A sensitive genetic-based detection capability for *Didymosphenia geminata*

Interim Report

CBER Contract Report 45

Client report prepared for MAF Biosecurity New Zealand

by

S. Craig Cary¹

Brendan J. Hicks¹

Naomi J. Crawford¹

and

Kathy Coyne²

¹Centre for Biodiversity and Ecology Research Department of Biological Sciences School of Science and Engineering The University of Waikato Private Bag 3105 Hamilton, New Zealand

> ² University of Delaware College of Marine Studies Lewes, Delaware, USA

> > 4 December 2006

Table of contents

	Page
Executive Summary	
Introduction	
D. geminata – a pervasive opportunist	
Project objectives	
Methods	
1. Protocols for collection and stabilization of environmental samples of D. geminata	
1.1. Water and benthic sampling	
1.2 Determine field collection thresholds and longevity	12
1.3. Extensive sampling of all known D. geminata-affected areas	
1.4. Sampling related species as controls	
2. Protocols for extracting DNA from <i>D. geminata</i>	12
2.1. DNA extraction procedures	12
2.2. Validation of DNA extraction efficiency and recovery	13
2.3. Extract DNA from <i>D. geminata</i> and related taxa	14
3. Design and validate primers for low-level detection of <i>D. geminata</i>	14
3.1 Sequence D. geminata 18S rRNA gene	14
3.2. Sequence same regions in related taxa	15
3.3. Design of <i>D. geminata</i> -specific primers	17
3.4. Validate primers against related species and environmental samples, establish sense	itivity
range of primers and optimise protocols for field samples	18
3.5. Blind test comparisons using DGGE and sequencing	19
Results	20
1. Protocol for collection and stabilization of environmental samples	20
1.1. Field collection protocol for both water and surface samples	20
1.2. Field collection thresholds and longevity	22
1.3. Extensively sample all known D. geminata affected areas	
1.4. Sample all other related species as controls	23
2. Protocol for extraction of DNA from D. geminata	24
2.1. Extraction protocol experimentation	24
2.2. Validation of DNA extraction efficiency and recovery	24
3. Design and validation of primers for low level detection of <i>D. geminata</i>	
3.1. Sequence D. geminata 18S rRNA gene	
3.2. Sequence same regions of related gomphonemoid taxa	26
3.3. Design of <i>D. geminata</i> -specific primers	28
3.4. Validation of primers against related species and environmental samples, establish	
sensitivity range of primers, and optimise protocols for field samples	30
PCR primer optimisation	
Preliminary primer validation experiments	32
3.5. Blind test comparisons using DGGE and sequencing	33
Conclusions	
1. Developed protocol for collection and stabilization of environmental samples	
2. Developed protocol for extraction of DNA from D. geminata	35

3. Designed and validated primers for low level detection of <i>D. geminata</i>	35
General recommendations	
Acknowledgements	
References	

Tables

16
S
19
19
23
28
te
29

Figures

Figure 1. Collecting <i>D. geminata</i> by swabbing a bare rock from the lower Waitaki River10
Figure 2. The design of a nested plankton 190-mm diameter drift net for sampling algal drift in
the water column of streams and rivers. 11
Figure 3. The nested plankton net deployed in the Mararoa River.
Figure 4. Location of sampling sites in the North Island. See Appendix 5 for sample codes and river names
Figure 5. Location of sampling sites in the South Island. See Appendix 5 for sample codes and river names
Figure 6. Discrimination of <i>D. geminata</i> and <i>Gomphoneis</i> sp. by denaturing gradient gel electrophoresis (DGGE). The dashed line identifies <i>Gomphoneis</i> sp
Figure 7. DNA yield (ng/µl) of different samples of <i>D. geminata</i> exposed to four different treatments (70% ethanol, 50% ethanol, 25% ethanol, and CTAB) over a period of 5 weeks.
Figure 8. Relationship of DNA yield to cell density in a suspension of <i>Synedra</i> sp. and <i>D</i> . <i>geminata</i> cells collected by drift net sampling in the Mararoa River, Southland25
Figure 9. Phylogenetic tree, with bootstrapping support indicated, for New Zealand <i>D. geminata</i> and related biraphid diatoms developed from the maximum likelihood technique with PAUP* based on 18S rRNA sequences. Those with accession numbers were obtained from GenBank
Figure 10. Primer positions indicated across the full 18S rDNA sequence
Figure 11. <i>D. geminata</i> primers tested in combination with each other and universals in a 1% agarose sodium boric acid (SBA) buffer gel screened on <i>D. geminata</i> plasmids

Appendices

40
er43
cliff
44
var
45
n and
46
ithin
53

Executive Summary

It is now well recognized that the increase in global transportation over the last two decades has brought with it an increased potential for the introduction of unwanted microorganisms (aquatic or terrestrial) that may have drastic effects on human and ecosystem health and agriculture. Until recently, surveillance for possible incursions and for postincursion response has been extremely difficult due to microscopic size of the organisms and their ability to propagate asexually and spread through multiple vectors. Often, we know very little about the biology of the organism in question, requiring an extensive initial effort to gather the needed information to initiate an effective incursion response. Recently, highly sensitive molecular genetic tools, borrowed from the biomedical arena, have been adapted to meet the rising international biosecurity needs for cost-effective surveillance and monitoring. These techniques can be developed to detect and enumerate multiple target organisms with extreme sensitivity, specificity and high-throughput capacity.

Ongoing surveillance to monitor the distribution of *Didymosphenia geminata* (Lyngbe) Schmidt in New Zealand is a key component of Biosecurity New Zealand's incursion response. The present method for identifying didymo in waterbodies involves the collection of algal scrapings and drift net-enriched water samples, their transport to a laboratory and identification of didymo frustules within a subsample examined under a microscope. This is a time consuming, resource intensive and a subjective method that restricts our ability to sample a wide range of rivers and sites within each river. A highly sensitive and specific technique could dramatically increase our ability to analyse large numbers of samples in their entirety in a short period of time and to detect the alga at low levels, thus increasing the efficiency of our surveillance programme without greatly increasing costs. In addition, a lowlevel detection capability would enable better targeting of public awareness messages, enable geater confidence in the didymo status of high value sites requiring protection, and increase the probability of successful control, should a control tool be developed.

The Centre for Biodiversity and Ecology Research, University of Waikato, was commissioned by Biosecurity New Zealand to develop a sensitive molecular-based protocol capable of detecting *D. geminata* in environmental samples with extreme sensitivity. The specific requirements for this new methodology were that it has:

- Robust field capabilities from collection to quantification
- Species or strain level specificity that has been environmentally validated
- Extreme sensitivity for low-level detection
- A broad dynamic range of detection (> 5 orders of magnitude)
- The highest degree of reproducibility
- Efficient, cost-effective, rapid, high-throughput laboratory capability.

The research programme is divided into three discrete phases of six months each:

Phase 1 (reported here) -

- a) design and test field collection and DNA extraction methods, and
- b) identify a gene target to discriminate *D. geminata* and to develop a highly specific gene amplification detection protocol.
- **Phase 2** take the amplification method to a higher resolution quantitative capability.
- **Phase 3 -** adapt the protocols to a field-based high-throughput capacity and train endusers in their use and application.

This document reports on Phase 1 and preliminary Phase 2 results of the research programme.

Phase 1 - Field collection and DNA extraction methods

- The field collection and preservation procedures have been extremely effective at sampling *D. geminata* for genetic work using a variety to techniques including direct collection of *D. geminata* colonies for verification, rock swab samples where colonies were not visible and drift net samples.
- A new drift net was developed and tested specifically to target the collection of *D*. *geminata* cells. Initial tests showed that the net design was extremely effective at enriching for *D. geminata*. The net design has recently been adopted by the on-going *D. geminata* Delimiting Survey Programme.
- We successfully sampled *D. geminata* from at least three locations in all 11 known infected rivers (as of June 30/06) for type samples needed for the validation experiments.
- High quality DNA was extracted from all environmental samples and stabilised with two DNA preservatives. Subsequent tests of DNA stability of samples held in each of the DNA preservatives for extended periods of time indicated that the extraction buffer CTAB and ethanol preservatives were very effective over a number of weeks in the absence of freezing. The longevity of each sample is likely to be greater than five weeks, given that DNA can be successfully extracted for up to five weeks.

Phase 1 - Identification of gene target to discriminate D. geminata

- A unique genetic fingerprinting tool for *D. geminata* was developed and validated. The first gene to be examined as a signature for *D. geminata* was the gene encoding the small subunit ribosomal RNA (18S rRNA). The whole 18S rDNA gene was bi-directionally sequenced for *D. geminata* along with another New Zealand *Gomphoneis* sp., and compared to other closely related biraphid diatoms. All sequences were edited and aligned to produce a consensus sequence, which was used for subsequent phylogenetic analysis. It was determined that the 18S rRNA had the needed sequence variability to clearly distinguish *D. geminata* from all other known biraphid diatoms.
- Seven gene amplification (polymerase chain reaction PCR) primers specific for *D. geminata* were designed and tested against pure *D. geminata* target and environmental samples known to contain *D. geminata*. The primer sets were triaged based on robustness and specificity to amplify their designated target. Two primer sets (long and short) were continued into intensive blind test validation. In all cases where an amplification occurred, the PCR product was then sequenced to confirm the specificity of the primers. A positive amplification was obtained from every sample known to contain *D. geminata*. No false positives were generated in any of the samples that did not contain *D. geminata*. Subsequent sequencing verified that environmental samples of *D. geminata* had amplified the correct sequence.
- Swab samples taken from rocks were very effective at detecting *D. geminata* in affected rivers on apparently bare substrate with minimum sample effort. Preliminary sensitivity tests revealed that the short primer set could detect as little as one pg of target DNA. This will be greater improved by at least 2-3 orders of magnitude when the procedure is taken to the quantitative level in Phase 2, which is currently underway.
- Primers were successfully tested on *D. geminata* samples collected from three foreign countries (USA, Canada, and UK) and found to be equally specific and sensitive.
- A global phylogeographic study of *D. geminata* to ascertain the origin(s) of the New Zealand strains is underway.

In summary, we have developed and validated a unique genetic fingerprinting tool for *D. geminata*. In concert, we developed field collection and preservation techniques specific for *D. geminata* along with genetic-based procedures that can now reliably detect *D. geminata* from a complex environmental community with a high degree of sensitivity. Recent work (Phase 2) has shown that the described methods will provide detection levels from <1-10,000 cells ml⁻¹. We contend that the genetic based detection approaches used in this study offer great promise to meet the increasing demands to monitor the global threat from invasive micro-organisms.

Introduction

The global increase in distribution and occurrence of harmful algal bloom (HAB) species (marine and freshwater) has become a matter of growing economic and ecological concern because of their possible negative impact on human and aquatic life. For the purposes of this report, we define HAB species as any alga that causes a decline in human or ecosystem health. Conservative estimates of \$250 million globally each year are lost to commercial fisheries and tourism due to algal blooms while substantially less than this is spent on monitoring, which is often selective and inadequate (CENR, 2000). Too often, invasion has taken place and the invasive organisms have already established themselves by the time they are visually detectable, decreasing the likelihood and increasing the cost of successful mitigation strategies. Monitoring efforts have been hampered by a lack of tools for accurate and sensitive detection of harmful algae. Conventional microscopic methods for identifying and estimating abundance of HAB species are time-consuming, often require years of training, and are only effective when the target species is at relatively high concentrations and clearly distinguishable from the indigenous flora and fauna. Even then, many organisms cannot be positively identified to the species level and must be subjected to the examination of ultra-structure, demanding time-consuming preparation and costly high-powered microscopy. Immunological methods may be more specific, but are difficult to develop, can cross-react with native species, and are unreliable for background-level detection that is often critical to identification of invasive HAB species.

Developments in molecular genetic technology have revolutionised our approach to basic environmental microbial research. These new methods can provide high-resolution analysis of microbial species at specific taxonomic levels, while considerably decreasing time for analysis. Recent pioneering work in the Cary Lab at the University of Waikato and the University of Delaware, USA, has led the development of sensitive and quantitative molecular techniques for detection and enumeration of nine different marine and freshwater HAB species from environmental samples. The techniques involve using gene amplification technologies (polymerase chain reaction or PCR) that target specific diagnostic genes in the organism of interest. Recent developments now allow these amplification reactions to be quantified by quantitative real time PCR (QRT-PCR) allowing the concentrations of target gene (or cell number) within a sample to be calculated. These high-throughput methods provide greater sensitivity and specificity of detection and enumeration of HAB species, and are ideally suited for assisting routine monitoring in the field.

D. geminata – a pervasive opportunist

Algae attached to the substrate are a normal and crucial part of stream and river ecosystems because they provide a food source for grazing invertebrates, which in turn support higher trophic levels such as fish. However, under specific conditions of light, temperature, stream flow, and nutrient availability, they can proliferate to HABs where they cannot be controlled by grazers and degrade habitat for fish and other in-stream uses (Biggs 2000). *D. geminata* is a stalked diatom that may form persistent blooms of dense mucilaginous mats that can extend for several kilometres. Large blooms are associated with fluctuations in dissolved oxygen levels and pH and shifts in benthic invertebrate community composition which could significantly impact higher trophic levels, including fish (Larned, et al., 2006). *D. geminata* was noted in the 1800s in the boreal and mountain regions of Europe, and somewhat later in Great Britain, western Canada (Vancouver Island), China and Turkey and within the past 20 years, appears to be occurring more frequently in North American and Europe (Kilroy, 2004). In NZ, *D. geminata* was first reported in October 2004 on the South Island. It has since expanded its range from the lower Waiau and Mararoa Rivers to the upper

Waiau, Buller, Hawea, upper Clutha, Von, and Oreti Rivers in 2005, and subsequently to the Ahuriri, Aparima, and lower Waitaki rivers by June 2006 (*www.biosecurity.govt.nz/didymo*). Its potential for further spread within the South Island and spread to the North Island is serious.

Early detection of *D. geminata* in new locations in NZ could be confounded by the existence of morphologically similar gomphonemoid taxa (*Gomphoneis* and *Gomphonema* species; Biggs & Kilroy 2000), and potentially *Cymbella* species, that may coexist with *D. geminata*. *Gomphoneis* and *Gomphonema* are stalked diatoms that form a light-brown, soft, epilithic turf in gravel-bedded, clear-water streams and rivers that also support high-quality trout fisheries. These apparently indigenous taxa grow in the oligotrophic and mesotrophic conditions in which *D. geminata* also seems to thrive. Unambiguous morphological identification and discrimination of these species is technically demanding. Although *D. geminata* frustules are reportedly larger than those of the indigenous taxa (Kilroy 2004), diatoms are well known for reducing cell size with each successive division so that size might not always be a reliable diagnostic character. In addition, the sheer scale of sampling riverbed habitat that is suitable for invasion defeats the reliable early detection of new incursions of *D. geminata*.

Modern molecular genetic methods offer the potential for unambiguous identification, enumeration, and early detection of *D. geminata*. It also offers the potential to distinguish *D. geminata* from related species that are native to New Zealand. However, any identification system (genetic or morphological) must be well validated in the laboratory and field to avoid false positives caused by the indigenous genera. Prior to this study nothing was documented about the phylogenetics of the New Zealand stalked diatoms, nor about their culture in the laboratory. The molecular similarity of co-occurring native gomphonemoid diatoms had to be established in concert with *D. geminata* in order to develop a truly discriminating genetic assay.

Project objectives

Our objective was to develop a sensitive molecular-based detection method for *D. geminata* that can be used as the basis of an early detection protocol before new infestations are visible. Early detection offers the best chance of control or eradication of new incursions of the organism. We also sought to demonstrate and refine a model for developing highly sensitive, accurate diagnostics for any microorganisms of concern to Biosecurity New Zealand.

Our specific requirements for this new methodology were that it has:

- Robust field capabilities from cell collection to gene quantification
- Species or strain level specificity that has been environmentally validated
- Extreme sensitivity for low-level detection
- A broad dynamic range (> 5 orders of magnitude)
- The highest degree of reproducibility
- Efficient, cost-effective, rapid, high throughput laboratory capabilities

The overall method development programme is broken into three phases. Phase 1 is to develop methods for efficient sample collection, preservation and DNA extraction, and to design and implement a highly specific and sensitive PCR-based detection capability for *D*. *geminata*. Phase 2 is to design and validate a laboratory-based, high throughput QRT-PCR detection and enumeration assay for *D*. *geminata*, and to examine the phylogeography of D. geminata. Phase 3 is to design a compatible, long-term sampling and monitoring capability,

and adapt protocols for field-based instrumentation with continued testing, validation, and transfer of the technology to Biosecurity New Zealand.

This interim report will focus solely on the accomplishments made during Phase 1 of the project.

Phase 1

- 1. Develop protocols for collection and stabilisation of environmental samples of *D*. *geminata*
- 2. Develop protocols for the extracting DNA from *D. geminata*
- 3. Design and validate primers for the detection of *D. geminata*.

Future reports are planned to report results of Phase 2 and 3.

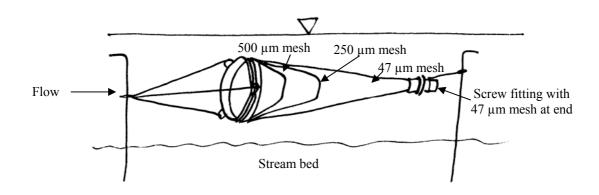
For those readers not fluent in molecular technology we have included a primer on gene amplification (PCR) methodologies and briefs on the primary constraints of applying these methods to environmental samples in Appendix 1.

Methods

1. Protocols for collection and stabilization of environmental samples of D. geminata

Check, Clean, Dry decontamination procedures developed for freshwater users by Biosecurity New Zealand's Didymo Incursion Response Programme (see *www.biosecurity.govt.nz/didymo*) were followed during field sampling to prevent the spread of *D. geminata*. Detailed field sampling protocols for genetic-based detection will be provided for the training program as part of the Phase 3 deliverable due in 2007. These protocols will include a stronger decontamination solution (at least 5% household bleach) used for a longer soaking time (at least fifteen minutes). This will ensure that in addition to killing all the *D. geminata* cells on reusable gear, all the DNA molecules will be fully denatured and thus unable to yield false positives through PCR amplification.

1.1. Water and benthic sampling


The purpose of this protocol was to test sampling procedures in combination with two common, low-cost preservatives that have proved successful in the past on environmental samples. These methods also needed to be complimentary to the molecular methods to be used later. We evaluated 70% ethanol and CTAB (cetyl trimethyl ammonium bromide extraction buffer) (Appendix 2) for their appropriateness as preservatives for the stabilisation of *D. geminata* DNA in environmental samples. On collection, algal samples were preserved in either 70% ethanol or in CTAB at 1X concentration. Immediately prior to use, 0.4% (w/v) 2-mercaptoethanol was added to the CTAB. In each case, a sample of no more than 1/10 the total volume was immersed in the preservative.

A. Benthic sampling. Individual colonies, or a clipping from the top of a dense mat, were plucked or cut from the surface of a rock with forceps or scissors and placed in sterile 14-mL Falcon tubes or 1.5 mL Eppendorf tubes. Swab samples were taken in some affected areas by wiping a cotton bud over wet surfaces of bare rock (Figure 1). To test the efficacy of swab sampling, it was essential that no colonies of *D. geminata* could be visually identified. After wiping the rock surface, the wetted swab was then placed in preservative in a sterile Eppendorf tube, the end of the swab was cut off, and the lid was sealed tightly. All tubes were sealed using Parafilm to ensure there was no spillage during transport. Once back in the laboratory, all tubes were kept at -20° C until DNA extraction.

Figure 1. Collecting *D. geminata* by swabbing a bare rock from the lower Waitaki River.

B. Water column sampling. To sample the water column, we designed a "nested" plankton net specifically for recovery of suspended *D. geminata* (Figure 2). The nested design includes a pre-filter (250 μ m) to collected larger unwanted debris. We used three nested 200-mm diameter plankton nets suspended in the water column of the Mararoa River at a site (SH 94 Bridge, MA3 Drift Net) that was badly affected with *D. geminata*. The three nested nets were made from 500, 250, and 47 μ m Nitex mesh, with the coarsest mesh acting as a primary strainer, and the 250 μ m mesh net acting as a secondary strainer and the main 47 μ m net to capture the 100 x 30 μ m *D. geminata* cells. We set the net in a water velocity of 0.30 m/s for 10 minutes (Figure 3). As the inside diameter of the net was 190 mm, the cross-sectional area of the water column being sampled was 0.009025 m².

Figure 2. The design of a nested plankton 190-mm diameter drift net for sampling algal drift in the water column of streams and rivers.

Figure 3. The nested plankton net deployed in the Mararoa River.

1.2 Determine field collection thresholds and longevity

To address issues associated with sample stability, an experiment was carried out that investigated preservation of cells for extended periods of time. The same experiment addressed issues with DNA extraction efficiency over time. Methods for these experiments are addressed fully in Methods Section 2.2 below.

1.3. Extensive sampling of all known D. geminata-affected areas

From 9-12 May 2006, we sampled all 11 rivers (Buller, Ahuriri, Waitaki, Hawea, Clutha, Upper Waiau, Lower Waiau, Mararoa, Von, Oreti, and the Aparima) known to contain *D. geminata (www.biosecurity.govt.nz/didymo)*. Where possible, three sites were sampled to cover the affected sites of each river. At each site, a 2-5 g wet-weight sample of a colony was put into ethanol, and into CTAB. In addition, the surface of a submerged rock without visible colonies was swabbed with a dry, sterile cotton bud and the tip was cut into an Eppendorf tube filled with CTAB. The samples were stored at field temperatures (6-15°C) for three days during transport back to the lab. DNA was extracted from all samples using the protocols described in Methods 2.1.

1.4. Sampling related species as controls

We sampled widely to find pure colonies of stalked algal species related to *D. geminata*. NIWA assisted in this sampling. Colonies of *Gomphoneis minuta* var *cassiae* were sampled from the Manganui-a-te-ao River, central North Island, and the Stony River, Taranaki. *Cymbella* spp. were collected from the Ahuriri and Aparima rivers. All samples were preserved in 70% ethanol, DNA was extracted by our standard protocol, and the DNA was subjected to a denaturing gradient gel electrophoresis (DGGE). The DGGE results were used to identify enriched samples of particular species for further cloning and sequencing. More species are currently being sought as representative specimens.

2. Protocols for extracting DNA from D. geminata

2.1. DNA extraction procedures

Central to our investigations is development of a reliable and robust DNA extraction technique for *D. geminata* and other diatoms. After some experimentation, we have refined the procedure to the following steps. For routine samples preserved initially in ethanol, we began at step 1. For samples preserved initially in CTAB, we began at step 2.

- Tubes containing ethanol were centrifuged for 2 minutes at 13,200 rpm. The liquid was then decanted off, and the cells were re-suspended in 1ml of MilliQ water. The tubes were then spun again at 13,200 rpm for 2 minutes. The supernatant was then decanted, and the pellet in each tube was resuspended in 500 µl of CTAB.
- 2) Tubes were then briefly vortexed to ensure the CTAB was well mixed.
- 3) Tubes were placed in a 60°C water bath for 20 minutes.
- 4) 500 μl of chloroform: isoamyl alcohol (24:1) was added to each tube, which was then inverted and vortexed. The tubes were then placed in a centrifuge for 15 minutes at 13,200 rpm.

- 5) 400 μl of the supernatant was then removed and placed in a new sterile Eppendorf tube. 400 μl of isopropyl alcohol and 200 μl of 5 M NaCl were added to the supernatant. The tubes were then inverted and left in the -80°C freezer for approximately 50 h to precipitate the DNA.
- 6) Once thawed, the tubes were then centrifuged for 30 minutes at 13,200 rpm. The supernatant was decanted, 500 µl of 70% ethanol was added, and the tube spun for 2 minutes at 13,200 rpm. The ethanol was then gently poured off leaving the DNA pellet in the tube.
- 7) The tubes were air-dried using the Savant Speed Vac at medium heat for at least 20 minutes until all the ethanol was removed.
- 8) The tubes were re-suspended in 20 μl of MilliQ water, and left to stand for at least 1 h before quantification. 1.5 μl of DNA was then quantified using the Nanodrop Spectrophotometer at 260 nm to determine relative recovery.

For samples that were either in a poor state of preservation or that had minimal recovery under normal extraction procedures (above), a phenol:chloroform extraction was performed as outlined below:

- 1) The volume of the tube was made up to 200 μ l with MilliQ water.
- 2) Add equal volume of phenol: chloroform: isopropyl alcohol (25:24:1).
- 3) Mix well by inverting and vortexing, spin for 5 minutes at maximum speed (13,200 rpm).
- 4) Precipitate the supernatant by adding equal volume of isopropyl alcohol to the supernatant, and half the volume of 5 M NaCl.
- 5) Place the samples overnight in the -80°C freezer.
- 6) Once thawed, the tubes were centrifuged for 30 minutes at 13,200 rpm. The liquid was decanted off, 500 µl of 70% ethanol was added to the DNA pellet, and each tube spun for 2 minutes at 13,200 rpm. The ethanol was then gently poured off.
- The tubes were then air-dried using the Savant speed vac at medium heat for at least 20 minutes until all the ethanol was removed.
- 8) The tubes were then re-suspended in 20 μl of MilliQ water, and left to stand for at least 1 hour before quantification. 1.5 μl of DNA was then quantified using the Nanodrop Spectrophotometer.
- 9) Once quantified, the tubes were kept frozen in a -80°C freezer for storage.

2.2. Validation of DNA extraction efficiency and recovery

A. Longevity. In order to transport samples obtained from distant field sites, we needed to establish the longevity and stability of DNA in whole *D. geminata* cells held under our two preservation methods (CTAB and 70% ethanol), as well as two reduced ethanol concentrations (50%, 25%), the latter equivalent to more commonly available grain alcohol. To evaluate stability under simulated travelling conditions, we tested DNA yield after storage at room temperature for 5 weeks. *D. geminata* was sampled from a rock with a dense mat of healthy looking *D. geminata* from the Mararoa River. The upper pigmented (cellular) layer of the *D. geminata* mat was clipped from the mat using tweezers and scissors. The sample was then placed in a sterile Falcon tube containing 50 ml of MilliQ water. The tube was then shaken vigorously for 1 minute. Immediately following shaking, the homogenate was filtered through a 500 μm net into a 50-ml sterile Falcon tube.

A 300- μ l aliquot of the homogenate was then placed in each of 48 1.5-ml Eppendorf tubes. These tubes were grouped into six different sets to be sampled at weekly intervals (T₀, T₁, T₂, T₃, T₄, and T₅). Preservation treatments were either 1X CTAB or 70%, 50%, or 25%

ethanol. Each was added to the homogenate in a tube to make a final volume of 1 ml. Each treatment was performed in duplicate with a final concentration of 70% ethanol, 50% ethanol, 25% ethanol, or CTAB respectively. After adding the ethanol or CTAB, all eight T_0 tubes were placed immediately on ice and then transported by air to the University of Waikato.

DNA was extracted with our normal CTAB protocol immediately (T_0 ; within 5 h of collection) and at weekly intervals thereafter for 5 weeks (i.e., T_1 , T_2 , T_3 , T_4 , and T_5). After quantification, each tube was stored at -80°C. Incubation temperature for samples before DNA extraction was recorded at 1-h intervals with an Onset temperature logger. Mean temperature over the 35 days of the experiment was 22.9°C (minimum 17.4, maximum 27.0, standard deviation 2.6°C).

B. Extraction sensitivity. To investigate the effect of cell density on extraction sensitivity and DNA yield from *D. geminata*, we extracted DNA by our usual protocol (Methods 2.1 above) from a range of cell densities. We created a dilution series of decreasing cell concentration from the drift net sample of *Synedra* and *D. geminata* cells from the Mararoa River and then extracted and quantified DNA yield. The original cell suspension was stirred continuously with a magnetic stirrer during the following procedure. From the suspension the following aliquot sizes were subsampled into a 14 ml Falcon tubes: $3.75 \ \mu$ L, $15 \ \mu$ L, $30 \ \mu$ L, $75 \ \mu$ L, $150 \ \mu$ L, $300 \ \mu$ L, $600 \ \mu$ L, $1.25 \ m$ L, $2.5 \ m$ L, and $5 \ m$ L and made up to a final volume of 5 mL with 70 % ethanol. They were shaken to ensure suspension and 1.5 mL was taken and put into and Eppendorf tube. DNA was extracted according to the normal CTAB method and measured on a Nanodrop spectrophotometer. Identification and cell counts were carried out using an inverted Olympus microscope (CK-2, Olympus) and Utermöhl settling chambers.

2.3. Extract DNA from *D. geminata* and related taxa

After successful development of DNA extraction protocols, 18S rDNA was extracted from *D*. *geminata* and related taxa as described in Methods Section 2.1 above.

3. Design and validate primers for low-level detection of D. geminata

3.1 Sequence D. geminata 18S rRNA gene

The aim of this portion of the study was to clone and sequence DNA from *D.* geminata. The 18S rRNA gene was obtained from a sample enriched in *D. geminata* collected from Redcliff Creek, Lower Waiua River, in December 2005. This initial sample was preserved in only Vodka and was processed 2 weeks after collection having been held a room temperature. DNA was extracted using the CTAB protocol (Methods 2.1 above). The entire 18S rRNA sequence was amplified using the polymerase chain reaction (PCR) with one set of universal eukaryotic-specific primers (EukA and EukB) (Table 6). PCR was carried out in 0.5-ml thin-walled tubes, containing a total volume of 50 μ l comprising 33 μ l of sterile distilled water, and a final concentration of 1X PCR buffer -MgCl₂ 50 mM KCl, 10 mM tris-HCl, pH 8.3 (Boehringer, Mannheim), 1.0 mM primer (Invitrogen Ltd), 2.5 mM MgCl₂, 2.0 mM of each dNTP (Boehringer, Mannheim), 0.5 units of *Taq* DNA polymerase (1 unit/ μ l) (Roche, Germany), and 2 μ l of 10 ng/ μ l genomic DNA. One unit of Taq 1 is defined as the amount of enzyme that incorporates 10 nmol of total deoxyribonucleoside triphosphates into acid precipitate DNA within 30 minutes at 75°C under assay conditions. All PCR experiments were evaluated with the inclusion in the experiment of a separate negative (which included distilled water instead of DNA) and a positive control (an easily amplifiable sample which works across successive PCR experiments). All PCR experiments were performed in an MJ Research Peltier thermal cycler under the following conditions: an initial denaturation period of one cycle at 94°C for two minutes to denature the genomic DNA, followed by 35 cycles of 94°C for 30 seconds to denature the DNA, 55°C for one minute to anneal the primer to the template DNA, and 72°C for two minutes to let the DNA polymerase extend. A final extension period of 72°C for 5 minutes followed to complete the PCR and the final products were then held at 4°C until they were removed from the PCR machine.

PCR products were separated and visualized on a standard 1.0% 1X (SBA buffer) agarose (SeaKem LE), 5 mM EDTA (disodium salt) buffer gel, with ethidium bromide (0.1 mg/l) staining. Prior to loading, 5 μ l of PCR product was pipetted and mixed directly with 3 μ l loading dye (0.0083% bromophenol blue, 2.5% ficol (MW 400 000). The 5 μ l mixture was then loaded in each well, in a 5 mM EDTA gel. Once loaded, PCR products were electrophoresed at 55 mA for at least 30 minutes. After electrophoresis, each gel was visualized in the presence of UV light in the Alpha Imager documentation system (Alpha Innotech Corp., San Leandro California). Five microlitres of (1 Kb Plus) base pair molecular weight ladder (prepared: 3 μ l at a 1:10 dilution in TE buffer mixed with 2 μ l of 1X loading buffer) (Invitrogen) was included in the outer lane of each gel and used as a size estimate comparison of individual amplification products. The successful PCR product was cloned using the TOPO TA cloning vector and propagated on LB media with Kanomycin to select for clones with inserts (Invitrogen).

Clones were picked and then screened for proper size insert (1.5 kb) using PCR amplifying from the flanking M13 regions following the manufacturers instructions (refer to TOPO TA Cloning kit for further details). The PCR product from 20 clones containing the correct size insert were then restricted with two restriction enzymes that recognise 4 base pairs cut sites (Mbo1 and Hae III) to identify those clones containing unique inserts. A representative of each restriction family was then propagated overnight in 5 ml of LB broth with Kanomycin and the plasmid extracted the following day using the Quick Clean Plasmid Miniprep kit following the manufacturer's instructions. Plasmid preparations were quantified using a Hoefer DyNAquant 200 fluorometer with Hoechst 33258 Dye at 1 mg/ml (Hoefer Scientific Instruments) prior to sequencing All direct sequencing was performed using the vector containing M13 sites for sequencing the insert termini and 608F/R and 1000 F/R for sequencing the internal regions of the gene. All reactions were performed in an MJ Peltier Thermal cycler, under the following conditions: 40 cycles of 95°C for 20 seconds to denature the DNA, a set annealing temperature of 50°C for 15 seconds to anneal the primer to the template DNA, and 60°C for two minutes to let the DNA extend, the final products were then held at 4°C for 10 minutes and removed from the PCR machine. All direct sequencing was achieved using the MegaBACE 500 DNA Analysis system, fitted with 40 cm capillary arrays (Amersham Biosciences, Buckinghamshire) loaded with a linear polyacrylamide Long Read Matrix (Amersham Biosciences, Buckinghamshire). DNA templates were prepared using DYEnamicET dye terminator chemistry (Amersham Biosciences, Buckinghamshire). See Appendix 3 for the full 18 S rRNA sequence. The equivalent sequence for Gomphoneis *minutae* var *cassiae* is shown in Appendix 4.

3.2. Sequence same regions in related taxa

In order to identify specific samples enriched in other diatoms that could potentially produce false positives, we used a diatom-specific DNA fingerprinting method (DGGE). This

method provides a rapid analysis of diatom community complexity and composition in a given sample.

Selected environmental samples were extracted using the CTAB protocol outlined above. PCR primers STRAM 9F and 517R-GC (Table 1) were used to amplify all environmental samples and the verified D. geminata 18S rRNA clone (Methods 3.1) as a control. PCR was carried out in 0.5-ml thin walled tubes, containing a total volume of 50 µl of 28.25 µl of sterile distilled water, and a final concentration of 1X PCR buffer -MgCl₂ 50 mM KCl, 10 mM tris-HCl, pH 8.3 (Boehringer, Mannheim), 1.0 mM primer (Invitrogen Ltd), 2.5 mM MgCl₂, 2.0 mM of each dNTP (Boehringer, Mannheim), 1.25 units of Taq DNA polymerase (1 unit/ul) (Roche, Germany), and 1 ul of 20 ng/ul genomic DNA. All PCRs were evaluated with the inclusion of a negative (which included distilled water instead of DNA) and a positive control (an easily amplifiable sample which works across successive PCRs). All PCR experiments were performed in an MJ Research Peltier thermal cycler under the following conditions: an initial denaturation period of one cycle at 94°C for two minutes, followed by 20 cycles of 94°C for 1 minute, 65°C for one minute to anneal the primer to the template DNA which was decreased by 0.5°C per cycle, and 72°C for 2 minutes. This was then followed by 14 cycles of 94°C for 1 minute, 55°C for 30 seconds, and 72°C for one and half minutes. A final extension stage of 72°C for 5 minutes followed to complete the experiment. The final products were then held at 4°C until they were removed from the PCR machine. PCR products were then checked on a 1% (SBA buffer) gel in the procedure in Methods Section 3.1 above.

Oligonucleotide	Sequence (5' to 3')	Specificity	Tm (°C)
D602F	GTT GGA TTT GTG ATG GAA TTT GAA	Didymosphenia	52.4
D753R	AAT ACA TTC ATC GAC GTA AGT C	Didymosphenia	50.3
D1565F	CCT AGT AAA CGC AGA TCA TCA G	Didymosphenia	52.8
D1659F	GCT GGG GAT TGC AGC TA	Didymosphenia	55.0
D1670R	CAC CAG TAA AGG CAT TAG CTG	Didymosphenia	53.7
Euk 608F*	CGG TAA TTC CAG CTC CAA T	Euk universal	52.4
Euk608R*	TTG GAG CTG GAA TTA CCG	Euk universal	52.4
Euk1000F*	AAC GAA AGT TAG GGG ATC GA	Euk universal	53.3
Euk1000R*	TCG ATC CCC TAA CTT TCG TT	Euk universal	53.3
EukA*	AAC CTG G(TTGAT) CCT GCC AGT	Euk universal	49.0
EukB*	GAT CC(AT) TCT GCA GGT TCA CCT AC	Euk universal	52.0
STRAM9F	CTG CCA GTA GTC ATA CGC TC	Universal diatom	55.0
517R-GC	CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG GAC GGG GGA CCA GAC TTG CCC TC	Universal diatom DGGE	88.0

Table 1. Primers targeting *D. geminata* and eukaryote-specific regions within the *D. geminata* 18S rDNA. *Primers used for sequencing the full 18S rDNA region.

For the DGGE analysis, a gradient delivery system (Model 475, Bio-Rad

Laboratories, NY, USA) was used to cast DGGE gels. Gels were composed of 6% acrylamide

with a denaturant concentration of 10-50% for expected amplicons of 850-1000 base pairs. Gels were loaded into an electrophoresis chamber (D GENETM Denaturing Gel Electrophoresis system) containing 7 litres of 1X TAE buffer. Once gels were cast, they were allowed to set for at least 1 hour. Buffer inside the chamber was held at 60°C both prior and during loading. Between 15-20 µl of loading dye (0.05% BPB, 0.05% xylene cyanol and 70% glycerol diluted in 1X TAE) buffer was added to each PCR tube. 10-20 µl of PCR product was run in each well consisting of a maximum total volume in each well of 40 µl. Gels were electrophoresed for 5 hours at 140 V. All gels were stained in 500 ml of 1 mg/l ethidium bromide for 10 minutes, destained in 500 ml of distilled water for 10 minutes, and visualized on an AlphaImager 2000. Samples that contained a single strong non-D. geminata signal were then selected for continued sequence analysis. The 18S rDNAs were amplified, cloned, and sequenced in the manner outlined above. Unique diatom sequences were then aligned and edited manually using Sequencher ver 4.0 (Gene Codes Corporation). To obtain other diatom 18S rRNA sequences for phylogenetic analysis, the D. geminata 18S rDNA was blasted into the GenBank NCBI database (National Center for Biotechnology Information, *http://www.ncbi.nlm.nih.gov/*) to obtain the 18S rRNA sequences from other available closely related taxa not necessarily found in New Zealand. Other sequences included from GenBank were Encyonema triangulatum, Gomphonema parvulum, Dickieia ulvacea, Anomoeoneis sphaerophora, Amphora montana, Eolimna subminuscula, Eolimna minima. Each of these sequences was aligned with the other sequences.

All phylogenetic analyses were constructed using PAUP* Version 4.5b (Swofford, 1998) using Neighbor Joining (NJ), maximum parsimony (MP) and likelihood analysis (ML). NJ analysis was conducted on PAUP* using the Nei & Li (1979) distance coefficient which assumes random mating and equal rate divergence (Swofford, 1998). Distance was calculated by mean character differences, with break ties systematically taxon dependent. Maximum Parsimony and likelihood analysis were performed using the heuristic search of PAUP*, (Rogers-Swofford approximation method) (Swofford, 1998). One sequence obtained from GeneBank was used as a designated outgroup in all phylogenetic analyses to compare sequences obtained from this study to other relevant diatom genera. Fragilaria striatula was selected as an appropriate outgroup based on an initial blast analysis of a range of diatom genera, which suggested that they were most closely related to D. geminata from sequences held by GeneBank. Confidence measures using PAUP* (Swofford, 1998) such as bootstrapping were tested to assess for potential errors inherent in phylogeny. Bootstrap analysis was conducted using 1,000 pseudoreplicates to approximate the posterior probability of tree construction and to assess the support of individual clades and thus the relative confidence of the NJ, ML, and MP trees (Felsenstein, 1976).

3.3. Design of *D. geminata*-specific primers

The purpose of this protion of the study was to design PCR primers specific to *D. geminata*. Based on aligned sequences of *D. geminata* from New Zealand *Cymbella* spp., New Zealand *Gomphoneis* spp., and the other diatoms, five primers were designed to specifically amplify the 18S rDNA sequence of *D. geminata*. Several universal eukaryotic primers (Euk608F, Euk1000R, EukBR) and a diatom-specific primer (STRAM9F) were matched with our newly designed *D. geminata* primers (D602F, D753R, D1670R, D1565F, and D1659F) and tested in the PCR for their specificity and sensitivity to detect and amplify DNA from *D. geminata*. Our strategy here was to choose several alternative primer sets that would produce products of varying lengths. This is consistent with our initial objective of developing a low-level detection capability and later objective to move the protocols to a quantitative approach (QRT-PCR).

3.4. Validate primers against related species and environmental samples, establish sensitivity range of primers and optimise protocols for field samples

Our strategy was to develop the most sensitive detection capability by testing a variety of PCR primer sets made up of either *D. geminata*-specific primers or combinations with other universal or diatom specific primers. From these we would select, on the basis of specificity and sensitivity, primer sets to optimise and further validate.

An initial set of primer combinations was designed on the basis of PCR compatibility (Table 1 and Figure 12). Twelve *D. geminata*-specific combinations were initially tested. Primers were first optimised, using our *D. geminata* 18S rDNA plasmid as template DNA. PCR was conducted with the same procedure outlined in Methods 3.1 with only slight changes based on the Tm (melting point) of the individual primers (Table 1). From these initial tests, two primer sets were chosen, one producing a long amplicon (1073 base pairs) and one producing a short amplicon (170 base pairs), for further optimisation and validation.

The first step was to optimise the PCR reactions for each individual primer set. Experiments were run under varying annealing temperatures to establish the highest optimal temperature for each primer set, which was defined as the highest annealing temperature where the final product did not diminish significantly. We assumed that this temperature provided the highest specificity.

These experiments were then repeated for the short primer set only with a gradient of DNA template concentration. The aim was to test that at these highly specific annealing temperatures we had not diminished the sensitivity of the reaction to detect the *D. geminata* target by increasing the specificity with higher annealing temperatures. Here we titred the *D. geminata* 18S rDNA-containing plasmid at 10-fold increments to extinction. The same experiment was rerun with the addition of 20 ng of exogenous environmental DNA from which *D. geminata* was absent. This provided an assessment of the sensitivity of the two primer sets to detect their native target when in the presence of non-homologous DNA.

Once the reactions for each primer set had been optimised using the *D. geminata* 18S plasmid, the specificity of the primers was tested on cloned 18S rDNAs and environmental samples containing *D. geminata* and non-*D. geminata* taxa (Table 2). Each of the primer sets was tested against each of the environmental templates. Any positive amplification was sequenced directly to validate the specificity of the amplification. This was particularly important in assessing the ability of the primers to amplify *D. geminata* out of a complex community of other organisms. The short *D. geminata* specific primer pairs (170 base pairs; Table 2) were initially validated against both species-specific 18S rRNA-containing plasmids of related species and environmental samples (Table 3).

Primer Combination	Estimated length
D602F and D753R	170bp
Stram 9F and D753R	774bp
Euk 608 F and D753R	228bp
D602F and Euk 1000R	367bp
Stram 9F and D1670R	1079bp
Euk608F and D1670R	1129bp
D602F and 1670R	1073bp
D602F and Euk B R	1198bp
Euk 1000F and D1670R	741bp
D1565F and D1670R	110bp
D1565F and Euk B R	235bp
D1659F and Euk B R	141bp

Table 2. Primer strategy of different primer combination sets, and estimated length of amplicons in base pairs (bp).

Table 3. Initial environmental samples and species-specific plasmids tested during primer validation.

Sample	Таха
AH-26	Cymbella sp. in environmental sample
AP-28	Cymbella kappii in environmental sample
AP-30	Gomphonema sp. in environmental sample
MAA001	Gomphoneis sp. 18S rRNA-containing plasmid
TAR009	Gomphoneis sp. 18S rRNA-containing plasmid
RAIFALLS 12	Cymbella, Aulacoseira, and Spirogyra in environmental sample
VR1-E1	Didymosphenia & other diatoms in environmental sample
VR2-E1	Didymosphenia & other diatoms in environmental sample
MA2-E1	Didymosphenia & other diatoms in environmental sample
VI-5	Didymosphenia sp. environmental sample (Vancouver Island)

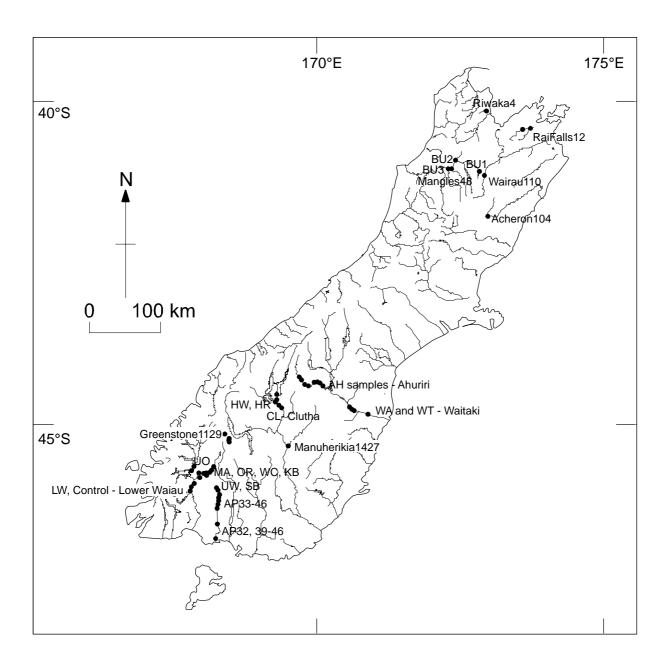
3.5. Blind test comparisons using DGGE and sequencing

The final series of experiments in Phase 1 were blind specificity tests. The purpose of these tests was to validate the working primers on environmental samples with and without *D*. *geminata*. The DGGE diatom-specific protocol was utilised to screen all environmental samples from both *D. geminata* and non-*D. geminata*-affected areas. We used this method as

a first pass to provide evidence of *D. geminata* (or lack thereof). We then subjected 64 templates to PCR amplification with the two newly designed *D. geminata*-specific primers (D602F and D753R). The samples from which the templates were taken are shown in Appendix 5 by the shaded rows. In the event of a positive amplification, the amplicon was sequenced to verify that the target that had been amplified was *D. geminata* and only *D. geminata*. We used diatom-specific DGGE (Methods Section 3.2 above) as a blind test validation for each of the new PCR primer sets specific for *D. geminata* on 21 selected samples from New Zealand and 22 international samples. The DGGE clearly identified differentiated samples contained *D. geminata* from those containing other diatoms but not *D. geminata*. Each of these same samples was amplified using the newly designed *D. geminata*-specific primers. PCR products were then run out an agarose gel in the procedure outlined above to verify amplification. Positive amplifications were subsequently purified using a GenScript PCR cleanup kit (GeneScript, Inc.) and sequenced. Sequences were then aligned with the *D. geminata* plasmid sequenced previously to determine if the primers were specifically amplifying *D. geminata* 18S rDNA.


Results

1. Protocol for collection and stabilization of environmental samples


1.1. Field collection protocol for both water and surface samples

The field collection procedures outlined in the methods have been very effective in sampling benthic samples of *D. geminata* and other taxa. We were able to extract DNA from all sample types stabilised in either CTAB or 70% ethanol. These included picking likely looking *D. geminata* colonies or other periphytic algae from rocks, all samples of bare rock using cotton swabs, and the drift net samples of the water column. The nucleic acid yield of all these extractions are tabulated in Appendix 5. Successful DNA extraction was verified by gel electrophoresis by our standard protocol (see Methods 2.1 above) followed by Nanodrop spectrophotometry. Samples from the North Island were concentrated in the Taranaki area and the central North Island (Figure 4), whereas South Island samples were more widely distributed (Figure 5).

Of particular note was the success of our drift-net sampling rig. The nested drift net sampling excluded clumps of drifting stalk material and other debris whilst still allowing collection of algal cells. This is important because DNA from extraneous material can swamp the target DNA during the extraction process. In 10 minutes we sampled 5.65 m³ of water and trapped about 1.39 cm³ of algal cell material in the finest mesh (47 μ m). The algal material was about 25% *D. geminata* cells; *Synedra* sp. comprised the majority of the sample, with fragments of *D. geminata* stalk material and short pieces of unidentified filamentous green algae.

Figure 4. Location of sampling sites in the North Island, showing 6th order rivers and greater. See Appendix 5 for sample codes and river names.

Figure 5. Location of sampling sites in the South Island, showing 6th order rivers and greater. See Appendix 5 for sample codes and river names.

1.2. Field collection thresholds and longevity

DNA was successfully extracted from all swab samples analysed so far. This demonstrates that the biofilm on apparently clean rocks in affected or clean rivers can easily be monitored for the presence of *D. geminata*. The further treatment and extraction of samples in the threshold and longevity experiments is described in Methods Section 2.2.

1.3. Extensively sample all known *D. geminata* affected areas

In total, we collected 103 samples from 11 rivers in the South Island (Table 4). *D. geminata* was visually determined to be present at all sites sampled but was sparse at the two lower sites in the Buller River as sampling followed a flood on 25 April that had scoured the river bed. DNA was extracted from samples at all *D. geminata*-affected sites (Appendix 5). At known affected sites, *D. geminata* DNA was found in all swabs of bare substrate with no apparent colonies of *D. geminata* or other algae (see Methods section 3.5). The Aparima River was inaccessible because of flooding on 11 May, so only one sample was obtained.

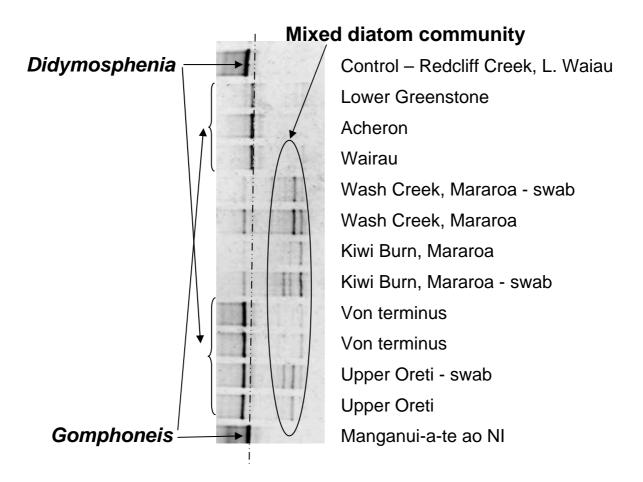

River	Number of sites	Number of samples
Ahuriri	3	12
Aparima	1	3
Buller	3	12
Clutha	3	12
Hawea	3	12
Upper Waiau	2	2
Lower Waiau	3	6
Mararoa	3	12
Oreti	3	12
Von	2	8
Waitaki	3	12

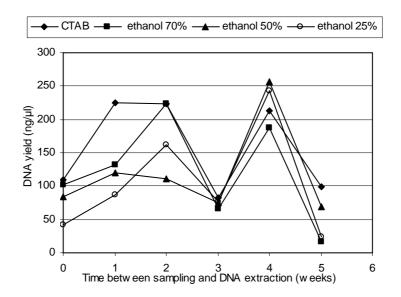
Table 4. Rivers sampled for *D. geminata* in the South Island, New Zealand, from 9 to 12 May 2006.

1.4. Sample all other related species as controls

New Zealand freshwater ecosystems contain many diatoms that may co-exist with *D*. *geminata* and that may be mistaken for *D*. *geminata* by the untrained eye. Detection of *D*. *geminata* on substrates is confounded by the existence of other morphologically similar co-existing taxa such as *Gomphoneis* and *Gomphonema* that also form light brown, epilithic turfs in clear-water, gravel-bedded streams and rivers. Other common components of epilithic algal communities include diatoms such as *Cymbella*, *Synedra*, and *Fragilaria*. Three native diatom genera were collected as controls: *Gomphoneis*, *Gomphonema*, and *Cymbella kappii*. DNA from all of these control species were extracted using the CTAB extraction method, and the 18S rRNA gene sequenced. The purpose of this sequencing was to acquire the 18S rRNA sequence to ensure that primers developed for *D*. *geminata*

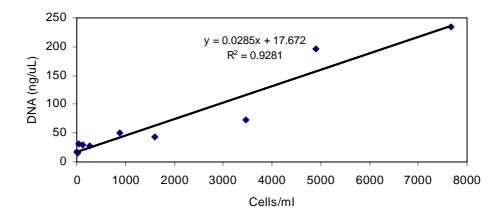
The sequences of the control taxa were aligned with our *D. geminata* sequence. This alignment showed that the 18S rRNA contained several regions that are clearly unique and distinguishing to *D. geminata*. These regions provided suitable sites to design *D. geminata*-specific PCR primers for low-level detection. DGGE (see Methods 3.2 and Appendix 1) using diatom-specific primers successfully distinguished *D. geminata* from native *Gomphoneis* sp., and revealed a complex diatom community occurring with *D. geminata* in the Mararoa, Von, and Oreti rivers (Figure 6). These same DGGE profiles were used to identify specific samples enriched in one taxon, (e.g., Manganui-a-te-ao North Island sample shown in Figure 6).

Figure 6. Discrimination of *D. geminata* and *Gomphoneis* sp. by denaturing gradient gel electrophoresis (DGGE). The dashed line identifies *Gomphoneis* sp.


2. Protocol for extraction of DNA from D. geminata

2.1. Extraction protocol experimentation

We collected a total of 307 environmental samples, and have so far extracted DNA from 182 of these (Appendix 5). Out of the 182, we obtained high-quality DNA that was PCR-amplifiable from all samples. These included samples preserved both in CTAB and ethanol regardless of sampling technique (swab, benthic sample, drift net collection). The extraction and preservation protocols developed in this study have performed extremely well. However, we have experienced some non-linearity with the extraction efficiency and yield at high cell and DNA concentrations.


2.2. Validation of DNA extraction efficiency and recovery

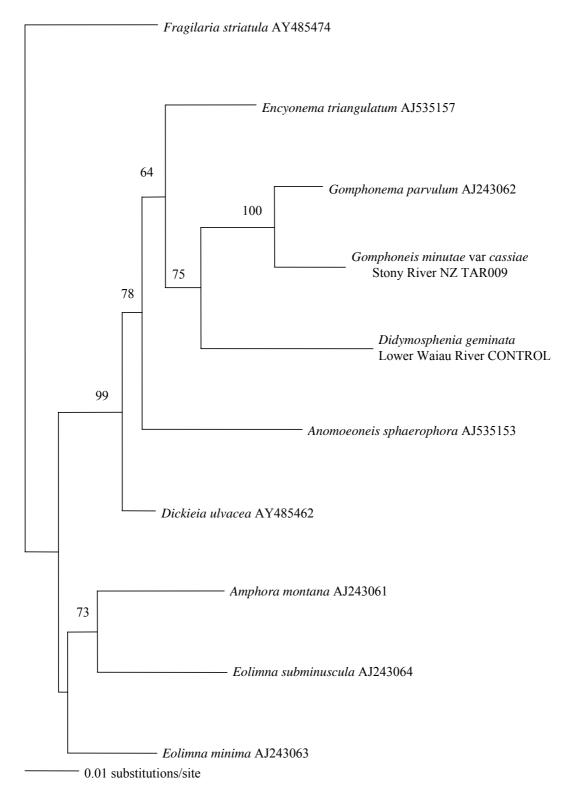
In the longevity experiment, DNA was successfully extracted from all 48 samples over a total period of 5 weeks in the DNA extraction validation experiment (see Methods 2.2). This suggests that the CTAB method of DNA extraction is very effective on *D. geminata*. However, overall DNA yields for longevity were inconsistent and not reproducible between replicates (Figure 7). No bias towards any particular preservative (ethanol or CTAB) was evident, with most samples spread over a wide range of yields between periods.

Figure 7. DNA yield $(ng/\mu l)$ of different samples of *D. geminata* exposed to four different treatments (70% ethanol, 50% ethanol, 25% ethanol, and CTAB) over a period of 5 weeks.

In the extraction efficiency experiment, there was a linear relationship between the cell density and DNA yield (Figure 8). The results show that we can reliably extract DNA from as few as 6 cells/ml, and the lower detection limit might be even lower. Variable DNA quantitation occurs at this level because the lower limit of detection of the Nanodrop Spectrophotometer, on which the DNA yield was quantified, is about 5-10 $ng/\mu L$.

Figure 8. Relationship of DNA yield to cell density in a suspension of *Synedra* sp. and *D*. *geminata* cells collected by drift net sampling in the Mararoa River, Southland.

3. Design and validation of primers for low level detection of D. geminata


3.1. Sequence D. geminata 18S rRNA gene

The initial sample preserved in vodka produced high quality DNA using the CTAB extraction method. PCRs carried out on this enriched *D. geminata* sample using the eukaryotic 18S rRNA primers EukA and EukB were successful. From this enriched sample, we used PCRs to produce 20 clones with correct size inserts all with identical restriction patterns. We therefore only proceeded with three clones for further sequencing analysis. The whole 18S rDNA gene was sequenced for *D. geminata* using the vector-containing flanking M13 regions and internal priming sites 608 F/R and 1000 F/R. This produced complete bidirectional coverage of the whole 18S rDNA gene (Table 1). Sequencing reactions were attempted at least once in the forward and reverse direction on each clone to ensure accurate sequence information, and to assist in any ambiguous base calling. All sequences were edited and aligned to produce a consensus sequence, which was used for all subsequent analysis. The sequence of the inserts from the three clones with similar restriction patterns were 99.8% identical. The consensus sequence produced is the putative D. geminata 18S rDNA sequence for validation using PCR, DGGE, and further sequence analysis of other environmental samples. The full sequence of the D. geminata 18S rDNA is shown in Appendix 3.

3.2. Sequence same regions of related gomphonemoid taxa

DGGE was successfully used to identify environmental samples enriched in other diatom species (e.g., Figure 6 above). From these analyses several samples were selected for continued analysis. Following the same cloning protocol used for the *D. geminata* 18S rDNA, we extracted, screened with DGGE, cloned, and sequenced the full 18S rDNA sequence for a related *Gomphoneis* sp. from the North Island and *Cymbella* sp. from the Ahuriri River. These species were combined with seven other diatom species' 18S rRNA sequences available in the GenBank database and aligned with *D. geminata* in order to construct a phylogenetic tree. Using several inference programs we obtained and validated the topology of this tree (Figure 9). This same alignment was then used to identify variable areas around which we designed *D. geminata*-specific primers for PCR and probes for QRT-PCR (Phase 2b).

After close examination of the *D. geminata* 18S rRNA with other known closely related diatoms, it was clear that *D. geminata* contained the needed variability to develop appropriate species-specific primers. The full sequence of the 18S rDNA for New Zealand *Gomphoneis* from Stony River, Taranaki (TAR009; Appendix 5) is shown in Appendix 4. The resulting tree showed two distinct clades (Figure 9). These results extend the biraphid phylogeny suggested by Beszteri et al. (2001). *D. geminata* was positioned in the same clade as NZ *Gomphoneis* and *Gomphonema parvulum* obtained from GenBank, showing their close relatedness. The similarity between *D. geminata* and *Gomphoneis* and *Gomphonema parvulum* (95 and 96% respectively) and other biraphids can be seen in Table 6. New Zealand specimens of *Gomphonema* sp. and *Cymbella kappii* are currently being sequenced, and will be added to the tree.

Figure 9. Phylogenetic tree, with bootstrapping support indicated, for New Zealand *D. geminata* and related biraphid diatoms developed from the maximum likelihood technique with PAUP* based on 18S rRNA sequences. Those with accession numbers were obtained from GenBank.

Table 5. Percent similarity of biraphid taxa to D. geminata.

	Didymosphenia geminata	Gomphoneis sp.	Gomphonema parvulum	<i>Cymbella</i> sp.	Dickieia ulvacea	Eolimma minima	Amphora montana	Encyonema triangulatum	Anomoeoneis sphaerophora	Eolimma subminuscula	Fragilaria striatula
Didymosphenia geminata	-										
Gomphoneis sp.	95	-									
Gomphonema parvulum	96	98	-								
<i>Cymbella</i> sp.	92	92	93	-							
Dickieia ulvacea	96	96	97	93	-						
Eolimma minima	94	95	96	92	97	-					
Amphora montana	94	95	96	91	97	97	-				
Encyonema triangulatum	94	96	97	93	97	96	95	-			
Anomoeoneis sphaerophora	93	95	95	91	96	95	95	95	-		
Eolimma subminuscula	92	92	93	89	94	95	95	92	92	-	
Fragilaria striatula	94	95	96	91	96	97	96	95	95	94	-

3.3. Design of *D. geminata*-specific primers

Based on the provisional alignments of the ten taxa, we were able to identify five areas of sequence variability that allowed us to design five *D. geminata*-specific primers (Table 6). The full 18S rDNA sequence, indicating primer positions across the whole sequence, is presented in Appendix 6. Our strategy was to use these five *D. geminata*-specific primers either together or in combination with other more universal primers (universal or diatom specific) to obtain the most specific and sensitive set for low level *D. geminata* detection. In total, 11 primers were used to cover the full 18S rDNA sequence (Figure 10 and Table 7). The requirements for low-level detection (Phase 1) and quantitation by QRT-PCR (Phase 2b and 3) are different but will be tested and optimised here collectively.

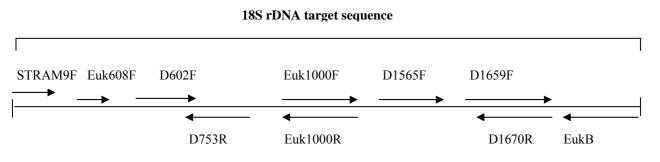
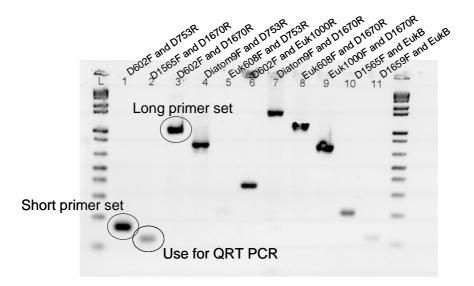


Figure 10. Primer positions indicated across the full 18S rDNA sequence.

Table 6. A) A representation of two sections of the full gene alignment where two of the *D*. *geminata*-specific short primer sets (D602F and D753R) were designed. B) IUB degenerate base code table used for the consensus sequences in Table 6A. The source of Table 6B is *http://www.cortec.ca/iubcodes.htm*.

Taxon															D	602	?F p	rim	er													
Consensus sequence	Т	С	G	Т	А	G	Т	Т	G	R	А	Υ	Κ	Т	G	Т	G	R	Υ	D	Ν	Ν	D	Υ	В	В	Ν	D	Ν	Ν	D	ΥY
Amphora montana	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	G	Т	G	-	G	Т	С	С	С	Т	G	А	G	G	т с
Anomoeoneis sphaerophora	Т	С	G	Т	А	G	Т	Т	G	А	А	С	Т	Т	G	Т	G	А	Т	G	G	А	А	С	Т	G	А	А	Т	G	А	С Т
Cymbella	Т	С	G	Т	А	G	т	Т	G	G	А	Т	G	Т	G	Т	G	G	Т	А	А	С	Т	Т	Т	С	А	G	С	G	G	т С
Dickieia ulvacea	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	G	Т	G	-	G	Т	Т	Т	С	Т	G	А	Т	G	т с
Encyonema triangulatum	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	G	Т	Т	-	G	А	Т	Т	G	G	А	G	А	G	т с
Eolimna minima	Т	С	G	Т	А	G	т	Т	G	G	А	Т	Т	Т	G	Т	G	G	Т	Т	Т	G	Т	т	G	С	А	Т	G	G	Т	с с
Eolimna subminuscula	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	G	Т	G	С	G	А	С	Т	G	С	G	G	С	G	т с
Fragilaria striatula	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	G	Т	Т	G	G	G	Т	С	С	G	Т	С	G	G	т С
Gomphonema parvulum	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	G	С	А	G	Т	G	С	Т	С	G	А	G	Т	G	с с
NZ Gomphonesis sp.	Т	С	G	Т	А	G	Т	Т	G	G	А	Т	Т	Т	G	Т	G	А	Т	G	А	Т	G	С	Т	Т	G	G	G	А	G	с с
NZ Didymosphenia geminata	Т	С	G	Т	A	G	Т	Т	G	G	A	Т	Т	Т	G	Т	G	A	Т	G	G	A	A	Т	Т	Т	G	A	A	Т	A	СТ
Taxon															D75	53R	pri	mei	r													
Consensus sequence	Α	А	G	С	А	R	R	С	Т	Т	А	Υ	G	Υ	Υ	V	W	Т	G	А	А	Т	R	Т	А	W	Т	А	G	С	А	Т
Amphora montana	Α	А	G	С	А	G	G	С	Т	Т	А	С	G	С	С	G	Т	Т	G	А	А	Т	А	Т	А	Т	Т	А	G	С	А	Т
Anomoeoneis sphaerophora	Α	А	G	С	А	G	G	С	Т	Т	А	Т	G	С	С	G	Т	Т	G	А	А	Т	G	Т	А	Т	Т	А	G	С	А	Т
Cymbella	Α	А	G	С	Α	G	G	С	Т	Т	А	Т	G	С	С	А	Т	Т	G	Α	А	Т	G	Т	А	Т	Т	А	G	С	А	Т
Dickieia ulvacea	Α	Α	G	С	А	G	G	С	Т	Т	А	Т	G	С	С	G	Т	Т	G	А	А	Т	G	Т	А	Т	Т	А	G	С	А	Т
Encyonema triangulatum	Α	Α	G	С	А	G	G	С	Т	Т	А	Т	G	С	С	G	Т	Т	G	А	А	Т	G	Т	А	А	Т	А	G	С	А	Т
Eolimna minima	Α	А	G	С	А	G	G	С	Т	Т	А	Т	G	С	С	G	Т	Т	G	А	A	Т	A	Т	А	Т	Т	А	G	С	А	Т

A) Full gene alignment for D602F and D753R primers.


 Eolimna subminuscula
 A
 A
 G
 C
 A
 G
 C
 T
 T
 A
 T
 G
 C
 A
 T
 A
 T
 G
 C
 A
 T
 A
 T
 G
 C
 C
 G
 T
 T
 G
 C
 C
 T
 T
 A
 T
 G
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T
 A
 T

B) IUB code table for degenerate bases in the consensus sequences in Table 7A.

IUB (Degenerate Bases) Code Table											
IUB Code	N	v	В	Н	D	К	S	w	М	Y	R
Bases	A,C,G,T	G,A,C	G,T,C	A,T,C	G,A,T	G,T	G,C	A,T	A,C	C,T	A,G

3.4. Validation of primers against related species and environmental samples, establish sensitivity range of primers, and optimise protocols for field samples

An initial series of PCR reactions allowed us to triage the possible primer combinations down to those that provided a successful robust amplification using the cloned *D. geminata* 18S rDNA as template (Figure 11). All but two initial PCR tests on the *D. geminata* plasmid with the different primer sets were successful based on amplicon length. Figure 11 shows that all primer sets produced visible bands. However, the bands for Euk608F and D753R, and D1659F and EukB were barely visible. Optimisation of the PCR reactions for each primer set will improve and ensure optimal specificity and sensitivity for their target. We found two groups of successful amplicons based on size (small 100-150 base pairs and large at 1068 base pairs) that contained the needed variability in both length and sequence. For the purposes of developing a low-level detection method to be resolved using gel electrophoresis (Phase 1), we would choose a primer set producing the largest amplicon possible. However, the requirements for QRT-PCR (Phase 2b and 3) are that the amplicon be much shorter (100-400 base pairs). From these initial experiments we chose one primer set producing a long amplicon (D602F and D1670R) and one producing a short amplicon (D602F and D753R) for further analysis and optimisation.

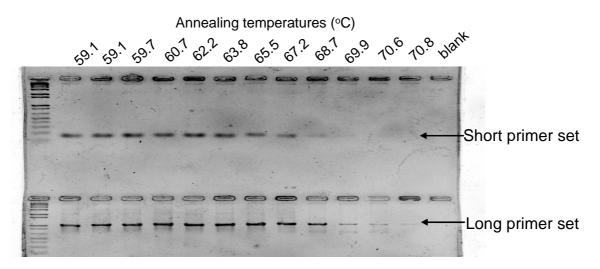
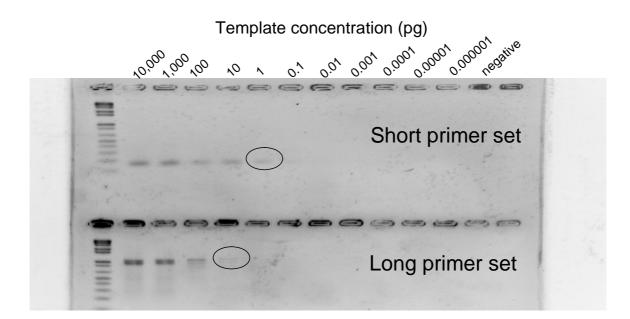


Figure 11. *D. geminata* primers tested in combination with each other and universals in a 1% agarose sodium boric acid (SBA) buffer gel screened on *D. geminata* plasmids.

PCR primer optimisation


As part of the PCR optimisation process, we tested specificity and sensitivity of primers. Increasing the annealing temperature of the PCR reaction can dramatically increase its specificity. This is, however, at the expense of the amount of final product produced. To test specificity, we increased the annealing temperature across a gradient produced on the PCR instrument for the long and short primer set. Our specific objective was to take the temperature high enough that the reaction does not take place at all (primer burn off). With

this full gradient we are able to pick a temperature where we have maximum specificity with maximum amplicon yield. Figure 12 shows the temperature gradients for each of two primer sets. The optimal annealing temp is usually about 5 to 8°C below burn off. For the short primer set (D602F and D753R), burn off occurred at 68.7°C, and thus we chose 60°C as the optimum annealing temperature. For the long primer set (D602F and D1670R), burn off occurred at 70.8°C, and thus we chose 65°C as the optimum annealing temperature.

Figure 12. Annealing temperature gradient for long (D602F and D1670R) and short (D602F and D753R) primer sets for *D. geminata* in a 1% agarose sodium boric acid (SBA) buffer gel.

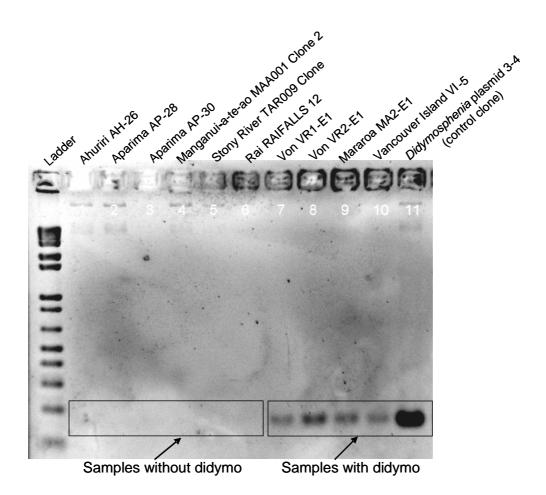
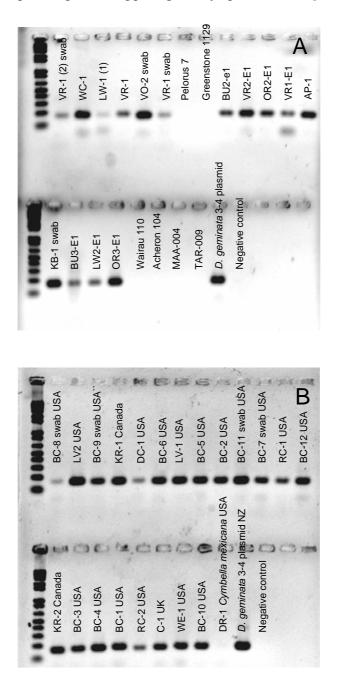

We proceeded to test sensitivity, given that we optimised the reaction conditions for each primer set (above). We then subjected these same primers to template at decreasing concentrations. Here again our object was to verify that given the new optimised reaction conditions we have not dramatically reduced the sensitivity of the primers to detect their target. Under optimal template conditions, the short primer set could detect 1 pg of DNA and the long primer set could detect 10 pg of DNA (Figure 13). From past experience, these primers are both extremely sensitive given the conditions of the reaction. Since the evaluation is being conducted visually on an agarose gel, our detection sensitivity is limited to PCR products ≥ 10 ng. When the method is moved to a QRT-PCR approach (Phase 2a and 2b), we can expect sensitivity to increase by 4 to 5 orders of magnitude.

Figure 13. Visualized PCR reactions with titred *D. geminata* plasmid (10 ng to 1 ag) for long (D602F and D1670R) and short (D602F and D753R) primer sets for *D. geminata* in a 1% agarose sodium boric acid (SBA) buffer gel.

Preliminary primer validation experiments

Preliminary validation of the two primer sets began with amplification of *D. geminata* clones and *D. geminata*-containing environmental samples with both the long (1073 bp) and the short (170 bp) primer sets (Table 2). However, the long primer set failed to amplify some samples known to have *D. geminata*. The short primer set amplified all samples known to contain *D. geminata*. Thus, we proceeded to validate only the short primer set at this time (Figure 14). For the validation, we used four samples known to contain *D. geminata* (VR1-E1, VR2-E1, MA2-E1, VI-5, a *D. geminata* plasmid) and six thought to be *D. geminata*-free (AH-26, AP-28, AH-30, MAA001 Clone 2, TAROO9 Clone, RAIFALLS 12; see Appendix 5 for sample codes). In each case using the optimised reaction conditions, the short primer set only amplified samples with *D. geminata*. Where a positive amplification was obtained, the amplicon was sequenced directly and shown to be *D. geminata*.


Figure 14. Preliminary primer validation of *D. geminata*-specific primers D602F and D753R used on environmental samples run in 1% agarose sodium boric acid (SBA) buffer gel with 18S rDNA obtained from PCR. *D. geminata* plasmid 3-4 was used as a control; sample codes are given in Appendix 5.

3.5. Blind test comparisons using DGGE and sequencing

All DGGE screening and sequencing validated the presence of the genetic marker in environmental samples with *D. geminata*. Subsequent sequencing verified environmental samples of *D. geminata* were amplifying the correct sequence they were designed for within the 18S rDNA region (Figure 15). Samples from sites known not to have *D. geminata* failed to amplify (as determined by gel electrophoresis) and therefore were not processed further.

Twenty-one environmental samples from New Zealand were chosen at random and screened using the *D. geminata*-specific primers DGGE, and sequencing (Figures 15A and B). A dark band under the label indicates a positive, e.g., VR1 (2) swab and WC1, and a blank in the same row indicates a negative, e.g., Pelorus 7 and Greenstone 1129. In all cases where *D. geminata* was shown to be present by DGGE analysis, amplification using the *D. geminata*-specific primers was successful. In cases where *D. geminata* was known not to occur and did not appear in the DGGE analysis, the amplifications using the *D. geminata*-specific primers were unsuccessful. Where the *D. geminata*-specific primers were successful, each amplification product was sequenced and shown to be *D. geminata*. This blind test survey showed that the *D. geminata* -specific short primers uniquely identified *D. geminata*.

In a second similar survey, 22 global environmental samples were surveyed using the same protocols (Figure 15B). All samples thought to contain *D. geminata* sp. were strongly positive with the short *D. geminata*-specific primer set. This indicates that the custom designed *D. geminata*-specific primers appear globally specific to *D. geminata*.

Figure 15. Blind test survey of miscellaneous environmental samples from (A) within New Zealand and (B) outside New Zealand whose *D. geminata* status was not known *a priori*. Samples used in these surveys are shaded in Appendix 5.

Conclusions

The primary objective of this study was to develop a highly sensitive detection and enumeration protocol to aid in the early detection of *D. geminata*. However, an additional intent was to use *D. geminata* as a model incursion to evaluate the feasibility of using molecular genetic approaches for early incursion surveillance of microorganisms in general. The results presented above represent the first phase of this ongoing study where we have designed robust and inexpensive sampling and DNA extraction protocols, sequenced the 18S rDNA of *D. geminata*, and designed, tested, and validated a highly sensitive PCR-based detection capability. These techniques are completely amenable to Real Time Quantitative PCR for direct enumeration (Phase 2a, b) and ultimately for the high throughput needs of a national surveillance programme. This entire process took six months to achieve and yet could have been considerably quicker had the needed DNA sequence data been available. If these new genetic tools were to become part of the arsenal of future incursion responses, it would be fitting to identify possible threat species and attain the needed data prior to an incursion.

1. Developed protocol for collection and stabilization of environmental samples

The validation process on all DNA extracts have shown that samples stabilised in CTAB and 70% ethanol yielded high quality DNA. Cells appear to be well stabilised, producing DNA of excellent quality and abundance as determined by DNA quantitation, DGGE, and sequencing. Direct immersion of field samples into the non-toxic CTAB buffer or 70% ethanol is therefore an effective tool for stabilisation of environmental periphyton samples. The DNA preserved in this fashion was stable for at least 5 weeks at room temperature making this method amenable to deep-field and worldwide collections. The overall yield inconsistencies seen in the longevity experiment will be further investigated. The methods are inexpensive and rapid, thus ideal for the high throughput requirements of a national surveillance programme.

2. Developed protocol for extraction of DNA from D. geminata

Our extraction procedures have worked consistently and reliably on all samples, with only a few that delivered very low DNA yields. Both ethanol and CTAB are suitable preservatives, and are not obviously affected by storage at ambient temperatures up to 26° C for 5 weeks. Considering the short time that experimentation has been underway, we feel that we have made remarkable progress. Some challenges remain, especially in the area of DNA recovery at high cell densities. However, this was not the objective of this contract where we were commissioned to develop a low level detection capability. With both the collection and extraction protocols developed for *D. geminata*, the foundation was set for an extremely successful programme of research into reliable early detection.

3. Designed and validated primers for low level detection of D. geminata

We successfully sequenced the full 18S rRNA genes from *D. geminata* and two other biraphid diatoms from New Zealand and constructed a phylogenetic tree of relatedness with other known biraphid diatoms. These analyses provided the needed evidence that the 18S rRNA contained the required sequence heterogeneity from which *D. geminata* specific PCR

primers could be designed. Seven *D. geminata*- specific PCR primers were designed and tested against *D. geminata* template for specificity and robustness. Two pairs were selected for further evaluation. Repeated blind testing against environmental samples using DGGE and sequence analysis has validated both primer sets, and shown them to be highly specific for *D. geminata*. The shorter of the two primer sets was found to be the most sensitive at detecting *D. geminata* in preliminary tests. This same primer set was further shown to amplify *D. geminata* from all foreign samples currently in our possession, making the developed tool of international importance.

Having the ability to detect and monitor the very early phases of an incursion by a microorganism provides substantial benefits to any response effort. In the case of *D. geminata*, early detection in unaffected rivers will 1) enable better targeting of public awareness messages to urge freshwater users to Check Clean Dry to slow its spread, 2) increase the probability of successful control, should a control tool be developed, and 3) provide robust and simple sampling protocols using water samples compared to benthic scrapings that are easier for surveillance staff to perform. The genetic tools being developed for *D. geminata* are amenable to a high throughput capability that will dramatically increase our ability to analyze large numbers of samples in a short period of time, thus increasing the efficiency of any surveillance programme without greatly increasing costs. In addition, developing these basic genomic protocols will facilitate further studies on genetic diversity and phylogeography of *D. geminata* that could shed light on the number of introductions that have occurred in New Zealand and identify the country of origin.

Our research has shown that amplification of genetic material from a very small initial quantity offers the potential for the earliest possible detection of *D. geminata*. In a world-wide first, we have identified its unique genetic fingerprint, developed a field collection technique that can collect drifting algal cells, and developed laboratory procedures that can reliably identify and amplify genetic material of *D. geminata* uniquely, distinguishing it from related diatoms.

General recommendations

Our central goal in this project is to develop an efficient and cost-effective detection capability for *D. geminata* that can be easily incorporated into existing monitoring efforts in the laboratory and field. We believe that the approaches taken for *D. geminata* are directly applicable to any microorganism that is an incursion threat to New Zealand. Our work during Phase I of the project provided valuable insight into *D. geminata* and how this same genetic-based detection strategy might be employed on other potential micro-organism threats. From this initial research we see the need and opportunity to develop capabilities that would have broad reaching application for both the current *D. geminata* incursion and the possible incursion of other harmful microorganisms in the future. We suggest that there is a substantial need for:

1. A high-resolution low-level enumeration capability. In Phase 1, we have developed a highly specific genetic-based detection capability for *D. geminata*. We have validated this approach with both laboratory and field applications. We now have the ability to advance this approach to be able to both detect and to determine the actual number for cells present in a sample with an even greater degree of sensitivity. Through the use of quantitative real-time PCR (QRT-PCR) methodologies we have the ability to increase the sensitivity of the detection and enumerate to counts as low as 1 cell/ml. This can be achieved in two steps: 1) development of a relative enumeration capability to accurately compare samples, 2) development of a full quantification capability capable of delivering

actual cell numbers. Taking the method to the level of enumeration will require using an internal standard to control for extraction and amplification efficiency. Such a detection/enumeration tool will be essential for detecting and monitoring new incursions and assisting in monitoring the results of any mitigation effort.

- 2. A national high throughput analytical capability. We envisage that a comprehensive monitoring effort will include both field and laboratory-based components. The recent study on monitoring methods (Kilroy and Dale 2006) suggests that the use of drift nets would best sample rivers where *D. geminata* is in low concentration. As described in this report, this method of cell enrichment is perfectly suited for these genetic-based detection tools. The laboratory high-throughput capability would provide 24-hour turn around and would be used for routine monitoring and surveillance efforts. The field detection capability would be used to target high risk areas (e.g. those frequently fished or adjacent to affected streams), affected streams, spot checking of hot spots and for rapid incursion response. In addition, the genetic detection tools would also be well placed to monitor the short and long term effects of any mitigation effort. Such a capability would require a substantial initial investment in instrumentation and personnel training. Once in place the new facility would be able to rapidly take on pre-incursion monitoring on any new threat species and could easily be incorporated into current surveillance efforts.
- 3. To determine the origin and frequency of *D. geminata* incursions. Efforts should continue to be undertaken to investigate the genetic variability of *D. geminata* in New Zealand. The rationale for wanting to know more about *D. geminata* genetic variation within the NZ populations is three-fold: a) it may help determine the geographical origin of the population and whether there were multiple introductions from different locations, which in turn may help b) determine the pathway by which the organism was likely introduced so that we can analyse strengthening certain border controls to reduce further introductions and c) investigate potential sources of effective biocontrol agents.
- 4. **For pre-incursion awareness and response.** The design and use of these genetic detection techniques on new incursion species requires specific genetic information be known about the organism. Often, this information is not available and needs to be obtained from questionable samples, thus delaying development and implementation of these detection tools. Developing a pre-incursion database of possible threat species with the needed basic genetic information would provide a substantial head start for the design of genetic-based detection tools should the need arise.
- 5. **To develop multi-species detection capabilities**. The possible introduction of harmful microorganisms to New Zealand by land or sea is a continuous threat. Should support be available, one might envision multi-species micro-organism gene "chips" being developed from a pre-incursion database and used for routine monitoring and surveillance. These gene chips are now available in a cost-effective re-useable format that would provide the same detection sensitivity but for a range of target organisms. Such a chip could be customized to meet the current needs of a range of stakeholders requiring this capability. Once in place, the chips can be easily adapted as new target organisms present themselves. The technology in currently in place and affordable.

Acknowledgements

We thank Cathy Kilroy and Barry Biggs from NIWA, Christchurch, for their unfailing cooperation, and especially Cathy for providing samples. We especially thank Christina Vieglais (Biosecurity New Zealand) for her unending support and enthusiasm for this work, and Sarah Spaulding of the United States Geological Survey for her constructive criticism and proof-reading. Stu Sutherland, Southland Fish and Game, was unstinting with help in planning and executing the May 2006 sampling, and provided many samples. Bill Jarvie, Southland Fish and Game, Graeme Hughes, Otago Fish and Game, and Rhys Barrier and Lawson Davey, Nelson/Marlborough Fish and Game, also helped with sample collection. MAF Biosecurity New Zealand funded the project. DNA sequencing was carried out by the Waikato DNA Sequencing Unit, Department of Biological Sciences, University of Waikato. We also thank Tom Neiderberger, Andreas Rueckert and Susie Wood for assisting at various stages of the project when more hands were needed.

References

- Biggs, B. F. and C. Kilroy (2000). Stream periphyton monitoring manual. Prepared for the New Zealand Ministry for the Environment. Christchurch, National Institute of Water and Atmospheric Research.
- Biggs, B.J.F. (2000). New Zealand Periphyton Guideline: detecting, monitoring and managing enrichment of streams. MfE, Wellington.
- CENR. (2000). National Assessment of Harmful Algal Blooms in US Waters, pp. 12-13. National Science and Technology Council Committee on Environment and Natural Resources, Washington, DC.
- Coyne, K. J. and S. C. Cary (2005). Molecular approaches to the investigation of viable dinoflagellate cysts in natural sediments from estuarine environments. *Journal of Eukaryotic Microbiology* 52:90-94.
- Coyne, K. J., D. A. Hutchins, C. E. Hare and S. C. Cary (2001). Assessing temporal and spatial variability in *Pfiesteria piscicida* distributions using molecular probing techniques. *Aquatic Microbiol Ecol* 24:275-285.
- Dempster, E. L., Pryor, K. V., Francis, D., Young, J. E., and Rogers, H. J. (1999). Rapid DNA extraction from ferns for PCR-based analyses. *Biotechniques* 27, 66-68.
- Felsenstein, J. (1976). The theoretical population genetics of variable selection and migration. Annual Review of genetics 10: 253-280.
- Kilroy, C. (2004). *Didymosphenia geminata* (Lyngbye) Schmidt: biology, distribution, effects and potential risks for New Zealand fresh waters. NIWA Client Report to Biosecurity New Zealand : CHC2004-128.
- Kilroy, C. and D. Dale. 2006. A comparison of monitoring methods for detection of the invasive alga *Didymosphenia geminata* in New Zealand rivers. Prepared for Biosecurity New Zealand. NIWA Client Report: CHC2006-078. National Institute of Water & Atmospheric Research Ltd, Christchurch.
- Larned, S. et al. (2006). Ecology of *Didymosphenia geminata* in New Zealand: habitat and ecosystem effects Phase 2 Interim Report. NIWA Client Report to Biosecurity New Zealand : CHC2006-086. National Institute of Water & Atmospheric Research Ltd, Christchurch.
- Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. *Gene* 71, 491-499.
- Mullis, K. B., and Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a

polymerase-catalyzed chain reaction. Meth. Enzymol. 155, 335-350.

- Nei, M.; Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. *Proceedings of the National Academy of Sciences of the United States of America* 76, 10: 5269-5273.
- Saito, K., Drgon, T., Robledo, J., Krupatkina, D., and Vasta, G. (2002). Characterization of the rRNA locus of *Pfiesteria piscicida* and development of standard and quantitative PCR-based detection. *Appl Environ Microbiol* 68, 5394-5407.
- Stryer, L. (1995). Genes for ribosomal RNAs are tandemly repeated several hundred times. *In* "Biochemistry" (L. Stryer, Ed.), pp. 992-993. W.J. Freeman and Co., New York, N.Y.
- Swofford, D.L. (1998). PAUP: Phylogenetic Analysis using parsimony (*and other methods). Sunderland, Massachusetts. Sinauer Associates Version 4.

Appendix 1. A primer on gene amplification (PCR) methodologies.

Approaches

Below is a brief primer on PCR and overviews of the methodological issues facing each of the milestones achieved in Phase 1. With our ultimate objective being to take the protocols to a high-resolution, high throughput, and quantitative level, each process, from collection to DNA amplification, must be extremely efficient, well controlled and highly validated. Hence, from the beginning of the program we have sought to develop each protocol with the highest quality assurance possible.

1. Polymerase Chain Reaction (PCR)

In this section, we will provide some fundamental information about the polymerase chain reaction (PCR) methodology and quantitative real time-PCR (QRT-PCR). While this knowledge may seem basic to some reviewers, we feel it is crucial to explain this technology for readers who may not have experience in the field of molecular biology. PCR is a method of amplifying specific fragments of DNA by primer extension. Analogous to "finding a needle in a haystack", the polymerase chain reaction "makes a haystack of needles". Each cycle of the reaction doubles the target sequence concentration, so that the fragment of interest can be amplified over a million fold after 30 cycles of the reaction. The particular stretch of DNA to be amplified is identified by a pair of DNA primers, or short oligonucleotides. Primers are complementary to unique stretches of DNA sequence and can be designed with different levels of specificity. Primers may be designed to amplify a target DNA sequence from a group of organisms, such as all eukaryotes or prokaryotes, or they may be specific to a class of organisms, such as the dinoflagellates or diatoms, or to a single species or strain. PCR is often used as a diagnostic assay. With extensive optimization amplification will occur only if the DNA from the organism is present in the reaction mix.

PCR reactions cycle between three steps, each at a defined temperature to achieve (i) dissociation of the DNA template, (ii) annealing of the primers to the template, and (iii) extension of the primers by the polymerase enzyme. The use of a thermostable polymerase enzyme allows the dissociation of the double stranded DNA and subsequent annealing or hybridisation of primers to the target sequence in a single tube with minimal loss of enzymatic activity (Mullis and Faloona, 1987). Conventional PCR typically requires about two hours to complete, and the amplification products are then analyzed by gel electrophoresis. The entire reaction is carried out in a thermal cycler, designed to cycle through and maintain very precise temperatures for each step in the reaction. Thermal cyclers are available with the capacity to run up to 384 reactions at a time, making this technology ideal for high-throughput diagnostic analysis of environmental samples.

2. Develop protocols for the collection and stabilization of environmental samples

D. geminata is a stalked diatom that forms dense, persistent mats and trailing strands attached to many different types of substrate, such as rocks and branches. Cells can also exist without stalks adpressed to substrates. A field collection survey was developed to sample visible colonies and to test surface substrates, using scraping and swabs of rocks. Techniques for sampling cells in the water column while excluding floating debris were also developed and tested.

The longevity and stability of DNA in transport and storage can often be problematic because DNA will often degrade if proper storage procedures are not followed. The specific requirements of DNA from *D. geminata* were unknown. Preferably, samples should be refrigerated or frozen as soon as possible in conjunction with stabilisation, and some

investigations have resorted to transport in liquid nitrogen to overcome loss of DNA stability. Unfortunately these processes are often impractical because of logistical constraints. Traditional preservative methods have included Lugol's fixative or 2% formaldehyde, but their inhibitory side effects for PCR make them impractical methods of stabilisation in this context. We therefore investigated alternative techniques of stabilisation for field samples of *D. geminata* samples over time for transport and short-term storage. There are many approaches that are available as possible alternatives for stabilisation, for example, direct sample immersion into reagents such as concentrated salt solution or a DNA extraction buffer. Both of these methods have been tested successfully on environmental samples in the field with exceptional results (see Coyne *et al.*, 2001).

3. Develop protocols for extracting DNA from D. geminata

DNA extraction from environmental samples can provide a separate set of challenges. Co-precipitating substances such as polysaccharides or humic acids have been found to inhibit subsequent molecular applications. We have been very successful in extracting high quality DNA from environmental water and sediment samples using a CTAB protocol and used this method as our initial method for *D. geminata* DNA extraction and amplification. The method has been successfully used 24 for extracting DNA from other highly mucilaginous algal species (Raphidophyceae, see Coyne et al., 2005) and we were confident that it could be adapted to *D. geminata*. It also has the advantage in that it can be adapted to a standard 96-sample capacity to increase overall throughput.

4. Design and validate primers for low-level detection of D. geminata

Our aim was to design and validate PCR primers specific for *D. geminata*. We have extensive experience in designing PCR primers to assess the presence of bacterial and eukaryotic organisms in environmental samples at the strain, species, genus and class level. From this experience, we have developed very specific guidelines for the design of PCR primers for environmental targets. For the *D. geminata* PCR method, genus- or species-specific PCR primers were designed for the 18S ribosomal RNA (rRNA) gene sequence. This gene contains the necessary variability to distinguish between species, such as *D. geminata* and the other indigenous species. However, if strain-level detection were necessary, primers could easily be designed for the intergenic transcribed sequence (ITS) of the ribosomal operon. Both of these areas of the genome have conserved and variable regions, and are ideal for phylogenetic analysis or diagnostic PCR. In addition, algal species typically have tens to hundreds of copies of the ribosomal operon (Saito *et al.*, 2002; Stryer, 1995). Because of this, we routinely are able to achieve amplification from DNA that has been diluted to less than 1 cell equivalent in the reaction mix, with a final sensitivity of detection on the order of 10 cells of target species per litre of environmental water (Coyne et al., 2001).

5. Denaturing Gradient Gel Electrophoresis (DGGE)

Since *D. geminata* has not been successfully cultured and the 18S rRNA gene had not been sequenced, a suite of culture-independent molecular approaches were to be used to obtain and verify the *D. geminata* rRNA gene sequence directly from environmental samples. This approach includes identification of clean samples of *D. geminata* and other related indigenous diatoms by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing of the *D. geminata* 18S rRNA gene. This will be followed by design and testing of *D. geminata* species-specific primers for PCR amplification of the full-length gene from environmental samples. DGGE is used extensively in environmental community analysis to provide DNA "fingerprints" of eukaryotic and prokaryotic communities. DGGE separates

DNA fragments based on minor differences in sequence providing an overview of the dominant organisms in a given sample. In this process, a variable region within the 18S rDNA gene is amplified by PCR and fractionated by gel electrophoresis through a gradient of increasing chemical denaturant, producing a banding pattern where each band represents a unique species. Banding patterns produced by samples from multiple locations can be compared to identify the organism of interest. Bands may then be excised and sequenced. We routinely use DGGE as a tool to "fish" out short fragments of genes from organisms that have never been cultured. These small fragments can then be used to design PCR primers which, when paired with universal primers, allow us to amplify and retrieve the entire 18S rRNA gene. As the initial step, the DGGE method searches through many samples for those enriched in a given organism and free from other contaminating species. These enriched samples can then be cloned and the target organism more easily identified and sequenced. Prior to this project we developed a diatom-specific DGGE capability that will allow us to examine the diatom community within environmental samples. This provides a quick assessment of the presence of *D. geminata* and the structure and complexity of the diatom community in any environmental sample.

Once the target gene sequence is validated, *D. geminata* specific primers will be further evaluated for specificity and sensitivity of detection. Ground truthing and validation will be carried out with artificial and natural communities spiked with *D. geminata* DNA.

Appendix 2. Method of making CTAB (cetyl trimethyl ammonium bromide) extraction buffer.

CTAB (cetyl trimethyl ammonium bromide) buffer is also known as hexadecyl trimethyl ammonium bromide, and comprises 100 mM tris-HCL (pH 8.0), 1.4 M NaCl, 2% (w/v) cetyltrimethylammonium bromide (CTAB), 0.4%(v/v) ßmercaptoethanol, 1% (w/v) polyvinylpyrollidone, 20 mM EDTA (Dempster et al. 1999).

Method

Add 70 ml of 5M NaCl (pH 8.0), 10 ml 0.5M EDTA, and 12.5 ml 2M Tris (pH 8.0), in a glass Schott bottle. Add 5 g of CTAB gradually, if necessary heat solution to 50°C while stirring. Make up solution gradually to 250 ml with distilled water. Allow the solution to dissolve for at least 30 minutes, then autoclave.

Appendix 3. The full 18S rRNA nucleotide sequence of *D. geminata* from Redcliff Creek, Lower Waiau, Manapouri-Blackmount Road. Sample code: CONTROL (see Appendix 5 for details).

TTGTGAAACTGCGAATGGCTCATTATATCAGTTATAGTTTATTTGATAGTCCCTTACTACTTGGATA ACCAACCCCTTCGGGGTGATGGTGGTGATTCAAAATAAGTTTACGGATCGCATGGCTTTGCCGGCGA CGGATCATTCAAGTTTCTGCCCTATCAGCTTTGGATGGTAGGGTATTGGCCTACCATGGCTTTAACG GGTAACGGAGGATTAGGGTTTGATTCCGGAGAGGGGAGCCTGAGAGACGGCTACCACATCCAAGGA GAGCCCTTGTGGTTTGGCACTTGGAATGAGAACAACTCAAACCACTTAACGAGGATCAATTGGAGG GCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTYGTTGCAGTT AAAAAGCTCGTAGTTGGATTTGTGATGGAATTTGAATACTTTTAAAGTGTTTCAGAAACTGTCATCC GTGGGTGGAATTTGTTTGGCATTAGGTTGTCAGRCAGAGGATGCCTATMCTTTACTGTGAAAAAAT CAGTGCGTTCAAAGCAGACTTACGTCGATGAATGTATTAGCATGGAATAATAAGATAGGACCTTTG TACTATTTTGTTGGTTTGTGTATAGAGGTAATGATTAAAAGGAACAGTTGGGGGGTATTTGTATTCCA TTGTCAGAGGTGAAATTCTTGGATTTTTGGAAGACAAACTACTGCGAARGCATTTACCAAGGATGT TTTCATTAATCAAGAACGAAAGTTAGGGGGATCGAAGATGATTAGATACCATCGTAGTCTTAACCAT AAACTATGCCAACAAGGGATTGGTGGGGGTTTCGTAATGTCCCCATCAGCACCTTAGGAGAAATCAA AAGTTTTTGGGTTCCGGGGGGGGGGGGTATGGTCGCAAGGCTGAAACTTAAAGAAATTGACGGAAGGGC ACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGGAAACTTACCAGGTCCAGACA TAGTGAGGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATGGCCGTTCTTAG TTAGTGATTTTCACTGATCRGGTCTTCTTAGAGGGACGTGCATTTTATTAGATGCAGGAAGATAGCG GCAATAACAGGTCTGTGATGCCCTTAGATGATCTGGGCCGCACGCGCGCTACACTGATGTACTCAA CGAGTTTTTCCTTGGCTGAGAAGCCTGGGTAATCTTTTAAACTTGCATCGTGATAGGGATAGATTAT TGCAATTATTAATCTTGAACGAGGAATTCCTAGTAAACGCAGATCATCAGTCTGCATTGATTACGT CCCTGCCCTTTGTACACACCGCCCGTCGCACCTACCGATTGAATGGTCCGGTGAAGGCTCGGGATT GCAGCTAATGCCTTTACTGGTGTTGGTTTCAAGAACTTGTCTAAACCTTATCATTTAGAGGAAGGTG AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCAGAAGGATCAA 3'

Appendix 4. The full 18S rRNA nucleotide sequence for New Zealand *Gomphoneis minuta* var *cassiae* from Stony River, Taranaki (TAR009; Appendix 5).

5'TCAGGAACAGCTATGACCATGATTACGCCAAGCTCAGAATTAACCCTCACTAAAGGGACTAGTC CTGCAGGTTTAAACGAATTCGCCCTTAACCTGGTTGATCCTGCCAGTAGTCATACGCTCGTCTCAAA GATTAAGCCATGCACGTCTAAGTATAAATATATTACTGTGAAACTGCGAATGGCTCATTATATCAG TTATAGTTTATTTGATAATCCCTTACTACTTGGATAATCGTAGTAATTCTAGAGCTAATACATGCAA AATAATTTTGCGAATCGCATGACCTAGTCGGCGATGGATCATTCAAGTTTCTGCCCTATCAGCTTTG GATGGTAGGGTATTGGCCTACCATGGCTTTAACGGGTAACGGAGGATTAGGGTTTGATTCCGGAGA GGGAGCCTGAGAGACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGTAAATTACCCAATCCTGA TACAGGGAGGTAGTGACAATAAATAACAATGCCGGGCCTTTCAGGTCTGGCACTTGGAATGAGAA CAACTCAAACCACTTATCGAGGATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCC AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGATGATGCTT GGGAGCCTCTTTTGGATTCCTTTACATTGTCATCTTTGGGAGGATTTTGTGTGGCATTAGCTTGTTGC TATTAGCATGGAATAATAAGATAGGACCTTGGTACTATTTTGTTGGTTTGTGCACCGAGGTAATGA TTAATAGGGATAGTTGGGGGGTATTCGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTTTGGAAG ACGAACTACTGCGAAAGCATTTACCAAGGATGTTTTCATTAATCAAGAACGAAAGTTAGGGGATCG AAGATGATTAGATACCATCGTAGTCTTAACCATAAACTATGCCGACAAGGGATTGGTAGAGTTTCG AGGCTGAAACTTAAAGAAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGA ATTCTATGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAA CGAACGAGACCGCTGCCTGCTAAATAGCTCGGCTAGTGATTTTCACTGGCTTGAGCTTCTTAGAGG GACGTGCATAATTTTAAATGCAGGAAGATAGCGGCAATAACAGGTCTGTGATGCCCTTAGATGTTC TGGGCCGCACGCGCGCTACACTGATGTGTTCAAACGAGTTTTTCCTTGGCTGAGAAGCCTGGGCAA TCTTTTGAACTCACATCGTGATAGGGATAGATTATTGCAATTATTGATCTTGAACGAGGAATTCCTA GTAGACGCAAATCATCAATTTGCGTCGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCACCT ACCGATTGAATGGTCCGGTGAAGACTCGGGATTGTGAGTGTTGCCTTTGCTGGTGATGTTTGCAAG AACTTGTCTAAACCTTATCATTTAGAGGAAGGTGAAGTCGTAAACAAGGTTTCCGTAGGTGAACCT GCAGAAT-3'

Appendix 5. Sample inventory for *D. geminata* and related species in the North and South Islands, New Zealand. A ? in the Genera column indicates that the presence of *D. geminata* in these samples has yet to be confirmed. A blank cell in the DNA column indicates that DNA extraction has not been attempted on these samples yet. Grey shaded rows indicate the 64 samples used in the blind test.

	Appendix 5).		1		· · ·				1	
Country	River	Code	Date collected	Site	Taxon	Collector	DNA (ng/µL)	Northing/ Latitude	Easting/ Longitude	Sample type	order
NZ	Manganui-a-te-ao Rive	MAA001_1	28/12/2005	Orautaha, Meyers B	Gomphoneis	B Hicks	28.6	6207248	2703209	Benthic	1
NZ	Manganui-a-te-ao Rive	MAA003	28/12/2005	Orautaha, Meyers B	Gomphoneis	B Hicks	265.2	6207248	2703209	Benthic	2
NZ	Manganui-a-te-ao Rive	MAA004	28/12/2005	Orautaha, Meyers B	Gomphoneis	B Hicks	65.6	6207248	2703209	Benthic	3
NZ	Manganui-a-te-ao Rive	MAA005	28/12/2005	Orautaha, Meyers B	Gomphoneis	B Hicks	83.7	6207248	2703209	Benthic	4
NZ	Mangawhero Stream	MAG001	29/12/2005	Opposite Powderho	No didymo	B Hicks	82.2	6197550	2717765	Benthic	5
NZ	Waionganaiti Stream	TAR001	2/01/2006	Inglewood, Hursthou	No didymo	B Hicks	128.7	6228315	2614400	Benthic	6
NZ	Waionganaiti Stream	TAR002	2/01/2006	Inglewood, Hursthou	No didymo	B Hicks	98.0	6228315	2614400	Benthic	7
NZ	Waiongana Stream	TAR003	2/01/2006	Bedford Road	Gomphoneis	B Hicks	67.5	6224505	2611570	Benthic	8
NZ	Waiongana Stream	TAR004	2/01/2006	Bedford Road	No didymo	B Hicks	28.4	6224505	2611570	Benthic	9
NZ	Waiwhakaiho River	TAR005	2/01/2006	Peters Road (Leppe	Gomphoneis	B Hicks	0.0	6222815	2607860	Benthic	10
NZ	Waiwhakaiho River	TAR006	2/01/2006	Meeting of the Wate	Gomphoneis	B Hicks	14.1	6232929	2606594	Benthic	11
NZ	Kaihihi Stream	TAR007	2/01/2006	Okato	Gomphoneis	B Hicks	121.4	6223091	2585741	Benthic	12
NZ	Kaihihi Stream	TAR008	2/01/2006	Okato	Gomphoneis	B Hicks	19.2	6223091	2585741	Benthic	13
NZ	Stony River	TAR009	2/01/2006	Wiremu Road	Gomphoneis	B Hicks	22.8	6218320	2588897	Benthic	14
NZ	Te Henui Stream	TAR010	2/01/2006		Gomphoneis	B Hicks	197.7	6236716	2605002	Benthic	15
NZ	Te Henui Stream	TAR011	2/01/2006		No didymo	B Hicks		6236716	2605002	Benthic	16
NZ	Whakapapa River	WHA001	29/12/2005	Owhango	Gomphoneis	B Hicks	203.9	6242470	2717811	Benthic	17
NZ	Whakapapa River	WHA002	29/12/2005	Owhango	Gomphoneis	B Hicks	54.1	6242470	2717811	Benthic	18
	Whakapapa River	WHA003	29/12/2005	Owhango	Gomphoneis	B Hicks	37.6	6242470	2717811	Benthic	19
NZ	Whangaehu River	WHE001	5-Feb-06	200 m upstream SH	No didymo	B Hicks		6190315	2731755	Benthic	20
NZ	Tokiahuru Stream	TOK001	5-Feb-06	75 m downstream S	No didymo	B Hicks	3.6	6191450	2728410	Benthic	21
	Mangles River	MANGLES48	7-Feb-06		Gomphoneis	NIWA	62.7	5934400	2459200	Benthic	22
	Lower Greenstone Riv		1-Feb-06	Carpark	Gomphoneis	NIWA	1056.4	5575586	2142726	Benthic	23
	Acheron River	ACHERON104	1-Feb-06	Cableway	Gomphoneis	NIWA	191.2	5869899	2507092	Benthic	24
	Rai River	RAIFALLS12	31-Jan-06	Rai Falls	No didymo	NIWA	85.6	5990942	2559017	Benthic	25
	Riwaka River	RIWAKA4	31-Jan-06	Rugby Ground SH6	Gomphoneis	NIWA	89.7	6015645	2508739	Benthic	26
	Manuherikia River	MANUHERIKIA1427	1-Feb-06	Alexandra Motor Ca		NIWA	56.3	5544775	2227679	Benthic	27
	Wairau River Pelorus River	WAIRAU110 PELORUS7	31-Jan-06 1-Feb-06	Dip Flat Fishermans Flat	Gomphoneis Gomphoneis	NIWA NIWA	108.4 54.64	5925767 5991520	2503564 2569697	Benthic Benthic	28 29
	Rangitukia Stream	RAS005_2	24-Nov-05	Site B below road c	Gomphoneis	B Hicks	2.1	635991520	2696850	Benthic	30
NZ	Lower Waiau	CONTROL	Dec-05	Redcliff Creek, Man	Didmyo	Bill Jarvie, Sc		5487850	2090830	Benthic	31
	Maraoa River	WC-1 swab	28-Feb-06	Wash Creek	Didmyo	Craig Cary	4505.7	5513795	2123057	Benthic swab	32
	Maraoa River	WC-1	28-Feb-06	Wash Creek	Didmyo	Craig Cary	572.4	5513795	2123057	Benthic	33
NZ	Maraoa River	KB-1	28-Feb-06	Kiwi Burn	Didmyo	Craig Cary	2.6	5528507	2128179	Benthic	34
NZ	Maraoa River	KB-1 swab	28-Feb-06	Kiwi Burn	Didmyo	Craig Cary	89.1	5528507	2128179	Benthic swab	35
NZ	Von River	LW-1 (1)	28-Feb-06	Von Terminus,	Didmyo	Craig Cary	58.6	5559016	2150362	Benthic	36
NZ	Von River	LW-1 (2)	28-Feb-06	Von Terminus,	Didmyo	Craig Cary	47.3	5559016	2150362	Benthic	37
NZ	Upper Oreti River	UO-1 swab	28-Feb-06	Windley access	Didmyo	Craig Cary	93.1	5508237	2130481	Benthic swab	38
NZ	Upper Oreti River	UO-1	28-Feb-06	Windley access	Didmyo	Craig Cary	54.7	5508237	2130481	Benthic	39
NZ	Upper Oreti River	UO-2 swab	28-Feb-06	Windley access	Didmyo	Craig Cary	92.7	5508237	2130481	Benthic swab	40
NZ	Upper Oreti River	UO-3	28-Feb-06	Mt. Nicholas bridge	Didmyo	Craig Cary	261.9	5531281	2134470	Benthic	41
NZ	Upper Oreti River	UO-3 swab	28-Feb-06	Mt. Nicholas bridge	Didmyo	Craig Cary	4.5	5531281	2134470	Benthic swab	42
NZ	Upper Oreti River	UO-4	28-Feb-06	Mt. Nicholas bridge	Didmyo	Craig Cary	309.8	5531281	2134470	Benthic	43
NZ	Maraoa River	SB-1 swab (1)	28-Feb-06	Station bridge	Didmyo	Craig Cary	13.6	5510798	2117636	Benthic swab	44
INZ	Maraoa River	SB-1 swab (2)	28-Feb-06	Station bridge	Didmyo	Craig Cary	50.4	5510798	2117636	Benthic swab	45
NZ	Maraoa River	SB-1	28-Feb-06	Station bridge	Didmyo	Craig Cary	73.8	5510798	2117636	Benthic	46
NZ	Von River	VR-1	28-Feb-06	Von River	Didmyo	Craig Cary	238.2	5553567	2145501	Benthic	47
INZ	Von River	VR-1 (1) swab	28-Feb-06	Von River	Didmyo	Craig Cary	80.5	5553567	2145501	Benthic swab	48
INZ	Von River Von River	VR-1 (2) swab	28-Feb-06	Von River	Didmyo	Craig Cary	385.9	5553567	2145501	Benthic swab	49
NZ		VR-2 swab HR-1 (1)	28-Feb-06 11-Mar-06	Von River	Didmyo	Craig Cary	19.4	5553567	2145501	Benthic swab	50
NZ	Hawea River Hawea River	HR-1 (1) HR-1 (2)	11-Mar-06	Hawea River Hawea River	Didmyo	Stu Stu	144.1	5608213	2209119	Benthic	51
NZ	Hawea River Hawea River	HR-1 (2) HR-1 Swab	11-Mar-06	Hawea River Hawea River	Didmyo	Stu	422.7	5608213	2209119	Benthic	52
NZ					Didmyo	• · · · · · · · · · · ·	18.1	5608213	2209119	Benthic swab	53
	Waitaki River	WA-1	7-Apr-06	Waitaki	Didmyo	Stu Sutherlar	86.09	5589100	2341291	Benthic	54
	Waitaki River	WA-2	25-Apr-06	Waitaki	Didmyo	Stu Sutherlar	406.54	5589100	2341291	Benthic	55
	Waitaki River	WA-2 swab	25-Apr-06	Waitaki	Didmyo	Stu Sutherlar		5589100	2341291	Benthic swab	56
	Aparima River	AP-1	27-Mar-06	Aparima River	Didmyo	Stu Sutherlar		5485471	2130293	Benthic	57
	Aparima River	AP-2	27-Mar-06	Aparima River	?	Stu Sutherlar	1	5485471	2130293	Benthic	58
NZ	Aparima River	AP-2 swab	27-Mar-06	Aparima River	?	Stu Sutherlar	129.69	5485471	2130293	Benthic swab	59
NZ	Ahuriri River	AH-1	6-Apr-06	SH8 road bridge	?	Cathy Kilroy		5633415	2269962	Site 3, Benthic	60

	Appendix 8).									
Country	River	Code	Date collected	Site	Taxon	Collector	DNA (ng/µL)	Northing/ Latitude	Easting/ Longitude	Sample type	order
NZ	Ahuriri River	AH-2	5-Apr-06	Glenburn Station, d/	?	Cathy Kilroy		5630294	2276144	Site 1 Benthic	61
NZ	Ahuriri River	AH-3	6-Apr-06	SH8 road bridge	?	Cathy Kilroy		5633415	2269962	Site 3, 10 minu	62
NZ	Ahuriri River	AH-4	6-Apr-06	Gorge WL recording	?	Cathy Kilroy		5631842	2249975	Site 5, Drift 10	63
NZ	Ahuriri River	AH-5	6-Apr-06	u/s Gorge bridge	?	Cathy Kilroy		5634611	2247706	Site 6, 1 min w	64
NZ	Ahuriri River	AH-6	5-Apr-06	Glenburn Station, d/	?	Cathy Kilroy		5630294	2276144	Site 1, 10 min	65
NZ	Ahuriri River	AH-7	6-Apr-06	Glenburn Station, u/	?	Cathy Kilroy		5632703	2274669	Site 2, 10 minu	66
NZ	Ahuriri River	AH-8	6-Apr-06	SH8 road bridge	?	Cathy Kilroy		5633415	2269962	Site 3, 1 min w	67
NZ	Ahuriri River	AH-9	6-Apr-06	Gorge WL recording	?	Cathy Kilroy		5631842	2249975	Site 5, 10 L filte	68
NZ	Ahuriri River	AH-10	6-Apr-06	u/s Gorge bridge	?	Cathy Kilroy		5634611	2247706	Site 6, 10 sec v	v 69
NZ	Ahuriri River	AH-11	5-Apr-06	Glenburn Station, d/	?	Cathy Kilroy		5630294	2276144	Site 1, 1 min w	/ 70
NZ	Ahuriri River	AH-12	6-Apr-06	Glenburn Station, u/	?	Cathy Kilroy		5632703	2274669	Site 2, 1 min w	/ 71
NZ	Ahuriri River	AH-13	6-Apr-06	SH8 road bridge	?	Cathy Kilroy		5633415	2269962	Site 3, Water 1	1 72
NZ	Ahuriri River	AH-14	6-Apr-06	Opposite Killermont	?	Cathy Kilroy		5627749	2255902	Site 4, 10 sec v	v 73
	Ahuriri River	AH-15	6-Apr-06	u/s Gorge bridge	?	Cathy Kilroy		5634611	2247706	Site 6, 10L wat	
NZ	Ahuriri River	AH-16	5-Apr-06	Glenburn Station, d/	?	Cathy Kilroy		5630294	2276144	Site 1, 10 dec	
NZ	Ahuriri River	AH-17	6-Apr-06	Glenburn Station, u/	?	Cathy Kilroy		5632703	2274669	Site 2, Water 1	1 76
NZ	Ahuriri River	AH-18	6-Apr-06	SH8 road bridge	?	Cathy Kilroy		5633415	2269962	Site 3, 10L Wa	a 77
NZ	Ahuriri River	AH-19	6-Apr-06	Opposite Killermont	?	Cathy Kilroy		5627749	2255902	Site 4, 10L drif	78
NZ	Ahuriri River	AH-20	6-Apr-06	u/s Gorge bridge	?	Cathy Kilroy		5634611	2247706	Site 6, 10L filte	79
NZ	Ahuriri River	AH-21	6-Apr-06	Glenburn Station, u/	?	Cathy Kilroy		5632703	2274669	Site 2, 10L Wa	a 80
NZ	Ahuriri River	AH-22	5-Apr-06	Glenburn Station, d/	?	Cathy Kilroy		5630294	2276144	Site 1, 10L Wa	a 81
NZ	Ahuriri River	AH-23	6-Apr-06	SH8 road bridge	?	Cathy Kilroy		5633415	2269962	Site 3, 10L filte	
	Ahuriri River	AH-24	6-Apr-06	Opposite Killermont	?	Cathy Kilroy		5627749	2255902	Site 4, 10L filte	
NZ	Ahuriri River	AH-25	6-Apr-06	Gorge WL recording	?	Cathy Kilroy		5631842	2249975	Site 5, 10 sec o	
	Ahuriri River	AH-26	5-Apr-06	Glenburn Station, d/	Cymbella sp.	Cathy Kilroy	111.06	5630294	2276144	Site 1, T3 St.5	85
NZ	Ahuriri River	AH-27	5-Apr-06	Glenburn Station, d/	?	Cathy Kilroy		5630294	2276144	Site 1, T5 St. 2	2 86
	Aparima River	AP-3	7-Apr-06	Access 600 m N of I	?	Cathy Kilroy		5458942	2131626	Site 1, 10 sec o	c 87
NZ	Aparima River	AP-4	7-Apr-06	Access opposite Sir	?	Cathy Kilroy		5462541	2131551	Site 2, 10 Litre	
	Aparima River	AP-5	7-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy		5473428	2131791	Site 3, Benthic	
	Aparima River	AP-6	8-Apr-06	access opposite Go	?	Cathy Kilroy		5467421	2131703	Site 4, 10 min o	
NZ	Aparima River	AP-7	8-Apr-06	d/s Wreys Bush - M	?	Cathy Kilroy		5480678	2135012	Site 5, 1 min di	
NZ	Aparima River	AP-8	7-Apr-06	Access 600 m N of I	?	Cathy Kilroy		5458942	2131626	Site 1, 10 sec o	
NZ	Aparima River	AP-9	7-Apr-06	Access opposite Sir	?	Cathy Kilroy		5462541	2131551	Site 2, 10 Litre	
NZ	Aparima River	AP-10	7-Apr-06	1 km u/s Etal Stream	?	Cathy Kilroy		5473428	2131791	Site 3, 10 sec o	
NZ	Aparima River	AP-11	8-Apr-06	access opposite Go	?	Cathy Kilroy		5467421	2131703	Site 4, 1 min di	
	Aparima River	AP-12	8-Apr-06	d/s Wreys Bush - M	?	Cathy Kilroy		5480678	2135012	Site 5, 10 sec o	
	Aparima River	AP-13	7-Apr-06	Access 600 m N of	?	Cathy Kilroy		5458942	2131626	Site 1, 10L drift	
	Aparima River	AP-14	7-Apr-06	Access 600 m N of I	?	Cathy Kilroy		5458942	2131626	Site 1, 10 min	
	Aparima River	AP-15	7-Apr-06	Access opposite Sir	?	Cathy Kilroy		5462541	2131551	Site 2, Benthic	
	Aparima River	AP-16	8-Apr-06	access opposite Go	?	Cathy Kilroy		5467421	2131703	Site 4, 10 sec o	
	Aparima River	AP-17	8-Apr-06	d/s Wreys Bush - M	? ?	Cathy Kilroy		5480678	2135012	Site 5 10L wate	
	Aparima River	AP-18	7-Apr-06	Access 600 m N of		Cathy Kilroy		5458942	2131626	Site 1, 10L Drif	
	Aparima River	AP-19	7-Apr-06	Access 600 m N of I	?	Cathy Kilroy		5458942	2131626	Site 1, 1 min di	
	Aparima River	AP-20	7-Apr-06	Access opposite Sir	?	Cathy Kilroy		5462541	2131551	Site 2, 1 min di	
	Aparima River	AP-21 AP-22	8-Apr-06	access opposite Go	? ?	Cathy Kilroy		5467421	2131703	Site 4, 10L drift Site 5, 10L filte	
	Aparima River		8-Apr-06 7-Apr-06	d/s Wreys Bush - Me		Cathy Kilroy		5480678	2135012		
	Aparima River	AP-23		Access 600 m N of I	?	Cathy Kilroy		5458942	2131626	Site 1, 10L filte	
NZ NZ	Aparima River	AP-24 AP-25	7-Apr-06	Access 600 m N of I	?	Cathy Kilroy		5458942 5462541	2131626	Site 2, 10 sec	
NZ NZ	Aparima River Aparima River	AP-25 AP-26	7-Apr-06 8-Apr-06	Access opposite Sir	?	Cathy Kilroy Cathy Kilroy		5462541	2131551 2131703	Site 2, 10 sec of Site 4, 10 litre f	
NZ	Aparima River	AP-26 AP-27	8-Apr-06	access opposite Go access opposite Go	?	Cathy Kilroy		5467421	2131703	Site 4, 10 litre 1	
NZ	Aparima River	AP-28	8-Apr-06	d/s Wreys Bush - M	r Cymbella kappii	Cathy Kilroy	92.69	5480678	2131703	Site 5, benthic	
NZ	Aparima River	AP-28 AP-30	8-Apr-06	d/s Wreys Bush - M d/s Dunrobin Bridge	Gomphonema sp.	Cathy Kilroy	32.09	5480678	2135012	Site 6, 10L drift	
	Aparima River	AP-31	8-Apr-06	d/s Dunrobin Bridge	?	Cathy Kilroy		5485364	2130206	Site 6, 10L dill	
	Aparima River	AP-32	25-Apr-06	u/s Thornbury road	?	Cathy Kilroy	/ Neil Blair	5485364	2130208	Site 6, 102 line	
	Aparima River	AP-32 AP-33	25-Apr-06	u/s Thombury road u/s Otautau road bri	?	Cathy Kilroy		5424480	2123795	Site B, benthic	
1 1/2	Aparina Nivel				?	Cathy Kilroy		5452702	2123795	Site C, benthic	
	Anarima Rivor						INCII DIdil	J4J2/U2	- 2131/11	LONG C. DEHINIC	4 117
NZ	Aparima River	AP-34	25-Apr-06	u/s Wreys Bush roa							
	Aparima River Aparima River Aparima River	AP-34 AP-35 AP-36	25-Apr-06 25-Apr-06 25-Apr-06	Access 600 m N of I Access opposite Sir	?	Cathy Kilroy	/ Neil Blair	5458942 5462541	2131626 2131551	Site 1, benthic Site 2, benthic	118

RiverNZAparima River <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
NZAparima RiverNZAparima RiverNZApa	Code	Date collected	Site	Taxon	DNA Collector (ng/µL)	Northing/ Latitude	Easting/ Longitude	Sample type	order
NZAparima RiverNZAparima RiverNZApa	AP-38	25-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy / Neil Blai	r 5473428	2131791	Site 3, benthic	121
NZAparima RiverNZAparima RiverNZApa	AP-39	25-Apr-06	u/s Thornbury road	?	Cathy Kilroy / Neil Blai	r 5424480	2131080	Site A, 10 L dr	i 122
NZAparima RiverNZAparima RiverNZApa	AP-40	25-Apr-06	u/s Thornbury road	?	Cathy Kilroy / Neil Blai	r 5424480	2131080	Site A, 10 sec	123
NZAparima RiverNZAparima RiverNZApa	AP-41	25-Apr-06	u/s Thornbury road	?	Cathy Kilroy / Neil Blai	r 5424480	2131080	Site A, 1 min d	124
NZAparima RiverNZAparima RiverNZApa	AP-42	25-Apr-06	u/s Thornbury road	?	Cathy Kilroy / Neil Blai	r 5424480	2131080	Site A, 10 min	125
NZAparima RiverNZAparima RiverNZApa	AP-43	25-Apr-06	u/s Otautau road bri	?	Cathy Kilroy / Neil Blai	r 5441020	2123795	Site B, 10 L dr	i 126
NZAparima RiverNZAparima RiverNZApa	AP-44	25-Apr-06	u/s Otautau road bri	?	Cathy Kilroy / Neil Blai	r 5441020	2123795	Site B, 10 sec	127
NZAparima RiverNZAparima RiverNZApa	AP-45	25-Apr-06	u/s Otautau road bri	?	Cathy Kilroy / Neil Blai	r 5441020	2123795	Site B, 1 min d	128
NZAparima RiverNZAparima RiverNZApa	AP-46	25-Apr-06	u/s Otautau road bri	?	Cathy Kilroy / Neil Blai	r 5441020	2123795	Site B, 10 min	129
NZAparima RiverNZAparima RiverNZApa	AP-47	25-Apr-06	u/s Wreys Bush roa	?	Cathy Kilroy / Neil Blai	r 5452702	2131777	Site C, 10 L dr	i 130
NZAparima RiverNZAparima RiverNZApa	AP-48	25-Apr-06	u/s Wreys Bush roa	?	Cathy Kilroy / Neil Blai	r 5452702	2131777	Site C, 10 sec	131
NZAparima RiverNZAparima RiverNZApa	AP-49	25-Apr-06	u/s Wreys Bush roa	?	Cathy Kilroy / Neil Blai	r 5452702	2131777	Site C, 1 min d	132
NZAparima RiverNZAparima RiverNZApa	AP-50	25-Apr-06	u/s Wreys Bush roa	?	Cathy Kilroy / Neil Blai		2131777	Site C, 10 min	
NZAparima RiverNZAparima RiverNZApa	AP-51	25-Apr-06	Access 600 m N of I	?	Cathy Kilroy / Neil Blai		2131626	Site 1, 10 L dri	
NZAparima RiverNZAparima RiverNZApa	AP-52	25-Apr-06	Access 600 m N of I	?	Cathy Kilroy / Neil Blai		2131626	Site 1, 10 sec	
NZAparima RiverNZAparima RiverNZApa	AP-53	25-Apr-06	Access 600 m N of I	?	Cathy Kilroy / Neil Blai		2131626	Site 1, 1 min d	
NZAparima RiverNZAparima RiverNZApa	AP-54	25-Apr-06	Access 600 m N of I	?	Cathy Kilroy / Neil Blai		2131626	Site 1, 10 min	(137
NZAparima RiverNZAparima RiverNZApa	AP-55	25-Apr-06		?	Cathy Kilroy / Neil Blai		2131626	Site 2, 10 L dri	
NZAparima RiverNZAparima RiverNZApa	AP-55 AP-56	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai				
NZAparima RiverNZAparima RiverNZApa			Access opposite Sir	?			2131551	Site 2, 10 sec	
NZAparima RiverNZAparima RiverNZApa	AP-57	25-Apr-06	Access opposite Sir		Cathy Kilroy / Neil Blai		2131551	Site 2, 1 min d	
NZAparima RiverNZAparima RiverNZApa	AP-58	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai		2131551	Site 2, 10 min	
NZ Aparima River NZ Aparima River <td>AP-59</td> <td>25-Apr-06</td> <td>2 km u/s Etal Stream</td> <td>?</td> <td>Cathy Kilroy / Neil Blai</td> <td></td> <td>2131791</td> <td>Site 3, 10 L dri</td> <td></td>	AP-59	25-Apr-06	2 km u/s Etal Stream	?	Cathy Kilroy / Neil Blai		2131791	Site 3, 10 L dri	
NZ Aparima River NZ Aparima River <td>AP-60</td> <td>25-Apr-06</td> <td>2 km u/s Etal Stream</td> <td>?</td> <td>Cathy Kilroy / Neil Blai</td> <td></td> <td>2131791</td> <td>Site 3, 10 sec</td> <td></td>	AP-60	25-Apr-06	2 km u/s Etal Stream	?	Cathy Kilroy / Neil Blai		2131791	Site 3, 10 sec	
NZ Aparima River NZ Aparima River <td< td=""><td>AP-61</td><td>25-Apr-06</td><td>2 km u/s Etal Strear</td><td>?</td><td>Cathy Kilroy / Neil Blai</td><td></td><td>2131791</td><td>Site 3, 10 min</td><td></td></td<>	AP-61	25-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy / Neil Blai		2131791	Site 3, 10 min	
NZAparima RiverNZAparima RiverNZApa	AP-62	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai		2131703	Site 4, 10 L dri	
NZ Aparima River NZ Aparima River <td< td=""><td>AP-63</td><td>25-Apr-06</td><td>access opposite Go</td><td>?</td><td>Cathy Kilroy / Neil Blai</td><td>r 5467421</td><td>2131703</td><td>Site 4, 10 sec</td><td>(146</td></td<>	AP-63	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai	r 5467421	2131703	Site 4, 10 sec	(146
NZAparima RiverNZAparima RiverNZApa	AP-64	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai	r 5467421	2131703	Site 4, 1 min d	147
NZAparima RiverNZAparima RiverNZApa	AP-65	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai	r 5467421	2131703	Site 4, 10 min	(148
NZAparima RiverNZAparima RiverNZApa	AP-66	25-Apr-06	Access 600 m N of	?	Cathy Kilroy / Neil Blai	r 5458942	2131626	Site 1, textured	149
NZAparima RiverNZAparima RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri River	AP-67	25-Apr-06	Access 600 m N of	?	Cathy Kilroy / Neil Blai	r 5458942	2131626	Site 1, textured	150
NZAparima RiverNZAparima RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri River	AP-68	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai	r 5462541	2131551	Site 2, textured	151
NZAparima RiverNZAparima RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri River	AP-69	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai	r 5462541	2131551	Site 2, textured	152
NZ Aparima River NZ Aparima River <td>AP-70</td> <td>25-Apr-06</td> <td>2 km u/s Etal Strear</td> <td>?</td> <td>Cathy Kilroy / Neil Blai</td> <td>r 5473428</td> <td>2131791</td> <td>Site 3, textured</td> <td>153</td>	AP-70	25-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy / Neil Blai	r 5473428	2131791	Site 3, textured	153
NZ Aparima River NZ Ahuriri River <td>AP-71</td> <td>25-Apr-06</td> <td>access opposite Go</td> <td>?</td> <td>Cathy Kilroy / Neil Blai</td> <td>r 5467421</td> <td>2131703</td> <td>Site 4, textured</td> <td>154</td>	AP-71	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai	r 5467421	2131703	Site 4, textured	154
NZ Aparima River NZ Ahuriri River <td>AP-72</td> <td>25-Apr-06</td> <td>Access 600 m N of</td> <td>?</td> <td>Cathy Kilroy / Neil Blai</td> <td>r 5458942</td> <td>2131626</td> <td>Site 1, glass sl</td> <td>li 155</td>	AP-72	25-Apr-06	Access 600 m N of	?	Cathy Kilroy / Neil Blai	r 5458942	2131626	Site 1, glass sl	li 155
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River <td>AP-73</td> <td>25-Apr-06</td> <td>Access opposite Sir</td> <td>?</td> <td>Cathy Kilroy / Neil Blai</td> <td>r 5462541</td> <td>2131551</td> <td>Site 2, glass sl</td> <td>li 156</td>	AP-73	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai	r 5462541	2131551	Site 2, glass sl	li 156
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-74	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai	r 5462541	2131551	Site 2, glass sl	li 157
NZAparima RiverNZAparima RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri River	AP-75	25-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy / Neil Blai	r 5473428	2131791	Site 3, glass sl	li 158
NZAparima RiverNZAparima RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri RiverNZAhuriri River	AP-76	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai	r 5467421	2131703	Site 4, glass sl	li 159
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-77	25-Apr-06	d/s Wreys Bush - M	?	Cathy Kilroy / Neil Blai	r 5480678	2135012	Site 5, glass sl	li 160
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-78	25-Apr-06	d/s Dunrobin Bridge	?	Cathy Kilroy / Neil Blai	r 5485364	2130206	Site 6, glass sl	li 161
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-79	25-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy / Neil Blai	r 5473428	2131791	Site 3, ceramic	162
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-80	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai	r 5467421	2131703	Site 4, ceramic	163
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-81	25-Apr-06	Access 600 m N of I	?	Cathy Kilroy / Neil Blai		2131626	Site 1, plastic s	
NZ Aparima River NZ Ahuriri River	AP-82	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai		2131551	Site 2, plastic s	
NZ Aparima River NZ Ahuriri River	AP-83	25-Apr-06	Access opposite Sir	?	Cathy Kilroy / Neil Blai		2131551	Site 2, plastic s	
NZ Aparima River NZ Aparima River NZ Aparima River NZ Ahuriri River	AP-84	25-Apr-06	2 km u/s Etal Strear	?	Cathy Kilroy / Neil Blai		2131791	Site 3, plastic s	
NZ Aparima River NZ Aparima River NZ Ahurini River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-85	25-Apr-06	access opposite Go	?	Cathy Kilroy / Neil Blai		2131703	Site 4, plastic s	
NZ Aparima River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-86	25-Apr-06	d/s Wreys Bush - M	?	Cathy Kilroy / Neil Blai		2135012	Site 5, plastic s	
NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AP-87	25-Apr-06	d/s Dunrobin Bridge		Cathy Kilroy / Neil Blai		2130206	Site 6, plastic s	
NZ Ahuriri River NZ Ahuriri River NZ Ahuriri River	AH-29	6-Apr-06	u/s Gorge bridge	?	Cathy Kilroy et al	5634611	2247706	Site 6, 10 min	(171
NZ Ahuriri River NZ Ahuriri River	AH-30	6-Apr-06	u/s Gorge bridge	?	Cathy Kilroy et al	5634611	2247706	Site 6, 10L filte	
NZ Ahuriri River	AH-31	17-Apr-06	Glenburn Station, d/	?	Matt Dale	5630294	2276144	Site 1, 10 L wa	
	AH-31 AH-32	17-Apr-06	Glenburn Station, d/	?	Matt Dale	5630294	2276144		
Anunn River				?	Matt Dale			Site 1, 10 sec	
NZ Aburiri Diver	AH-33	18-Apr-06	Glenburn Station, u/			5632703	2274669	Site 2, 10L Wa	
NZ Ahuriri River	AH-34	18-Apr-06	Glenburn Station, d	?	Matt Dale	5630294	2276144	Site 1, Texture	
NZ Ahuriri River	AH-35	18-Apr-06	Glenburn Station, d/	?	Matt Dale	5630294	2276144	Site 1, Texture	
NZ Ahuriri River	AH-36	18-Apr-06	Glenburn Station, u/	?	Matt Dale	5632703	2274669	Site 2, Texture	
NZ Ahuriri River NZ Ahuriri River	AH-37 AH-38	18-Apr-06 18-Apr-06	Glenburn Station, u/ Glenburn Station, u/	?	Matt Dale Matt Dale	5632703 5632703	2274669 2274669	Site 2, Texture Site 2, Texture	

	Appendix 5	D.		1					1	1	1
Country	River	Code	Date collected	Site	Taxon	Collector	DNA (ng/µL)	Northing/ Latitude	Easting/ Longitude	Sample type	order
NZ	Ahuriri River	AH-39	18-Apr-06	SH8 road bridge	?	Matt Dale		5633415	2269962	Site 3, Texture	
NZ	Ahuriri River	AH-40	18-Apr-06	SH8 road bridge	?	Matt Dale		5633415	2269962	Site 3, Texture	182
NZ	Buller River	BU1-E1	9-May-06	Upper Buller bridge,	Didmyo	Brendan Hick	197.65	5935560	2494386	Benthic	183
NZ	Buller River	BU1-E2	9-May-06	Upper Buller bridge,	Didmyo	Brendan Hick	125.58	5935560	2494386	Benthic	184
NZ	Buller River	BU1-C	9-May-06	Upper Buller bridge,	Didmyo	Brendan Hick	54.61	5935560	2494386	Benthic	185
NZ	Buller River	BU1-C Swab	9-May-06	Upper Buller bridge,	?	Brendan Hick	204.56	5935560	2494386	Benthic swab	186
NZ	Buller River	BU2-E1	9-May-06	Owens River reserv	Didmyo	Brendan Hick	206.81	5946425	2464210	Benthic	187
NZ	Buller River	BU2-E2	9-May-06	Owens River reserv	Didmyo	Brendan Hick	215.15	5946425	2464210	Benthic	188
NZ	Buller River	BU2-C	9-May-06	Owens River reserv	Didmyo	Brendan Hick	180.44	5946425	2464210	Benthic	189
NZ	Buller River	BU2-C Swab	9-May-06	Owens River reserv	?	Brendan Hick	465.94	5946425	2464210	Benthic swab	190
NZ	Buller River	BU3-E1	9-May-06	Upstream of Murchi	Didmyo	Brendan Hick	140.54	5934822	2455586	Benthic	191
NZ	Buller River	BU3-E2	9-May-06	Upstream of Murchi	Didmyo	Brendan Hick	281.95	5934822	2455586	Benthic	192
NZ	Buller River	BU3-C	9-May-06	Upstream of Murchi	Didmyo	Brendan Hick	106.42	5934822	2455586	Benthic	193
NZ	Buller River	BU3-C Swab	9-May-06	Upstream of Murchi	Didmyo	Brendan Hick	369.14	5934822	2455586	Benthic swab	194
NZ	Lower Waiau	LW2-E1	12-May-06	Rakatu Wetland	Didmyo	Brendan Hick	114.78	5491878	2093689	Benthic	195
NZ	Lower Waiau	LW2-E2	13-May-06	Rakatu Wetland	Didmyo	Brendan Hick	127.71	5491878	2093689	Benthic	196
NZ	Lower Waiau	LW2-C	14-May-06	Rakatu Wetland	Didmyo	Brendan Hick	196.61	5491878	2093689	Benthic	197
NZ	Lower Waiau	LW2-C Swab	15-May-06	Rakatu Wetland	?	Brendan Hick	167.37	5491878	2093689	Benthic swab	198
INZ	Oreti River	OR2-E1	11-May-06	Upstream of Site 3	Didmyo	Brendan Hick	83.02	5518543	2129157	Benthic	199
INZ	Oreti River	OR2-E2	11-May-06	Upstream of Site 3	Didmyo	Brendan Hick	82.01	5518543	2129157	Benthic	200
NZ	Oreti River	OR2-C	11-May-06	Upstream of Site 3	Didmyo	Brendan Hick	71.48	5518543	2129157	Benthic	201
NZ	Oreti River	OR2-C Swab	11-May-06	Upstream of Site 3	?	Brendan Hick	186.17	5518543	2129157	Benthic swab	202
NZ	Oreti River	OR3-E1	11-May-06	Upstream of	Didmyo	Brendan Hick	92.91	5508309	2130406	Benthic	203
NZ	Oreti River	OR3-E2	11-May-06	Upstream of	Didmyo	Brendan Hick	356.1	5508309	2130406	Benthic	204
NZ	Oreti River	OR3-C	11-May-06	Upstream of	Didmyo	Brendan Hick	160.33	5508309	2130406	Benthic	205
NZ	Oreti River	OR3-C Swab	11-May-06	Upstream of	?	Brendan Hick	45.04	5508309	2130406	Benthic swab	206
NZ	Maraoa River	MA1-E1	11-May-06	Wood Burn,	Didmyo	Brendan Hick	39.66	5520772	2124105	Benthic	207
NZ	Maraoa River	MA1-E2	11-May-06	Wood Burn,	Didmyo	Brendan Hick	61.22	5520772	2124105	Benthic	208
NZ	Maraoa River	MA1-C	11-May-06	Wood Burn,	Didmyo	Brendan Hick	42.76	5520772	2124105	Benthic	209
NZ	Maraoa River	MA1-C Swab	11-May-06	Wood Burn,	?	Brendan Hick	50	5520772	2124105	Benthic swab	210
NZ	Maraoa River	MA2-E1	11-May-06	Dale Creek, Te	Didmyo	Brendan Hick	52.16	5510782	2117628	Benthic	211
NZ	Maraoa River	MA2-E2	11-May-06	Dale Creek, Te	Didmyo	Brendan Hick	267.98	5510782	2117628	Benthic	212
NZ	Maraoa River	MA2-C	11-May-06	Dale Creek, Te	Didmyo	Brendan Hick	138.61	5510782	2117628	Benthic	213
NZ	Maraoa River	MA2-C Swab	11-May-06	Dale Creek, Te	?	Brendan Hick	135.41	5510782	2117628	Benthic swab	214
NZ	Maraoa River	MA3-E1	12-May-06	SH 94 bridge, The	Didmyo	Brendan Hick	52.87	5506003	2110802	Benthic	215
NZ	Maraoa River	MA3-E2	12-May-06	SH 94 bridge, The	Didmyo	Brendan Hick	167.37	5506003	2110802	Benthic	216
NZ	Maraoa River	MA3-C	12-May-06	SH 94 bridge, The	Didmyo	Brendan Hick	115.28	5506003	2110802	Benthic	217
NZ	Maraoa River	MA3-C Swab	12-May-06	SH 94 bridge, The	?	Brendan Hick	139.8	5506003	2110802	Benthic swab	218
NZ	Maraoa River	MA3 Drift Net	13-May-06	SH 94 bridge, The	Didmyo	Brendan Hick	173.05	5506003	2110802	Drift net (500,	219
NZ	Von River	VR1-E1	11-May-06	Most Upstream,	Didmyo	Brendan Hick		5554758	2146258	Benthic	220
NZ	Von River	VR1-E2	11-May-06	Most Upstream,	Didmyo	Brendan Hick	38.96	5554758	2146258	Benthic	221
NZ	Von River	VR1-C	11-May-06	Most Upstream,	Didmyo	Brendan Hicl	45.56	5554758	2146258	Benthic	222
NZ	Von River	VR1-C Swab	11-May-06	Most Upstream,	?	Brendan Hick		5554758	2146258	Benthic swab	223
NZ	Von River	VR2-E1	11-May-06	Downstream, Von	Didmyo	Brendan Hick		5556772	2146666	Benthic	224
NZ	Von River	VR2-E2	11-May-06	Downstream, Von	Didmyo	Brendan Hick	129.01	5556772	2146666	Benthic	225
NZ	Von River	VR2-C	11-May-06	Downstream, Von	Didmyo	Brendan Hick	141.77	5556772	2146666	Benthic	226
NZ	Von River	VR2-C Swab	11-May-06	Downstream, Von	?	Brendan Hick	258.15	5556772	2146666	Benthic swab	227
NZ	Hawea River	HW1-E1	11-May-06	200m below the	Didmyo	Brendan Hick	42.4	5614904	2212442	Benthic	228
NZ	Hawea River	HW1-E2	11-May-06	200m below the	Didmyo	Brendan Hick	57.55	5614904	2212442	Benthic	229
NZ	Hawea River	HW1-C	11-May-06	200m below the	Didmyo	Brendan Hick	123.4	5614904	2212442	Benthic	230
	Hawea River	HW1-C Swab	11-May-06	200m below the	?	Brendan Hick	99.23	5614904	2212442	Benthic swab	231
	Hawea River	HW2-E1	11-May-06	Downstream of	Didmyo	Brendan Hick		5610704	2212344	Benthic	232
	Hawea River	HW2-E2	11-May-06	Downstream of	Didmyo	Brendan Hick		5610704	2212344	Benthic	232
	Hawea River	HW2-C	11-May-06	Downstream of	Didmyo	Brendan Hick		5610704	2212344	Benthic	233
	Hawea River	HW2-C Swab	11-May-06	Downstream of	?					Benthic swot	1
INZ	Hawea River	HW3-E1	11-May-06	Just above the		Brendan Hick	157.72	5610704	2212344	Benthic swab Benthic	235
NZ	Hawea River	HW3-E2	11-May-06	Just above the	Didmyo	Brendan Hick	286.99	5607646	2208387	Benthic	236
INZ	Hawea River	HW3-C	11-May-06	Just above the	Didmyo	Brendan Hick	154.49	5607646	2208387	Benthic	237
NZ	Hawea River	HW3-C Swab	11-May-06	Just above the	Didmyo	Brendan Hick	96.59	5607646	2208387		238
NZ	Clutha River	CL1-E1	11-May-06	Downstream	?	Brendan Hick	117.4	5607646	2208387	Benthic swab Benthic	239
NZ			i inay-00		Didmyo	Brendan Hick	262.76	5607044	2208621	Jonano	240

r	Appendix 5).						1	1	1	
Country	River Clutha River	Code CL1-E2	Date collected 11-May-06	Site Downstream	Taxon	Collector	DNA (ng/µL)	Northing/ Latitude	Easting/ Longitude	Sample type Benthic	order
NZ	Clutha River	CL1-C		11	Didmyo	Brendan Hicl	177.33	5607044	2208621	Benthic	241
NZ		CL1-C Swab	11-May-06	Downstream	Didmyo	Brendan Hick	88.64	5607044	2208621	Dentinic	242
NZ	Clutha River		11-May-06	Downstream	?	Brendan Hicl	98.71	5607044	2208621	Benthic swab	243
NZ	Clutha River	CL2-E1	11-May-06	Below bridge to	Didmyo	Brendan Hicl	140.12	5601916	2215495	Benthic	244
NZ	Clutha River	CL2-E2	11-May-06	Below bridge to	Didmyo	Brendan Hicl	85.16	5601916	2215495	Benthic	245
NZ	Clutha River	CL2-C	11-May-06	Below bridge to	Didmyo	Brendan Hicl	90.26	5601916	2215495	Benthic	246
NZ	Clutha River	CL2-C Swab	11-May-06	Below bridge to	?	Brendan Hicl	131.83	5601916	2215495	Benthic swab	247
NZ	Clutha River	CL3-E1	11-May-06	Sheep Farm, that	Didmyo	Brendan Hicl	158.02	5597921	2219981	Benthic	248
NZ	Clutha River	CL3-E2	11-May-06	Sheep Farm, that	Didmyo	Brendan Hicl	182.12	5597921	2219981	Benthic	249
NZ	Clutha River	CL3-C	11-May-06	Sheep Farm, that	Didmyo	Brendan Hicl	133.85	5597921	2219981	Benthic	250
NZ	Clutha River	CL3-C Swab	11-May-06	Sheep Farm, that	?	Brendan Hicl	134.44	5597921	2219981	Benthic swab	251
NZ	Clutha River	Clutha Swab	11-May-06	Albert town bridge,	?	Brendan Hicl	152.53	5607200	2208120	Benthic swab	252
NZ	Waitaki River	WT1-E1	10-May-06	Just below Otiake C	Didmyo	Brendan Hicl	77.77	5599036	2315979	Benthic	253
NZ	Waitaki River	WT1-E2	10-May-06	Just below Otiake C	Didmyo	Brendan Hicl	175.46	5599036	2315979	Benthic	254
NZ	Waitaki River	WT1-C	10-May-06	Just below Otiake C	Didmyo	Brendan Hicl	169.55	5599036	2315979	Benthic	255
NZ	Waitaki River	WT1-C Swab	10-May-06	Just below Otiake C	?	Brendan Hicl	134.96	5599036	2315979	Benthic swab	256
NZ	Waitaki River	WT2-E1	10-May-06	Side channel, Oteka	Didmyo	Brendan Hicl	85.76	5596387	2318669	Benthic	257
NZ	Waitaki River	WT2-E2	10-May-06	Side channel, Oteka	Didmyo	Brendan Hicl	160.88	5596387	2318669	Benthic	258
NZ	Waitaki River	WT2-C	10-May-06	Side channel, Oteka	Didmyo	Brendan Hicl	65.19	5596387	2318669	Benthic	259
NZ	Waitaki River	WT2-C Swab	10-May-06	Side channel, Oteka	?	Brendan Hicl	213.21	5596387	2318669	Benthic swab	260
NZ	Waitaki River	WT3-E1	10-May-06	Priests Rd extension	Didmyo	Brendan Hick	125.9	5594678	2322895	Benthic	261
NZ	Waitaki River	WT3-E2	10-May-06	Priests Rd extension	Didmyo	Brendan Hick	99.66	5594678	2322895	Benthic	262
NZ	Waitaki River	WT3-C	10-May-06	Priests Rd extension	Didmyo	Brendan Hicl	201.52	5594678	2322895	Benthic	263
NZ	Waitaki River	WT3-C Swab	10-May-06	Priests Rd extension	?	Brendan Hicl	181.83	5594678	2322895	Benthic swab	264
NZ	Ahuriri River	AH1-E1	10-May-06	Below Longslip Stat	Didmyo	Brendan Hicl	121.27	5632360	2249323	Benthic	265
NZ	Ahuriri River	AH1-E2	10-May-06	Below Longslip Stat	Didmyo	Brendan Hicl	175.71	5632360	2249323	Benthic	266
NZ	Ahuriri River	AH1-C	10-May-06	Below Longslip Stat	Didmyo	Brendan Hicl	72.02	5632360	2249323	Benthic	267
NZ	Ahuriri River	AH1-C Swab	10-May-06	Below Longslip Stat	?	Brendan Hicl	306.55	5632360	2249323	Benthic swab	268
NZ	Ahuriri River	AH2-E1	10-May-06	Killermont Station	Didmyo	Brendan Hicl	90.14	5627802	2256049	Benthic	269
NZ	Ahuriri River	AH2-E2	10-May-06	Killermont Station	Didmyo	Brendan Hicl	84.75	5627802	2256049	Benthic	270
NZ	Ahuriri River	AH2-C	10-May-06	Killermont Station	Didmyo	Brendan Hicl	108.01	5627802	2256049	Benthic	271
NZ	Ahuriri River	AH2-C Swab	10-May-06	Killermont Station	?	Brendan Hicl	306.25	5627802	2256049	Benthic swab	272
NZ	Ahuriri River	AH3-E1	10-May-06	Just upstream of La	Didmyo	Brendan Hicl	169.8	5633336	2270230	Benthic	273
NZ	Ahuriri River	AH3-E2	10-May-06	Just upstream of La	Didmyo	Brendan Hicl	117.62	5633336	2270230	Benthic	274
NZ	Ahuriri River	AH3-C	10-May-06	Just upstream of La	Didmyo	Brendan Hicl	23.31	5633336	2270230	Benthic	275
NZ	Ahuriri River	AH3-C Swab	10-May-06	Just upstream of La	?	Brendan Hicl	99.49	5633336	2270230	Benthic swab	276
NZ	Upper Waiau	UW1	29-May-06	Yerex Reach	Didmyo	Bill Jarvie, So	52.72	5514300	2095000	Benthic	277
NZ	Upper Waiau	UW2	29-May-06	Balloon Loop	Didmyo	Bill Jarvie, So	63.99	5509000	2092600	Benthic	278
NZ	Lower Waiau	LW1	29-May-06	Whare Creek acces	Didmyo	Bill Jarvie, So	79.45	5494600	2095300	Benthic	279
NZ	Lower Waiau	LW3	29-May-06	Jericho access	Didmyo	Bill Jarvie, So	51.18	5487100	2091300	Benthic	280
CAN	Vancouver Island	VI-1	7-Apr-06	Puntledge River, HV	Didmyo	John Claytor	62.76	49°40'48.53"N	125°03'57.28''W	Benthic	281
CAN	Vancouver Island	VI-2	7-Apr-06	Puntledge River, HV	Didmyo	John Claytor	143.25	49°40'48.53"N	125°03'57.28''W	Benthic	282
CAN	Vancouver Island	VI-3	7-Apr-06	Little Qualicum Rive	Didmyo	John Claytor	104.28	49°18'18.58''N	124°33'12.93"W	Benthic	283
CAN	Vancouver Island	VI-4	7-Apr-06	Little Qualicum Rive	Didmyo	John Claytor	154.2	49°18'18.58''N	124°33'12.93"W	Benthic	284
CAN	Vancouver Island	VI-5	7-Apr-06	Little Qualicum Rive	Didmyo	John Clayton	159.62	49°18'18.58"N	124°33'12.93"W	Benthic	285
	Wenatchee River, WA		1-May-06	River Mile 35.6	Didmyo	Chris Coffin	33.91	47.6764 N	120.7328 W	Benthic	286
USA	Boulder Creek, MO	BC-1	16-May-06		Didmyo	Craig Cary	182.05			Benthic	287
USA	Boulder Creek, MO	BC-2	15-May-06		Didmyo	Craig Cary	110.66			Benthic	288
USA	Boulder Creek, MO	BC-3	15-May-06		Didmyo	Craig Cary	327.86			Benthic	289
USA	Boulder Creek, MO	BC-4	15-May-06		Didmyo	Craig Cary	26.56			Benthic	290
USA	Boulder Creek, MO	BC-5	15-May-06		Didmyo	Craig Cary	113.28			Benthic	291
USA	Boulder Creek, MO	BC-6	15-May-06		Didmyo	Craig Cary	40.13			Benthic	292
	Boulder Creek, MO	BC-7 Swab	15-May-06		?	Craig Cary	13.86			Benthic swab	293
	Boulder Creek, MO	BC-8 Swab	15-May-06		?	Craig Cary	27.04			Benthic swab	294
	Boulder Creek, MO	BC-9 Swab	15-May-06		?	Craig Cary	387			Benthic swab	295
	Boulder Creek, MO	BC-10	15-May-06		Didmyo	Craig Cary	50.03			Benthic	296
	Boulder Creek, MO	BC-11 Swab	15-May-06		?	Craig Cary	348.03			Benthic swab	297
	Boulder Creek, CO	BC-12	24-Apr-06	South Boulder Cree	Didmyo	Sarah Spauk		39.9325 N	105.27639 W	Benthic	298
	Lee Vining Creek, CA		26-Jun-06	Near Mono Lake	Didmyo	Andy Rost	56.97	37 57 45 N	119 16 31 W	Benthic	299
	Lee Vining Creek, CA		26-Jun-06	Near Mono Lake	Didmyo	Andy Rost	70.59	37 57 45 N	119 16 31 W	Benthic	300
											_

Country	River	Code	Date collected	Site	Taxon	Collector	DNA (ng/µL)	Northing/ Latitude	Easting/ Longitude	Sample type	order
USA	Rapid Creek, SD	RC-1	10-May-06	32km west of Rapid	Didmyo	Jeff Shearer	171.76	44 04 30 N	103 29 30 W	Benthic	301
USA	Rapid Creek SD	RC-2	12-May-06	Near Rapid city	Didmyo	Aaron Larsor	61.49	44.055157234 N	103.404361134 V	V Benthic	302
UK	River Coquet	C-1	4-May-06	Upstream Rowhope	Didmyo	M. Kelly	100.51			Benthic	303
USA	Drum Canal	DC-1	19-May-06	Upstream of Drum F	Didmyo	Peter Pryfog	264.27			Benthic	304
CAN	Kootenai River	KR-1	27-Oct-04	Site 13-4	Didmyo	A. Genung a	33.63			Benthic	305
CAN	Kootenai River	KR-2	27-Oct-04	Site 13-4	Didmyo	A. Genung a	45.52			Benthic	306
USA	Deschutes River	DR-1	7-May-06	Terrebonne, Old dia	Cymbella mexicana var j	Sarah Spauk	44.5	44.35306 N	121.17667 W	Benthic	307

Consensus sequence 20 10 30 +---1 Amphora montana 1 Anomoeoneis sphaerophora - -Cymbella 1 - -1 _ Dickieia ulvacea Encyonema triangulatum 1 Eolimna minima 1 - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 - - - - - - - - - - - -Eolimna subminuscula 1 Fragilaria striatula _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - -Gomphonema parvulum 1 ТСА G G А А С А G С Т А Т G А С С А Т G А Т Т А С G С С А NZ Gomphonesis sp 1 1 NZ Didymosphenia geminata **Consensus sequence** _____+ 40 50 60 -+-1 Amphora montana 1 Anomoeoneis sphaerophora 1 Cymbella Dickieia ulvacea - -1 1 _ _ Encyonema triangulatum 1 - -Eolimna minima Eolimna subminuscula 1 1 Fragilaria striatula 1 Gomphonema parvulum A G C T C A G A A T T A A C C C T C A C T A A A G G G A C T NZ Gomphoneis sp 31 NZ Didymosphenia geminata 1 **Consensus sequence** 70 80 90 --+-----+---Amphora montana 1 Anomoeoneis sphaerophora 1 1 Cymbella Dickieia ulvacea 1 - - - - - - - - - - - G T A T T C C G T C G A C Encyonema triangulatum 1 Eolimna minima 1 1 Eolimna subminuscula Fragilaria striatula 1 Gomphonema parvulum 1 61 A G T C C T G C A G G T T T A A A C G A A T T C G C C C T T NZ Gomphoneis sp NZ Didymosphenia geminata 1 ----CAGTAGTCATACG Consensus sequence -+----110 100 120 ______ 1 - - - - - - - - - - - - - - - - - T A C C Amphora montana - - C C T G G T T G A T C C T G C C A G T A G T C A T A C G Anomoeoneis sphaerophora 1 1 A A C C T G G T T G A T C C T G C C A G T A G T C A T A C G Cymbella Dickieja ulvacea 1 14 ΑΑССΤGGTTGΑΤССТGССАGΤΑGTCΑΤΑCG Encyonema triangulatum Eolimna minima 1 - - - - - - - - - - - - - C G - - - - - - - - - - - - - - - T A C G Eolimna subminuscula 1 - - - - - - - - - - - - - C A G T A G T C A T A C G 1 Fragilaria striatula Gomphonema parvulum 1 - - - - - - - - - A C C A A C C T G G T T G A T C C T G C C A G T A G T C A T A C G 91 NZ Gomphoneis sp - - - - - - - - T T C T G C C A G T A G T C A T A C G NZ Didymosphenia geminata 1 CTCGTCTCAAAGATTAAGCCATGCAT-GTC Consensus sequence 130 140 150 СТС G T C T C A A A G A T T A A G C C A T G C A A - G T C Amphora montana 5 CTCGTCTCAAAGATTAAGCCATGCAT-GTC Anomoeoneis sphaerophora 29

Appendix 6. Sequence alignment of 18S rRNA region in 11 biraphid diatom species from within and outside New Zealand.

31 1 44 3 5 14 4 121 20	C T C T C T C T C T C T C T C T T A		- G G G G G G G	- T T T T T		- T T T T T T		- A A A A A	- A A A A A A	- A A A A A	- G G G G G G	- A A A A A A	- T T T T T T	- T T T T T	- A A A A A	- A A A A A A	- G G G G G G			– A A A A A	Т Т Т Т Т Т	G G G G G G G G	C C C C C C C C C C C C	А А А А А А А	C T T C C T	- - - T -	G G G G G G G	T T T T T T T T	C C C C C C C C	Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence
									+-										-+-										+-	-
									16 +-	50 									1' +-	70									18(-+-	0
34 58 60 9 73 31 34 43 34 150 49	Т А Т А Т А Т А Т А Т А Т А Т А Т А Т А		G G G G G G G G G G	T T T T T T T T T	A A A A A A A A A	Τ Τ C Τ Τ Τ Τ Τ Τ Τ	A A A A A A A A A	A A A A A A A A A	A A A A A A A A A	Т Т Т Т Т Т Т Т Т	A A A C C C A A	T C T T T T T T T	T T A T T T A	Т Т Т Т Т Т Т Т Т	T C C C T T T T T	A A A A A A A A A	C C C C C C C T C	T T T T T T T T T	T G G T G T T G G	T T T T T T T T T T	G G G G G G G G G G	A A A A A A A A A	A A A A A A A A A	A A A A A A A A A	$\begin{array}{c} C \\ C $	T T T T T T T T	G G G G G G G G G G	C C C C C C C C C C	6 6 6 6 6 6 6 6 6	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	ΑA																													Consensus sequence
																														0
64 88 90 39 103 61 64 73 64 180 79	A A A A A A A A A A A A A A A A A A A A	. T . T . T . T . T . C . T	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C C C C C C C C C C	T T T T T T T T T T	C C C C C C C C C C C	A A A A A A A A A	T T T T T T T T T	Т Т Т Т Т Т Т Т Т	A A A A A A A A A	T T T T T T T T	A A A A A A A A A	T T T T T T T T	$\begin{array}{c} C \\ C $	A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T	T A T T T T T T T	A A A A A A A A A	Т Т Т Т Т Т Т Т Т	A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T	Т Т Т Т Т Т Т Т Т	Т Т Т Т Т Т Т Т Т Т	A C A A A A A A A A	T T T T T T T T T T T T	Т Т Т Т Т Т Т Т	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	Т G 																													Consensus sequence
									22	20									2	30									240	0
94												A	С	Т	А	С	Т	Т	G	G	А	Т	А	A		С	G	т	A	Amphora montana Anomoeoneis sphaerophora

	G Т А																											Consensus sequence
							25	50									26	50									270)
124 148 150 99 163 121 124 133 124 240 139	G T A G T A	A ' A ' A ' A ' A ' A '			Т Т Т Т Т Т Т Т Т Т Т Т Т	A A A A A A A A A	G G G G G G G G G G	A A A A A A A A A	0 0 0 0 0 0 0 0 0 0		T T T T T T T T T T	A A A A A A A A A	A A A A A A A A	T T T T T T T T T T	A A A A A A A A A	C C C C C C C C C C	A A A A G A A A A	T T T T T T T T T T T	G G G G G G G G G G	C C T C C C C C C C C	G G G G G G G A A	Т Т Т Т Т Т Т Т Т Т Т Т	C T C C C C C C T	A A A A A A A A A	A A A A A A A A A	Τ Τ Τ Τ Τ Τ Τ Τ Γ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	A G A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	- C C																											Consensus sequence
							28										29										300)
154 178 180 129 193 151 154 163 154 270 169	- C C C C C C C C C C C C C C C C C C C	C	Г Т Г Т Г Т Г Т Г Т Г Т Г Т		Т Т Т Т - Т Т	T G G G G G G C C	66666666666	G G G G G G G G	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T	A A A A G A A	6666666666	С Т Т Т Т Т Т Т Т	A A A A A A A A	А Т Т Т Т Т Т Т	T T T T T T T T	T T T T T T T T T	A A A A A A A A	Т Т Т Т Т Т Т Т Т	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	A A A A A A A A	666666666666666666666666666666666666666	А А А А А А А	Т Т Т Т Т Т Т Т Т	T T T G G T T T	G G G G G G T G T	A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	A A C																											Consensus sequence
							31	0									32	20									330)
183 207 209 158 222 180 182 189 183 299 199	A A C A A C	C . T . C . C . C . C .	A 2 T 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	A C A C A C A C A C A C A C A C A C	С С С С С С С С С С С С С С С С С С С	C C C C C G T C C	C C C C C C C C C C C	T T T T T T T T T T T	T T T T C T T G T T	C C C C C C C C C C C C T	- - - T	- - - T	- - - - - - - - - -	- - - - - - - -	G G G C G G G G G G G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G G G G G G G G G G	G G G G G G G G G G G G G G	T T T T T T T T T T	G G G G G G G G G G	A A A A A A A A A	T T T T T T T T T T	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphonesis sp NZ Didymosphenia geminata
	G A T																											Consensus sequence
							34										35										360)
209 233 233 184 248 206 208 219 209 325 225	G A A G A T G A C G A T G A T	. T . . T . . T . . T . . T .		Y T Y T Y T Y T Y T Y T Y T Y T	А А А А А А А А	A A A A A A A A A	T T T T T T T T T	A A A A A A A A A	A A A A A A A A A	GGGGGGGGT	Т С Т С - С С Т Т Т	T T T T T T T T T T T	T T T T T T T T T T	000000000000000000000000000000000000000	C C C C C C C C C C C	000000000000000000000000000000000000000	G G G G A G A A A	A A A A A A A A A	T T T T T T T T T T	C C T C C C C C C C C	6 6 6 6 6 6 6 6 6	C C C C C C C C C C	- A A A A A A A A	- C T T C C T C T T T	- G G G G G G G G G G G	- G G G G G G A A	- C C C G - C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata

																														C -+-	Consensus sequence
										37										38										390)
234 263 214 277 236 237 249 239 355 255	- T C C C T T C	- T T T C T T T T	- - T T - T	- - - - A -	C A T T T A T A	G G T G G G G G G G	G C C C C C T T	T C C T C C T C C T C C	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	С Т С С С С С С С С С С С С С	G G G G G G G G G G	A A A A A A A A A	T T T T T T C T T T	G G G G G G G G G G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A A A A A A A A	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	C C C C C C C C C C C	A A A A A A A A A	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	Т G Т Т Т Т Т Т Т Т	C C C C C C C C C C	A A A A A A A A A	A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	T T T T T T T T T T	C C C C C C C C C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
										-+-										+-										-+-	Consensus sequence
	_									4(-+-										41										42(-+-)
260 291 242 305 265 266 279 267 383 283	T T T T T T T T T T	G G G G G G G G G G G G G			C C C C C C C C C C C C	T T T T T T T T T T T	A A A A A A A A A	Т Т Т Т Т Т Т Т Т	$\begin{array}{c} C \\ C $	A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C C C C C C C C C C	T T T T T T T T T T T	T T T T T T T T T T	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A A A A A A A A	C T T T T A C T T T	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T T T T T	A A A A A A A A A	A G G G G C G G G G	G G G G G T G G G	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T	A A A C A A A A	T T T T T T T T T T	Т Т Т Т Т Т Т Т Т	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
											G																				Consensus sequence
	-									-+- 43										+- 44										-+- 45()
290 321 321 272 335 295 296 309 297 413 313	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	G G G G G G G G G G G G G	C C C C C C C C C C C C C C C C C C C	T C C C C C C C C C C C C	T T T T T T T T T T	A A A A A A A A A	$\begin{array}{c} C \\ $	$\begin{array}{c} C \\ C $	G A A T G A A A A	+ T T T T T T T T T		G G G G G G G G G G	C C C C C C C C C C C	T T T T T T T T T T T	Τ Τ Τ Τ Τ Τ Γ Τ Τ	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	A A A A A A A A A	A A A A A A A A	C C C C C C C C C C C	+ G G G G G G G G G G G G	6666666666	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Т Т Т Т Т Т Т Т Т Т	A A A A A A A A A	A A A A A A A A A	$\begin{array}{c} C \\ C $	G G G G G G G G G G	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	G A A A A G A A	G G G G T A G G G	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
											Т																				Consensus sequence
	-									-+- 46										+- 47										-+- 48()
320 351 302 365 325 326 339 327 443 343	A G G A A G G	A A A A A A A A	T T T T T T T T T	T T T T T T T T T T	A A A A A A A A A	G G G G G G G G G G	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T	Т Т Т Т Т Т Т Т	C T T T T T T T T	G G R G G G G G G G	A A A A A A A A A	T T T T T T C T T T	T T T T T T T T T		C C C C C C C C C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	А А А А А А А	G G G G G G G G G G	C C C C C C C C C C C		Т Т Т Т Т Т Т	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata

																												Consensus sequence
)
350	 G А																											Amphora montana
381	GΑ	GΑ	G	А	С	G	G	С	Т	А	С	С	A	C Z	A I	C	С	А	А	G	G .	A	А	G	G	С	A	Anomoeoneis sphaerophora
381 332	G A G A																											Cymbella Dickieia ulvacea
395	GA																											Encyonema triangulatum
355 356	GA																											Eolimna minima Eolimna subminuscula
369	G A G A																											Fragilaria striatula
357	GΑ																											Gomphonema parvulum
473 373	G A G A																											NZ Gomphoneis sp NZ Didymosphenia geminata
		-			-	-	-	-	-		-	-				-	-			-	-			-	-	-		,
	GC	A G	G	С	G	С	G	т	A	А	A	т	т	A	2 0	C	А	A	т	С	С	Т	G.	A (С	A	С	Consensus sequence
									20								-+- 53										+- 54(-
								-+-									-+-										+-	
380 411	G C G C																											Amphora montana Anomoeoneis sphaerophora
411	GC																											Cymbella
362	GC																											Dickieia ulvacea
425 385	G C G C																											Encyonema triangulatum Eolimna minima
386	GC																											Eolimna subminuscula
399 387	G C G C																											Fragilaria striatula Gomphonema parvulum
503	GC																											NZ Gomphoneis sp
403	G C	A G	G	С	G	С	G	Т	А	A	A	Т	Т	A (C	C	А	A	Т	С	С	Т	G .	A	С	A	С	NZ Didymosphenia geminata
	A G																											Consensus sequence
								-+-									-+-										+-	-
410								-+- 55 -+-	50								-+- 56 -+-	50									+- 57(+-	Amphora montana
441	 A A A G	G G G G	 A A	G G	G G	T T	A A	-+- 55 -+- G G	50 T T	G G	A A	C C	 A A	 A 7 A 7	с д С д	 A A A	-+- 56 -+- A A	50 T T	A A	 A A	 C	 A A	 A A	 T (T (G G	 C C	+- 57(+- C T	Amphora montana Anomoeoneis sphaerophora
441 441	 A A A G A G	G G G G G G	A A A	G G G	G G G	T T T T	A A A A	-+- 55 -+- G G G	50 T T T	G G G	A A A	C C C	 A A A	 A 1 A 1 A 1	с д с д с д	A A A A	-+- 56 -+- A A A	50 T T T	A A A	 A A A	 C C	 A A A	 A A A	 T (T (G G G	 C C C	+- 57(+- C T T	Amphora montana Anomoeoneis sphaerophora Cymbella
441	A A A G A G A G A G A G	G G G G G G G G	A A A A A	G G G G G G	G G G G G	T T T T T T	A A A A A A	-+- 55 -+- G G G G G	50 T T T T T	G G G G G	A A A A A	C C C C C	 A A A A	 A 1 A 1 A 1 A 1			-+- 56 -+- A A A A A	50 T T T T T	A A A A A	 A A A A A		 A A A A	 A A A A A	 T (T (T (C C C C G	+- 57(+- C T C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum
441 441 392 455 415	A A A G A G A G A G A G A G	G G G G G G G G G G G G	A A A A A A	G G G G G G G G	G G G G G G G G	 Т Т Т Т Т Т	A A A A A A A	-+- 55 G G G G G G G	50 T T T T T T	G G G G G G G G	A A A A A A		 A A A A A				-+- 56 -+- A A A A A A	50 T T T T T T	A A A A A A A	 A A A A A		 A A A A A	A A A A A A	 T (T (T (T (C C C C G C	+- 57(+- C T C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima
441 441 392 455	A A A G A G A G A G A G	G G G G G G G G G G G G G G	A A A A A A A	6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T	A A A A A A A	+ - 5 - 6 - 7	50 T T T T T T T	G G G G G G G G G G G G	A A A A A A A		 A A A A A A A				-+- 56 -+- A A A A A A A	50 T T T T T T T	A A A A A A A	 A A A A A A A		A A A A A A A	 A A A A A A			C C C C C C C C C C	+- 57(+- T T C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum
441 441 392 455 415 416 429 417	A A A G A G A G A G A G A A A G A G A G		A A A A A A A A A A	G G G G G G G G G	G G G G G G G G G	T T T T T T T T T	A A A A A A A A A	+ 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 T T T T T T T T T T	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A A A A A A A A A A		A A A A A A A A A A	 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	 		-+- 56 -+- A A A A A A A A A A A	50 T T T T T T T T T T T T	A A A A A A A A A A A	 A A A A A A A A A		A A A A A A A A A	 A A A A A A A A	 T (T (T (T (T (T (T (T (+- 570 +- C T C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum
441 392 455 415 416 429 417 533	A A A G A G A G A G A G A A A G A G A G		A A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T T	A A A A A A A A A A	+- 55 +- G G G G G G G G G G G G G G G		6 6 6 6 6 6 6 6 6	A A A A A A A A A A A		 A A A A A A A A A A A	A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	 		-+- 56 -+- A A A A A A A A A A A A A		A A A A A A A A A A A A	 A A A A A A A A A A		 A A A A A A A A A A	 A A A A A A A A A	 T (T (T (T (T (T (T (T (+- 57(+- C T C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp
441 441 392 455 415 416 429 417	A A A G A G A G A G A G A A A G A G A G		A A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T T	A A A A A A A A A A	+- 55 +- G G G G G G G G G G G G G G G		6 6 6 6 6 6 6 6 6	A A A A A A A A A A A		 A A A A A A A A A A A	A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	 		-+- 56 -+- A A A A A A A A A A A A A		A A A A A A A A A A A A	 A A A A A A A A A A		 A A A A A A A A A A	 A A A A A A A A A	 T (T (T (T (T (T (T (T (+- 57(+- C T C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum
441 392 455 415 416 429 417 533	A A A G A G A G A G A G A G A G A G A G			G G G G G G G G G T	GGGGGGGGG T		A A A A A A A A A A	+ 55 + G G G G G G G G G G G G G G G G G	50 T T T T T T T T T T T T A	9999999999999	A A A A A A A A A A G	CCCCCCCCCC	A A A A A A A A A A A C	 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7			-+- 50 -+- A A A A A A A A A A A A A		A A A A A A A A A A A T	 A A A A A A A A A A T		 A A A A A A A A A A A A G	 A A A A A A A A A A A	 T T C C C C C C C C C C C C C C C C C C			+- 57(+- C T T C C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp
441 392 455 415 416 429 417 533	A A A G A G A G A G A G A G A G A G A G	G G G G G G G G G G G G G G G G G G G	A A A A A A A A A A A A A A A A A A A	G G G G G G G T T	G G G G G G G G T		A A A A A A A A A A	-+- 55 -+- GGGGGGGGG GGGGGG T+- 58	50 T T T T T T T T T T T T T T T T T T T	000000000000000000000000000000000000000	A A A A A A A A A A G	C C C C C C C C C C T	A A A A A A A A A A A C			A A A A A A A A A A A A A A A A A A A	-+- 50 A A A A A A A A A A A A A A A A A A		A A A A A A A A A A T	 A A A A A A A A A A A A T 		 A A A A A A A A A A C 	 A A A A A A A A A A A 	 T T T T T T T T T T T T T T T T T T T			+- 57(+- T T C C C C C C C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
441 441 392 455 415 416 429 417 533 433	A A A G A G A G A G A G A G A G A G G G		A A A A A A A A A A A A A A A A A A A	G G G G G G G G T	G G G G G G G G T	T T T T T T T T T T T	A A A A A A A A A -	-+- 55 G G G G G G G G G G G G G G G G G G	50 T T T T T T T T T T T T T T T T T T T	6 6 6 6 6 6 6 6 6	A A A A A A A A A A A A G	C C C C C C C C C C C C C C C C C C C	A A A A A A A A A A A C 	A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1		A A A A A A A A A A A A A A A A A A A	-+- 5 A A A A A A A A A A A A A A A A A A	50 T T T T T T T T T T T T C	A A A A A A A A A A A A T	 A A A A A A A A A A A A A 		A A A A A A A A A A A A A A A A A A A	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	 T (T (T (T (T (T (T (T (+- 57(+- T T C C C C C C C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
441 441 392 455 415 416 429 417 533 433 433	A A A G A G A G A G A G A G A G A G A G			G G G G G G G G G G G T T T	G G G G G G G G G G G G G G G G G G G	T T T T T T T T T T T T T T T T T T T	A A A A A A A A A A A A C	+	50 T T T T T T T T T T T T T T T T T T T	000000000000000000000000000000000000000	A A A A A A A A A A A A G G	CCCCCCCCC T T	A A A A A A A A A A A A C C C	 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 C T ()		A A A A A A A A A A A A A A A A A A A	-+- 56 -+- A A A A A A A A A A A A A A A A A A	D T T T T T T T T T T T T T T T T T T T	A A A A A A A A A A A A T T	 A A A A A A A A A A A A T T T		 A A A A A A A A A A A A C G G	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				+- 57(+- C T T C C C C C C C C C C C C C C C C	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence Amphora montana Anomoeoneis sphaerophora
441 441 392 455 415 416 429 417 533 433	A A A G A G A G A G A G A G A G A G G G G		A A A A A A A A A A A A A A A A A A A	G G G G G G G G G G T T T T	G G G G G G G G G T T A T	T T T T T T T T T T T T T T T T T T T	A A A A A A A A A A A A A A A A A A A	+		000000000000000000000000000000000000000	A A A A A A A A A A A A G G G		 A A A A A A A A A A C C C T	A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7		A A A A A A A A A A A A A A A A A A A	-+- 56 -+- A A A A A A A A A A A A A A A A A A	O T T T T T T T T T T T T T T T T T T T	A A A A A A A A A A A A A T T T	 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		A A A A A A A A A A A A C G G G	 A A A A A A A A A A A A A A A A A A				+- 57(+- TTCCCCCCC A+- 60(+- A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence Amphora montana Anomoeoneis sphaerophora Cymbella
441 441 392 455 415 416 429 417 533 433 433 440 471 471 471 422 485	A A A G A G A G A G A G A G A G A G A G		A A A A A A A A A A A A A C C C C C C	GGGGGGGGGG T TTTTT	G G G G G G G G G G T T A T T T	T T T T T T T T T T T T T T T T T T T	A A A A A A A A A A A A A A A A A A A	+ - 5 - 5 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	50 TTTTTTTTTT A AAAAA	000000000000000000000000000000000000000	A A A A A A A A A A A A A A A A A A A	CCCCCCCCCC T TTTTT	 A A A A A A A A A A C C C T C C	 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 C C T C C T T C C T T C C T		A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	O TTTTTTTTTTTT C O ACCCC	A A A A A A A A A A A A A A A A A A A	 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		 A A A A A A A A A A A A A A A A A A	 A A A A A A A A A A A A A A A A A A				+- 57(T T C C C C C C C C A +- 60(A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence Maphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum
441 441 392 455 416 429 417 533 433 433 440 471 471 422	A A A G A G A G A G A G A G A G A G A G		A A A A A A A A A A A A C C C C C C C C	GGGGGGGGGG T TTTTTT	G G G G G G G G G G G G G G G G G G G		A A A A A A A A A A A A A C C G	+ - - - - - - - - - - - - - - - - - - -	50 TTTTTTTTTT AAAAAA	000000000000000000000000000000000000000	A A A A A A A A A A A A A A A A A A A		A A A A A A A A A C C C T C C C C	 A 7 7 A		A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	O T T T T T T T T T T T T T T T T T T T	A A A A A A A A A T T T T T T T	 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		 A A A A A A A A A A A A A A A A A A	 A A A A A A A A A A A A A A A A A A				+- 57(T T C C C C C C C C C A +- 60(+ A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea
441 441 392 455 416 429 417 533 433 433 433 440 471 422 485 446 459	A A A G A G A G A G A G A G A G A G A G		A A A A A A A A A A A A A A A A A A A	GGGGGGGGGG T TTTTTAT	GGGGGGGGGG T TATTTT	TTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTT	A A A A A A A A A A A A A A A A A A A	+ - - - - - - - - - - - - - - - - - - -	50 TTTTTTTTTT A 30 AAAAACA	00000000 0 0000000000000000000000000000	A A A A A A A A A A A A A A A A A A A		 A A A A A A A A A A A A A A A A A A				-+- 56 - A A A A A A A A A A A A A A A A A A A	0 TTTTTTTTTTT COACCCCAAA	A A A A A A A A A A T T T T T T T T T	 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		 A A A A A A A A A A A A A A A A A A					+-0 5+- CTTCCCCCCCC A+-0 + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula
441 441 392 455 416 429 417 533 433 433 433 440 471 471 422 485 446	A A A G A G A G A G A G A G A G A G A G		A A A A A A A A A A A A A A A A A A A	GGGGGGGGGG T TTTTTATT	GGGGGGGGG T TATTTTTT	TTTTTTTTTT T CTATATTTT	A A A A A A A A A A A A A A A A A A A	+ - 5 + G G G G G G G G G G G G G G G G G G G	50 TTTTTTTTTT A 30 AAAAACAAA	000000000000000000000000000000000000000	A A A A A A A A A A A A A A A A A A A		A A A A A A A A A A A A A A A A A A A				-+	0 TTTTTTTTTTT COACCCAAACC	A A A A A A A A A T TTTTTTTT	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		 A A A A A A A A A A A A A A A A A A	 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				+-70 +-70 	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula

										+-										+-										+-	Consensus sequence
										61										62										63	0
469 501 500 452 514 475 475 475 476 592 492	000000000000000000000000000000000000000	A T A A A A A A A	A A A A A A A A A	000000000000000000000000000000000000000	A A A A A A A A A A	АААААААААА	Τ Τ Τ Τ Τ Τ Τ Τ Τ Γ Γ Γ Γ Γ Γ Γ	T T T T T T T T T	T T C T C T T T C C	A A A A A A A A A	A A A A A A A A A A	А А А А А А А А А	CTCCCCCCCC	CCTCCCCCCC	C T A C A C C C A A	000000000000000000000000000000000000000	T T T T T T T T T T	T T T T T T T T T T T T	АТААААААА	TTATTTTTT	00000000000	G G A G G G G G G G	A A A A A A A A A	0000000000000	0000000000000	A A A A A A A A A A	ΤΤΤΤΤΤΟΤΤ	00000000000	A A A G C A A A A	A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																														C +-	Consensus sequence
										64	0									65	50									66	0
544 505 505	T ' T ' T ' T ' A ' T ' T ' T '	T T T T T T T T T	66666666666666	G G G A G G G G G	A A A A A A A A A A	000000000000000000000000000000000000000	6666766666	000000000000	C C C C C C C C C C C C	A A A A A A A A A	A A A A A A A A A A	000000000000000000000000000000000000000	T T T T T T T T T T T T	00000000000	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	6666666666666	6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T T T	000000000000000000000000000000000000000	00000000000	00000000000	A	00000000000	00000000000	A A A A A A A A A A	000000000000	00000000000	00000000000	000000000000	0000000000000	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																															Consensus sequence
										67	0									68	30									+- 69	0
560 512 574 535 535		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T	A A A A A A A A A A	A A A A A A A A A A	T T T T T T T T T T T T T	T T T T T T T T T T T T	C C C C C C C C C C C C C C C C C C C	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	A A A A A A A A A	G G A G G G G G G G G G G	00000000000000000000000000000000000000	T T T T T T T T T T T T T	00000000000000000000000000000000000000	C C C C C C C C C C C C C C C C C C C	A A A A A A A A A A	A A A A A A A A A A	T T T T T T T T T T T T T	A A A A A A A A A A	000000000000	00000000000	000000000000	T T T T T T T T T T	A A A A A A A A A	T T T T T T T T T	A A A A A A A A A	TTTTTTTT	TTTTTTTT	A A A A A A A A A	А А А А А А А А	Amphora montana Anomeenneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	7	C	m	m	C	m	m	C	C	7	C	m	m	7	7	7	7	7	C	C	m	C	C	m	7	C	m	m	C	C	Consensus sequence
										+-										+-										+-	-
										70-+-	0									71 +-	.0									72	0
559 591 542 604 565 565 579 566 682 582	A (A (A (A (A (A (A (A (A (A (TTTTTTTT	TTTTTTTT	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T T T T T T T T T T T	T T T T T T T T T T T	000000000000	0000000000	A A A A A A A A A A	0000000000000	T T T T T T T T T T	T T T T T T T T T T T	А А А А А А А А А А	A A A A A A A A A A	A A A A A A A A A	A A A A A A A A A A	A A A A A A A A A A	0000000000000	000000000000	T T T T T T T T T T	000000000000	000000000000	T T T T T T T T T	A A A A A A A A A A		T T T T T T T T T T T T	T T T T T T T T T T	00000000000000000000000000000000000000	G A G G G G G G G <mark>G</mark>	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata

	A															G												Consensus sequence
										73	0						7.	10									75	0
589 621 620 572 634 595 595 609 596 712 612	A A A A A A A A A	T C T T T T T T T T T	TTGTTTTTT T	TTTTTTTTT TTTTTTT	00000000000000000000000000000000000000	T T T T T T T T T T T	00000000000000000000000000000000000000	G A G G G G G A A	T T T T T T C T T	G G A G T T G T A G G	- G A - T C G G A G	G A C G G G G G T T <mark>A</mark>	T A T T A G G G A	C C T T T T C T C C C		A G G C G G A	GGGTAGCGTA	G A G G G T G G G G	Т С Т Т Т С Т Т С С	CTCCCCCCCC	C C A C C C C T T	G A T A T A A G T C	A T T A C A T G T T	Τ C T T T T C T T	- - - A - A -	- - T - T T	- - - T - T - A -	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																												Consensus sequence
										+- 76					 	 		 7 0									+- 78	0
615 649 647 598 660 625 622 639 624 740 640	- - A T -	- - - T T - -	- - - - - - - - -	T TTTTT	- - - - G -	СТТТТТСТТ	CTTTTGTGGG	0000000000000	G A A G G G G A A	T C T T T T C T	A G T A A G T A G T	СТТССССССС	TCCATTTTC	T A T G G T C T		G G G G G G G G G	G C G A G A G A - -	A T A T G T C C C	- - - T T A A	C T T C C G G C C T	T T A C A A T G A T	G G A G G G G T G G	CTCCCCCCT	00000000000	A A A A A A A A A	ΤΑΤΤΤΤΤΤ ΤΤΤΤΤΤ	CTCCCCCCCC	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																												Consensus sequence
										79	0						8	00									81	0
640 673 669 623 685 653 650 669 647 762 661	C T T C C C C C C T	ΤΤΤΤΤΤΤΤ	TTTTTTTTT	0000000000000	G A G G G G G G G G	0000000000000	ΤΤΤΤΤΤΑΑ	0000000000000	G G A G G G G G G G	А А А А А А А А А	ТААААТААТ	- - A - -	CCCTCTTTT	CTCCCCCCTT			000000000000	0000000000000	000000000000	А А А А А А А А А А	T T T T T T T T T T	ΤΤΤΤΤΤΤΤ	А А А А А А А А А	G G G G G A A G G	000000000000000000000000000000000000000	T T T T T T T T T	TTTTTTTTT	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	a	т	С	G	т											_A												Consensus sequence
										- + -																	•	
										82					 	 	8:	30									84	0

	G A																											Consensus sequence
									85								86										87(0
699 732 728 682 745 712 708 728 706 821 720	G A G A G A G A G A		A A A A A A A A A A	A	A A A A A A A A A A	A A A A A A A A A A	ΤΤΤΤΤΤΤΤ	TCCCCTTTCC	A A A A A A A A A A	000000000000000000000000000000000000000			T T T T T T T T T	ΤΤΤΤΤΤΤΤ	000000000000	A A A A A A A A A A	ААААААААА	A A A A A A A A A A	000000000000	00000000000	А А А А А А А А А А	G G G G G G G A A <mark>G</mark>	G G G G G G G G G A	000000000000	T T T T T T T T T T T T	T T T T T T T T T T	A A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	Т С																											Consensus sequence
									88								89										900	0
775 742 738 758	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			G G A G G G G G G G G G G G G G G G G G	T T T T T T T T T A	TTTTTTTT T	<mark>0</mark> 00000000000000	A A A A A A A A A A	A A A A A A A A A	T T T T T T T T T T T	A' GG' GG' A' GG' G	T 4 T 4 T 4 T 4 A 7 A 7 A 7 A 7 A 7	T T T T T T T T T T	A A A A A A A A A A A A	0000000000000	000000000000	A	T T T T T T T T T T	000000000000	00000000000	A A A A A A A A A	АААААААААА	T T T T T T T T T T	A A A A A A A A A A	АААААААААА	T T T T T T T T T T	G A A A G A G A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	A G								+-								-+-										+-	_
									91			 					92 -+-										93(+-	0
788 742 805 772 768 788 766 880	A G A G A G A G A G A G A G A G A G	3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	A A A A A A A A A	00000000000	00000000000	А А А А Т А А А	0000000000	Т С С С С Т С Т С	T T T T T T T T T T	G C T T C C C T T T C C C C C C C C C C	G T G T G T G T G T G T G T G T G T	A A A C A A A	0000000000	T T T T T T T T T T	A A A A A A A A	T T T T T T T T T T	T T T T T T T T T T	T T T T T T T T T T	T T T T T T T T T T	000000000000	T T T T T T T T	T T T T T T T T T T	0000000000000	000000000000	T T T T T T T T	T T T T T T T T	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	т С																											Consensus sequence
									94	0							95	50									96()
789 822 818 772 835 802 798 818 796 910 810	T 0 T 0 T 0 T 0 T 0 T 0 T 0 T 0 T 0 T 0	C T T C T C C C C T	000000000000	C T C C C C G C T C	A A A A A A A A A	CCCCCCCTC	TGCCCCCTC	G C A G G G A G A G	G A A A A G A A A	G G G G G A G G G	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A A A A A A A A A A A A A A A A	T T T T T T T T	0000000000000	A G A A A A A A A A	T T T T T T T T T T	T T T T T T T T T T	A A A A A A A A A	A A A A A A A A A	Τ Τ Τ Τ Τ Τ Ο Τ Τ Τ	A A A A A A A A A	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	АААААААААА	C C T C C C C T T	A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata

																														G -+-	Consensus sequence
										97										98										99	0
819 852 848 802 865 832 828 848 826 940 840	000000000000	T T T T T T T T T T	T T T T T T T T T T	000000000000	T G G G G G G G G G G	000000000000	000000000000	000000000000	T T T T T T T T T T	A A A A A A A A A A	T T T T T T T T T T	TTTTTTTTT	CCHCCCCCCCC	0000000000000	TTTTTTTTT	A A A A A A A A A A A	ΤΤΤΤΤΤΤ	T T T T T T T T T T	000000000000	000000000000	АААААААА ААААААА	T T T T T T T T T T	T T T T T T T T T T	G G G	TTTTTTTTT	00000000000	A A A A A A A A A A	000000000000	A A A A A A A A A A	000000000000	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																								G						C +-	Consensus sequence
										10	00)								10)1()								10	20
849 882 878 832 895 862 858 858 858 856 970 870	0000000000000	T T T T T T T T T T	000000000000	ААААААААА	A	A	T T T T T T T T T T	T T T T T T T T T T	000000000000	T T T T T T T T T T	T T T T T T T T T T	000000000000	000000000000	ААААААААА	TTTTTTTTT	TTTTTTTTT	ΤΤΤΤΤΤΤ	C C T C T C C T T T	T T T T T T T T T T	000000000000	000000000000	ААААААААА	A	00000000000	A A A A A A A A A A	00000000000	G G A G G G G G G G	A A A A A A A A A A	A A A A A A A A A A A	0000000000	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																														т	Consensus sequence
)30)4(-+- 10	50
879 912 908 862 925 892 888 908 886 1000 900	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	ААААААААА	A C C C C C C C C C C C C C C C C C C C	T T T T T T T T T T	000000000000	00000000000	000000000000	A	A	A	000000000000	00000000000	A A A A A A A A A A	ΤΤΤΤΤΤΤΤ	TTTTTTTTT	TTTTTTTTT	T A A A A A A A A A	00000000000	00000000000	ААААААААА	А А А А А А А А А А А	000000000000	000000000000	A A A A A A A A A A	T T T T T T T T T T	- T - T -	000000000000	TTTTTTTTT	T T T T T T T T T T T	Т Т Т Т Т Т Т Т	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	т	С	A	т	т	A	A	т	С	A	A	G	A	A	С	G	A	A	A	G	т	т	A	G	G	G	G	A	т	С	Consensus sequence
										-+-										-+-										+-	_
000																				-+-										+-	
908 941 938 891 955 921 917 917 915 1029 929	T T T T T T T T T T	$\begin{array}{c} C \\ C $	A A A A A A A A A	T T T T T T T T T T	T T T T T T T T T T	A A A A A A A A A	A	T T T T T T T T T T	$\begin{array}{c} C \\ C $	A A A A A A A A	A A A A A A A A	000000000000	A A A A A A A A A A	A A A A A A A A A	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	0000000000000000000	A A A A A A A A A	A A A A A A A A A	A A A A A A A A A	00000000000000000000000000000000000000	T T T T T T T T T T	T T T T T T T T T T	A A A A A A A A A	GGGGGGGG <mark>G</mark>)F/	00000000000000000000000000000000000000	<mark>0</mark> 000000000000	00000000000000000000000000000000000000	A A A A A A A A A	T T T T T T T T T T T	CCCCCCCCC <mark>C</mark>	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata

	G A 								+							-+										+-	Consensus sequence
938 971 968 921 985 951 947 967 945 1059 959	G A G A G A G A G A G A G A G A G A G A	A A A A A A A A A A A	000000000000000000000000000000000000000	A A A A A A A A A	T T T T T T T T T T T T	000000000000000000000000000000000000000	A A A A A A A A A A	 T ' T ' T ' T ' T ' T '	T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2	A G A G A G A G A G A G A G A G A G	A A A A A A A A	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	A A A A A A A A A	000000000000000000000000000000000000000	TA TA TA TA TA TA TA TA		0000000000000		A A A A A A A A A A	000000000000000000000000000000000000000	T T T T T T T T T T	000000000000000000000000000000000000000	T T T T T T T T T T	T T T T T T T T T T	A A A A A A A A A A	A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	с с																										Consensus sequence
									11:	20						1	13	0								11	40
968 1001 998 951 1015 981 977 997 975 1089 989		А А А А А А А А	T T T T T T T T T T	A A A A A A A A A	A A A A A A A A A	АААААААААА		Т. Т. Т. Т. Т. Т. Т. Т. Т. Т. Т. Т. Т. Т	A 7 A 7 A 7 A 7 A 7 A 7 A 7			00000000000	G A A G G G G G G	A A A A G A A A A	A A A A A A A A A A A A A A A A	A G A G A G A G A G A G A G A G	A G G G G G G G G G G G G G G	0000000000000	A A A A A A A A A A	T T T T T T T T T	T T T T T T T T T T	0000000000000	000000000000000000000000000000000000000	G T T T C C C T T	AGGGAG-GA	A G G G G G G G G G G	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																											Consensus sequence
		·							+	 50					 	·-+ 1	16	 0								-+- 11	_
998 1031 1028 981 1045 1011 1007 1026 1005 1119 1019		T T C T T C T C T T C T T	T C C C T T C G T T	TTTTTTT	CCCCCCTCC	GGGGGGGGGGGGG	 T T . T T . T T . T . T .	 T . T . T . T . A . A .	+ 11! + A (A (A (A (A (A (A (A (C C G C C C C C C C C C	TCCTTTTT		C I A I A I A I G I G I A I A I		16 A A A A A A A A A A A A A	000000000000000000000000000000000000000	C C C C C C C C C C C C C	A A A A A A A A A A A	CCCCCCCCCC	CTCCCCCCCCC			A A A A A A A A A A A	+- G T A T T T G G G	_
1031 1028 981 1045 1011 1007 1026 1005 1119	A G G G G G G G G G G G G G G G G G G G	TTCTTCTTT G	T C C C T T C G T T T A	TTTTTTTTT T	CCCCCCC TCCC A	GGGGGGGGGG T	ТТ ТТ ТТ ТТ ТТ ТТ ТТ С	 T T T A A A .	+ 11! + A (A (A (A (A (A (A (A (CCGCCCCCCCCCCG	TCCTTTTTTC T	 CCCCCCCCCCC T	C I C I A I A I A I G I G I A I A I A I C I I T I		A A A A A A A A A A A A A A A A A A A	000000000000000000000000000000000000000	CCCCCCCCCC T	A A A A A A A A A A A T		CTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			A A A A A A A A A A G	+ G T A T T T T T G G G G G	70 Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp
1031 1028 981 1045 1011 1007 1026 1005 1119	A G G G G G G G G G G G G G G G G G G G	TTCTTCTTT G	T C C T T C G T T T A	TTTTTTTT TTTTTT	C C C C C C C C C C C C C C C C C C C	G G G G G G G G G G T	TT . TT . TT . TT .	 T . T . A . A . A . A .	+	50 50 50 50 50 50 50 50 50 50 50 50 50 5			TCCTTTTTTC	T	 C I A I A I A I G I G I G I G I A	-++1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	16 A A A A A A A A A A A A A A A A A A A		CCCCCCCCC T	A A A A A A A A A A A T					A A A A A A A A A A G	+ G T A T T T T T G G G G G + 12	70 Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence

	GG	A	G	Т	А	Т	G	G	т	СС	C C	A	А	G	G	ст	G	Α	А	А	С	T 1	Γ 2	A A	A	G	Consensus sequence
									+- 12									220				·				-+- 12	
1057 1090 1087 1040 1104 1071 1066 1085 1064 1178 1078	GG	A A A A A A A A A	0000000000000	T T T T T T T T T T	A A A A A A A A A	TTTTTTTTT	0000000000000	000000000000000000000000000000000000000	T T T T T T T T T T			A A A A A A A A A	A A A A A A A A A	0000000000000				A A A A A A A A A	A	АААААААААА	0000000000000	T 7 T 7 T 7 T 7 T 7 T 7 T 7 T 7		A A A A A A A A A A A A A A A A	A A A A A A A A A A	000000000000000000000000000000000000000	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	ΑA																										Consensus sequence
									+- 12									250								-+- 12	60
1087 1120 1117 1070 1134 1101 1096 1115 1094 1208 1108	A A A A A A	A A A A A A A A	Τ Τ - Τ Τ Τ Τ Τ Τ Τ Τ	T T T T T T T T T T	667666666666666666666666666666666666666	A G A A A A A A A	000000000000	000000000000000000000000000000000000000	G G G G G G G G G G G G G G G G G G G	A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7		000000000000	000000000000	000000000000			A A A A A A A A	000000000000	00000000000	АААААААААА	000000000000	G Z G G G G Z G G G G G G G G G G G G G	A () A () A () A () A () A () A () A ()	G T G T T G T T G T T T G T T T G T T T G T T T G T T T G T T T G T T T G T T T G T T T T	000000000000	000000000000000000000000000000000000000	Amphora montana Anomeeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	A G																										Consensus sequence
									12									280								12	0.0
1117 1150 1145 1100 1164 1131 1126 1145 1124 1238 1138	A G A G A G A G A G A G A G	000000000000		$\begin{array}{c} T \\ T $	G G A G G G G G G G	00000000000	0000000000000	89999999999999	+- C C C C C C C C C C C C C C C C C C C	Г – – Т 7 Т 7 Т 7 Т 7 Т 7 Т 7 Т 7	' A ' A ' A ' A ' A ' A ' A	A A A A A A A A A	T T T T T T T T T T	T T T T T T T T T T		G A A A A A A A A A A A A A A A A A A A			00000000000	А А А А А А А А А	A A A A A A A A A A		A () A () A () A () A () A () A () A ()		000000000000000000000000000000000000000	00000000000000	
1150 1145 1100 1164 1131 1126 1145 1124 1238	A G A G A G A G A G A G A G A G A G A G	C C C C C C C C C C C C C C C C C C C	C C - C C C C C C C C A	T T T T T T T T T T C	G G A G G G G G G G G T	0000000000 F	G G G G G G G G G A		+- C C C C C C C C C C C C C C C C C C C	ר ד ר ד ר ד ר ד ר ד ר ד ר ד ר ד ר ד ר ר ד ר ר ד ר ר ר ר	· A · A · A · A · A · A · A · A · A · A	A A A A A A A A A A T	T T T T T T T T T T T C	ТТТТТТТТТТ С	T () () () () () () () () () (G A A A A A A A A A A A A A A A A A A A		T T T T T T T T T T T T T T T T T T T	C C C C C C C C C C C C C C C C C C C	A A A A A A A A A A A A	A A A A A A A A A A A G	C I C I C I C I C I C I C I C I C I C I	A () A () A () A () A () A () A () A ()		000000000000000000000000000000000000000	G G G G G G G G G G A +	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence
1150 1145 1100 1164 1131 1126 1145 1124 1238	A G A G A G A G A G A G A G A G A G A A G	C C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C A	T T T T T T T T T T T T T C	G G A G G G G G G G G T	CCCCCCCCC T	G G G G G G G G A		+- C C C C C C C C C C C C C C C C C C C	 T T T T T T T T T T T T T	· A · A · A · A · A · A · A · A · A · A	A A A A A A A A A T	T T T T T T T T T C	T T T T T T T T T T C	T () () () () () () () () () (G G A A A A A A A A A A A A A A A A A A	-++ C C C C C C C C C C C C C C C C C C C	T T T T T T T T T T T T T T T T T T T	CCCCCCCCC T	A A A A A A A A A A A A	A A A A A A A A A A G		A () A () A () A () A () A () A () A ()		0 0000000000000000000000000000000000000	G G G G G G G G G G A + 13	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence 20

TTGACAGATTGAGAGC---TCTTTCTTGAT Consensus sequence

	T T G																								Consensus sequence
																340								13	50
1177 1210 1204 1160 1224 1191 1186 1205 1184 1298 1198	T T G T T G T T T T T G T T G T T G T T G T T G T T G T T G			A A A A A A A A A	GGTGGGGGGG	А Т А Т А Т А Т А Т А Т А Т А Т	-+- T T T T T T T T T	G G T G G G G G G G G G G G G G G G G G	A A A A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A G A G A G A G A G A G A G A G		- A - - - -	C G	- T - T - T - T - T - T	00000000000	T T T T T T T T T T	Т 7 Т 7 Т 7 Т 7 Т 7 Т 7 Т 7 Т 7 Т 7		T T T T T T T T	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	667666666666666666666666666666666666666	AAGAAAAAAA	T T T T T T T T T	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
			m		a	~ ~		a	a		~ ~	m	a	~ 7		~	~	~ ~		m		~	-	-	6
	тст					G G																			Consensus sequence
								360								370								13	30
1204 1237 1234 1187 1251 1218 1213 1232 1211 1325 1225	T C T T C T	ГТ ГА ГА ГА ГА ГА ГА	T T T T T T T T T	- T - - -	0000000000000		T T T T T T T T T T T	000000000000	000000000000	T T T T T T T T T T		T T T T T T T T T T	0000000000000	C	A T A T A T A T A T A T A T A T A T	000000000000	000000000000000000000000000000000000000			T T T T T T T T	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	00000000000	T T T T T T T T T T	T T T T T T T T T T	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	A – G																								Consensus sequence
							1:	390)						1	400)							14	LO
							-+-												ЗI	Т	А				Amphora montana
1263 1216 1280 1247 1242 1261 1240	A - G A - G		ΥΥΥΥΥ ΥΥΥΥΥΥΥ	6999999999999	0000000000000	T G T G T G T G T G T G T G T G	00000000000	А Т А А А А А А А	000000000000	T T T T T T T T T T	GA GA GA GA GA GA GA	T - T T T T T T T T	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	Т (Т (Т (Т (Т (Т (Т (Т (3 T 3 T 3 T 7 T 7 T 7 T 7 T 7 T 7 T 7 T 7	C C C C C C C C C C	T T T T T T T T T				A A A A A A A	A A A A A A A	T T T T T T T	T C T T T T T T	Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
1266 1263 1216 1280 1247 1242 1261 1240 1354	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T T T T T T T T T T T	G G T G G G G G G G G A	G G G G G G G G A	T G G G G G G G G G G G G G G G G G G G	G G G G G G G A	A T A A A A A A A A A	000000000000000000000000000000000000000	T T T T T T T T T T T T T T T T T T T	G A G G A G G A A G G G A A G A A G A	T – T T T T T T A	TTTTTTTTT C	Т С С С С	TTTTTTTTT C	C C C C C C C C C T	TTTTTTTT G				A A A A A A A C	A A A A A A A T	T T T T T T T T T T T T T T T	ТСТТТТТТ А	Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp
1266 1263 1216 1280 1247 1242 1261 1240 1354	A - G A - G A T G A - G		T T T T T T T T T T T T T	G G T G G G G G G G A	G G G G G G G A	T G G G G G G G G G G G G G G G G G G G	G G G G G G G G G A -+-	A T A A A A A A A A A 420		T T T T T T T T G	G A G - G G A A G G A A G G A G G A G A G A G A	T T T T T T T T T	TTTTTTTTT C	T (0 T (0 T (0 T (0 T (0 T (0 T (0 T (0	G T T T T T T T T T T T T T T T T T T T	C C C C C C C C C C C C C C C C C C C		G () G () G () G () G () G () G () G ()		- T T T T T G	A A A A A A A A C	A A A A A A A T	Т Т Т Т Т Т Т Т Т Т Т Т Т	TCTTTTTTT TTTTTT A-+	Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence

ATAG-TTCAGTTAGTGA-TTTTCAC--TGA Consensus sequence 1470 1450 1460 +-----+----A T A G - T C C T T T G A G T G A - T T T T T C A C - - T G A Amphora montana A T A G C A C T A G T - A G T G A - T T T T T C A C - - T G C Anomoeoneis sphaerophora A T A G - T T C T T T A A G T T A T T T G C A A C C T T A C Cymbella A T A G - T T C C G T T A G T G A - A T T T C A C - - T G G Dickieia ulvacea 1292 1325 1317 A T A G - T T C T T T A A G T T A T T T G C A A C C T T A C Cymbella A T A G - T T C C G T T A G T G A - A T T T C A C - - T G G Dickieia ulvacea A T A G - T G C A G T T A G T G A - T T T T C A C - - T G A Encyonema triangulatu A T A G - T C C A G T T A G T G A - T T T T C A C - - T G A Encyonema triangulatu A T A G - T C C G G T G A G T G A - A T T T T C A C - - T G A Eolimna minima A T A G - T C C G G G T G A G T G A - A T T T T C A C - - T G A Eolimna subminuscula A T A G - T C C G G G T T A A T G A A T T T T C A C - - T G G Fragilaria striatula A T A G - C T C G G G T G A G T G A - T T T T C A C - - T G A Gomphonema parvulum A T A G - C T C G G C T A G T G A - T T T T C A C - - T G A NZ Gomphonema parvulum 1275 1339 Encyonema triangulatum 1306 1301 1320 1299 1413 A T A G - A C T A G T T A G T G A - T T T T C A C - - T G A NZ Didymosphenia geminata 1313 $\texttt{C} \ \texttt{T} \ \texttt{T} \ \texttt{G} \ \texttt{A} \ \texttt{G} \ \texttt{C} \ \texttt{T} \ \texttt{T} \ \texttt{C} \ \texttt{T} \ \texttt{C} \ \texttt{T} \ \texttt{C} \ \texttt{Sequence} \ \texttt{sequence}$ ----+-1490 1500 1480 1318 1351 1346 1301 1365 1332 1327 С GAGAAC т TCTTAGAGGGAC GTGCAT Т СТА Eolimna subminuscula C T A C A A C T T C T T A G A G G G A C G T G C G T T T T A 1347 Fragilaria striatula 1325 C T T G A G C T T C T T A G A G G G A C G T G C A T T T T T Gomphonema parvulum 1439 CTTGAGCTTCTTAGAGGGACGTGCATAATT NZ Gomphoneis sp 1339 TCRGGTCTTCTTAGAGGGACGTGCATTTTA NZ Didymosphenia geminata T T A G A T G C A G G A A G A T A G C G G C A A T A A C A G Consensus sequence 1520 1530 1510 ---+-----+-T T A G A T G C A G G A A G A T A G G G G C A A T A A C A G Amphora montana 1348 T T A G A T G C A G G A A G A T A G C G G C A A T A A C A G T T A G A T G C A G G T A A G G T A G C G G C A A T A A C A G T T A G A T G C A G T A A G G T A G C G G C A A T A A C A G T T A G A T G C A G G A A G A T A G C G G C A A T A A C A G Dickieia ulvacea 1381 1375 1331 1395 T T A G A T G C A G G A A G A T A G C G G C A A T A A C A G Encyonema triangulatum 1362 T T A G A T G C A G G A A G A T A G G G G C A A T A A C A G Eolimna minima T T A G A T G C A G G A A G A T A G G G G C A A T A A C A G Eolimna subminuscula T A A A A C G C A G G A A G A T A C G G G C C A A A A A C A G Fragilaria striatula 1357 1377 T T A G A T G C A G G A A G A T A G C G G C A A T A A C A G Gomphonema parvulum 1355 T T A A A T G C A G G A A G A T A G C G G C A A T A A C A G NZ Gomphoneis sp 1469 1369 TTAGATGCAGGAAGATAGCGGCAATAACAG NZ Didymosphenia geminata $\mbox{G T C T G T G A T G C C T T A G A T G T T C T G G C C C C \\ \mbox{Consensus sequence}$ G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G Holimna minima G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G Holimna subminuscula 1378 1411 1405 1361 1425 1392 1387 1407 GTCTGTGATGCCC ТТАСАТСТСССССС Fragilaria striatula 1385 G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G Gomphonema parvulum 1499 G T C T G T G A T G C C C T T A G A T G T T C T G G G C C G NZ Gomphoneis sp 1399 G T C T G T G A T G C C C T T A G A T G A T C T G G G C C G NZ Didymosphenia geminata

	CI	A C	G	C	G	С	G	C '	тд	С	Α	С	тα	: A	т	G	С	дг	r T	С	А	А	_	С	G	А	Consensus sequence
																											_
1408 1441 1435 1391 1455 1422 1417 1437 1415 1529 1429		A C A C A C A C A C A C A C A C	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000	000000000000	000000000000	000000000000		T A T A T A T A T A T A T A T A T A T A		A A A A A A A A A A	ссссссссс с	T C T C T C T C T C T C T C T C T C	A A A A A A A A A A A A	T T T T T T T T T T	000000000000000000000000000000000000000	+- T C C C C T T	A Z G Z A Z A Z A Z G Z	Г Т Г Т Г Т Г Т Г Т Г Т Г Т	00000000000	A A A A A A A A A A	A A A A A A A A A	- - - - - -	000000000000000000000000000000000000000	G G A G G G G G G	A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
	G	гт																	ст								Consensus sequence
									160	0							16	10								16	20
$1437 \\ 1470 \\ 1464 \\ 1420 \\ 1484 \\ 1451 \\ 1446 \\ 1466 \\ 1444 \\ 1559 \\ 1458 \\$	G G G G G G G G G G G G G G G G G G G	Г Т Г Т Г С Г Т Г Т Г Т Г Т Г Т	A T T C T T T T T	– T T T T T T T	- T - T A T A T T	000000000000	000000000000000000000000000000000000000	T ' T ' T ' T ' T '		G G G G G G G G G G G G G G	00000000000	C T T T C C C T T	G F F F F F F F F F F F F F F F F F F F		A A A A A A A A A A	G A A A G G A A	6666666666666			00000000000	000000000000	000000000000	C C C C C C C A C C	A A A A A A A A A	A A A A A A A A A	T T T T T T T T T	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
																											Consensus sequence
									+								+-									+-	
									163								16									16	50
1465 1500 1492 1450 1514 1481 1476 1495 1474 1589 1488		Г Т Г Т Г Т Г Т Г Т Г Т Г Т Г Т	T G C T T T T G T	T T T T T T T T T	G A G G G G G G G	A A A A A A A A A A	A A A A A A A A A	CCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	+ G T G T G T G T G T G T C T	G G G G G G G A	00000000000	А Т А А А А А А	T C G C T C T C T C T C T C T C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T T T T T	000000000000000000000000000000000000000	+- A T A A A A A A A	T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2	A G A G A G A G A G A G A G	0000000000000	000000000000	A A A A A A A A A	T T T T T T T T T T	A A A A A A A A A	 G G G G G G G G G G G G	+- A A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata
1500 1492 1450 1514 1481 1476 1495 1474 1589		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	T G C T T T T G T T T	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	G A G G G G G G G G G G G G G G G G G G	A A A A A A A A A A A C	A A A A A A A A A A A A		+ C T C C T C C C C C C C C C C C C C C C	G G G G G G G G G G G G G G G G G G G	C C C C C C C C C C T	A A T A A A A A A A T	T (T (G (C T (C		T T T T T T T T T T C	T 000000000000	+- A T A A A A A A A A A A T	T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2	A G A G A G A G A G A G A G A G A G	000000000000000000000000000000000000000	00000000000000000000000000000000000000	A A A A A A A A A A A A	ТТТТТТТТТ G	A A A A A A A A A A A G	 GGGGGGGGGG A	+- A A A A A A A A A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp
1500 1492 1450 1514 1481 1476 1495 1474 1589		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	T G C T T T T G T T T	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	G A G G G G G G G G G G G G G G G G G G	A A A A A A A A A A A C	A A A A A A A A A A A A	C C C C C C C C C C C C C C C C C C C	+ C T C C C C C C C C C C C C C C C C C C	G G G G G G G G G G C G G G C G G G G G	C C C C C C C C C C T	A A T A A A A A A A T	T (T (G (C T (C		T T T T T T T T T T C	T 999999999999	+- A T A A A A A A A A A A T		A G A G A G A G A G A G A G A G A A A A A	000000000000000000000000000000000000000	00000000000000000000000000000000000000	A A A A A A A A A A A A	ТТТТТТТТТ G	A A A A A A A A A A A G	 GGGGGGGGGG A	+- A A A A A A A A A A A A A A A A A	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata Consensus sequence

Т	Т	С	С	Т	А	G	Т	Α	Α	А	С	G	С	Α	G	-	А	Т	С	А	Т	С	А	А	Т	С	Т	G	С	Consensus sequence
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--------------------

-						+									+-									+-	
						1	69	0							17	00								17:	LO
-						+									+-									+-	
1525 т	тс	C	ΓА	G	Т	A A	A	С	G	СA	G	_	А	т	С	А	т	С	Α.	A	т	С	ΤG	С	Amphora montana
1560 т	тС	C	ГΑ	G	Т	ΑA	A	С	G	СА	G	-	А	Т	C	А	Т	С	A	G	Т	С	ΤG	С	Anomoeoneis sphaerophora
1552 т	ТС	C	г С	G	Т	СС	C	С	G	CG	C	С	А	Т	С	А	Τ.	A (С	G	Т	Т	ΤG	С	Cymbella
1510 т	ТС	C	ГΑ	G	Т	ΑA	A	С	G	СА	G	-	А	Т	С	А	Т	С	Α.	A	Т	С	ΤG	С	Dickieia ulvacea
1574 т	ТС	C	ГΑ	G	Т	ΑA	AA	С	G	СА	G	-	А	Т	С	А	Т	С	Α.	A	Т	С	ΤG	С	Encyonema triangulatum
1541 т	тС	C	ГΑ	G	Т	ΑA	ΑA	С	G	СА	G	-	Т	Т	C	А	Т	С	Α.	Α.	A	С	ΤG	С	Eolimna minima
1536 т	ТС	C	ГΑ	G	Т	ΑA	AA	С	G	СА	G	-	А	Т	С	А	Т	С	Α.	A	Т	С	ΤG	С	Eolimna subminuscula
1554 т	ТС	C	ГΑ	G	Т	ΑA	AA	С	G	СА	G	-	А	Т	С	А	Т	С	A	G	Т	С	ΤG	С	Fragilaria striatula
1534 т	тС	C	ГΑ	G	Т	AG	βA	С	G	СА	G	-	А	Т	C	А	Т	С	Α.	A	Т	С	ΤG	С	Gomphonema parvulum
1649 т	ТС	C	ГΑ	G	Т	AG	βA	С	G	СА	A	-	А	Т	С	А	Т	С	Α.	A	Τ	Т	ΤG	С	NZ Gomphoneis sp
1548 т	чт <mark>С</mark>	C '	ΓA	G	т	A A	A	С	G	C A	G	-	А	Т	C	A	Т	C J	A	G '	Т	С	ΤG	С	NZ Didymosphenia geminata
	-							I	015	65F															

АТТСАТТАС		ТТТ G Т А С А С А (C Consensus sequence
	1720		1740
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C Amphora montana C Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula C Gomphonema parvulum NZ Gomphoneis sp

		G С А С С Т А С С G А +		=
		1750 +	1760 17	770
1584 1619 1612 1569 1633 1600 1595 1613 1593 1708 1607	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Amphora montana Anomoeoneis sphaerophora Cymbella
	GGTGAAGC	CTCGGGATTGT	GGCCAGTG-CC	Consensus sequence
		1780	1790 18	- 300
1614 1649 1641 1599 1663 1630 1625 1643 1623 1623	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} C \ T \ C \ G \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ G \ A \ T \ T \ G \ C \\ G \ T \ T \ G \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \\ C \ T \ C \ G \ G \ G \ A \ T \ T \ G \ T \ C \ T \ C \ T \ C \ C \ C \ C \ C$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Anomoeoneis sphaerophora
1637		C T C G G G A T T G T C T C G G G A T T G C		NZ Didymosphenia geminata

TTTACTGGTG-TTGGTTGCGAGAACTTGTC Consensus sequence

	_									-+-										+ -										-+-	-
										18	31()								18	320)								18	30
	_									-+-										-+-										-+-	
1643	Т	Т	т	А	С	т	G	G	т	G	_	т	т	G	G	т	т	G	С	G	А	G	А	А	С	т	т	G	т	С	Amphora montana
1679	Т	Т	С	А	С	Т	G	G	Т	Т	_	G	G	G	G	т	т	G	Т	G	Α	G	А	А	С	Т	Т	G	Т	С	Anomoeoneis sphaerophora
1670	Т	Т	Т	А	Т	Т	G	G	Т	G	_	А	Т	G	G	Т	т	G	G	G	А	G	А	А	С	Т	Т	G	Т	т	Cymbella
1628	Т	Т	Т	А	Т	Т	G	G	Т	G	_	Т	Т	G	G	Т	т	G	С	А	А	G	А	А	С	Т	Т	G	Т	С	Dickieia ulvacea
1692	Т	Т	Т	А	С	Т	G	G	Т	G	-	С	Т	G	G	С	т	G	С	А	Α	G	А	А	С	Т	Т	G	Т	С	Encyonema triangulatum
1659	Т	Т	Т	А	С	Т	G	G	Т	G	-	Т	Т	G	G	С	т	G	С	G	Α	G	А	А	С	Т	Т	G	Т	С	Eolimna minima
1654	Т	Т	Т	А	С	Т	G	G	Т	G	-	С	С	G	G	Т	т	G	С	G	Α	G	А	А	С	Т	Т	G	Т	С	Eolimna subminuscula
1673	Т	Т	Т	А	Т	Т	G	G	G	G	А	Т	Т	Т	G	Т	С														Fragilaria striatula
1652	Т	Т	Т	А	С	Т	G	G	Т	G	-	А	Т	G	Т	Т	Т	G	С	Α	Α	G	А	А	С	Т	Т	G	Т	С	Gomphonema parvulum
1767	Т	Т	Т	G	С	Т	G	G	Т	G	_	А	Т	G	Т	Т	Т	G	С	А	А	G	А	А	С	Т	Т	G	Т	С	NZ Gomphoneis sp
1666	т	Т	Т	А	С	Т	G	G	Т	G	-	Т	Т	G	G	Т	т	Т	С	А	Α	G	А	А	С	Т	Т	G	Т	С	NZ Didymosphenia geminata
	-																														

									т (+-																				Consensus sequence
									18	40								18	50)								18	60
1672 T 1708 T 1699 T 1657 T 1721 T 1688 T 1683 T 1683 T 1689 1681 T 1796 T	G A A A A A	A A A A A A A	A A A A A A A A A	000000000000000000000000000000000000000	000000000000000000000000000000000000000	T T T T T T T T T	T T T T T T T T T	A C A A A A A A			ГА ГАГ ГАГ ГАГ ГАГ	С Т Т Т Т Т Т Т	TTTTTT TT	А А А А А А А А	0000000000000	A A A A A A A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		A A A A A A A	A C A A A A A	999 999 999	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	T T T T T T	999 999 999 999	A A A A A A A	A A A A A A A	666 666 666 666	A T T T A T T T	Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata

			C Consensus sequence
	+ 1870 +		+- 1890 +-
1702 С G T A A - С A A 1738 С G T A A - С A A	G G T T T C C G T A G G T T T C C G T A		Amphora montana C Anomoeoneis sphaerophora
1751 C G T A A - C A A 1718 C G T A A - C A A 1713 C G T A A - C A A 1689 1711 C G T A A - C A A 1826 C G T A A A C A A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G G T G A A C C T G G G G T G A A C C T G G G G T G A A C C T G G G G T G A A C C T G G G G T G A A C C T G G G G T G A A C C T G G G G T G A A C C T G G	C Encyonema triangulatum C Eolimna minima C Eolimna subminuscula Fragilaria striatula C Gomphonema parvulum C NZ Gomphoneis sp

A G A A G X X X X X X X X X 1900
-----1729
1767
A G A T G G T T C A T G T
1758
T G A A G G A T C A A
1673
1780
A G A A G G A T C A
1747
A G A A G
1742
A G A A G
1742
A G A A G
1744
A G A A G
1689
1740
A G A A G
1856
A G A A T
1754
A G A A G G A T C A A

Consensus sequence

Amphora montana Anomoeoneis sphaerophora Cymbella Dickieia ulvacea Encyonema triangulatum Eolimna minima Eolimna subminuscula Fragilaria striatula Gomphonema parvulum NZ Gomphoneis sp NZ Didymosphenia geminata