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We study the time development of the population of X-type critical points in a two-dimensional

magnetohydrodynamic model during the early stages of freely decaying turbulence. At sufficiently

high magnetic Reynolds number Rem, we find that the number of neutral points increases as Re3=2
m ,

while the rates of reconnection at the most active sites decrease. The distribution of rates remains

approximately exponential. We focus in particular on delicate issues of accuracy, which arise in these

numerical experiments, in that the proliferation of X-points is also a feature of under-resolved

simulations. The “splitting” of neutral points at high Reynolds number appears to be a fundamental

feature of the cascade that has important implications for understanding the relationship

between reconnection and turbulence, an issue of considerable importance for the Magnetospheric

Multiscale and Solar Probe missions as well as observation of reconnection in the solar wind.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802985]

I. INTRODUCTION

Magnetic reconnection in two-dimensional (2D) magne-

tohydrodynamics (MHD) is mediated by activity near mag-

netic X-type neutral points, and plays an important role in

the turbulent cascade.1–3 In three dimensions, reconnection

is still more complex4 and becomes essential, for example,

in the dynamo process.5 Owing to this complexity, and the

associated demands on computational resources at high

Reynolds numbers, the influence of turbulence on the recon-

nection process has mainly been investigated in the 2D case.

Furthermore, the 2D case remains of interest when 3D

turbulence is anisotropic and becomes “quasi-two

dimensional.”6–8 One of the distinctive turbulence effects in

reconnection is the appearance of multiple X-points, which

are potentially associated with both particle energization9

and rapid reconnection10 Recently, there has been an

increase in activity in this area, including study of “plasmoid

instability,”11–14 in simulation of directly driven turbulent

reconnection activity,15 and analysis of the statistics of

reconnection rate in snapshots of 2D turbulence.16–18 These

relationships have prompted various unified perspectives on

turbulence and reconnection.1–3,18–20 Here, we continue this

inquiry by further examining the emergence and role of sec-

ondary islands in 2D MHD turbulence. We focus on issues

related to the number of islands and magnetic X-points in

well-resolved spectral method simulations, as the Reynolds

numbers are increased. We find that the number of magnetic

islands generally increases in time when initial conditions

are band-limited, while moving towards higher Reynolds

numbers using a fixed class of initial data generally leads to

larger numbers of X-points and secondary islands.

At a fundamental level, reconnection involves change of

magnetic connectivity and topology, along with release of

magnetic energy into heat, flows and in a plasma, suprather-

mal particles.21,22 In 2D, the topology is that of flux tubes or

“islands” (sometimes also called “bubbles” or “plasmoids”)

and the lanes between them, and so the level of complexity

is related to the number of X- or O-type neutral points in the

in-plane magnetic field. In turbulence, flux tubes and vortices

constantly interact, producing stretching, merging, and a cas-

cade across scale. In such an environment, with constantly

changing connectivity and topology, it is not surprising that

the size and number of islands (and X-points) will also

change. We quantify this effect here through identification of

X-points in evolving 2D MHD turbulence, and characteriza-

tion of the statistics of the X-type critical points.

We remark briefly that it remains desirable but very dif-

ficult to carry out this type of study in three dimensions.

Unfortunately, computational limitations are prohibitive for

the required high resolution, high Reynolds number simula-

tions. Similarly, the required high resolution at MHD scales

needed to see the effects we describe, appear to remain

beyond what is attainable using fully kinetic plasma simula-

tion (see, however, Refs. 14, 23, and 24). These extensions

may be especially important with regard to applications in

space, laboratory, and astrophysical settings. However, in

order to focus on properties of reconnection and turbulence

occurring in a “large” system possessing a wide range of

dynamically involved spatial scales, we choose to avoid

these additional demanding extensions. We focus here on the

emergence of broad band cascade, intermittency, and dy-

namical complexity. These effects, as well as plasmoid insta-

bility, emerge when Reynolds numbers are large. To attain

these conditions and assure adequate numerical accuracy, we

use a 2D MHD model throughout the present study.

II. NUMERICAL SIMULATIONS AND METHOD

Our computations solve the 2D incompressible MHD

equations expressed in terms of the vector potential a(x, y, t)
and vorticity x ¼ ðr � vÞ � ẑ,
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@tx ¼ �r � ðxv� jbÞ þ �r2x;

@ta ¼ �r � ðavÞ þ gr2a;
(1)

involving the magnetic field b ¼ ra� ẑ, electric current

density j ¼ �r2a, velocity v, and viscous and resistive dis-

sipation coefficients � and g.

Equations (1) are solved numerically in a 2p-periodic

square box using a Fourier spectral method with dealiasing

via a 2
ffiffiffi
2
p

=3-rule and a phase-shift technique.25,26 Thus, for

a resolution of N � N, the maximum retained wavenumber

(in each direction) is kmax ¼ 2
ffiffiffi
2
p

=3. Time is advanced using

a second-order Runge–Kutta method. The initial (t¼ 0) spec-

tra of v and b are chosen proportional to 1þ k
k0

� �8=3
� ��1

,

within a band of k, and the phases of the Fourier coefficients

are assigned using Gaussian random numbers; k ¼ jkj is

the magnitude of the Fourier wavevector. The initial kinetic

and magnetic energies are equal, Ev ¼ hjvj2i=2 ¼ 0:5, Eb

¼ hjbj2i=2 ¼ 0:5. The cross helicity Hc ¼ hv � bi is small

initially and remains so during the runs. Angle brackets h� � �i
denote a volume average over the box.

Since � ¼ g herein, the dissipation wavenumber (recip-

rocal of the Kolmogorov scale kd)29 is defined as

kdissðtÞ ¼
1

kd

¼ �

�3

� �1=4

� hx
2 þ j2iffiffiffi
�
p

1=4

; (2)

where h� � �i denotes spatial averaging and � is the average

rate of energy dissipation. The ratio rðtÞ � kmax=kdissðtÞ
� kmaxkd can be interpreted as a measure of adequate resolu-

tion of the dissipation scale, with larger values indicating

better resolution.

Various simulations were performed for a range of reso-

lutions, k0 values, and initially excited k-bands. Here we

report on three series of runs (see Tables I, II, and III).

When the turbulence is fully developed, coherent struc-

tures appear. They can be identified as magnetic islands that

have different size and energy. In the regions between

islands the perpendicular (out-of-plane) component of the

current density j may become very high. This is related to

the intermittent nature of the magnetic field and can be inter-

preted as a consequence of fast, local relaxation processes.27

The (out-of-plane component of the) magnetic potential

a shows a collection of magnetic islands having a wide

distribution of sizes. In three dimensions these would corre-

spond to flux tubes. For the large islands, the sign of a in a

closed field-line region gives the sense of rotation of the

magnetic vortex. These coherent structures interact nonli-

nearly, merge, stretch, attract, and repulse each other. In fact,

the dynamics of the magnetic field in 2D MHD turbulence

can be thought of as consisting largely of the interactions

among these islands. Reconnection is a major element of this

interaction.

III. RECONNECTION AND CRITICAL POINTS IN 2D
MHD TURBULENCE

To understand the magnetic reconnection in the 2D tur-

bulent system, we need to examine the topography of the

magnetic potential aðx; yÞ in detail. In particular, we need to

identify the neutral points—points where ra ¼ 0—and their

nature. A useful tool in this regard is the Hessian matrix of a,

defined as

Ha
ijðxÞ ¼

@2a

@xi@xj
: (3)

At each neutral point, we calculate the eigenvalues of Ha
ijðxÞ.

If both eigenvalues are positive (negative), the point is a

local minimum (maximum) of a, with both cases generically

referred to as O-points. If the eigenvalues are of mixed sign,

it is a saddle point, also termed an X-point.

Because of the complex topology of turbulence, critical

points can be very close to each other. Moreover, based on a

spectral representation, they are usually not located on the

vertices of a chosen computational grid, and so we use a

second-order interpolation algorithm to determine their posi-

tions. However, the presence of energy at the smallest scales

affects the precision of the interpolation technique, produc-

ing false critical points.

To avoid this problem, we interpolate all analyzed real-

space fields onto a 32 7682 grid. This is achieved using zero-

TABLE I. Parameters for simulation set 1, which all have � ¼ l ¼ 1=2000.

The initially excited Fourier modes have 5 � jkj � 30 with k0 ¼ 10. kdiss

means the maximum value of kdissðtÞ and tpeak is the time at which it occurs.

Runs 1–3 are definitely under-resolved.

Run Grid 1=�; 1=g kmax kdiss

kmax

kdiss
X-points

A1 5122 2000 241 250 0.96 1210

A2 10242 2000 482 251 1.9 601

A3 15362 2000 724 251 2.9 571

A4 20482 2000 965 251 3.9 567

A5 40962 2000 1930 251 7.7 567

TABLE II. Parameters for the second set of simulations with k0 ¼ 15 and

initial k-band [8, 40].

Run Grid 1=�; 1=g tpeak

kmax

kdiss X-points

Run 1 20482 2222 0.14 3.1 963

Run 2 40962 6667 0.20 3.0 1279

Run 3 81922 18182 0.30 3.0 2971

Run 4 163842 45455 0.35 3.1 7945

TABLE III. Parameters for the third set of simulations with k0 ¼ 10 and ini-

tial k-band [5, 20].

Run Grid 1=�; 1=g tpeak

kmax

kdiss X-points

Run 5 20482 2857 0.38 3.2 373

Run 6 40962 8333 0.48 3.1 709

Run 6a 81922 8333 0.48 6.1 686

Run 7 81922 20 000 0.54 3.3 1487

Run 7a 16 3842 20 000 0.54 6.6 1435

Run 8 16 3842 50 000 0.80 3.4 5649
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padding in an expanded Fourier space as we now describe in

more detail. First, the Fourier transform of a(x, y) is com-

puted, yielding the Fourier coefficients âðkx; kyÞ. These are

copied into the bigger 32 7682 array in such a way that the

expanded array has identical Fourier amplitudes at wavevec-

tors that were present in the lower resolution representation.

The remaining modes are set to zero, i.e., those with

kj � N=2, where N/2 is the maximum wavevector compo-

nent of the original array (Nyquist frequency). Following

this zero-padding, we inverse Fourier transform to obtain

a(x, y) on a higher resolution spatial grid. In this way we can

generate a function that has 32 768� 32 768 points from the

original N � N points. It coincides with the original function

on the original grid points. Between these, on the new finer

grid, it represents a trigonometric interpolation of the func-

tion. Although this process can require substantial computer

memory, it gives results with the following desirable proper-

ties: (1) a function extrapolated onto a higher resolution grid

with an exact Fourier expansion, (2) cases in which critical

points are in the same Cartesian cell are avoided, and (3) the

interpolation becomes much more accurate, even if the order

of the interpolation is the same (this is because the field is

much smoother at the new grid size).

IV. A STUDY OF THE QUALITY OF RESOLUTION

The accuracy of interpolation is not the only factor that

impacts the quality of the results when studying critical

points. Spatial resolution of the numerical method is of even

greater importance in computing the dynamics from which

the coherent structures’ critical points emerge. To study this,

we first consider a series of runs (Table I) in which the initial

physical parameters—including the Reynolds numbers—are

fixed, and the numerical resolution is varied. For more

details of these runs, see Refs. 28.

Energy spectra for the runs listed in Table I, are dis-

played in Fig. 1. Clearly all the spectra agree well. Indeed,

although the spectra cut off at different wavenumbers

(because of the different run resolutions), the curves nearly

overlay each other over the full range of overlapping k, with

only small discrepancies in the lower resolution runs near

their maximum retained wavenumber.

In Fig. 2 we show the number of X-points found as a

function of time for all runs in Table I. We observe that the

under-resolved runs, e.g., the 5122 run, generate many more

X-points than the well-resolved runs. However, the number

of X-points converges as the resolution increases. As

reported in Ref. 28, it is required to have

kmax

kdiss

� kmaxkd > 3; (4)

to obtain an accurate number of X-points [see Eq. (2)].

V. RECONNECTION AT HIGH REYNOLDS NUMBER

To perform the statistical analysis of X-point features,

we consider the state of each system at the time (tpeak) when

the mean-square current density hj2i reaches its peak value.

At this time the peak of small-scale turbulent activity is

achieved. For orientation, Fig. 3 displays the familiar omni-

directional power spectra of the magnetic field EbðkÞ at those

FIG. 1. Energy spectra at the time of maximum hj2i, tpeak, for all runs in sim-

ulation set 1 in Table I (fixed �, varying resolution). A k�5=3 power-law (dot-

ted) is shown for comparison.

FIG. 2. Number of X-points found as a function of time for all runs in Table I.

FIG. 3. Magnetic energy spectra at t ¼ tpeak for Table II runs (top) and

Table III runs (bottom).

042307-3 Wan et al. Phys. Plasmas 20, 042307 (2013)

Downloaded 09 Jun 2013 to 130.217.128.202. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



times, for some simulations listed in Tables II and III. An in-

ertial range is usually evident.

Using the procedure of Sec. III, we determined the

X-point sites for all runs in Tables II and III (at t ¼ tpeak).

The number of potential reconnection sites is listed in these

tables. Note that each of these tables describes a sequence of

runs having increasing Reynolds number, for a fixed set of

initial conditions. Every run in these two sequences satisfies

the empirical accuracy requirement kmax > 3kdiss on the dis-

sipation wavenumber kdiss and the maximum resolved wave-

number kmax that is discussed above. With this confidence in

the accuracy established, we may then compare the number

of X-points found for a particular run (see Tables II and III),

with the magnetic energy spectrum plotted in Fig. 3. It is

apparent that there are many more X-points found for the

runs with larger Reynolds number, especially for two

16 3842 runs. With their energy spectrum almost the same at

lower wavenumbers, and all runs fully developed, the

observed increase of X-points should be associated with the

much smaller scales present in the higher Reynolds number,

higher resolution runs. These smaller scales are not dynami-

cally accessible in the lower Reynolds number runs.

Having obtained the X-point sites, we may then com-

pute the reconnection rates as (minus) the electric field at the

X-point, or equivalently the rate of change of the magnetic

flux in the strong field regions adjoining the X-point,

@a

@t
¼ ðgjÞX ¼ �EX: (5)

Here EX is an abbreviation for the electric field measured at

the (X-point) saddle point.

Figure 4 shows the probability density functions (PDFs)

of the magnetic reconnection rates computed from Table II

runs. They are all quite broad and peaked around the zero

value. The lower panel shows the PDFs of the absolute val-

ues of these reconnection rates. Similar results are obtained

for the Table III runs (not shown).

It is easy to observe that generally the value of the

reconnection rate becomes smaller for larger Reynolds num-

ber simulations. To better understand their statistics, we also

plot the PDFs of the magnetic reconnection rates normalized

by their corresponding rms values, designated as r (Fig. 5).

We observe that the normalized PDFs collapse to each other,

and that the tails generally extend further for larger Reynolds

numbers. The same behavior is also observed in the normal-

ized PDFs of the absolute values of reconnection rate, shown

in the lower panel. It is evident that the distribution of recon-

nection rates behaves as PðEXÞ � e�jEX j=r to a reasonable

degree of accuracy over the accessible range of reconnection

rates.

The distribution of reconnection rates can be understood

as follows. We know that at an X-point the reconnection rate

is EX ¼ gJ, and that the total (magnetic) dissipation hgJ2i is

approximately independent of Reynolds number for large

Reynolds number turbulence.30 Thus, hE2
Xi ¼ hg2J2i � g �

1=Rem will decrease as g decreases. Note the bracket in hE2
Xi

is an average on the X-points, while the second bracket

hg2J2i is a global average in space. The idea is that the

dissipation at X-points scales like the global dissipation. In

this simple analysis, the rms reconnection rate would scale

as �Re�1=2
m . To empirically quantify this, we plot in Fig. 6

the rms value of the magnetic reconnection rates r ¼ EX
rms as

FIG. 4. PDFs of the magnetic reconnection rates (top) and their absolute

values (bottom) from Table I runs at the time of maximum hj2i.

FIG. 5. PDFs of the magnetic reconnection rates (top) and their absolute val-

ues (bottom), each normalized by their rms values r ¼ EX
rms. Data are from

Tables II and III runs at the time of maximum hj2i.
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a function of Rem. The magnetic Reynolds numbers are cal-

culated with the correlation length Lb of the magnetic field,

defined as

Lb ¼
2

b2
rms

ð
EbðkÞ

k
dk; (6)

where brms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2

x þ b2
yi

q
is the rms magnetic field strength.

For both sets of runs, we observe some range with scaling

between EX
rms � Re�1=3

m and EX
rms � Re�1=2

m , except for the

two largest 16 3842 runs.

As our results show, the number of X-points, and there-

fore potential reconnection sites, increases dramatically with

Reynolds number. To make this more quantitative, we study

the density of X-points qX, defined as the (average) number

of X-points per square box of size La � La,31,32 where La is

the correlation length of the magnetic potential a, calculated

using an equation similar to Eq. (6). Figure 7 plots qX as a

function of magnetic Reynolds number for Tables II and III

runs, which differ in their initial data. Once again we employ

results from the time of peak hj2i. It is evident that the spatial

density of reconnection sites increases with Reynolds num-

ber in a very similar way for the two families of runs.

To eliminate the effect of the initial field in this analysis,

we calculate the increase in the density of X-points, defined

as qXðtpeakÞ � qXðt ¼ 0Þ, shown in the right panel of Fig. 7.

This quantity is due entirely to the development of the cas-

cade and is expected to be most relevant when the initial

populated k-space is of relatively narrow bandwidth in wave-

number. As the figure shows, the increase in density of

X-points follows an almost perfect Re3=2
m scaling. This may

also be interpreted as the increase in density of dynamically

produced secondary islands or “plasmoids.” A simple line of

reasoning serves to account for this scaling: As discussed

above, the emergence of new X-points and secondary islands

is connected with the development of the nonlinear cascade,

as the system approaches a fully developed state. During this

development, the cascade eventually extends to and declines

sharply beyond the Kolmogorov dissipation wavenumber

kdiss ¼ 1=kd. We argue that the increase in number of

X-points should scale as the volume of wavevector space

that becomes populated by the cascade, which is �k2
diss � k2

0,

where k0 is some measure of the bandwidth of the initial

data. (Note that k2
0 is a measure of number of initial islands.)

At high Reynolds number, the first contribution greatly

exceeds the second. Recalling, for example, from Eq. (2),

that kdiss � Re3=4
m , one finds that the expected increase in the

number of X-points �k2
diss � Re3=2

m , which agrees very well

with the scaling seen in Fig. 7.

VI. TIME EVOLUTION OF MAGNETIC RECONNECTION

In this section, we will discuss the time-dependent sta-

tistics of the number of X-points and of the rates of magnetic

reconnection.

In Fig. 8, we show the number of X-points found as a

function of time for Runs 6 and 7. We observe that the num-

ber of X-points increases for both runs. The accuracy of the

increases is confirmed by Runs 6a and 7a, which have initial

fields and physical parameters that are exactly the same as

Runs 6 and 7, but have their resolutions doubled, respec-

tively. The results from Runs 6 and 6a, and Runs 7 and 7a

are found to be nearly identical, which confirms that the

increasing of the number of X-points seen in comparing

Runs 6 and 7 is of physical origin, and is not caused by inad-

equate spatial resolution.

We also observe that the number of X-points is larger

(and increases faster) for Run 7 than Run 6, which further

demonstrates that Reynolds number plays a role in the

increasing of the number of X-points, as discussed in Sec. V.

An additional point of emphasis is that there remains a

slight (3% or 4%) decrease in number of X-points in going

FIG. 6. RMS value of the magnetic reconnection rates as a function of the

magnetic Reynolds number.

FIG. 7. Left: Density of X-points as a function of the magnetic Reynolds

number. Right: Increased density of X-points as a function of the magnetic

Reynolds number.

FIG. 8. Number of X-points found as a function of time for four of the runs

in Table III.
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from Runs 6 to 6a, and in going from Runs 7 to 7a. While

this decrease is small, it is not completely negligible. The

suggestion can be made that the resolution of these runs,

even at kmaxkd > 3, may not be quite as good in attaining

convergence as it was at lower Reynolds numbers. It is possi-

ble that at higher Rem even greater resolution relative to the

Kolmogorov scale will be required.

To further demonstrate the role of Reynolds number, in

Fig. 9 we display the energy spectrum at four different times

for the highest Reynolds number Run 8. In the same figure,

we also plot the number of X-points found as a function of

time from the same run. We can see that in this run, as the

spectrum fills out by transfer of greater amounts of energy to

higher wavenumber, one sees a concomitant increase in the

number of X-points, from less than 300 to more than 5000.

Another feature of interest is the dependence of EX on

the local geometry of the diffusion region near each X-point.

This is related to the eigenvalues of the Hessian matrix,16,17

kmax ¼
@2a

@s2
; kmin ¼

@2a

@l2
; (7)

the larger and smaller (in magnitude), respectively, and the

associated unit eigenvectors ês and êl. The coordinate s may

be associated with the minimum thickness d of the current

sheet, and l with the elongation ‘. From a scaling analysis of

Eq. (7), the aspect ratio of the diffusion region is well

approximated by

‘

d
	

ffiffiffiffiffi
kR

p
; where kR ¼

���� kmax

kmin

����: (8)

In Fig. 10, we illustrate the relationship between the

reconnection rate (electric field) at each X-point, and the

nominal aspect ratio of the reconnection region measured as

the ratio of the eigenvalues. These distributions are shown at

different times for Run 8. Since the simulation started from

Gaussian fields with random phases, at the initial time t¼ 0

the reconnection rates are small and no obvious scaling

between jEXj and kR is found. The values of kR are also gen-

erally not greatly different from unity. However, at t¼ 0.22,

we observe that the reconnection rates are generally much

larger than the initial values, while the eigenvalue ratio is

distributed over a much wider range of values. Furthermore,

a clear power-law scaling consistent with Eq. (8) starts to

emerge, which is also consistent with the picture that non-

Gaussian features emerge rapidly in turbulence.33 At t¼ 0.8

when the turbulence is fully developed, not only the number

of reconnection sites has greatly increased but also the asso-

ciated reconnection rates have also generally increased, fol-

lowing the scaling with kR reported previously.16,17

Finally, we illustrate the real space development of sec-

ondary islands and emergent X-points by examining the

magnetic field-lines and X-point positions in a subregion at

several different times. Figure 11 is an example from Run 8,

displaying the magnetic configuration in a small region at

four times. Comparing the figure panels, we observe that

much finer structures (“secondary islands”) are formed at

later times, which contributes to the dramatic increase of the

total number of X-points. There is a suggestion (not com-

pletely apparent in the figure due to superposition of sym-

bols) that many of the new X-points are born by “splitting”

of an X-point already present. The dynamical stresses that

produce this effect must include a non-uniformity of dissipa-

tion in the immediate neighborhood. Another example of the

proliferation of the number of X-points in a region of highly

stressed magnetic field is shown in Fig. 12. In the first panel,

at t¼ 0.36, there are only two X-points, but it is clear that

within this region, several magnetic structures are commenc-

ing a complex interaction. Later, at t¼ 0.46 this interaction

FIG. 9. Top: Evolution of the magnetic energy spectrum for Run 8. Bottom:

Number of X-points found as a function of time.

FIG. 10. The relation between the reconnection rate (the electric field at the

X-point) and the geometry of the reconnection region (the ratio of the eigen-

values) at different times of Run 8. The presence of a power-law fit (black

dashed line) demonstrates that there is a relation between the reconnection

rate and the geometry of the diffusion region.
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has progressed—the region of interaction has become highly

distorted, and the number of X-points has grown to at least

18. Evidently, regions of strong nonlinear interaction can

tend to generate large numbers of emerging X-points.

VII. DISCUSSION AND CONCLUSIONS

This paper has examined the production of new

X-points or secondary islands in two dimensional incompres-

sible MHD turbulence. The production of new islands, or O-

points, and the production of new X-points are strictly

related by the mathematical equality in periodic geometry of

X-point and O-point populations of any smooth surface such

as the magnetic potential function. Of course, the ease of

classification of critical points in 2D does not diminish the

care needed to accurately determine their number and

positions.

For fixed initial data and Reynolds number, we find that

when well resolved, the number of X-points may increase or

decrease with time in accordance with the development of

the cascade. However, lack of adequate numerical resolution

can easily increase the number of detected X-points, thus

producing nonphysical results. Generally speaking, one

requires high spatial resolution, to at least three times the

Kolmogorov dissipation wavenumber, when using the

pseudo-spectral approach that we have employed. Even with

this high resolution in the computed dynamics, we further

extend the resolution in the analysis phase by making use of

a larger k-space and zero padding, this providing a trigono-

metric interpolation of a smooth signal onto a finer grid. In

this way, we ensure the accuracy of the topological charac-

teristics that we discuss based on numerical experiments.

A general conclusion that we can draw is that high

Reynolds number turbulence has the capacity to produce

many more X-points starting from a band-limited initial con-

dition. This number increases with Reynolds number and in

time as the cascade expands in wavenumber to fill the acces-

sible phase space. We find empirical support for three spe-

cific conclusions: (1) The density of “new” X-points (per

unit square correlation length) increases as (Reynolds num-

ber)3/2, which is readily understood as a consequence of a

strong cascade; (2) the distribution of reconnection rates is

found to have an approximately exponential distribution

over a wide range of values; and (3) the rms reconnection

rate decreases with increasing Reynolds number with no pre-

cise scaling found, although a simple argument suggests

scaling as Re�1=2
m .

We should note that the proliferation of plasmoids and

X-points, as we have described, leads to a complex dynamical

situation in which reconnection rates at individual X-points

might, on average, become slower, while macroscopic rates of

magnetic flux transfer, being dependent on the net interaction

among all sites, might remain rapid. Therefore, the prolifera-

tion of plasmoids may change the face of turbulence effects

on reconnection, while maintaining the general conclusion

that turbulence enhances the (macroscopically observed) rate

of reconnection. The precise rules for composing microscopic

rates into macroscopic rates remain a topic of discussion the

literature; see, e.g., Refs. 11, 13, and 14.

The above conclusions apply to a 2D turbulent state. A

similar increase of small secondary islands has been exam-

ined numerically employing laminar initial data, and the

ensuing dynamics has been characterized as a “plasmoid

instability.”11–13,34 The physics seems to us to be essentially

the same, noting, however, that no linear instability stage is

required for the effect we have described, given the system

we consider is never in an equilibrium. On the other hand, it

is clear that one could construct a linear version of the pro-

cess we have described, by artificially freezing certain

Fourier modes that contain large amounts of energy, and

considering the linear problem that certain of the less ener-

getic modes follow in time. At the present time, we see little

advantage in actually constructing and computing this linear

system. Indeed, examining the numerical simulations that

report plasmoid instability,11–13,34 it seems to us likely that

the reported states with many plasmoids are already in a

strongly nonlinear regime.

Our general conclusion is that the growth of the number

of X-points and secondary islands is a process intimately

FIG. 11. Field-lines with X-points in a subregion at different times for Run

8, which shows an example of generation of X-points. The color contour

shows the current density j.

FIG. 12. Field-lines with X-points in a subregion at different times for Run

8, showing an example of generation of X-points at later times.
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associated with the development of the cascade in turbu-

lence. As such it is an effect that is more pronounced at

higher Reynolds number, and which requires increasingly

demanding spatial resolution as Reynolds number is

increased. In fact, the required resolution for accurate deter-

mination of the number of X-points may be greater than

some researchers might anticipate, and in this regard we urge

caution to avoid numerical artifacts (see also Ref. 28). We

suspect that a similar proliferation of critical points occurs in

three dimensions, where the possibilities for topological

complexity are still greater than in the simpler case consid-

ered here.4
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