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Abstract 

Swash oscillations on two natural beaches were measured to show that the shape 

and magnitude of energy spectra can be largely dependent on processes occurring 

inside the surfzone. The observations took place on a steep, intermediate beach on 

the east coast (Tairua Beach), and a low-sloping, dissipative beach located on the 

west coast of New Zealand (Ngarunui Beach, Raglan), and aimed at improving 

the understanding of the effects of wave breaking, beach slope, and nonlinear 

wave interactions on the swash oscillations. These problems were addressed by 

analysing datasets obtained from field experiments undertaken at these two sites. 

A field experiment at Tairua Beach showed that swash oscillations were critically 

dependent on the stage of the tide which controlled the degree of wave energy 

dissipation over the sandbar crest. Under mild, near-constant offshore wave 

conditions, the presence of a sandbar and the tidally-controlled water depth over 

its crest determined whether most of the incoming waves broke before reaching 

the shoreline. This forced a change in the pattern of wave energy dissipation 

across the surfzone between low and high tide, which was reflected by changes to 

swash elevation (runup) on time-scales of a few hours. Significant runup height 

Rs, defined as 4 times the standard deviation of the waterline time series, varied 

by a factor of 2 between low tide, when most of the waves were breaking over the 

sandbar and high tide, when the waves were barely breaking. The increase in 

wave energy dissipation during low tide was associated with changes in swash 

maxima distribution, decrease in mean swash period and increasing energy at 

infragravity frequencies (0.004–0.05 Hz). Bispectral analysis suggested this 

infragravity modulation might be connected with the presence of secondary waves 

at the shoreline. 

Swash oscillations at Tairua were not homogeneous along the beach. Alongshore 

variability in Rs of up to 78% was observed and was mainly driven by changes in 

the sea-swell (0.05–0.4 Hz) band of the swash. This variability was predominantly 
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controlled by alongshore changes in beach face slope, although alongshore 

patterning in wave breaking over the sandbar caused alongshore changes in wave 

dissipation and also resulted in alongshore swash variation in the sea-swell 

bandwidth. At infragravity frequencies, alongshore swash variability was not well 

associated either with changes in beach slope or wave breaking and was possibly 

linked to the presence of low-mode edge waves, observed from frequency-

wavenumber spectra of the swash time series. 

A final experiment was conducted to understand the surfzone control on incident 

and infragravity runup on a gently-sloping beach. The observations showed that 

runup saturation at infragravity frequencies can occur under mild offshore energy 

conditions if the beach slope is sufficiently gentle. Infragravity saturation was 

observed for higher-frequency (> 0.025–0.035 Hz) infragravity waves, where 

typically less than 5% of the (linear) energy flux was reflected from the beach and 

where, similar to the sea-swell band, the swash energy was independent of 

offshore wave energy. The infragravity frequency range of saturation was 

determined by the tide, with saturation extending to lower frequencies at low tide 

when the local beach face slope over the concave-shaped profile was gentler. 

Runup was strongly dominated by infragravity frequencies, which accounted on 

average for 96% of the runup variance, and its energy levels were entirely 

consistent with strong infragravity wave dissipation observed in the surfzone, 

particularly when including the nonlinear contributions to the wave energy fluxes. 

Our observations show evidence of nonlinear interactions involving infragravity 

and high-frequency, harmonic waves, and suggest that these harmonics could play 

a role in the wave energy balance near the shoreline on low-sloping, dissipative 

beaches. 
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Chapter 1 

1 General introduction 

1.1 Thesis topic 

Swash motions, loosely defined as runup, are short-term (seconds to a few 

minutes) oscillations of the interface between the dry beach and the ocean. These 

oscillations are driven by the incoming wave energy that reaches the shoreline and 

can induce large rates of sediment transport between the subaerial and subaqueous 

parts of the beach (Masselink and Hughes, 1998), changes in beach morphology 

(Holland and Puleo, 2001), dune erosion (Palmsten and Holman, 2011) and 

coastal flooding (Ruggiero et al., 2001). Understanding how runup changes in 

both time and space and what causes these changes is a key to defining effective 

coastal structures (Kobayashi, 1999) and practicable shoreline setback criteria 

(Ruggiero et al., 2001) in order to mitigate risks associated with inundation and 

erosion on the coast. 

The magnitude and spectral features of runup have traditionally been described in 

terms of offshore wave conditions (e.g., Guza and Thornton, 1982; Ruessink et 

al., 1998; Sénéchal et al., 2011), local beach face slope (e.g., Ruggiero et al., 

2004), or combinations of these two parameters, expressed in the form of simple 

parameterizations (e.g., Mase, 1988; 1989; Holman and Sallenger, 1985; Holman, 

1986; Raubenheimer and Guza, 1996; Stockdon et al., 2006). Though these 

approaches provide convenient means of assessing some characteristics of the 

swash oscillations on different beaches, inter-site comparisons (e.g. 

Raubenheimer and Guza, 1996; Stockdon et al., 2006) have suggested that such 

simple formulas, normally developed for specific locations, might not be 
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appropriated for different sites, since considerable variability in the relationships 

were typically observed. Such variability potentially arises because of other 

processes not accounted for by these parameterizations, affecting the swash in 

different ways on the different sites. For instance, it could be mentioned local 

effects including swash infiltration and exfiltration across the beach face (Turner 

and Masselink, 1998), and non-local effects, such as those of continental shelf 

width on the wave climate (Herbers et al., 1995). However, little attention has 

been given to how processes taking place in between intermediate–deep water 

regions and the shoreline, such as bar-induced wave breaking dissipation and 

nonlinear wave energy transfers between frequencies, can affect swash 

oscillations. 

The distribution of energy with frequency can change dramatically within the 

surfzone, either because the dissipation is frequency-dependant, or because energy 

is transferred between frequencies, causing energy at one frequency to grow at the 

expense of another. Just seaward of the breakpoint, group modulations in the 

incident waves can transfer energy to lower (infragravity) frequencies (e.g., 

Symonds et al., 1982). At the same time, the saw-tooth shape that occurs when 

waves shoal in shallow water can induce transfers of energy to higher (harmonic) 

frequencies (e.g., Elgar et al., 1985). As breaking occurs, the main incident 

energy peak becomes smaller relative to in infragravity and harmonic frequency 

regions (e.g. Sénéchal et al., 2002), until eventually they two are acted on by 

dissipation processes (either bottom friction or breaking). 

The dissipation of incident waves inside the surfzone due to breaking is a strong 

function of depth and seabed slope (Peregrine, 1983). Wave breaking takes place 

when the wave crest overturns and collapses on or in front of the wave face, 

generating spray and white water and promoting turbulent dissipation. Wave 

breaking is the dominant dissipative mechanism, controls wave transformation in 

shallow water (Thornton and Guza, 1983) and can be modulated by the tide (e.g., 
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Howd et al., 1991) as most beaches typically have exponential profiles. The 

presence of one or more sandbars in the surfzone also determines if and how the 

wave breaks (e.g. Lippmann and Holman, 1989), since they cause abrupt changes 

to seabed slope and water depth. As a result, sandbars can strongly control 

patterns in surfzone wave dissipation, and potentially the total wave energy 

reaching the swash zone. However, the emphasis on offshore characteristics and 

beach face slope has meant the effects of the tide and nearshore sandbar 

morphology in controlling the characteristics of runup have not been fully 

explored. 

Alongshore variations in swash have largely been attributed to alongshore beach 

face slope variations (Holman and Sallenger, 1985; Ruggiero et al., 2004; 

Stockdon et al., 2006) or, at a smaller spatial scale, to the influence of cusps 

(Ciriano et al., 2005; Stockdon et al., 2006; Holland and Holman, 1996; Bryan 

and Coco, 2010). Potential tidal effects associated with alongshore changes to the 

sandbar morphology have been neglected. Tidal changes can cause large 

differences to alongshore breaking patterns, particularly in cases when the 

alongshore bar is irregular (e.g. van Enckevort and Ruessink, 2003; Ruessink et 

al., 2007). These breaking patterns not only cause irregular dissipation of incident 

energy which may cause alongshore patterning of incident swash, but also 

patterning in the incident group structure. As a consequence, alongshore 

variations in the swash at infragravity ranges might be expected, quite separate 

from any effect beach cusps might have. Interest in alongshore variability in 

swash characteristics is both scientific, since it might be associated with 

infragravity wave signatures at the shoreline (e.g., Ciriano et al., 2005) and 

practical, since alongshore variability in runup could be used in coastal zone 

management of localised hazards (e.g., hot-spots or localized berm breaching and 

subsequent inundation). 



4 

Incident waves are normally steeper (have a higher ratio between wave height and 

wavelength) than infragravity waves and are preferentially dissipated by breaking 

throughout the surfzone. As a consequence, swash oscillations can be dominated 

by infragravity frequencies (e.g., Guza and Thornton, 1982), despite these 

frequencies typically contribute to a small percentage of the offshore wave 

spectrum. However, recent observations have shown that dissipation might also 

limit infragravity wave energy within the surfzone (Henderson and Bowen, 2002; 

Sheremet et al., 2002; Henderson et al., 2006; Thomson et al., 2006; van 

Dongeren et al., 2007). The mechanisms proposed to explain infragravity losses 

are still not well understood, and infragravity wave energy exchanges in very 

shallow water have not been linked to low-frequency runup patterns, despite 

infragravity runup contributing for much of sediment transport and coastal 

inundation on low-sloping, dissipative beaches (Butt and Russell, 2000). 

1.2 Thesis objectives 

This thesis explores the causes for temporal and spatial swash variations that are 

not driven by offshore wave changes but are associated with wave transformations 

in the surfzone. Within the thesis, I analyse field observations of ocean waves, 

video observations of swash motions and wave breaking patterns, and beach 

morphology surveys, collected during two field experiments undertaken on a 

steep, intermediate beach on the east coast (Tairua Beach) and a low-sloping, 

dissipative beach located on the west coast of New Zealand’s North Island 

(Ngarunui Beach, Raglan) to investigate the following overall research questions: 

1. How does the presence of a sandbar affect the magnitude and spectral 

features of the swash motions on an intermediate, barred beach? 

 

2. Can alongshore variability in the sandbar morphology cause alongshore 

runup variability? 
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3.  How do nonlinear wave interactions in shallow water, rather than 

morphological variations in the sandbar, control the magnitude and 

frequency distribution of runup on a dissipative beach? 

1.3 Thesis structure 

These objectives are addressed using datasets from the two field experiments and 

a combination of image processing and time series data analysis techniques, 

including a technique developed in this thesis to evaluate the probability of wave 

breaking dissipation from video images of the surfzone. The three general 

research questions are broken into three scientific articles, presented respectively 

in Chapter 2, 3 and 4. These chapters are composed by the three complete articles, 

each with their own abstract, introduction, methods, results, discussion and 

conclusions (because the articles were intended to be published in American 

journals, they were written in American English). Although the articles can stand 

alone, they systematically address aspects of the same theme of characterising 

surfzone processes that control runup variability. In Chapter 5, the general 

conclusions of the thesis are presented, and topics for future research are briefly 

discussed. Finally, the Appendix presents a conference paper published in the 

Proceedings of the Coasts and Ports 2011, where wavelet analysis is used to 

investigate non-stationary patterns in swash motions at Tairua. This appendix 

addresses the central theme of the thesis, by exploring the degree to which wave 

groupiness, which controls infragravity development, may also contribute to 

controlling infragravity runup oscillations. 

The first research article of this thesis (Chapter 2) is entitled The effects of tides on 

swash statistics on an intermediate beach (Guedes et al., 2011), and has been 

published in the Journal of Geophysical Research in April 2011. 
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The second article, presented in Chapter 3, is entitled Observations of alongshore 

variability of swash motions on an intermediate beach (Guedes et al., 2012) and 

has been published in the Continental Shelf Research in October 2012. 

The third and last article (Chapter 4), entitled Observations of wave energy fluxes 

and swash motions on a low-sloping, dissipative beach, has been submitted to the 

Journal of Geophysical Research in December 2012. This research has been 

carried out using the dataset from a field experiment that was entirely designed 

and executed as part of my PhD. During the experiment, field measurements of 

intertidal beach morphology and ocean waves were obtained. Surface ocean 

waves were measured offshore and in the surfzone, over different cross-shore 

positions from the shoreline that were controlled by changes in the tide. A video 

imagery technique was also employed to measure swash oscillations and estimate 

cross-shore wave breaking dissipation patterns. Description of the field 

experiment is provided in Section 4.3.1. 
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Chapter 2 

2 The effects of tides on swash statistics on an 

intermediate beach 

 

 

 

 

 

 

R. M. C. Guedes, K. R. Bryan, G. Coco, R. A. Holman (2011), The effects of 

tides on swash statistics on an intermediate beach, Journal of Geophysical 

Research, 116, C04008, doi:10.1029/2010JC006660. 
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Contribution of authors 

Chapter 2 presents the article entitled “The effects of tides on swash statistics on 

an intermediate beach”, published in April 2011 in the Journal of Geophysical 

Research. This study provides a significant contribution to the scientific field by 

showing that runup can be strongly controlled by changes to the degree of wave 

breaking dissipation, caused by the presence of a sandbar and variations in the 

water depth over its crest. 

The dataset analysed in this article was collected by my co-authors prior to the 

start of my PhD. I processed and analysed all the video, wave and lidar data, 

including extracting runup signals from the video. I wrote the numerical code to 

perform the processing and statistical analyses, prepared all the figures and wrote 

the initial and subsequent drafts of the article. My co-authors edited drafts, 

provided advice on direction, and editorial help with the response to the 

reviewer’s comments. 
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Abstract 

Swash hydrodynamics were investigated on an intermediate beach using runup 

data obtained from video images. Under mild, near-constant, offshore wave 

conditions, the presence of a sandbar and the tidally-controlled water depth over 

its crest determined whether most of the incoming waves broke before reaching 

the shoreline. This forced a change in the pattern of wave energy dissipation 

across the surf zone between low and high tide, which was reflected by changes to 

swash on time-scales of a few hours. Significant runup height (Rs, defined as 4 

times the standard deviation of the waterline time series), was found to vary by a 

factor of 2 between low tide, when most of the waves were breaking over the 

sandbar (Rs/Hs~1.5, where Hs is the offshore significant wave height) and high 

tide, when the waves were barely breaking (Rs/Hs~2.7). The increase in wave 

energy dissipation during low tide was also associated with changes in swash 

maxima distribution, a decrease in mean swash period and increasing energy at 

infragravity frequencies. Bi-spectral analysis suggested that this infragravity 

modulation might have been connected with the presence of secondary waves. 

Keywords: swash, tide, nearshore, wave breaking, sandbar, video imagery. 

2.1 Introduction 

The swash zone is the interface between land and ocean where the waves 

intermittently cover the beach. The time-varying location of the shoreline water 

level within this region, usually termed runup (Guza and Thornton, 1982; Holman 

and Sallenger, 1985; Ruggiero et al., 2004) defines the cross-shore extent and the 

elevation that can be flooded for a specific tidal level. Runup is of great 

importance for coastal planners, who want to define appropriate and practicable 

shoreline setback criteria, for coastal engineers, who are interested in designing 
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coastal structures, and for researchers studying the physical processes contributing 

to beach erosion/accretion (Butt and Russell, 2000; Elfrink and Baldock, 2002). 

Runup is commonly decomposed into a quasi-steady super elevation above the 

still water level, (setup) and the fluctuations about such super elevation (swash) 

(Guza and Thornton, 1982; Holman and Sallenger, 1985; Stockdon et al., 2006). 

The swash is composed of two distinct phases, an upslope, landward-directed, 

flow (usually called uprush) and a downslope, seaward-directed flow (normally 

known as backwash). Although there is a continuum of energy in swash spectra, 

they are commonly divided into incident (0.33 to 0.05 Hz) and infragravity 

frequencies (0.05 to 0.003 Hz). The incident band is normally more energetic in 

bore-dominated, steeper intermediate and reflective beaches (Holland and 

Holman, 1993; Raubenheimer and Guza, 1996), while low-sloped dissipative 

beaches have been observed to have most of the swash variance within 

infragravity frequencies (Ruessink et al., 1998; Ruggiero et al., 2004). 

Swash characteristics depend on whether the incident waves reflect at the 

shoreline, or are dissipated offshore by breaking. Traditionally, infragravity waves 

are considered more likely to reflect (Miche, 1951) than waves whose spectra are 

dominated by the incident band. Nevertheless, recent measurements and 

modelling results have shown that the surf (Henderson and Bowen, 2002; 

Sheremet et al., 2002; Thomson et al., 2006; van Dongeren et al., 2007) and 

swash (Battjes et al., 2004) can be zones of infragravity dissipation. Miche (1951) 

hypothesized that under dissipative conditions runup will be saturated, and thus a 

maximum runup amplitude will be reached when the incident waves are just high 

enough to break. Further increase in offshore wave height increases the wave 

steepness and makes the waves break, dissipating their energy rather than 

reflecting it. Many field investigations on broadbanded swash have been 

interpreted based on Miche’s saturation hypothesis. Huntley et al. (1977) 

calculated the spectra from vertical runup time series obtained in three different 
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natural beaches and found the incident band to be saturated. This implies that the 

energy at the incident bands is proportional to β
4
 and f 

-4
 (where β is beach slope 

and f is wave frequency) and independent of wave height. Some works (e.g. Mase, 

1988; Ruggiero et al., 2004) have found a similar spectral shape for the saturated 

band of runup, whereas an f 
-3

 dependence has been observed by others (e.g. Guza 

and Thornton, 1982; Ruessink et al., 1998; Ciriano et al., 2005). The implications 

of different rates of incident energy decay are still not clear and it has been 

suggested that they might simply be related to different measurement methods 

(Raubenheimer and Guza, 1996). Guza and Thornton (1982) measured swash 

oscillations on a mildly sloped beach and calculated the variance levels for 

incident and infragravity spectral ranges. Although incident swash energy was 

found to be independent of offshore wave height H (i.e. the wave field was 

saturated), positive linear correlation was observed between H and low frequency 

energy at the shoreline, showing that the low-frequency component of the swash 

increases with increasing wave height in non-monochromatic conditions, a 

behaviour subsequently confirmed in other field studies (e.g. Holman and 

Sallenger, 1985; Raubenheimer and Guza, 1996; Ruessink et al., 1998; Ruggiero 

et al., 2004).  

The amplitude of incident swash oscillations has been shown to scale well with 

the non-dimensional Iribarren number: 

  2/1

00

0
/ LH

β
=ξ                                              (2.1) 

where H0 and L0 are deep water wave height and wavelength. Miche (1951) 

suggested that when ξ0 is high, waves reflect at the shoreline and the swash has 

larger amplitudes, while for low ξ0 the waves break and saturation conditions are 

expected. Field data have confirmed a linear relationship between the Iribarren 

number and incident runup height, especially for steeper intermediate and 

reflective beaches (e.g. Holman and Sallenger, 1985; Holman, 1986; 

Raubenheimer and Guza, 1996; Stockdon et al., 2006). However, substantial 
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variability is often observed around such relationship, possibly owing to other 

parameters affecting runup which are not accounted for by ξ0, and also because 

the definition of a single value for beach slope might not be appropriate on some 

natural beach, where complex morphological features such as sandbars are often 

present (Holman and Sallenger, 1985).  

A potential source of variability in runup characteristics could be related to the 

presence of tides whose variations modulate a number of wave-related processes 

in the nearshore. For example, the breaking of waves inside the surf zone is a 

strong function of depth (Peregrine, 1983), and hence is likely to be modulated by 

the tide.  Moreover, the presence of one or more sandbars in the surf zone will 

determine the characteristics of this breaking (e.g. Lippmann and Holman, 1989; 

van Enckevort and Ruessink, 2001; Aarninkhof et al., 2005; Haller and Catallán, 

2009) and is therefore likely to affect swash hydrodynamics. However, the 

emphasis on offshore characteristics and beach slope introduced with Miche 

(1951) has meant the effects of sandbars in controlling the characteristics of runup 

have not been fully explored. The tidal influence in breaking will also control 

radiation stress gradients which are a function of the wave height gradients, and so 

long-shore current forcing will also be modulated at the tidal frequency inside the 

surf zone (Thornton and Kim, 1993). Similarly, rip currents have been observed to 

be stronger at low tide (MacMahan et al., 2006). Offshore of the breaking area, 

Okihiro and Guza (1995) observed infragravity energy within frequency bands of 

0.01 and 0.04 Hz to decrease at low tide, which was hypothesized to be a result of 

changes in infragravity energy generation and propagation on the concave beaches 

onshore of the observations. In the surf zone, Thomson et al. (2006) observed 

similar modulations and attributed them to nonlinear energy transfers from low-

frequency to higher-frequency motions, which were enhanced over the relatively 

flatter inner surf zone bottom profile at low tide. 
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The aim of this work is to investigate the degree to which changes in swash 

hydrodynamics can also be related to tidal variations and the presence of a 

submerged sandbar on an intermediate beach. We use a dataset of swash 

oscillations obtained on a natural beach during a period of mild nearly-constant 

offshore wave conditions when the amount of wave breaking was clearly 

modulated by the tide and we show that some characteristics of swash such as 

amplitude, incident/infragravity variance levels and swash maxima distribution 

were also tidally-modulated. 

2.2 Methods 

2.2.1 Field site 

The field experiment was undertaken between 15 and 17 of July in 2008 at Tairua 

Beach, a 1.2 km-long pocket beach located on the Pacific coast of New Zealand 

(Figure  2.1). This medium–coarse grained beach has a fairly steep beach face 

slope of about 0.1 and is exposed to medium wave energy with average offshore 

significant wave height and mean spectral period of 0.9 m and 5.8 s (Gorman et 

al., 2003). The tides are semi-diurnal, with tidal ranges between 1.2 (neap) and 2 

m (spring tides) and the system is normally classified as intermediate, with a 

rhythmic sandbar and strong rip currents often present (Bogle et al., 2000). During 

the 3-day period of the experiment, the sandbar remained remarkably alongshore 

uniform, at a cross-shore distance of about 80 m from the shoreline (see the white 

alongshore bands in Figure  2.2 which are associated with the locations of 

preferred wave breaking over the sandbar and shoreline) and with water depths 

over the crest, estimated using the method developed by Plant et al. (2008), 

changing from about 1.1 to 2.2 m from low to high tide. 
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2.2.2 Field measurements 

The dataset presented here is composed of measurements of offshore 

hydrodynamic conditions, beach face topography and video images. The 

hydrodynamic variables were measured using an ADCP deployed at a water depth 

of about 12 m. Time series of subsurface pressure were recorded every hour for 20 

min, at 2 Hz and converted to free surface elevation using linear theory. Offshore 

significant wave height Hs was calculated as 4σ where σ is the standard deviation 

of the free surface time series. Peak period Tp was determined as the inverse of 

the peak frequency from the spectrum. Hourly mean water level η was calculated 

as the mean of each time series and adjusted to the local vertical datum. Peak 

direction was determined from the directional velocity spectrum obtained by the 4 

independent acoustic sensors of the ADCP. 

 

Figure ‎2.1. Field site location. 
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Figure ‎2.2. (a) Oblique image obtained at Tairua Beach on 16 July 2008 at 11.00 by 

averaging 600 individual frames recorded at 2 Hz. (b) The same image rectified to a 

planview using known geometric transformations. Black lines represent cross-shore 

transect where time stacks were created and location where the beach profile was 

surveyed (cross-shore range of the swash over the 3 days of field experiment is 

highlighted by the dashed lines). 

A cross-shore beach profile was surveyed using a total station on July 17
th

, 

covering a cross-shore distance of 55 m between the backshore and the swash 

zone (Figure  2.3). The profile was extended offshore of the most seaward 

surveyed location by extending the linear fit through the lowermost measured 

points to create a profile that extended just beyond the likely lowermost location 
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Figure ‎2.3. Beach profile surveyed at Tairua Beach on 17 July 2008 (solid line) with 

extension calculated as the line fit through the lowermost measured points (dashed line). 

Mean swash positions for the 25 data runs are delimited by the gray patch. Location of 

mean + (-) 2σ of swash positions for the 25 data runs are highlighted by the black (gray) 

arrows. Dotted line at elevation of 0.5 m indicates still water level (i.e. setup not 

included) above which the ‘step’ between cross-shore positions of -20 and -10 m starts to 

become important for the swash (see text). Elevations are relative to New Zealand 

Geodesic Datum (NZGD). Cross-shore distances have origin at mean swash location for 

the 25 data runs and increase offshore. 

of low-tide swash elevation. The along-shore position of the profile is shown by 

the location of the black lines in Figure  2.2. Foreshore slope β was calculated as 

the best linear fit of the measured profile between the locations of mean  2 

standard deviations of the shoreline positions for each data run (95% of the data 

points assuming a Gaussian distribution). 

High-resolution images (1528 x 2016 pixels) were acquired continuously at 2 Hz 

during the daylight hours (e.g. Figure  2.2a), using a digital camera mounted at the 

southern end of the beach (Figure  2.1) at approximately 42 m above the sea level. 

Runup oscillations were extracted using a technique known as ‘time stack’ 

(Aagaard and Holm, 1989), which consists of time series of pixel intensity, 

sampled along a cross-shore line defined on the images. The time stacks were 

created by determining the image coordinates of the measured cross-shore beach 

profile (e.g. Figure  2.2a) and collecting the values of light intensity at these 

coordinates into a row in the time stack matrices. Conversions between image 

coordinates and ground coordinates were made using the colinearity equations 

described by Holland et al. (1997) with corrections for lens distortions (e.g. 
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Figure  2.2b). The vertical resolution of this technique, estimated by mapping the 

horizontal resolution to an elevation along the profile within the swash zone, 

varied mainly as a function of beach slope and was less than 3 cm (on average 1 

cm). The dataset was broken into hour-long time series, resulting in 25 time stacks 

created during the 3 days, with typically 7200 individual frames sampled in each. 

2.2.3 Data analysis 

The swash location was defined as the most shoreward edge of water identifiable 

on each line of the time stacks. It has been shown that this definition is consistent 

with swash measurements obtained using resistance wires deployed near-bed 

(Holman and Guza, 1984; Holland et al., 1995). The edge was detected using an 

image processing algorithm, developed to distinguish the sharp contrast observed 

between the swash front, typically characterized by the presence of white foam, 

and the darker sandy beach. Manual refinements were required in some images 

where the algorithm failed, which mostly happened due to poor contrasts arising 

from the absence of foam at the swash location, especially during the run-down 

phases of the swash cycles. Examples of digitized swash locations are shown in 

the time stacks obtained on 16 July 2008, at 16.30 during high tide (Figure  2.4a) 

and at 12.30 during low tide (Figure  2.4b). Time series of vertical runup elevation 

Rv were derived from the digitized swash locations since the cross-shore beach 

topography at the time stack location was accurately known from the surveyed 

profile. 

Swash statistics were calculated from the 25 hourly time series of runup elevation. 

Significant runup height Rs was estimated as 4σ of the linearly detrended time 

series. Swash maxima ζ (e.g. Figure  2.4) were identified following Holland and 

Holman (1993) as the difference in elevation between any local crest and the setup 

level (mean level z  of each time series). The local maxima were extracted using a 

modified version of the zero-crossing method. The time series showed clear 
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evidence of patterns of smaller and larger waves, consistent with the broadband 

behavior that typically characterizes the swash, in which case standard zero-

crossing analysis would not detect the smaller waves. We devised an objective 

method of detecting these smaller waves. The zero-crossing analysis was repeated 

18 times, each time varying the zero-level by 0.2σ increments to a 

maximum/minimum of ±1.8σ, each addition adding new waves to the result. The 

number of times the analysis was repeated was determined by the point at which 

changing the zero-level no longer influenced the number of waves detected. 

Power spectra were calculated from each linearly detrended runup elevation time 

series, segmented into sections of 512 s (resulting in a bandwidth of 0.00195 Hz) 

and tapered with a Hanning window (50% overlap), giving typically 18 degrees of 

freedom. The energy density was partitioned into high (f > 0.05 Hz) and low 

frequency bands (f ≤ 0.05 Hz) to account for the variance at incident and 

infragravity regions, respectively. 

The amount of breaking waves was estimated as the probability of breaking for 

each cross-shore location on the time stacks, based on the difference in pixel 

intensity between regions with (i.e. brighter pixels) and without the presence of 

foam (i.e. darker pixels). Thresholds were defined to separate breaking from non-

breaking pixels and create binary time stacks (e.g. Figure  2.4c), from which the 

probability of breaking of each cross-shore location was calculated. The 

thresholds were defined by randomly sampling pixel intensity values over regions 

visually identified as breaking and non-breaking in each time stack, and 

calculating the average between the lowest ‘breaking’ and the highest ‘non-

breaking’ pixel intensities. This method does not distinguish the foam associated 

with the breaking wave roller from the residual foam left on the surface of the 

water after the waves break. However, the latter is also expected to be more 

frequent as wave breaking increases and this parameter is only used as a relative 

measure of breaking between high and low tide. 
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Figure ‎2.4. 5-min fragments of the time stacks obtained at Tairua Beach on 15 July 2008, 

at 15.30 near high tide (a) and on 16 July 2008, at 11.30 near low tide (b). (c) Binary time 

stack obtained from (b) to quantify breaking using the method described in Section 2.2.3 

Time increases from top to bottom of the images. Cross-shore distances have origin at 

mean swash location for the 25 data runs and increase offshore (see Figure ‎2.3). Dashed 

lines and red dots on first two panels are digitized swash locations and located swash 

maxima, respectively. Sloping lines in the time stacks represent individual waves 

propagating towards the shoreline. Notice the stronger breaking (presence of white foam 

at cross-shore distances 50–100 m) for the time stack collected at low tide. 
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2.3 Results 

2.3.1 Hydrodynamic conditions 

An overview of the hydrodynamic conditions experienced during the field 

experiment is given in Figure  2.5. The offshore wave parameters barely changed, 

with gently-sloping waves (0.003 < H0/L0 < 0.005) coming from east/northeast 

with Hs < 1m and Tp between 10 and 12 s (Figure  2.5a–c). The video recordings 

spanned 3 partial tidal cycles that ranged in elevation between -0.51 and 0.65 m, 

with time stacks obtained over 2 high tides and 3 low tides (Figure  2.5d). Beach 

slope obtained from the profile shown in Figure  2.3 changed from 0.09 to 0.13 

due to tidal-induced changes in water level moving the swash zone to different 

parts of the beach face (Figure  2.5e, circles). In general, beach slope follows the 

same trend as the tide for the time series in which η < 0.5 m (i.e. the swash zone 

was placed over the concave section of the profile, where cross-shore position was 

greater than -10 m in Figure  2.3). Higher tidal levels, however, resulted in the 

swash being located in the flat section of the profile (the step between cross-shore 

positions -20 and -10 m, where β decreases). Iribarren number was mostly 

conditioned by changes in foreshore slope and ranged from 1.39 to 2.16 

(Figure  2.5e, pluses), which characterizes reflective conditions and which is 

within the range of values reported by other authors (e.g. Raubenheimer and 

Guza, 1996). Significant runup height changed by almost a factor of 2, from 1.2 

(1.5Hs) to 2.2 m (2.7Hs) and displayed a consistent relationship with tidal levels 

(Figure  2.5h). 

2.3.2 Swash statistics 

The effects of environmental variables on swash oscillations were investigated by 

regressing Rs against Hs, ξ0 and η. Scatter plots of the regressions and correlation 

results are shown in Figure  2.6 and Table  2.1, respectively. No significant linear  
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Figure ‎2.5. Time series of hydrodynamic and morphological parameters. Offshore 

characteristics (calculated hourly using the ADCP at 12 m depth): (a) significant wave 

height; (b) peak wave period; (c) peak wave direction; (d) mean sea level. (e) Beach slope 

calculated as the best linear fit of the measured profile between the locations of mean ± 

2σ of the shoreline positions for each data run (circles, left axis); Iribarren number 

calculated using Equation 2.1 (pluses, right axis). (f) Time series of runup elevation 

relative to NZGD (solid line) with horizontal dashed line at 2.3 m highlighting elevation 

of beach step. (g) Time series of swash maximum relative to the mean (setup) level of 

each time series. (h) Significant runup height calculated hourly using the time series of 

runup elevation. Gray patches indicate daylight periods when the images were acquired. 
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relation (at the 99% confidence level) was observed between significant runup 

height and offshore significant wave height, which was expected given the small 

range of Hs during the experiment. This is also consistent with Howd et al. (1991) 

who found the magnitude of the incident band measured in the trough to be a 

strong function of tide due to depth-dependent saturation over the crest. The lack 

of dependence of Rs on ξ0, on the other hand, is somewhat surprising, considering 

the strong dependency of runup on both ξ0 and β reported in previous laboratory 

(Mase, 1988) and field studies (Holman and Sallenger, 1985; Ruggiero et al., 

2004). Nevertheless, there is a positive trend between runup and ξ0 when the 

values obtained during high tide (runs 5–7, 16–17) are excluded from the analysis. 

Note that the beach slope drops considerably for these data runs while the runup 

height reaches the highest levels (Figure  2.5). This pattern is still more evident by 

regressing Rs against β as the correlation coefficient r
2
 jumps from ~0 to 0.52 

when the high-tide runs are excluded from the analysis (not shown). The 

regression results emphasize that the main control on runup was the tide (r
2
 

between Rs and η amounted to 0.88, significant at the 99% confidence level). It is 

difficult though to evaluate the contribution of the local slope to this relationship 

because the concave shape of the beach means that the influence of the slope 

would follow the same tidal trend below the beach step. 

 

Figure ‎2.6. Regression plots of significant runup height Rs as a function of (a) offshore 

significant wave height, (b) Iribarren number and (c) tidal level. Asterisks, circles and 

crosses represent statistics from time series obtained during low tide (runs 1, 10–12, 21–

22), mid tide (runs 2–4, 8–9, 13–15, 18–20, 23–25) and high tide (runs 5–7, 16–17), 

respectively. 
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Table ‎2.1. Results of regression analysis. 

Y X m b r
2
 

Rs Hs 1.59 0.32 0.06 

Rs ξ0 -0.03 1.64 0 

Rs η 0.8 1.61 0.88 

Y = mX + b. Correlation coefficient squared r
2
 significant at the 99% confidence level 

showed in bold. 

In addition to the runup statistics, the swash maxima distribution P(ζ), shown in 

Figure  2.7 was also found to change systematically over the different levels of 

tide. During low tide (e.g. time series 1, 10 and 22) P(ζ) was slightly positive-

skewed (i.e. higher proportion of smaller waves). At the intermediate levels of 

tide (e.g. time series 2, 8, 13 and 19) P(ζ) tended to assume a Gaussian 

distribution but became more and more negative-skewed as the tide increased. 

Finally, during high tide (time series 5–7, 16–17) the swash maxima distribution 

was consistently negative-skewed, with relatively few low waves compared to the 

other stages of tide. The dependence of skewness of swash maxima on tide is 

highlighted in Figure  2.8. The highly-skewed distributions observed at high tide 

resemble cut off Gaussians at elevations correspondent to the flat part of the beach 

profile (step) between cross-shore positions of -20 and -10 m (Figure  2.3; see also 

Figures 2.5f and 2.5g). The effect of the step on the swash distribution was 

assessed by deriving runup elevation time series with a synthetic profile, where a 

linear fit of the lower beach face was extended shoreward over the beach step. The 

flat-beach-corrected distributions, shown by the solid lines in Figure  2.7, are 

significantly different than the uncorrected statistics for the rightmost, high-tide 

panels, although they do not differ significantly over the other stages of tide. 
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Figure ‎2.7. Swash maxima distribution P(ζ), calculated for the 25 runup time series. The 

bars represent the distributions associated with the real time series and the solid lines 

represent those obtained from time series derived by using a synthetic profile, where a 

linear fit of the lower beach face was extended shoreward to replace the beach step 

between cross-shore positions of -20 and -10 m. Each individual panel has been sorted 

according to the tidal level η (top axis) associated with the respective run, which is 

indicated by the numbers in the top-left corners. 

Time series of offshore and shoreline power spectra are shown in Figures 2.9a and 

2.9b. Although both time series show little energy at the unsaturated infragravity 

frequencies, the swash spectra has a tidally-modulated peak at incident 

frequencies (between 0.07 and 0.09 Hz) that increases in energy with the tide, 

with the power ranging by an order of magnitude between high and low tide. This 

modulation does not happen offshore, where the spectral peak is centered at 
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virtually the same frequencies as the runup spectra but the energy levels barely 

change with the tide. Conversely, the energy in the swash spectra at infragravity 

frequencies tends to increase from high to low tide, although virtually no energy 

at infragravity frequencies can be observed in 12 m depth. Whereas no tidal-

modulation in the offshore spectrum can be observed, the wave energy within the 

surf zone is obviously controlled by wave breaking according to the level of tide 

(Figure  2.9c). As the tide goes down, the waves start to break farther from the 

shoreline and the probability of breaking around the location of the sandbar 

increases. The majority of the waves were breaking during the lowest water levels 

which implied higher dissipation of the incident wave energy (consistent with 

observations of the swash spectra). 

 

 

Figure ‎2.8. Skewness of swash maxima (γ) as a function of tidal level. Solid line 

represents the best linear fit given by the equation γ = -0.96η - 0.32 (r
2
 = 0.81, significant 

at the 99% confidence level). Asterisks, circles and crosses represent statistics from time 

series obtained during low tide (runs 1, 10–12, 21–22), mid tide (runs 2–4, 8–9, 13–15, 

18–20, 23–25) and high tide (runs 5–7, 16–17), respectively. 95% confidence bars were 

defined for each skewness estimate using a bootstrap technique in which 3000 new 

samples, drawn with replacement from the actual sample, were computed using a Monte 

Carlo algorithm. The confidence limits were estimated from the distribution of the 

skewness associated with these bootstrap samples, for each of the 25 sets of swash 

maxima. 
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Figure ‎2.9. Time series of hydrodynamic properties with solid line in each panel (right axis) representing tide level. (a) Offshore wave spectrum time series 

calculated from the pressure time series recorded by the ADCP at 12 m depth. (b) Runup spectrum time series calculated from the runup time series. (c) Probability 

of breaking time series calculated as the probability of exceedence of a pixel intensity threshold that characterized the presence of foam on the time stacks for each 

cross-shore pixel location. Cross-shore distances have origin at mean swash location for the 25 data runs. 
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Figure ‎2.10. (a) Tide levels. (b) Runup (solid line with circles) and offshore (dotted line) variance σ
2 

at the high (> 0.05 Hz) frequency region. (c) Runup (solid line 

with circles) and offshore (dotted line) variance at the low (≤ 0.05 Hz) frequency region (offshore variance at the low region is hardly seen due to low values). Gray 

patches indicate daylight periods when the images were acquired. Note the different scales for σ
2
 at high and low frequencies. (d) Average of spectra obtained during 

low tide (runs 1, 10–12, 21–22, dotted line) and high tide (runs 5–7, 16–17, solid line), plotted on a log-log scale (runup spectra are shown in black, offshore spectra 

in gray). Vertical dashed line highlights frequency used to separate incident and infragravity variances. 
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2.4 Discussion 

2.4.1 Spectral analysis 

We observed tidally-modulated changes in the degree of wave breaking over the 

sandbar to have major implications to the properties of the swash spectrum. 

Figure  2.10 shows the swash and offshore variances partitioned into incident and 

infragravity frequencies and also the swash and offshore spectra averaged over 

low and high tide. At the incident band, not only was the magnitude of the peak 

affected by changes in wave breaking (Figures 2.9b, 2.10b and 2.10d), but also the 

rate of energy decay. The slope of the saturated region of the spectrum, estimated 

by the best linear fit of the energy density between the peak frequency and 0.3 Hz 

(on a log-log scale) decayed at rates that varied between f 
-4

 and f 
-3

, with the 

steeper roll-offs normally associated with the mid-high tide, peaked spectra 

(Figure  2.11). Although in previous studies the differences in energy decay rate 

with increasing frequency have been attributed to different methods of runup 

detection (Guza and Thornton, 1982; Raubenheimer and Guza, 1996), it is 

possible that, for the present dataset, the dominant effect is modulation of the 

degree of incident energy dissipation over the bar and the lowering of the incident 

spectral peak at low tide. 

In contrast to the energy at the incident band, the energy at infragravity band of 

the swash spectrum was enhanced at the lower stages of tide, even though 

offshore energy at infragravity frequencies was very low and not observed to be 

tidally-modulated as in other datasets (e.g. Okihiro and Guza, 1995; Thomson et 

al., 2006). It is apparent in Figures 2.9 and 2.10 that the overall energy in the 

swash is being predominantly controlled by dissipation at incident frequencies, 

which have variance levels of about an order of magnitude higher than 

infragravity levels at high tide. However, infragravity variance tends to increase as 

the tide decreases and eventually energy levels at these two regions of the 

spectrum become of the same order of magnitude at low tide, suggesting that part 
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of the energy lost from the incident band is not being dissipated but transferred to 

infragravity frequencies. 

Our observations are consistent with many other studies (e.g. Masselink, 1995; 

Ruessink, 1998a; 1998b; Baldock and Huntley, 2002; Janssen et al., 2003; 

Baldock, 2006, among others) showing that wave breaking, in our case modulated 

by tides, is key to the increase of infragravity energy in the surf zone (and 

therefore swash). This is also consistent with the two most widely accepted 

mechanisms for infragravity generation as they both rely on wave breaking, either 

as a release of the onshore propagating bound wave, originated from gradients in 

radiation stress within wave groups (Longuet-Higgins and Stewart, 1964) or 

through the modulation in the breakpoint position (Symonds et al., 1982; 

Lippmann et al., 1997). 

 

 

Figure ‎2.11. Regression plot of the slope of the saturated band of the runup spectra on a 

log-log scale f-slope as a function of tidal level, with the solid line representing the best 

linear fit given by the equation f-slope = -0.44η - 3.8 (r
2
 = 0.29, significant at the 99% 

confidence level). Asterisks, circles and crosses represent statistics from time series 

obtained during low tide (runs 1, 10–12, 21–22), mid tide (runs 2–4, 8–9, 13–15, 18–20, 

23–25) and high tide (runs 5–7, 16–17), respectively. The 95% confidence interval for the 

regression analysis is shown by the dashed lines. 
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Figure ‎2.12. 70-sec fragments of time stacks obtained at Tairua Beach on (a) 17 July 

2008, at 10.30 during mid-low tide and on (b) 16 July 2008, at 15.30 during mid-high tide 

(top panels) with the respective time series of vertical runup elevation (bottom panels). 

Asterisks highlight the detected swash maxima. Dashed lines on top panels are digitized 

swash positions. Horizontal dashed lines on bottom panels are mean runup elevation 

(setup level) for each hour-long time series. Elevations are relative to NZGD. Cross-shore 

distances have origin at mean swash location for the 25 data runs and increase offshore. 

Although the mechanisms mentioned above might have been associated with 

infragravity forcing in the surfzone at low tide, we observed in our data that 

secondary waves (with higher frequencies than incident) occurred at low tide 

when the infragravity energy increased (Figure  2.12a). The incident and 

secondary waves appear to combine at the beach face to modulate low-frequency 

oscillations. As can be seen in Figure  2.12a, there is an increasing number of 

wave crests shoreward of the sandbar location (~80 m) at low tide. These waves 

can be followed propagating towards the shoreline, where eventually they start 

climbing on the beach face before the backwash of the previous waves starts to 

take place. Although it is difficult to establish whether bore-bore interactions 

between these individual waves combine to result in runup time series 

characterized by higher energy at infragravity frequency, we notice that at high 
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tide, where the increasing number of wave crests is not evident (Figure  2.12b), the 

infragravity signal disappears, and the oscillations at the shoreline are dominated 

by the incident peak (T~12 s).  

The increase in the number of wave crests shoreward of the sandbar at the lower 

stages of tides could be a result of the decomposition of the primary wave motion 

into higher-frequency secondary waves over the bar. The generation of these 

secondary waves, as the primary motions propagate over the sandbar, has been 

previously reported in both laboratory (Beji and Battjes, 1993) and field 

experiments (Elgar et al., 1997; Masselink, 1998; Sénéchal et al., 2002), and 

according to Masselink (1998), might be a common process on barred beaches. 

Beji and Battjes (1993) showed that an increasing nonlinear transfer of energy 

between the primary and phase-locked, harmonic frequencies occurs as the waves 

propagate over the seaward, sloping-face of the sandbar, becoming even stronger 

as they cross the flat section of it due to triple resonant interactions, and that these 

harmonics might be eventually released along the deepening shoreward section of 

the bar due to amplitude dispersion. It appears that these secondary waves might 

be important in controlling swash hydrodynamics, especially during low tide 

when the incident peak is increasingly dissipated by breaking. 

We investigated the low-tide increase in infragravity energy using higher-order 

spectral (bispectral) analysis. Bispectral analysis has been successfully employed 

to study nonlinear transfer of energy between frequencies in both the surf (Elgar 

and Guza, 1985; Sénéchal et al., 2002) and the swash zone (Bryan and Coco, 

2010). The technique examines the phase locking between the oscillations at 

triplets (f1, f2, f3), where f1 and f2 are two basic frequencies and f3=f1+f2. If the 

modes are independent of each other, as is the case of a field of waves with 

random phases, no significant bicoherence between them is expected to be 

observed in the bispectrum. However, considering that swash cycles are 

somewhat parabolic, and the parabolic shape is composed of the sum of phase-
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coupled harmonics with frequencies f, 2f, 3f and so on, and zero phase, the 

bispectral signature of the swash might be expected to show significant 

bicoherence at (f, f), (f, 2f), (2f, f) and so forth (e.g. Bryan and Coco, 2010, Figure 

2). 

Figure  2.13 summarizes the bispectral results, averaged for time series obtained at 

low, mid and high tide. The peaks between the incident frequency (around 0.08 

Hz) and the harmonics can be observed as expected, although they are not strong 

and look smeared into a line. This is consistent with the results of Sénéchal et al. 

(2002) who found wave breaking to weaken the strength of the nonlinear 

couplings. There are also significant peaks in the bicoherence located at 

frequencies higher and lower than the incident peak. The higher peak was close to 

(0.12, 0.12 Hz), which roughly corresponds to the mean swash period (calculated 

in the time-domain as the duration of the time series divided by the number of 

local maxima and found to vary from 8.5 and 9.5 s). It is possible that these peaks 

are associated with swash interactions. Bryan and Coco (2010) showed bispectra 

generated from synthetic swash series in which each swash cycle was made 

dependant on the previous one. This interaction created an infragravity pattern in 

the time series caused by sequences of swash cycles (e.g. high-low-high-low 

crests). Because the incident wave ordering pattern was associated with the 

infragravity pattern, they were phase-locked. Since the infragravity pattern was 

not symmetric (the higher incident waves occurred either at the end or beginning 

of a sequence), the infragravity signal had evidence of harmonics in the 

bispectrum corresponding to a saw-tooth shape. In our case, the infragravity 

signal would appear to be at 0.06 Hz (with biphases between -30 and -50 degrees, 

indicating an asymmetric shape), and the harmonic at 0.12 Hz (with biphase 

shifting from -30 to -60 degrees as the tide decreases). Note that there is a 

coherent low tide signature in the bispectra at f1=0.06 Hz, f2=0.08 Hz. The 0.12 

Hz coherence peaks also seem to be associated with the presence of the secondary



33 

 

Figure ‎2.13. Runup spectra (top), biphases (mid) and bicoherences (bottom panels) averaged for time series obtained over low tide (runs 1, 10–12, 21–22, left), mid 

tide (runs 2–4, 8–9, 13–15, 18–20, 23–25, centre) and high tide (runs 5–7, 16–17, right panels). Black dashed lines highlight the peak frequency of the runup spectra 

shown on the top. Bispectra were calculated from each runup elevation time series after quadratic detrending, segmenting into sections of 512 s (1024 datapoints) 

and Fourier transforming, and the results were merged over 12 frequency bins, giving 84 degrees of freedom. Biphase and bicoherence signals below the 95% 

significance level have been blanked. 
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waves at the shoreline, so it is possible that the coupling process transfers energy 

to a ‘real’ wave. Alternatively the secondary waves might be related to shoaling 

and breaking processes in the surfzone. Observations of current and pressure just 

seaward of the swash would allow the swash-interaction hypothesis to be tested 

more thoroughly. 

2.4.2 Swash elevation 

The absence of significant changes in offshore wave conditions during the field 

experiment (Figures 2.5a–c, 2.9a, and 2.10) allowed us to control for effects of 

offshore wave height on runup and closely investigate the effects of other 

variables, such as beach slope and tide. Significant runup height Rs was found to 

be as high as 2.7Hs under non-breaking conditions, with the ratio Rs/Hs linearly 

decreasing to 1.5 at low tide when wave breaking was maximum. The incident 

band of the swash RsInc, which accounted for most of the swash amplitude, ranged 

from ~1.2 to 2.6Hs between low and high tide (Figure  2.14a). Although RsInc/Hs 

was not observed to scale with Iribarren number ξ0 (Figure  2.14b), in 

disagreement with other observations (Holman and Sallenger, 1985; 

Raubenheimer and Guza, 1996), our results are consistent with the relationships 

obtained in these studies when breaking conditions were predominant. We found 

ξ0 to range from 1.45 at low tide (RsInc/Hs~1.2) to 2.16 at mid tide (RsInc/Hs~2.0), 

when the swash was oscillating along the steepest section of the profile just under 

the step (see Figure  2.5e), which is within the range observed by these authors for 

equivalent Iribarren numbers (see Holman and Sallenger, 1985, Figures 7 and 10; 

Raubenheimer and Guza, 1996, Figure 5). Non-breaking conditions, on the other 

hand, resulted in the magnitude of normalized incident (and total) significant 

runup height to be consistently higher compared to these predictions (Figures 2.6b 

and 2.14b), suggesting that under mild offshore wave conditions the presence of a 

sandbar affects the magnitude of the swash. Our results differ substantially from 

observations under more dissipative conditions, where the incident band is 
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saturated and most of the swash energy is at infragravity frequencies (e.g. Guza 

and Thornton, 1982, Rs/Hs~0.7; Ruessink et al., 1998, Rs/Hs~0.18; Ruggiero et 

al., 2004, Rs/Hs~0.26 to 0.61). 

The tidal modulations have been observed to be manifested not only in the 

amplitude of swash oscillations, but also in the skewness of swash maxima 

distribution. The strong negative skewness, characteristic of high-tide time series 

(Figures 2.7 and 2.8) was shown to be related to the presence of the beach step at 

the elevation of about 2.3 m (Figures 2.3, 2.5f and 2.7). At high tide, this abrupt 

decrease in beach slope seems to limit vertical swash excursions farther above that 

height by both increasing bottom friction (the swash runs over a longer distance to 

reach a given elevation) and water percolation (the sand is likely to be unsaturated 

at this location). Without the beach step, one would have expected that even 

higher variance levels could have been observed at high tide, when most waves 

were not breaking over the sandbar. The slightly positive skewness in the swash 

maxima distribution at low tide, on the other hand, suggests a higher proportion of 

small negative maxima (smaller than the setup level). Indeed, Holland and 

Holman (1993) observed an increase in the proportion of negative ζ as the spectral 

width of the time series increased, which agrees with the noticeable spectral 

broadening observed during low tide in this dataset (see Figure  2.9b). The 

enhanced number of small swash maxima during low tide is also consistent with 

the observations of the secondary waves at the shoreline evident in Figure  2.12 

and also supported by the reduction of about 10% in the average swash period 

(not shown). 
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Figure ‎2.14. Regression plots of significant runup height for the incident frequency band 

(> 0.05 Hz) normalized by offshore significant wave height, as a function of: (a) tidal 

level, (b) Iribarren number. Asterisks, circles and crosses represent statistics from time 

series obtained during low tide (runs 1, 10–12, 21–22), mid tide (runs 2–4, 8–9, 13–15, 

18–20, 23–25) and high tide (runs 5–7, 16–17), respectively. 

2.5 Conclusion 

Swash oscillations were observed to be strongly modulated by tide on an 

intermediate barred beach under mild wave conditions. The water depth over the 

offshore sandbar crest played a major role in controlling these modulations as it 

determined whether small waves broke over it or not according to the level of tide 

(i.e. water depth and therefore wave steepness over the crest). The concave profile 

may also have contributed to these tidal variations. These effects led to a tidal-

modulation in wave energy dissipation that ultimately controlled the energy 

driving the swash and hence its amplitude (even without significant changes in 

offshore wave conditions). The dissipation took essentially at incident frequencies 

and also resulted in the slope of the saturated region of the spectra becoming 

gentler. 

Swash hydrodynamics were found to be dominated by incident wave frequencies 

(consistent with the reflective slope) although this dominance became weaker 

during low tide as incident energy was increasingly dissipated by breaking over 

the bar. On the other hand, infragravity wave motions at the shoreline became 
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more and more important as the tide decreased. We have provided evidence that 

secondary waves occur especially at low tide, and that the presence of these 

secondary waves might be related to an increase in the energy at infragravity 

frequencies through a mechanism of bore-bore capture. 

Significant runup height was found to increase by a factor of two at high tide 

compared to low tide, when most waves were breaking over the sandbar, and 

these changes were not observed to be modulated either by beach slope or by 

offshore wave conditions. This suggests that tidal-induced wave breaking 

dissipation might be a major process in controlling swash hydrodynamics on 

barred intermediate beaches under mild offshore wave conditions and can have 

significant implications for both parameterizations and modeling of runup 

oscillations on these systems. 
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Chapter 3 

3 Observations of alongshore variability of swash 

motions on an intermediate beach 
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Contribution of authors 

Chapter 3 presents the article entitled “Observations of alongshore variability of 

swash motions on an intermediate beach”, published in September 2012 in the 

Continental Shelf Research. The major contribution from this article is to show 

that alongshore variability in sandbar morphology may result in alongshore 

variability in swash oscillations. 

My co-authors planned and executed the experiment before my PhD started. I 

extracted all the runup observations from the video, developed code for the 

statistical techniques, analysed all the data, prepared the figures and wrote the first 

and subsequent drafts of the paper. My co-authors edited drafts, provided advice 

on direction and helped with the response to the reviewer’s comments. 
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Abstract 

Alongshore variability in swash motions — shoreline oscillations about the mean 

water level on the beach face — were investigated using video images and a high-

resolution morphology survey on an intermediate beach. Under mild, swell-

dominated offshore wave conditions, alongshore variation of up to 78% in 

significant runup height Rs (defined as 4 times the standard deviation of the swash 

time series) was observed. This variation was predominantly driven by energy at 

the  incident (>0.05 Hz) frequencies (where most of the swash energy was 

observed), and, consistent with previous observations, was mainly controlled by 

changes in the slope of the beach face (measured at the mean swash location). 

However, alongshore patterning in wave breaking over the sandbar caused 

variation in the degree of wave dissipation along the beach and also resulted in 

alongshore changes to swash motions. Although alongshore changes in beach 

slope and wave breaking patterning over the bar were observed to be typically 

correlated, both were needed in a regression model to provide the best 

explaination of alongshore changes in Rs. At infragravity frequencies (<0.05 Hz), 

alongshore variability was not well associated either with changes in beach slope 

or wave breaking patterning. Low-mode edge waves were observed in the swash 

measurements and their contribution to the total energy spectrum was greatest 

near the location where a shoal was observed, suggesting this shoal may play a 

role in forcing. The edge waves may have contributed to the swash variability 

observed at infragravity frequencies. However, in these reflective conditions, the 

infragravity band plays a secondary role in controlling alongshore variations to 

swash motions. 

Keywords: swash, beach slope, wave breaking, alongshore variability, edge waves. 
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3.1 Introduction 

Swash is the oscillation of the water’s edge on the beach and is a key component 

of sediment exchanges between the ocean and the beach face (Masselink and 

Hughes, 1998; Puleo et al., 2000). Swash flow changes both in time (as a result of 

changes in the wave climate and/or tidal levels) and space (as a result of changes 

in the cross-shore and alongshore beach profile). Aside from some notable 

investigations (e.g., Holland and Holman, 1996; Ruggiero et al., 2004; Ciriano et 

al., 2005; Stockdon et al., 2006) most studies of swash hydrodynamics have 

focused on the relationship between wave climate and runup height but lacked a 

detailed assessment of the variability that can occur in the alongshore direction. 

Interest in alongshore variability in swash characteristics is both scientific, since it 

might be associated with infragravity wave signatures at the shoreline (e.g., 

Holman and Bowen, 1984; Ciriano et al., 2005) and practical, since alongshore 

variability in runup could be used in coastal zone management of localized 

hazards (e.g., hot-spots or localized berm breaching and subsequent inundation). 

The characteristics of the swash motions such as amplitude and spectral features 

have been studied in numerous laboratory (e.g., Miche, 1951; Mase, 1988; 1989; 

1995; Foote and Horn, 2002; Cowen et al., 2003) and field studies (e.g., Huntley 

et al., 1977; Guza and Thornton, 1982; Holman and Sallenger, 1985; Holman, 

1986; Raubenheimer and Guza, 1996; Ruessink et al., 1998; Stockdon et al., 2006; 

Guedes et al., 2011; among many others). Yet, there is still considerable debate on 

how environmental parameters control the characteristics of these oscillations. 

Miche (1951) found that runup height R increases with (monochromatic) offshore 

wave height H0 until a certain saturation limit that depends on beach slope β and 

wave frequency f. Guza and Thornton (1982) observed saturation of the vertical 

swash motions at sea-swell (incident) frequencies, although for the low-frequency 

(typically between 0.004 and 0.05 Hz) infragravity motions, a linear dependency 

on H0 was observed. Holman and Sallenger (1985) observed a similar behavior 
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under dissipative conditions, characterized by small values (0.4–1) of the Iribarren 

number ξ0 
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0
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
  ,                                            (3.1) 

where H0 and L0 are deep water wave height and wavelength. For higher ξ0 no 

clear saturation of the incident swash was observed. They also found an overall 

good agreement between R, normalized by H0, and ξ0, which was further 

supported by subsequent research (e.g., Holman, 1986; Raubenheimer and Guza, 

1996). Stockdon et al. (2006) observed the incident band of runup to be well 

parameterized by some modified (dimensional) version of ξ0, although the 

infragravity band showed typically no significant relationship with β and scaled 

better with a parameter that was dependent on H0 and L0 solely. Conversely, 

Guedes et al. (2011) observed changes in R by up to a factor of 2 on a steep 

barred beach that were attributed mainly to changes in the degree of wave 

breaking over the bar, and, to a lesser degree, to changes in the local beach slope. 

Under highly dissipative conditions (ξ0<0.3), contrasting behaviours have also 

been observed. For instance, Ruessink et al. (1998) found the runup height (which 

was dominated by infragravity frequencies) to be well parameterized by H0 

although a strong dependence of R on β was observed by Ruggiero et al. (2004). 

Ruessink et al. (1998), and more recently Sénéchal et al. (2011), suggested that 

saturation at infragravity swash frequencies can also occur during extreme storms. 

Temporal variations in swash are often dominated by changes to the relative 

importance of infragravity and incident wave motions. Low-frequency, 

infragravity motions usually dominate the variance in the inner and swash zones 

under dissipative conditions (e.g. Ruessink et al., 1998; Ruggiero et al., 2004; 

Sénéchal et al., 2011) and can be forced by nonlinear interactions between two 

wave trains w1 and w2 with similar frequencies. The linear superposition between 

these waves is manifested as intermittent groups of large and small waves at the 

difference frequency f1-f2 and wavenumber k1-k2. Longuet-Higgins and Stewart 
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(1962; 1964) showed that the gradients in radiation stress within these groups 

force a second-order, phase-locked (bound) wave which is 180° out of phase with 

the wave group. As the short waves break in the surf zone, the bound wave may 

be released and reflected at the shoreline as a free long wave, radiating offshore 

(leaky waves) or trapped in the nearshore by refraction and reflection (edge 

waves). Free long waves are also forced by temporal and spatial variations in the 

breakpoint position (Symonds et al., 1982; Lippmann et al., 1997). 

Alongshore changes in swash amplitude have been shown to be strongly 

dependent on changes in foreshore beach slope β. Holman and Sallenger (1985) 

reported only small alongshore changes in runup height R on a natural beach 

which were positively correlated with the Iribarren number ξ0 (and therefore 

beach slope since all alongshore observations were subjected to the same offshore 

wave conditions). Ruggiero et al. (2004), in contrast, observed alongshore 

changes in R of up to a factor of 2 in one single data run, with bigger swash 

motions over the alongshore regions where the foreshore was steeper. Stockdon et 

al. (2006) also found positive correlation between alongshore measurements of R 

(total and incident) and β and reported R to have the most alongshore variability 

when the beach topography was highly non-uniform due the presence of cusps, 

megacusps or welded swash bars. On the other hand, a negative correlation 

between alongshore series of infragravity swash height and β was observed when 

the cusp field was well developed. Many authors have shown the effect of cusp 

morphology on swash characteristics (e.g., Holland and Holman, 1996; Ciriano et 

al., 2005; Bryan and Coco, 2010). 

In essence, alongshore variations in swash have largely been attributed to beach 

face slope variations (Holman and Sallenger, 1985; Ruggiero et al., 2004; 

Stockdon et al., 2006) or, at a smaller spatial scale, to the influence of cusps 

(Ciriano et al., 2005; Stockdon et al., 2006; Holland and Holman, 1996; Bryan 

and Coco, 2010). However, Guedes et al. (2011) indicated (using measurements 

of swash at one location with almost constant offshore wave conditions) that tidal 
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modulations to wave breaking over the bar also control changes in swash motions. 

Tidal changes can also cause large differences to alongshore breaking patterns, 

particularly in cases when the alongshore bar is irregular. These breaking patterns 

not only cause irregular dissipation of incident energy which will likely cause 

alongshore patterning of incident swash, but also patterning in the incident group 

structure. As a consequence, alongshore variations in the swash at infragravity 

ranges might be expected, quite separate from any effect beach cusps might have. 

Moreover, it is not clear to what degree edge waves are sensitive to such local 

variations in forcing conditions as they propagate alongshore. The objective of 

this work is to determine the importance of alongshore variability in wave 

breaking relative to beach slope patterns in controlling incident and infragravity 

swash motions on an intermediate beach with relatively alongshore uniform beach 

morphology. Section 3.2 describes the field data and the data analysis. The results 

are shown in Section 3.3 where the alongshore variability of swash is presented 

and compared to that of the beach slope and wave breaking patterns using 

regression analysis. In Section 3.4 the results are interpreted for the incident and 

infragravity bands of the swash and the importance of the environmental 

parameters are discussed. The conclusions are presented in Section 3.5. 

3.2 Methods 

3.2.1 Field site 

The dataset used for this study was obtained from video and in situ measurements 

collected at Tairua Beach, New Zealand (Figure  3.1) during a field experiment 

undertaken on 15–17 July 2008. Tairua is a fairly steep (tanβ~0.1) pocket beach, 

about 1.2 km in length, composed of medium–coarse sand. The beach faces NE 

towards the Pacific Ocean and is exposed to medium wave energy with average 

offshore significant wave height and mean spectral period of 0.9 m and 5.8 s 

(Gorman et al., 2003). The tides are semi-diurnal and typically range between 1.2 
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(neap) and 2 m (spring tides). The beach is classified as intermediate in the model 

proposed by Wright and Short (1984) and characterized by a rhythmic sandbar 

and the common presence of strong rip currents (Gallop et al., 2009; 2011). The 

sandbar remained remarkably alongshore-uniform during the 3 days, at a cross-

shore distance of about 60 m from the shoreline (Figure  3.2) and with alongshore-

averaged water depths over the crest ranging from 1.1 to 2.2 m due to tidal 

variations (see Guedes et al., 2011). However, a broader shoal was observed 

closer to the southern end of the beach (-150 m < y < -100 m, where y represents 

the alongshore coordinate of the grid defined for this study) where the sandbar 

trough was filled with sand and up to 0.7 m shallower compared to the trough 

depth at other alongshore locations (Figure  3.2). 

3.2.2 Measurements 

During the experiment, field measurements of offshore wave climate, beach face 

topography, and video images of the beach were obtained (Guedes et al., 2011). 

Here, we analyze in detail three 60-min long periods from 16 July 2008, during 

low tide (11.00am–12.00pm), mid tide (08.00–09.00am) and high tide between 

16.00–17.00pm (times are given in New Zealand Standard Time NZST).  

Waves were measured using an Acoustic Doppler Current Profiler (ADCP) 

deployed in about 12 m water depth (~800 m from the coast). Time series of 

subsurface pressure were recorded every hour for 20 min, at 2 Hz and converted 

to offshore free surface elevation η0 using linear wave theory. Offshore significant 

wave height Hs was calculated as 4σ (where σ is the standard deviation) of the 

free surface time series. Peak period Tp was determined as the inverse of the 

spectral peak frequency. Hourly mean water level η was calculated as the mean of 

each time series and adjusted to the local vertical datum. Peak direction Dp was 

determined from the directional velocity spectrum obtained by the ADCP. 
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Figure ‎3.1. (a) Field site location. (b) Oblique image obtained at Tairua Beach on 16 July 2008 at 08.01am (New Zealand Standard Time), at mid tide. Lines 

represent the alongshore locations where the swash was measured with black lines highlighting the alongshore limits and the central position of the array. Lines are 

parallel in real world coordinates with 10-m alongshore spacing. White circles show the pixel locations where the swash was identified for this image. 
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Beach topography was surveyed on 16 July with a land-based lidar laser scan (see 

Figure  3.2). Within the surveyed region, an area extending over 300 m alongshore 

was selected for detailed study, encompassing the higher-resolution part of the 

field of view of the video camera. The hugely-dense “point-cloud” obtained from 

the beach scan was filtered using algorithms created to remove outliers and non-

desired points (e.g., people standing on the beach). The algorithms repeatedly 

eliminated points below/above some standard deviation-based threshold within a 

moving window. The window-size [dx, dy] (where x and y represent the cross-

shore and alongshore directions, respectively) was [0.5, 2.0] m which was small 

along x to limit the effect of the changes in elevation related to beach slope, and 

large along y to allow the detection of the outliers. The remaining points were 

then rotated and interpolated to a regular spacing of 0.5 m in the cross-shore and 

1.0 m in the alongshore direction (the grid has its origin located at the alongshore 

position of the black line close to the center of Figure  3.1b and increases towards 

the NW direction). Finally, the grid was extrapolated offshore of the most seaward 

surveyed location at each alongshore position (this was necessary since at low tide 

the swash extended beyond the area covered by the survey). The extrapolation 

was performed by extending the linear fit through the lowermost measured points 

at each alongshore position. 

High-resolution images with number of pixels [nu, nv] = [1528, 2016] (where u 

are the pixels along the vertical and v along the horizontal direction) were 

acquired continuously at 2 Hz, using a digital camera mounted at the southern end 

of the beach at approximately 42 m above the mean sea level (Figure  3.1b shows 

an example image). Swash oscillations were extracted at 31 alongshore locations, 

spaced 10 m apart (Figure  3.1b), which were parallel and oriented perpendicular 

to the beach in real-world coordinates. Pixel values were sampled along each of 

these lines, creating time series of pixel intensity (time stacks) from which the 

swash was identified (following Aagaard and Holm, 1989; Guedes et al., 2011). 

For the mid-tide dataset of images only, the swash positions were also extracted at 
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1 m alongshore resolution, which is close to the maximum pixel resolution of the 

camera along the y direction near the northern end of the array (the image frames 

were used instead of extracting the time stacks). Conversions between pixel and 

ground coordinates were made using the colinearity equations described by 

Holland et al. (1997) with corrections for lens distortions (Figures 3.3a–c show 

examples of rectified images that have been averaged over 10 min of video 

footage). The vertical resolution of this technique, estimated by mapping the 

cross-shore pixel resolution to an elevation within the swash zone, varied as a 

function of both beach slope and distance from the camera and was less than 9 cm 

(with averages over each transect ranging from 1 to 2 cm from the closest to the 

farthest one). 

 

 

Figure ‎3.2. Nearshore bottom elevation map derived from the Lidar survey undertaken on 

16 July 2008 and the bathymetry estimated from the images from the same day using the 

method described in Section 3.2.3. Color bar represents elevation z relative to the mean 

sea level at low tide. Black thick lines show mean swash locations calculated from the 

time stacks at low and high tide. White line delimits the elevations interpolated from the 

Lidar survey from those obtained using the images. x and y are the cross-shore and 

alongshore grid coordinates, respectively. 
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3.2.3 Data analysis 

The swash was defined at each alongshore location as the most shoreward edge of 

water identifiable on the images. This definition has been shown to be consistent 

with swash measurements obtained using resistance wires deployed near the 

seabed (Holman and Guza, 1984; Holland et al., 1995). The edge was detected 

using an image processing algorithm developed to distinguish the sharp contrast 

typically observed between the foamy swash front and the darker sandy beach. 

Manual swash detections were required in some images where the algorithm 

failed due to poor lighting contrasts. Time series of vertical runup elevation R 

were derived from the digitized swash locations since the beach topography was 

accurately known from the lidar survey. In total, 3×31, 60-min long time series of 

runup elevation were generated over the three periods of interest. Additionally, a 

matrix composed of 301, 60-min long runup series (spaced every 1 m alongshore) 

was also generated at mid tide. 

The beach slope β within the swash area was calculated from the surveyed beach 

face morphology using two different approaches to account for the possible effect 

of a beach step present between the cross-shore positions of ~25 and 40 m (see 

Figure  3.2). Guedes et al. (2011) found that the presence of the beach step 

affected the swash maxima distribution at high tide. The first approach (β2σ) 

defined β at each i
th

 alongshore position yi(t), where t is time, as the best linear fit 

of the measured cross-shore profile h(x) between the locations of mean ± 2σ of the 

shoreline positions for each data run. The beach step was included in the 

calculation of β2σ at high tide. The second approach (βmean) did not include the 

beach step and β was defined as the best linear fit of h(x) between the location of 

mean shoreline position ± 10 cm for each data run. 

Nearshore bathymetry was estimated offshore of the region where the swash was 

measured using the method developed by Plant et al. (2008). The technique uses 

time series of image intensity sampled from georeferenced pixels and identifies 
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wavenumbers k where the coherence of intensity between pairs of pixels is 

maximized. The method is based on a tomographic approach that uses a nonlinear 

inverse method to solve for wavenumbers at discrete sets of frequencies and 

provides accuracy estimates that reflect the sampling design, the signal coherence 

and the resolution of the solution (Plant et al., 2008). The bathymetry is inverted 

from the estimated wavenumbers using the linear dispersion relationship: 

   khgkf tanh2
2
 ,                                        (3.2) 

where g is the acceleration due to gravity and h is the local water depth. The 

values of h that minimize the error between k predicted by Equation (3.2) and that 

estimated from the images are found using an iterative scheme. The method was 

used to estimate the nearshore bathymetry on 2048-second long pixel time series, 

extending from 50 m < x < 150 m and -150 < y < 150 m and spaced every 2 and 5 

m along x and y, respectively. A coarser domain with spacing [dx, dy] = [5, 10] m 

was defined for estimating k and h, for computational reasons. The accuracy 

estimated using the technique of Plant et al. (2008) was typically less than 0.1 m 

for the area extending from the trough to the crest of the sandbar (although errors 

greater than 1 m were obtained close to the shoreline and offshore of the crest). 

The contribution of breaking waves was estimated for the three periods of interest 

as the probability of breaking Pbr(x,y,t) using the method described by Guedes et 

al. (2011) (Figures 3.3d–f). The technique is based on the identification of 

breaking-generated foam on the time stacks, through the definition of pixel 

intensity thresholds, and the calculation of the probability for this foam to be 

observed in each pixel. Although this method does not distinguish the foam 

directly associated with the breaking wave roller from residual foam left on the 

sea surface after the waves break, one can expect the latter to be more frequent as 

wave breaking increases. 
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Figure ‎3.3. Averaged images obtained on 16 July 2008, at (a) low tide (11:30am), (b) mid 

tide (08.30am), and (c) high tide (16.30am), rectified to plan views using geometric 

transformations (see Section 3.2.2). White dashed lines represent alongshore locations of 

southernmost, central and northernmost time stacks. Images were averaged over 10-min 

periods. Spatial distribution of the probability of breaking, calculated at (d) low tide 

(11.00am–12.00pm), (e) mid tide (08.00–09.00am), and (f) high tide (16:00–17:00pm) 

with the method described in Section 3.2.3 x and y are the cross-shore and alongshore 

grid coordinates, respectively. Color bar represents the probability of breaking. 

 

 

Figure ‎3.4. Alongshore-averaged probability of breaking  xPbr  at low tide. Vertical 

arrow highlights the maximum probability from where Max(Pbr) is quantified. Gray 

shading shows the area over which ∫Pbrdx is quantified. 
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Alongshore series of Pbr(y,t) were calculated in two ways, exemplified in 

Figure  3.4. The first consisted of calculating the area under the curves between the 

cross-shore locations of minimum (shoreward of the crest) and maximum Pbr 

(∫Pbrdx). The second approach quantified Pbr(y,t) as the maximum probability 

observed at any cross-shore pixel location, Max(Pbr). Additionally, the cross-

shore position of wave breaking Xbr(y,t) was determined as the location of 

maximum probability of breaking. 

Swash statistics were calculated from the 93 (detrended) hourly time series of 

runup elevation R obtained from the time stacks. Significant run up height Rs was 

estimated as 4σR. Power spectra were calculated from each time series, segmented 

into sections of 128 s and tapered with a Hanning window. The energy density 

was partitioned into high (f > 0.05 Hz) and low frequency bands (f ≤ 0.05 Hz) and 

integrated to account for the variance in the incident σ
2

Inc and infragravity σ
2

Ig 

regions, respectively. Wavenumber-frequency spectra E(k, f) were computed from 

groups of 16 adjacent time series (maximum separation lag of 150 m) using the 

iterative maximum likelihood estimator (IMLE) developed by Pawka (1983). The 

series were segmented and tapered as for the frequency spectrum calculations. A 

wavenumber resolution of 0.0005 m
-1

 was chosen for the analysis. In the case 

where measurements were collected at 1-m resolution, a 2-dimensional Fourier 

transform (not shown) confirmed that the patterns detected using the IMLE were 

not an artifact of the alongshore array design. 
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Figure ‎3.5. Time series of hydrodynamic and morphological parameters with gray 

shading highlighting the 3 periods analyzed. (a) Offshore significant wave height Hs 

(solid line, left axis) and peak wave period Tp (dashed line, right axis). (b) Offshore peak 

wave direction Dp with horizontal dashed line indicating shore-normal incidence 

direction. (c) Mean sea level η. (d) Degree of wave breaking quantified as ∫Pbrdx (left 

axis, white boxes) and Max(Pbr) (right axis, black boxes). (e) Beach slope calculated as 

β2σ (left axis, white boxes) and βmean (right axis, black boxes). (f) Significant runup height 

Rs with asterisks showing the data presented in Guedes et al. (2011). For each box in 

panels (d–f) the central mark is the alongshore average, the edges of the box are the 25
th
 

and 75
th
 percentiles and the vertical dashed lines extend to the most extreme data points 

for all alongshore observations. The boxes in panels (d–e) were slightly displaced 

horizontally from their central position for better visualization.  
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3.3 Results 

3.3.1 Observations 

During the three periods selected for analysis, the offshore hydrodynamic 

conditions remained remarkably consistent. Gently-sloping waves were measured 

in 12 m water depth, with Hs and Tp around 0.8 m and 11.5 s (Figure  3.5a), 

approaching the coast from the northeast direction, typically less than 10° from 

shore-normal incidence (Figure  3.5b). The video recordings of swash motions 

spanned part of a tidal cycle ranging in elevation between -0.49 and 0.56 m 

(Figure  3.5c). The alongshore-averaged amount of wave breaking changed due to 

tidally-induced variations in the water depth over the sandbar crest, with strong 

wave breaking at low tide and weak during high tide (Figure  3.5d; see also 

Figure  3.3). The alongshore-averaged beach face slope β calculated using the two 

methods showed different patterns. The concave shape of the beach face resulted 

in βmean following the same trend as the tide (Figure  3.5e, black boxes). However, 

β2σ was affected by the beach step just above the beach face (see Figure  3.2) with 

the values at high tide being on average 20% smaller compared to those obtained 

at mid tide (Figure  3.5e, white boxes). The significant runup height Rs increased 

by 70% on average between low and high tide and displayed a consistent 

relationship to both η and βmean (Figure  3.5f). 

Alongshore changes were also observed in the surf and swash zones (Figures 

3.5d–f). Alongshore ranges in β2σ and βmean were up to 0.6 and 0.12 (accounting 

respectively for an increase of 100% and 144% from the smallest to the highest 

values for these two variables). At low tide, when wave breaking was strong at all 

alongshore locations, Pbr(y) was relatively uniform (see also Figures 3.3a and 

3.3d). At high tide, though, the alongshore variability was higher due to stronger 

wave breaking at the southern end of the beach, where the shoal was observed 

(see Figures 3.2, 3.3c and 3.3f). Alongshore changes in Rs were up to 0.68 and 

0.63 m at low and high tide, representing an increase from the smallest to the   
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Figure ‎3.6. Alongshore series with dashed, thin and thick lines representing data obtained 

at low, mid and high tide: (a) significant runup height Rs. (b) Variance integrated over the 

incident σ2Inc (f>0.05 Hz) and (c) over the infragravity σ2Ig (f<0.05 Hz) regions of the 

spectrum. (d) Ratio between σ2Ig and σ2Inc. (e) Degree of wave breaking quantified as 

∫Pbrdx. (f) Beach slope calculated as βmean. 
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highest values of 78% and 44%, respectively (substantially higher at low tide 

since Rs was smaller). 

Figure  3.6 shows the alongshore series of the total and partitioned swash variance 

observed for the three periods analyzed, with the alongshore series of ∫Pbrdx and 

βmean also shown. A linear alongshore trend exists during all periods for Rs with 

values normally higher towards the northern end of the beach (Figure  3.6a). Small 

scale alongshore variability in Rs and partitioned variances (Figure  3.6a-c) 

between y ~ [-130 m to -90 m] and y ~ [40 m to 100 m] may be associated with 

the incipient cusp field evident at these locations (see Figure  3.2). 

The incident swash variance σ
2

Inc had similar spatial and temporal patterns to Rs 

(Figure  3.6b). At infragravity frequencies, conversely, there is no clear alongshore 

trend, yet some of the highest variances can be observed towards the southern end 

of the beach at high tide (Figure  3.6c). Additionally, σ
2

Ig was found to be typically 

larger at low tide compared to high tide, in contrast to σ
2

Inc and Rs (as also 

observed by Guedes et al., 2011). The ratio between σ
2
 at infragravity and 

incident frequencies showed a distinct behavior with σ
2

Ig/σ
2

Inc consistently 

increasing from high to low tide (Figure  3.6d). The alongshore series of ∫Pbrdx and 

βmean showed opposing trends with the former predominantly decreasing and the 

latter increasing from the southern to the northern side of the beach (Figures 3.6e 

and 3.6f). 

In order to understand the competing role of the alongshore versus temporal 

variability in the environmental parameters the proportion of the total variance 

explained by its temporal Pt and spatial Py components were defined as: 

  
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where χ is a generic environmental parameter, overbar and angle bracket denote 

respectively temporal and spatial average and subscript m denotes average over 

the whole dataset.  The results are reported in Table  3.1. The temporal 

contributions to the total variance Pt were greater than the alongshore 

contributions Py for all environmental parameters except for the infragravity 

variance σ
2

Ig. Pt was a factor of 7 and 8 higher than Py for Rs and σ
2

Inc 

respectively. For σ
2

Ig, on the other hand, Py was an order of magnitude greater 

than Pt. The temporal contributions to the total variance were also higher than the 

alongshore contributions for the amount of wave breaking over the bar and the 

beach slope although the percentages explained by Pt were substantially greater 

for wave breaking (Table  3.1). 

 

Table ‎3.1. Proportion of the total variance in the space-time series χ explained by their 

temporal Pt and spatial Py contributions, calculated using Equations (3.3) and (3.4). 

χ Pt Py 

β2σ 0.42 0.21 

βmean 0.48 0.29 

∫Pbrdx 0.77 0.16 

Max(Pbr) 0.88 0.05 

Rs  0.83 0.12 

σ
2

Inc 0.84 0.10 

σ
2

Ig 0.03 0.37 

σ
2

Ig/σ
2

Inc 0.82 0.09 
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Not only did the relative magnitude between the incident and infragravity swash 

bands change alongshore but also the shape of the spectra. Figure  3.7 shows the 

runup spectra calculated at mid tide at all the alongshore positions. Although 

prominent peaks at infragravity frequencies can be observed for some alongshore 

regions (e.g. y < -110 m, y > 50 m), others are characterized by a relatively white 

spectrum at infragravity frequencies (e.g. 0 m < y < 50 m). The infragravity peaks 

are usually at or near either the first fp/2 or second sub-harmonics fp/3 (where fp is 

the incident peak frequency). These patterns were similar at low and high tide, 

although at low tide the infragravity peaks were greater than the incident peaks at 

some locations and at high tide the former were typically an order of magnitude 

smaller than the latter (not shown). 

3.3.2 Regression analysis 

The influence of environmental conditions on the alongshore and temporal 

properties of the swash was investigated using regression analysis (the results of 

all linear regression are reported in Table  3.2). Figure 3.8a shows a scatter plot of 

significant runup height against beach slope βmean. A significant linear correlation 

was observed at each of the 3 stages of the tide with correlation coefficients r
2
 of 

0.37, 0.81 and 0.52 at low, mid and high tide, respectively (all reported 

regressions were significant with p-value < 0.05). The weaker correlation was 

observed at low tide, where the extrapolation of the bathymetry may have affected 

the evaluation of the beach slope. The strongest dependence of runup height on 

βmean occurred at mid tide, where the swash ran over the somewhat linear part of 

the beach face and where there was still wave breaking at all alongshore locations 

(Figures 3.3b and 3.3e). At high tide, where the alongshore variability in wave 

breaking was greatest and where part of the swash cycles extended over the beach 

step, the correlations were considerably smaller than at mid tide. Analysis of the 

relationship between β2σ and Rs showed the same patterns described above at low 

and mid tide (with slightly smaller correlation coefficients), although at high tide  
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Figure ‎3.7. Top panel: alongshore series of runup spectra normalized by the beach slope 

βmean. Spectra were calculated from the mid-tide time series which were spaced at 1-m 

intervals. Color bar represents the logarithm of the normalized power. Bottom panels: 

Spectra obtained from the same period every 10-m alongshore (positions are indicated in 

the top left corner of each panel). Alongshore-averaged frequencies corresponding to the 

peak (f), first (f/2) and second sub-harmonic (f/3) are indicated. 
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 β2σ decreased due to the beach step and no significant linear correlation was 

observed. When the whole dataset is analyzed, we notice that (1) the correlation 

between βmean and Rs is significant (r
2
=0.66, about 20% smaller than the value 

observed at mid tide); (2) the regression line intercept obtained at high tide is a 

factor of 2 higher than that obtained at low and mid tide which suggests other 

parameters control temporal changes in Rs, consistent with Guedes et al. (2011); 

and (3) there is a trend with wave breaking increasing towards the lowest values 

of Rs and βmean (Figure 3.8a). 

Figure 3.8b shows the correlations between Rs and ∫Pbrdx. Significant linear 

correlation was observed at low and high tide although the linear dependence was 

weak (r
2
=0.15 and 0.17, respectively). However, Rs showed a stronger nonlinear 

relationship to wave breaking at high tide with r
2
 increasing to 0.41 when a 

quadratic regression model was used (Table  3.3). At mid tide, where the 

correlation between Rs and βmean was greatest, no significant linear relationship 

between Rs and ∫Pbrdx was observed. The regression over the whole dataset 

showed a strong linear correlation between these two variables with r
2
=0.75 (14% 

higher that the correlation coefficient between Rs and βmean for the whole dataset). 

This suggests that although alongshore changes in Rs were better correlated with 

changes in beach slope (when the beach step is not included in the slope 

calculations), changes in wave breaking explain the Rs variability better when the 

temporal variability is also included. 

The effects of combining changes in beach slope and wave breaking in the swash 

were evaluated using a multiple regression model. Table  3.3 synthesizes the 

results obtained using a quadratic model with different combinations of 

“independent” variables to represent beach slope (βmean) and wave breaking over 

the bar (Max(Pbr) and Xbr). Using all the three independent variables in the model 

improved the model performance for all tides and also using the whole dataset 

(compare the adjusted correlation coefficients r
2

adj and the root mean square errors 

Erms). However, the improvement was most evident at low tide, when r
2

adj   
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Figure ‎3.8. Scatter plots of environmental parameters with triangles, circles and squares 

representing data obtained at low, mid and high tide respectively: (a) significant runup 

height Rs as a function of beach slope quantified as βmean with color bar representing the 

amount of wave breaking calculated as ∫Pbrdx. (b) Rs as a function of ∫Pbrdx with color 

bar representing βmean. (c) βmean as a function of ∫Pbrdx. Thick solid, dashed and thin solid 

lines are the best linear fit between βmean and ∫Pbrdx for the data obtained at mid and high 

tide and over the whole dataset respectively (the three cases where significant linear 

relationship at the 95% confidence level was observed). 
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increased by 50% and 80% compared to the model using Xbr and βmean only, 

respectively. Although at high tide there was also a substantial improvement when 

using the three independent variables (r
2

adj=0.66, respectively 29% and 78% 

higher than using βmean and Max(Pbr) alone), at mid tide the enhancement was 

small (with r
2

adj barely 5% higher than that obtained with the model using βmean 

only). Overall, best results were achieved with the quadratic model over a linear 

one, for the three stages of tide (up to 80% higher at low tide, not shown). This is 

because the two variables adopted as a proxy of wave breaking in the model 

showed a nonlinear relationship to Rs within each tide period, whereas the linear 

and quadratic models using βmean alone had essentially the same skill. 

Table ‎3.2. Regression analysis results. 

  x y m b r
2
 

Low tide 

βmean Rs (m) 5.558358 0.6151 0.37 

∫Pbrdx Rs (m) -0.000627 1.6332 0.15 

βmean σ
2

Inc(m
2
) 0.716397 -0.0090 0.45 

∫Pbrdx σ
2

Inc(m
2
) -0.000069 0.1124 0.13 

βmean σ
2

Ig(m
2
) 0.144143 0.0120 0.12 

∫Pbrdx σ
2

Ig(m
2
) -0.000031 0.0507 0.17 

            

Mid tide 

βmean Rs (m) 5.826599 0.6707 0.81 

∫Pbrdx Rs (m) -0.000369 1.5772 0.13 

βmean σ
2

Inc(m
2
) 0.724831 0.0063 0.71 

∫Pbrdx σ
2

Inc(m
2
) -0.000027 0.1080 0.04 

βmean σ
2

Ig(m
2
) 0.183494 0.0019 0.43 

∫Pbrdx σ
2

Ig(m
2
) -0.000021 0.0356 0.21 

            

High tide 

βmean Rs (m) 4.061148 1.2842 0.52 

∫Pbrdx Rs (m) -0.000390 1.9478 0.17 

βmean σ
2

Inc(m
2
) 1.079916 0.0438 0.67 

∫Pbrdx σ
2

Inc(m
2
) -0.000106 0.2210 0.24 

βmean σ
2

Ig(m
2
) -0.099998 0.0353 0.21 

∫Pbrdx σ
2

Ig(m
2
) 0.000012 0.0182 0.12 

            

All tides 

βmean Rs (m) 9.267611 0.3787 0.66 

∫Pbrdx Rs (m) -0.001101 2.0673 0.75 

βmean σ
2

Inc(m
2
) 1.732476 -0.0848 0.65 

∫Pbrdx σ
2

Inc(m
2
) -0.000206 0.2309 0.75 

βmean σ
2

Ig(m
2
) -0.020556 0.0256 0.01 

∫Pbrdx σ
2

Ig(m
2
) 0.000003 0.0214 0.02 

            

y=mx+b. Correlation coefficient r
2
 significant at the 95% confidence level showed 

in bold. 
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Table ‎3.3. Multiple regression results. Independent variables Pbr and β were quantified as 

Max(Pbr) and βmean, respectively. r
2
 is the correlation coefficient for each model. r

2
adj is 

the correlation coefficient adjusted for the number of observations n and unknown 

coefficients p as:       pnnr  111 2
. Erms is the root mean square error, given in 

meters. Models with best skill (high r
2
adj, small Erms) for each stage of tide are highlighted 

in bold. 

Dependent 

variable 

Independent 

variables 
r

2
 r

2
adj Erms n 

Low tide 

Rs Pbr 0.03 -0.04 0.15 31 

Rs β 0.39 0.35 0.12 31 

Rs Xbr 0.46 0.42 0.11 31 

Rs Pbr, β 0.64 0.57 0.09 31 

Rs Pbr, Xbr 0.57 0.49 0.10 31 

Rs β, Xbr 0.57 0.48 0.10 31 

Rs Pbr, β, Xbr 0.74 0.63 0.08 31 

            

Mid tide 

Rs Pbr 0.14 0.08 0.11 31 

Rs Β 0.83 0.82 0.05 31 

Rs Xbr 0.12 0.06 0.11 31 

Rs Pbr, β 0.84 0.81 0.05 31 

Rs Pbr, Xbr 0.26 0.11 0.10 31 

Rs β, Xbr 0.88 0.85 0.04 31 

Rs Pbr, β, Xbr 0.90 0.86 0.04 31 

            

High tide 

Rs Pbr 0.41 0.37 0.13 31 

Rs β 0.54 0.51 0.11 31 

Rs Xbr 0.06 0.00 0.16 31 

Rs Pbr, β 0.65 0.59 0.10 31 

Rs Pbr, Xbr 0.42 0.31 0.13 31 

Rs β, Xbr 0.62 0.54 0.10 31 

Rs Pbr, β, Xbr 0.76 0.66 0.08 31 

            

All tides 

Rs Pbr 0.78 0.78 0.16 93 

Rs Β 0.66 0.66 0.20 93 

Rs Xbr 0.48 0.47 0.25 93 

Rs Pbr, β 0.84 0.83 0.14 93 

Rs Pbr, Xbr 0.87 0.86 0.12 93 

Rs β, Xbr 0.76 0.75 0.17 93 

Rs Pbr, β, Xbr 0.93 0.92 0.09 93 

            

Quadratic models: Y=b0+b1X1+b2X2+b3X1X2+b4X1
2
+b5X2

2
, where Y is the predicted 

variable, Xq is the q
th

 independent variable, b0 is the intercept and bk, k=1,2,… are 

the regression coefficients. 
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Figure 3.8c shows the scatter plot between ∫Pbrdx and βmean. There is a negative 

relationship between the amount of wave breaking and the beach slope over the 

complete dataset with changes in ∫Pbrdx explaining 55% of βmean changes. When 

regressing the data from each stage of tide, a negative relationship occurred also at 

mid and high tide with r
2
 amounting to 0.26 and 0.31, respectively. At low tide, 

when part of the beach face was not surveyed and when wave breaking was more 

homogeneous alongshore, no significant linear relationship was observed. 

The scatter plot of the ratio between the variance at infragravity and incident 

frequencies σIg/σInc versus significant runup height Rs is shown in Figure 3.9. A 

negative linear relationship was observed at high tide, with changes in Rs 

explaining 26% of the observed changes in σIg/σInc. Although no significant linear 

relationship was observed between these variables at low and mid tide, a strong 

negative correlation was found using the whole dataset with r
2
=0.67 which is 

consistent with the increase in the relative contribution of the infragravity 

frequencies as wave breaking increases and the incident wave energy is 

dissipated. 

3.4 Discussion 

3.4.1 Environmental control 

The amount of wave breaking was observed to be negatively correlated with the 

foreshore beach slope when the beach step was not included (Figure 3.8c). This is 

not surprising given that the concave shape of the beach face means that its 

alongshore-averaged slope decreases substantially at low tide (Table  3.4) when 

the water depth over the sandbar is smaller and there is more wave breaking over 

it (Figures 3.3, 3.6e). Nevertheless, the significant linear correlation also observed 

using only the mid and high tide datasets indicates that there is indeed some 

degree of dependence between the local beach slope βmean and the degree of wave 

breaking over the bar. This dependence suggests a morphological coupling 
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between the sandbar and the shoreline (e.g. Castelle et al., 2010) and is consistent 

with observations of rhythmic sandbar features coupled with shoreline 

rhythmicity (e.g. Sonu, 1973; Coco et al., 2005; Castelle et al., 2010). 

Guedes et al. (2011) showed that changes in the degree of bar-induced wave 

breaking dissipation can be the dominant control on changes to swash motions. In 

that study the breaking patterns were essentially modulated by tidal-induced 

changes in the water depth over the sandbar crest. The limited alongshore 

variability in the sandbar morphology observed in this study would be expected to 

yield limited effect on alongshore runup variability. However, a relatively broad 

shoal was observed near the southern end of the beach which resulted in some 

degree of alongshore variability in wave breaking, most evident during high tide. 

At high tide the negative correlation between Pbr(y) and Rs(y) was greatest 

(Table  3.3), suggesting that these small alongshore changes in bar morphology did 

reflect alongshore changes in swash height, although it does not appear to have 

been the dominant process controlling these changes. Our observations suggest 

that well-developed three-dimensional sandbar morphology might yield 

substantial alongshore runup variability. Generality of previous studies analyzing 

runup elevations at a single location might be limited and future studies should 

account for the effect of alongshore variability in both the beach face and the 

sandbar. 

Consistent with Ruggiero et al. (2004), although in this case for a much steeper 

beach, alongshore runup variability was predominantly induced by alongshore 

changes in beach slope. Though alongshore variations in wave breaking also 

appear to have affected the magnitude of the swash motions, Rs(y,t) correlated 

consistently better with βmean(y,t) than Max(Pbr)(y,t) or ∫Pbrdx(y,t) (see Tables 3.2 

and 3.4). However, the multiple regression results show that one must account for 

alongshore changes in wave breaking patterns in order to best predict alongshore 

variations in runup height. The model showed the best skill when measures of the 

fraction of broken waves and the cross-shore positions of breaking were   
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Figure ‎3.9. Scatter plot of the ratio between the variance integrated over infragravity σ
2
Ig 

and incident frequencies σ
2

Inc as a function of significant runup height Rs. Triangles, 

circles and squares represent data obtained at low, mid and high tide respectively. Color 

bar represents the amount of wave breaking calculated as ∫Pbrdx. 

simultaneously used as inputs which possibly results from neither of these 

quantities being an optimum descriptor for wave energy dissipation. As 

mentioned earlier, the method used for estimating the probability of breaking did 

not distinguish breaking-generated foam (directly associated with wave 

dissipation) from residual foam, left behind the waves after they break. 

Additionally, though the cross-shore position of wave breaking is potentially 

related to the depth of the bar crest and therefore the wave dissipation over it, it 

does not explain alongshore changes in dissipation patterns that might occur 

shoreward of the bar crest (such as over the region where the shoal was observed). 

The nonlinear relationship observed between Rs and wave breaking might be also 

associated with the inability to have a precise measure of wave energy dissipation. 

3.4.2 Incident swash 

A large part of the temporal variations in the swash amplitude was driven by 

dissipation of the incident band of the swash. Analysis of Figures 3.6a and 3.6b 

shows that the incident swash variance σ
2

Inc, which amounted (on average) to 89% 
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and 68% of the total swash variance at high and low tide (Table  3.5) follows a 

similar behavior to Rs. The infragravity variance tends to follow an opposing 

trend, as also observed by Guedes et al. (2011). However, an interesting pattern 

can be observed. Between mid and high tide, 64% and 71% of the total changes in 

(alongshore-averaged) Rs and σ
2

Inc were observed (see Table  3.4). Conversely, 

most of the alongshore-averaged changes in beach slope βmean (64%) occurred 

between low and mid tide. For the small wave heights that occurred during the 

experiment, the period between mid and high tide represents a transition when 

most waves changed from breaking to non-breaking over the sandbar (see 

Figure  3.3). It appears that this transition plays a major role in the dissipation 

pattern of the incident wind waves (notice that 56% of the alongshore-averaged 

changes in Max(Pbr) were observed during the mid-to-high tide period, in 

agreement with the incident dissipation pattern). 

The degree of dominance of the incident over the infragravity band of the swash 

was associated with the Iribarren number ξ0 (Figure 3.10, r
2
=0.56). The high 

intercept obtained from regression analysis between these two variables implies 

that this relationship does not hold for extreme energetic conditions, where the 

Iribarren number is typically smaller than 0.3 and the infragravity band has been 

shown to account from 85% to 98% of the total energy in the swash (Ruessink et 

al., 1998; Ruggiero et al., 2004; Sénéchal et al., 2011). 

 

Table ‎3.4. Alongshore-averaged parameters. 

  Low tide Mid tide High tide 

Rs (m) 1.10 1.36 1.84 

σ
2

Inc (m
2
) 0.053 0.092 0.188 

σ
2

Ig (m
2
) 0.024 0.023 0.021 

βmean 0.086 0.118 0.136 

Max(Pbr) (%) 61.1 34.9 14.2 
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Figure ‎3.10. Scatter plot of the relative amount of incident variance σ
2

Inc/σ
2
 as a function 

of the Iribarren number ξ0, calculated using Equation (3.1) and βmean as the beach slope. 

Triangles, circles and squares represent data obtained at low, mid and high tide 

respectively. Color bar represents the amount of wave breaking calculated as ∫Pbrdx. The 

equation of the regression line is σ
2
Inc/σ

2
 = 0.16ξ0 + 0.51. 

 

 

Table ‎3.5. Percentages of the total swash variance at incident and infragravity 

frequencies. 

    Low tide Mid tide High tide 

σ
2

Inc 

min 61 69 78 

max 77 86 94 

mean 68 80 89 

std 4 3 3 

σ
2

Ig 

min 23 14 6 

max 39 31 22 

mean 32 20 11 

std 4 3 3 
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3.4.3 Infragravity swash 

The infragravity band of the swash spectrum showed large alongshore variability 

during all periods (Figures 3.6c, 3.7, Table  3.1), despite the absence of well-

developed three dimensional features on the beach face (Figure  3.2). The biggest 

changes in σ
2

Ig (up to a factor of 3) happened during low tide, when both wave 

breaking and σ
2

Ig were greatest (Figures 3.3, 3.6, Table  3.4). During mid and high 

tide, though, alongshore changes were also large with σ
2

Ig varying by more than a 

factor of two. The σ
2

Ig was found to be significantly correlated with βmean at mid 

and high tide (Table  3.2), in contrast to the results reported by Stockdon et al. 

(2006) who found generally no correlation between these variables when three 

dimensional morphological features were not well developed. However, the 

patterns were not consistent, with positive correlation observed during mid tide 

and negative during high tide (see Table  3.2). The infragravity variance σ
2

Ig was 

also found to be significantly correlated with ∫Pbrdx(y) at low tide (when no 

significant correlation between σ
2

Ig and βmean was observed) and mid tide (when 

wave breaking and beach slope were not significantly correlated). Nevertheless, 

none of these correlations were strong (in agreement with Stockdon et al., 2006) 

and one would expect the alongshore modulation of infragravity variance to have 

been also controlled by processes other than the local beach face slope and the 

adjacent degree of wave breaking over the bar. 

The shape of the spectrum at infragravity frequencies displayed distinct 

alongshore patterns. In contrast to some previous observations (e.g. Guza and 

Thornton, 1982; Ruessink et al., 1998; Holland and Holman, 1999), prominent 

peaks were observed below the sea/swell frequencies at distinct alongshore 

positions (Figure  3.7), especially at low and mid tide when relatively more energy 

was present at infragravity frequencies. There were also alongshore positions 

where the infragravity spectral shape was considerably flatter. The alongshore 

variation in the infragravity peaks might be indicative of the presence of edge 

waves. Figure  3.11 shows the wavenumber-frequency spectra E(k,f) obtained at 
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mid tide using the IMLE technique. Assuming a stationary wave field, the wave 

energy associated with edge waves would be expected to extend along ridges in 

wavenumber-frequency space governed by the dispersion relationship for edge 

waves. Here, the dispersion relationship was evaluated using a numerical model 

that accounts for nearshore bathymetry (Howd et al., 1992) to include the effects 

of the sandbar on the theoretical dispersion lines (Bryan et al., 1998). Although 

most of the energy in E(k,f) is concentrated in the wavenumber-frequency regions 

corresponding to leaky waves, some ridges within the low-mode edge wave 

region can be observed (Figure  3.11). The most prominent ridge lies near the 

lower mode number n=0 with some energy also lying between modes n=1 and 

n=2, and peaks between fp/2 and fp/3 (consistent with the frequency spectra) and 

wavelengths around 40–60 m. These patterns appeared for the three periods 

analyzed (not shown). Although the mechanisms responsible for generating the 

edge wave signals observed here are not clear, these observations agree with other 

studies showing the importance of lower-mode edge waves in the infragravity 

band of the swash spectra (e.g. Oltman-Shay and Guza, 1987) and might be 

related with the alongshore modulation of infragravity swash found in this dataset. 

The edge wave dispersion patterns were not homogeneous along the beach. 

Frequency-wavenumber spectra estimated over moving sequences of adjacent 

time series (each sequence spanning 90 m alongshore) show that the low-mode 

edge wave dispersion patterns were modified according to the alongshore location 

of these sequences (Figure  3.12). Numerical model predictions of the low-mode 

dispersion lines using the average profile over each section (Figure  3.12, dashed 

lines) show such variability to be explained by small alongshore variations in the 

bar-trough morphology although a mismatch between the locations of some of the 

ridges in E(k,f) and modeled dispersion lines can be observed. Such differences 

possibly originated from inaccurate estimates of the nearshore bathymetry (low 

frequencies are particularly sensitive to the offshore bathymetry, which was 

inferred from the video images), the effects of alongshore currents (e.g. Howd et   
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Figure ‎3.11. (a) Wavenumber-frequency spectra E(f,k) of runup elevation time series 

estimated at mid tide using the IMLE method, over 16 time series spaced every 10 m 

alongshore, between -150 m ≤ Y ≤ 0 m. White thick solid lines show the leaky wave cut-

off calculated as ω
2
 = gk (where ω is the radian frequency 2πf) with a wavenumber offset 

of 0.006 m
-1

 (following Ciriano et al., 2005). White dashed lines show numerical model 

predictions of modes n=0, 1 and 2 edge waves from the bottom to the top. Color bar 

represents the logarithm of energy density Ed. (b) Maximum energy density over the 

region corresponding to the numerical model prediction of mode-zero edge wave 

(evaluated for each frequency, between the wavenumber satisfying the dispersion 

relationship ± 0.005 m
-1

), plotted against wave frequency f. Thick and thin lines are 

associated with positive and negative wavenumbers respectively. Contributions from 

leaky modes have not been included. 

al., 1992; Oltman-Shay and Howd, 1993; Bryan and Bowen, 1998) which were 

not measured during the experiment (notice that the low-mode ridges are not 

symmetric along the k-space) or linear approximations in the edge wave model 

(Ciriano et al., 2005). The relative contribution of edge waves to the total energy 

density spectrum also changed alongshore. Figure  3.13 shows that the percentage 
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of energy within the region corresponding to edge waves in the E(k,f) was greatest 

near the southern end of the beach, where the shoal was observed (see Figure  3.3). 

This pattern was observed for the three stages of tide (Figure  3.13) and suggests 

that edge waves might have been predominantly forced around the location where 

the shoal was observed, due to enhanced nonlinear energy transfer over the shoal, 

and dissipated part of their energy as they propagated away from this region. This 

is also consistent with observations of Henderson and Bowen (2002) who showed 

infragravity energy to be higher near the region of infragravity forcing. 

 

Figure ‎3.12. Wavenumber-frequency spectra E(f-k) of runup elevation time series 

estimated at high tide using the IMLE method. Spectra were estimated over sequences of 

10 adjacent hourly time series spaced every 10 m alongshore (central alongshore position 

is shown at the top of each panel). Thick solid lines show the leaky wave cut-off with a 

wavenumber offset of 0.006 m
-1

 (see the caption of Figure ‎3.11). Dashed lines show 

numerical model predictions of modes n=0, 1 and 2 edge waves from the bottom to the 

top, using a profile averaged over the alongshore location of each estimate. Thin solid 

lines show numerical model predictions of mode n=0 edge wave using a profile averaged 

over the whole analyzed region. 
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Figure ‎3.13. Left panels: frequency f plotted as a function of alongshore wavenumber k 

showing the f-k space (in white) over which the E(k,f) was integrated to estimate the leaky 

(a) and edge waves (b) contributions (shown on the right). Right panels: proportion of 

energy density Ed within the regions corresponding to leaky (c) and edge waves (d) 

plotted as a function of alongshore position on the beach with dashed, thin and thick lines 

representing data obtained at low, mid and high tide. Each E(k,f) spectrum was calculated 

using 10 adjacent time series spanning 90 m along the beach centered at y±45 m. 

3.5 Conclusion 

Large alongshore variability in swash motions was observed on an intermediate 

beach not characterized by the presence of well-developed, three dimensional 

morphological features such as prominent beach cusps, mega-cusps or crescent 

sandbars. Most of the variability occurred as a result of changes in the incident 

band of the swash which was always the dominant component of the swash 

motions. These changes were observed to be primarily driven by variations in the 

local beach face slope although alongshore variability in wave breaking over the 

bar also contributed to these changes. However, when tidal variations were also 

accounted for, variation in bar-induced wave breaking was the dominant control 

on swash height. Accounting for the combining effects of beach slope and wave 
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breaking dissipation was found to be critical to explaining alongshore changes in 

swash height. 

The shape of the spectra at infragravity frequencies was not always white but 

showed prominent peaks for some alongshore locations on the beach, near the 

frequencies corresponding to half and one-third of the incident peak. These 

infragravity peaks were possibly associated with the presence of low-mode edge 

waves which were detected in the swash observations during the three stages of 

the tide. These alongshore-trapped waves might have been predominantly forced 

around the location where a shoal was observed and appear to have dissipated part 

of their energy as they propagated along the coast away from the shoal. The low 

modes might have caused part of the alongshore variability in infragravity swash 

height observed here which was not well explained by changes in the local beach 

face slope or the degree of wave breaking over the bar. However, the infragravity 

band is often not dominant under intermediate and reflective conditions such as 

those observed in this study and therefore edge waves are not expected to be the 

dominant process driving alongshore changes in swash motions under these 

conditions. 
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Chapter 4 

4 Observations of wave energy fluxes and swash 

motions on a low-sloping, dissipative beach 

 

 

 

 

 

 

R. M. C. Guedes, K. R. Bryan, G. Coco (in preparation), Observations of wave 

energy fluxes and swash motions on a low-sloping, dissipative beach, submitted 
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Contribution of authors 

Chapter 4 presents the article entitled “Observations of wave energy fluxes and 

swash motions on a low-sloping, dissipative beach”, submitted in December 2012 

to the Journal of Geophysical Research. In this study, an extensive field collection 

of offshore and surfzone wave measurements, intertidal beach morphology 

surveys and video runup data are analysed to investigate the surfzone control on 

swash oscillations on a low-sloping, dissipative beach. 

The entire field dataset was obtained during a field experiment in Raglan, New 

Zealand, which I designed and executed as part of my PhD. I also wrote the code 

to perform the statistical methods, processed and analysed all the data, produced 

the figures, and wrote the manuscript. My co-authors assisted with the planning 

and execution of the field experiment, edited drafts, and provided advice on 

direction. 
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Abstract 

Field observations of swash and ocean waves show that runup saturation at 

infragravity frequencies (< 0.05 Hz) can occur under mild offshore energy 

conditions if the beach slope is sufficiently gentle. Infragravity saturation was 

observed for higher-frequency (> 0.025–0.035 Hz) infragravity waves, where 

typically less than 5% of the (linear) energy flux was reflected from the beach and 

where, similar to the sea-swell band, the swash energy was independent of 

offshore wave energy. The infragravity frequency range of saturation was 

determined by the tide, with saturation extending to lower frequencies at low tide 

when the local beach face slope over the concave-shaped profile was gentler. 

Runup was strongly dominated by infragravity frequencies, which accounted on 

average for 96% of the runup variance, and its energy levels were entirely 

consistent with strong infragravity wave dissipation observed in the surfzone, 

particularly when including the nonlinear contributions to the wave energy fluxes. 

Our observations show evidence of nonlinear interactions involving infragravity 

and high-frequency, harmonic waves, and suggest that these harmonics could play 

a role in the wave energy balance near the shoreline on low-sloping, dissipative 

beaches. 

Keywords: swash, waves, infragravity, energy flux, dissipation. 
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4.1 Introduction 

Energy spectra of wave-driven shoreline oscillations (runup) can be dominated by 

low-frequency infragravity motions (0.004–0.05 Hz), below the sea-swell 

frequency range (0.05–0.4 Hz) that normally dominates the offshore wave 

spectrum (e.g., Guza and Thornton, 1982; Guza et al., 1984; Holman and Bowen, 

1984; Holland et al., 1995; Raubenheimer et al., 1995; Ruessink et al., 1998; 

Ruggiero et al., 2004; Sénéchal et al., 2011). This frequency downshift implies 

dissipation of (steeper) waves at sea-swell frequencies, which occurs mostly due 

to breaking in shallow water (e.g. Thornton and Guza, 1983), and energy transfer 

to gently-sloping infragravity waves (e.g. Henderson et al., 2006), for which 

breaking is less likely to occur. Infragravity swash motions can provide the main 

mechanism for sediment transport on low-sloping, dissipative beaches (Butt and 

Russell, 2000) and therefore predicting their occurrence and magnitude is a 

critical component of shoreline change models. Yet, we do not have a clear 

understanding of the processes that control the infragravity wave transformations 

between the very shallow surfzone and swash zone as only few field observations 

(e.g., Holland et al., 1995; Raubenheimer et al., 1995) have linked cross-shore 

wave evolution patterns in shallow water to infragravity swash motions. 

Low-frequency infragravity waves can be excited by interactions of short waves at 

sea-swell frequencies in the shoaling region. Longuet-Higgins and Stewart (1962) 

showed that a pair of short waves with closely-spaced frequencies f1 and f2 and 

wavenumbers k1 and k2 excite group-bound, out-of-phase infragravity waves with 

frequency and wavenumber f1 - f2 and k1 - k2, due to low-frequency modulations of 

mass and momentum fluxes associated with the wave groups. As the water depth 

decreases and the short wave pair shoals, the interaction becomes nearly resonant, 

since the bound wave frequency and wavenumber approach those satisfying the 

dispersion relationship, causing energy to be more easily transferred from the 

short to the infragravity waves (e.g., Battjes et al., 2004). This transfer has been 

demonstrated in field observations, where statistically-significant phase coupling 
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involving pairs of sea swell and infragravity waves at their difference frequency 

has been observed using bispectral analysis (e.g. Hasselmann et al., 1963; Elgar 

and Guza, 1985; Herbers et al., 1994; Ruessink, 1998a; Sheremet et al., 2002). 

Within the surfzone, the sea-swell wave amplitude becomes depth-limited (e.g., 

Thornton and Guza, 1983; Howd et al., 1991; Raubenheimer et al., 1996) and the 

groupiness of short waves drastically decreases (List, 1991) due to wave breaking. 

The group-bound long waves are believed to be ‘released’ and propagate onshore 

as free waves (Longuet-Higgins and Stewart, 1962; Janssen et al., 2003), 

eventually reflecting from the beach. Infragravity forcing may also take place near 

the edge of the surfzone due to group-induced temporal and spatial variations in 

the breakpoint position (Symonds et al., 1982; Lippmann et al., 1997). Nearshore 

infragravity energy increases with offshore sea-swell wave energy (Holman, 

1981; Guza and Thornton, 1982; 1985). However, recent observations have 

shown that infragravity dissipation might limit energy increases in very shallow 

water, due to bottom friction (e.g. Henderson and Bowen, 2002), infragravity 

wave breaking (e.g., Battjes et al., 2004; van Dongeren et al., 2007) or nonlinear 

energy transfers from low frequency back to higher frequency motions (e.g., 

Henderson et al., 2006; Thomson et al., 2006). 

Swash motions are dominated by infragravity frequencies when dissipation 

influences the sea-swell wave energy range more than the infragravity energy 

range. Such conditions are usually met on gently-sloping, dissipative beaches, 

characterized by low values of a nondimensional beach steepness parameter, the 

Iribarren number ξ0 (Iribarren and Nogales, 1949; Battjes, 1974) 

  21

00

0
LH


  ,                                             (4.1) 

where β is the beach slope (for a planar beach), H0 is the deep water wave height 

and L0 is the deep water wavelength. However, the roles of offshore conditions 

(H0 and L0) and surfzone conditions (β) in controlling infragravity swash are still 
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debated. For example, Guza and Thornton (1982) measured swash motions under 

mildly dissipative conditions (β and H0 roughly between 0.03–0.05 and 0.5–1.5 m 

respectively, ξ0 ~ 0.3–1.4) and found that whereas vertical swash excursions 

(runup) at sea-swell wave frequencies were saturated (independent of H0), 

infragravity runup RIg increased linearly with H0, at a rate of 0.7. Similar linear 

dependence was found by Ruessink et al. (1998) for a site exposed to highly 

dissipative conditions (β ~ 0.017, H0 ~ 0.5–5 m, ξ0 ~ 0.05–0.3) although a much 

smaller coefficient of proportionality, 0.18, was observed. Holman and Sallenger 

(1985), analyzing a dataset obtained under broader (and overall more reflective) 

environmental conditions (ξ0 ~ 0.5–4), found RIg (normalized by H0) to be linearly 

dependent on ξ0, suggesting that beach slope and wavelength may also be 

important. The beach slope effect was confirmed by Ruggiero et al. (2004) who 

observed alongshore changes in RIg under highly dissipative conditions (ξ0 ~ 

0.05–0.25) to be linearly dependent on β. Alternatively, Stockdon et al. (2006) 

examined infragravity runup for a dataset composed of measurements from 10 

different field experiments that spanned a range of ξ0 and found RIg to be best 

predicted using a parameter dependent only on H0 and L0 (and no significant 

linear relationship with β). More recently, Guza and Feddersen (2012) showed 

that infragravity runup may also depend on incident wave directional and 

frequency spreading. 

There is also mounting evidence that infragravity swash can be saturated, or 

independent of offshore wave conditions (Ruessink et al., 1998; Ruggiero et al., 

2004; Sénéchal et al., 2011) in a similar way to swash at incident frequencies 

(e.g., Huntley, 1977; Guza and Thornton, 1982; Holman and Sallenger, 1985; 

Raubenheimer and Guza, 1996). Infragravity swash saturation is consistent with 

breaking of infragravity waves and has typically been observed under highly 

energetic offshore wave conditions (when the long waves are steeper). Ruessink et 

al. (1998) suggested the lowest frequency for which saturation occurs fs to be 

related to ξ0, with fs within the infragravity range for ξ0 roughly less than 0.3. The 
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authors observed different patterns for RIg when ξ0 < 0.3 and linked these 

differences to infragravity saturation. Ruggiero et al. (2004) found infragravity 

saturation to extend into somewhat lower frequencies for alongshore regions 

where the beach face slope was gentler (for equal offshore wave conditions). 

Infragravity swash saturation has been typically inferred from the characteristics 

of the swash spectra and their relationship with offshore wave conditions. 

This work explores the exchanges of energy between the inner surfzone and the 

swash using new in-situ observations of cross-shore wave evolution in very 

shallow water coupled with video observations of wave breaking patterns and 

swash motions, obtained on a low-sloping dissipative beach. Although swash 

observations are common, and infragravity saturation has been documented in 

previous studies, the swash infragravity levels have not been linked to the flux of 

energy from the surfzone, and how and where the energy transfer between 

incident and infragravity frequencies occurs has not been fully explored. We use 

simultaneous measurements of water pressure and velocity obtained at different 

cross-shore distances from the shoreline (controlled by changes in tide) to 

estimate cross-shore linear and nonlinear wave energy fluxes and nonlinear 

energy transfers among frequencies, based on equations described by Henderson 

et al. (2006) and Sheremet et al. (2002). Our findings indicate that infragravity 

dissipation is strong within the surfzone, increases with infragravity wave 

frequency and plays a pivotal role in controlling the run-up spectrum. 

4.2 Theory 

In order to investigate the possible surfzone control on infragravity swash 

observations, an energy balance between infragravity growth and dissipation was 

evaluated from simultaneous observations of pressure and velocity in the 

surfzone. In addition, the cross-shore locations and frequency components 
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involved with such growth and dissipation were determined using bispectrum 

analysis. 

4.2.1 Energy balance 

Henderson et al. (2006) proposed a conservative, depth-integrated, alongshore-

uniform energy balance for infragravity waves in shallow water 

)(
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fW
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fF





,                                            (4.2) 

to describe cross-shore changes in infragravity net energy flux F( f ), based 

primarily on the energy transfer W( f ) to infragravity waves from waves at other 

frequencies, where f is the cyclic frequency. The cross-shore coordinate x is 

defined as positive seaward. 

The net energy flux F( f ) at infragravity frequency f is calculated following 

Henderson et al. (2006) as 

),(),(),()( uSCMCuhCfF xxfff   ,                       (4.3) 

where Cf (a, b) denotes the co-spectrum of real-valued variables a and b, h is the 

mean water depth, η is the sea-surface elevation around the mean water level, and 

u is the cross-shore velocity (positive seaward). M and Sxx represent the slowly 

varying part of the sea swell mass flux and cross-shore component of the sea swell 

radiation stress, respectively, and are given by 

uM  ,                                                  (4.4) 

and 

2/1    uuhgSxx ,                                      (4.5) 
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where g is the acceleration due to gravity and primes (′) denote band-passed 

filtering between 0.05 and 0.4 Hz. Note that Equations (4.3) and (4.5) have been 

scaled to be dimensionally consistent with Equation (2) in Sheremet et al. (2002). 

The first term on the right hand side of (4.3) corresponds to the linear component 

FL( f ) of the net energy flux and, assuming cross-shore propagation, can be 

decomposed into shoreward propagating )( fFL



 and seaward propagating )( fFL



components (Sheremet et al., 2002): 
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with FL( f ) = )( fFL


- )( fFL


 (the sign convention adopted here for the two 

components is the opposite of that in Sheremet et al. (2002), where u is positive 

shoreward). The second and third terms on the right hand side of (4.3) are 

nonlinear corrections which have similar magnitudes when integrated over 

infragravity frequencies (Henderson et al., 2006). The nonlinear component of the 

net energy flux FNL( f ) is defined here as the sum of these two terms. 

The nonlinear energy transfer term in (4.2), assuming nearly shore-normal 

shallow water waves, is defined as (Henderson et al., 2006) 

 xuSCfW xxf  ,)( ,                                      (4.7) 

with positive and negative values indicating energy transfer to and from waves 

with frequency f, respectively. The cross-shore gradient of the cross-shore 

velocity xu  is calculated from the shallow water mass conservation equation 

with the wave mass flux term neglected: 
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where t is time and all other symbols have been previously defined. 
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4.2.2 Forced waves 

Following previous studies (e.g. Elgar and Guza, 1985; Herbers et al., 1994; 

Ruessink, 1998a; Sheremet et al., 2002) the source of wave energy associated with 

forced infragravity waves is investigated in terms of the digital bispectrum B(f1, 

f2) (Hasselmann et al., 1963) 

  ][ *

221 211
E, ffff AAAffB  ,                                   (4.9) 

where E[ ] represents the expected-value,
nfA are complex Fourier coefficients at 

the n
th

 frequency component and the asterisk indicates complex conjugate. The 

bispectrum measures the statistical dependence among three waves with 

frequencies (f1, f2, f1+f2). B(f1, f2) vanishes if the wave triads are independent and 

have random phases, such as in a linear wave field. On the other hand, nonlinear 

coupling between two primary waves and a forced, secondary wave yields a B(f1, 

f2) which is statistically different than zero. A relative measure of the phase 

coupling between the wave triads can be obtained by the normalized magnitude 

and phase of the bispectrum, defined as the bicoherence b(f1, f2) and biphase θ(f1, 

f2) and calculated respectively as (Kim and Powers, 1979) 
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and 
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where Im{ } and Re{ } represent the imaginary and real parts. Different 

combinations of the
nfA coefficients have been used to normalize the bispectrum 

in (4.10) and calculate b(f1, f2) (e.g. Herbers et al., 1994; Ruessink, 1998a). The 

normalization factor adopted here follows Kim and Power (1979) and Elgar and 

Guza (1985) and ensures 0 ≤ b ≤ 1. The 95% significance level on zero 

bicoherence b95% is calculated as (Haubrich, 1965) 
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where DoF is the number of degrees of freedom. 

4.3 Method 

4.3.1 Description of field experiment and data reduction 

The field data were collected between 08–09 November 2010 at Ngarunui Beach, 

Raglan, an exposed, dissipative beach located on the west coast of New Zealand’s 

North Island (Figure  4.1). Ngarunui is about 2 km in length, constrained by an 

inlet to the north and a headland to the south, and frequently characterized by the 

presence of groundwater seepage above the swash zone (Huisman et al., 2011). 

The beach is composed by fine–medium, black sand (Sherwood and Nelson, 

1979) (the median grain size at the measurement positions was about 400 μm) and 

a gentle slope (the average slope βmean over the intertidal region was about 0.014, 

see Figure  4.2). The field site commonly experiences energetic offshore wave 

conditions with average offshore significant wave height H0 and mean spectral 

period Tm of 2.0 m and 7.0 s, respectively (Gorman et al., 2003). The tides are 

semidiurnal and typically range between 1.8 (neap) and 2.8 m (spring tides) 

within the adjacent estuary (Heath, 1976) (the tidal range on the open coast was as 

high as 3.1 m during the period of the experiment). 

Simultaneous time series of pressure and velocity were recorded using three 

Acoustic Doppler Velocimeters (ADVs) in the intertidal region and an Acoustic 

Doppler Current Profiler (ADCP) offshore in about 17 m water depth (Figure  4.1 

shows the location of the instruments). Two of the ADVs were deployed along a 

cross-shore transect extending over 50 m (NiwaInn ADV, X = 220 m and 

NiwaOut ADV, X = 270 m, where X is the cross-shore coordinate of the grid 

defined for this study) and collected data at 8 Hz. The acoustic sensors were 

pointed downward and measured velocity at ~0.05 m above the bed. The third 



88 

ADV (UoW ADV) was mounted at the same cross-shore location of NiwaOut but 

50 m farther in the alongshore (northward) direction Y, and measured at a sample 

rate of 4 Hz. However, the probe was upward looking and measured orbital 

velocity at ~0.95 m above the bed. All three instruments collected 20-min-long 

time series every half-an-hour, over three partial tidal cycles (when the sensors 

were submerged). After a quality control (following Elgar et al., 2005) to remove 

bad time series or individual data points (i.e. those recorded when any of the 

sensors was in too shallow or out of the water) a total of 38, 47 and 36 

simultaneous time series of pressure and velocity remained for NiwaInn, NiwaOut 

and UoW ADV, respectively. The measurements spanned cross-shore distances 

from the shoreline ΔXS from 50 m (h = 0.55 m) to 184 m (h = 2.60 m). The ADCP 

collected hourly, 20-min-long, simultaneous time series of near-bottom pressure 

and near-surface velocity. The measurements were taken at 2 Hz and spanned the 

entire period when the ADVs were deployed. In addition, time series of 

(nearshore) mean water level h were collected every 5 min by averaging 2-min-

long pressure records, obtained at 4 Hz using a Data Logger collocated on the 

frame used to deploy UoW ADV. 

The morphology of the intertidal region of the beach was surveyed using a Real 

Time Kinematic (RTK) GPS. The GPS receiver was installed on a Quad bike that 

travelled over the beach around low tide, yielding dense coverage of the intertidal 

morphology. Analysis of an overlapping area surveyed on the two different days 

that included the position of the ADVs suggests that intertidal morphology 

changes were minimal (typically smaller than 0.03 m). A local grid was defined 

by translating and rotating the coordinate system of the survey, so as to have the 

origin at the location of a bench mark on the beach, and cross-shore coordinates X 

parallel to the line formed by NiwaInn and NiwaOut ADVs and increasing 

offshore (see Figure  4.1b). 
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Figure ‎4.1. (a) Field site location with positions of cameras and ADCP indicated by black circle and the triangle respectively. White circles with black crosses show 

locations of bench marks (also shown on panel (b)). Bathymetry was digitized and interpolated from the New Zealand Nautical Chart NZ4421. (b) Mosaic composed 

by 20-min time-exposure (averaged) images obtained using two cameras on 09 November at 15:40 (DST), rectified to a plan view. Bright areas indicate regions of 

preferred wave breaking. White Squares and dashed lines show locations where ADVs were deployed and time stacks were defined respectively. Contour lines show 

intertidal bathymetry measured with the RTK with white line highlighting the beach contour corresponding to the highest mean water level (measured at location of 

UoW ADV) under which waves were measured. X and Y are the cross-shore and alongshore coordinates of the local grid defined for this study. 
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Figure ‎4.2. Beach profile averaged over the region where the three ADVs were deployed 

(see Figure ‎4.1b). Cross-shore positions of NiwaInn ADV (X=220 m) and NiwaOut and 

UoW ADVs (X=270 m) are shown by the white squares. Horizontal lines show the 

shallowest and deepest mean water levels (measured at location of UoW ADV) at which 

waves were measured in the surfzone. Vertical arrows point to the mean position of each 

swash run with their length corresponding to the respective value of (alongshore-

averaged) Rs. Black and gray arrows are associated with data obtained on day 08 and 09 

respectively. Horizontal bars at the top of lowermost and uppermost arrows highlight the 

cross-shore extension of the swash (Rmean±2σR) for these two time series. 

High-resolution images of the beach (1528 x 2016 pixels) were collected 

continuously at 2 Hz during daylight hours. The images were acquired using two 

digital cameras, mounted at the southern end of the beach (Figure  4.1a) at about 

95 m above mean sea level. The combined field of view of the cameras spanned 

most of the subaerial beach and the surfzone. Figure  4.1b shows a mosaic created 

using time-averaged images defined from both cameras, rectified to a planview 

using known geometric transformations. 

Swash oscillations were measured at two alongshore locations on the beach using 

the video images. Two cross-shore lines (Niwa and UoW lines) were defined on 

the images at the alongshore locations where the respective ADVs were deployed, 

as shown in Figure  4.1b (conversions between pixel and ground coordinates were 

made using the colinearity equations described by Holland et al. (1997) with 

corrections for lens distortions). Time stacks with cross-shore pixel resolution of 

~0.2 m were defined over these lines by interpolating the intensities on each 
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selected image frame at the locations of these two lines (see Aagaard and Holm 

(1989) and Guedes et al. (2011) for more detailed description of the technique). 

The period selected for creating the time stacks included the daylight hours when 

the ADVs were collecting data, and resulted in 32, 30-min-long, 2-Hz time stacks 

defined over each line (e.g., Figure  4.3b). The swash was defined as the most 

shoreward moving-edge of water identifiable on the time stacks (see Figure  4.3b) 

and was manually digitized. This definition has been shown by Holman and Guza 

(1984) and Holland et al. (1995) to be consistent with swash measurements 

obtained using resistance wires deployed near the seabed. Finally, the digitized 

swash positions from the time stacks were converted into time series of vertical 

runup elevation by mapping each cross-shore swash position to an elevation Z, 

which was accurately know from the (interpolated) RTK survey. The gentle slope 

of the beach resulted in high vertical pixel resolution over the intertidal region 

(~0.003 m). 

The cross-shore wave breaking structure was defined by using the probability of 

wave breaking Pbr(x) which can be extracted from video images. The method was 

modified from Guedes et al. (2011) who used time stacks to approximate Pbr(x) as 

the probability of pixel intensity being greater than a threshold at any cross-shore 

location. Here, individual breaking waves were identified by taking the gradient 

of the pixel intensities in the time stacks over time, tI  , and locating sequences 

of positive followed by negative intensity gradients that typically characterized a 

broken wave. The result was an estimate of the number of breaking waves Nbr(x). 

The probability of breaking Pbr(x) was calculated by dividing Nbr(x) by the total 

number of individual wave crests observed during the same periods in 17 m water 

depth, which was defined from the ADCP pressure series as the length of the time 

series divided by the mean spectral period. Figure  4.3c shows examples of Pbr(x) 

obtained from the Niwa time stack near low, mid and high tide. Though this 

technique does not account for nonlinear interactions such as harmonic 

decomposition (e.g. Elgar et al., 1997) which potentially increased the number of 
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individual waves in the shoreward direction (see Section 4.5.3), Pbr(x) was 

consistent with the patterns visually observed from the time stacks (see 

Figure  4.3). 

 

Figure ‎4.3. (a) Mosaics composed by 20-min variance images obtained using the two 

cameras deployed at Ngarunui Beach, rectified to plan views using known geometric 

transformations. Contour lines show intertidal bathymetry measured with the RTK. 

Horizontal dashed lines show one of the two locations where time stacks were defined 

(Niwa line). Inner and outer squares show positions of NiwaInn and NiwaOut ADVs 

respectively. White circles with crosses show two of the bench marks on the beach. (b) 

Time stacks created over the cross-shore location highlighted by the dashed line in (a). 

Black solid lines show digitized swash locations, when available. (c) Probability of 

breaking Pbreak estimated from the time stacks in (b), as a function of cross-shore position. 

Vertical dashed lines in (b) and (c) highlight the cross-shore positions of the two ADVs 

shown in (a). Left, mid and right panels are associated with data obtained near low tide 

(08 November, 17:10, η = -1.54 m), mid tide (08 November, 14:40, η = -0.08 m), and 

high tide (08 November, 11:40, η = 1.51 m) (times are in DST). 
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4.3.2 Analysis 

The hydrodynamic data were analyzed in the frequency domain using spectral 

analysis. Runup and pressure surfzone spectra with frequency resolution df of 

0.0039 Hz were estimated from Fourier transforms of the time series, segmented 

into 256 s, 75% overlapping sections, that were linearly detrended and tapered 

with a Hanning window. Offshore spectra with the same frequency resolution 

were estimated from the velocity time series collected by the ADCP at three 

different depth cells located just below the sea surface (spectra from the three cells 

were averaged). Linear wave theory was used to convert the pressure (ADVs) and 

velocity data (ADCP) into sea surface elevation. 

Energy fluxes and nonlinear energy transfers were calculated by evaluating 

Equations (4.3)–(4.8) with the simultaneous time series of u and p collected by 

each ADV. A Lanczos filter was used to band-pass u and p to calculate time series 

of M and Sxx in (4.4) and (4.5). Time series of xu  were estimated in (4.8) by 

(central) finite-differencing p to evaluate t , and approximating xh  by “-” 

the local slope at the location of each ADV (although in the text we refer to the 

absolute value of beach slope, the frame of reference implies that the slope in fact 

is negative). The co-spectrum Cf (a, b) in (4.3), (4.6) and (4.7) was estimated 

using the same parameter setting as for the spectrum. 

Bicoherences and biphases were calculated from the ADVs as (4.10) and (4.11), 

after removing seaward propagating infragravity waves from the data, following 

Elgar and Guza (1985) and Sheremet et al. (2002). Seaward propagating 

infragravity waves are free and mix the phase structure between shoreward 

propagating infragravity waves at equivalent frequencies and sea-swell waves. 

The separation was performed by decomposing the data into surface elevation 

time series of shoreward propagating η
-
 and seaward propagating η

+
 waves as 

(Guza et al., 1984; Sheremet et al., 2002) 
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 ,                                       (4.13) 

high-passing η
+
 to remove outgoing infragravity waves and adding back the two 

components. The bispectra estimated from these data had the same frequency 

resolution and DoF as the auto- and cross-spectra calculated using the ADV data. 

The relatively short time length of the time series was compensated by averaging 

bicoherence and biphase over several frequency pairs (see Section 4.4.3). 

4.4 Results 

4.4.1 Observations 

Offshore sea-swell waves in 17 m water depth were mild during the field 

experiment and decreased in energy from the first to the second day. Offshore 

significant wave height H0 decreased from about 1.3 to 1.0 m from the first to the 

third tidal cycle, where H0 was defined using the ADCP spectra as 

21
Hz24.0

Hz05.0
0 )(4 








  dffEH d ,                                  (4.14) 

with Ed( f ) denoting the energy density and the term inside the parenthesis 

representing the variance associated with the defined frequency band. Peak period 

Tp, calculated as the inverse of the peak frequency in Ed( f ), decreased from about 

12 to 10 s during the same period (see Figure  4.4a). Offshore peak wave direction 

Dp, determined from the ADCP, was roughly constant near 270° (W). 

The beach morphology was relatively alongshore-homogeneous over the intertidal 

region where the ADVs were deployed. The three instruments were placed near 

the center of the embayment of a mega-cusp with wavelength about 800 m 

(Figure  4.1b), where the intertidal cross-shore profile was concave upward 

(Figure  4.2). The local slope tanβ increased by a factor of 4 from 0.008 at the 

lowermost to 0.032 at the uppermost location where swash was measured (tanβ 

was ~0.01 at the location of the ADVs) and no sandbar was observed over the 
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intertidal region. The Iribarren number ξ0 (4.1), calculated using the local slope at 

the mean swash location tanβ and linear wave theory to estimate L0, was 

characteristic of highly dissipative conditions, with small values changing by a 

factor of 4 (following tanβ) from low tide (ξ0 ~ 0.1) to high tide (ξ0 ~ 0.4). A NE-

directed (+Y → -Y) alongshore current, calculated by averaging the ADVs’ 

velocity records V, was present, and increased in magnitude from negligible 

values at high tide (when the instruments were outside the surfzone) to about 0.4–

0.5 m/s near the shallowest locations. A seaward component in V was observed, 

especially for measurements from NiwaInn and NiwaOut ADVs, and was likely 

caused by the presence of a rip channel that extended diagonally through the 

beach, from [X, Y] ~ [150, 500] m passing seaward of the outer ADVs (Figures 

4.1b and 4.3a). The channel acted as a trough around mid-tide, separating an outer 

breaking region seaward of X ~ 350 m from an inner breaking region, where the 

waves broke continuously until they reached the swash zone (Figure  4.3; see also 

Figure  4.5). In contrast, at high tide the outer breaking region was too deep and 

breaking occurred mostly over the inner surfzone, shoreward of the channel, and 

near low tide the channel was shallow enough to be within the inner breaking 

region. 

Figure  4.4 shows an overview of the wave conditions offshore, in the surf and 

swash zones during the experiment. Most of the energy in 17 m water depth was 

within sea swell frequencies (Figure  4.4a), with little energy (typically 

corresponding to less than 5% of the total wave variance
2

ADCP ) observed at 

infragravity frequencies (see Figure  4.4e). Consistent with previous observations 

(e.g., Okihiro and Guza, 1995; Thomson et al., 2006), offshore infragravity energy 

was somewhat tidally-modulated (Figure  4.4e, open circles), with the variance 

integrated over infragravity frequencies
2

ADCP,Ig  significantly correlated with the 

tide η, with r
2
 = 0.23 (hereinafter, correlation coefficients r

2
 are significant with p-

value < 0.05). In contrast to the waves in 17 m water depth, most of the swash 

energy was constrained within infragravity frequencies, with peaks between 0.01  
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Figure ‎4.4. (a–d) Logarithm of energy density Ed as a function of frequency f and time, 

with white circles showing the peak frequency for each data run. (a) Offshore Ed obtained 

from the ADCP, with solid line (right axis) showing the mean local water depth hADCP. 

Surfzone Ed obtained from the (b) NiwaOut and (c) NiwaInn ADVs, with solid and 

dashed (black) lines (right axes) showing the mean local water depth hNiwaOut and hNiwaInn 

respectively. (d) Swash Ed calculated from the (video) runup time series, obtained over 

the alongshore location of NiwaOut and NiwaInn ADVs, with solid and short-dashed 

lines (right axis) showing the distance ΔXS from these two ADVs to the shoreline, 

respectively. Horizontal white dashed line in panels (a)–(d) highlight the frequency used 

to separate incident and infragravity bands. (e) Time series of wave variance integrated 

over incident (solid markers) and infragravity (open markers) bands, obtained from: 

ADCP (circles), NiwaOut ADV (triangles) and video runup data (squares) (incident runup 

variances ranged between ~10
-4

 and 10
-3

 m
2
 and are not shown here). Colors represent the 

mean water depth at the location of NiwaOut ADV. 
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and 0.02 Hz (Figure  4.4d), near the infragravity wave peaks observed offshore. 

The infragravity runup variance
2

R,Ig was nearly 2 orders of magnitude larger than 

the sea-swell runup variance
2

R,SS , accounting on average to 96% of the total 

swash variance
2

Ig  (similar to observations under highly energetic offshore wave 

conditions). Moreover, the infragravity swash variance decreased from the first to 

the second day and was also modulated by the tide, with
2

,RIg increasing by an 

order of magnitude from low to high tide within each tidal cycle (Figure  4.4e). 

Similarly to the waves in 17 m water depth, most of the wave energy in the 

surfzone was within sea swell frequencies (Figures 4.4b, 4.4c and 4.4e). The 

variances integrated over both sea-swell
2

ADV,SS and infragravity frequencies

2

ADV,Ig decreased from the deepest to the shallowest locations (and from the first 

to the third tidal cycle). However, the sea-swell waves experienced greater 

dissipation, which resulted in
2

ADV,Ig accounting for an increasing proportion of 

the total wave variance
2

ADV from the deepest (h ~ 2.60 m,
2

ADV

2

ADV  Ig, ~ 0.05) to 

the shallowest locations (h ~ 0.55 m,
2

ADV

2

ADV  Ig, ~ 0.40). Over the inner surfzone 

region between NiwaInn ADV and the upper boundary of the swash zone, the sea-

swell waves were nearly completely dissipated, as evidenced by the strong 

infragravity dominance observed in the runup spectra. 

4.4.2 Linear energy fluxes 

The linear component of the wave energy flux was predominantly shoreward 

throughout the surfzone (compare Figures 4.5a and 4.5b). The shoreward 

propagating linear energy flux )( fFL


integrated over sea-swell frequencies,



SSLF , , 

accounted for roughly 98–99% of the (total) sea swell energy flux )( ,,

  SSLSSL FF , 

consistent with the nearly total sea-swell dissipation observed in the runup 

spectra. At infragravity frequencies, the contribution of the (linear) shoreward 

component


IgLF , ranged from 90% when the ADVs were farthest from the 

shoreline to 70% when they were closest, as a result of the shoreward infragravity 



98 

dissipation. The dissipation of )( fFL


was clearly accelerated within the breaking 

region for both sea swell and infragravity frequencies (Figure  4.5c). 

In contrast to )( fFL


, which mimicked the surfzone spectrum (compare Figures 

4.4b and 4.5a), the seaward propagating linear energy flux )( fFL


was dominated 

by infragravity frequencies (Figure  4.5b) and strongly resembled the patterns 

observed in the runup spectrum (see Figure  4.4d). The infragravity component of 

the seaward propagating flux


IgLF , accounted on average for 74% of the outgoing 

linear energy flux, and increased by more than a factor of 4 from low to high tide 

within each tidal cycle (not shown), consistent with the infragravity modulation 

observed offshore (


IgLF , was significantly correlated with the tidally-modulated 

beach slope at the mean swash location tanβ, r
2
 = 0.44, whereas its correlation 

with the tide itself was lower, with r
2
 = 0.32). 

 

Figure ‎4.5. Logarithm of (a) shoreward propagating (F
-
) and (b) seaward propagating (F

+
) 

components of the linear energy flux as a function of frequency f (left axis) and time. 

Horizontal dashed lines highlight the frequency used to separate incident and infragravity 

bands. (c) Probability of breaking Pbreak as a function of cross-shore position X (left axis) 

and time. White dashed lines indicate cross-shore positions of NiwaOut (270 m) and 

NiwaInn (220 m) ADVs. Cross-shore positions shoreward of the mean swash locations 

have been blanked. In all panels, gray solid lines (right axes) represent tide level η. 
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Figure ‎4.6. Reflection coefficient R
2
 of partitioned infragravity bands, shown by the 

colors, as a function of (a) Iribarren number ξ0 (Equation 4.1) and (b) normalized bed 

slope parameter βH (Equation 4.16). Data for each frequency band have been grouped in 

panel (a) by 0.02 ξ0 intervals, with the circles and bars representing the average and 

standard deviation associated with each group for the three infragravity bands. 

Most of the infragravity energy observed in both the runup and outgoing energy 

flux spectra were within very low infragravity frequencies (< 0.02 Hz). In order to 

investigate the infragravity behavior in detail, the infragravity band was further 

divided into three frequency bands Ig1 (0.004 < f < 0.025 Hz), Ig2 (0.025 < f < 

0.035 Hz) and Ig3 (0.035 < f < 0.05 Hz), and bulk reflection coefficients R
2
 were 

calculated as (Elgar et al., 1994; Sheremet et al., 2002) 

dffF

dffF
R

hf

lf
L

hf

lf
L









)(

)(
2 ,                                         (4.15) 

where lf and hf represent the low and high frequency cutoff for each of these 

bands. Figure  4.6a shows R
2
 calculated for the three bands plotted as a function of 

the Iribarren number ξ0. For the three infragravity bands, R
2
 was smaller than one, 

consistent with shoreward dissipation of the linear infragravity energy flux, and 

increased with ξ0 (which changed mostly due to tidal-induced changes in tanβ). 

However, the dissipation was clearly greater for Ig2 and Ig3, with the bulk 

reflection coefficient R
2
 typically a factor of 3–4 larger for the lowest frequency 
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band Ig1. R
2
 was around 0.05 for both Ig2 and Ig3 for ξ0 < ~0.3, suggesting almost 

complete dissipation for these infragravity bands, although an increase in R
2
 was 

observed for higher ξ0. A good parameterization for R
2
 was obtained using a 

normalized bed slope parameter βH proposed by Battjes et al. (2004), which 

accounts for changes in water depth within a wavelength as 

)(


H

ghx
H  ,                                         (4.16) 

where hx is a ‘characteristic’ value of bed slope, ω is the radian frequency 2πf and 

H(ω) is the height of waves with radian frequency ω. Here, hx has been 

approximated by the slope at the mean swash location tanβ, ω was taken as the 

central radian frequency of each infragravity band, and H(ω) was calculated as 

(4.14) by replacing Ed( f ) by the energy density associated with incoming waves,

ghfFL )( , and setting the limits of integration to lf and hf. The bulk reflection 

coefficient R
2
 was strongly linearly correlated with βH (Figure  4.6b) with r

2
 = 

0.78. 

4.4.3 Nonlinear energy fluxes and energy transfers 

The net energy flux F( f ) at infragravity frequencies was dominated by its linear 

component FL( f ) (Figures 4.7a–d). However, the nonlinear terms FNL( f ) 

increasingly contributed to F( f ) from the breaking to the shoaling regions and 

from the first to the third tidal cycle (when the offshore wave energy was 

decreasing), specially for the lowest frequency band Ig1 (Figure  4.7d). In contrast 

to FL( f ), FNL( f ) was mostly seaward-directed (positive values), except for the 

shallowest locations (Figure  4.7b), and its increasing contribution near mid–high 

tide resulted in seaward net flux for some frequencies in F( f ) that were not 

observed in FL( f ) (compare Figures 4.7a and 4.7c). Similar to FNL( f ), the wave 

energy transfer W( f ) was positive during mid–high tide at infragravity 

frequencies (Figure  4.7e), indicating energy transfer to infragravity waves from 



101 

waves at other frequencies. At the shallowest locations within each tidal cycle, 

when the ADVs were well within the surfzone (see Figure  4.5c), W( f ) was 

typically negative at infragravity frequencies, consistent with nonlinear energy 

transfer from infragravity waves. 

 

Figure ‎4.7. Net wave energy flux components and wave energy transfer as a function of 

frequency f and time. (a) Linear component of the net wave energy flux FL. (b) Nonlinear 

component of the net wave energy flux FNL at infragravity frequencies. (c) Total net wave 

energy flux F at infragravity frequencies. Positive and negative values in panels (a–c) 

indicate seaward and shoreward net fluxes respectively. (d) Contribution of the nonlinear 

component to net wave energy flux at infragravity frequencies. White dashed lines 

delimit shoaling and breaking regions within each tidal cycle (defined here as those where 

PBreak < 0.05 and PBreak > 0.05, respectively). (e) Energy transfer W to (positive values) and 

from (negative values) waves with frequency f. Contours highlight transitions between 

positive and negative values. In all panels, data from NiwaOut ADV are shown, and gray 

solid lines (right axes) represent mean local water depth hNiwaOut. 
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The cross-shore structure of F( f ) and W( f ) was investigated by integrating over 

the infragravity band (following Henderson et al., 2006): 

 
Hz 050

Hz004.0

Hz 050

Hz004.0
,)(   ,)(

.

Ig

.

Ig dffWWdffFF                      (4.17) 

and plotting against the tidally-modulated, mean distance from the shoreline ΔXS 

(Figure  4.8). The observed net energy flux integrated over infragravity 

frequencies FIg typically diverged (increased seaward) when the ADVs were 

offshore of the inner surfzone, indicating a net energy gain (blue region), and 

converged when the ADVs were inside the surfzone, indicating a net energy loss 

(red region). The cross-shore region of energy gain extended closer and closer to 

the shoreline from the first (Figure  4.8a) to the third tidal cycle (Figure  4.8c) as 

the offshore wave energy decreased and the surfzone became narrower. In 

addition, FIg(ΔXS) was normally higher during ebb tide (triangles) compared to the 

data obtained during flood tide (circles) within a given tidal cycle. The total 

nonlinear energy transfer to infragravity waves WIg was always positive over the 

cross-shore regions where infragravity gain was observed, consistent with 

observations of Henderson et al. (2006). On the other hand, positive values of WIg 

were also observed over regions of infragravity dissipation (e.g. Figure  4.8a, 130 

m < ΔXS < 165 m), suggesting a disagreement with the theoretical wave energy 

balance in (4.2). 

The energy balance in Equation (4.2) was evaluated by calculating cross-shore 

changes in the (infragravity) net energy flux between simultaneous time series 

from NiwaOut and NiwaInn ADVs, ΔFIg = FIg,NiwaOut - FIg,NiwaInn, and plotting 

against the nonlinear energy transfer to infragravity frequencies, integrated over 

the two ADVs 


NiwaOut

NiwaInn

X

X
Ig

INT

Ig dxWW ,                                       (4.18) 
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Figure ‎4.8. Net wave energy flux (top panels, left axes) and wave energy transfer (bottom 

panels, right axes) integrated over infragravity frequencies (FIg and WIg, respectively), as 

a function of distance from the shoreline ΔXS. Panels (a–c) are associated with first, 

second and third tidal cycles respectively. Notice the different scale for FIg on panel (a). 

Circles and triangles show data obtained during flood and ebb tide. Black and white 

markers in panels (a and c) indicate NiwaOut ADV shoreward and seaward of the 

breakpoint position respectively (breakpoint positions are unknown during the second 

tidal cycle shown in panel (b), which occurred during night time). Gray markers in panel 

(a) indicate NiwaOut ADV seaward of inner breaking region but with a few set waves 

breaking offshore at outer breaking region (e.g. Figure ‎4.3b, right panel). Red and blue 

patches highlight cross-shore region where infragravity loss (FIg increasing shoreward) 

and infragravity gain (FIg increasing seawards) were observed. Data from NiwaOut ADV 

are shown. 
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Figure ‎4.9. Change in total infragravity energy flux ΔFIg between NiwaOut and NiwaInn 

ADVs as a function of nonlinear transfer to (positive values) and from (negative values) 

infragravity motions WIg
INT

. Circles, asterisks and triangles are associated with data 

obtained during first, second and third tidal cycle respectively. Colors indicate the 

distance from the shoreline ΔXS. Solid and open markers (circles and triangles) indicate 

NiwaInn ADV shoreward and seaward of the breakpoint position respectively (breakpoint 

positions are unknown during the second tidal cycle (asterisks), which occurred during 

night time). Dashed line indicates agreement with the conservative energy balance. 

with dx representing the cross-shore distance between the two instruments and 

INT

IgW evaluated using the trapezoidal rule. The observed ΔFIg and 
INT

IgW were 

significantly correlated (see Figure  4.9) with r
2
 = 0.65. Positive and negative 

values for both energy transfer and changes in energy flux typically occurred 

when the inner ADV was outside (open circles and triangles) and inside the 

breaking region (solid circles and triangles), respectively. However, ΔFIg and 

INT

IgW  did not balance (the slope of their linear regression line was 3.4), in 

disagreement with observations of Henderson et al. (2006) on a steeper barred 

beach under predominantly low energy conditions. 

The bispectra observations showed consistent evidence of nonlinear energy 

transfers across the shoaling and breaking regions involving swell and harmonic 

frequencies. Figures 4.10a and 4.10d show example bicoherences b(f1, f2) and 

biphases θ(f1, f2) calculated from NiwaOut ADV on 08 November at 22:40 DST, 

near high tide. Within the sea-swell band, strong bicoherence (b > 0.7) can be 
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observed involving the incident wave peak fp (f2 ~ 0.085 Hz) with itself and its 

higher harmonics (f1 = nf2, where n is a positive integer), indicating nonlinear 

coupling between wave triads with frequencies [nf2, f2, nf2+f2] (Figure  4.10a). The 

pattern was repeated for the two higher harmonics as well (note the bicoherence 

peaks extending over f2 ~ 0.17 Hz and f2 ~ 0.26 Hz) and were similar to previous 

bispectra observations in shallow water (e.g. Elgar and Guza, 1985; Sénéchal et 

al., 2002). The biphases associated with these nonlinear interactions typically 

ranged between 0°–70° (e.g., Figure  4.10b) suggesting waves with shapes 

changing from skewed (sharp peak and wide trough) to asymmetric (steep front 

face and gentle back face) forms, respectively (see Elgar and Guza, 1985). The 

cross-shore evolution of bicoherences and biphases involving the incident peak fp 

and its harmonics was examined by averaging, for each bispectrum, b(f1, f2) and 

(the modulus of) θ(f1, f2) over the area highlighted by the dark gray trapezium in 

Figures 4.10a ( SSb ) and 4.10b ( SSθ ), which extended from [f1, f2] = [0.05–0.4, 

0.07–0.09] Hz (the biphases θ(f1, f2) were averaged only over pairs for which b(f1, 

f2) > b95%, in order to avoid the random values normally associated with wave 

triads with non-significant bicoherences). Figures 4.10c and 4.10d show SSb and

SSθ calculated from NiwaOut ADV, as a function of the distance from the mean 

shoreline location ΔXS. The nonlinear coupling of sea swell wave triads clearly 

decreased from the deepest locations outside of the surfzone ( SSb ~ 0.5) towards 

the shallowest locations within the inner surfzone region ( SSb ~ 0.25), and was 

followed by a systematic evolution from skewed to highly asymmetric shapes. 

Significant bicoherence peaks involving infragravity modes were also observed in 

the bispectra (Figure  4.10a). The nonlinear coupling took place not only between 

infragravity waves with frequency f2 and modes close to the incident peak f1 ~ fp 

(and their sum), but also for modes f1 at higher frequencies, within the range of 

higher harmonics. Similar to SSb and SSθ , average bicoherences Igb and biphases

Igθ involving (at least) one infragravity mode were calculated for each 

bispectrum, by averaging b(f1, f2) and θ(f1, f2) over [f1, f2] = [0.004–0.5, 0.004–

0.05] Hz (light gray area in Figures 4.10a and 4.10b). The infragravity  
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Figure ‎4.10. Example (a) bicoherence b(f1, f2), and (b) biphase θ(f1, f2), calculated from a 

time series obtained by NiwaOut ADV at 22:40 (DST), during the second tidal cycle near 

high tide. Values associated with frequency pairs where no significant bicoherence (at the 

95% confidence level) was observed have been blanked. (c) Bicoherences and (d) the 

modulus of biphases, averaged over the dark gray area on panels (a and b) to include 

frequency pairs involving coupling between sea-swell (and higher-frequency) modes, as a 

function of distance from the shoreline ΔXS. (e) Bicoherences and (f) the modulus of 

biphases, averaged over the light gray area on panels (a and b) to include frequency pairs 

involving coupling between infragravity (and higher-frequency) modes, as a function of 

distance from the shoreline ΔXS. Circles, asterisks and triangles are associated with data 

obtained during first, second and third tidal cycle respectively. Black and white markers 

in panels (c–f) indicate NiwaOut ADV shoreward and seaward of the breakpoint position 

respectively (breakpoint positions are unknown during the second tidal cycle which 

occurred during night time). Gray markers in panel (c–f) indicate NiwaOut ADV seaward 

of inner breaking region but with a few set waves breaking offshore at outer breaking 

region (e.g. Figure ‎4.3b, right panel). Biphases were averaged only over frequency pairs 

with bicoherence significantly different than zero (at the 95% confidence level). Data 

from NiwaOut ADV are shown. 
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bicoherences Igb showed a consistent cross-shore behavior over the three tidal 

cycles with values sharply decreasing shoreward as the waves started to break, 

and slightly increasing again at very shallow water (Figure  4.10e). On the other 

hand, the infragravity biphases Igθ steadily decreased from ~150° at h = 2.6 m to 

near 50° at the shallowest locations around h = 0.6 m (Figure  4.10f). 

4.5 Discussion 

4.5.1 Swash motions 

The energy density in the swash was consistent with changes to infragravity 

energy fluxes between NiwaOut and NiwaInn ADVs. We predicted infragravity 

energy fluxes within the swash zone Fp( f ) by linear-fitting the net energy fluxes 

simultaneously observed from the two ADVs (for each infragravity frequency 

component), and extrapolating the lines to a cross-shore position where the water 

depth hswash was representative of that in the swash zone (defined here as 0.05 m). 

Predicted runup energy density Ed,p( f ) was then defined as 

Swash

p

pd
gh

fF
fE

)(
)(,                                          (4.19) 

and compared with the energy density Ed( f ) directly estimated from the runup 

time series. Figure  4.11 shows time series of infragravity variances integrated 

from Ed( f ), as well as from Ed,p( f ) estimated using the linear FL( f ) (a) and the 

total F( f ) net energy fluxes (b). Measured (Black lines) and predicted (gray lines) 

runup variances were similar, with the increasing trend from low (↓tanβ) to high 

tide (↑tanβ) generally well described. However, best results were obtained using 

F( f ), which included the nonlinear energy flux terms (Figure  4.11b). Though one 

may argue that the value chosen for hSwash is somewhat arbitrary, the variance 

derived from the linear net flux FL( f ) differed from the measured runup variance 

between the two days (Figure  4.11a), whereas F( f ) yielded more similar temporal 

changes for predicted and measured runup variances (which were significantly  
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Figure ‎4.11. Time series of swash variance at infragravity frequencies (black lines with 

circles) and wave variance at infragravity frequencies extrapolated at the shoreline (gray 

lines with circles) using (a) the linear component of the net wave energy flux FL, and (b) 

the total net wave energy flux F between NiwaOut and NiwaInn ADVs. Extrapolated 

energy fluxes were converted to energy density using linear wave theory and assuming 

water depth of 0.05 m (the same depth at which the FL and F were extrapolated at). 

correlated, r
2
 = 0.79), for any hSwash chosen. This is consistent with the observed 

changes in the relative contribution of the nonlinear energy flux FNL( f ) from the 

first to the second day (Figure  4.7d) and support the conclusion of Henderson et 

al. (2006) that neglect of nonlinear infragravity energy fluxes might be a poor 

approximation. 

Our observations suggest that sea-swell and most notably infragravity saturation 

may also occur under relatively mild offshore wave conditions if the beach slope 

near the shoreline is sufficiently gentle. The swash energy density Ed( f ) (on a 

log-log scale) decayed with frequency at the (negligible) sea-swell band at a linear 

rate of about f
-4

 (Figure  4.12a), and its temporal variability was very small 

compared to that observed at infragravity frequencies (Figure  4.12b), supporting 

the hypothesis of incident swash saturation. However, the f
-4

 ‘roll-off’ clearly 

extended into the highest infragravity band Ig3 as well (Figure  4.12a), suggesting 

saturation also for this band. The saturation is consistent with the very low 
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reflection coefficients R
2
 (typically < 0.05) found for Ig3, and also for Ig2 when ξ0 

< ~0.3 (Figure  4.6a) and agrees with previous observation under highly energetic 

offshore wave conditions (e.g. Ruessink et al., 1998; Ruggiero et al., 2004; 

Sénéchal et al., 2011). However, such conditions did not occur during our 

observations, suggesting that the saturation within the infragravity band was 

controlled by the very gentle slope near the shoreline. Note that R
2
 did tend to 

increase for the three infragravity frequency bands with the Iribarren number ξ0 

(Figure  4.6a), which changed mostly due to changes in the beach slope at the 

mean swash location tanβ. Our findings support the hypothesis of Ruessink et al. 

(1998) in which infragravity saturation might be associated with ξ0. The increase 

in R
2
 for ξ0 > ~0.3 observed for the two highest infragravity bands (especially Ig2) 

is remarkably similar to the value of ξ0 = 0.27 suggested by the authors as the 

threshold below which infragravity saturation occurs. 

 

Figure ‎4.12. (a) Average of swash energy density
 
for the first day (black thin solid line), 

second day (gray thin solid line) and over the entire period (black thick solid line) plotted 

on a log-log scale as a function of frequency f. Black dashed line shows the best fit of the 

saturated (linear on the log-log scale) band of the swash spectra (calculated between 0.03 

Hz < f < 0.3 Hz). (b) Variance σ
2
 of swash energy density as a function of f on a log scale 

(line styles are associated with the same periods defined for (a)). Vertical gray dashed 

lines delimit the frequency regions corresponding to the sea-swell and the 3 infragravity 

bands adopted in this study. Data have been averaged alongshore. 
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4.5.2 Nonlinear infragravity energy fluxes contributions 

The nonlinear component of the net energy flux FNL( f ) was observed to have a 

greater contribution to the net energy flux F( f ) outside of the breaking region 

(see Figure  4.7). Within the surfzone, the bulk infragravity net energy flux FIg 

(linear + nonlinear components) was very similar to its linear component FL,Ig 

suggesting that the nonlinear component could be neglected in very shallow water 

on low-sloping dissipative beaches. This is in contrast to observations of 

Henderson et al. (2006) near the shore on an intermediate beach (Duck), where 

FNL,Ig was found to be important. The contrasting patterns might be a result of 

contrasting morphologic and hydrodynamic conditions. Their observations took 

place on a steeper barred beach (their nearshore slope was about 0.07, see their 

Figure 1), with significant wave heights in 8-m depth between 0.3–1.2 m, so that 

non-breaking conditions potentially occurred within the region near the shore (in 

contrast to our observations). 

4.5.3 Forced waves 

The bispectral observations suggest that significant nonlinear energy transfer took 

place between incident swell waves and their harmonics between 2.6–0.6 m water 

depth (Figures 4.10a–d). The patterns are somewhat similar to field observations 

described by Elgar and Guza (1985) between h = 9–1 m, in which shoaling of sea 

swell waves caused the wave shape to change from skewed to asymmetric forms, 

as a result of continuous energy transfer to phase-coupled waves at harmonic 

frequencies, and changes in the phase structure among the nonlinearly coupled 

waves. Field observations have shown that the harmonics can eventually be 

released as they propagate over a sandbar, resulting in an increasing number of 

individual wave crests shoreward of the sandbar crest (e.g. Elgar et al., 1997; 

Masselink, 1998; Sénéchal et al., 2002; Guedes et al., 2011). We observed a 

similar shoreward increase in the number of individual wave crests, even for a  
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Figure ‎4.13. (a) Frequency of wave crests estimated as the number of wave maxima per 

minute, (b) Infragravity bicoherence Igb (see Figure 4.10) and (c) groupiness factor GF, as 

a function of the cross-shore distance from the mean shoreline location ΔXS. Solid lines in 

panel (a) are best-fit lines calculated from data shoreward and seaward of ΔXS = 110 m. 

Solid curves in panels (b) and (c) are second-degree polynomials fitted to the data. Data 

from NiwaOut ADV are shown. 

more complex bathymetry lacking a well-defined sandbar. Figure  4.13a shows the 

number of individual wave crests per minute fCrest, estimated from NiwaOut ADV 

using a modified version of the zero-crossing method (see Guedes et al., 2011), as 

a function of the cross-shore distance from the shoreline ΔXs. The frequency of 

observed individual wave crests fCrest increased by a factor of 2 from the farthest 

to the shallowest locations, with the rate of change in the shoreward direction 

getting higher at about ΔXs ~ 110 m (h ~ 1.2 m). The harmonic release can also be 

observed in the time stacks as the divergence of an individual wave into two wave 
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crests, which propagate towards the shoreline with different wave speeds (not 

shown), and might be associated with the shoreward decrease in the nonlinear 

coupling involving sea-swell and harmonic waves observed in Figure  4.10c. 

The cross-shore evolution of infragravity waves observed within the surfzone in 

very shallow water is a shoreward continuation of the progressive evolution that 

has been observed in deeper water by Elgar and Guza (1985). The infragravity 

biphases observed around 2.5 m water depth are close to the biphase of π for a 

bound wave produced by difference interactions, and their cross-shore evolution 

agrees with field (e.g., Elgar and Guza, 1985; Masselink, 1995) and laboratory 

observations (e.g., Janssen et al., 2003; Battjes et al., 2004) of increasing phase 

lag among interacting frequencies and forced bound waves in the shoreward 

direction. In fact, Elgar and Guza (1985) observed biphases for selected triads 

involving infragravity modes to decrease from about 170° to 140° for h between 

6.0 and 2.0 m (see their Figure 12). Their shoreward-most observations were at 

similar depths and had similar biphases to our seaward-most observations 

(Figure  4.10f) suggesting that the phase shift progressively evolves towards very 

shallow water. This evolution is consistent with laboratory observations of van 

Dongeren et al. (2007), in which short waves propagating around the long wave 

crest in very shallow water converged on the crest as a result of long wave-

induced changes in local depth and currents. 

The breaking of waves at sea swell frequencies affected the evolution of waves at 

infragravity frequencies. Nonlinear wave coupling involving infragravity waves 

was clearly reduced as the short waves started to break (Figure  4.10e), and 

followed by a shoreward decrease in both the infragravity net energy flux and 

nonlinear wave energy transfer to infragravity waves (Figures 4.7–4.9). These 

observations are consistent with the abrupt decrease of nonlinear forcing within 

the surfzone, and agree with observations reported in previous studies (e.g., 

Ruessink, 1998a; 1998b; Henderson and Bowen, 2002; Sheremet et al., 2002). 
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Figures 4.13b and 4.13c show respectively the averaged infragravity bicoherences

)( SIg Xb  and groupiness factor GF(ΔXs), a relative measure of wave groupiness 

proposed by List (1991) and calculated from the ADV pressure time series. 

GF(ΔXs) decreased in the shoreward direction for ΔXs > 110 m, as the waves 

started to break, which is possibly associated with the reduction in the infragravity 

coupling )( SIg Xb  and nonlinear energy transfer WIg observed over the same 

region (see Figures 4.8 and 4.10). On the other hand, the (surfzone) region where 

ΔXs < 110 m, where the rate that harmonics were released increased (see the 

fCrest(ΔXS) slope change in Figure  4.13a), experienced a shoreward increasing 

trend for both GF(ΔXs) and )( SIg Xb  . The surfzone wave groupiness observed 

here is also consistent with List (1991) who found significant wave height 

variability to persist within the saturated surfzone. Although the change in the 

slope of fCrest(ΔXS) at h ~ 1.2 m is not understood, we hypothesize that difference 

interactions among free waves at higher harmonic frequencies might have 

occurred within the surfzone. Figure  4.14a shows the nonlinear energy transfer 

W(f1+f2, f1) to (positive) and from (negative values) infragravity waves with 

frequency f2 by triplets with frequencies f1, f2, and f1+f2, calculated (following 

Henderson et al., 2006) as 

),,(),,(),(
121121 ,,121 xuCxuuuhCfffW ffffff              4.20 

where Cf1+f2, f1 denotes the co-bispectrum. Significant nonlinear energy transfers 

can be observed for triads involving an infragravity and two harmonic waves 

(region between dashed lines),  in contrast to observations of Henderson et al. 

(2006) on a steeper barred beach, where most transfers occurred through triad 

interactions with swell frequencies (defined for 0.05 Hz < [f 1+f2, f1] < 0.15 Hz). 

In addition, the proportion of the total energy transfer to (pluses) and from 

(circles) infragravity frequencies f2 involving two harmonic waves increased in 

the shoreward direction (Figure  4.14b) indicating an increasing contribution of the 

harmonics relative to waves at swell frequencies within the inner surfzone. These 
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observations suggest that harmonic waves released in very shallow water could 

play a key role in the infragravity energy balance under dissipative conditions. 

 

Figure ‎4.14. (a) Example nonlinear energy transfers W(f1+f2, f1) (Equation 4.20) to 

motions at infragravity frequency f2 by triads with frequencies (f1, f2, f1+f2), calculated 

from a time series obtained by NiwaOut ADV at 10:10 (DST), during the first tidal cycle 

near high tide. Diagonal dashed lines mark region below which f1+f2 < 0.5 Hz (top line) 

and 0.15 Hz (bottom line). Horizontal solid line along f1= 0.05 Hz delimits region above 

which triads consist of only one infragravity wave. (b) Proportion of energy transfers 

involving two harmonic waves with frequencies (f1+f2, f1) WHarmonic/WTotal to (positive 

W(f1+f2, f1), pluses) and from (negative W(f1+f2, f1), circles) infragravity waves f2, as a 

function of cross-shore distance from the shoreline ΔXS. WHarmonic is associated with the 

region in (a) where both f1+f2 and f1 correspond to harmonic frequencies (defined here as 

0.15 < f < 0.50 Hz, region between two dashed lines), whereas WTotal also includes the 

region in (a) between lower dashed line and horizontal solid line, where f1+f2 and f1 are 

within the swell range (0.05 < f < 0.15 Hz). 
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4.6 Conclusion 

Swash oscillations on a low-sloping, dissipative beach were largely dominated by 

low-frequency (f < 0.025 Hz) infragravity waves. Incident waves at sea-swell 

frequencies were nearly fully dissipated through the surfzone by breaking, which 

yielded runup saturated at the incident band. In addition, swash energy at a 

higher-frequency infragravity band (0.035 Hz < f < 0.05 Hz) also appeared to be 

saturated, similar to observations under high-energy offshore wave conditions, 

albeit offshore wave condition during our observations were mild. Our 

observations show that the frequency distribution (and total energy) of 

infragravity waves in infragravity-dominated swash motions were entirely 

consistent with the gradual dissipation of infragravity energy observed in the 

shallow surfzone. 

Infragravity energy dissipation was strongly associated with breaking of sea-swell 

waves within the surfzone. Sea-swell wave breaking abruptly decreased nonlinear 

transfers to infragravity motions, making infragravity dissipation prevail over 

forcing and infragravity fluxes to decrease in the shoreward direction. Infragravity 

wave reflection increased with decreasing infragravity frequency, but was less 

than unity for all frequency bands. Tidal modulations in the dissipation pattern 

associated with changes to the beach face slope over the concave profile were 

largely responsible for shifting the zone of infragravity runup saturation to higher 

and lower frequencies. The strong control of beach slope on infragravity-

dominated runup is consistent with field observations of Ruggiero et al. (2004). 

Our observations suggest that the pathway of energy transfer between incident 

and infragravity frequencies as the waves progressed across the surf zone and into 

the swash zone involved higher order harmonics. We showed evidence of 

nonlinear difference interactions involving infragravity and high-frequency, 

secondary harmonic waves within the inner surfzone. Our findings suggest that 

these nonlinear harmonic waves could play a role in the wave energy balance near 
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the shoreline on low-sloping, dissipative beaches. This may be in contrast to 

steeper barred beaches, where transfers of infragravity energy to and from swell 

waves have been shown to be more important. 

Most infragravity forcing clearly occurred outside the surf-zone, and energy levels 

at sea-swell frequencies in the swash zone were very small, suggesting that bore-

bore capture of sea-swell waves (e.g., Mase, 1995) may not be an important 

mechanism of infragravity generation on very gentle dissipative beaches. 
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Chapter 5 

5 General Conclusions 

5.1 Concluding remarks 

Field observations of wave and swash hydrodynamics from two different sites 

were analysed. The sites were representative of medium-energy, steeper, 

intermediate beaches, characteristic of the east coast, and high-energy, low-

sloping, dissipative beaches, typically observed on the west coast of New Zealand 

(Tairua Beach and Ngarunui Beach, Raglan respectively). As one would expect, 

the way in which swash motions were related to offshore wave climate was 

remarkably different on these two sites, particularly with respect to the magnitude 

of the vertical swash oscillations and the characteristics of the swash spectrum 

relative to offshore wave conditions. 

The presence of a sandbar was found to change the characteristics of the swash 

motions on a steep, intermediate beach. The magnitude of the shoreline 

oscillations and the wave energy distribution among frequencies were highly 

controlled by the water depth over the sandbar crest, which defined the degree of 

wave breaking dissipation and the wave energy levels at the shoreline. Whereas 

here the water depth over the sandbar crest was modulated by changes in the tide, 

one would expect similar patterns to take place at distinct sites where the 

presence, quantity and characteristics of the sandbars are different. Accounting for 

the presence of sandbars and their distances from the shoreline, which might be 

viewed as a proxy of their depths, might improve the generalization of simple 

runup parameterizations, especially for steeper beaches where their effects in 

controlling wave breaking dissipation are typically maximized. 
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Alongshore runup variability at Tairua was strongly associated with changes in 

beach face slope. The sandbar morphology was notably alongshore-uniform 

during the period of the field experiment, despite previous observations having 

observed non-uniform sandbar features to be common at this site. However, the 

presence of a shoal near the southern end of the beach caused some variability in 

the degree of breaking-induced wave energy dissipation over this region, which 

also affected the magnitude of runup at both sea-swell and infragravity 

frequencies. These results suggest that prominent alongshore variability in 

sandbar morphology may lead to significant alongshore runup variability, which 

might be linked to coupling between shoreline and sandbar rhythmicity frequently 

observed in the field. 

Swash motions on a low-sloping, dissipative beach were controlled by energy 

transfers between sea-swell and infragravity waves. Short waves at sea-swell 

frequencies were nearly fully-dissipated before reaching the swash zone and 

runup was essentially driven by wave energy at infragravity frequencies. 

However, infragravity waves were also observed to decrease in energy in the 

shoreward direction within the surfzone, and cross-shore changes in infragravity 

energy fluxes were highly associated with the energy density in the swash zone. 

Part of these infragravity losses appeared to be due to nonlinear energy transfer 

from infragravity back to incident waves, which were dissipated by breaking. 

Nevertheless, swash saturation and very small reflection coefficients observed for 

higher-frequency, infragravity waves, suggest that these waves might also have 

been limited by breaking in very shallow water (< 0.5 m). Understanding the 

conditions under which energy is gained or lost by infragravity waves in very 

shallow water is critical to predicting changes in swash motions on gently-sloping 

beaches. 

A simple technique to quantify wave breaking dissipation was presented in this 

thesis. The method uses time stack images of the surfzone to detect breaking 
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waves and calculates the probability of breaking across the surfzone. Quantifying 

the wave energy dissipated by breaking has been a challenge over the years, 

despite being critical to understanding wave transformation within the surfzone 

region. Though further testing and validation of the technique against field and 

laboratory experiments and numerical models would be desired, the technique has 

been successfully used in this thesis to investigate relative changes in wave 

dissipation and their contributions to swash motions, and could potentially be 

useful in future research. 

Some of the limitations of this study are that some environmental parameters 

controlling swash oscillations were correlated in the field sites analysed in the 

thesis. Particularly, alongshore changes to beach face slope and the degree of 

wave breaking over the offshore sandbar were typically correlated which, despite 

being an interesting finding from this study, made it difficult to separate the 

relative contributions from these two variables. In addition, alongshore variability 

to the sandbar morphology was limited, and the effect of strong alongshore 

morphological variability on runup is unclear. Further research at different sites is 

needed to clarify these questions. 

The sandbar control on runup was examined at one field site, subjected to a 

restricted range of offshore wave conditions, tidal range and nearshore 

morphology. Investigating the sandbar control under a wider range of 

environmental conditions would allow generalising the role of the sandbar in 

controlling swash oscillations. However, this was beyond the scope of this thesis. 

Shallow water processes which are not accounted for in existing runup 

parameterizations, including bar-induced sea-swell wave breaking dissipation, 

infragravity dissipation and nonlinear wave energy transfers among wave 

frequencies were shown to have profound implications to the characteristics of the 

swash. Describing and quantifying such effects constitutes the main contribution 

of this thesis. 
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5.2 Suggestions for future research 

This thesis answered some fundamental questions concerning swash oscillations 

on steep and low-sloping natural beaches and their relationship with 

environmental parameters, and gave rise to a number of further interesting 

research questions. 

Wave breaking dissipation and changes in beach face morphology were both 

associated with changes to runup. However, the relative contributions of these two 

variables under a wide range of environmental conditions are still unclear. 

Investigating alongshore runup variability under highly non-homogeneous 

sandbar morphology, as well as tidally-modulated, cross-shore runup changes 

over convex beaches (where, conversely to the present observations, the beach 

slope decreases with increasing tide) could potentially help understanding their 

relative contributions. 

This thesis showed evidence that secondary harmonic waves might be involved in 

the generation of infragravity motions at the shoreline through a mechanism of 

bore-bore capture. Examining this mechanism using numerical simulations could 

allow one to determine how important it could be under different wave and 

morphology conditions. 

Nonlinear wave interaction patterns across the surfzone and their relationship with 

infragravity swash motions were investigated in this thesis. The shallowest 

observations took place at about 0.5 m water depth, shoreward of which the 

infragravity band started to dominate the spectrum and higher-frequency, 

infragravity waves might have broken. Examining shallower-water, field 

observations of wave hydrodynamics on low-sloping beaches may help clarifying 

the roles of energy transfer from infragravity waves and infragravity wave 

breaking in controlling infragravity swash motions. 
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Abstract 

Swash motions, shoreline oscillations driven by waves, are traditionally assumed 

to be a stationary process. The assumption of stationarity implies that techniques 

like Fourier analysis cannot be used to detect potential transient features such as 

those that could result from variations in offshore wave grouping. An alternative 

technique that has been often applied to investigating non-stationary processes is 

wavelet analysis, which yields localized information in both the time and 

frequency domains. Here, we use wavelet analysis to investigate infragravity 

swash motions at Tairua Beach in New Zealand. Time series of swash motions 

were obtained using video images at 31 alongshore locations spaced every 10 m. 

One-hour time series were obtained using video images recorded at 2 Hz at both 

low and high tide. The swash edge was identified using an edge detection 

algorithm and converted to vertical swash motions using known geometric 

transformations and a Lidar beach topography survey. An ADCP deployed in 12 

m water depth measured the offshore wave climate. Fourier and wavelet 

transforms were performed on both the offshore and shoreline time series. We 

found that although the main features in the offshore spectra were similar using 

both techniques, the wavelet analysis also indicated that there were consistent 

localized time-variations in incident power that could be readily associated with 

variations in wave grouping. We observed a similar modulation in shoreline 

motions although, at certain alongshore positions and for large wave groups, 

energy at infragravity frequencies was also evident. Overall, our observations and 

analysis show that the wavelet technique can be a useful tool to investigate 

possible coupling between wave groupiness and infragravity swash motion. 

Keywords: swash, ocean waves, infragravity motions, stationarity, wavelet analysis. 
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A.1.   Introduction 

Wave measurements in the inner surf and swash zones often show energetic 

motions at relatively long (infragravity) periods (i.e. >20 sec), even though these 

oscillations are normally a very small portion of the offshore wave field (e.g. 

Guedes et al., 2011; Guza and Thornton, 1982). These infragravity motions are 

believed to be associated with the commonly-observed phenomenon of wave 

groupiness, in which the waves organize themselves in successive groups of high 

and small waves due to wave beating (Longuet-Higgins and Stewart, 1962). 

Transfer of energy from incident to infragravity frequencies within the surfzone 

occurs through nonlinear interactions. According to Longuet-Higgins and Stewart 

(1962) the grouping pattern causes gradients in radiation stress between groups of 

large waves, where the sea surface is depressed and small waves, where it is 

raised. As a result, long (bound) waves with same period but 180° out of phase 

with respect to the wave groups are generated. It is widely assumed that these 

bound waves are released as a result of wave breaking and propagate towards the 

shoreline as free long waves, although Baldock (2009) has suggested that there is 

not a physical explanation or convincing evidence to support this release theory. 

Yet another mechanism proposed by Symonds et al. (1982) suggests that the long 

waves can be generated by time-varying breakpoint position. The group-

modulation of wave heights induces variations in the width of the surf zone which 

are reflected by changes to the setup at the group periods and its harmonics, 

therefore generating long waves. Interactions between successive swash events 

may also contribute to the infragravity swash spectrum (e.g. Mase, 1988). The 

process is characterized either by an uprush being overtaken by the following one 

or a downwash colliding with the following uprush. Such interactions could cause 

longer period modulation at the shoreline, not necessarily associated with 
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infragravity shallow-water waves. Recently, Guedes et al. (2011) suggested that 

higher-frequency (than incident) waves might contribute to this process. 

Free surface elevation and swash data are normally assumed to be sufficiently 

stationary to use analysis techniques specifically developed for stationary time 

series. The use of stationary techniques such as Fourier analysis implies that 

information on the frequency distribution of power can only be obtained for the 

complete duration of the time series (Farge, 1992). The time information of 

potential transient features such as wave groups is inherently lost. An alternative 

technique that has been often applied to investigating non-stationary processes is 

wavelet analysis, which yields localized information in both the time and 

frequency domains. For instance, wavelet has been applied to the study of 

turbulence (e.g. Farge, 1992), rhythmic sandbar features (e.g. Ruessink et al., 

2007) and the El Niño-Southern Oscillation (e.g. Gu and Philander, 1995). 

Wavelets have also been found to be suitable for detecting group modulations in 

nearshore lake waves (Liu, 2000). However, we are unaware of studies applying 

wavelet analysis to swash data. 

The objective of this paper is to investigate simultaneous time series of offshore 

and swash oscillation through a wavelet approach, and attempt to link potential 

coupling between offshore wave grouping and infragravity motions at the 

shoreline. 

A.2.   Wavelet analysis 

The continuous wavelet transform of a time series x(n), n=0...N-1 and time 

sampling dt is defined as the convolution of this time series with scaled and 
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translated versions of base analyzing functions called “mother” wavelets ψ(n) 

(Farge, 1992, Torrence and Compo, 1998): 
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where the * is the complex conjugate. The variation in the wavelet scale s and its 

translation along the time index n allows the energy in the 1-dimensional time 

series x(n) to be decomposed into both time and scale (Farge, 1992). Therefore, 

the wavelet transform is particularly appropriate to identify transient patterns that 

characterize non-stationary signals. 

The base functions must satisfy some conditions among which they should be 

well localized in both time and frequency (with finite number of oscillations) and 

their average should be zero (Farge, 1992, Torrence and Compo, 1998). 

Moreover, the scaled versions of the wavelet ψ0(n) should be normalized as 
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to have unit energy and to ensure that the wavelet coefficients are weighted only 

by x(n) (Torrence and Compo, 1998). The choice of the wavelet function is 

important since the wavelet coefficients will have information of both the signal 

and the function itself. For the analysis of real-valued signals such as sea surface 

elevation and swash oscillations, progressive, complex-valued wavelets are 

appropriate because the quadrature phase shift between their real and imaginary 

parts allows one to eliminate their oscillations by visualizing the modulus of the 

coefficients (Farge, 1992). One of the most widely used complex-valued wavelets 

and the one adopted here is the Morlet (Figure A.1) which is a plane wave 

modulated by a Gaussian envelope, defined in the time domain as: 
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where ω0 is a non-dimensional frequency, commonly set to 6 to ensure 

admissibility (Farge, 1992, Torrence and Compo, 1998).  

The relationship between the wavelet scale s and the equivalent Fourier period T 

can be calculated analytically for each type of wavelet and for the Morlet with 

ω0=6, T=1.03s  (hereinafter, results will be presented using the equivalent Fourier 

period). 

The wavelet transforms (Equation A.1) is considerably faster if calculated in 

Fourier space since all the N convolutions can be done simultaneously for each 

scale (Torrence and Compo, 1998). However, the Fourier transform of non-cyclic 

time series leads to errors near the end of the time series. These errors can be 

minimized by padding the end of x(n) with zeros prior to wavelet transforming. 

The compromise is the decrease in the wavelet coefficients near the edges which 

becomes more important at higher scales. The region within which the edge 

effects cannot be negligible is termed cone of influence and, for the Morlet 

wavelet, scales as s2 . 

 

 

Figure A.1. Morlet wavelet ψ as a function of nondimensional time t/s. Solid and dashed 

lines are the real and imaginary parts of the function. 
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A.3.   Methods 

A.3.1.   Field site 

The dataset analysed here was obtained during a field experiment undertaken on 

15–17 July 2008 at Tairua Beach, a 1.2-km-long pocket beach located on the 

Pacific coast of New Zealand (Figure A.2). This medium-coarse grained beach 

has a fairly steep beach face slope of about 5° and is exposed to medium wave 

energy with average offshore significant wave height and mean spectral period of 

0.9 m and 5.8 sec (Gorman et al., 2003). The tides are semi-diurnal, with tidal 

ranges between 1.2 (neap) and 2 m (spring tides) and the system is normally 

classified as intermediate, with a rhythmic sandbar and strong rip currents often 

present (Bogle et al., 2000). The sandbar remained remarkably alongshore 

uniform during the 3 days, at a cross-shore distance of about 80 m from the 

shoreline and with water depths over the crest changing from about 1.1 to 2.2 m 

due to tidal variations. 

A.3.2.   Field measurements 

During the field experiment, measurements of offshore wave climate and beach 

topography, and video images of the beach were obtained (a comprehensive 

overview of some of these measurements is given by Guedes et al., 2011). For 

this study, we selected two 60-min long periods from the second day of our 

dataset, at low tide starting at 11.00am and during high tide starting at 16.00pm. 

The waves were measured using an ADCP deployed in a water depth of about 12 

m (~800 m distant from the coast). Time series of subsurface pressure were 

recorded every hour for 20 min, at 2 Hz and converted to free surface elevation η0 

using linear wave theory. 
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Figure A.2. Field site location with inset showing locations of camera and ADCP (a). Oblique image obtained at Tairua Beach on 16 July 2008 at 11:01am, during 

low tide (b). The lines show the alongshore positions where the swash was measured with the circles indicating where our algorithm detected the edge of the swash 

for this image. 
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The beach topography was surveyed with a land-based lidar laser scan once each 

day (the survey carried on July 16
th

 is used here). An area extending for 300 m 

alongshore was selected within the surveyed area for the processing. The hugely-

dense “point-cloud” obtained from the beach scan was filtered using algorithms 

created to remove outliers and non-desired points (e.g. foreign objects such as 

people standing on the beach). The algorithms repeatedly eliminated points 

below/above some standard deviation threshold within predefined windows. 

Finally, the remaining points were rotated and interpolated to a regular spacing of 

0.5 m in the cross-shore and 1.0 m in the alongshore direction. The grid has the 

origin located at the alongshore position of the black line close to the centre of 

Figure A.2b and increases towards the NW direction. 

High-resolution images (1528 x 2016 pixels) were acquired continuously at 2 Hz 

(e.g. Figure A.2b), using a digital camera mounted at the southern end of the 

beach (Figure A.2a) at approximately 42 m above the sea level. Runup oscillations 

were extracted at 31 positions spaced every 10 m alongshore, within the area 

covered by the lidar survey, using a technique known as ‘time stack’. The 

technique consists of time series of pixel intensity sampled along cross-shore 

transects defined on the images. Conversions between pixel and ground 

coordinates were made using the colinearity equations described in Holland et al. 

(1997) with corrections for lens distortions (see Guedes et al., 2011 for more 

detail on the technique). 

A.3.3.   Data analysis 

The swash location was defined as the most shoreward edge of water identifiable 

on each line of the time stacks. The edge was detected using an image processing 

algorithm, developed to distinguish the sharp contrast observed between the 



140 

swash front, typically characterized by the presence of white foam, and the darker 

sandy beach. Manual detections of the swash were required in some images where 

the algorithm failed due to poor lighting contrast. Time series of vertical runup 

elevation R were derived from the digitized swash locations since the beach 

topography was accurately known from the lidar survey. In total, 62 time series of 

runup elevation were generated over the 2 periods of interest. 

Variations in η0 induced by offshore wave grouping were assessed by performing 

running standard deviations over the offshore series. A window width equivalent 

to ~3 wavelengths (76 datapoints) was used for the calculations. The time-delay of 

the waves between the location of the ADCP and the shoreline was estimated 

using linear wave theory to calculate the group speed, and used to provide a sort 

of “synchronization” between the offshore and swash time series. 

The wavelet transform was performed on the offshore and swash time series 

obtained during the two periods selected for the analysis. Each time series was 

detrended and normalized by its variance prior to wavelet transformed. The 

resultant wavelet coefficients were converted to wavelet power spectra as
2

)(sWn

and scale-averaged (see Torrence and Compo, 1998) over incident (10 s < T < 15 

s) and infragravity periods (20 s < T < 40 s). Hereinafter, the time series of scale-

averaged wavelet power spectrum over incident and infragravity bands will be 

referred to as Winc and Wig, respectively. 

Fourier power spectrum was calculated from each linearly detrended offshore and 

runup time series, segmented into sections of 256 sec (resulting in a bandwidth of 

0.0039 Hz) and tapered with a Hanning window (50% overlap), giving typically 

11 and 37 degrees of freedom for the offshore and the runup time series. 
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A.4.   Results 

During the two periods selected for analysis, the offshore wave parameters 

remained remarkably similar while large differences were observed at the 

shoreline. Offshore significant wave height, calculated as 4σ of the detrended time 

series (where σ is the standard deviation), changed from 0.86 m (low tide) to 0.82 

m (high tide). The peak wave period, found from the inverse of the peak 

frequency from the Fourier spectrum, barely changed (from 11.4 to 11.5 sec) and 

virtually no infragravity energy was observed offshore. Yet, at the shoreline, the 

alongshore-averaged significant swash height increased by 68%, from 1.1 to 1.8 

m, and peak swash period decreased from 12.7 to 11.6 sec (10%) from low to high 

tide. The alongshore-averaged ratio between the variance at infragravity (<0.05 

Hz) and incident frequencies (>0.05 Hz) decreased by almost a factor of 4 

between low tide (0.45) and high tide (0.12). These changes were found by 

Guedes et al. (2011) to be predominantly driven by tidally-controlled variations in 

the degree of wave breaking over the sandbar. 

Figure A.3 shows time series of offshore sea surface elevation η0 obtained at low 

tide and associated time series of running standard deviation ,
0

 run  the wavelet 

power spectrum Wn(s) and the scale-averaged wavelet power over the incident 

band .
0IncW  It can be readily noticed that the groups of high waves are 

associated with peaks in
0

 run and the width of these peaks reflects the time 

length of the high-wave groups. These features can also be observed from the 

wavelet power at incident periods. It is apparent that the high-wave groups yield 

peaks in the wavelet spectrum at the offshore wave period, and that the time 

history of these peaks, expressed by ,
0IncW shows essentially the same 

information as
0

 run with the correlation coefficient r
2
 between these series 

amounting to 0.87 (significant at the 95% confidence level). 
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Figure A.3. (a) Time series of offshore sea surface elevation η0 obtained on 16 July 2008. 

(b) Time series of running standard deviation σrun calculated from (a). (c): Normalized 

wavelet power spectrum Wn(s) obtained for the offshore time series shown in (a). White 

solid contours show the 5% significance level against red noise. The cone of influence is 

shown by the white dashed curves. The normalized power gives a measure of the power 

relative to white noise. (d): Scale-averaged wavelet power over the incident band WInc 

calculated from (c). Dashed line is 95% confidence level. 

In order to investigate whether the infragravity swash power could be associated 

with the offshore wave groups, the offshore time series of scaled-averaged 

wavelet power over the incident band
0IncW were regressed against the runup 

series of scaled-averaged wavelet power. Figure A.4 shows the Pearson product-

moment correlation coefficient r obtained from the regressions of
0IncW with

RIncW  (Figure A.4a) and RIgW  (Figure A.4b), plotted as a function  



143 

 

Figure A.4. Alongshore series of the Pearson product-moment correlation coefficient r 

between offshore series of incident scaled-averaged wavelet power 
0IncW and swash 

series of scaled-averaged wavelet power, over (a) the incident RIncW   and (b) 

infragravity band .RIgW   Black and gray lines show correlation for series collected at low 

and high tide, respectively. Significant values at the 95% confidence level are highlighted 

by filled circles. 

of alongshore position Y at the shoreline. RIncW   does not show a clear correlation 

pattern with .
0IncW Although there are some alongshore locations where a 

significant linear relationship (at the 95% confidence level) can be observed 

between these variables, at most positions the correlation is not significant. It can 

also be observed that the significant values are mostly positive. 

At infragravity frequencies, on the other hand, some interesting features can be 

observed. At low tide, when the infragravity power at the shoreline was 

maximized, a significant linear relationship at the 95% confidence was found at 

most alongshore locations between 
0IncW and RIgW   (Figure A.4b, black line). 

At high tide, conversely, no significant linear relationship at the 95% confidence 

level was found at most alongshore positions (Figure A.4b, gray line). 

Furthermore, significant values of r are mostly positive at low tide, although 
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Figure A.5. Low (a–c) and high tide (d–f) time series (top), and respective normalized wavelet power spectrum Wn(s) (bottom). Panels (a,d) are offshore data; panels 

(b,e) and (c,f) are swash data for the alongshore positions y=70 m and y=-70 m, respectively. The 5% significance level is shown as the white solid contours. The 

cone of influence is shown by the white dashed curves. The normalized power gives a measure of the power relative to white noise. Blank region on the left-hand 

side of the swash plots correspond to time delay calculated during low (158 sec) and high tide (134 sec). 
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during high tide they are always negative. Finally, we notice that there is a 

consistent alongshore pattern with absolute values of r normally higher on the 

northern side of the beach (positive values of Y) with a nodal location around Y=-

60 m where the correlations are small and not significant for the two periods 

analysed. 

Figure A.5 shows some examples of wavelet power spectra and respective time 

series obtained offshore and at alongshore positions where there was (Y=70 m) 

and there was not (Y=-70 m) a statistically significant linear relation between 

0IncW  and .RIgW   It is apparent that there is considerably more infragravity 

power at low tide, and that this power varies along the length of the time series. 

The time locations where the infragravity power is located can be somewhat 

associated with the grouping-modulated offshore incident peaks, for the low tide 

data at Y=70 m (Figures A.5a and A.5b), as suggested by the significant value of r 

at this location. At Y=-70 m, conversely, the swash infragravity power cannot be 

readily connected to the offshore group modulation (Figures A.5a and A.5c). At 

high tide (Figures A.5d–f) the association between the offshore incident power 

and the swash infragravity power is not evident as the infragravity swash energy 

is low and not significant, yet there seems to be some regions with higher 

infragravity power at Y=70 m connected to groups of low waves offshore. 

A.5.   Discussion and conclusion 

The significant linear correlation observed between 
0IncW and some of the time 

series of RIgW   supports the hypothesis of infragravity swash motions being 

associated with offshore wave grouping. The correlations were generally higher at 

low tide, when the infragravity swash energy was greater and when there was 

considerably more active wave breaking over the sandbar. The fact that r was 
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positive at low tide and negative at high tide is also intriguing and suggests that 

there might be different mechanisms generating long waves. Intense wave 

breaking conditions appear to be associated with long waves in phase with the 

wave group structure, consistent with the mechanism proposed by Symonds et al. 

(1982), although the low-energy, infragravity swash motions observed at high tide 

appear to be more consistent with Longuet-Higgins and Stewart (1962). We also 

noticed that, even though the correlations might be significant, they are not strong 

(the highest correlation coefficient r
2
 observed at low tide at Y=70 m amounts to 

0.27). Therefore, part of the infragravity swash signal might be indeed not 

associated with long waves, and result from other mechanisms such as swash 

interactions. 

A well-defined pattern between the grouping information offshore and the 

incident power at the shoreline was not observed either during low or high tide. 

This is consistent with the group structure being destroyed as the waves approach 

very shallow water near the shoreline and become strongly depth-dependent. 

Additionally, interaction between individual swash cycles should potentially 

complicate the scenario at incident periods. 

 

Figure A.6. Fourier spectra (dashed lines) and wavelet spectra integrated over all times 

(solid lines) calculated for the offshore (a) and shoreline data (b). Black and gray lines are 

spectra calculated for the low and high tide time series, respectively (the time series were 

not normalized by their variance here). The swash spectra were averaged over all 

alongshore positions. 
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The wavelet and the Fourier analysis showed some similar features. Figure A.6 

shows the wavelet integrated over all times (the global wavelet) and the Fourier 

power spectra, for the offshore (Figure A.6a) and swash data (Figure A.6b). Both 

the shape, the location of the peaks and the total variance were consistent. The 

main distinction was the smoother and wider incident peaks observed in the global 

wavelet spectra, which results from neighbouring wavelet scales being correlated 

(Percival, 1995). 

We found the wavelet analysis to be a useful tool for detecting not only the 

frequencies where the offshore wave power was distributed at, but also 

modulation of this power due to wave groupiness. This agrees with the analysis 

conducted by Liu (2000) on data from nearshore lake waves. Nevertheless, the 

wavelet was also found to be an appropriate means of analysing runup data as the 

infragravity swash power was consistently observed to be transient in time, which 

opposes to the commonly-accepted idea of stationarity. 
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