the cpu usage of a totally ef-

ficient task should be very close to 1.0. The example output line of the
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--debug=cpu message is shown as follows:

DeltaTime: 1220/4424 1369351017581..1369351022005 GenTuples(3,

1999998, 2666664)

This message contain 4 parts, separated by the Tab. The first is the the

message title, followed by the CPU usage, the starting and ending wall

time (separated by the ...), and the tuple. All of debug messages can

be printed out to the console or output into a log file. To investigate the

tuple time, the log file will be analyzed with the tuple timing graph tool,

described next.

JStar Tuple Timing Graph is a visualization tool for displaying the activ-

ities of JStar runtime on a time-line. It is implemented with the Google

Apps Engine1, HTML 5 and Java script. Since the JStar tuple timing

graph tool is a web-based application, users can access this service on

the internet without any installation. By deploying the tools to Google

Apps market place or to a local machine (http://localhost:8888/), the

JStar tuple timing graph tool is able to display the tuple timing results

from a JStar log file in a timeline graph. To generate this graph, the

CPU debug flag is enabled to print out the real clock time and CPU

time, and then the generated log file is dragged onto the Tuple Timing

Graph web site.

Figure 5.2 is the tuple timing graph of the JStar PvWattsGamma pro-

gram with the PvWatts table implemented by the PvWattsHashTable

plus the ConcurrentHashMap and 4 threads. Each task was plotted on

the time line with its duration. The graph shows that 4 tuples were

taken out from the Delta tree each time and executed in parallel. Then

the program ended when the last tuple was processed and finished.

1https://developers.google.com/appengine/
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Figure 5.2: The JStar tuple timing graph of the JStar PvWattsGamma
program with PvWattsHashTable Gamma table (ConcurrentHashMap)
and 4 threads in the Fork/Join pool.

5.3 Summary

The JStar runtime supports several program options to assist the JStar pro-

grammers to do benchmarks or tune the performance easily, plus several tools

for analyzing the log files. Table 5.1 lists these options and their usages.
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Option Description Example of Usage

Benchmark repeats the program for a
fixed number of times and
prints out each execution
time. For benchmarking
purposes.

--benchmark=30

runs the same program
30 times.

Thread creates a specified number
of threads in the Fork/Join
pool.

--threads=2

runs the program with
two threads.

Debug prints out debug messages. --debug=delta

prints out the time which
the JStar runtime spends
on a set of tuples in the
Delta tree.
--debug=cpu

prints out the time which
JStar runtime spends on a
group of tuples in the Delta
tree.

Log logs the transaction mes-
sages among rules, the
Delta tree and the Gamma
database.

--log=PvWatts.log

Data structure enables the JStar runtime
to choose the data structure
and set up its initial capac-
ity (if supported) for a spec-
ified table in the Gamma
database.

--table,PvWatts,

gamma=ConcurrentHashMap,

estimated=16000000

constructs the PvWatts ta-
ble in the Gamma database
with a ConcurrentHashMap

and sets its initial capacity
to be 16 million.

Group Size sets up the group size for a
specified tuple type.

--table,SumMonth,

group=1

sets the group size of
SumMonth tuples to be 1.
Since each group is pro-
cessed as one recursive
task, this means that ev-
ery SumMonth tuple in the
Delta tree will be a separate
Fork/Join task.

Table 5.1: The JStar program option list.



Chapter 6

Case Study: PvWatts

The goal of the PvWatts program is to average the power generation (in

WATTS) for each month of a year in Brisbane. All of the hourly power data

are generated from NREL’s PVWATTS programs. As the amount of records

is not very large (only 8760), the parallel program would finish the computa-

tion within few mills-seconds and thus the effects of its parallelism would be

hardly visible. So we replicated each hourly record one thousand times and

stored those records in CSV file. This is the same as analyzing the hourly solar

powers output of 1,000 different solar system for a period of one year. Then

we write a JStar program to read this file and calculate the average monthly

production. This case study was chosen because it involves large-scale data in-

put from a file, plus complex dependencies for the analysis of that data (using

several reducers), so speedup is challenging.

6.1 JStar PvWatts Program

To implement the JStar version of PvWatts case, we use the CsvReaderTask

library to read all records in a CSV file. CsvReaderTask provides a parallelRead

method to create a number of Fork/Join tasks to process one CSV file in

parallel. The procedure of parallelRead is described in the follows. First,

the CSV file is split into N individual segments. Then the CsvReaderTask

creates the same amount of Fork/Join tasks so that each segment of the file
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is read by one task. Each task uses an efficient FastCSVReader to read the

file segment. The FastCsvReader process the files with a reading-on-demand

pattern: reading a record at request. Thus, its performance is improved as it

creates few objects and avoids unnecessary String conversions. The source

code of JStar PvWatts program is shown in List D.1 of Appendix D.

Figure 6.1: The table schema of the JStar PvWatts Program.

The JStar PvWatts program contains five tables: CmdLineArg, PvWattsRequest,

PvWatts, PvWattsException, and SumMonth. The table schema is shown

in Figure 6.1. After reading arguments from the command line, the JStar

PvWatts program creates one CmdLineArg tuple for each argument and inserts

it into Delta tree. Before the JStar runtime moves these CmdLineArg tuples to

the Gamma database, it executes the rule associated with them. This rule cre-

ates PvWattsRequest tuple with the corresponding argument values and puts

all of them into the Delta tree. Then, when each PvWattsRequest is processed

by the JStar runtime, the file path information is sent to the next rule. Thus,
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by creating PvWattsRequest tuples with the values of CmdLineArg tuples,

the information can be passed from the command line arguments to the JStar

PvWatts program.

When the rule associated with PvWattsRequest tuple is triggered, multiple

readers are used to read the CSV file in parallel and then output PvWatts

tuples. First, by querying the CmdLineArg tuples, the rule gets the given

number of readers and creates the same number of CsvReaderTasks. Since

each task is responsible for one separate segment of the input file, the total

work of reading one CSV file can be executed by multiple threads. Each reader

reads one record at one time and parses its fields as primitive data types, such

as an integer or a string. Then one PvWatts tuple is created with these fields

and inserted into the Delta tree. Then the reader reads the next record and

repeats the above procedure to output PvWatts tuples until all of records in

its region of the file have been read. Note that each reader reads slightly past

the end of its region to ensure that each record is read exactly once.

SumMonth tuples are sorted by yearly and monthly fields in the Delta tree.

The PvWatts rule processes each PvWatts tuple and creates a corresponding

SumMonth tuple with its yearly and monthly values. So a number of redundant

SumMonth tuples are generated in this loop as most of them have the same

yearly and monthly values. Since the Delta tree uses tuples as its key values,

tuples with identical values are discarded immediately when they are added to

the Delta tree, which avoids triggering duplicate rules. By inserting SumMonth

tuples into Delta tree, all the months that require calculation are recorded for

processing later, after all input records have been read.

Reducers are used to calculate the average monthly power. Each SumMonth

rule queries a collection of PvWatts tuples with its yearly and monthly values.

Even though the tuples in this collection might be randomly sorted, the mean

calculation will not change its value because it is associative:

∀a, b, c, n ∈ int,
((a + b) + c)

n
=

(a + (b + c))

n
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As the mean calculation is an associative operation, the Statistic object

implemented from the Reducer class of the JStar runtime can be used to

average the power generation for each month and print out the final results.

6.2 Benchmark of the Naive JStar PvWatts

Program

Symphony node CN-191
CPU 2 x IntelR© XeonR© quad-core W5590 CPUs

(total of 8 cores @ 3.33GHz)
L1 cache 32K
L2 cache 256K
L3 cache 8192K
RAM 48GB RAM (@1333 MHz)
Disk 2 x 1TB hard disc
OS 64-Bit Linux operating system

(kernel version 2.6.38)
JAVA 64-Bit JRE version 1.7.0 17

(a) Hardware specification

JVM options

-Xmx8G sets maximum Java heap size to be 8 GB.
-verbose:gc enables verbose garbage collector.
-XX:+PrintCompilation prints the message when a method is
compiled.[14]
-XX:+PrintTenuringDistribution prints the tenuring age
information.[14]
-Xbatch stops the program while the hot spot compiler is recompiling/op-
timising the code.

(b) Java Virtual Machine options

Table 6.1: Benchmark configuration of the JStar PvWatts program.

The CN-191 computing node of Symphony cluster is selected to run the

benchmarks of JStar PvWatts program and its specification is shown in the

Table 6.1(a). As CN191 is one of the Symphony cluster nodes and its com-

puting resources are managed by yhe Torque and Maui scheduler, we followed

standard operating procedures shown in Appendix B to conducted the JStar
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PvWatts benchmarking experiments.

The performance of the JStar program would partially depend on JVM. To

avoid IO communication dominating total execution time, the output of JStar

PvWatts program have been reduced to 40 lines as shown in the List D.2 of

Appendix.D. Besides, tuning the JVM options can also avoid the Java garbage

collection spending too much time reclaimming memory.

Table 6.1(b) is the configuration of the JVM options used to benchmark

the JStar PvWatts program. 8G of heap is required to run the JStar PvWatts

program as the JStar runtime needs sufficient memory spaces to store tuples in

the Gamma database and the Delta tree which are both in-memory databases.

If the heap size is not large enough, the garbage collector(GC) would be fre-

quently called to free the memory space, and this would cause delays and

degrade the performance.

The benchmark experiment measures the total execution time of both se-

quential and parallel versions of the JStar PvWatts program, with no optimi-

sation options. Each experiment is repeated 30 times. The average execution

time ignores the results of first 6 runs and takes only the later experiments

(7th-30th) into account. The number of threads ranges from 1 to 8. To illus-

trate the parallelism of JStar program, the absolute and relative speedup are

plotted on the graph. And their formula are defined as follows:

Sabs =
Ts

Tp

Srel =
T1

Tp

where:

Sabs is the absolute speedup.

Srel is the relative speedup.

Ts is the average execution time of the sequential JStar program.

T1 is the average execution time of the parallel JStar program with one thread.

Tp is the average execution time of the parallel JStar program with p threads.
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(a) Total execution time with varying Fork/Join pool size.

(b) Speedup with varying Fork/Join pool size.

Figure 6.2: Performance of the naive JStar PvWatts program with varying
the Join/Fork pool size on dual-CPU Intel Xeon W5590 @ 3.33GHz (total of
8 cores)

Figure 6.2 is the benchmarking results of the native JStar PvWatts program

on sorted1000X.csv. It shows that the JStar parallel PvWatts program runs

faster than the sequential one with more than 3 threads. Both the relative and

absolute speedup graph shows that the time of the parallel program decreases

as the number of threads increases to 8.
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6.3 Performance Tuning Process

As described in Chapter 5, the PvWatts case is optimized by applying the

performance tuning process. The steps are shown in the following subsections:

CmdLineArg

rule2

PvWattsRequest

rule1

PvWatts

rule4

SumMonth

rule5

(a) The naive program

CmdLineArg

rule2

PvWattsRequest

rule1

PvWatts

SumMonth

rule5

rule4

(b) The optimized program

TRIGGER(Rule):−→ PUT(Gamma Database):− →
PUT(Delta Tree):−→ GET(Gamma Database):− →

Figure 6.3: The task dependency graphs of the native and optimized JStar
PvWatts programs.

6.3.1 Analyzing Tuple Dependency

The JStar PvWatts program uses a map-reduce programming model for pro-

cessing a large input file (sorted1000X.csv). The program uses one program

parameter to locate the input file, then by reading this file with one or more
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readers, the program outputs PvWatts tuples to the Delta tree and Gamma

database. After the reader finishes its task, the reducers query these tuples

from the Gamma and calculate the power generation during each month. The

task dependency graph of the native JStar PvWatts implementation is shown

in Figure 6.3(a). However, this program execution is inefficient because all of

the tuples must be inserted into two in-memory data structures (Delta set and

Gamma database). In the PvWatts program, the number of PvWatts tuples

is in proportion to the input file size. When the number of PvWatts tuples

increase, the PvWatts program dynamically requests JVM to allocate more

heap memory space. If the maximal heap memory space is not sufficient, then

the JVM frequently calls garbage collector to free and reclaim the memory

space. As the garbage collection takes time, the overall performance of the

JStar PvWatts program slows down as well.

6.3.2 Inlining Tuples

PvWatts and SumMonth are the tuples which should be inlined to improve

the speed of the JStar PvWatts program. By analyzing the task dependency

graph, we see that the SumMonth tuples are never queried during the execution

of the program. Thus, there is no need to move SumMonth tuples to Gamma

database, that is, the noGamma optimisation can be applied to the SumMonth

tuples.

Another optimisation strategy is to shift the summation request rule (Rule

4) to the reading phase. After the reader loop creates a PvWatts tuple, it im-

mediately triggers early execution of the PvWatts rule and outputs a SumMonth

tuple. That is safe, because the rule does not perform any database query.[6]

With this change, the PvWatts tuples are no longer used as the trigger of

rules but only for the query in the reducer loop. By applying noDelta opti-

misation on PvWatts table, the reader loop does not insert a PvWatts tuple

into the Delta tree but directly puts it in Gamma and triggers the Rule 4.

This new strategy improves the performance of the Delta tree and avoids the
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unnecessary work, and thus increases the speedup of the JStar program.

And the optimized program execution is shown in Figure 6.3(b). The

differences are:

• The noDelta optimisation: the PvWatts tuples are no longer put into

the Delta tree but directly moved to the Gamma database.

• The noGamma optimisation: the SumMonth tuples are put into the Delta

tree only.

Tuple Delta Tree Gamma Database

CmdLineArg
√ √

PvWattsRequest
√ √

PvWatts × √

SumMonth
√ ×

Table 6.2: The inline tuple list of the JStar PvWatts program.

Figure 6.4: Speedups of the sequential JStar PvWatts program with varying
the optimisation strategies on quad-CPU Intel E7-4870 @2.40GHz (total of 32
cores).

Table 6.2 is the tuple list of the optimized JStar PvWatts program. The

check symbol (
√

) symbol means the tuple is inserted into the data struc-

ture and the cross symbol (×) means that the tuple is not put into the data
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structure. To illustrate the effects of the above optimisation strategies on the

JStar PvWatts program, we benchmarked the program by applying with one

optimisation separately and varying input files sizes.

Figure 6.4 is the benchmark results on one of the computing node in the

NeSI cluster (The submission proceducre to the NeSI cluster is shown in Ap-

pendix C and the submission job configuration is in Appendix C.2). The

speedups in this figure show the effect of applying one optimisation strategy

on the JStar PvWatts program for 5 kinds of input file sizes (1×, 3×, 10×,

300× and 1000×). The speedup is the relative speedup to the naive sequen-

tial JStar program (without any optimisation). The results show that as the

number of tuples increases, the noDelta optimisation scales up the perfor-

mance with the maximum speedup of 5.56 on the largest input file (192Mb,

8,760,000 records). But the noGamma optimisation does not increase the speed

and provides a little or no scalability on the JStar PvWatts program. We con-

clude that the effective optimisation strategy for the sequential JStar PvWatts

program is the noDelta PvWatts option.

The largest input file is used to benchmark the optimized parallel JStar

PvWatts program, using the -noDelta PvWatts optimisation and -noGamma

SumMonth optimisation and varying the number of threads.

Figure 6.5 is the benchmark results on the CN-191. From the absolute

speedup chart, the optimized strategy shortens the total execution time of the

parallel implementations by 2.52 times, compared to the sequential optimized

one. And the relative speedups show that the optimized parallel program can

improve the performance as the number of threads increases from 1 to 8, with

a maximum relative speedup of 3.75. That is, the parallel optimized program

with 8 threads can run 3.75 times faster than the program using one thread.

From the above two benchmark results, we conclude that the optimisation

strategies not only improves the speedup but also provides the scalability for

both of the sequential and parallel JStar PvWatts program.
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(a) Total execution time with varying Fork/Join pool size

(b) Speedup varying with varying Fork/Join pool size

Figure 6.5: Performance of the optimized parallel JStar PvWatts program
with two optimisations and varying the Fork/Join pool size on dual-CPU Intel
Xeon W5590 (total of 8 cores).

6.3.3 Data Structures of the PvWatts Gamma Table

Regarding the data structures, the PvWattsHashTable is an customized impl-

mentation of the PvWatts table in Gamma. It uses the category concept to

design the PvWatts table data structure. As the PvWattsHashTable use the

month as its index to insert the PvWatts tuples, the query of PvWatts tuples

in one month could be performed efficiently.

The naive JStar program uses ConcurrentSkipListSet to create the PvWatts

table in Gamma. We could improve its parallelism by using other thread-safe
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Map implementations, such as ConcurrentHashMap or ConcurrentHashMapV8.

By using a customized PvWattsHashTable and overriding the createGammaSet

method of the JStarMain class, these two types of Map data structures could

be used to instantiate the PvWatts Gamma database.

(a) Absolute speedup with varying Fork/Join Pool Size.

(b) Relative speedup with varying Fork/Join Pool Size.

Figure 6.6: Speedups of the optimized parallel JStar PvWatts program with
varying the PvWatts Gamma table data structure and the Fork/Join pool size
on dual-CPU Intel Xeon W5590 (total of 8 cores).

Figure 6.6 are the absolute and relative speedup graphs of the optmized par-

allel version of JStar PvWatts program, varying the number of threads and the

data structures of PvWatts tables in the Gamma database: ConcurrentSkipListSet,

ConcurrentHashMap and ConcurrentHashMapV8. Each Gamma table is con-
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structed with initial capacity of 2,000,000, so that the effect of resizing buckets

of Gamma table is avoided, which results in a better performance.

The optimized parallel program with ConcurrentHashMapV8 with 8 cores

runs 3.66 times faster than the optimized sequential program, and has the

slightly better relative speedup than the ConcurrentHashMap (2.94 relative

speedup versus 2.63). As the ConcurrentHashMap with initial capacity of 2

million has slightly slow but similar speedups as the ConcurrentHashMapV8,

the resizing side-effect can be removed by setting up an appropriate initial

capacity. The naive parallel program (with ConcurrentSkipListSet) with 8

cores has the lowest absolute speedup of 2.49 but has the best relative speedup

of 3.66 because it has the slowest execution time with one thread. Therefore,

after applying the optimisations, we can still increase the speed of the parallel

program over its native program by using one of the concurrent data structures

(ConcurrentHashMap or ConcurrentHashMapV8) with 2 million capacity.

6.4 Phase Experiment

Before attempting further parallelism, we need to analyze the workflow of the

optimized JStar PvWatts program and find out what rule/phase mainly limits

the improvement on the program speed, so that we could use other tool to

solve this bottleneck problem.

From the Figure 6.7, we can see that the program is executed in two phases:

the reader loop and the reducer loop. The reader loop reads the input file

and inserts the PvWatts tuples into the Gamma database and then puts the

SumMonth tuples into the Delta tree. The reducer loop gets one SumMonth tuple

from the Delta tree, and averages the PvWatts tuples of one month by making

a query to the Gamma database. The reducer loop must be started after the

reader phase. As the reader and reducer are implemented with parallelism, it

is not easy to investigate the bottleneck by looking at the graph merely.

The phase experiment is designed to determine whether the bottleneck of
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Figure 6.7: The workflow of the two-phase JStar PvWatts program.

the JStar PvWatts program is the reader or the reducer. We compiled the

JStar PvWatts program with -seq flag to generate the sequential Java source

code. Then the Main class is overridden to execute the program phase-by-

phase, so that we could benchmark the reader phase and the reducer phase

individually. And we use the same data structures in all the phase experiments

(the DeltaNodeInt for the SumMonth and the TreeSet for the PvWatts). The

phase experiment design is described in the following list:

Phase 0 benchmarks the time which JStar PvWatts program reads and parse

the input file. At this phase, the program only uses a single reader to

read the file, and counts the total number of records. Hence, no tuples

is inserted in either Gamma database or Delta tree. At the ending, the

program prints out the number of records to ensure that JVM actually

executes the codes. Note that as JVM uses Just-In-Time compilation

for improving the performance of Hot Spot, JVM would sometimes op-

timize the program and skip some codes which are not critical for the

whole program. Printing out the variable values can avoid this JVM

optimisation.
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Phase 1 benchmarks the Phase 0, plus creating the PvWatts tuples and put

them into the Gamma database. No SumMonth tuples are created in this

phase.

Phase 2 benchmarks the Phase 0, plus creating the PvWatts tuples, plus

creating the SumMonth tuples and insert them into the Delta tree. The

PvWatts and SumMonth tuples are both created in this phase.

Phase 3 benchmarks the Phase 0, plus creating the PvWatts tuples and put

them into the Gamma database, plus creating SumMonth tuples and insert

them into the Delta tree, plus doing the reducer loop. This phase is

running the JStar PvWatts program.

Phase 10 benchmarks the phase 0, plus creating the SumMonth tuples and

inserting them to the Delta tree. No PvWatts tuples are created in this

phase.

Figure 6.8: Performance of the phase experiment with varying the phase on
dual-CPU Intel Xeon W5590 (total of 8 cores).

Figure 6.8 is the benchmark results of the phase experiments. Phase 0

results show that the FastCsvReader takes 1.24 seconds to finish reading the

input file. We will use this execution time to calculate the phase time dif-

ference. Phase 10 has the same time as Phase 0, so putting the SumMonth
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tuples into the Delta tree does not take up significant time and slows down

the speed. And this observant result is also consistent to that of the time

difference between Phase 1 and Phase 2 (Phase 1 is roughly equivalent to

Phase 2 ).

The time difference between Phase 1 and Phase 0 (2.84 seconds) shows that

creating all the PvWatts tuples and inserting them into the Gamma database

takes 2.5 times of the reading task. The difference between Phase 3 and Phase

2 (1.15 seconds) indicates that the reducers take roughly the same amount time

as the reading task.

Based on the phase results, the execution time of the JStar PvWatts pro-

gram can be split into three parts: the reading task (23%), the PvWatts tu-

ple insertion(55%) and the reducers (22%). Inserting the PvWatts tuples the

Gamma database and the reducers are the bottlenecks of the JStar PvWatts

program. In the next section, we will introduce Disruptor to help us to remove

the bottlenecks and improve the speedups.

6.5 Disruptor Version

Disruptor is an order-matching, real-time and in-memory transaction process-

ing system. Compared with other data exchange approaches, Disruptor has

less write contention, a lower concurrency overhead and a more friendly cache

mechanism. It implements a queue approach between concurrent threads that

has low latency ad high throughput. It also provides low levels of jitter, using

new designs of producers, consumers and data storage. A key aspect of their

design philosophy is to get the best caching behaviours by having only one

thread (core) writing to any memory location.[27]

6.5.1 RingBuffer

The RingBuffer design of Disruptor solves the data content problem and im-

proves the efficiency of disruptor applications. By preallocating a fixed size of
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the memory, disruptor instance uses a block of memory space and forms an

array-like queue to provide the storage for exchanging data among threads.

When the consuming threads (Consumer) are too busy to take out the data

from the ring buffer, the producing threads (Producers) still can put data onto

the buffer without blocking, until it becomes full.

The RingBuffer automatically retains a sequence number which links to

the last item in the buffer, and is incremented atomically after the producer

places a new entry onto the ring buffer. This sequence claiming principle

does not cause any lock if only one producer finds the next available slot on

the buffer. On the other hand, the consumers are given a sequence number

which determines the slot to be read from the ringbuffer. But consumers

cannot access this slot and reads data from it until its status becomes available.

Sequence number coordinates the producers and consumers to work together

with minimal contention in a multi-threading environment.

The RingBuffer uses a low-latency memory design to improve the perfor-

mance of Java garbage collector. As the RingBuffer is a pre-allocated and

fixed-size memory space, the JVM tries to use a contiguous area in the main

memory space or possibly the cpu cache line, which can gain a fast access

speed by utilizing the cache striding. Besides, each slot in the RingBuffer

might be overwritten with new data several times during the execution of a

disruptor program. That is, most of the data in the RingBuffer are the short-

lived and immortal objects, which will be referenced once in the program and

then never be used again. Because the garbage collector does not need to

move these immortal objects to the tenured memory space, the memory space

of these immortal objects can be quickly reclaimed back and returned to the

JVM. The preallocated design and shorted-lived objects of RingBuffer reduces

effectively the burden of the Java garbage collector and works efficiently.

The RingBuffer also ensures that there is no message loss among produc-

ers and consumers. For producers, the RingBuffer acts as a queue and allows

them to place data in batches without any interruption. For consumers, the
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RingBuffer is a buffer that helps them to deal with busy traffic situations with-

out missing any data. For example, if the producer outpaces the consumers

and puts so many events that consumers could not process immediately, then

these new upcoming events are retained in the ring buffer until the consumers

start to process them. The Disruptor system provides optimized implementa-

tions for single/multiple producers and single/multiple consumers, which are

described in the next two subsections.

6.5.2 Producer

The single-producer mode provides mutual exclusion and maintains the execu-

tion order. In this case, the RingBuffer is always accessed by only one thread

and no other threads are able to write data on the ring buffer. No writing

contention occurs during the execution and thus there is no need to ensure

mutual exclusion with locks or CAS (Compare and Swap) instructions. This

makes the single-producer mode fast and efficient.

The single producer claims events in an ordered and sequential manner.

Thus, the consumers will see events in the same order as the producer adds

the events. Figure 6.9 illustrates the procedure of publishing an event to the

ring buffer. The single producer first asks the producer barrier for the next

slot. As the ring buffer keeps track of the current sequence number(2), the

barrier quickly finds the next slot by locating the slot adjacent to the current

slot. Before the producer writes data to the slot, the barrier needs to check

the availability of this new slot. If the slot is still occupied by one of the

consumers, then the producer barrier will wait until none of the consumers

accesses it.

When this slot is ready for writing data, the producer barrier updates

the sequence number to the next sequence number (3) and the producer can

start to write data onto it. After completing the writing, the producer tells

the barrier to commit the changes to the RingBuffer and consumers. The

producer barrier updates the sequence number to 3. And it also publish the
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Figure 6.9: The workflow between one producer and RingBuffer.

slot (3) and notifies all the consumers that the new data on the slot (3) is

ready for reading.

Disruptor also supports multiple producers publishing events onto the Ring-

Buffer by using a concurrent version of the claim strategy. By default, the

Disruptor uses SingleThreadedStrategy claim strategy for only one producer

and applies the MultiThreadedStrategy strategy to coordinate the multiple

producers. The difference between these two claim strategies is the type of

variables that they use to avoid the wrapping of the RingBuffer. The single-

producer uses a long variable as there is no needs for CAS operation. But

the multi-producer one uses an AtomicLong variable, which has been imple-

mented with lock-free and thread-safe programming to ensure the atomicity

of the sequence number.
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Producers can claim a batch of slots and publish many events in one step.

This batching effect reduces the overhead costs of the producer and producer

barrier, and helps consumers to regain the pace with producers so that the

whole concurrent system is balanced. This effect increases the throughput

and helps the Disruptor remain low and flat in latency.

6.5.3 Consumer

Each consumer processes every event put into the RingBuffer, so Disruptor

can run multiple consumers concurrently. When a slot is claimed by the pro-

ducer, the sequence number for that slot becomes unavailable and none of the

consumers can read any data from it. Once the producer publishes a slot, the

RingBuffer notifies all the consumers that that sequence number is ready and

then consumers can either all read in parallel or take turns to read data from

it.

To guarantee that any change in a slot would be visible for all consumers,

Disruptor uses the sequece barrier to force all the consumers to wait until the

RingBuffer changes its status. And For example, when a slot is being written

by the producer, its sequence number is blocked from every consumer. After

the producer publishes it, the sequence barrier gives out the reading notifica-

tion to all consumers. All of the consumers can read the slot concurrently.

The consumer sequences allow consumers to coordinate work on the same

entry in an ordered manner.[27] Consumers wait for the next sequence number

to become available before they read the event from it. Consumers do not

directly interact with the each consumer but use the consumer barrier (that

is, a coordinator of consumers), which tracks the current available reading slot.

As each consumer has a separate consumer sequence, the Disruptor can assign

the consumer to read the slot with respect to its own sequence.

Figure 6.10 shows the procedure when the barrier grabs three events from

the RingBuffer and sends them to consumers. After the producer publishes the

event onto slot 3, the RingBuffer updates the sequence number to 3 and makes



6.5. DISRUPTOR VERSION 88

Figure 6.10: The workflow among RingBuffer and 12 Consumers.

the slots 1-3 all visible to the consumers. When a consumer asks its consumer

barrier about the next sequence number in the RingBuffer, the barrier tells

that consumer the highest sequence number and the number of available slots

in the RingBuffer (slot 1, 2 and 3 in this case). Instead of directly querying

the status of each slot in the RingBuffer, consumers passively wait for the

barrier which tells them what they should read data from. After requesting

the barrier to fetch events from these available slots, each consumer starts to

process the events individually. The advantage of the single consumer barrier

is that it allows the RingBuffer to be read without needing any multi-reader

lock. Therefore, disruptor has a lower latency performance than other readers-

writer framework.

A consumer barrier sometimes forces consumers to wait for the next se-

quence number when the RingBuffer is too busy to return the number. It uses
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a waiting strategy to define how consumers should behave when they await

the number. The following introduces each one of these waiting strategies and

describes the work flow with the example shown in Figure 6.10.

• BlockingWaitStrategy uses a lock and condition variable to force the

consumer to wait for the next entries. When consumer 1 awaits the next

sequence number, the barrier locks up consumer 1 and causes it to await

until the cursor moves onto the sequence 4. Since the lock and condition

are used to control the waiting time for consumers, chances are that

this strategy causes a high latency during the execution and thus slows

down the system performance. As a result, this strategy is not suitable

for high performance applications but is suitable for the limited CPU

resource applications, which demand more threads than the cores on the

machine.

• BusySpinWaitStrategy uses a busy spin loop within each consumer

while the cursor is moving onto the next sequence number. Instead

of stopping the consumers working, this strategy keeps the awaiting con-

sumers busy as much as possible, and thus consumes more CPU resources

than other strategies. But when sufficient cores are available, it is the

best strategy for the CPU-bounded application which needs high perfor-

mance and low latency.

• YieldingWaitStrategy yields the threads occupied by the awaiting con-

sumers and gives them back to the thread pool, so that other busy con-

sumers can take up these new threads to speed up the overall progress.

But this strategy occasionally causes latency spikes after some regular

intervals.

• SleepingWaitStrategy is similar to YieldingWaitStrategy but takes

a different action when the consumers have been waiting for a short

duration. Initially this strategy keeps the awaiting consumer spinning.

After a regular interval, if the curor still has not moved to the next
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sequence, then the system scheduler disables the consumer temporarily

(a few nano seconds). When the consumer becomes disabled, it can not

accept any command but must sleep until the sleep time elapses or the

barrier interrupts the consumer.

BlockingWaitStrategy is the only waiting strategy we use in the disruptor

version of the JStar PvWatts program. The disruptor PvWatts program uses

only one producer to output PvWatts tuples, and 12 consumers to concur-

rently calculate the average power for each month of the year. As a result,

there are 13 worker threads and one main thread running in the thread pool.

BlockingWaitStrategy is designed to coordinate these consumers to work

well with limited CPU resources. BusySpinWaitStrategy has bad perfor-

mance when the worker threads outnumber the CPU cores; thus, it is not a

suitable strategy for benchmarking the disruptor program.

Instead of spinning the awaiting consumers, both of YieldWaitStrategy

and SleepingWaitStrategy free up their resources and give them to those

who are busy and in need of threads. But they achieve this goal by calling an

inappropriate method (Thread.Yield method), which sometimes fails to give the

throughput. For example, if only one consumer needs to do a large workload

job and others have finished their tasks, then the scheduler pauses the threads

and give one thread to the busy one. But in this case, yielding threads does

not shorten the total execution time as all the other consumers still have to

wait for the bottleneck consumer to finish the job.

6.5.4 Disruptor PvWatts Program

The Disruptor version of PvWatts program parallelizes the two-phased work-

flow of JStar PvWatts program. It uses a single producer and multiple con-

sumers to process all tuples during the execution. Its work flow chart is shown

in Figure 6.11 and described as follows.

The program initializes the Disruptor instance by specifying the number of

consumers, the number of producers and waiting strategy for the RingBuffer.
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Figure 6.11: The workflow of the Disruptor PvWatts program.

After the disruptor starts up the ringbuffer, one producer and 12 consumers,

the producer starts doing the CSV read loop tasks: reading the large input

file, generating all PvWatts tuples, publishing these tuples in batch mode and

sending out a sentinel tuple after all lines in the input file have been processed.

At the same time, each consumer starts to claim the PvWatts tuples from the

RingBuffer.

To reduce the workload of reducer loop and improve the parallelism, the

Disruptor PvWatts program assigns a separate month value to each consumer.

Thus, each consumer just needs to process the PvWatts tuples of one month

and put these tuples to its own and local Gamma database. Besides, the
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consumer also creates one corresponding SumMonth tuple for each PvWtts tuple

and inserts this tuple to a local Delta tree. When a consumer receives the

sentinel tuple, it processes the SumMonth tuple in its own Delta tree and triggers

the reducer loop to output the average monthly power generation. Then the

reducer queries the tuples in the Gamma table, sums up the watts values and

prints out the averaged monthly power generation.

The producer places tuples onto the ring buffer in batch mode: claiming

and publishing upto 256 events each time. Since there is only one producer in

the program, the SingleThreadedStrategy strategy is used to claim the slots

in the RingBuffer. But consumers read one event from the ring buffer each

time. Thus, each consumer gets the PvWatts tuple in the same slot when they

receive notification from sequence barrier. As the same slot could be accessed

by 12 consumers concurrently, BlockWaitStrategy is set up for defining the

behaviour of multiple reading operation on the RingBuffer. According to the

sequence number, each consumers reads one slot in parallel and the publisher

is blocked from writing to the slot until all the consumers finish their reading.

Category Parameter Value

RingBuffer Event PvWatts(Builder)
RingBuffer Size 1024
RingBuffer Wait Strategy BlockingWaitStrategy
RingBuffer Claim Strategy SingleThreadedClaimStrategy
Producer Number of Producer 1
Producer Batching Size 256
Producer Task Read input file, create

PvWatts tuples and place
tuples onto the ring buffer .

Consumer Number of Consumers 12
Consumer Batch Size 256
Consumer Task Put PvWatts tuples to

Gamma database and process
the SumMonth tuple from
Delta Tree.

Table 6.3: The configuration of the Disruptor PvWatts program.
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The single-producer and multiple-consumer design removes the possibilities

of contention occurring in the procedure of JStar PvWatts program, provides

data locality and pipelines the reducer and the consumers. The summarized

Disruptor configuration is shown in Table 6.3.

6.5.5 Benchmark Result

Figure 6.12: Performance of the sequential optimized JStar and Disruptor
PvWatts Programs on two kinds of input files (sorted and unsorted) on an
8-core machine (Intel i7-2600 with 4 cores + hyperthreading).

The benchmark experiments were carried out on an Intel i7-2600 quad-core

machine to evaluate the speed up of PvWatts program between the Disruptor

version and the sequential optimized version. The performance of this exper-

iments is measured by using speedup, which is computed on the basis of the

total execution time of sequential inlined JStar PvWatts program. According

to the Amdahl’s Law, the theoretical maximum speedup with one producer

and N consumers is:

Speedup(N) =
1

B + 1−B
N
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Assume that B is the percentage of the program that must be run in

sequential. From the phase experiments, the reading phase takes 1.24 seconds.

The sequential percentage of JStar PvWatts program is 19.5%(1.24/6.351).

The maximum speedup with 12 consumers is 3.8 ( 1
0.195+ 0.805

12

). Figure 6.12

shows that the Disruptor PvWatts program has the speedup of 3.3 on the

unsorted input file (large1000X.csv) and the speedup of 2.5 on the sorted

input file. This speedup is fairly good, compared to the theoretical speedup.

6.6 Conclusion

In the PvWatts study, we learned:

• The optimized JStar parallel code gives a reasonably good speedup upto

4 cores with the maximal speedup of 3.53 (8 cores), compared to the

sequential optimized JStar PvWatts program.

• This program is a two-phase program and hard to parallelize as it has the

bulky I/O communication and uses the complex data structures. And

it is Gamma database dependent because at least 8.7 million PvWatts

tuples must be inserted in or queried from the Gamma database.

• The Disruptor PvWatts program obtains a fairly good speedup of 3.3

with a single RingBuffer (size of 1024), one producer and 12 consumers.

This speedup is very closed to the theoretical speedup from the Amdahl’s

Law.



Chapter 7

Case Study: Dijkstra’s Shortest

Path Algorithm

7.1 Dijkstra’s Shortest Path Algorithm

Figure 7.1: The shortest path solved by the Dijkstra’s algorithm.

The Dijkstra’s shortest path algorithm solves the shortest path problem

that has one starting point and non-negative path costs. The input graph

contains one starting node, one ending node and other intermediate nodes.

Each edge connects two nodes in the graph and has a distance cost. The
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algorithm finds a path with the lowest cost from the starting node to the

ending one. Figure 7.1 illustrates how Dijkstra’s algorithm solves the shortest

path problem for a graph with 7 nodes and 10 edges.

1. Set the node Start to be the first node. From this node, calculate the

distance to node A (path cost = 3) and the distance to node B (path

cost = 5). As node A has the shortest distance, it is set to be the next

node.

2. Start from node A and calculate the distances of its neighbouring nodes.

The distance to node D (through node A) is 7 (3 + 4), and the distance

to node C is 5 (3 + 2). As the path to node C through node A has the

shortest path cost, node C is set to be the next node.

3. From node C, the direct path to node End (path cost = 11) has lower

cost than the indirect path through node D (path cost = 13). Thus, the

shortest path from node Start to node End is through node A and node

C with the lowest path cost of 11.

7.2 JStar Dijkstra Program

The JStar Dijkstra program implements the Dijkstra’s algorithm to find the

shortest path to every node of a random connected graph. The source code of

the JStar Dijkstra program is shown in the Listing E.1 of Appendix E. This

program is a typical two-phase task: the graph generation and the shortest-

path algorithm. We chose this case study because the shortest path phase has

dynamically varying amounts of available parallelism that are dependent on

the shape of the graph and the lengths of edges, so static scheduling strategies

are not adequate. The graph generation creates a directed graph with one

million vertices and two million edges where each edge has a random cost

ranging from 1 to 10. The Dijkstra’s algorithm finds the shortest path from

the vertex (0) to every vertex of the graph. The procedure of the JStar Dijkstra

program is described as follows:
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1. Graph Generation Phase:

For each vertex V1 ∈ 1 . . . 1, 000, 000, randomly choose another vertex

V2 ∈ 0 . . . (V1 − 1). Then create an edge (V1, V2) with a random length

(1 . . . 10). Repeat this step until the graph forms a connected tree with

one million vertices and one million edges. Generate another one million

random edges between the vertices. Randomly choose two vertices from

the tree and connect them with a directed and random length edge.

Repeat this step until another one million edges are added to the tree.

Note that the tree contains one million vertices and two million edges.

2. Shortest Path Phase:

Use Dijkstra’s algorithm to find the shortest path from the initial node

(Vertex = 0) to the every other node.

Figure 7.2: Table schema of the JStar Dijkstra program.
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The table schema of the JStar Dijkstra program is shown in Figure 7.2.

The CmdLineArg tuple defines the graph size and creates the GenerateGraph

tuples, generating the random connected graph with one million vertices and

two million edges. The Vertex and the Edge tables store the vertices and

the edges respectively, and are read-only during the shortest path phase. Each

Done tuple stores the current node for one iteration. For each current node, the

Estimate tuple calculates the distances for all its neighboring and unvisited

nodes and sets the next current node which has the lowest path cost. The

PrintGraph tuple prints out the graph.

7.3 Benchmark Configuration

The benchmark experiments were conducted on one of computing nodes (compute-

b1-002-p) in the NeSI Pan cluster. The detailed hardware specification is

shown in Table 7.1(a). And the JVM Arguments for benchmarking the JS-

tar Dijkstra program are shown in the Table 7.1(b). The standard oper-

ation procedure of job submission to the Pan cluster in described in Ap-

pendix C. To improve the performance of the Java garbage collector, we

benchmarked the parallel JStar Dijkstra program with two additional JVM

options:UseCondCardMark and BiasedLockingStartupDelay.

7.4 Performance Tuning Process

This section describs how we tuned the performance of the JStar Dijkstra

program and implemented the efficient data structures. All the speedups are

based on the average execution time of the sequential optimized JStar Dijkstra

program.
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NeSI compute-b1-002-p

CPU IntelR© XeonR© CPU E5-2680 @ 2.70 GHz
(total of 16 cores)

L1 cache 32K
L2 cache 256K
L3 cache 20480K
RAM 126GB RAM
Disk 200 TB shared GPFS
OS 64-Bit Linux operating system

(kernel version 2.6.32-279.14.1.el6.x86 64)
JAVA 64-Bit JRE version 1.7.0 17

(a) Hardware specification

JVM options

-Xmx8G sets the maximum Java heap size to be 8 GB.
-verbose:gc enable verbose garbage collector.
-Xbatch stops the program while the hot spot compiler is recompil-
ing/optimising the code.
-XX:+PrintCompilation prints the message when one method is
compiled.[14]
-XX:+PrintTenuringDistribution prints the tenuring age
information.[14]
-XX:+PrintGCDetails print messages at the garbage collection.[14]
-XX:+UseCondCardMark avoids the false sharing at the card tables in
the garbage collection.[9]
-XX:BiasedLockingStartupDelay=0 enables the objects in the
HotSpot by default to be created with biased locking at the JVM
startup.[8]

(b) Java Virtual Machine options

Table 7.1: Benchmark configuration of the JStar Dijkstra program.

7.4.1 In-lining Tuples

The task dependency of the naive JStar Dijkstra program is shown in Fig-

ure 7.3(a). The Estimate tuples are the only tuple kind which will trigger the

other rule (Rule4), and thus the noDelta optimisation can be applied on all

the other tables, including CmdLineArg, GenerateGraph, Vertex, Edge and

Done. The noGamma optimisation can also be applied to all the tables, except

for the Done and the Edge tables because they will be served as the query

tables for the rules in the program. The task dependency of the optimized

JStar Dijkstra program is shown in Fig. 7.3 (b). Note that the PrintGraph
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VertexDone

GenerateGraph

rule2

Edge

CmdLineArg

rule1

Estimate

rule4Start

(a) The naive program

VertexDone

GenerateGraph

rule2

Edge

CmdLineArg

rule1

Estimate

rule4Start

(b) The optimized program

TRIGGER(Rule):−→ PUT(Gamma Database):− →
PUT(Delta Tree):−→ GET(Gamma Database):− →

Figure 7.3: Task dependency graph of naive and optimized JStar Dijkstra
programs.

tuples are not shown in the graph as they are served as the debugger in this

program. And we will ignore all the debuggers and tracers to get the unbiased

results when benchmarking the JStar program.

Tuple Delta Tree Gamma Database

CmdLineArgs
√ ×

GenerateGraph × ×
Vertex × ×
Edge × √

PrintGraph × ×
Estimate

√ ×
Done × √

Table 7.2: The inline tuple list of JStar Dijkstra program.

Table 7.2 is the tuple table list after we apply both of the noDelta and

the noGamma optimisation on the JStar Dijkstra program. It shows that the

optimized program will put the Estimate tuples into the Delta tree, and insert

the Edge and the Done tuples into the tables in the Gamma database. All the

other tuples will not kept in the data storage but discarded immediately after

triggering their associative rules.
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7.4.2 Improving the Parallelism

The JStar Dijkstra program is composed of two phase: the graph generation

and the shortest path. The graph generation phase is a bottleneck that down-

grades the overall performance of the JStar Dijkstra program. By printing out

the JVM information with the profile flag (-Xprof ), We found out that the

sequential naive implementation of the JStar Dijkstra program spent most of

its running time generating the random graph. Thus, at this phase we paral-

lelized the graph creation task with 24 separate GeneratingGraph tuples, each

generating 1/24 of the whole graph.

The shortest path phase is implemented by putting the Estimate tuples

recursively. The Estimate tuple takes the current node to calculate all the

path costs of its adjacent nodes. Then it chooses the node with the lowest

cost to be the next starting node and then puts the current node with the

path cost to the Done table. If the next node is not the ending node, then

it puts another Estimate tuple to continue finding the shortest path. In this

phase, the Estimate, Done and Edge are the only three tuple kinds which are

inserted or queried during the execution of the program. According to the

task dependency graph in Section 7.4.1, the parallelism of these tuples can

be optimized by inlining the Estimate tuples in the Gamma database and

omitting the insertion of the Done and Edge tuples into the Delta tree.

We applied the above two optimisation strategies on the JStar Dijkstra

program and measured the speedups which are compared with the naive se-

quential implementation. The benchmark results in Figure 7.4 show that our

strategy can improve and scale the performance with the maximum speedups

of 6.37 (15 cores) that are not very scalable.

The goal of the next benchmark experiments is to find the most efficient

data structures to make the optimized JStar Dijkstra program to gain the best

speedup. The experiments design focuses on the data structure of the Delta

tree and that of the Gamma database. The benchmark experiments measure

the speedup of the optimized JStar Dijkstra program with/varying the data
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Figure 7.4: Speedups of the JStar Dijkstra program with the noDelta and
noGamma optimisations on a dual-CPU Intel Xeon E5-2680 (total of 16 cores).

structures and the number of threads. The experiments are described in the

following subsections:

7.4.3 Optimizing the Delta Tree Data Structures

This benchmark experiment finds the efficient data structure for the Delta

tree. After optimizing the program, we found out that the Estimate tuple is

the only one tuple kind in the Delta tree. When a Estimate tuple is put into

the Delta tree, it will insert this tuple to the data storage of the DeltaNodeInt

node with its vertex value as the key. As the number of tuples increases, the

efficiency and scalabilty of the DeltaNodeInt implementations can limit the

speedup of the Delta tree. As a result, we may upgrade the performance of

the Delta tree by varying the data structures of the DeltaNodeInt nodes.

The benchmark experiment creates the integer Delta nodes with three

kinds of implementations: the DeltaNodeInt, ParallelDeltaNodeInt and

ParallelDeltaNodeIntRange. As the DeltaNodeInt does not support the

multi-threading, its average execution time is used as the base to calculate the



7.4. PERFORMANCE TUNING PROCESS 103

absolute speedup for the other two implementations. The relative speedup is

the speedup relative to the parallel JStar Dijkstra program running with one

thread.

Figure 7.5: Speedups of the optimized JStar Dijkstra program with the
noDelta and noGamma optimisations and varying the DeltaNodeInt data
structure on a dual-CPU Intel Xeon E5-2680 (total of 16 cores).

Figure 7.5 is the benchmark results of the Delta tree data structures. It

show that the ParallelDeltaNodeIntRange has a slightly good but similar

speedup as the ParallelDeltaNodeInt with maximum absolute speedup of

6.41 (14 cores). But it has the poorer scalability and worse performance on the

15 cores with the absolute speedup of 4.67. As the ParallelDeltaNodeInt

is the naive data structure for the Delta tree, varying the Delta tree data

structures in this case does not improve the performance.

7.4.4 Optimizing the Done Gamma Table

After profiling the optimized JStar Dijkstra program, we found out that most

of the time was spent on processing the queries of the Done and the Edge

tuples. The Edge Gamma table stores the path cost for each edge in the
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graph. And the Done table stores the visited nodes whose shortest path has

been found. Thus, the JStar Dijkstra program will use the Done and Edge

tables to estimate the shortest path for each unvisited node in the graph. As

the graph contains a large number of nodes and edges, querying tuples from

these two Gamma tables puts a heavy burden on the program.

The Done table contains only two integer field values, so we can simply use

a one-dimensional Array to store the Done tuples in Gamma. But as the Java

array is not supported by the naive Gamma table (uses the NavigableSet),

we created an implementation to make use of our new data structure. The

benchmark experiments in this subsection uses the CHMDoneTable, an alter-

native Done Gamma table, to improve the efficiency of the Gamma database.

And optimizing the data structures for the Edge table will be discussed in the

following subsection.

Listing 7.1: The Source Sode of CHMDoneTable

1 package jstar.examples.dijkstra;
2 import ...
3 public class CHMDoneTable extends AbstractDoneTable{
4 private int[] mGamma;
5 ...
6 public Done moveToGamma(final Done done) {
7 int vertex = done.getVertex();
8 assert vertex != Integer.MIN VALUE; // cannot store this special value
9 mGamma[vertex] = done.getDistance();

10 return done;
11 }
12 ...
13 @Override
14 public Done queryUnique(final int vertex) {
15 int val = mGamma[vertex];
16 if (val == Integer.MIN VALUE) {
17 throw new RuntimeException(”CHMDoneTable.queryUnique(” + vertex + ”)”);
18 }
19 return new Done(vertex, mGamma[vertex]);
20 }
21 ...
22 }

The CHMDoneTable is the customized Done table to enhance the perfor-

mance of the JStar Gamma database. Instead of using the Java NavigableSet

implementation, the CHMDoneTable uses a one-dimensional integer array to

store the Done tuples in Gamma. The index of this array is defined as the

node number and thus the array length is equal to the total number of the
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nodes in the program. Each element is the shortest distance (from the starting

node) to its node number (the index). The source code of the CHMDoneTable

is shown in the List 7.1. When a Done tuple is moved to the CHMDoneTable,

the JStar runtime accesses this array and assigns the tuple’s distance to the

element whose index is the tuple’s vertex. And the shortest distance of a node

can be retrieved from the array by its vertex.

Figure 7.6: Speedups of the optimized JStar Dijkstra Program with the
CHMDoneTable and ParallelDeltaNodeInt data structures on a dual-CPU
Intel Xeon E5-2680 (total of 16 cores).

Figure 7.6 is the benchmark results of the CHMDoneTable and the naive

implementation (ConcurrentSkipListSet). The speedup is relative to the

total execution time of the sequential optimized JStar Dijkstra program. The

results show that CHMDoneTable has the better performance than the naive one

with maximum speedup of 10 (15 cores) and it also provides the scalability

upto 9 threads.
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7.4.5 Optimizing the Edge Gamma Table

We found out that the Lookup method of the Edge Gamma table slowed down

the performance after profiling the JStar Dijkstra program. To improve the

efficiency of Edge Gamma table, we implemented the EdgeHashTable to make

use of Java array. Because the Edge.from are dense (0 . . . 999, 999) and because

every query specifies Edge.from, we can use an array to store the Edge.from

as the index. But we can have several Edge tuples with the same from values,

so each entry in this array must be a Set.

This experiment creates the Edge table with 3 Java concurrent implementa-

tions: ConcurrentSkipList, ConcurrentHashMap and ConcurrentHashMapV8.

Based on the previous experiments, the ParallelDeltaNodeInt is chosen to

be data structure of the Delta tree and the CHMDoneTable is used to create

the Done table in the Gamma database.

Figure 7.7: Speedups of the optimized JStar Dijkstra program with the
CHMDoneTable and ParallelDeltaNodeInt and varying the Edge Gamma ta-
ble data structures on a dual-CPU Intel Xeon E5-2680 (total of 16 cores).

The speedup results are shown in Figure 7.7. The speedup is the absolute

speedup relative to the sequential optimized JStar Dijkstra program, a) in-
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lining the tuples, b) using the TreeSet to create the Done and Edge table

in Gamma, and c) using the DeltaNodeInt (TreeSet) to create the Delta

nodes for the Estimate tuples. Benchmark results show that the speedups of

ConcurrentHashMap and ConcurrentHashMapV8 are double those of ConcurrentSkipList

from 1 to 10 cores. And ConcurrentHashMapV8 has the maximum speedup of

20.6 with 10 cores while the ConcurrentHashMap has the best speedup of 19.94

with 10 cores. Regarding the scalability, these data structures fail to scale up

the performance from 11 to 15 cores, except that ConcurrentSkipList slightly

increases the speedups. To achieve the best performance, ConcurrentHashMapV8

is recommended to implement the Edge table in the Gamma database.

7.5 Conclusion

In the Dijkstra’s shortest path case study, we learned:

• By using appropriate data structures for the Gamma tables (hand-written

in this case, but with the potential to be automatically generated), the

JStar Dijkstra program achieves a good speedup up to 10 cores with a

maximum speedup of 20.6 compared to the sequential optimized JStar

Dijkstra program.

• This program has complex structures to parallelize. It is not embar-

rassingly parallel but Delta tree dependent because at least 2 million

Estimate tuples must be sorted in the Delta tree.



Chapter 8

Case Study: Median-Finding

The median is the number that splits a collection of numbers into two groups:

the higher group and the lower group. That is, all the numbers in the higher

group are greater than or equal to the median, and the numbers in the lower

group are less than the median. To find the median, we could sort the numbers

in order and find the middle one. For example, the median of the 5 numbers

{15, 3, 1, 12, 8} is 8 because after sorting we have {1, 3, 8, 12, 15}. And if

there are an even amount of numbers, then the median is the average of the

middle pair (e.g. the median of {1, 3, 8, 12, 15, 23} is 10). However, using a

sequential program to sort one million numbers from the lowest values to the

highest ones will take up most of the running time and block the speedup of

finding the median.

Iteration Pivot Value Task 1 Task 2

0 − {15, 3} {1, 8, 12}
1 7.5 {3} {15} {1} {8, 12}
2 11.25 {15} {8} {12}
3 − {8}

Table 8.1: An example of the finding-median interative algorithm.

An iterative algorithm finds the median for a huge amount of numbers (N)

by using separate and small-sized tasks, instead of one sequential task. This

algorithm is described with the above example. First, we split the 5 numbers

into two tasks. Task 1 gets the first 2 numbers {15, 3} and Task 2 gets the
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next 3 numbers {8, 12, 1}. Second, in each iteration Task 1 and Task 2 both

use the same pivot value to split their numbers into two groups: the numbers

that are greater than or equal to the pivot number are put into one group,

and the others are put into the other group. Each group size is reported back

to the controller to determine the next pivot value, and the smaller group is

discarded. Repeat this procedure on the remaining groups until the median or

a pair of middle numbers is left. The iterations are shown in Table 8.1. Note

that the pivot number is half of the maximal number and minimal number.

The parallel tasks have less computation as each one of them processes only

one part of the whole numbers. Besides, their partition results are compared

with the same pivot value at each iteration, so the final result is guaranteed

to be the global median. The JStar Median-Finding program implements this

iterative algorithm.

8.1 JStar Median-Finding Program

The JStar Median-Finding program finds the median of 100 million random

doubles, ranging from 0 to 100 millions (the List F.1 of Appendix F is the

source code). It is a typical two-phase program: generating the number

and finding the median and its table schema is shown in Figure 8.1. The

CmdLineArgs and InitRequest are used to generate the 100 million doubles

and the rests are used for iterative median algorithm.

To ensure that all the numbers are generated in advance of finding the

median, tuple orders of the InitRequest and CmdLineArg tables are de-

clared to come before the others, including the Int. The Data table stores

the pivot numbers that we need to find the median at each iteration. The

PartitionRequest table requests the start of an iteration to split the num-

bers into two partitions by comparing them against the pivot number. The

PartitionResult table stores the partition results for each iteration. The

Controller table gets the partition results and decides the next pivot number,
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Figure 8.1: Table schema of the JStar Median-Finding program.

or stops the searching when the median is found. So the pattern of commu-

nication is essentially a master-slave situation, where the master Controller

rule sends PartitionRequest tuples off to N parallel processes and then gets

N PartitionResult tuples back and decides what to do for the next step.

So this application has a lot of parallelism but is not embarrassingly parallel.

since it has a central controller which can become a bottleneck.

8.2 Benchmark Configuration

The benchmark experiments were conducted on the Gaia computing node of

the Symphony cluster in the Waikato University. Table 8.2(a) is the hardware

specification of the Gaia, and Table 8.2(b) lists the JVM options used to

benchmark the JStar Median program. Unlike other case studies, we increased
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Symphony node CN-192

CPU 4 x IntelR© XeonR© 8 core E7- 8837 CPUs
(32 cores @ 2.67GHz)

L1 cache 32K
L2 cache 256K
L3 cache 24576K
RAM 512GB RAM (@1066 MHz)
Disk 24 x 300GB 10k rpm SAS-2 hard disc

2 x 73GB 15k rpm SAS-2 hard disc
OS 64-Bit Linux operating system

(kernel version 2.6.38)
JAVA 64-Bit JRE version 1.7.0 17

(a) Hardware specification

JVM options

-Xmx64G sets maximum Java heap size to be 64 GB.
-verbose:gc enables the verbose garbage collector.
-Xbatch stops the program while the hot spot compiler is recompil-
ing/optimising the code.
-XX:+PrintCompilation prints the message when one method is
compiled.[14]
-XX:+PrintTenuringDistribution prints the tenuring age
information.[14]
-XX:+PrintGCDetails print messages at the garbage collection.[14]
-XX:+UseCondCardMark avoids the false sharing at the card tables in
the garbage collection.[9]
-XX:BiasedLockingStartupDelay=0 enables the objects in the
HotSpot by default to be created with biased locking at the JVM
startup.[8]

(b) Java Virtual Machine options

Table 8.2: Benchmark configuration of the JStar Median-Finding program.

the maximum heap size to 64 GB as the unoptimised program requires a large

heap of memory space to store the numbers and search results.

8.3 Performance Tuning Process

8.3.1 In-lining Tuples

Figure 8.2 (a) is the task dependency graph of the naive JStar Median pro-

gram. As the Data and PartitionResult tuples are never used as triggers

in the program, we can use the noDelta optimisation to omit their Delta
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CmdLineArg

rule1

PartitionResult

PartitionRequest

rule3

Controller

rule4 InitRequest

rule2

Data

(a) The naive program

CmdLineArg

rule1

PartitionResult

PartitionRequest

rule3

Controller

rule4 InitRequest

rule2

Data

(b) The optimized program

TRIGGER(Rule):−→ PUT(Gamma Database):− →
PUT(Delta Tree):−→ GET(Gamma Database):− →

Figure 8.2: Task dependency graph of the JStar Median-Finding program.

node insertion and put their tuples straight into the Gamma database. The

CmdLineArg and InitRequest tuples are used for the random number gener-

ation only, and never queried by other rules. Thus, we can apply the noGamma

optimisation on these two tables. Similarly, the Controller tuple is never

used by other rules and acts as a trigger, which starts an iteration to partition

the tasks’ numbers and stores their results. We can also apply the noGamma

optimisation on the Controller. Table 8.3 is the inlined tuple list.

Tuple Delta Tree Gamma Database

CmdLineArg
√ ×

InitRequest
√ ×

Data × √

PartitionRequest
√ √

PartitionResult × √

Controller
√ ×

Table 8.3: The inline tuple list of JStar Median-Finding program.
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The Data table has the most transactions in the JStar Median-Finding pro-

gram. It is queried by two rules ( Rule 3 and Rule 4 ) and also accepts insertion

requests from Rule 3 and Rule 4. These recursive insertions and queries on

the Data table may cause a performance issue as the naive Data table stores

tuples with a Set implementation, which has log-time for most operations.[19]

That is, the JStar Median-Finding program generates 100 million doubles and

all of these numbers at each iteration are stored in the Data table, so the Data

Gamma table might contain more than thousands of millions tuples before

the median is found. This huge number of tuples makes the Java Garbage

Collector busy allocating the memory space and slows down the performance.

Therefore, we designed a new and efficient implementation of the Data Gamma

table.

8.3.2 Optimizing the Data Gamma Table

The CHMDataTable is the alternative Data table in the Gamma database. It

uses one two-dimensional Java array to store the Data tuples. Each of the

tasks T works on one part of the numbers N and produces an array of the

numbers that will need to find the median in the next iteration. As the

PartitionRequest at each iteration just needs the Data tuples from the pre-

vious one iteration, two copies of one Java array are enough to keep all the

Data tuples during all of the iterations. The data storage of the Data tuples

can be reduced to a fixed-size amount by recursively overwriting this 2D array.

That is, the tuples in the current iteration are placed into one Java array and

the tuples in the previous iteration are put into the other. And the index of

the array is determined by modulo 2 of the iteration number.

Figure 8.3 is one example that illustrates the 2D array in the CHMDataTable.

The Data tuples in the 7th iteration are put in the Iter 1 (7%2) 1D array. When

the program starts the 8th iteration, it looks up the numbers in the array of

Iter 1, and then produces an array of numbers and places them in the array

of Iter 0.
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Figure 8.3: An example of the CHMDataTable data structure.

8.3.3 Benchmark Results

Figure 8.4: Speedups of the optimized JStar Median-Finding program with
CHMDataTable and varying fork/join pool size on a quad-CPU Intel Xeon E7-
8837 @ 2.67GHz (total of 32 cores).

Figure 8.4 shows the absolute and relative speedup graphs of the opti-

mized JStar Median-Finding program, using the CHMDoneTable and the naive

implementations (ConcurrentSkipListSet) for other Gamma tables. The

benchmark results show that the speedups scale well up to 8 cores with a good

speedup of 6.30, and then becomes gradual with the maximum speedup of 13.8

(32 cores).



8.4. CONCLUSION 115

8.4 Conclusion

In the Median-Finding case study, we learned:

• The JStar parallel implementation can achieve a reasonably good speedup

(with efficiency greater than 0.5 over 1. . . 24 cores) for an algorithm with

a central Controller bottleneck.

• For tables with billions of tuples, it is important to use the efficient

Gamma data structures (e.g. Java native array) and reuse the space

from previous iterations.



Chapter 9

Case Study: Matrix

Multiplication

The JStar Matrix Multiplication program multiplies two matrices of the same

size (N × N) and produces the resulting matrix. In this test case, the size of

the matrices is 1,000. Assume that we have two 1, 000− by − 1, 000 matrices:

matrix A and matrix B. Matrix A is an anti-diagonal matrix and Matrix B is a

square matrix. The sequential matrix multiplication algorithm is to multiply

one row in matrix A by one column in matrix B, and sum up these product

results to get one element in the final matrix. Repeat this step until all the

elements in the product matrix have been calculated. Matrix A and Matrix B

are specified in the following notations:

AN,N =



























0 0 0 · · · 0 1

...
...

...
...

...
...

ai,1 ai,2 · · · ai,j · · · ai,N

...
...

...
...

...
...

1 0 0 · · · 0 0



























ai,j =











1 if (i+j) = N-1

0 otherwise
∀i, j ∈ {1, . . . , N}
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BN,N =

































0 1 · · · b1,j · · · N − 1

1 2 · · · b2,j · · · N

...
...

...
...

...
...

...
...

... bi,j

...
...

...
...

...
...

...
...

N − 1 N · · · bN,j · · · 2N − 2

































bi,j = (i − 1) + (j − 1) ∀i, j ∈ {1, . . . , N}

The matrix multiplication of Matrix A and Matrix B are:

ABN,N = AN,N × BN,N

=



























ab1,1 ab1,2 · · · ab1,j · · · ab1,N

...
...

...
...

...
...

abi,1 abi,2 · · · abi,j · · · abi,N

...
...

...
...

...
...

abN,1 abN,2 · · · abi,N · · · abN,N



























abi,j =
N

∑

m=1

ai,m × bm,j ∀i, j ∈ {1, . . . , N}

=



























N − 1 N N + 1 · · · 2N − 3 2N − 2

...
...

...
...

...
...

2 3 4 · · · N N + 1

1 2 3 · · · N − 1 N

0 1 2 · · · N − 2 N − 1


























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Figure 9.1: The table schema of the JStar MatrixMulti program.

9.1 JStar MatrixMult Program

The JStar MatrixMult program contains five tables: MatMultRequest, MatMultRow,

MatrixHeader, Matrix and PrintMatrix, as shown in Figure 9.1. To effec-

tively parallelize the matrix multiplication, the program computes each row

of the product matrix separately and create the result matrix. Each row of

product matrix can be conducted concurrently by taking one row from Matrix

A and multiplying it with Matrix B, as described in the following formula:

ABi = Ai×B =

[

ai,1 ai,2 · · · ai,j · · · ai,N

]

×



















b1,1 · · · b1,j · · · b1,N

b2,1 · · · b2,j · · · b2,N

...
...

...

bN,1 · · · bN,j · · · bN,N



















=

[

abi,1 abi,2 · · · abi,j · · · abi,N

]
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The JStar MatrixMult program starts up with one MatMultRequest tuple,

generating one MatMultRow tuple for each row in the product matrix. Each

MatMultRow tuple performs one row multiplication rule which takes a row from

Matrix A, loops over all columns in Matrix B and uses a nested reducer that

sums up the product results for each column, and places the results in the

corresponding row of the final matrix. The source code of the JStar Matrix

Multiplication is shown in Listing G.1 of Appendix G. This case study was

chosen because, unlike the previous case studies, it is embarrassingly parallel,

so should be a good candidate for a parallel implementation with high speedup.

9.2 Benchmark Configuration

Gaia (Symphony node CN-192)

CPU 4 x IntelR© XeonR© 8core E7- 8837 CPUs
(8 cores @ 2.67GHz)

L1 cache 32K
L2 cache 256K
L3 cache 24576K
RAM 512GB RAM (@1066 MHz)
Disk 24 x 300GB 10k rpm SAS-2 hard disc

2 x 73GB 15k rpm SAS-2 hard disc
OS 64-Bit Linux operating system

(kernel version 2.6.38)
JAVA 64-Bit JRE version 1.7.0 17

(a) Hardware specification

JVM options

-Xmx7G sets maximum Java heap size to be 7 GB.
-verbose:gc enables the verbose garbage collector.
-Xbatch stops the program while the hot spot compiler is recompil-
ing/optimising the code.
-XX:+PrintCompilation prints the message when one method is
compiled.[14]
-XX:+PrintTenuringDistribution prints the tenuring age
information.[14]
-XX:+PrintGCDetails print messages at the garbage collection.[14]

(b) Java Virtual Machine options

Table 9.1: Benchmark configuration of the JStar MatrixMult program.
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Table 9.1 is the benchmark configuration for the JStar MatrixMult Pro-

gram. The benchmark experiments were conducted on a 32-core machine, as

shown in Figure 9.1 (a). As the MatrixMult program takes two of the same

sized (1000− by − 1000) square matrices and produces another square matrix,

the total amount of memory the program uses is fixed and predicable. This

program does not require a large amount of heap space, but we set the maxi-

mum heap space to be 7GB to avoid garbage collection during the benchmark.

9.3 Performance Tuning Process

9.3.1 In-lining Tuples

MatrixHeader

rule1 rule2

Matrix

MatMultRow

rule5

MatMultRequest

rule4

Start

(a) The naive program

MatrixHeader

rule1 rule2

Matrix

MatMultRow

rule5

MatMultRequest

rule4

Start

(b) The optimized program

TRIGGER(Rule):−→ PUT(Gamma Database):− →
PUT(Delta Tree):−→ GET(Gamma Database):− →

Figure 9.2: Task dependency graphs of the JStar MatrixMult programs.

Figure 9.2 (a) is the task dependency graph of the JStar MatrixMult pro-

gram. It shows that Matrix tuples are never used as triggers of rules in this
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Tuple Delta Tree Gamma Database

MatMultRequest
√ ×

MatrixHeader
√ √

MatMultRow
√ ×

Matrix × √

PrintMatrix × ×

Table 9.2: The inline tuple list of JStar MatrixMult program.

program and served as the query of Rule5. Thus, Matrix tuples can be put into

the Gamma table directly. Besides, as the MatMultRequest and MatMultRow

tuples are never queried by any rule, they can use the noGamma optimisation

to skip the insertion of tuples from delta tree to Gamma table. Figure 9.2(b)

is the task graph of the optimized JStar MatrixMult program.

The summaried tuple tables are listed in Table 9.2. The PrintMatrix

tuples are not inserted into either the Delta tree or the Gamma database,

because printing out the matrix on the terminal may bias the actual execution

time. Thus, we omit the requests that prints out the whole result matrix

but display the entry in the right bottom corner of the matrix to ensure the

correctness of the program.

9.3.2 Optimizing the Matrix Gamma Table

Matrix3D is an customized implementation of the Matrix Gamma Table. The

matrix basically functions like a two-dimensional array of integers, which con-

sist of rows and columns. Thus, we implement the Gamma set of the Matrix

table with the customized Matrix3D class, which uses a three-dimensional ar-

ray to store all the matrices, including the Matrix A, Matrix B and Matrix

AB (result matrix).

The Matrix table is created with 3D array of integers whose first index

represents the matrix number and each element is a 2D array of the N × N

matrix which the row and col indices vary from 0 to N − 1. When a Matrix

tuple is moved to the Gamma Database, it assigns its value to the element by
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specifying three field values, including the Mat, Row and Col. Similarly, to

retrieve a matrix value, we can use three fields to get the entry. The source

code is shown as follows:

1 /∗∗ Defines the contents of each matrix. ∗/
2 package jstar.examples.matrixmult2;
3 import ...;
4 public class Matrix3D extends AbstractMatrixTable implements Table<Matrix> {
5 final int[][][] data;
6 ...
7 public Matrix moveToGamma(Matrix t) {
8 data[t.getMat()][t.getRow()][t.getCol()] = t.getValue();
9 return t;

10 }
11

12 public Matrix queryUnique(int mat, int row, int col) {
13 return new Matrix(mat, row, col, data[mat][row][col]);
14 }
15 ....
16 }

9.3.3 Benchmark Results

Figure 9.3: Speedups of the optimized JStar MatrixMult program with the
Matrix3D and varying Fork/Join pool size on a quad-CPU Intel Xeon W5590
(total of 32 cores).
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Figure 9.3 shows the speedups of the optimized JStar MatrixMult program,

using Matrix3D and varying the Fork/Join Pool size. Benchmark results show

that this program is an embarrassingly parallel program with a scalable good

speedup of 17.52 (20 cores) and a maximum speedups of 19.90 (28 cores).

This high performance is due to the Matrix3D and the optimisation strate-

gies. As the Matrix3D is a fixed-sized data storage, the JVM may use an

adjacent memory space to store all the Matrix tuples and speed up the pro-

gram. In addition, the optimisation strategy reduces the total number of tuples

to 1000 in the Delta tree.

After applying the optimisations, the Delta tree are inserted with three

tuple kinds, including the MatMultRequest, MatrixHeader and MatMultRow.

There is only one MatMultRequest tuple and MatrixHeader are the request

tuples which trigger the rules to generate the matrix and start the matrix

multiply. The MatMultRow tuple is also a request to produce one row of the

result matrix, and thus the total number of this tuple kind is one thousand

(each row is a MatMultRow tuple.)

The JStar MatrixMult program would get a better speedup if the queryU-

nique method of the Matrix3D could be simplified to return the value, instead

of the Matrix object. This optimisation requires several changes to the Java

code generation in the JStar compiler, it has not been implemented yet.

9.4 Conclusion

In the matrix multiplication case study, we learned:

• The JStar parallel implementation can achieve a good speedup up to

20 cores with the best speedup of 19.90 (28 cores), compared to the

JStar MatrixMult program with the optimisations and sequential data

structures. We believe that the gradual reduction in speedup from 20-32

cores is probably due to the memory bandwidth becoming saturated by

many memory-intensive tasks.
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• This program is an embarrassingly parallel program (after we applied the

optimisation). And it has a high computation to communication ratio

because only 1,000 MatMultRow (per row of the result matrix) tuples need

to be sorted in the Delta tree and thus result in a low latency between

the tuple insertion and rule trigger.



Chapter 10

Conclusions and Future Work

We have briefly introduced the JStar in-memory data architecture and de-

scribed new JStar compiler options to generate a JStar program into a naive

parallel Java implementation, which uses general-purpose concurrent data

structures to construct the Delta tree and the Gamma database. As the de-

fault implementation inserts every tuple in both of these two data storages,

the waiting time in the Delta tree and the efficiency of the Gamma database

often limits the speedup of the JStar program. Thus, we developed several

inlining optimisations to reduce the total number of tuples in the Delta tree

and the Gamma database. Inlining the Delta nodes (the noDelta optimisa-

tion) can avoid the waiting time that a tuple is queued in the Delta tree and

trigger the tuple rules immediately when the tuple is created. Avoiding tuples

inserting into the Gamma database (the noGamma optimisation) can reduce

memory usage as the JVM does not need to create those tables in the Gamma

database.

This thesis also defines the performance tuning process for JStar programs.

By analyzing the task dependency graphs and applying the corresponding op-

timisation strategies, the performance of the parallel and sequential JStar pro-

gram can be improved to a certain extent which is shown by the case studies.

But further parallelism requires customized data structures, e.g. light-weight

and fixed-sized Java arrays can be used to store the tuples in the Gamma
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database in some programs. In this process, we can test the optimisation

strategy or the data structure choice by following the tuning procedures with-

out needing to change the JStar source program.

We followed the performance tuning process to improve the speedups on

four case studies: PvWatts, Dijkstra’s shortest path, Median-Finding and Ma-

trix Multiplication. Their benchmark experiments were conducted on different

multi-core machines as the Symphony cluster or the NeSI cluster use an auto-

matic scheduler to dispatch the parallel tasks. Benchmark results show that

three case studies have very good speedups, but the PvWatts case study has

low speedup. These good speedups result from the combination of the optimi-

sation strategies and the choice of efficient Gamma table data structure. But

the PvWatts case is more complicated than the others, because it involves bulk

file input communication and data summation, which may cause race hazards

if the reducers perform their parallel tasks before the readers. Thus, we im-

plemented the Disruptor version of PvWatts program to pipeline the readers

and the reducers to get a better performance. Compared to the theoretical

speedup (Amdahl’s law), the Disruptor PvWatts program has a fairly good

speedup and a slightly higher speedup than the standard JStar strategy of

using the Delta tree to send tuples from one rule to other rules. This shows

that the Disruptor ring buffer can be an efficient way of sending tuples be-

tween rules and a useful alternative to the Delta tree for some programs (e.g.

when reordering of tuples is not required.) It also shows that JStar allows a

wide variety of parallel implementation strategies without changing the JStar

source code.

Future Work Our work in this thesis can display the data dependency

explicitly and provides a way to customize the data structures used in the

Delta tree or the Gamma table. Possible areas for future work include:

• allow the compiler to introduce more aggressive parallelism, for example,

by parallelizing for loops and for loops with reducers.
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• allow the users to view the parallelism of the program with more kinds

of graphs.

• automate the generation of a wider range of the Gamma data structures,

involving Hashtable and Java arrays.

After the work done in this thesis, we have shown that the JStar compiler

with appropriate optimisation options can generate efficient parallel Java code

with reasonably good speedup on multi-core computers. These suggestions for

future work have the potential to make the tuning process easier and allow

even more parallelism in programs with complex rules.
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Appendix A

JStar Tuple Timing Graph

Installation Guide

JStar Tuple Timing Graph requires the Eclipse, JDK 1.7, and Google Apps

Engine eclipse plugin for Eclipse 4.2. The instructions are:

1. Download and install JDK 1.7 and Eclipse 4.2.

2. Install Subversion Team Provider from Eclipse.

(a) From the menu bar, select Help > Install New software.

(b) Add Juno eclipse update site. Click the Add button. When the

Add Repository dialog shows up, enter Juno at the name textarea

and copy the Juno URL1 to the location textarea.

(c) On Work with: textbox, choose Juno. Click Collaboration >

Subversion SVN Team Provider. Select ’OK’ on the ’Security-

Warning’ and ’License Agreement’ windows.

(d) When the connector installation dialog pops up, choose SVN Kit

1.7.5-v1 as the SVN connector. Click ’Finish’ to restart Eclipse.

3. Install Google Plugin for Eclipse and Google App Engine Java SDK.

(a) Add ’Google plugin update site’ to the repository. Enter ’Google

Plugin’ at the name textarea and copy the google plugin URL2 to

the location textarea.

1http://download.eclipse.org/releases/juno/
2http://dl.google.com/eclipse/plugin/4.2

http://download.eclipse.org/releases/juno/
http://dl.google.com/eclipse/plugin/4.2
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(b) Choose Google Plugin and select Google Plugin for Eclipse (re-

quired) and SDKs/Google App Engine Java SDK. Click Next

and review the item and agree the installation. Click Finish and

restart the eclipse.

4. Import JStar Tuple Timing Graph project from the SVN. As the JS-

tar Tuple Timing Graph source code are stored in the Waikato SVN

repository, the developers need to email the administrator to create a

Symphony account.

(a) Import project from the SVN repository. Start the eclipse. Select

File > Import. After the dialog pops up, choose SVN Project

from SVN.

(b) Check out the project from the SVN repository. Enter the SVN

URL3 on the check-out windows and click Next.

(c) Check out as a project with name specified: graph tuple times.

Click ’Finish’.

5. Run the JStar tuple timing graph tool.

The Google App engine SDK includes a web server (Jetty), so the apps

developers can test the application on their local machine. We can start

the server and run the application inside the Eclipse.

(a) Right click the graph tuple times project and choose Run As

>Web application. The google apps web server is running on the

local machine at 8888 port number.

(b) Start the Chrome browser and go to the http://localhost:8888.

6. Drag-and-drop the output file to the container. The graph is displayed

on the HTML 5 canvas. Click ’Next’ to display the next benchmark

results. Click ’Previous’ to show the previous one.

3https://svn.cms.waikato.ac.nz/svn/starlog/trunk/tools/trunk/graph_tuple_

times

http://localhost:8888
https://svn.cms.waikato.ac.nz/svn/starlog/trunk/tools/trunk/graph_tuple_times
https://svn.cms.waikato.ac.nz/svn/starlog/trunk/tools/trunk/graph_tuple_times


Appendix B

Symphony Benchmark S.O.P

Symphony is a computer cluster hosted by The University of Waikato. Having

92 computing nodes, the Symphony cluster enables researchers to perform a

variety of computing tasks. As all the computing resources of the Symphony

cluster are cosidered as a pool, a queue is used to accept the different requests

from users. Each computing job usually defines the programs and required

computing resources. Based on the cluster status, the Symphony scheduler

submits the jobs to the queues and then execute them simultaneously. The

following steps are used to benchmark a JStar program on the Symphony

cluster.

1. Prerequisites

(a) Register as an Symphony account. As the Symphony computer

nodes are Linux machines, the SSH (Secure Shell Client) is neces-

sary to copy our JStar files to/from the Symphony head node.

(b) Install JDK 1.7. Running the JStar program requires Java version

1.7 or above. The installation is described as follows:

• Download the latest JDK for 64-bit linux from Oracle Java

website.1

• Unpack the tarball file to the HOME directory.2

• Add JAVA HOME variables to the profile file ( /.profile) with

the following commands:

export PATH="/home/youraccount/jre1.7.0 09/bin:$PATH"

1http://www.java.com/en/download/linux_manual.jsp
2tar zxvf jdk-7u-version-linux-x64.tar.gz

http://www.java.com/en/download/linux_manual.jsp
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• Save change to the profile and run the ’source’ command (source

/.profile).

2. Compile the JStar program.

After compiling the JStar program to the Java source code, we archive

these generated Java source code into a JAR file and upload the required

libraries to the lib folder at the same directory of the Symphony head

node by using the scp command.

3. Use the same benchmark configuration.

Reliable experimental results are critical to analyze the performance of a

JStar program, so each benchmark experiment is repeated 30 times with

the same JVM options to get steady results.

4. Submit the benchmark experiments to the Symphony cluster.

A shell script is employed to run all the benchmark experiments. To

submit this shell script to the Symphony queue we will use the qsub

command and specify the required resources. The following example is

the configuration of the 8-core machine with 8GB of memory.

qsub -N PVWATTS -m abe -l walltime=03:00:00,nodes=1:ppn=8,pmem=8g

run.sh

5. Summarize benchmark results to a CSV file.

Benchmark results are output to the same plain text file. And we use

an AWK program to read the file, extract the execution time for each

benchmark and writes the time out a CSV file, sparated with Tab value.

6. Plot the speedup graph.

The CSV file is imported to the LibreOffice Calc. As the JVM needs

the time to warm up its HotSpot, we ignore the results of initial 6 runs

and average the execution times in the later runs. Then we plot the

absolute and relative speedups versus the number of threads in the pool

on a chart.
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NeSI Benchmark S.O.P

NeSI (New Zealand eScience Infrastructure) provides HPC facilities to sup-

port the researches in New Zealand. We have applied for the NeSI account

and conducted our benchmark experiments on the Pan cluster, which at this

moment 80 16-core machines and 80 12-core machines with more than 90

GB RAM per node. The center of eResearch wiki website describes how

to get started with the NeSI Pan Cluster (https://wiki.auckland.ac.nz/

display/CERES/Getting+started). But to benchmark the JStar programs

on the NeSI requires the following steps:

1. Prerequisite

• Fill out the application form on the NeSI web site (https://www.

nesi.org.nz/).

• Apply for the research project on the NeSI Pan Cluster. By using

Puttygen on Windows, the SSH public key and private key are

generated on the local machine. And email the NeSI administrator

with the username and public key for the account access. Install

the WinSCP1 to upload the local files to and download the files from

the Pan cluster.

• Install JDK 1.7 on the home directory. Upload and uncompress the

latest version of JDK 1.7 to the HOME directory.

• Set up the JAVA HOME and PATH environment variables by edit-

ing the bash profile (.bash profile) on the HOME directory with

1http://winscp.net/eng/index.php

https://wiki.auckland.ac.nz/display/CERES/Getting+started
https://wiki.auckland.ac.nz/display/CERES/Getting+started
https://www.nesi.org.nz/
https://www.nesi.org.nz/


137

the following commands: export JAVA HOME=$HOME/jdk1.7.0 17

PATH=$JAVA HOME/bin:$PATH:$HOME/bin

• Open the Putty to activate the new settings and verify the java

with the following command:

$ . /.bash profile

$ which java

2. Run the Hello World LoadLeveler job, printing out the “Hello World”

and the java version.

• Write a LoadLeveler job file. and name it as the helloworld.11.

Listing C.1: The LoadLevel Job of the Hellow World Program.

1 #@ shell = /bin/bash
2 #@ job name = test
3 #@ class = default
4 #@ group = pd
5 #@ account no = nesi00061
6 #@ wall clock limit = 00:01:00
7 #@ resources = ConsumableMemory(10240mb) ConsumableVirtualMemory

(10240mb)
8 #@ job type = serial
9 #@ output = $(home)/stdout.txt

10 #@ error = $(home)/stderr.txt
11 #@ notification = never
12 #@ queue
13 # Enforce memory constraints for jobs running on single nodes.
14 # Value is in KB
15 ulimit −v 10485760 −m 10485760
16 sleep 30
17 echo ”Hello, world!”
18 java −Xmx8000m −version

• Submit the job file to the Pan cluster through the following com-

mands:

$llsubmit helloworld.11

• Check the job status by using the following commands:

$llq -u whoami

• Verify the output files (stdout.txt and stderr.txt) by the Java

version.

3. Upload the required libraries and the Jar file (the JStar Java source code)

to the NeSI cluster.
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4. Submit the LoadLeveler job file by using the lsubmit command.

Listing C.2: The LoadLevel Job of the JStar PvWatts Program.

1 #@ shell = /bin/bash
2 #@ job name = pvwatts
3 #@ class = default
4 #@ group = pd
5 #@ account no = nesi00061
6 #@ wall clock limit = 00:01:00
7 #@ resources = ConsumableMemory(10240mb) ConsumableVirtualMemory(10240

mb)
8 #@ output = $(home)/pvwatts/stdout.txt
9 #@ error = $(home)/pvwatts/stderr.txt

10 #@ initialdir = $(home)/$(job name)
11

12 ##@ job type = serial
13 #@ job type = parallel
14 #@ total tasks = 15
15 #@ node = 1,1
16

17 #@ executable = $(home)/$(job name)/run.sh
18 #@ notification = never
19 #@ queue
20 # Enforce memory constraints for jobs running on single nodes.
21 # Value is in KB
22 ulimit −v 10485760 −m 10485760

5. Download the benchmark results and plot the speedup graphs with the

AWK program and LibreOffice Calc.
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Case Study: PvWatts

Listing D.1: The Source Code of JStar PvWatts Program.

1 package jstar.examples.pvwatts;
2

3 import java.io.FileInputStream;
4 import nz.ac.waikato.fastcsv.FastCsvReader;
5 import nz.ac.waikato.fastcsv.CsvReaderTask;
6 import nz.ac.waikato.jstar.runtime.reduce.impure.Statistics;
7 import java.io.File;
8 import java.io.FileWriter;
9 import java.io.FileReader;

10 import java.io.BufferedReader;
11 import java.io.IOException;
12 import java.util.ArrayList;
13 import java.util.concurrent.RecursiveAction;
14 import nz.ac.waikato.jstar.runtime.IOHelper;
15 import jstar.examples.pvwatts.ReaderTask;
16 import nz.ac.waikato.jstar.runtime.JStarProgram;
17

18 /∗∗
19 ∗ This program measures the time taken to read a CSV file of hourly solar energy,
20 ∗ and calculate the averaged monthly production.
21 ∗
22 ∗
23 ∗ Arguments: −−threads=1 −−readers=1 −−benchmark=12 [large1000X.csv]
24 ∗ where:
25 ∗ −−benchmark=<value>
26 ∗ set the number of repeated experiments.
27 ∗ −−threads=<value>
28 ∗ set the number of threads.
29 ∗ −−readers=<value>
30 ∗ set the number of parallel readers.
31 ∗ [path]
32 ∗ specify the (relative) path of input file
33 ∗/
34

35 table CmdLineArg(int index, String value)
36 orderby (CmdLineArgs, seq index)
37 // key (index)
38 inv 0 <= index;
39
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40

41 table PvWatts(
42 int year, int month, int day, String time, int watts)
43 orderby (PvWatts)
44 //orderby (Int, seq year, Int, seq month, Int, seq day, Int, seq time, PvWatts)
45 inv 1000 < year && 1 <= month && month <= 12 && 1 <= day && day <= 31;
46

47 table PvWattsRequest(String filename) orderby (PvWattsRequest);
48 table PvWattsException(String filename, String message) orderby(PvWattsException)

;
49 table SumMonth(int year, int month) orderby (SumMonth);
50 order CmdLineArgs < PvWattsRequest < PvWattsException < PvWatts < SumMonth
51

52 foreach (PvWattsRequest req) {
53 val startTime = System::currentTimeMillis();
54 val arg = get uniq? CmdLineArg([value.startsWith(”−−readers=”)])
55 val numReaders = if (arg == null) 1 else {
56 val pos = arg.value.indexOf(”=”)
57 val numStr = arg.value.substring(pos + 1);
58 Integer::parseInt(numStr)
59 }
60 unsafe {
61 try {
62 println(”opening ” + req.filename + ” with ” + numReaders + ” reader tasks

.”)
63 CsvReaderTask::parallelRead(req.filename, null, null, numReaders)
64 [csv |
65 val year = csv.getIntField(0, 0);
66 val month = csv.getIntField(1, 0);
67 val day = csv.getIntField(2, 0);
68 //remove the blank space from the time string
69 val time = csv.getStringField(3).trim();
70 val watts = csv.getIntField(4, 0);
71 put new PvWatts(year, month, day, time, watts);
72 ]
73 // // Alternative code for multiple readers.
74 // val length = new File(req.filename).length;
75 // var pos = 0L;
76 // val readers = new ArrayList<ReaderTask>();
77 // for (r : 0 .. numReaders−1) {
78 // val endPos = pos + length / numReaders + 2;
79 // val r1 = new ReaderTask(req.filename, pos, endPos, null);
80 //
81 // // r1.setDelta((this program).deltaTree) // add tuples to delta tree.
82 // r1.setProgram(this program) // skip the delta tree.
83 // readers.add(r1);
84 // if (r > 0) {
85 // r1.fork();
86 // }
87 // println(” forking reader ” + r + ”: ” + pos + ” .. ” + endPos)
88 // pos = endPos;
89 // }
90 // readers.ˆget(0).invoke(); // ask this task to do it.
91 // // (this program).forkJoinPool.invokeAll(readers);
92 // for (r : 0 .. numReaders−1) {
93 // // we call join on reader 0 too, because the IntegerRange cannot cope with empty

ranges!
94 // println(” join reader ” + r)
95 // readers.ˆget(r).join();
96 // println(” done! ” + r)
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97 // }
98

99 // Sequential code for reading the whole file.
100 // val istream = new FileInputStream(req.filename);
101 // val csv = new FastCsvReader(istream);
102 // while (csv.readNextRecord()) {
103 // if (!csv.commentLine && !csv.getStringField(0).equals(”Year”)) {
104 // put new PvWatts() [
105 // year = csv.getIntField(0, 0);
106 // month = csv.getIntField(1, 0);
107 // day = csv.getIntField(2, 0);
108 // //remove the blank space from the time string
109 // time = csv.getStringField(3).trim();
110 // //time = csv.getStringField(3);
111 // watts = csv.getIntField(4, 0);
112 // ]
113 // }
114 // }
115 // istream.close();
116 } catch (java.io.IOException ex) {
117 put new PvWattsException(req.filename, ex.message)
118 }
119 }
120

121 val endTime = System::currentTimeMillis();
122 println(”Reading time: ” + (endTime − startTime)/1000.0 + ” s.”);
123 }
124

125 foreach (CmdLineArg arg) {
126 println(”arg=” + arg.value)
127 if(!arg.value.contains(”−−”)) {
128 put new PvWattsRequest(arg.value);
129 }
130 }
131

132 foreach (PvWattsException ex) {
133 println(”Exception: ” + ex.message)
134 }
135

136

137 foreach (PvWatts pv) {
138 put new SumMonth(pv.year, pv.month)
139 }
140

141 foreach (SumMonth s) {
142 val stats = new Statistics();
143 for (record : get PvWatts(s.year, s.month)) {
144 stats += record.watts
145 }
146

147 //Print out the valid results.
148 if(s.year > 0){
149 println(” ” + s.year + ”/” + s.month + ”: ” + stats.mean);
150 }
151

152

153 }
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Listing D.2: The Output Result of JStar PVWATTS program.

1 [Full GC 1796706K−>2588K(4213760K), 0.0680930 secs]
2 arg=−−readers=8
3 arg=large1000X.csv
4 opening large1000X.csv with 8 reader tasks.
5 forking reader 0: 0 .. 24093633
6 forking reader 1: 24093633 .. 48187266
7 forking reader 2: 48187266 .. 72280899
8 forking reader 3: 72280899 .. 96374532
9 forking reader 4: 96374532 .. 120468165

10 forking reader 5: 120468165 .. 144561798
11 forking reader 6: 144561798 .. 168655431
12 forking reader 7: 168655431 .. 192749064
13 join reader 1
14 done! 1
15 join reader 2
16 done! 2
17 join reader 3
18 done! 3
19 join reader 4
20 done! 4
21 join reader 5
22 done! 5
23 join reader 6
24 done! 6
25 join reader 7
26 done! 7
27 1984/11: 264.081944444433
28 1996/4: 220.43472222222115
29 1992/12: 269.1868279569903
30 1993/6: 189.51944444444803
31 1992/7: 213.3749999999968
32 1987/10: 255.8306451612951
33 1987/5: 180.03091397849596
34 1992/3: 245.93413978494277
35 1982/2: 242.97321428571257
36 1999/9: 277.9527777777831
37 1999/1: 264.38440860215184
38 1995/8: 248.5900537634419
39 Execution time: 11.182 secs
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Case Study: Dijkstra’s Shortest

Path Algorithm

Listing E.1: Source Code of the JStar Dijkstra Program.

1 package jstar.examples.dijkstra
2

3 import java.util.Random;
4 import java.util.BitSet;
5 import java.io.File;
6 import java.io.PrintWriter;
7 import java.io.IOException;
8 import java.lang.System;
9

10 /∗∗
11 ∗ Number of tasks to use during generation of random edges.
12 ∗ Must be at least 2.
13 ∗/
14 val EDGE TASKS = 24;
15

16 /∗∗ Currently not used. ∗/
17 val RANDOM SEED = 16;
18

19 /∗∗ We get less parallelism as this increases. ∗/
20 val MAX PATH LENGTH = 10;
21

22 /∗∗
23 ∗ Dijkstra is a graph search algorithm that solves the single−source shortest path

problem for
24 ∗ a graph with nonnegative edge path costs, producing a shortest path tree.
25 ∗ (http://en.wikipedia.org/wiki/Dijkstra%27s algorithm)
26 ∗
27 ∗
28 ∗ Arguments: −−threads=1 −−benchmark=12 −−graph=1000000,1000000
29 ∗ where:
30 ∗ −−benchmark=<value>
31 ∗ set the number of repeated experiments.
32 ∗ −−threads=<value>
33 ∗ set the number of threads.
34 ∗ −−graph=VVV,EEE
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35 ∗ VVV is the number of vertices, and EEE is the number of EXTRA
36 ∗ random edges to be added to a random tree with VVV vertices.
37 ∗ So the total number of edges will be VVV+EEE.
38 ∗
39 ∗/
40 table CmdLineArg(int index, String value) orderby (CmdLineArgs);
41

42 /∗∗
43 ∗ Each one of these tuples creates endEdge − startEdge edges.
44 ∗ The first edges (numbered less than the number of vertices)
45 ∗ form a random tree with root vertex 0 connected to all the other vertices.
46 ∗
47 ∗ The higher edges are added between random vertices.
48 ∗
49 ∗ Each edge is generated with a length of between 1..maxLength.
50 ∗/
51 table GenerateGraph(int numVertices, int startEdge, int endEdge, int maxLength, int

seed)
52 orderby(GenerateGraph)
53 inv 1 < numVertices && 0 <= startEdge && startEdge <= endEdge && 0 <

maxLength;
54

55 table Vertex(int index, String name) orderby(Vertex);
56

57 table Edge(int from, int to, int value) orderby(Edge);
58

59 /∗∗ Add one of these tuples to print the graph to a ∗.dot file. ∗/
60 table PrintGraph(String fileName) orderby (PrintGraph);
61

62 /∗∗ The estimated shortest−path distance from the origin to the given vertex. ∗/
63 table Estimate(int vertex, int distance) orderby (Int, seq distance, Estimate);
64 put new Estimate(0, 0); //Set the origin.
65

66 /∗∗ The final shortest−path distance to each node. ∗/
67 table Done(int vertex −> int distance) orderby (Int, seq distance, Done)
68

69 order CmdLineArgs < GenerateGraph < { Vertex, Edge } < Int;
70 order GenerateGraph < PrintGraph;
71 order Estimate < Done;
72

73 /∗∗∗
74 ∗ Initialize the graph
75 ∗
76 ∗
77 ∗ +−−−−−+ 7 +−−−−−−+ 1 +−−−−−−−+
78 ∗ | S +−−−−>+ B +−−−−−−−−−−−−+−−−−−−−−−−−−>+ C |
79 ∗ +−−−−−+ +−−−−−−+ ˆ +−−+−−+−+
80 ∗ | ˆ | | | ˆ
81 ∗ | | | | | |
82 ∗ 2 | 3 | | 2 | 8 4 | | 5
83 ∗ | | | | | |
84 ∗ | | V | V |
85 ∗ | +−−+−−+−+ | +−−−+−−+−+
86 ∗ +−−−−−−−>+ A +−−−−−−−−−−−−+−−−−−−−−−−−>+ D |
87 ∗ +−−−−−−−+ 5 +−−−−−−−−+
88 ∗
89 ∗ The starting point is S, and the destination is D.
90 ∗
91 ∗∗/
92 /∗∗
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93 put new Vertex(0,”S”);
94 put new Vertex(1,”B”);
95 put new Vertex(2,”A”);
96 put new Vertex(3,”C”);
97 put new Vertex(4,”D”);
98

99 put new Edge(0,1,7);
100 put new Edge(0,2,2);
101 put new Edge(1,3,1);
102 put new Edge(1,2,2);
103 put new Edge(2,1,3);
104 put new Edge(2,3,8);
105 put new Edge(2,4,5);
106 put new Edge(3,4,4);
107 put new Edge(4,2,5);∗∗/
108

109 foreach (CmdLineArg arg) {
110 if (arg.value.matches(”−−graph=[0−9]+,[0−9]+”)) {
111 // val rand = new Random(RANDOM SEED);
112 val rand = new Random(); // no seed, so each run will be a different graph.
113 val seed = rand.nextInt;
114 val comma = arg.value.indexOf(”,”)
115 val vertices = Integer::parseInt(arg.value.substring(8, comma));
116 val extraEdges = Integer::parseInt(arg.value.substring(comma + 1));
117 val totalEdges = vertices + extraEdges;
118 for (task : 0 .. (EDGE TASKS − 1)) {
119 val startEdge = totalEdges ∗ task / EDGE TASKS;
120 val endEdge = totalEdges ∗ (task + 1) / EDGE TASKS;
121 put new GenerateGraph(vertices, startEdge, endEdge,

MAX PATH LENGTH, seed + task);
122 }
123 // Comment out the next line when benchmarking, so we do not print the graph.
124 // put new PrintGraph(arg.value.substring(2) + ”.dot”);
125 }
126 }
127

128 foreach (GenerateGraph graph){
129 val startTime = System::currentTimeMillis();
130 val rand = new Random(graph.seed);
131 if (graph.startEdge < graph.endEdge) {
132 for (edge : graph.startEdge .. (graph.endEdge − 1)) {
133 if (edge < graph.numVertices) {
134 //Generate the Vertex tuples
135 put new Vertex(edge,”S”+edge);
136 if (edge > 0) {
137 // These edges form a random tree that spans all vertices, with node

0 at the root.
138 val fromVertex = rand.nextInt(edge); // from 0 .. edge−1
139 val len = 1 + rand.nextInt(graph.maxLength);
140 put new Edge(fromVertex, edge, len);
141 }
142 } else {
143 val fromVertex = rand.nextInt(graph.numVertices);
144 val toVertex = rand.nextInt(graph.numVertices);
145 val len = 1 + rand.nextInt(graph.maxLength);
146 put new Edge(fromVertex, toVertex, len);
147 }
148 }
149 val endTime = System::currentTimeMillis();



146

150 println(”generated edges ” + graph.startEdge + ”..” + graph.endEdge + ” time: ” +
startTime + ” .. ” + endTime + ” = ” + (endTime − startTime));

151 }
152 }
153

154

155 foreach (PrintGraph req) {
156 // NOTE: we could print the edges in parallel if we had a better output handler.
157 // Instead, we use unsafe code to write a sequential loop and handle the IOException.
158 unsafe {
159 try {
160 val out = new PrintWriter(new File(req.fileName));
161 // Display Edge tuples in a DOT−compatible format.
162 out.write(”digraph DAG {\n”);
163 for (edge: get Edge()) {
164 val fromVertex = get uniq? Vertex(edge.from);
165 val toVertex = get uniq? Vertex(edge.to);
166 if((fromVertex != null) && (toVertex != null)){
167 out.write(” ” + fromVertex.name + ” −> ” + toVertex.name + ” [label=\””

+ edge.value + ”\”];\n”);
168 }
169 }
170 out.write(”}\n”);
171 out.close();
172 } catch (IOException ex) {
173 println(”ERROR printing graph: ” + ex)
174 }
175 }
176 }
177

178

179 /∗∗
180 ∗ We process the shortest−distance Dist tuples first.
181 ∗ (The JStar delta set does the priority queue stuff for us automatically).
182 ∗ For each Dist tuple, we look at all adjacent vertices and update their distances.
183 ∗/
184 foreach(Estimate dist){
185 if (get uniq? Done(dist.vertex, [distance < dist.distance]) == null) {
186 // this is the first Dist tuple for this vertex, so must be the smallest.
187 if (dist.vertex % 100000 == 0) {
188 // we print only about 10 of the results, so that output is not the bottleneck.
189 println(”shortest path to ” + dist.vertex + ” is ” + dist.distance);
190 }
191 put new Done(dist.vertex, dist.distance);
192 // process all adjacent nodes that are not already finished.
193 //for (edge : get Edge([from == dist.vertex])) {
194 //The from field is the first field, so it is set to be indexed key by default.
195 for (edge : get Edge(dist.vertex)) {
196 // Note: this if test is really just a minor optimisation to reduce the
197 // number of Dist tuples going through the delta set. It might be better
198 // to remove it (to avoid querying Done twice).
199 if (get uniq? Done(edge.to) == null) {
200 // println(” neighbour ” + edge.to + ” ... ” + edge.value)
201 put new Estimate(edge.to, dist.distance + edge.value)
202 }
203 }
204 }
205 }
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Listing E.2: Output of the JStar Dijkstra Program.

1 gamma DefaultCmdLineArgTable for CmdLineArg
2 gamma DefaultGenerateGraphTable for GenerateGraph
3 gamma DefaultVertexTable for Vertex
4 gamma ConcurrentHashMap
5 DEBUG: created EdgeHashTable(1000000) ConcurrentHashMap in 63.377298msecs.
6 gamma DefaultPrintGraphTable for PrintGraph
7 gamma DefaultEstimateTable for Estimate
8 gamma CHMDoneTable
9 delta ParallelDeltaNodeNamed for null 0

10 delta ParallelDeltaNodeSet for CmdLineArg(0, −−graph=1000000,1000000) 1
11 delta ParallelDeltaNodeInt Estimate 1
12 delta ParallelDeltaNodeSet for GenerateGraph(1000000, 0, 83333, 10, 476065950) 1
13 generated edges 0..83333 time: 1366690675749 .. 1366690675787 = 38
14 generated edges 1833333..1916666 time: 1366690675747 .. 1366690675793 = 46
15 generated edges 1250000..1333333 time: 1366690675748 .. 1366690675794 = 46
16 generated edges 166666..250000 time: 1366690675747 .. 1366690675795 = 48
17 generated edges 1750000..1833333 time: 1366690675749 .. 1366690675795 = 46
18 generated edges 1166666..1250000 time: 1366690675748 .. 1366690675796 = 48
19 generated edges 1000000..1083333 time: 1366690675749 .. 1366690675796 = 47
20 generated edges 333333..416666 time: 1366690675749 .. 1366690675797 = 48
21 generated edges 833333..916666 time: 1366690675747 .. 1366690675797 = 50
22 generated edges 250000..333333 time: 1366690675748 .. 1366690675798 = 50
23 generated edges 583333..666666 time: 1366690675749 .. 1366690675799 = 50
24 generated edges 500000..583333 time: 1366690675748 .. 1366690675799 = 51
25 generated edges 750000..833333 time: 1366690675748 .. 1366690675800 = 52
26 generated edges 666666..750000 time: 1366690675748 .. 1366690675800 = 52
27 generated edges 916666..1000000 time: 1366690675748 .. 1366690675801 = 53
28 generated edges 1916666..2000000 time: 1366690675787 .. 1366690675831 = 44
29 generated edges 1333333..1416666 time: 1366690675794 .. 1366690675838 = 44
30 generated edges 83333..166666 time: 1366690675793 .. 1366690675839 = 46
31 generated edges 1583333..1666666 time: 1366690675795 .. 1366690675839 = 44
32 generated edges 1083333..1166666 time: 1366690675797 .. 1366690675841 = 44
33 generated edges 1666666..1750000 time: 1366690675797 .. 1366690675841 = 44
34 generated edges 1416666..1500000 time: 1366690675796 .. 1366690675843 = 47
35 generated edges 416666..500000 time: 1366690675795 .. 1366690675843 = 48
36 generated edges 1500000..1583333 time: 1366690675796 .. 1366690675844 = 48
37 shortest path to 0 is 0
38 shortest path to 900000 is 38
39 shortest path to 100000 is 41
40 shortest path to 600000 is 43
41 shortest path to 400000 is 49
42 shortest path to 700000 is 51
43 shortest path to 300000 is 51
44 shortest path to 200000 is 51
45 shortest path to 500000 is 52
46 shortest path to 800000 is 53
47 Execution time: 0.409 secs
48 Heap
49 PSYoungGen total 2150592K, used 1287676K [0x0000000755560000, 0

x00000007ddd80000, 0x0000000800000000)
50 eden space 2064640K, 62% used [0x0000000755560000,0x00000007a3edf290,0

x00000007d35a0000)
51 from space 85952K, 0% used [0x00000007d35a0000,0x00000007d35a0000,0

x00000007d8990000)
52 to space 85952K, 0% used [0x00000007d8990000,0x00000007d8990000,0

x00000007ddd80000)
53 ParOldGen total 1376128K, used 229186K [0x0000000600000000, 0x0000000653fe0000, 0

x0000000755560000)
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54 object space 1376128K, 16% used [0x0000000600000000,0x000000060dfd08b8,0
x0000000653fe0000)

55 PSPermGen total 21248K, used 5466K [0x00000005fae00000, 0x00000005fc2c0000, 0
x0000000600000000)

56 object space 21248K, 25% used [0x00000005fae00000,0x00000005fb356970,0
x00000005fc2c0000)



Appendix F

Case Study: Median-Finding

Listing F.1: Source Code of the JStar Median Program.

1 /∗∗
2 ∗ This program finds the median of a sequence of N input values,
3 ∗ using an iterative parallel algorithm.
4 ∗
5 ∗ The input values are partitioned between T tasks.
6 ∗ (eg. task 0 gets the first N/T values, task 1 gets the next N/T, etc.)
7 ∗ In each iteration, the tasks are given the same pivot value,
8 ∗ and they all split their input values into two groups: those that
9 ∗ are less than the pivot and those that are greater or equal to the pivot.

10 ∗ They report the sizes of the two groups back to the central controller,
11 ∗ which discards the group that is smaller (globally), and starts the next
12 ∗ iteration on the remaining group.
13 ∗
14 ∗ To measure the speed of effective parallel program, it should be compiled with the

following options.
15 ∗ −noDelta : Data PartitionResult
16 ∗ −noGamma : Controller CmdLineArg InitRequest
17 ∗
18 ∗
19 ∗ Arguments: −−benchmark=12 −−tasks=2
20 ∗ where:
21 ∗ −−benchmark=<value>
22 ∗ set the number of repeated experiments.
23 ∗ −−tasks=<value>
24 ∗ set the number of parallel tasks.
25 ∗
26 ∗
27 ∗ TODO: this currently assumes the median value is distinct from
28 ∗ its neighbouring values (so partitioning makes progress).
29 ∗ To relax this assumption, each partition result probably
30 ∗ needs to return the min/max values?
31 ∗/
32 package jstar.examples.median;
33

34 import nz.ac.waikato.jstar.runtime.reduce.impure.Sum;
35 import java.util.Random;
36 import jstar.examples.median.BitOps;
37

38 /∗∗
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39 ∗ Total number of elements in the inital Data array.
40 ∗/
41 val SIZE = 100 ∗ 1000 ∗ 1000;
42 val RANGE = SIZE as double; // element values range from 0 .. RANGE.
43

44 table CmdLineArg(int index, String value) orderby (CmdLineArgs);
45

46 /∗∗ Request initialisation of a given segment of the Data array with random values. ∗/
47 table InitRequest(int task −> int startPos, int endPos, int seed, double range)
48 orderby (InitRequest);
49

50 /∗∗ This is the array that we are finding the median of. ∗/
51 table Data(int iter, int index −> double value)
52 orderby (Int, seq iter, Data, seq index);
53

54 /∗∗ Tells each partition task what pivot value to use. ∗/
55 table PartitionRequest(int iter, int task −> int startPos, int endPos, double pivot)
56 orderby (Int, seq iter, PartitionRequest);
57

58 /∗∗
59 ∗ The result of each partition task is the number of values
60 ∗ on each side of the partition.
61 ∗/
62 table PartitionResult(int iter, int task −> int startPos, int pivotPos, int endPos)
63 orderby (Int, seq iter, PartitionResult)
64 inv startPos <= pivotPos && pivotPos <= endPos
65

66 // Hmm. had to move Data from first to just before Controller, so could see final iteration
result.

67 // This required changing the +1/−1 in the code to control the ordering.
68 // But we should be able to do this in the orderby expression!
69 order CmdLineArgs < InitRequest < Int;
70 order PartitionRequest < PartitionResult < Data < Controller;
71

72 /∗∗
73 ∗ This is the global controller of the search.
74 ∗ The desired median is at position medianPos, while startPos..endPos is
75 ∗ the theoretical middle region of a sorted version of the array that
76 ∗ contains medianPos, and minVal..maxVal is the range of values in that region.
77 ∗/
78 table Controller(int iter, int startPos, int endPos, int medianPos, double minVal,

double maxVal)
79 orderby (Int, seq iter, Controller)
80 inv 0 <= iter
81 && startPos <= medianPos && medianPos < endPos
82 && minVal <= maxVal;
83

84

85 foreach (CmdLineArg arg) {
86 if (arg.value.startsWith(”−−tasks=”)) {
87 val tasks = Integer::parseInt(arg.value.substring(8));
88 put new Controller(1, 0, SIZE, SIZE / 2, 0, RANGE);
89

90 for (i : 0 .. (tasks − 1)) {
91 val lo = (SIZE as long) ∗ i / tasks;
92 val hi = (SIZE as long) ∗ (i + 1) / tasks;
93 put new InitRequest(i, lo as int, hi as int, i, RANGE as double);
94 put new PartitionRequest(1, i, lo as int, hi as int, (RANGE as double)/ 2);
95 }
96 }
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97 }
98

99 /∗∗ Random number generation is slow, so we do it in parallel. ∗/
100 foreach (InitRequest req) {
101 val rand = new Random(req.seed);
102 for (i : req.startPos .. (req.endPos − 1)) {
103 val value = rand.nextDouble ∗ req.range;
104 //To increase the speed, the message is not printed out.
105 // println(”data[” + i + ”] = ” + value)
106 put new Data(0, i, value)
107 }
108 }
109

110 //put new Data(0, 0, 10);
111 //put new Data(0, 1, 7);
112 //put new Data(0, 2, 22);
113 //put new Data(0, 3, 2);
114 //put new Data(0, 4, 33);
115 //put new Data(0, 5, 3);
116 //put new Data(0, 6, 43);
117 //put new Data(0, 7, 8);
118 //put new Data(0, 8, 1);
119 //put new Data(0, 9, 13);
120

121 foreach (PartitionRequest pr) {
122 if (pr.startPos < pr.endPos) {
123 val lowCount = new Sum();
124 val highCount = new Sum();
125 // NOTE: we are simulating a scan here, by reading the Sum values in the loop

body.
126 for (index : pr.startPos .. pr.endPos − 1) {
127 val data = get uniq Data(pr.iter − 1, index);
128 if (data.value < pr.pivot) {
129 put new Data(pr.iter, pr.startPos + lowCount.sum, data.value)
130 lowCount += 1;
131 } else {
132 highCount += 1; // predecrement because endPos is exclusive
133 put new Data(pr.iter, pr.endPos − highCount.sum, data.value)
134 }
135 }
136 if (pr.endPos − pr.startPos != lowCount.sum + highCount.sum) {
137 println(”ERROR: task ” + pr.task + ” has low ” + lowCount.sum + ” high ”

+ highCount.sum)
138 }
139 val middle = pr.startPos + lowCount.sum;
140 //println(” done ” + pr.task + ”\t” + pr.startPos + ”\t” + middle + ”\t” + pr.

endPos)
141 put new PartitionResult(pr.iter, pr.task, pr.startPos, middle, pr.endPos)
142 } else {
143 //println(” TASK ” + pr.task + ” has no data so stops”)
144 }
145 }
146

147 foreach (Controller control) {
148 val size = control.endPos − control.startPos;
149 if (size <= 1) {
150 for (res : get PartitionResult(control.iter)) {
151 val result = get uniq Data(control.iter, res.startPos);
152 println(”MEDIAN Data[” + res.startPos + ”] = ” + result.value)
153 }
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154 } else {
155 val lowSum = new Sum();
156 val highSum = new Sum();
157 for (res : get PartitionResult(control.iter)) {
158 lowSum += res.pivotPos − res.startPos
159 highSum += res.endPos − res.pivotPos
160 }
161 val pivotValue = (control.minVal + control.maxVal) / 2;
162 val pivotPos = control.startPos + lowSum.sum;
163 if (pivotPos > control.medianPos) {
164 // work on the left (lower) partition.
165 val newPivot = (control.minVal + pivotValue) / 2;
166 // println(” go left with pivot ” + newPivot)
167 for (res : get PartitionResult(control.iter)) {
168 put new PartitionRequest(control.iter + 1, res.task, res.startPos, res.

pivotPos, newPivot)
169 }
170 put control.copy [iter = control.iter + 1; endPos = pivotPos; maxVal =

pivotValue];
171 } else {
172 // work on the right (higher) partition.
173 val newPivot = (pivotValue + control.maxVal) / 2;
174 // println(” go right with pivot ” + newPivot)
175 for (res : get PartitionResult(control.iter)) {
176 put new PartitionRequest(control.iter + 1, res.task, res.pivotPos, res.

endPos, newPivot)
177 }
178 put control.copy [iter = control.iter + 1; startPos = pivotPos; minVal =

pivotValue];
179 }
180 }
181 }

Listing F.2: Output of the JStar Median Program.

1 CHMDataTable
2 [Full GC (System) [PSYoungGen: 800K−>0K(22367808K)] [ParOldGen: 3127076K

−>1564576K(4865024K)] 3127876K−>1564576K(27232832K) [PSPermGen: 5131K
−>5131K(21248K)], 0.1313500 secs] [Times: user=1.24 sys=0.00, real=0.13 secs]

3 MEDIAN Data[45416813] = 5.000602297827475E7
4 Execution time: 0.707 secs
5 Heap
6 PSYoungGen total 22367808K, used 20578230K [0x00002afce6d70000, 0

x00002b023c230000, 0x00002b023c2c0000)
7 eden space 22366592K, 92% used [0x00002afce6d70000,0x00002b01ced5d898,0

x00002b023bfd0000)
8 from space 1216K, 0% used [0x00002b023bfd0000,0x00002b023bfd0000,0

x00002b023c100000)
9 to space 1216K, 0% used [0x00002b023c100000,0x00002b023c100000,0

x00002b023c230000)
10 ParOldGen total 4865024K, used 1564576K [0x00002af23c2c0000, 0x00002af3651c0000, 0

x00002afce6d70000)
11 object space 4865024K, 32% used [0x00002af23c2c0000,0x00002af29baa8178,0

x00002af3651c0000)
12 PSPermGen total 21248K, used 5139K [0x00002af2370c0000, 0x00002af238580000, 0

x00002af23c2c0000)
13 object space 21248K, 24% used [0x00002af2370c0000,0x00002af2375c4c90,0

x00002af238580000)



Appendix G

Case Study: Matrix

Multiplication

Listing G.1: Source Code of the JStar MatrixMult Program.

1 package jstar.examples.matrixmult2
2

3 import nz.ac.waikato.jstar.runtime.reduce.impure.∗
4

5 val SIZE = 1000; // We use SIZE x SIZE matrices
6

7 /∗∗ Defines the shape of each matrix. ∗/
8 table MatrixHeader(int identifier −> int height, int width)
9 orderby (Int, seq identifier, MatrixHeader)

10 // key (identifier)
11 inv identifier >= 0 && width >= 0 && height >= 0;
12

13 /∗∗ Defines the contents of each matrix. ∗/
14 table Matrix(int mat, int row, int col −> int value)
15 orderby (Int, seq mat, Matrix)
16 // key (mat, row, col)
17 inv 0 <= row && 0 <= col;
18

19 /∗∗ Request that resultmat := mat1 ∗ mat2 be calculated. ∗/
20 table MatMultRequest(int resultmat −> int mat1, int mat2)
21 orderby (Int, seq resultmat, MatMultRequest)
22 inv mat1 < resultmat && mat2 < resultmat;
23

24 /∗∗ Request that row1 of the result matrix be calculated. ∗/
25 table MatMultRow(int resultmat, int mat1, int mat2, int row1 −> int numCols1, int

numCols2)
26 orderby (Int, seq resultmat, MatMultRow)
27 inv resultmat != mat1 && resultmat != mat2;
28

29 /∗∗ Request that the given matrix be printed. ∗/
30 table PrintMatrix(int mat)
31 orderby(Int, seq mat, PrintMatrixRequest);
32

33 order MatMultRequest < MatMultRow < MatrixHeader < Matrix <

PrintMatrixRequest;
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34

35

36 // Create some sample matrices.
37 put new MatrixHeader(0, SIZE, SIZE);
38 foreach(MatrixHeader m | m.identifier == 0) {
39 for(x : 0..(m.height − 1)) {
40 for(y : 0..(m.width − 1)) {
41 val value = if (x + y + 1 == (m.width + m.height) / 2) 1 else 0;
42 put new Matrix(m.identifier, x, y, value);
43 }
44 }
45 }
46

47 put new MatrixHeader(1, SIZE, SIZE);
48 foreach(MatrixHeader m | m.identifier == 1) {
49 for (x : 0..(m.height − 1)) {
50 for (y : 0..(m.width − 1)) {
51 put new Matrix(m.identifier, x, y, x + y);
52 }
53 }
54 }
55

56 put new MatMultRequest(2, 0, 1);
57

58 //put new PrintMatrix(0);
59 //put new PrintMatrix(1);
60 //put new PrintMatrix(2);
61

62 foreach(PrintMatrix p) {
63 //println(”Finish: ” + System::currentTimeMillis())
64 val mat = get uniq? MatrixHeader(p.mat);
65 if(mat != null) {
66 println(”Matrix ” + mat.identifier + ”:”);
67 //first pass − identify the largest (characterwise) element
68 val stats = new Statistics();
69 for(row : 0..(mat.height − 1)) {
70 for(col : 0..(mat.width − 1)) {
71 stats += (get uniq Matrix(mat.identifier, row, col)).value.toString().length;
72 }
73 }
74 val padTo = stats.maximum.intValue();
75 for(row : 0..(mat.height − 1)) {
76 val line = new StringBuilder();
77 for(col : 0..(mat.width − 1)) {
78 val matEntry = get uniq Matrix(mat.identifier, row, col);
79 //Java doesn’t support ∗ in format strings for some reason
80 // So we need to interpolate it into the format string manually?
81 // It’s really silly.
82 line.append(String::format(”%s%”+padTo+”d”, ’ ’, matEntry.value));
83 }
84 line.append(”]”); //end−of−row marker
85 //insert start−of−row marker and remove
86 // extraneous delimiter at start
87 line.replace(0, 1, ”[”);
88 println(line);
89 }
90 }
91 }
92

93 /∗
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94 ∗ Matrix multiplication 101
95 ∗ [a b c] [g h]
96 ∗ [d e f] ∗ [i j]
97 ∗ [k l]
98 ∗
99 ∗ [a∗g+b∗i+c∗k a∗h+b∗j+c∗l]

100 ∗ [d∗g+e∗i+f∗k d∗h+e∗j+f∗l]
101 ∗
102 ∗ x <= matrix 1 row } these are the row/column
103 ∗ y <= matrix 2 column } of the cell in the result
104 ∗ z <= m1col/m2row
105 ∗
106 ∗ Then we need the products of m1[x,z]∗m2[z,y]
107 ∗/
108

109 foreach (MatMultRequest r) {
110 //println(”Start: ” + System::currentTimeMillis())
111 val mat1 = get uniq? MatrixHeader(r.mat1);
112 val mat2 = get uniq? MatrixHeader(r.mat2);
113 if(mat1 == null || mat2 == null || mat1.width != mat2.height) {
114 println(”ERROR: cannot multiply ” + mat1 + ” and ” + mat2);
115 } else {
116 put new MatrixHeader(r.resultmat, mat1.height, mat2.width);
117 for(row : 0 .. (mat1.height − 1)) {
118 put new MatMultRow(r.resultmat, r.mat1, r.mat2, row, mat1.width,

mat2.width);
119 }
120 }
121 }
122

123 /∗∗ Produce one row of the output matrix. ∗/
124 foreach (MatMultRow req) {
125 for (col2 : 0 .. (req.numCols2 − 1)) {
126 val sum = new Sum();
127 for (j : 0 .. (req.numCols1 − 1)) {
128 // println(” m(” + req.row1 + ”,” + col2 + ”) += m1(” + req.

row1 + ”,” + j + ”) ∗ m2(” + j + ”,” + col2 + ”)”);
129 val v1 = get uniq Matrix(req.mat1, req.row1, j);
130 val v2 = get uniq Matrix(req.mat2, j, col2);
131 sum += v1.value ∗ v2.value;
132 }
133 put new Matrix(req.resultmat, req.row1, col2, sum.sum);
134 }
135 // print(” ” + req.row1) // just to show progress
136 }

Listing G.2: Ouptut of the JStar MatrixMult Program.

1 Gamma table [] for MatrixHeader
2 Gamma table Matrix3D[3][1000][1000] for Matrix
3 Gamma table [] for MatMultRequest
4 Gamma table [] for MatMultRow
5 Gamma table [] for PrintMatrix
6 [GC
7 Desired survivor size 5177344 bytes, new threshold 1 (max 15)
8 [PSYoungGen: 436405K−>768K(457216K)] 452396K−>28022K(1833728K), 0.0020960

secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
9 [Full GC (System) [PSYoungGen: 768K−>0K(457216K)] [ParOldGen: 27254K−>14382K

(1376512K)] 28022K−>14382K(1833728K) [PSPermGen: 5394K−>5394K(21248K)],
0.0124840 secs] [Times: user=0.04 sys=0.00, real=0.01 secs]
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10 [GC
11 Desired survivor size 4980736 bytes, new threshold 1 (max 15)
12 [PSYoungGen: 456448K−>544K(446336K)] 470830K−>15014K(1822848K), 0.0012100

secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
13 ......
14 [GC
15 Desired survivor size 655360 bytes, new threshold 1 (max 15)
16 [PSYoungGen: 381696K−>128K(373440K)] 397726K−>16174K(1749952K), 0.0012240

secs] [Times: user=0.01 sys=0.00, real=0.01 secs]
17 Execution time: 2.901 secs
18 Bottom right entry = Matrix(2, 999, 999, 999)
19 Heap
20 PSYoungGen total 425024K, used 98278K [0x0000000755560000, 0x0000000776ab0000, 0

x0000000800000000)
21 eden space 424896K, 23% used [0x0000000755560000,0x000000075b541818,0

x000000076f450000)
22 from space 128K, 75% used [0x0000000776a90000,0x0000000776aa8000,0

x0000000776ab0000)
23 to space 896K, 0% used [0x00000007768f0000,0x00000007768f0000,0x00000007769d0000)
24 ParOldGen total 1376512K, used 15998K [0x0000000600000000, 0x0000000654040000, 0

x0000000755560000)
25 object space 1376512K, 1% used [0x0000000600000000,0x0000000600f9fa40,0

x0000000654040000)
26 PSPermGen total 21248K, used 5402K [0x00000005fae00000, 0x00000005fc2c0000, 0

x0000000600000000)
27 object space 21248K, 25% used [0x00000005fae00000,0x00000005fb346870,0

x00000005fc2c0000)
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