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Abstract

This working paper describes a framework forcompositional supervisor
synthesis, which is applicable to all discrete event systems modelledas a
set of deterministic automata. Compositional synthesis exploits the modular
structure of the input model, and therefore works best for models consisting
of a large number of small automata. State-space explosion is mitigated by
the use of abstraction to simplify individual components, and the property
of synthesis equivalenceguarantees that the final synthesis result is the same
as it would have been for the non-abstracted model. The working paper de-
scribes synthesis equivalent abstractions and shows theiruse in an algorithm
to compute supervisors efficiently. The algorithm has been implemented in
the DES software tool Supremica and successfully computes modular super-
visors, even for systems with more than1014 reachable states, in less than
30 seconds.
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1 Introduction

Thesupervisory control theory[28, 37] provides a general framework for the syn-
thesis of reactive control functions. Given a model of the system, theplant, to be
controlled, and aspecificationof the desired behaviour, it is possible to automati-
cally compute, i.e.synthesise, asupervisorthat restricts the plant behaviour while
satisfying the specification.

Commonly, a supervisor is required to becontrollableandnonblocking, i.e., it
should not disable uncontrollable events, and the controlled system shouldalways
be able to complete some desired task [28]. In addition, it is typically required
of a supervisor to achieve some minimum functionality. Most synthesis algorithms
achieve this by producing theleast restrictivesupervisor, which restricts the system
as little as possible while still being controllable and nonblocking [28]. Alterna-
tives to least restrictiveness have been investigated [17,34,35]. They require addi-
tional analysis to guarantee minimum functionality, particularly when supervisors
are synthesised automatically.

It is known [28] that for a given plant and specification, a unique leastrestric-
tive, controllable, and nonblocking supervisor exists. Straightforward synthesis
algorithms explore the completemonolithicstate space of the considered system,
and are therefore limited by the well-knownstate-space explosionproblem. The
sheer size of the supervisor also makes it humanly incomprehensible, whichhin-
ders acceptance of the synthesis approach in industrial settings.

Various approaches formodularandcompositionalsynthesis have been pro-
posed to overcome these problems. Some of these approaches [32, 35] rely on
structure provided by users and hence are hard to automate. Other earlymeth-
ods [1,5] only consider the synthesis of a least restrictive controllable supervisors,
ignoring nonblocking.Supervisor reduction[33] andsupervisor localisation[7]
greatly help to reduce synthesised supervisors in size, yet rely on a monolithic
supervisor to be constructed first and thus remain limited by its size.

Compositionalmethods [12] useabstractionto remove states and transitions
that are superfluous for the purpose of synthesis. The most common abstraction
method isnatural projectionwhich, when combined with theobserver property,
produces a nonblocking but not necessarily least restrictive supervisor [35]. If out-
put control consistencyis added as an additional requirement, least restrictiveness
can be ensured [10]. Output control consistency can be replaced bya weaker con-
dition calledlocal control consistency[30].

Conflict-preservingabstractions [17] andweak observation equivalence[34]
are adequate abstractions for the synthesis of nonblocking supervisors. In these
works it is assumed that, when an event is abstracted, supervisor components syn-
thesised a later stage cannot use that event. This makes abstracted eventsunob-
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servableand removes some possibilities of control.
The compositional methods [13, 18] allow for the abstraction ofobservable

events throughhiding. In [13,18,34], synthesis is considered in a nondeterministic
setting, which leads to some problems when interpreting results and ensuring least
restrictiveness. These problems are overcome to some extent bysynthesis abstrac-
tion [20,21,24,25]. Several compositional synthesis methods require all automata
and their abstraction results to be deterministic, which makes some desirable ab-
stractions impossible. Following ideas from [3,31,36],renamingis used in [20] to
avoid nondeterminism after abstraction.

This working paper shows how the abstraction methods [13, 20, 21, 24, 25]
can be brought together in a general framework for compositional synthesis, and
presents an effective algorithm to compute modular supervisors that are least re-
strictive, controllable, and nonblocking.

In addition to halfway synthesis [13], the framework uses observation equiv-
alence-based abstractions [21, 25], which have higher abstraction potential than
methods based on natural projection [25]. These methods allow for the abstraction
of observable events in such a way that abstracted events can still be used by super-
visor components synthesised at a later stage. Nondeterminism after abstraction is
avoided using renaming [3,31,36] as proposed in [20].

The proposed compositional synthesis algorithm is completely automatic. It is
applicable to general discrete event systems, provided that they are represented as
a set of deterministic finite-state automata, and uses no knowledge of the structure
of the system to compute a solution. The algorithm has been implemented in the
DES software tool Supremica [2] and applied to compute modular supervisors for
several large industrial models. It successfully computes modular supervisors, even
for systems with more than1014 reachable states, within 30 seconds and using no
more than 640 MB of memory.

In the following, section 2 gives a motivating example to informally illustrate
compositional synthesis and abstraction. Sect. 3 briefly introduces the background
of supervisory control theory, and section 4 explains compositional synthesis and
the idea of synthesis equivalence underlying the compositional algorithm. Then,
section 5 presents different ways of computing abstractions that preserve synthesis
equivalence. The algorithm for the proposed compositional synthesis procedure is
described in section 6, and section 7 applies the algorithm to several benchmark
examples. Some concluding remarks are drawn in section 8. Formal proofsof
technical results can be found in the appendix.
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Figure 1: Manufacturing system overview.
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Figure 2: Automata of manufacturing system.

2 Motivating example

This section demonstrates compositional synthesis using the example of a simple
manufacturing system shown in Figure 1. Two machinesM1 andM2 are linked by
two buffersB1 andB2 that can store one workpiece each. The first machineM1

takes workpieces from outside the system (events1), processes them, and puts
them intoB1 (event!f1). M1 also takes workpieces fromB2 (events3), processes
them, and outputs them from the system (event!o). MachineM2 takes workpieces
from B1 (events2), processes them, and puts them intoB2 (event !f2). Using
switchesW1 andW2, the user can suspend (eventsusi) or resume (eventresi)
production ofM1 or M2, respectively.

Figure 2 shows an automata model of the system. All events are observable,
and uncontrollable events are prefixed by an exclamation mark (!). AutomataM1,
M2, W1, andW2 are plants, whileB1 andB2 are specifications to avoid buffer
overflow and underflow. To satisfy these specifications, a supervisormust be syn-
thesised for the system.

The compositional synthesis procedure presented in this working paper re-
quires that the system only contains plant automata. Therefore, the specification
automataB1 andB2 are transformed into plantsB⊥

1 andB⊥
2 , using a simple trans-
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Figure 3: Abstraction results for switches in the manufacturing system example.

lation [13]. This is done by adding, for every uncontrollable event that isnot en-
abled in a state, a transition to a new blocking state⊥. The switch modelW2 can
also be considered as the result of this transformation, in that it models a require-
ment for the synthesised supervisor to prevent starting ofM2 in suspend mode. On
the other hand,W1 models a plant where it is physically impossible to startM1 in
suspend mode.

The compositional synthesis procedure is a sequence of small steps. At each
step, automata are simplified and replaced by abstracted versions such thatthe su-
pervisor synthesised from the abstracted system yields the same languagewhen
controlling the system as would the supervisor synthesised from the original sys-
tem. Synchronous composition is computed step by step on the abstracted auto-
mata. In the end, the procedure results in a single abstracted automaton, which is
simpler than the original system, and standard synthesis is applied to this abstracted
automaton.

Initially, the system isG0 = {W1, W2, M1, M2, B
⊥
1 , B⊥

2 }. In the first step
of compositional synthesis, individual automata are abstracted if possible.Events
sus1 and res1 only appear in automatonW1, and such events are referred to as
local events. Exploiting local events, statesq0 andq1 in W1 can be merged, as
synthesis will always remove either none or both of these states. AutomatonW1

can then be replaced by asynthesis equivalentautomatonW̃1 shown in figure 3.
AutomatonW̃1 is a selfloop-only automaton that always enables all its events, so
it can be disregarded in the synthesis.

Similarly, eventssus2 and res2 are local to automatonW2, so the same ab-
straction method can be applied. However, an attempt to compute an abstractionas
before results in the nondeterministic automatonW̃2 shown in figure 3. A correct
supervisor needs to be aware of the states ofW2 in order to decide whether or not
to enable events2, and it is not straightforward to construct such a supervisor only
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Figure 4: Abstracted automata ofM1.

from the abstractionW̃2.
To solve the nondeterminism problem, events2 in W̃2 is replaced by two new

eventss21 ands22. This procedure is referred to asrenaming. AutomatonW̃2

is replaced by the renamed deterministic automatonW ′
2 shown in Figure 3, and

automatonD, which is the renamed version ofW2, is stored as adistinguisherin
a setS of collected supervisors. It is the first part of the supervisor to be computed
in the end.

Having replaceds2 in W2, automataM2 andB⊥
1 need to be modified to use

the new eventss21 ands22. Therefore,M2 andB⊥
1 are replaced byM ′

2 andB′
1

shown in figure 3. These automata are constructed by replacing thes2-transitions
in M2 andB⊥

1 by transitions labelleds21 ands22.
After this, eventssus2 andres2 only appear in selfloops in the entire system,

and as a result no state change is possible by executing these events. Thus, the self-
loops associated with these events can be removed, which results in the abstracted
automatonW ′′

2 shown in Figure 3.
Next, events!o ands1 are local events inM1. Statesq0 andq2 can be merged.

However, since!f1 is not a local event,q0 andq1 are not equivalent sinceq1 can
be a blocking state if!f1 is disabled by other components. Figure 4 shows the
abstracted automatoñM1. Furthermore, event!o now only appears in a selfloop in
the entire system and thus, the selfloop associated with this event can be removed
from M̃1, resulting in the abstracted automatonM ′

1 shown in figure 4.
At this point, the system has been simplified toG = {W ′′

2 , M ′
1, M

′
2, B

′
1, B

⊥
2 }.

None of these automata can be simplified further, so the next step is to compose
some of them. Figure 5 shows the composition ofM ′

1 andB′
1, which causes!f1 to

become a local event. Clearly, the blocking state⊥ in M ′
1‖B

′
1 must be avoided, and

since the uncontrollable event!f1 only appears in this automaton, this means that
stateq3 also must be avoided. Then controllable events1 must be disabled inq2.
Therefore, automatonM ′

1 ‖ B′
1 is replaced by the synthesis equivalent abstraction

MBH
1 shown in figure 5. This abstraction method is calledhalfway synthesis[13].

The abstracted automatonMBH
1 is added to the setS of collected supervisors

to enable the final supervisor to make the control decision fors1. Furthermore,
since!f1 is a local uncontrollable event, statesq1 andq2 in MBH

1 can be merged,
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which results in the synthesis equivalent automatonMB1 shown in figure 5. Then
event!f1 only appears in a selfloop inMB1 and nowhere else, so it can be removed,
resulting inMB ′

1 shown in figure 5.
A similar procedure is applied toM ′

2 ‖ B⊥
2 . Exploiting the local event!f2

results in the abstracted automataMBH
2 , MB2, andMB ′

2 shown in figure 6.
After all these abstractions, the uncontrolled plant model isG̃ = {W ′′

2 ,MB ′
1,

MB ′
2}, and the collected supervisor set isS = {D,MBH

1 ,MBH
2 }. The final step

is to calculate a supervisor for̃G = W ′′
2 ‖MB ′

1 ‖MB ′
2, which has 8 states and is

shown in Figure 7. Synthesis results in the supervisorS1 shown in Figure 7, which
has 4 states. Adding it to the setS results in the modular supervisor

S = {D,MBH
1 ,MBH

2 , S1} , (1)

which is the least restrictive, controllable and nonblocking supervisor, and pro-
duces the exact same controlled behaviour as would a monolithic supervisorcalcu-
lated for the original systemG. The largest component of the modular supervisor
is S1 with 4 states, and it has been computed by exploring the state space ofG̃
with 8 states. In contrast, standard monolithic synthesis explores a state space of
138 states and produces a single supervisor with 52 states.

The example demonstrates how compositional synthesis works. In the sequel,
section 4 explains the concepts more formally and shows how the renamed su-
pervisor can control the unrenamed plant, and section 5 describes the individual
abstraction methods.

3 Preliminaries

3.1 Events and Languages

The behaviour of discrete event systems can be described using eventsand lan-
guages.Eventsrepresent incidents that cause transitions from one state to another
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and are taken from a finite alphabetΣ. For the purpose of supervisory control,
this alphabet is partitioned into two disjoint subsets, the setΣc of controllable
events and the setΣu of uncontrollableevents. Controllable events can be disabled
by a supervisor, while uncontrollable events may not be disabled by a supervi-
sor. In addition, the specialtermination eventω /∈ Σ is used, with the notation
Σω = Σ ∪ {ω}.

Σ∗ is the set of all finite traces of events fromΣ, including theempty traceε.
A subsetL ⊆ Σ∗ is called alanguage. The concatenation of two tracess, t ∈ Σ∗

is written asst. A traces ∈ Σ∗ is called aprefix of t ∈ Σ∗, written s ⊑ t, if
t = su for someu ∈ Σ∗. ForΩ ⊆ Σ, thenatural projectionPΩ : Σ∗ → Ω∗ is the
operation that removes from tracess ∈ Σ∗ all events not inΩ.

3.2 Finite-State Automata

Discrete system behaviours are typically modelled by deterministic automata, but
in this paper nondeterministic automata may arise as intermediate results during
abstraction.

Definition 1 A finite-state automaton is a tupleG = 〈Σ, Q,→, Q◦〉, whereΣ is
a finite set of events,Q is a finite set of states,→ ⊆ Q × Σω × Q is thestate
transition relation, andQ◦ ⊆ Q is the set ofinitial states. G is deterministic, if
|Q◦| ≤ 1, andx

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

The transition relation is written in infix notationx
σ
→ y, and is extended to

traces inΣ∗
ω by lettingx

ε
→ x for all x ∈ Q, andx

sσ
→ z if x

s
→ y andy

σ
→ z for

somey ∈ Q. Furthermore,x
s
→ means thatx

s
→ y for somey ∈ Q, andx → y

means thatx
s
→ y for somes ∈ Σ∗

ω. These notations also apply to state sets,X
s
→

for X ⊆ Q means thatx
s
→ for somex ∈ X, and to automata,G

s
→ means that

Q◦ s
→, etc. Thelanguageof automatonG isL(G) = { s ∈ Σ∗

ω | G
s
→}.

The termination eventω /∈ Σ denotes completion of a task and does not appear
anywhere else but to mark such completions. It is required that states reached byω
do not have any outgoing transitions, i.e., ifx

ω
→ y then there does not existσ ∈ Σω

such thaty
σ
→. This ensures that the termination event, if it occurs, is always the

final event of any trace. The traditional set of marked states isQω = {x ∈ Q |
x

ω
→} in this notation. For graphical simplicity, states inQω are shown shaded in

the figures of this paper instead of explicitly showingω-transitions.
Most systems are modelled by several automata running in parallel. When

thesecomponentsare brought together to interact, lock-step synchronisation in the
style of [15] is used.
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Definition 2 Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 andG2 = 〈Σ2, Q2,→2, Q

◦
2〉 be two

automata. Thesynchronous compositionof G1 andG2 is defined as

G1 ‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2,→, Q◦
1 ×Q◦

2〉 (2)

where
(x1, x2)

σ
→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1

σ
→1 y1, x2

σ
→2 y2 ;

(x1, x2)
σ
→ (y1, x2) if σ ∈ Σ1 \ Σ2, x1

σ
→1 y2 ;

(x1, x2)
σ
→ (x1, y2) if σ ∈ Σ2 \ Σ1, x2

σ
→2 y2 .

Synchronous composition is associative, that is,G1 ‖ (G2 ‖G3) = (G1 ‖G2) ‖
G3 = G1 ‖G2 ‖G3.

Another common automaton operation is thequotientmodulo an equivalence
relation on the state set.

Definition 3 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let∼ ⊆ Q ×Q be an
equivalence relation. Thequotient automatonof G modulo∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (3)

where→/∼ = { [x]
σ
→ [y] | x

σ
→ y } and Q̃◦ = { [x◦] | x◦ ∈ Q◦ }. Here,

[x] = {x′ ∈ Q | x ∼ x′ } denotes theequivalence classof x ∈ Q, andQ/∼ =
{ [x] | x ∈ Q } is the set of all equivalence classes modulo∼.

3.3 Supervisory Control Theory

Given aplant automatonG and aspecificationautomatonK, a supervisoris a
controlling agent that restricts the behaviour of the plant such that the specification
is always fulfilled.Supervisory control theory[28] provides a method to synthesise
a supervisor. Two common requirements for the supervisor arecontrollability and
nonblocking.

Definition 4 Let G andK be two automata using the same alphabetΣ. K is
controllablewith respect toG if, for every traces ∈ Σ∗, every statex of K, and
every uncontrollable eventυ ∈ Σu such thatK

s
→ x andG

sυ
→, it holds thatx

υ
→

in K.

Definition 5 An automatonG = 〈Σ, Q,→, Q◦〉 is nonblocking, if for every state

x ∈ Q and every traces ∈ Σ∗ such thatG
s
→ x there existst ∈ Σ∗ such thatx

tω
→.
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For a deterministic plantG, it is well-known [28] that there exists a supre-
mal controllable and nonblocking sublanguage ofL(G), which represents theleast
restrictive feasible supervisor. Algorithmically, it is more convenient to perform
synthesis on the automatonG instead of this language, or more precisely on the
lattice of subautomataof G [8]. This approach also works for nondeterministic
automata.

Definition 6 [18] G1 = 〈Σ, Q1,→1, Q
◦
1〉 is a subautomatonof G2 = 〈Σ, Q2,

→2, Q
◦
2〉, writtenG1 ⊆ G2, if Q1 ⊆ Q2,→1 ⊆ →2, andQ◦

1 ⊆ Q◦
2.

Theorem 1 [13] Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton andΥ ⊆
Σ. Then there exists a supremal controllable and nonblocking subautomaton,

supCNΥ(G) = sup{G′ ⊆ G | G′ is controllable with respect toG and non-
blocking} .

(4)

The subscriptΥ is omitted ifΥ = Σu, i.e.,supCN(G) = supCNΣu(G).

The supremal element is defined based on the subautomaton relationship (def-
inition 6). The result is equivalent to that of traditional supervisory control the-
ory [28]. That is,supCN(G) represents the behaviour of the least restrictive super-
visor that disables only controllable events inG such that nonblocking is ensured.

The supervisor is typically modelled as a mapΦ: Σ∗ → 2Σc that assigns to
each traces ∈ Σ∗ a control decisionΦ(s) ⊆ Σc consisting of the controllable
events to be enabled after observing the traces [28]. Such a supervisor map can be
implemented using a given automatonS,

ΦS(s) = {σ ∈ Σc | sσ ∈ L(S) } . (5)

The implementation is feasible if controllability and nonblocking are ensured, as
is the case whenS = supCN(G). Based on this, supervisors are identified with
automata in the following.

The synthesis resultsupCN(G) can be computed by removing blocking and
uncontrollable states from the plant, until a fixpoint is reached, and restricting the
original automatonG to these states.

Definition 7 [18] Therestrictionof G = 〈Σ, Q,→, Q◦〉 to X ⊆ Q is

G|X = 〈Σ, Q,→|X , Q◦ ∩X〉 , (6)

where→|X = { (x, σ, y) ∈ → | x, y ∈ X } ∪ { (x, ω, y) ∈ → | x ∈ X }.

11



Note that restriction does not directly remove any states, and transitions with
the termination eventω are retained even if their successor state is not contained
in X. Typically, some states become unreachable after restriction, and these states
can be removed, but this is not considered further in this working paper.

Definition 8 [18] Thesynthesis step operatorΘG : 2Q → 2Q for G = 〈Σ, Q,→,
Q◦〉 is defined asΘG,Υ(X) = Θcont

G,Υ(X) ∩Θnonb
G (X), where

Θcont
G,Υ(X) = {x ∈ X | For allυ ∈ Υ such thatx

υ
→ y it holds thaty ∈ X } ;

Θnonb
G (X) = {x ∈ X | x

tω
→|X for somet ∈ Σ∗ } .

Again it is defined thatΘG = ΘG,Σu andΘcont
G = Θcont

G,Σu
.

Θcont
G captures controllability, andΘnonb

G captures nonblocking. The synthesis
result forG is obtained by restrictingG to the greatest fixpoint ofΘG.

Theorem 2 [18] Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton, and
let Υ ⊆ Σ. The synthesis step operatorΘG,Υ has a greatest fixpointgfpΘG =

Θ̂G,Υ ⊆ Q, such thatG|Θ̂G,Υ
is the greatest subautomaton ofG that is bothΥ-

controllable inG and nonblocking, i.e.,

supCNΥ(G) = G|Θ̂G,Υ
. (7)

If the state setQ is finite, the sequenceX0 = Q, Xi+1 = ΘG,Υ(Xi) reaches this
fixpoint in a finite number of steps, i.e.,̂ΘG,Υ = Xn for somen ≥ 0.

The operatorsupCN only defines the synthesis result for a plant automatonG.
In order to apply this synthesis to control problems that also involve specifications,
the transformation proposed in [13] is used. A specification automaton is trans-
formed into a plant by adding, for every uncontrollable event that is not enabled
in a state, a transition to a new blocking state⊥. This essentially transforms all
potential controllability problems into potential blocking problems.

Definition 9 [13] Let K = 〈Σ, Q,→, Q◦〉 be a specification. Thecomplete plant
automatonK⊥ for K is

K⊥ = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 (8)

where⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x 6
υ
→} . (9)
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For example, automataB⊥
1 andB⊥

2 in the manufacturing system in section 2,
shown in figure 2, are obtained by transforming the buffer specificationsB1 and
B2, respectively. In general, synthesis of the least restrictive nonblocking and
controllable behaviour allowed by a specificationK with respect to a plantG is
achieved by computingsupCN(G ‖K⊥) [13].

4 Compositional Synthesis

This section describes the compositional synthesis framework. The data struc-
ture of synthesis triplesis introduced, which represents partially solved synthesis
problems in the algorithm including supervisors and renamings. Based on this, a
control architecture is presented to implement the computed modular supervisors
after renamings.

4.1 Basic Idea

The input to compositional synthesis is an arbitrary set of deterministic automata
representing the plant to be controlled,

G = {G1, G2, . . . , Gn} . (10)

The objective is to calculate a least restrictive supervisor that constrainsthe be-
haviour ofG to its least restrictive nonblocking sub-behaviour, by disabling only
controllable events.

Compositional synthesis works by repeated abstraction of system components
Gi based onlocal events; events that appear inGi and in no other automataGj

with j 6= i arelocal to Gi, and they are crucial to abstraction. In the following, the
set of local events is denoted byΥ, andΩ = Σ \Υ denotes the set of non-local or
sharedevents.

Using abstraction, some componentsGi in (10) are replaced by simpler ver-
sionsG′

i. If this is no longer possible, some components in (10) are selected and
composed, i.e., replaced by their synchronous composition. This typically leads to
new local events, making further abstraction possible.

When an abstractionG′
i is computed, this may lead to the discovery of new

supervisor decisions. For example, ifGi contains a controllable transition lead-
ing to a blocking state, it is clear that this transition must be disabled by every
supervisor. Therefore, as a result of abstraction a supervisor componentSi may
be produced in addition to the abstracted automatonG′

i. The algorithm collects
these supervisor components in a setS, called the set ofcollected supervisors. In
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addition, abstraction may result in nondeterminism, which is avoided by applying
a renaming.

Thus, compositional synthesis starts with the set of plant automata (10), no
collected supervisors and no renaming. At each step, plant automata are abstracted
or composed, adding supervisors toS and modifying the renaming. Plant automata
can be replaced by supervisors through synthesis, and eventually the setG becomes
empty. At this point, the supervisorsS, together with the renamingρ, are used to
form a least restrictive supervisor for the original synthesis problem.

4.2 Renaming

Nondeterminism is avoided in the compositional synthesis algorithm, because it is
not straightforward to compute supervisors from nondeterministic abstractions. If
an abstraction step results in a nondeterministic automaton, arenamingis applied
first, introducing new events to disambiguate nondeterministic branching.

The use of renaming to disambiguate abstractions was proposed in [36]. In
the following, a renaming is a map that relates the events of the current abstracted
systemG to the events in the original plant, so it works in the reverse direction
compared to [36].

Definition 10 Let Σ1 andΣ2 be two sets of events. Arenamingρ : Σ2 → Σ1 is
a controllability-preserving map, i.e., a map such thatρ(σ) is controllable if and
only if σ is controllable.

For example, when events2 is disambiguated intos21 ands22 in automatonW̃2

in figure 3 in the introductory example, the renamingρ is such thatρ(s21) =
ρ(s22) = s2 andρ(σ) = σ for all other events. The definition ofρ is extended
to cover the termination event by lettingρ(ω) = ω. Renamings are extended to
languages overΣ∗

2 and automata with alphabetΣ2 in the standard way.
When new events are introduced, the compositional synthesis algorithm con-

tinues to operate using the new events and thus produces a supervisor based on an
alphabet different from that of the original plant. To communicate correctly with
the original plant, the supervisor needs to determine which of the new events(s21

or s22) is to be executed when the plants sends one of its original events (s2). This
is achieved by adding a so-calleddistinguisher[3,36] to the synthesis result.

Definition 11 An automatonG = 〈Σ, Q,→, Q◦〉 differentiateseventγ1 from γ2,
if γ1 /∈ Σ andγ2 ∈ Σ or there exists a transitionx

γ1
→ y such thatx

γ2
→ y does

not hold. G differentiatesbetweenγ1 andγ2, if G differentiatesγ1 from γ2 or G
differentiatesγ2 from γ1.
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γ

ρ−1 ρ

{ γi | ρ(γi) = γ }

γ′

Φ′(t′γ′) ⊆ ΣS

Φ(tγ) ⊆ Σ

Supervisor

SD S \ SD

G

Figure 8: Control architecture.G is the original plant,S are the computed modular
supervisors, andSD ⊆ S are the distinguishers.

Definition 12 Let ρ : Σ2 → Σ1 be a renaming. An automatonG2 with alphabet
Σ2 is aρ-distinguisherif, for all tracess, t ∈ L(G2) such thatρ(s) = ρ(t), it holds
thats = t.

For example, in the introductory example, automatonD in figure 3 is aρ-
distinguisher that differentiatess21 from s22. This is becauseD enables at most
one of the eventss21 ands22 in each state, so it can always make a choice between
these two events.

Another operation is necessary in combination with renaming. After applying
a renaming to an automatonGi in a systemG = {G1, . . . , Gn}, the remaining
automataGj with j 6= i need to be modified to use the new events.

Definition 13 Let G = 〈Σ1, Q,→, Q◦〉 be an automaton, and letρ : Σ2 → Σ1 be
a renaming. Thenρ−1(G) = 〈Σ2, Q, ρ−1(→), Q◦〉 whereρ−1(→) = { (x, σ, y) |

x
ρ(σ)
−−→ y }.

Automatonρ−1(G) is obtained by replacing transitions labelled with the orig-
inal event by new transitions labelled with each of the new events. For example,
figure 3 in the introductory example showsM ′

2 = ρ−1(M2) andB′
1 = ρ−1(B⊥

1 ),
which replace the original plantsM2 andB⊥

1 after the renaming. When a renaming
is introduced, the distinguisher is the only automaton that differentiates between
the renamed events, all others are constructed byρ−1.

The compositional synthesis algorithm proposed in the following repeatedly
applies renamings as new abstractions are obtained. In the end, this resultsin a su-
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pervisorS using a modified alphabetΣS and a renamingρ : ΣS → Σ that maps the
renamed events back to the events of the original plant. The control architecture in
figure 8 enables the renamed supervisorS to interact with the original unrenamed
plantG.

Assume that, after execution of a tracet, an eventγ occurs in the plant, and
γ has been renamed and replaced byγ1 andγ2. Being unaware of the renaming,
the plant will just communicate the occurrence ofγ to the supervisor. When this
happens, first the functionρ−1 replacesγ by the set{γ1, γ2}, sending both possi-
bilities to the distinguisherSD which, following definition 12, enables only one of
them. The selected eventγ′, eitherγ1 or γ2, is passed to the supervisor to update
its state and issue a new control decisionΦ′(t′γ′) ⊆ ΣS . Here,t′ is the renamed
version of the historyt. The control decision is based on the renamed model and
therefore contains renamed events, so the renamingρ is applied to translate it back
to a control decisionΦ(tγ) ⊆ Σ using the original plant events.

4.3 Synthesis Triples

The compositional synthesis algorithm keeps track of three pieces of information:

• a setG = {G1, . . . , Gn} of uncontrolled plant automata;

• a setS = {S1, . . . , Sm} of collected supervisor automata;

• a renamingρ, to avoid nondeterminism through the introduction of new
events.

This information is combined in asynthesis triple, which is the main data struc-
ture manipulated by the compositional synthesis algorithm.

Definition 14 A synthesis tripleis a triple (G;S; ρ), whereG andS are sets of
deterministic automata andρ is a renaming, such that

(i) L(S) ⊆ L(G);

(ii) S is aρ-distinguisher.

(iii) for all eventsγ1, γ2 such thatρ(γ1) = ρ(γ2), there exists at most one au-
tomatonGj ∈ G that differentiatesγ1 from γ2.

Here and in the following, setsG andS are also used to denote the synchronous
composition of their elements, like‖G = G1 ‖ · · · ‖Gn. For an empty set,‖∅ is the
universal automaton that accepts the languageΣ∗.
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A synthesis triple represents a partially solved control problem at an intermedi-
ate step of compositional synthesis. The setG contains an abstracted plant model,
andS contains the supervisors collected so far, which must constrain the behaviour
of the plant (i). The renamingρ maps the events found in the abstracted plant or
collected supervisors back to events in the original plant. The synchronous compo-
sition of the supervisors is required to have the distinguisher property (ii) toensure
that it can be used with the control architecture in figure 8. Furthermore, iftwo
eventsγ1 andγ2 are renamed to the same event, then there can be at most one
automaton in the setG that treats these events differently (iii).

The following notation associates with each synthesis triple a behaviour and a
synthesis result.

Definition 15 Let (G;S; ρ) be a synthesis triple. Then

(i) L(G;S; ρ) = L(ρ(G ‖ S));

(ii) supCN(G;S; ρ) = ρ(supCN(G) ‖ S).

The behaviour of a synthesis triple is the behaviour of its plant and supervisor
automata, after renaming it back to the original plant alphabet (i). Furthermore,
(ii) defines a synthesis result for the partially solved control problem(G;S; ρ). It
is obtained by composing the monolithic supervisor for the remaining plants with
the supervisors collected so far, and afterwards renaming.

While manipulating synthesis triples, the compositional synthesis algorithm
maintains the invariant that all generated triples have the same synthesis result,
which is equivalent to the least restrictive solution of the original control problem.
Every abstraction step must ensure that the synthesis result is the same as itwould
have been for the non-abstracted components. This property is calledsynthesis
equivalence.

Definition 16 Two triples (G1;S1; ρ1) and (G2;S2; ρ2) are said to besynthesis
equivalent, written (G1;S1; ρ1) ≃synth (G2;S2; ρ2), if

L(supCN(G1;S1; ρ1)) = L(supCN(G2;S2; ρ2)) . (11)

The compositional synthesis algorithm calculates a modular supervisor for a
modular systemG = G0. Initially no renaming has been applied and no supervisor
or distinguisher has been collected. Thus, this input is converted to the initial
synthesis triple(G;G; id), whereid : Σ → Σ is the identity map, i.e.,id(σ) = σ
for all σ ∈ Σ. Afterwards, the initial triple is abstracted repeatedly such that
synthesis equivalence is preserved,

(G;G; id) = (G0;S0; ρ0) ≃synth (G1;S1; ρ1) ≃synth · · · ≃synth (Gk;Sk; ρk) .
(12)
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Some of these steps replace an automaton inGk by an abstraction, others reduce
the number of automata inGk by synchronous composition or by replacing an
automaton inGk with a supervisor inSk+1. The algorithm terminates whenGk = ∅,
at which pointSk together withρk forms the modular supervisor. The following
result confirms that this results in the same supervised behaviour as a monolithic
supervisor for the original system.

Theorem 3 Let G = {G1, . . . , Gn} be a set of automata, and let(G;G; id) ≃synth

(∅;S; ρ). ThenL(ρ(S)) = L(supCN(∅;S; ρ)) = L(supCN(G)).

Proof. It follows directly from definitions 15 (ii) and 16 thatL(ρ(S)) = L(ρ(∅ ‖
S)) = L(ρ(supCN(∅) ‖ S)) = L(supCN(∅;S; ρ)) = L(supCN(G;G; id)) =
L(id(supCN(G)) ‖ G)) = L(supCN(G)). �

5 Synthesis Triple Abstraction Operations

The idea of compositional synthesis is to continuously rewrite synthesis triples
such that synthesis equivalence is preserved. Therefore, this section gives an
overview of different ways to simplify automata that can be used in the frame-
work of this paper. Further details and formal proofs of correctness can be found
in [22].

5.1 Basic Rewrite Operations

The simplest methods to rewrite synthesis triples aresynchronous compositionand
monolithic synthesis. It is always possible to compose two automata in the setG
of uncontrolled plants, or to place their monolithic synthesis result into the setS
of supervisors. These basic methods are included here for the sake ofcomplete-
ness. They do not contribute to simplification, and are only needed when noother
abstraction is possible.

Theorem 4 Let G1 = {G1, . . . , Gn} andG2 = {G1 ‖G2, G3, . . . , Gn}, let ρ be a
renaming, and letS be aρ-distinguisher. Then(G1;S; ρ) ≃synth (G2;S; ρ).

Proof. By definition 15, it holds that

L(supCN(G1;S; ρ)) = L(ρ(supCN(G1) ‖ S))

= L(ρ(supCN(G1 ‖ · · · ‖Gn) ‖ S))

= L(ρ(supCN(G2) ‖ S))

= L(supCN(G2;S; ρ)) , (13)
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so the claim follows from definition 16. �

Theorem 5 Let (G;S; ρ) be a synthesis triple. Then(G;S; ρ) ≃synth (∅;S ∪
{supCN(G)}, ρ).

Proof. Clearly by definition 15 (ii),L(supCN(G;S; ρ)) = L(ρ(supCN(G) ‖
S)) = L(ρ(supCN(∅) ‖ supCN(G) ‖ S)) = L(supCN(∅;S ∪ {supCN(G)}; ρ).

�

Another way of rewriting a synthesis triple is by renaming. As explained in
section 4, an automatonG1 can be rewritten intoH1 using a renamingρ such
thatρ(H1) = G1 andH1 is aρ-distinguisher. ThenH1 is added to the setS of
supervisors as a distinguisher, and the renamingρ is composed with the previous
renamings. The proof of the following result can be found in appendix A.

Theorem 6 Let (G1;S; ρ1) be a synthesis triple withG1 = {G1, . . . , Gn}, let ρ
be a renaming, and letH1 be aρ-distinguisher such thatρ(H1) = G1 andG2 =
{H1, ρ

−1(G2), . . . , ρ
−1(Gn)}. Then

(G1;S; ρ1) ≃synth (G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) .

In compositional verification, events used in only one automaton can immedi-
ately be removed from the model [12]. This is not always possible in compositional
synthesis. Even if no other automata use an event, the synthesised supervisor may
still need to use it for control decisions that are not yet apparent. Therefore, events
can only be removed if it is clear that no further supervisor decision depends on
them.

An eventλ can be removed from a synthesis triple, if it causes no state change,
which means that it appears only on selfloop transitions in the automata model. In
this case,λ can be removed from all automata. This abstraction step is formally
described in theorem 7, and the proof can be found in appendix A.

Definition 17 An automatonG = 〈Σ, Q,→, Q◦〉, is selfloop-onlyfor λ ∈ Σ if

x
λ
→ y impliesx = y. AutomatonG is selfloop-only forΛ ⊆ Σ if G is selfloop-

only for eachλ ∈ Λ.

Definition 18 The restriction of G = 〈Σ, Q,→, Q◦〉 to Ω ⊆ Σ is G|Ω = 〈Ω,
Q,→|Ω, Q◦〉 where→|Ω = { (x, σ, y) ∈ → | σ ∈ Ω }. The restriction ofG =
{G1, . . . , Gn} is G|Ω = {G1|Ω, . . . , Gn|Ω}.

Theorem 7 Let (G;S; ρ) be a synthesis triple such thatG is selfloop-only for
Λ ⊆ Σ. Then(G;S; ρ) ≃synth (G|Σ\Λ;S; ρ).
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5.2 Abstraction Based on Observation Equivalence

This section gives an overview of previous results on observation equivalence-
based abstractions for synthesis purposes.Bisimulationandobservation equiva-
lence [19] provide well-known abstraction methods that work well in composi-
tional verification [12]. Both can be implemented efficiently [11]. They are known
to preserve all temporal logic properties [6], but unfortunately this doesnot help for
synthesis [25]. Synthesis equivalence is preserved when an automatonis replaced
by a bisimilar automaton, while observation equivalence must be strengthenedto
achieve the same result. This is achieved bysynthesis observation equivalence[25]
andweak synthesis observation equivalence[21].

Definition 19 [19] Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence
relation∼ ⊆ Q × Q is called abisimulationon G, if the following holds for all
x1, x2 ∈ Q such thatx1 ∼ x2: if x1

σ
→ y1 for someσ ∈ Σω, then there exists

y2 ∈ Q such thatx2
σ
→ y2 andy1 ∼ y2.

Theorem 8 [25] Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and
let ∼ be a bisimulation onG1 andG̃ = {G1/∼, G2, . . . , Gn}. Then it holds that
(G;S; ρ) ≃synth (G̃;S; ρ).

Bisimulation is the strongest of the branching process equivalences. Twostates
are treated as equivalent if they have exactly the same outgoing transitions tothe
same or equivalent states. Theorem 8 confirms that it is possible to merge bisimilar
states in a plant automaton in a synthesis triple while preserving synthesis equiva-
lence.

Bisimulation treats transitions with all events alike. For better abstraction, it
is desirable to differentiate between local and shared events. This is the idea of
observation equivalence, which considers two states as equivalent if they can reach
equivalent states by the same sequences of shared events.

Definition 20 [19] Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ.
An equivalence relation∼ ⊆ Q × Q is called anobservation equivalenceon G
with respect toΥ, if the following holds for allx1, x2 ∈ Q such thatx1 ∼ x2:
if x1

s1→ y1 for somes1 ∈ Σ∗
ω, then there existy2 ∈ Q ands2 ∈ Σ∗

ω such that
PΩ∪{ω}(s1) = PΩ∪{ω}(s2), x2

s2→ y2, andy1 ∼ y2.

Example 1 In automatonG in figure 9, statesq0 and q1 can be considered as
observation equivalent with respect toΥ = {α, β}. Merging these states results
in G̃, also shown in figure 9.
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q0 q1

⊥

(α)

(β) !υ

G̃

q01

⊥
!υ

(α, β)

Figure 9: Example automata to demonstrate observation equivalence. Uncontrol-
lable events are prefixed with!, and local events have parentheses around them.
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α
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G̃ q0

q7

q12

q34

q56

q89

(!υ)

(!υ)

(!µ)

(!µ)

α

α

α

(β)(γ)

T
α

Figure 10: Two observation equivalent automata that are not synthesis equivalent.

Unfortunately, observation equivalence in general does not imply synthesis
equivalence, so theorem 8 cannot be generalised for observation equivalence [25].

Example 2 Consider again the observation equivalent automata in figure 9, with
Σc = {α, β} andΣu = {!υ}. The triples({G}; {G}; id) and({G̃}; {G}; id) are
not synthesis equivalent. WithG, a supervisor can disable the local controllable
eventα to prevent entering stateq1 and thus the occurrence of the undesirable
uncontrollable!υ, but this is not possible with̃G. It holds thatω ∈ L(supCN(G))
whileL(supCN(G̃)) = ∅.

There are different ways how observation equivalence can be restricted for use
in compositional synthesis. The problem in example 2 does not arise if the local
eventsα andβ are uncontrollable. In fact, a result similar to theorem 8 can be
shown if observation equivalence is restricted to uncontrollable events [25]. With
controllable events, abstraction is also possible, but two other issues needto be
taken into account.

Example 3 Consider automatonG in figure 10 withΣu = {!µ, !υ} andΥ =
{β, γ, !µ, !υ}. Merging of observation equivalent states results inG̃, but statesq1
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G̃ q0

q5

q12

q34

q67

!υ
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!µ

(α)

(β)

(β)

Figure 11: Two observation equivalent automata that are not synthesis equivalent.

and q2 should not be merged for synthesis purposes. Although both states can
reach the same states via the controllable eventα, possibly preceded and followed
by the local event!µ, the transitionq4

α
→ q6 must always be disabled to prevent

blocking via the uncontrollable event!υ, while the transitionq1
α
→ q8 may be

enabled. When used in a system that requiresα to occur for correct behaviour,
such asT in figure 10, stateq1 is retained in synthesis whileq2 is removed. The
triplesT = ({G, T}; {G, T}; id) andT̃ = ({G̃, T}; {G, T}; id) are not synthesis
equivalent asL(supCN(T )) = ∅ but !υ ∈ L(supCN(T̃ )).

Example 4 Consider automatonG in figure 11 withΣu = {!υ, !µ} andΥ =
{α, β}. Merging of observation equivalent states results inG̃, but statesq1 andq2

should not be merged for synthesis purposes. InG, statesq3 and q4 should be
avoided to prevent blocking in stateq5 via the uncontrollable event!υ. Thus,α
should be disabled inq1 and q2, making q2 a blocking state, whileq1 remains

nonblocking due to the transitionq1
β
→ q6. The triplesT = ({G}; {G}; id) and

T̃ = ({G̃}; {G}; id) are not synthesis equivalent as!υ /∈ L(supCN(T )) but !υ ∈
L(supCN(T̃ )).

The problem in example 3 is caused by considering the pathq2
!µα!µ
−−−→ q9 as

equivalent toq1
α
→ q8 to justify statesq1 andq2 to be merged. However, the path

q2
!µα!µ
−−−→ q9 passes through the unsafe stateq6, while q1

α
→ q8 does not pass

through any unsafe states. This situation can be avoided by only allowing local
events before a controllable event. That is, forx1

σ
→ y1 andx1 ∼ x2 it is required

that there existst ∈ Υ∗ such thatx2
tσ
→ y2 andy1 ∼ y2. In example 3, the local

events int are all uncontrollable. Controllable events can lead to the problem in
example 4. They can be allowed under the additional condition that their target
states are equivalent to the start state of the path.
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Imposing such conditions on observation equivalence results insynthesis ob-
servation equivalence, which preserves synthesis results in a way similar to theo-
rem 8 [25].

Definition 21 [25] Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇Υ. An
equivalence relation∼ ⊆ Q×Q is asynthesis observation equivalenceonG with
respect toΥ, if the following conditions hold for allx1, x2 ∈ Q such thatx1 ∼ x2:

(i) if x1
σ
→ y1 for σ ∈ Σc ∪ {ω}, then there exists a pathx2 = x0

2
τ1→ · · ·

τn→

xn
2

PΩ∪{ω}(σ)
−−−−−−→ y2 such thaty1 ∼ y2 and τ1, . . . , τn ∈ Υ, and whenever

τi ∈ Σc thenx1 ∼ xi
2;

(ii) if x1
υ
→ y1 for υ ∈ Σu, then there existt2, u2 ∈ (Υ ∩ Σu)

∗ such that

x2
t2PΩ(υ)u2
−−−−−−→ y2 andy1 ∼ y2.

Condition (i) allows for a statex1 with an outgoing controllable event to be
equivalent to another statex2, if that state allows the same controllable event, pos-
sibly after a sequence of local events. If that sequence includes a controllable tran-
sitionxi−1

2 → xi
2, its target statexi

2 must be equivalent to the start statesx1 ∼ x2.
Condition (ii) is similar to observation equivalence, but restricted to uncontrollable
events. ProjectionPΩ is used in the definition to ensure that the conditions (i)
and (ii) apply to both local and shared events.

Example 5 Consider automatonG in figure 12, with all events controllable and
Υ = {β}. An equivalence relation withq1 ∼ q3 andq4 ∼ q7 is a synthesis obser-
vation equivalence onG. Merging the equivalent states results in the deterministic
automatonG′ shown in figure 12. Note thatq1 andq2 in G are not synthesis ob-

servation equivalent, because forq2
α
→ q6 but onlyq1

α
→ q7

β
→ q6, and the local

eventβ occurs after the shared eventα on the path.

Synthesis observation equivalence does not allow local eventsafter a control-
lable event. This condition can be further relaxed, allowing local events after con-
trollable events, provided that it can be guaranteed that the states visited bythe
local transition after a controllable event are all present in the synthesis result.

Definition 22 [21] Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ.
An equivalence relation∼ ⊆ Q × Q is aweak synthesis observation equivalence
onG with respect toΥ, if the following conditions hold for allx1, x2 ∈ Q.

(i) If x1
σ
→ y1 for σ ∈ Σc ∪ {ω}, then there exists a pathx2 = x0

2
τ1→ · · ·

τn→

xn
2

PΩ∪{ω}(σ)
−−−−−−→ y0

2

τn+1
−−−→ · · ·

τm→ ym
2 = y2 such thaty1 ∼ y2 andτ1, . . . , τm ∈

Υ and,
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Figure 12: Example of synthesis observation equivalence and weak synthesis ob-
servation equivalence.

a) wheneverτi ∈ Σc for somei ≤ n thenx1 ∼ xi
2;

b) wheneveryi
2

u
→ z for someu ∈ (Σu ∩ Υ)∗ thenz ∼ yj

2 for some
0 ≤ j ≤ m;

c) wheneveryi
2

u
→ z for someu ∈ Σ∗

u such thatPΩ(u) ∈ Σu \ Υ, then

there existsu′ ∈ Σ∗
u such thatPΩ(u) = PΩ(u′) andy2

u′

→ z′ for some
z′ ∼ z.

(ii) If x1
υ
→ y1 for υ ∈ Σu, then there existt2, u2 ∈ (Υ ∩ Σu)

∗ such that

x2
t2PΩ(υ)u2
−−−−−−→ y2 andy1 ∼ y2.

Condition (i) weakens the condition for controllable events in that it allows for
a path of local events after a controllable event, if local uncontrollable transitions
outgoing from the path lead to a state equivalent to a state on the path, and shared
uncontrollable transitions are also possible in the end state of the path. Condi-
tion (ii) is the same as for synthesis observation equivalence.

Example 6 Consider again automatonG in figure 12, with all events controllable
andΥ = {β}. An equivalence relation withq1 ∼ q2 ∼ q3 andq4 ∼ q7 is a weak
synthesis observation equivalence onG, producing the abstractioñG = G/∼. For

example, statesq1 and q2 can be equivalent asq2
α
→ q6 and q1

α
→ q7

β
→ q6.

The nondeterminism iñG can be avoided using a renamingρ : {α1, α2, γ, β} →
{α, γ, β}, which leads to the deterministic automatonG̃′ in figure 12.
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Both synthesis observation equivalence and weak synthesis observation equiv-
alence can be used for abstraction steps in compositional synthesis. Aftercom-
puting an appropriate equivalence relation∼ on a renamed automatonρ(G1), the
automatonG1 can be replaced by its quotientG1/∼.

Theorem 9 [21] Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn} and
Gi = 〈Σi, Qi,→i, Q

◦
i 〉. Let Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪Σn)∩Υ = ∅. Let∼ be

a synthesis observation equivalence or a weak synthesis observation equivalence
relation onρ(G1) with respect toΥ such thatG1/∼ is deterministic, and let̃G =
{G1/∼, G2, . . . , Gn}. Then(G;S; ρ) ≃synth (G̃;S; ρ).

Complexity. Observation equivalence-based abstractions can be computed in
polynomial time. The time complexity to compute a bisimulation isO(|→| log |Q|)
[11]. Synthesis observation equivalence and weak synthesis observation equiva-
lence are computed by a modified version of the same algorithm inO(|→||Q|4)
andO(|→||Q|5) time, respectively [21].

5.3 Halfway Synthesis

Halfway synthesisis an abstraction method that works well in compositional syn-
thesis [13]. Sometimes it is clear that certain states in an automaton must be re-
moved in synthesis, no matter what the behaviour of the rest of the system is.
Clearly, blocking states can never become nonblocking. Moreover, local uncon-
trollable transitions to blocking states must be removed, because no other compo-
nent nor the supervisor can disable a local uncontrollable transition.

Definition 23 Let G = 〈Σ, Q,→, Q◦〉 andΥ ⊆ Σ. Thehalfway synthesis result
for G with respect toΥ is

hsupCNΥ(G) = 〈Σ, Q ∪ {⊥},→hsup, Q
◦〉 , (14)

wheresupCNΥ(G) = 〈Σ, Q,→sup, Q
◦〉,⊥ /∈ Q, and

→hsup =→sup ∪ { (x, σ,⊥) | σ ∈ Σu \Υ, x
σ
→, andx

σ
→sup does not hold} .

(15)

Halfway synthesis is calculated like ordinary synthesis, but considering only
local events as uncontrollable. Shared uncontrollable transitions to blocking states
do not necessarily cause blocking, as some other plant component may yetdis-
able them. Therefore, these transitions are retained and redirected to the blocking
state⊥ instead.
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Figure 13: Example of halfway synthesis.

Example 7 Consider automatonG in figure 13 withΣu = {!λ, !µ, !υ} andΥ =
{γ, !λ}. Stateq3 is blocking, soq2 is also considered as unsafe, because the uncon-
trollable !λ-transition cannot be disabled by the supervisor nor by any other plant
component. Every nonblocking supervisor can and will disable the controllable

transitionsq1
γ
→ q3 andq1

β
→ q2. Stateq0 may still be safe, because some other

plant component may disable the shared events!µ and!υ. The blocking state⊥ is
added and the!µ- and !υ-transitions are redirected to⊥ in the halfway synthesis
resulthsupCN{!λ}(G), see Figure 13. This ensures that later synthesis is aware of
the potential problem regarding!µ or !υ.

The following theorem extends a result about halfway synthesis for supervision
equivalence using state labels [13] to the more general framework of synthesis
triples. The proof can be found in appendix C.

Theorem 10 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
Υ ⊆ Σ1 ∩ Σu such that(Σ2 ∪ · · · ∪ Σn) ∩Υ = ∅. Then

(G;S; ρ) ≃synth ({hsupCNΥ(G1), G2, . . . , Gn}; {hsupCNΥ(G1)} ∪ S; ρ) .

Complexity. Halfway synthesis can be achieved using a standard synthesis algo-
rithm and runs in time complexityO(|Q||→|), where|Q| and|→| are the numbers
of states and transitions of the input automaton.

6 Compositional Synthesis Algorithm

Given a set of plant automataG, the compositional synthesis algorithm repeatedly
composes automata and applies abstraction rules. While doing so, it modifies a
synthesis triple(G;S; ρ), collecting supervisors inS and updating the renamingρ,
and continues until only one automaton that cannot be further abstracted isleft.
Then a standard synthesis algorithm is used to compute a final supervisor.This
principle, which is justified by theorem 3, is shown in Algorithm 1.
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Algorithm 1 Compositional synthesis
1: input G = {G1, G2, . . . , Gn}
2: S ← G, ρ← id
3: while |G| > 1 do
4: G ← selfloopRemoval(G)
5: subsys ← selectSubSystem(G)
6: G ← G \ subsys

7: A← synchronousComposition(subsys)
8: Υ← ΣA \ ΣG

9: A← hsupCNΥ∩Σu(A)
10: S ← S ∪ {A}
11: A← bisimulation(A)
12: Ã←WSOEΥ(A)
13: if Ã is deterministicthen
14: G ← G ∪ {Ã}
15: else
16: 〈ρD, D̃, D〉 ← makeDistinguisher(Ã, A)
17: G ← ρ−1

D (G) ∪ {D̃}, S ← ρ−1
D (S) ∪ {D}, ρ← ρ ◦ ρD

18: end if
19: end while
20: S ← S ∪ {supCN(G)}
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During each iteration of the main loop, a series of steps is applied to simplify
the setG of plant automata. First, line 4 applies selfloop removal to the entire
plantG according to theorem 7. This quick operation improves the performance of
the following steps.

The next step is to choose a subsystem ofG for simplification. If no automaton
can be simplified individually, a group of automata is selected for composition.
TheselectSubSystem() method in line 5 selects an appropriate subsystem, which
is then removed fromG and composed. Different methods to select this subsystem
have been investigated in previous work [12,14]. Here, the strategyMustL is used,
which facilitates the exploitation of local events. For each eventσ, a subsystem is
formed by considering all automata withσ in the alphabet, soσ becomes a local
event after composing the subsystem. This gives several candidate subsystems, one
for each event, so a second step applies a strategy calledMinSync, which chooses
the subsystem with the smallest number of states in its synchronous composition.

After identification and composition of a subsystem, the setΥ of local events
is formed in line 8, which contains the events used only in the subsystem to be
simplified. Based on the local events, the abstraction rules given in Theorems 8–10
are applied in lines 9–12. Rules of lower complexity are applied first, so halfway
synthesis is followed by bisimulation and weak synthesis observation equivalence.
If halfway synthesis produces a new supervisor, it is added to the setS of supervi-
sors. If weak synthesis observation equivalence results in a deterministicabstracted
automaton, this automaton is added back into the setG of uncontrolled plants.

Weak synthesis observation equivalence may also result in nondeterminism,
if some states in an equivalence class have successor states reached bythe same
event, but belonging to different equivalence classes. In this case, arenaming
is introduced. ThemakeDistinguisher() method in line 16 replaces the events
of any transitions causing nondeterminism in the abstracted automatonÃ by new
events and records the target states of these transitions. Using the recorded target
states, the same modification to corresponding transitions is applied to the origi-
nal automatonA. ThemakeDistinguisher() method returns a renaming mapρD,
the deterministic abstracted automatonD̃, and an appropriate distinguisherD. In
line 17, the inverse renamingρ−1

D is applied to the entire systemG and the collected
supervisorsS, the abstracted automatoñD and the distinguisherD are added to the
resultant automata sets, and the renamingρ is updated to includeρD. This is equiv-
alent to the application of theorem 6 followed by theorem 9.

The loop terminates when the setG of uncontrolled plants contains only a sin-
gle automaton, which is passed to standard synthesis in line 20. According to
theorem 5, the result is added to the setS, which in combination with the final
renamingρ gives the least restrictive, controllable and nonblocking supervisor for
the original systemG.
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7 Experimental Results

The compositional synthesis algorithm has been implemented in the DES software
tool Supremica[2]. The algorithm is completely automatic and does not use any
prior knowledge about the structure of the system. The implementation has suc-
cessfully computed modular supervisors for several large discrete event systems
models. The test cases include the following complex industrial models and case
studies, which are taken from different application areas such as manufacturing
systems and automotive body electronics:

agv Automated guided vehicle coordination based on the Petri net model in [27].
To make the example blocking in addition to uncontrollable, there is also a
variant,agvb, with an additional zone added at the input station.

aip Automated manufacturing system of the Atelier Inter-établissement de Pro-
ductique [4].

fencaiwon09 Model of a production cell in a metal-processing plant from [9].

fms Large-scale flexible manufacturing system based on [38].

tbed Model of a toy railroad system based on [16]. Two versions present different
control objectives.

verriegel Models of the central locking system of a BMW car. There are two
variants, a three-door modelverriegel3, and a four-door modelverrie-
gel4. These models are derived from the KORSYS project [29].

6link Models of a cluster tool for wafer processing previously studied for synthe-
sis in [34].

All the test cases considered have at least107 reachable states in their syn-
chronous product and are either uncontrollable, blocking, or both. Algorithm 1 has
been used to compute modular supervisors for each of these models. In addition
to section 6, the algorithm is controlled by a state limit of 5000 states: if the syn-
chronous composition of a subsystem in line 7 exceeds 5000 states, that subsystem
is discarded and another subsystem is chosen instead. All experiments have been
run on a standard desktop PC using a single 2.66 GHz microprocessor.

The results of the experiments are shown in Table 1. For each model, the ta-
ble shows the number of automata (Aut), the number of reachable states (Size),
and whether the model is nonblocking (Nonb.) or controllable (Cont.). Next,the
table shows the size of the largest synchronous composition encounteredduring
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Table 1: Experimental results

Peak Time Mem. Supervisor Events Abstraction
Model Aut Size Nonb. Cont. States [s] [MB] Num. Largest Ren. SR HS Bis. WSOE
agv 16 2.6·107 true false 856 3.11 27.9 6 12339 0 30 208 0 671
agvb 17 2.3·107 false false 562 0.81 61.3 7 9380 0 30 187 0 464
aip0alps 35 3.0·108 false true 502 0.43 84.3 3 17 2 53 3 8 576
fencaiwon09b 29 8.9·107 false true 182 0.27 118.4 6 917 4 56 57 3 328
fencaiwon09s 29 2.9·108 false false 525 0.44 150.2 11 436 5 59 186 2 500
fms2003s 31 1.4·107 false true 2596 23.63 332.8 4 59109 36 52 64 24 2412
tbed-noderailb 84 3.1·1012 false true 4989 6.22 265.2 17 26 0 12 158 112 1086
tbed-uncont 84 3.6·1012 true false 4479 5.34 491.6 10 19737 1 1 190 73 189
verriegel3b 52 1.3·109 false true 1367 1.80 218.2 1 4 77 64 1 390 1796
verriegel4b 64 6.2·1010 false true 1382 4.86 250.5 1 4 21 71 189 622 950
6linka 53 2.4·1014 false true 3614 19.52 515.3 13 2073 15 48 1754 0 2103
6linki 53 2.7·1014 false true 2925 1372 635.4 12 4017 12 49 1205 0 1897
6linkp 48 4.2·1014 false true 3614 26.62 538.3 17 2073 25 45 1731 0 2107
6linkre 59 6.2·1014 false true 240 1.01 584.9 19 375 10 51 221 0 279
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abstraction (Peak States), the total runtime (Time), the total amount of memory
used (Mem.), the number of modular supervisors computed (Num.) and the num-
ber of states of the largest supervisor automaton (Largest). The table furthermore
shows the number of events replaced by renaming (Ren.) and the number ofevents
removed by selfloop removal (SR), and finally the number of states removedby
halfway synthesis (HS), bisimulation (Bis.), and weak synthesis observation equiv-
alence (WSOE).

All examples have been solved successfully with no more than 30 seconds
runtime, and never using more than 640 MB of memory, even for models with more
than1014 reachable states. It is worth mentioning that other methods for selecting
subsystems give smaller supervisors for theagv and tbed examples. However,
persistently good results can be achieved for all the examples in this test with the
considered strategyMustL/MinSync .

Figure 14 shows some data concerning the performance of the abstractionrules.
For each example, it shows the ratio of the number of states removed by eachrule
over the total number of states removed, and the ratio of the runtime consumed
by each rule over the total runtime of all abstraction rules. Particularly for large
models, halfway synthesis and also bisimulation run much faster than weak syn-
thesis observation equivalence, as is expected from the higher complexityclass.
However, weak synthesis observation equivalence also has the highest percentage
of states removed and typically contributes most of the states removed by abstrac-
tion. The data suggests a correlation between the percentage of runtime andthe
percentage of states removed by each rule. By this measure, the three abstraction
rules have similar performance in practice.

The compositional synthesis algorithm is also applied to thetransfer lineex-
ample [37]. The model consists of a parametrised number of serially connected
cells, each consisting of a machine, a test unit, and two buffers. The output of one
cell is the input of the next cell. This model can easily be scaled up to arbitrary
size. Its state space grows exponentially, and the number of reachable states of the
controlled system is approximately1.2 · 14.62n wheren is the number of cells [5].
Yet, the cells are identical and the real complexity of the system is small.

Although the compositional synthesis algorithm has no knowledge of the sym-
metry of the model and treats each subsystem as if it was unique, it successfully
computes modular supervisors for transfer lines with up to 1000 serially connected
cells. Figure 15 shows a linear relation between the number of connected cells and
the total number of supervisor states. The algorithm never constructs a supervisor
component with more than 79 states. The relation between the number of cells
and the execution time is quadratic. This behaviour is due to the complexity of
evaluating and choosing subsystems from growing lists. This experiment shows
that the compositional synthesis algorithm automatically discovers that the cells
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Figure 15: Experimental results for transfer line example.

are identical and produces identical supervisors accordingly.

8 Conclusions

A general framework for compositional synthesis in supervisory control has been
presented, which supports the synthesis of least restrictive, controllable, and non-
blocking supervisors for large models consisting of several automata thatsynchro-
nise in lock-step synchronisation. The framework supports compositionalreason-
ing using different kinds of abstractions that are guaranteed to preserve the final
synthesis result, even when applied to individual components. Hiding and nonde-
terminism are avoided, solving problems in previous related work. The computed
supervisor is modular in that it typically consists of several interacting compo-
nents, which means that it is easy to understand and implement. The algorithm
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has been implemented, and experimental results show that the method successfully
computes modular supervisors for a set of large industrial models.

In future work, the authors would like to generalise the framework to consider
unobservable events. Furthermore, finite-state machines augmented with bounded
integer variables show good modelling potential, and it is of interest to adapt the
described compositional synthesis approach to work directly with this type ofmod-
elling formalism.
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den (1995), https://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=1126

[9] Feng, L., Cai, K., Wonham, W.M.: A structural approach to the non-blocking
supervisory control of discrete-event systems. International Journal of Ad-
vanced Manufacturing Technolology 41, 1152–1168 (2009)

[10] Feng, L., Wonham, W.M.: Supervisory control architecture for discrete-event
systems. IEEE Transactions on Automatic Control 53(6), 1449–1461 (Jul
2008)

[11] Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation
equivalence. Science of Computer Programming 13, 219–236 (1990)

[12] Flordal, H., Malik, R.: Compositional verification in supervisory control.
SIAM Journal of Control and Optimization 48(3), 1914–1938 (2009)

[13] Flordal, H., Malik, R., Fabian, M.,̊Akesson, K.: Compositional synthesis
of maximally permissive supervisors using supervision equivalence. Discrete
Event Dynamic Systems: Theory and Applications 17(4), 475–504 (2007)

[14] Francis, R.: An implementation of a compositional approach for verifying
generalised nonblocking. Working Paper 04/2011, Department of Computer
Science, University of Waikato, Hamilton, New Zealand (2011),http://
hdl.handle.net/10289/5312

[15] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)

[16] Leduc, R.J.: PLC Implementation of a DES Supervisor for a Manufactur-
ing Testbed: An Implementation Perspective. Master’s thesis, Department
of Electrical Engineering, University of Toronto, Ontario, Canada (1996),
http://www.cas.mcmaster.ca/∼leduc

[17] Malik, P., Malik, R., Streader, D., Reeves, S.: Modular synthesis of discrete
controllers. In: Proceedings of 12th IEEE International Conferenceon Engi-
neering of Complex Computer Systems, ICECCS ’07. pp. 25–34. Auckland,
New Zealand (2007)

[18] Malik, R., Flordal, H.: Yet another approach to compositional synthesis of
discrete event systems. In: Proceedings of the 9th International Workshop on
Discrete Event Systems, WODES’08. pp. 16–21. Göteborg, Sweden (May
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A Proofs for Renaming and Selfloop Removal

This appendix contains proofs for theorem 6 and theorem 7 in section 5.1.As a
prerequisite for theorem 6, it is first confirmed that every renaming step

(G1;S; ρ1) ≃synth (G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) (16)

produces a proper synthesis triple.

Lemma 11 Let (G1;S; ρ1) be a synthesis triple withG1 = {G1, . . . , Gn}, let ρ
be a renaming, and letH1 be aρ-distinguisher such thatρ(H1) = G1 andG2 =
{H1, ρ

−1(G2), . . . , ρ
−1(Gn)}. Then(G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) is a synthesis

triple.

Proof. It is necessary to prove properties (i), (ii), and (iii) in definition 14.

(i) As (G1;S; ρ1) is a synthesis triple, it holds thatL(S) ⊆ L(G1). Then it
follows thatL({H1} ∪ ρ−1(S)) = L(H1 ‖ ρ−1(S)) ⊆ L(H1 ‖ ρ−1(G1)) =
L(H1 ‖ ρ−1(G1) ‖ · · · ‖ ρ−1(Gn)) = L(G2).

(ii) It needs to be shown thatH1 ‖ ρ−1(S) is a(ρ1 ◦ ρ)-distinguisher. Lets, t ∈
L(H1 ‖ ρ−1(S)) such thatρ1(ρ(s)) = ρ1(ρ(t)). Thens, t ∈ L(ρ−1(S)) =
ρ−1(L(S)), and thusρ(s), ρ(t) ∈ ρ(ρ−1(L(S))) = L(S). Sinceρ1(ρ(s)) =
ρ1(ρ(t)) andS is a ρ1-distinguisher, it follows thatρ(s) = ρ(t). Further,
since alsos, t ∈ L(H1) andH1 is aρ-distinguisher, it follows thats = t.
Sinces, t were chosen arbitrarily, it follows by definition 12 thatH1‖ρ

−1(S)
is a(ρ1 ◦ ρ)-distinguisher.

(iii) Let γ1, γ2 such that(ρ1 ◦ ρ)(γ1) = (ρ1 ◦ ρ)(γ2). It needs to be shown
that there exists at most one automaton inG2 that differentiates between
γ1 andγ2. This is clear whenγ1 = γ2, so assume thatγ1 6= γ2. Since
(G1;S; ρ1) is a synthesis triple andρ1(ρ(γ1)) = ρ1(ρ(γ2)), there exists at
most one automatonGi ∈ G1 that differentiates betweenρ(γ1) andρ(γ2).
Write Hj = ρ−1(Gj) for j = 2, . . . , n, so thatG2 = {H1, . . . , Hn}. It
is shown that the automataHj with j 6= i do not differentiate betweenγ1

andγ2.

First consider the casej = 1, so assume thatG1 does not differentiate be-
tweenρ(γ1) and ρ(γ2). Then the following are equivalent. It holds that

x
γ1
→ y in H1, if and only if x

ρ(γ1)
−−−→ y in G1 = ρ(H1), if and only if

x
ρ(γ2)
−−−→ y in G1 asG1 does not differentiate betweenρ(γ1) andρ(γ2), if
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and only if x
γ2
→ y in H1 asγ1 6= γ2 andH1 is a ρ-distinguisher. This is

enough to show thatH1 does not differentiate betweenγ1 andγ2.

Second, letj ≥ 1 such thatGj does not differentiate betweenρ(γ1) andρ(γ2).

Then the following are equivalent. It holds thatx
γ1
→ y in Hj = ρ−1(Gj), if

and only ifx
ρ(γ1)
−−−→ y in Gj , if and only ifx

ρ(γ2)
−−−→ y in Gj asGj does not dif-

ferentiate betweenρ(γ1) andρ(γ2), if and only if x
γ2
→ y in ρ−1(Gj) = Hj .

This is enough to show thatHj does not differentiate betweenγ1 andγ2. �

The following two lemmas are used in the proof of theorem 6.

Lemma 12 Let ρ : Σ′ → Σ be a renaming, letA′ be an automaton with al-
phabetΣA ⊆ Σ′, and letB be an automaton with alphabetΣB ⊆ Σ. Then
ρ(A′) ‖B = ρ(A′ ‖ ρ−1(B)).

Proof. It is enough to show that the automataρ(A′) ‖B andρ(A′ ‖ ρ−1(B)) have
the same transition relations.

First let (xA, xB)
σ
→ρ(A′)‖B (yA, yB). Consider three cases. Ifσ ∈ Σρ(A′) ∩

ΣB thenxA
σ
→ρ(A′) yA andxB

σ
→B yB. This means that there existsσ′ ∈ Σ′

such thatρ(σ′) = σ and xA
σ′

→A′ yA. SincexB
σ
→B yB, by definition 13 it

holds thatxB
σ′

→ρ−1(B) yB which implies(xA, xB)
σ′

→A′‖ρ−1(B) (yA, yB). If σ ∈

Σρ(A′) \ ΣB thenxB = yB andxA
σ
→ρ(A′) yA. This means that there existsσ′ ∈

ΣA\ΣB such thatρ(σ′) = σ andxA
σ′

→A′ yA, which implies(xA, xB)
σ′

→A′‖ρ−1(B)

(yA, xB) = (yA, yB). If σ ∈ ΣB \ Σρ(A′) then xA = yA and xB
σ
→B yB.

This means that there existsσ′ ∈ Σρ−1(B) \ ΣA such thatρ(σ′) = σ, and by

definition 13 it holds thatxB
σ′

→ρ−1(B) yB, which implies(xA, xB)
σ′

→A′‖ρ−1(B)

(xA, yB) = (yA, yB). Thus, in all cases(xA, xB)
σ′

→A′‖ρ−1(B) (yA, yB). Then

it follows that (xA, xB)
ρ(σ′)
−−−→ρ(A′‖ρ−1(B)) (yA, yB), which furthermore implies

(xA, xB)
σ
→ρ(A′‖ρ−1(B)) (yA, yB).

Conversely, let(xA, xB)
σ
→ρ(A′‖ρ−1(B)) (yA, yB). Then there existsσ′ ∈ Σ′

such thatρ(σ′) = σ and(xA, xB)
σ′

→A′‖ρ−1(B) (yA, yB). There are three possibili-

ties. Ifσ′ ∈ ΣA ∩Σρ−1(B) thenxA
σ′

→A′ yA, which impliesxA
ρ(σ′)
−−−→ρ(A′) yA, and

alsoxB
σ′

→ρ−1(B) yB, which impliesxB
ρ(σ′)
−−−→B yB by definition 13. Therefore,

(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (yA, yB). If σ′ ∈ ΣA\Σρ−1(B) thenxB = yB andxA

σ′

→A′

yA, which impliesxA
ρ(σ′)
−−−→ρ(A′) yA. Also ρ(σ′) /∈ ΣB asσ′ /∈ Σρ−1(B), and thus
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(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (yA, xB) = (yA, yB). If σ′ ∈ Σρ−1(B) \ ΣA thenxA = yA

andxB
σ′

→ρ−1(B) yB, which impliesxB
ρ(σ′)
−−−→B yB. Also ρ(σ′) /∈ Σρ(A′) as

σ′ /∈ ΣA, and thus(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (xA, yB) = (yA, yB). Thus, in all cases

(xA, xB)
ρ(σ′)
−−−→ρ(A′)‖B (yA, yB), which implies(xA, xB)

σ
→ρ(A′)‖B (yA, yB). �

Lemma 13 Let G be an automaton with alphabetΣ, and letρ : Σ → Σ′ be a
renaming. Thenρ(supCN(G)) = supCN(ρ(G)).

Proof. Sinceρ preserves controllability, it follows from definition 8 thatΘG =
Θρ(G). Thus by theorem 2,

ρ(supCN(G)) = ρ(G|Θ̂G
) = ρ(G|Θ̂ρ(G)

) = ρ(G)|Θ̂ρ(G)
= supCN(ρ(G)) . �

Theorem 6 Let (G1;S; ρ1) be a synthesis triple withG1 = {G1, . . . , Gn}, let ρ
be a renaming, and letH1 be aρ-distinguisher such thatρ(H1) = G1 andG2 =
{H1, ρ

−1(G2), . . . , ρ
−1(Gn)}. Then

(G1;S; ρ1) ≃synth (G2; {H1} ∪ ρ−1(S); ρ1 ◦ ρ) .

Proof. By definition 15, it holds that

supCN(G1;S; ρ1) = ρ1(supCN(G1) ‖ S) = ρ1(supCN(G1 ‖ · · · ‖Gn) ‖ S) .
(17)

By lemma 12 and 13, it holds that

supCN(G1 ‖ · · · ‖Gn) = supCN(ρ(H1) ‖G2 ‖ · · · ‖Gn)

= supCN(ρ(H1 ‖ ρ−1(G2) ‖ · · · ‖ ρ−1(Gn)))

= ρ(supCN(H1 ‖ ρ−1(G2) ‖ · · · ‖ ρ−1(Gn))) . (18)

Combining these equations gives

L(supCN(G1;S; ρ1))

= L(ρ1(supCN(G1 ‖ · · · ‖Gn) ‖ S))

= L
(

ρ1

(

ρ(supCN(H1 ‖ ρ−1(G2) ‖ · · · ‖ ρ−1(Gn))) ‖ S
))

= L
(

ρ1

(

ρ
(

supCN(H1 ‖ ρ−1(G2) ‖ · · · ‖ ρ−1(Gn)) ‖ ρ−1(S)
)))

by lemma 12

= L
(

ρ1

(

ρ
(

supCN(H1 ‖ ρ−1(G2) ‖ · · · ‖ ρ−1(Gn)) ‖H1 ‖ ρ−1(S)
)))

= L(supCN(G2; {H1} ∪ ρ−1
1 (S); ρ1 ◦ ρ)) . (19)

Thus, the claim follows from definition 16. �
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This completes the proof for the correctness of renaming. Next, considering
selfloop removal, the proof for theorem 7 uses two lemmas that show the relation-
ship between selfloop removal and synthesis.

Lemma 15 Let automatonG = 〈Σ, Q,→, Q◦〉 with Σ = Ω ∪̇ Λ be selfloop-only
for Λ. ThenΘ̂G = Θ̂G|Ω

.

Proof. In the following, letΘ|Ω = ΘG|Ω
. First, it is shown by induction onn ≥ 0

thatΘ̂G ⊆ Xn
|Ω = Θn

|Ω(Q).

Base case.n = 0. ClearlyΘ̂G ⊆ Q = Θ0
|Ω(Q) = X0

|Ω.

Inductive step.Let x ∈ Θ̂G ⊆ Xn
|Ω by inductive assumption. It must be shown

thatx ∈ Xn+1
|Ω = Θcont

|Ω (Xn
|Ω) ∩Θnonb

|Ω (Xn
|Ω).

To see thatx ∈ Θcont
|Ω (Xn

|Ω), let υ ∈ Σu andx
υ
→|Ω y. Since every transition

in G|Ω also is inG, it holds thatx
υ
→ y. Sincex ∈ Θ̂G, it follows by controllability

thaty ∈ Θ̂G. By inductive assumptiony ∈ Xn
|Ω, which impliesx ∈ Θcont

|Ω (Xn
|Ω).

Next it is shown thatx ∈ Θnonb
|Ω (Xn

|Ω). Sincex ∈ Θ̂G, there exists a path

x = x0
σ1→|Θ̂G

x1
σ2→|Θ̂G

· · ·
σk→|Θ̂G

xk
ω
→|Θ̂G

xk+1 . (20)

Consider the first transition in (20). Ifσ1 ∈ Λ thenx0 = x1 ∈ Θ̂G. If σ1 /∈ Λ
thenx0 →|Ω x1 wherex1 ∈ Θ̂G. In both cases,x1 ∈ Θ̂G ⊆ Xn

|Ω by inductive
assumption. By induction, it follows that

x = x0
PΩ(σ1)
−−−−→|Xn

|Ω
x1

PΩ(σ2)
−−−−→|Xn

|Ω
· · ·

PΩ(σk)
−−−−→|Xn

|Ω
xk

ω
→|Xn

|Ω
xk+1 . (21)

Thus,x ∈ Θnonb
|Ω (Xn

|Ω).

Conversely, it is shown by induction onn ≥ 0 thatΘ̂|Ω ⊆ Xn = Θn
G(Q).

Base case.n = 0. ClearlyΘ̂|Ω ⊆ Q = Θ0
G(Q) = X0.

Inductive step.Let x ∈ Θ̂|Ω ⊆ Xn by inductive assumption. It must be shown
thatx ∈ Xn+1 = Θcont

G (Xn) ∩Θnonb
G (Xn).

To see thatx ∈ Θcont
G (Xn), let υ ∈ Σu andx

υ
→ y. If this transition is not

in G|Ω, it follows thatυ ∈ Λ andy = x ∈ Xn. If x
υ
→|Ω y, sincex ∈ Θ̂|Ω, it

follows by controllability thaty ∈ Θ̂|Ω. By inductive assumptiony ∈ Xn, which
impliesx ∈ Θcont

G (Xn).
Next it is shown thatx ∈ Θnonb

G (Xn). Sincex ∈ Θ̂|Ω, there exists a pathx =

x0
tω
→|Θ̂|Ω

. Since every transition inG|Ω also is inG and by inductive assumption,

it follows thatx = x0
tω
→|Xn . Hence,x ∈ Θnonb

G (Xn). �
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Lemma 16 Let G = 〈Σ, Q,→, Q◦〉with Σ = Ω∪̇Λ be a deterministic automaton
that is selfloop-only forΛ. ThensupCN(G) = supCN(G|Ω) ‖G.

Proof. By definition 17,G|Ω = 〈Ω, Q,→|Ω, Q◦〉 where→|Ω = { (x, σ, y) ∈ → |
σ ∈ Ω }. Let Θ|Ω = ΘG|Ω

. The following proof exploits the fact thatG and thus
alsosupCN(G) are deterministic, and shows that the automatonsupCN(G) con-
tains the transitionx

σ
→ y if and only if the automatonsupCN(G|Ω) ‖G contains

the transition(x, x)
σ
→ (y, y).

First letx
σ
→ y in supCN(G), i.e.,x

σ
→|Θ̂G

y andx
σ
→ y in G. If σ ∈ Ω, then

PΩ(σ) = σ andx
σ
→|Ω y. Otherwiseσ ∈ Λ andPΩ(σ) = ε, andx = y sinceG

is selfloop-only forΛ. In both cases,x
PΩ(σ)
−−−−→|Ω y. Givenx, y ∈ Θ̂G = Θ̂|Ω by

lemma 15, it follows thatx
PΩ(σ)
−−−−→ y in supCN(G|Ω). This implies(x, x)

σ
→ (y, y)

in supCN(G|Ω) ‖G.

Conversely, let(x, x)
σ
→ (y, y) in supCN(G|Ω) ‖ G. This meansx

σ
→ y and

x
PΩ(σ)
−−−−→|Θ̂|Ω

y, i.e.,x
PΩ(σ)
−−−−→|Θ̂G

y by lemma 15. This impliesx, y ∈ Θ̂G and thus

x
σ
→ y in supCN(G). �

Theorem 7 Let (G;S; ρ) be a synthesis triple such thatG is selfloop-only for
Λ ⊆ Σ. Then(G;S; ρ) ≃synth (G|Σ\Λ;S; ρ).

Proof. By definition 15 it follows that,

L(supCN(G;S; ρ))

= L(ρ(supCN(G) ‖ S))

= L(ρ(supCN(G|Σ\Λ) ‖ G ‖ S)) by lemma 16

= L(ρ(supCN(G|Σ\Λ) ‖ S)) asL(S) ⊆ L(G) by definition 14 (i)

= L(supCN(G|Σ\Λ;S; ρ)) . (22)

The claim follows from definition 16. �

B Proofs for Abstractions based on Observation Equiva-
lence

This appendix contains the proofs for theorem 8 and theorem 9 in section 5.2,
which state that bisimulation, synthesis observation equivalence, and weaksynthe-
sis observation equivalence preserve synthesis equivalence. The common feature
of these abstractions is that they are obtained by merging equivalent states, and
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can be represented as an automaton quotient modulo an equivalence relation. This
observation leads to the following state-based definition, which is a sufficient con-
dition for abstractions preserving synthesis equivalence [26].

Definition 24 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence relation
∼ ⊆ Q × Q is a state-wise synthesis equivalencerelation onG with respect to
Υ ⊆ Σ, if for all x ∈ Q, all deterministic automataT = 〈ΣT , QT ,→T , Q◦

T 〉 such
thatΣT ∩Υ = ∅, and for all statesxT ∈ QT the following relations hold,

(i) if (x, xT ) ∈ Θ̂G‖T , then([x], xT ) ∈ Θ̂G/∼‖T ;

(ii) if ([x], xT ) ∈ Θ̂G/∼‖T , then(x, xT ) ∈ Θ̂G‖T .

Lemma 18 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
T = G2 ‖ · · · ‖Gn. Then it holds thatρ(G1 ‖ T ) = ρ(G1) ‖ ρ(T ).

Proof. It is enough to show thatρ(G1 ‖ T ) andρ(G1) ‖ ρ(T ) have the same
transition relations.

First, let(xG, xT )
γ
→ (yG, yT ) in ρ(G1 ‖ T ). Then there existsγ0 ∈ ρ−1(γ)

such that(xG, xT )
γ0
→ (yG, yT ) in G1 ‖ T , which implies

γ0
→ (yG, yT ) in G1 ‖ T .

There are three possibilities. Ifγ0 ∈ ΣG1 ∩ ΣT thenxG
γ0
→G1 yG andxT

γ0
→T yT ,

which impliesxG
γ
→ρ(G1) yG andxT

γ
→ρ(T ) yT , i.e., (xG, xT )

γ
→ (yG, yT ) in

ρ(G1 ‖ T ). If γ0 ∈ ΣT \ ΣG1 thenxG = yG andxT
γ0
→T yT , which implies

xT
γ
→ρ(T ) yT and thus(xG, xT )

γ
→ (xG, yT ) = (yG, yT ) in ρ(G1 ‖ T ). If γ0 ∈

ΣG1 \ ΣT thenxG
γ0
→G1 yG andxT = yT , which impliesxG

γ
→ρ(G1) yG and thus

(xG, xT )
γ
→ (yG, xT ) = (yG, yT ) in ρ(G1 ‖ T ). Thus in all cases,(xG, xT )

γ
→

(yG, yT ) in ρ(G1 ‖ T ).
Conversely, let(xG, xT )

γ
→ (yG, yT ) in ρ(G1) ‖ ρ(T ). There are three cases.

If γ ∈ Σρ(G1) ∩ Σρ(T ) thenxG
γ
→ yG in ρ(G1) andxT

γ
→ yT in ρ(T ). Then

there existγG, γT ∈ ΣG1 ∩ΣT such thatρ(γG) = ρ(γT ) = γ andxG
γG→G1 yG and

xT
γT→T yT . By definition 14 (iii), at most one ofG1 orT differentiates betweenγG

andγT . Thus, it holds thatxG
γT→G1 yG or xT

γG→T yT . It follows that(xG, xT )
γ0
→

(yG, yT ) in G1 ‖ T , whereγ0 = γG or γ0 = γT , and thus(xG, xT )
γ
→ (yG, yT ) in

ρ(G1 ‖ T ). If γ ∈ Σρ(G1) \ Σρ(T ) thenxT = yT , and there existsγG ∈ ΣG1 such

thatρ(γG) = γ andxG
γG→G1 yG. Also γG /∈ ΣT asρ(γG) = γ /∈ Σρ(T ), and thus

(xG, xT )
γG→ (yG, xT ) = (yG, yT ) in G1 ‖T . If γ ∈ Σρ(T ) \Σρ(G1) thenxG = yG,

and there existsγT ∈ ΣT such thatρ(γT ) = γ andxT
γT→T yT . Also γT /∈ ΣG1 as

ρ(γT ) = γ /∈ Σρ(G1), and thus(xG, xT )
γT→ (yG, xT ) = (yG, yT ) in G1 ‖ T . Thus,

in all cases(xG, xT )
γ
→ (xG, yT ) = (yG, yT ) in ρ(G1 ‖ T ). �
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Proposition 19 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn} and
Gi = 〈Σi, Qi,→i, Q

◦
i 〉. Let Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪ Σn) ∩ Υ = ∅. Let∼

be a state-wise synthesis equivalence relation onρ(G1) with respect toΥ such that
G1/∼ is deterministic, and let̃G = {G1/∼, G2, . . . , Gn}. Then(G;S; ρ) ≃synth

(G̃;S; ρ).

Proof. Let T = G2 ‖ · · · ‖Gn. First it is shown that

L(G1 ‖ supCN(G1 ‖ T )) = L(G1 ‖ supCN((G1/∼) ‖ T )) . (23)

Let s ∈ L(G1 ‖ supCN(G1 ‖ T )). This meansG1 ‖ supCN(G1 ‖ T )
s
→

(yG, yG, yT ). Let s = σ1 · · ·σn. Then there exists a path

(yG
0 , yT

0 )
σ1→|Θ̂G1‖T

· · ·
σn→|Θ̂G1‖T

(yG
n , yT

n ) = (yG, yT ) (24)

with (yG
k , yT

k ) ∈ Θ̂G1‖T or σk = ω for k = 0, ..., n. Sinceρ preserves control-
lability, it follows from definition 8 thatΘG1‖T = Θρ(G1‖T ), and by lemma 18
Θρ(G1‖T ) = Θρ(G1)‖ρ(T ). Thus,

(yG
0 , yT

0 )
ρ(σ1)
−−−→|Θ̂ρ(G1)‖ρ(T )

· · ·
ρ(σn)
−−−→|Θ̂ρ(G1)‖ρ(T )

(yG
n , yT

n ) . (25)

By definition 24 (i), it holds that([yG
k ], yT

k ) ∈ Θ̂ρ(G1)/∼‖ρ(T ) or σk = ω for k =
0, . . . , n, and thus

([yG
0 ], yT

0 )
ρ(σ1)
−−−→|Θ̂ρ(G1)/∼‖ρ(T )

· · ·
ρ(σn)
−−−→|Θ̂ρ(G1)/∼‖ρ(T )

([yG
n ], yT

n ) . (26)

Note thatρ(G1)/∼ = ρ(G1/∼) and thusρ(G1)/∼ ‖ T = ρ(G1/∼) ‖ T =
ρ(G1/∼ ‖ T ) by lemma 18. Given (24), it follows that

([yG
0 ], yT

0 )
σ1→|Θ̂G1/∼‖T

· · ·
σn→|Θ̂G1/∼‖T

([yG
n ], yT

n ) = ([yG], yT ) . (27)

Therefore,G1 ‖ supCN(G1/∼ ‖ T )
s
→ (yG, [yG], yT ), which means thats ∈

L(G1 ‖ supCN(G1/∼ ‖ T )).
Conversely, lets ∈ L(G1 ‖ supCN(G1/∼ ‖ T )). SinceG1 andG1/∼ are

deterministic, there exists a pathG1 ‖ supCN(G1/∼ ‖ T )
σ1→ (xG

1 , [xG
1 ], xT

1 )
σ2→

· · ·
σn→ (xG

n , [xG
n ], xT

n ) wheres = σ1 · · ·σn and([xG
k ], xT

k ) ∈ Θ̂G1/∼‖T or σk = ω
for k = 0, . . . , n. Sinceρ preserves controllability, it follows from definition 8
and lemma 18 thatΘG1/∼‖T = Θρ(G1/∼‖T ) = Θρ(G1/∼)‖ρ(T ) = Θρ(G1)/∼‖ρ(T ),

which implies([xG
k ], xT

k ) ∈ Θ̂ρ(G1)/∼‖ρ(T ). By definition 24 (ii), it follows that

(xG
k , xT

k ) ∈ Θ̂ρ(G1)‖ρ(T ). This means(xG
k , xT

k ) ∈ Θ̂G1‖T or σk = ω for k =
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0, . . . , n. Therefore,G1‖supCN(G1‖T )
σ1→ (xG

1 , xG
1 , xT

1 )
σ2→ · · ·

σn→ (xG
n , xG

n , xT
n ),

and thuss ∈ L(G1 ‖ supCN(G1 ‖ T )).
Given (23), it follows from definition 15 that

L(supCN(G;S; ρ)) = L(ρ(supCN(G) ‖ S))

= ρ(L(supCN(G1 ‖ T )) ∩ L(S))

= ρ(L(G1 ‖ supCN(G1 ‖ T )) ∩ L(S))

= ρ(L(G1 ‖ supCN((G1/∼) ‖ T )) ∩ L(S))

= ρ(L(G1 ‖ T ‖ supCN((G1/∼) ‖ T )) ∩ L(S))

= ρ(L(supCN((G1/∼) ‖ T )) ∩ L(G1 ‖ T ) ∩ L(S))

= ρ(L(supCN((G1/∼) ‖ T )) ∩ L(S))

(asL(S) ⊆ L(G) = L(G1 ‖ T ) by definition 14 (i))

= ρ(L(supCN(G̃)) ∩ L(S))

= L(ρ(supCN(G̃) ‖ S))

= L(supCN(G̃;S; ρ)) , (28)

so the claim follows from definition 16. �

To prove the main results of this section, theorems 8 and 9, it is now enough
to show that every bisimulation relation, every synthesis observation equivalence
relation, and every weak synthesis observation equivalence relation is astate-wise
synthesis equivalence relation.

The most general of these relations is weak synthesis observation equivalence.
Therefore, lemma 21 below establishes the crucial result that every weaksyn-
thesis observation equivalence is a state-wise synthesis equivalence. Before that,
lemma 20 establishes an auxiliary result about the paths in a quotient automaton
resulting from weak synthesis observation equivalence.

Lemma 20 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q◦
T 〉 be two auto-

mata withΣ∪ΣT = Ω ∪̇Υ andΥ∩ΣT = ∅, and let∼ be a weak synthesis obser-
vation equivalence onG with respect toΥ. LetX ⊆ Q×QT such that([x], xT ) ∈
Θ̂G/∼‖T always implies(x, xT ) ∈ X. Furthermore, let(x1, x

T
1 )

σ
→ (x2, x

T
2 ) such

that([x1], x
T
1 )

σ
→|Θ̂G/∼‖T

([x2], x
T
2 ). Then for all statesy1 ∈ Q such thatx1 ∼ y1,

there existt1, t2 ∈ Υ∗ andy2 ∈ Q such that(y1, x
T
1 )

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2 ) and

x2 ∼ y2.

Proof. Let x1, x2, y1 ∈ Q and xT
1 , xT

2 ∈ QT and σ ∈ Σω ∪ ΣT such that
(x1, x

T
1 )

σ
→ (x2, x

T
2 ), ([x1], x

T
1 )

σ
→|Θ̂G/∼‖T

([x2], x
T
2 ), andx1 ∼ y1. Consider
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three cases.

(i) If σ /∈ Σω, thenσ ∈ ΣT \ Σ ⊆ Ω andx1 = x2 andxT
1

σ
→ xT

2 . Given
([x1], x

T
1 )

σ
→|Θ̂G/∼‖T

([x2], x
T
2 ), it follows that ([y1], x

T
1 ) = ([x1], x

T
1 ) ∈

Θ̂G/∼‖T and([y1], x
T
2 ) = ([x1], x

T
2 ) = ([x2], x

T
2 ) ∈ Θ̂G/∼‖T , and therefore

(y1, x
T
1 ), (y1, x

T
2 ) ∈ X by assumption. This implies that(y1, x

T
1 )

PΩ(σ)
−−−−→|X

(y1, x
T
2 ).

(ii) If σ ∈ Σ ∩ Σu, thenx1
σ
→ x2 andx1 ∼ y1, so by definition 22 (ii) there

exist t1, t2 ∈ (Υ ∩ Σu)
∗ andy2 ∈ Q such thaty1

t1PΩ(σ)t2
−−−−−−→ y2. Let r ⊑

t1PΩ(σ)t2 such thaty1
r
→ z. Then[x1] = [y1]

r
→ [z], and sinceΣT ∩ Υ =

∅, it follows that ([x1], x
T
1 )

r
→ ([z], xT

d ) for somed ∈ {1, 2}. Sincer ∈

Σ∗
u and ([x1], x

T
1 ) ∈ Θ̂G/∼‖T , it follows that ([z], xT

d ) ∈ Θ̂G/∼‖T . This
implies (z, xT

d ) ∈ X by assumption. This argument holds for all prefixes

r ⊑ t1PΩ(σ)t2, and therefore(y1, x
T
1 )

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2 ).

(iii) If σ ∈ Σ ∩ Σc or σ = ω, thenx1
σ
→ x2 andx1 ∼ y1, so by definition 22 (i)

there exists a path

y1 = z0
τ1→ · · ·

τk→ zk
PΩ(σ)
−−−−→ zk+1

τk+1
−−−→ · · ·

τl−1
−−→ zl = y2 (29)

such thatx2 ∼ y2 andτ1, . . . , τl−1 ∈ Υ. The first part of this path satis-
fies (i)a) and the second part satisfies (i)b) and (i)c) in definition 22. Since
τ1, . . . , τl−1 ∈ Υ andΣT ∩Υ = ∅, it holds that

(y1, x
T
1 ) = (z0, x

T
1 )

τ1→ · · ·
τk→ (zk, x

T
1 )

PΩ(σ)
−−−−→

(zk+1, x
T
2 )

τk+1
−−−→ · · ·

τl−1
−−→ (zl, x

T
2 ) = (y2, x

T
2 ) (30)

It follows that

([z0], x
T
1 )

τ1→ · · ·
τk→ ([zk], x

T
1 )

PΩ(σ)
−−−−→

([zk+1], x
T
2 )

τk+1
−−−→ · · ·

τl−1
−−→ ([zl], x

T
2 ) . (31)

It is shown in the following that this path also exists in the restriction of
G/∼ ‖ T to Θ̂G/∼‖T .

For the first part of the path, it is shown by induction oni that ([zi], x
T
1 ) ∈

Θ̂G/∼‖T , for i = 0, . . . , k if σ ∈ Ω∪{ω}, and fori = 0, . . . , k−1 if σ ∈ Υ.

Base case.Fori = 0, it follows by assumption that([z0], x
T
1 ) = ([y1], x

T
1 ) =

([x1], x
T
1 ) ∈ Θ̂G/∼‖T .
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Inductive step. Assume the claim holds for somei ≥ 0, i.e., ([zi], x
T
1 ) ∈

Θ̂G/∼‖T . It must be shown that([zi+1], x
T
1 ) ∈ Θ̂G/∼‖T . There are two

possibilities forτi+1 ∈ Υ:

a) τi+1 ∈ Σc. In this case, it follows from definition 22 (i)a) thatzi+1 ∼
x1, and thus([zi+1], x

T
1 ) = ([x1], x

T
1 ) ∈ Θ̂G/∼‖T by assumption.

b) τi+1 ∈ Σu. As (zi, x
T
1 )

τi+1
−−→ (zi+1, x

T
1 ), it holds that([zi], x

T
1 )

τi+1
−−→

([zi+1], x
T
1 ), and([zi], x

T
1 ) ∈ Θ̂G/∼‖T by inductive assumption. Then

([zi+1], x
T
1 ) ∈ Θ̂G/∼‖T becauseτi+1 ∈ Σu.

If σ = ω, the second part of the path (31) is empty and the claim follows.
Otherwise note that by assumption,

([x2], x
T
2 ) ∈ Θ̂G/∼‖T . (32)

It is shown that([zi], x
T
2 ) ∈ Θ̂G/∼‖T for k < i < l. LetΥT

u = Σu∩(ΣT \Σ)
and

Y T = { yT ∈ QT | x
T
2

u
→T yT for someu ∈ (ΥT

u )∗ } .

AsxT
2 ∈ Y T , it is enough to show that([zi], y

T ) ∈ Θ̂G/∼‖T for all yT ∈ Y T .
It is shown by induction onn ≥ 0 that for allk < i < l and for allyT ∈ Y T

it holds that([zi], y
T ) ∈ X̃n = Θn

G/∼‖T (Q/∼×QT ).

Base case.n = 0. Clearly ([zi], y
T ) ∈ Q/∼ × QT = Θ0

G/∼‖T (Q/∼ ×

QT ) = X̃0.

Inductive step. Let k < i < l and yT ∈ Y T . It must be shown that
([zi], y

T ) ∈ X̃n+1 = ΘG/∼‖T (X̃n) = Θcont
G/∼‖T (X̃n) ∩Θnonb

G/∼‖T (X̃n).

To see that([zi], y
T ) ∈ Θcont

G/∼‖T (X̃n), let υ ∈ Σu and([zi], y
T )

υ
→G/∼‖T

([z], zT ). Consider three cases.

a) υ ∈ Σ ∩Υ. In this caseyT = zT and[zi]
υ
→ [z], so there existz′i ∼ zi

andz′ ∼ z such thatz′i
υ
→ z′. By definition 22 (ii), there existu1, u2 ∈

(Σu ∩Υ)∗ andz′′ ∼ z′ such thatzi
u1u2−−−→ z′′. As zi is on the path (29),

it follows from definition 22 (i)b) thatz′′ ∼ zj for somek < j ≤ l. If
j < l, then([z], zT ) = ([z′], zT ) = ([z′′], zT ) = ([zj ], z

T ) ∈ X̃n by
inductive assumption. Ifj = l, then note that([x2], x

T
2 )

u
→ ([x2], z

T )
for someu ∈ (ΥT

u )∗ aszT = yT ∈ Y T , and given (32) it follows
that([y2], z

T ) = ([x2], z
T ) ∈ Θ̂G/∼‖T . Then([z], zT ) = ([z′], zT ) =

([z′′], zT ) = ([zl], z
T ) = ([y2], z

T ) ∈ Θ̂G/∼‖T ⊆ X̃n.
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b) υ ∈ Σ ∩ Ω. In this case[zi]
υ
→ [z], so there existz′i ∼ zi andz′ ∼ z

such thatz′i
υ
→ z′. By definition 22 (ii), there existu1, u2 ∈ (Σu ∩Υ)∗

andz′′ ∼ z′ such thatzi
u1υu2−−−−→ z′′. As zi is on the path (29), it follows

from definition 22 (i)c) that there existv1, v2 ∈ (Σu∩Υ)∗ andz′′2 ∼ z′′

such thaty2
v1υv2−−−→ z′′2 . Sincey2 ∼ x2, by definition 22 (ii) there exist

w1, w2 ∈ (Σu ∩ Υ)∗ andz′′′2 ∼ z′′2 such thatx2
w1υw2−−−−→ z′′′2 . Then

sinceyT ∈ Y T , there existsu ∈ (ΥT
u )∗ such that([x2], x

T
2 )

u
→G/∼‖T

([x2], y
T )

w1υw2−−−−→G/∼‖T ([z′′′2 ], zT ). Givenz′′′2 ∼ z′′2 ∼ z′′ ∼ z′ ∼ z, it

follows from (32) that([z], zT ) = ([z′′′2 ], zT ) ∈ Θ̂G/∼‖T ⊆ X̃n.

c) υ /∈ Σ. In this case,υ ∈ ΣT \ Σ and [zi] = [z] andyT υ
→T zT .

Then clearlyzT ∈ Y T and([z], zT ) = ([zi], z
T ) ∈ X̃n by inductive

assumption.

Thus ([z], zT ) ∈ X̃n can be shown for allυ ∈ Σu, and it follows that
([zi], y

T ) ∈ Θcont
G/∼‖T (X̃n).

Next, it is shown that([zi], y
T ) ∈ Θnonb

G/∼‖T (X̃n). As τk+1, . . . , τl ∈ Υ and
ΣT ∩Υ = ∅, it holds by inductive assumption that,

([zk+1], y
T )

τk+1
−−−→|X̃n · · ·

τk→|X̃n ([zl], y
T ) . (33)

SinceyT ∈ Y T , there existsu ∈ (ΥT
u )∗ such thatxT

2
u
→T yT , and this

implies ([x2], x
T
2 ) = ([zl], x

T
2 )

u
→G/∼‖T ([zl], y

T ). Sinceu ∈ Σ∗
u, it fol-

lows by (32) that([zl], y
T ) ∈ Θ̂G/∼‖T . Then there existst ∈ Σ∗ such that

([zl], y
T )

tω
→|Θ̂G/∼‖T

. Thus

([zi], y
T )

τi+1
−−→|X̃n · · ·

τk→|X̃n ([zl], y
T )

tω
→|X̃n . (34)

This implies([zi], y
T ) ∈ Θnonb

G/∼‖T (X̃n).

It has been shown that all states([zi], x
T
d ) on the path (31) are in̂ΘG/∼‖T , ex-

cept for the last state whenσ = ω. This implies by assumption(zi, x
T
d ) ∈ X

for all states on the path (30), except for the last state whenσ = ω. Therefore,

(y1, x
T
1 )

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2 ). �

Lemma 21 Let ∼ be a weak synthesis observation equivalence onG = 〈Σ, Q,
→, Q◦〉 with respect toΥ ⊆ Σ. Then∼ is a state-wise synthesis equivalence onG
with respect toΥ.
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Proof. Let T = 〈ΣT , QT ,→T , Q◦
T 〉 with ΣT ∩Υ = ∅ andΣ∪ΣT = Ω ∪̇Υ. The

conditions of state-wise synthesis equivalence in definition 24 must be confirmed.

(i) It is shown by induction onn ≥ 0 that(x, xT ) ∈ Θ̂G‖T implies([x], xT ) ∈

X̃n = Θn
G/∼‖T (Q/∼×QT ).

Base case. ([x], xT ) ∈ Q/∼×QT = Θ0
G/∼‖T (Q/∼×QT ) = X̃0.

Inductive step. Assume the claim holds for somen ≥ 0, i.e., if (x, xT ) ∈
Θ̂G‖T then([x], xT ) ∈ X̃n. Now let(x, xT ) ∈ Θ̂G‖T . It must be shown that

([x], xT ) ∈ X̃n+1 = ΘG/∼‖T (X̃n) = Θcont
G/∼‖T (X̃n) ∩Θnonb

G/∼‖T (X̃n).

To see that([x], xT ) ∈ Θcont
G/∼‖T (X̃n), let υ ∈ Σu and([x], xT )

υ
→ ([y], yT ).

Consider two cases.

a) υ /∈ Σ. In this case,[x] = [y] and(x, xT )
υ
→ (x, yT ), and it follows

from (x, xT ) ∈ Θ̂G‖T andυ ∈ Σu that (x, yT ) ∈ Θ̂G‖T . Then by

inductive assumption([y], yT ) = ([x], yT ) ∈ X̃n.

b) υ ∈ Σ, In this case, there existx′ ∈ [x] and y′ ∈ [y] such that
x′ υ
→ y′. By definition 22 (ii), there existt1, t2 ∈ (Υ ∩ Σu)

∗ and

y′′ ∼ y′ such thatx
t1PΩ(υ)t2
−−−−−−→ y′′. As t1, t2 ∈ Υ∗, it follows that

(x, xT )
t1PΩ(υ)t2
−−−−−−→ (y′′, yT ). Since(x, xT ) ∈ Θ̂G‖T andt1PΩ(υ)t2 ∈

Σ∗
u, it follows that (y′′, yT ) ∈ Θ̂G‖T . Then by inductive assumption

([y], yT ) = ([y′], yT ) = ([y′′], yT ) ∈ X̃n.

Thus ([y], yT ) ∈ X̃n can be shown for allυ ∈ Σu, and it follows that
([x], xT ) ∈ Θcont

G/∼‖T (X̃n).

Next, it is shown that([x], xT ) ∈ Θnonb
G/∼‖T (X̃n). Since(x, xT ) ∈ Θ̂G‖T ,

there exists a path

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k )

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

Then(xl, x
T
l ) ∈ Θ̂G‖T for l = 0, . . . , k. By inductive assumption, it follows

that([xl], x
T
l ) ∈ X̃n for l = 0, . . . , k. Thus,

([x], xT ) = ([x0], x
T
0 )

σ1→|X̃n · · ·
σk→|X̃n ([xk], x

T
k )

ω
→|X̃n ([xk+1], x

T
k+1) ,

which implies([x], xT ) ∈ Θnonb
G/∼‖T (X̃n).

Thus, it has been shown that([x], xT ) ∈ Θcont
G/∼‖T (X̃n) ∩ Θnonb

G/∼‖T (X̃n) =

X̃n+1.
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(ii) Now it is shown by induction onn ≥ 0 that ([x], xT ) ∈ Θ̂G/∼‖T implies
(x, xT ) ∈ Xn = Θn

G‖T (Q×QT ).

Base case. (x, xT ) ∈ Q×QT = Θ0
G‖T (Q×QT ) = X0.

Inductive step. Assume the statement holds forn ≥ 0, i.e, if ([x], xT ) ∈
Θ̂G/∼‖T then(x, xT ) ∈ Xn. Let ([x], xT ) ∈ Θ̂G/∼‖T . It must be shown
that(x, xT ) ∈ Xn+1 = ΘG‖T (Xn) = Θcont

G‖T (Xn) ∩Θnonb
G‖T (Xn).

To see that(x, xT ) ∈ Θcont
G‖T (Xn), let υ ∈ Σu and(x, xT )

υ
→ (y, yT ). This

implies ([x], xT )
υ
→ ([y], yT ). Since([x], xT ) ∈ Θ̂G/∼‖T andυ ∈ Σu, it

follows that([y], yT ) ∈ Θ̂G/∼‖T . Then by inductive assumption(y, yT ) ∈
Xn, and thus(x, xT ) ∈ Θcont

G‖T (Xn).

Next it is shown that(x, xT ) ∈ Θnonb
G‖T (Xn). Since([x], xT ) ∈ Θ̂G/∼‖T ,

there exists a path

([x], xT ) = ([x0], x
T
0 )

σ1→|Θ̂G/∼‖T
· · ·

σk→|Θ̂G/∼‖T

([xk], x
T
k )

ω
→|Θ̂G/∼‖T

([xk+1], x
T
k+1) . (35)

Consider the first transition in (35). Since[x0]
PΣ∪{ω}(σ1)
−−−−−−−→ [x1], there exists

x′
0 ∈ [x0] and x′

1 ∈ [x1] such thatx′
0

PΣ∪{ω}(σ1)
−−−−−−−→ x′

1. The conditions
of lemma 20 apply to this transition: by inductive assumption,Xn can be
used as the setX in the lemma, and([x′

0], x
T
0 ) = ([x0], x

T
0 ) ∈ Θ̂G/∼‖T ,

([x′
1], x

T
1 ) = ([x1], x

T
1 ) ∈ Θ̂G/∼‖T or σ1 = ω, (x′

0, x
T
0 )

σ1→ (x′
1, x

T
1 ), and

x′
0 ∼ x0. So there existt1, u1 ∈ Υ∗ andx′′

1 ∈ Q such that

(x0, x
T
0 )

t1PΩ∪{ω}(σ1)u1
−−−−−−−−−−→|Xn (x′′

1, x
T
1 ) (36)

andx′
1 ∼ x′′

1. Sincex′′
1 ∈ [x′

1] = [x1], the same logic also applies to the
second transition in (35). Therefore, there existt2, u2 ∈ Υ∗ andx′′

2 ∈ Q such

that(x′′
1, x

T
1 )

t2PΩ∪{ω}(σ2)u2
−−−−−−−−−−→|Xn (x′′

2, x
T
2 ) andx2 ∼ x′

2 ∼ x′′
2. By induction,

it follows that there existt1, u1, . . . , tk, uk, tk+1 ∈ Υ∗ andx′′
1, . . . , x

′′
k ∈ Q

such that

(x, xT ) = (x0, x
T
0 )

t1PΩ∪{ω}(σ1)u1
−−−−−−−−−−→|Xn (x′′

1, x
T
1 )

t2PΩ∪{ω}(σ2)u2
−−−−−−−−−−→|Xn · · ·

tkPΩ∪{ω}(σk)uk
−−−−−−−−−−→|Xn (x′′

k, x
T
k )

tk+1ω
−−−→|Xn . (37)

Therefore,(x, xT ) ∈ Θnonb
G‖T (Xn).
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Thus, it has been shown that(x, xT ) ∈ Θcont
G‖T (Xn) ∩Θnonb

G‖T (Xn) = Xn+1.
�

Theorem 8 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
∼ be a bisimulation onG1 and G̃ = {G1/∼, G2, . . . , Gn}. Then it holds that
(G;S; ρ) ≃synth (G̃;S; ρ).

Proof. Clearly, if ∼ is a bisimulation onG1, then∼ also is a weak synthesis
observation equivalence onG1 with respect toΩ = Σ. By lemma 21, it follows
that∼ is a state-wise synthesis equivalence onG1 with respect toΣ. Then the
claim follows from proposition 19. �

Theorem 9 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn} andGi =
〈Σi, Qi,→i, Q

◦
i 〉. Let Υ ⊆ Σ1 such that(Σ2 ∪ · · · ∪ Σn) ∩ Υ = ∅. Let ∼ be

a synthesis observation equivalence or a weak synthesis observation equivalence
relation onρ(G1) with respect toΥ such thatG1/∼ is deterministic, and let̃G =
{G1/∼, G2, . . . , Gn}. Then(G;S; ρ) ≃synth (G̃;S; ρ).

Proof. If ∼ is a weak synthesis observation equivalence onG1 with respect toΥ,
then it follows from lemma 21 that∼ is a state-wise synthesis equivalence onG1

with respect toΥ, so the claim follows from proposition 19.
If ∼ is a synthesis observation equivalence onG1 with respect toΥ, then it

is shown in [23] that∼ is a weak synthesis observation equivalence onG1 with
respect toΥ, and the claim follows as above. �

C Proof for Halfway Synthesis

This appendix contains a proof for theorem 10 in section 5.3. The proof isbased
on two lemmas, which show how halfway synthesis preserves synthesis results in
synchronous composition.

Lemma 24 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q◦
T 〉, and letΥ ⊆

Σ ∩ Σu such thatΣT ∩ Υ = ∅. Then for allx ∈ Q andxT ∈ QT such that
(x, xT ) ∈ Θ̂G‖T , it holds thatx ∈ Θ̂G,Υ.

Proof. It is shown by induction onn ≥ 0 that(x, xT ) ∈ Θ̂G‖T impliesx ∈ Xn =
Θn

G,Υ(Q).
Base case. Clearlyx ∈ Q = Θ0

G,Υ(Q) = X0.
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Inductive step. Assume that(x, xT ) ∈ Θ̂G‖T impliesx ∈ Xn for somen ≥ 0,

and let(x, xT ) ∈ Θ̂G‖T . It is to be shown thatx ∈ Xn+1 = ΘG,Υ(Xn) =

Θcont
G,Υ(Xn) ∩Θnonb

G,Υ (Xn).

First, to see thatx ∈ Θcont
G,Υ(Xn), let υ ∈ Υ andx

υ
→ y. As ΣT ∩ Υ = ∅,

it follows that (x, xT )
υ
→G‖T (y, xT ). As (x, xT ) ∈ Θ̂G‖T andυ ∈ Υ ⊆ Σu,

it follows by controllability that(y, xT ) ∈ Θ̂G‖T , and theny ∈ Xn by inductive
assumption. Asυ ∈ Υ was chosen arbitrarily, it follows thatx ∈ Θcont

G,Υ(Xn).

Next it is shown thatx ∈ Θnonb
G,Υ (Xn). As (x, xT ) ∈ Θ̂G‖T , there exists a trace

t = σ1 · · ·σn such that

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂G‖T
· · ·

σn→|Θ̂G‖T
(xn, xT

n )
ω
→|Θ̂G‖T

. (38)

Then by inductive assumptionx0, . . . , xn ∈ Xn, which impliesx
tω
→|Xn and there-

forex ∈ Θnonb
G,Υ (Xn). �

Lemma 25 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q◦
T 〉, and letΥ ⊆

Σ ∩ Σu such thatΣT ∩ Υ = ∅. ThensupCN(G ‖ T ) = supCN(H ‖ T ) where
H = hsupCNΥ(G).

Proof. By definition 23,H = 〈Σ, QH ,→hsup, Q
◦
H〉 whereQH = Q ∪ {⊥}. It is

enough to shoŵΘG‖T = Θ̂H‖T .

Let (x, xT ) ∈ Θ̂G‖T . It is shown by induction onn ≥ 0 thatΘ̂G‖T ⊆ Xn
H‖T =

Θn
H‖T (QH ×QT ).

Base case. By definition 23,Θ̂G‖T ⊆ QH×QT = Θ0
H‖T (QH×QT ) = X0

H‖T .

Inductive step. AssumeΘ̂G‖T ⊆ Xn
H‖T for somen ≥ 0, and let(x, xT ) ∈

Θ̂G‖T . It is to be shown that(x, xT ) ∈ Xn+1
H‖T = ΘH‖T (Xn

H‖T ) = Θcont
H‖T (Xn

H‖T )∩

Θnonb
H‖T (Xn

H‖T ).

First, to see that(x, xT ) ∈ Θcont
H‖T (Xn

H‖T ), let υ ∈ Σu and (x, xT )
υ
→H‖T

(y, yT ). It is next shown that(x, xT )
υ
→G‖T (y, yT ). Assume this is not the

case. Thenυ ∈ Σ, and by construction ofH = hsupCNΥ(G) and definition 23
also y = ⊥, which again by definition 23 implies thatx

υ
→ does not hold in

supCNΥ(G), andx
υ
→ y′ in G for somey′ ∈ Q. Then(x, xT )

υ
→G‖T (y′, yT ),

and given(x, xT ) ∈ Θ̂G‖T it follows that(y′, yT ) ∈ Θ̂G‖T . Thenx, y′ ∈ Θ̂G,Υ by

lemma 24, and thusx
υ
→ y′ in supCNΥ(G). This contradicts the above statement

that x
υ
→ does not hold insupCNΥ(G). Therefore,(x, xT )

υ
→G‖T (y, yT ), and

since(x, xT ) ∈ Θ̂G‖T , it follows by controllability that(y, yT ) ∈ Θ̂G‖T . By
inductive assumption(y, yT ) ∈ Xn

H‖T , which implies(x, xT ) ∈ Θcont
H‖T (Xn

H‖T ).
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Next it is shown that(x, xT ) ∈ Θnonb
H‖T (Xn

H‖T ). Since(x, xT ) ∈ Θ̂G‖T , there
exists a path

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k )

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

Then (xl, x
T
l ) ∈ Θ̂G‖T for l = 0, . . . , k. By inductive assumption(xl, x

T
l ) ∈

Xn
H‖T for l = 0, . . . , k, and thus

(x, xT ) = (x0, x
T
0 )

σ1→|Xn
H‖T
· · ·

σk→|Xn
H‖T

(xk, x
T
k )

ω
→|Xn

H‖T
(xk+1, x

T
k+1) ,

which implies(x, xT ) ∈ Θnonb
H‖T (Xn

H‖T ).

Conversely, to show that̂ΘH‖T ⊆ Θ̂G‖T , it is shown by induction onn ≥ 0

thatΘ̂H‖T ⊆ Xn
G‖T = Θn

G‖T (Q×QT ).

Base case. Let (x, xT ) ∈ Θ̂H‖T . Clearlyx 6= ⊥, as(⊥, xT ) /∈ Θnonb
H‖T (QH ×

QT ). Therefore,(x, xT ) ∈ Q×QT = Θ0
G‖T (Q×QT ) = X0

G‖T .

Inductive step. AssumeΘ̂H‖T ⊆ Xn
G‖T for somen ≥ 0, and let(x, xT ) ∈

Θ̂H‖T . It must be shown that(x, xT ) ∈ Xn+1
G‖T = ΘG‖T (Xn

G‖T ) = Θcont
G‖T (Xn

G‖T )∩

Θnonb
G‖T (Xn

G‖T ).

First, to see that(x, xT ) ∈ Θcont
G‖T (Xn

G‖T ), let υ ∈ Σu such that(x, xT )
υ
→G‖T

(y, yT ). Then there are three possibilities forυ. If υ /∈ Σ then (x, xT )
υ
→H‖T

(x, yT ). If υ ∈ Ω then sinceυ ∈ Σu, eitherx
υ
→H y or x

υ
→H ⊥ by definition 23.

If υ /∈ Ω thenxT = yT and byΥ-controllability of H = hsupCNΥ(G) it can be
concluded that(x, xT )

υ
→H‖T (y, xT ) = (y, yT ). In all cases, there existsy′ ∈ QH

such that(x, xT )
υ
→H‖T (y′, yT ). Sinceυ ∈ Σu, it follows by controllability of

supCN(H ‖ T ) that(y′, yT ) ∈ Θ̂H‖T . By inductive assumption(y′, yT ) ∈ Xn
G‖T ,

which implies(x, xT ) ∈ Θcont
G‖T (Xn

G‖T ).

Next, it is shown that(x, xT ) ∈ Θnonb
G‖T (Xn

G‖T ). Since(x, xT ) ∈ Θ̂H‖T , there
exist a path

(x, xT ) = (x0, x
T
0 )

σ1→|Θ̂H‖T
· · ·

σk→|Θ̂H‖T
(xk, x

T
k )

ω
→|Θ̂H‖T

(xk+1, x
T
k+1) .

Then(xl, x
T
l ) ∈ Θ̂H‖T for l = 0, . . . , k. Thus, by inductive assumption(xl, x

T
l ) ∈

Xn
G‖T for l = 0, . . . , k. Therefore,

(x, xT ) = (x0, x
T
0 )

σ1→|Xn
G‖T
· · ·

σk→|Xn
G‖T

(xk, x
T
k )

ω
→|Xn

G‖T
(xk+1, x

T
k+1) ,

which implies(x, xT ) ∈ Θnonb
G‖T (Xn

G‖T ). �
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Theorem 10 Let (G;S; ρ) be a synthesis triple withG = {G1, . . . , Gn}, and let
Υ ⊆ Σ1 ∩ Σu such that(Σ2 ∪ · · · ∪ Σn) ∩Υ = ∅. Then

(G;S; ρ) ≃synth ({hsupCNΥ(G1), G2, . . . , Gn}; {hsupCNΥ(G1)} ∪ S; ρ) .

Proof. Let H1 = hsupCNΥ(G1). By definition 15 and lemma 25, it holds that

L(supCN(G;S; ρ)) = L(ρ(supCN(G1 ‖G2 ‖ · · · ‖Gn) ‖ S))

= L(ρ(supCN(H1 ‖G2 ‖ · · · ‖Gn) ‖ S))

= L(ρ(supCN(H1 ‖G2 ‖ · · · ‖Gn) ‖H1 ‖ S))

= L(supCN({H1, G2, . . . , Gn}; {H1} ∪ S; ρ)) .

UsingH1 = hsupCNΥ(G1), the claim follows from definition 16. �
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