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“All are churned up together by powerful currents….” (Daily Mail 2007) 
 

 

          Yamba beach scene, New South Wales, Australia, during August 2007* 
 

Coastal morphologies are responsible for strange phenomena at many scales, 
some more conspicuous than others 

 

 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

*Photo Courtesy of Icon Images 

  ii



ABSTRACT 

The coastal focus and beach culture of Australia’s population in general, and the 
people of New South Wales in particular, mean that coastal systems are both 
highly prized and subjected to great pressures.  The vast majority of the 
wastewater generated by the 7.3 million people of New South Wales is discharged 
directly to the ocean. The dispersion and fate of waterborne pollutants and their 
potential to impact coastal ecosystems are fundamentally determined by the 
dynamics of the coastal boundary layer (CBL). This turbulent interface between 
the coastline and the deep oceans is defined and classified for the first time in this 
thesis. Coastal morphologies and changes in the orientation of the coastline 
promote turbulence and strong gradients with extreme variability and 
heterogeneity over a broad range of scales. Conceptual models are presented to 
characterise New South Wales coastal boundary layer processes. 
 
The broad aims of this thesis are to investigate the coastal boundary layer 
processes that affect dispersal and advection of pollutants, and to develop 
conceptual models and tools to facilitate coastal management. 
 
Remote sensed ocean colour and sea surface temperature observations define 
meso-scale CBL phenomena, and this study demonstrates their application to 
support management decisions in relation to marine algal (phytoplankton) blooms. 
However, considerable scope exists to improve regional algorithms to deliver 
better ocean colour products for the optically complex (Case 2) waters of the inner 
coastal boundary layer. 
 
Past failures to consider the CBL (morphological) settings of pollutant discharges 
to coastal waters have led to inefficient pollutant discharge systems and potential 
environmental impacts. Two case studies, investigate the principal forcing 
mechanisms and demonstrate the importance of morphology in controlling the 
dispersion and retention times of pollutants. 
 
The first case study is focused on Sydney coastal waters where pollutant loadings 
are greater in magnitude and different in character than elsewhere in New South 
Wales. Here population pressures generate large wastewater loadings but the 
distances to offshore discharge locations are large compared to the scale of coastal 
roughness (headlands and bays) and the water is deep, thus reducing the risk of 
local retention of pollutants and increasing the potential for rapid dilution. By 
considering simulations of near field effluent plume behaviour in relation to long 
term ambient nutrient patterns specific periods of the year and depth intervals 
have been identified when outfalls would have an increased opportunity to 
influence bloom development, especially the upper half of the water column 
during late summer. However, algal blooms appear to be principally driven by 
seasonal oceanic nutrient enrichment. The research presented in this thesis, 
together with companion research previously published by the author and routine 
ongoing monitoring, indicate the viability of disposal of the Sydney’s excess 
sewage effluent (after source control and re-use options have been exhausted) via 
existing deepwater outfalls. 
 
In contrast, inner CBL settings with coastal irregularities (e.g. headlands and 
bays) have a greater propensity to trap pollutants. A new hydrodynamically 
relevant morphological classification of New South Wales bays, headlands and 
islands provides both broad context for case studies and guides preliminary 
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assessments for other locations. This classification reveals a borderline propensity 
for flow separation and re-circulation in the lee of Corambirra Point which is the 
focus of the second case study off Coffs Harbour in northern NSW. Direct 
observations and 3D finite difference hydrodynamic (Eulerian) and particle 
tracking (Lagrangian) model simulations quantify transient re-circulation 
associated with local current accelerations and a persistent shear zone located in 
the wake to the south of Corambirra Point. The flux of ambient water across the 
prescribed outfall alignment increases eighteen fold, over a shear zone spanning a 
cross-shore distance of just 1.4km (from 1.6km to 3km offshore). In contrast, the 
potential for re-entrainment and trapping of effluent in transient re-circulation 
cells was demonstrated to be insignificant. The proposed location of the outfalls 
was 1.5km offshore whereas the greatest gain per unit extension of the proposed 
discharge point coincides with the centre of the shear zone located ~2km offshore. 
 
These case studies illustrate specific coastal boundary layer effects and indicate 
how an understanding of the spatial and temporal scales of these effects can be 
used to target more specific assessments of potential pollutant impacts. Simple 
morphological risk assessment tools are also presented to identify factors and 
processes which limit the exposure of sensitive environments to high pollutant 
concentrations and loads. Eddy retention effects are generally not incorporated in 
existing near field models but potential re-entrainment effects in wake zones can 
be assessed through the eddy retention value, which is introduced in this thesis. 
Although the approach presented here is focused on New South Wales coastal 
waters, the framework serves as a basis for general application elsewhere, and as a 
foundation for further refinement for application to NSW coastal waters. 
 
Existing scientific literature indicates that coastal boundary layer processes also 
shape the distributions of the biological species and communities. This further 
motivates the development of a process based understanding of coastal boundary 
layer dynamics as a fundamental platform to support environmental protection 
and biodiversity conservation initiatives. 
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PREFACE 
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Pritchard, T.R. and Koop, K  (2005). Satellite Remote Sensing in Marine 

Ecosystem Assessments. Chapter 6 in: ed. den Besten, P.J. & Munawar, M. 
Ecotoxicological Testing of Marine and Freshwater Systems: emerging 
techniques, trends and strategies. Ecovision World Monograph Series, Taylor 
& Francis, 195-228. 

 
Chapter 6 
Pritchard, T.R., Holden, C. and Healy, T. (2005) Variability of coastal dynamics 

of New South Wales, Australia and its relevance to anthropogenic impacts. 
Refereed Proceedings of the 17th Australasian Coastal and Ocean Engineering 
Conference, Institute of Engineers, Australia, 61-66. 

Pritchard, T. R., Rendell, P., Lee, R. S. and Ajani, P. (2001) How do Ocean 
Outfalls Affect Nutrient Phytoplankton Relationships in Coastal Waters of 
New South Wales, Australia? Journal of Coastal Research, 34, 96-109. 

 
Chapter 8 
Pritchard, T.R., Lee, R.S., Ingleton, T.C., and Black, K.P. (2001) Dispersion in the 

lee of a headland: a case study of circulation off Coffs Harbour. Refereed 
Proceedings of the 15th Australasian Coastal and Ocean Engineering 
Conference, Institute of Engineers, Australia. 

Pritchard, T.R., Holden, C., Lee, R.S., Black, K.P. and Healy, T. (2007) Dynamics 
and Dispersion in the Coastal Boundary Layer off Coffs Harbour in Eastern 
Australia. Journal of Coastal Research, SI 50, 848-857. 

 
Findings from Chapter 9 have also been published, as attached in Appendix 3. 
Pritchard, T.R., Black,K.P.,  Lee, R.S. and Koop, K. (2011) Coastal boundary 

layer effects on pollutant dispersion. Coasts and Port 2011 Conference, Perth, 
WA, 27-30th September 2011. Institute of Engineers, Australia. 

 
Much of the material presented here has been presented and discussed at major 
scientific meetings and conferences, as outlined in Appendix 1 (18 presentations). 
 
Discussion within this thesis also draws heavily on previously published research 
by the author, which is referenced in Appendix 2 and, in some cases, provided in 
Appendix 3.  T. Pritchard authored or co-authored 17 refereed publications during 
the period of candidature. 
 
Except where referenced or acknowledged the material within this thesis was 
produced from my own ideas and work undertaken with the supervision of 
Professor Terry Healy, Dr Kerry Black, Dr Klaus Koop and Dr Willem de Lange. 
 
This research was supported by New South Wales Office of Environment and 
Heritage (including former incarnations of this organisation).  
 
This thesis is also provided electronically in .doc and .pdf versions, formatted for 
double sided printing. 
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plume dynamics. 

Figure 4.10 Coastal trapped wave characteristics. A. Schematic representation of 
the passage a northward propagating coastal trapped wave showing 
characteristic current reversal. Vorticity considerations (conservation 
of angular momentum) affect the movement of water across the 
sloping continental shelf waves resulting in CWTs. The wave is 
trapped against the coast, but unlike a Kelvin wave its profile does not 
fall off monotonically from the coast out to sea but shows a second 
region of large amplitudes over the shelf edge. B. Wind, current meter 
and temperature data observed at the Ocean Reference Station off 
Sydney showing weather band variability associated with the passage 
of coastal trapped waves, which resulted in cross shore oscillation of 
shear zones (Lee and Pritchard, 1996). Note: Freeland et al. (1986) 
and Church et al. (1986) describe the Australian Coastal Experiment 
which first verified the existence of coastal trapped waves and 
explained their dynamics. 

Figure 4.11 Ebb Tide Jets. A. Large scale ebb jet: Acoustic Doppler Current 
Profiler observations at Botany Bay - ebb flow initially occurred at 
depth, strengthening and becoming more uniform with depth before 
forming a narrow jet on the northern side of the entrance. Strongest 
currents (~0.6m/s) were observed at the surface while weak re-
circulation cells formed to the north and south of the entrance.   The 
ebb jet was ~10m thick and extended ~4km offshore. (from Cox et al., 
1993). In wide estuaries, the Coriolis force steer seaward flows to the 
left hand side the estuary entrance in the southern hemisphere (Dyer, 
1997), creating a tidally-averaged, net in flow on one side and a net 
outflow on the other side. Note that if the coastal currents are small 
and the estuary mouth is large, the plume does not form a jet at falling 
tide; instead it forms a radially symmetric plume which is similar in 
form to the flood tidal currents thus limiting net exchange (Wolanski, 
2007). B. Complex hydraulic features of a typical trained coastal 
entrance at Forster-Tuncurry on the NSW mid north coast. 
Breakwaters and training walls can significantly modify the hydraulic 
behaviour and sedimentation processes both within the estuaries and 
along their adjacent coastlines (from NSW, 1990).  Wolanski (2007) 
describes general entrance and return (re-entrainment) hydrodynamics. 

Figure 4.12 Selected examples of NSW CBL frontal features. 
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Pritchard, T.R. and Koop, K  (2005). Satellite Remote Sensing in Marine 
Ecosystem Assessments. Chapter 6  in: ed. den Besten, P.J. & Munawar, M. 
Ecotoxicological Testing of Marine and Freshwater Systems: emerging 
techniques, trends and strategies. Ecovision World Monograph Series, Taylor & 
Francis, 195-228. 

Figure 1:  Monthly mean SeaWiFS chlorophyll for December 1997 and July 1998.  
These observations span a major transition from El Niño to La Niña. 
Areas of the Arabian Sea failed SeaWiFS criteria due to aerosol 
effects in December 1997. (modified from Gregg, 2002). 

Figure 2: Longitude-time plot of primary production (mg C m-2 day-1) based on 
OCTS and SeaWiFS monthly mean chlorophyll from McClain et al. 
(2002). 

Figure 3: Monthly mean SeaWiFS chlorophyll-a (mg m-3) and monthly mean sea 
surface temperature and wind stress vectors for March 1999. ‘P’ 
indicates location of mountain pass - modified from McClain et al. 
(2002). 

Figure 4: AVHRR image showing island mass effects causing interrupted cloud 
cover and spiral vortices in the lee of Madeira Island, North East 
Atlantic (19/8/94). An AVHRR sea surface temperature image 
illustrates typical warm water island wake off Madeira Island 
(28/7/96) when the wind was north northeast. Modified from Caldeira 
et al. (2002). 

Figure 5: SeaWiFs image for 11 August 1998 indicated plumes emanating from 
the Hunter, Hawkesbury, Pt. Jackson, Botany Bay and Shoalhaven 
catchments in New South Wales, Australia (modified from Lee and 
Pritchard, 1999) 

Figure 6: Coccolithophore bloom off Cornwall, United Kingdom, on 18 May, 
1998.  True colour (Modular Optoelectric Scanner - MOS) from 
Deutsches Zentrum für Luft- und Raumfahrt, DLR (German 
Aerospace Centre). 

Figure 7: Spectacular Noctiluca scintillans bloom off the popular tourist beach at 
Manly near Sydney, New South Wales, Australia during 1997. Frontal 
processes (local convergence) accumulated Noctiluca which was then 
fragmented by the wind into bright red streaks directed shoreward 
(windrows). Photo courtesy of Beachwatch, NSW EPA. 

Figure 8: Sea surface temperature (SST) image showing separation of the East 
Australian Current from the shelf off Port Stephens (200m isobath 
shelf break indicated). Image courtesy of CSIRO Marine Laboratory. 

Figure 9: SeaWifS chlorophyll-a estimates during January 1998 indicate 
phytoplankton accumulations of along fronts in the lee of major 
changes in the orientation of the coastline especially along the inner 
edge of the East Australian Current south of Port Stephens which 
ultimately formed a plankton-rich cyclonic eddy on 20/1/98.  Images 
courtesy of CSIRO Marine Laboratory. 

Figure 10: Contoured time series CTD temperature data (ºC) and in situ 
chlorophyll-a data (μg/L) off southern Sydney at PH50 (2km offshore 
in 55m of water) and chlorophyll-a at PH100 (5km offshore in 105m 
of water) - based on sampling at 10m depth intervals on 8,13,15 & 20 
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January and 3 & 12 March 1998.  SeaWiFS images were obtained for 
dates indicated by white stripes. 

Figure 11:  East Australian Current waters depicted by warm sea surface 
temperature (SST in °C) carried Trichodesmium erythraeum with high 
chlorophyll waters on the EAC front to Batemans Bay (depicted by 
SeaWiFS chlorophyll-a in mg/m3) where oyster fisheries were 
disrupted during Easter 1998.  Images courtesy of CSIRO Marine 
Laboratory. 

Figure 6.1 Cross shelf profiles off Sydney and Coffs Harbour (WNW-ESE). 
Boxes depict the principal focus of each case study presented in this 
thesis. Depths in metres and distances in kilometers. 

 

Pritchard, T.R., Holden, C. and Healy, T. (2005) Variability of coastal dynamics 
of New South Wales, Australia and its relevance to anthropogenic impacts. 
Refereed Proceedings of the 17th Australasian Coastal and Ocean Engineering 
Conference, Institute of Engineers, Australia, 61-66. 

Figure 1 Remotely sensed sea surface temperatures (NOAA AVHRR) showing 
dynamic EAC features. 

Figure 2 Ocean Reference Station configuration  

Figure 3 Mean N-S speed profile - ADCP average N-S speeds for 30/12/03 to 
28/01/05 (diamonds for each 1m depth bin); S4 depths (grey line 1-2m 
thick); and, linear interpolation/extrapolation of mean speeds at S4 
depths (thin black line). 

Figure 4: Time series anomalies for mid point interpolation of N-S current 
velocity between S4 depths during August to December 2004.   

Figure 5.  Current progressive vectors at 5m, 10m, 20m, 30m, 40m, and 50m 
above the bottom. Record spans 30 December 2003 to 28 January 
2005. 

Figure 6.  ORS variance preserving power spectrum for upper ORS currents and 
ORS winds (1990-2003). [(cm/s)2 for current and (m/s)2 for wind vs 
log cycles per hour] 

Figure 7 High frequency internal waves observed in ORS isotherms (modified 
from Tate & Middleton). 

Figure 8 Semi-diurnal waves evident in both upper and lower current meter 
records which are 180 degrees out of phase. 

Figure 9.  De-stratification: ORS wind and temperature 

Figure 10. Upper ORS E-W currents (top), temperature profile (middle) and 
plankton counts (bottom) for January 1998. 

Figure 11.  Stratification ([T0m – T52m] °C) and near field model results (initial 
dilution & percent exposure) for North Head ocean outfall. 

Figure 12.  Relative displacements for upper ORS currents 
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Pritchard, T. R., Rendell, P., Lee, R. S. and Ajani, P. (2001) How do Ocean 
Outfalls Affect Nutrient Phytoplankton Relationships in Coastal Waters of New 
South Wales, Australia? Journal of Coastal Research, 34, 96-109. 

Figure 1. Study location showing ocean outfalls and locations of principal data 
sources. 

Figure 2a. Indicative total nitrogen loadings from coastal catchments. 

Figure 2b. Indicative total phosphorus loadings from coastal catchments. 

Figure 3. Total nitrogen and total phosphorus loadings from sewage treatment 
plants to NSW coastal waters. Data compiled for 1996/97 except 
‘Others’ which includes data for 1991. 

Figure 4. Ambient nutrient patterns at PH50 prior to commissioning of Sydney’s 
deepwater outfalls (NO3-N and PO4-P percentile distributions. 

Figure 5. Nutrient enrichment at PH50 for extreme (95 percentile) events 
expressed as absolute enrichment relative to 50 percentile 
concentrations (top) and as a factor of 50 percentile concentrations 
(bottom) [Factor of 1 indicates 95 percentile equals 2 x 50 percentile] 

Figure 6.  Average annual cycles (1991-1998) of effluent exposure (left) and 
initial dilutions (right) based on plume model results for North Head 
(top) and Bondi (bottom) 

Figure 7.  Dissolved inorganic nitrogen contribution from North Head effluent 
plume after initial dilution expressed in absolute terms(top) and 
relative to ambient concentrations (bottom) for typical plume 
contributions (left) and extreme plume contributions (right). 

Figure 8. Typical (50 percentile) contributions of dissolved inorganic nitrogen 
from North Head effluent plume expressed as a fraction of extreme 
(95 percentile) ambient conditions such as those that may be expected 
during slope water intrusions. 

Figure 9. Far field plume dilution and spreading based on radioisotope tracer 
studies at Malabar ocean outfall on 17/06/92 when the submerged 
plume was tracked with a vertical triple scintillation detector system 
(TDS - for Gold198) and a mobile vertical profiling system (VPS) 
towed at varying depths through and across the plume. Water samples 
were collected for tritium analysis. 

Figure 10. CTD data collected ~200m upstream (CONTROL) and ~500 m 
downstream (IMPACTED) from Malabar deepwater outfall during 
summer 1992. 

Figure 11. Molar ratios of NOx-N to PO4-P at Port Hacking site PH50 (top) and 
residual effect due to North Head (NHD) effluent plume. 

 

Figure 7.1 Morphometric classification for NSW headlands and islands (images 
courtesy Google Earth). 

Figure 7.2 a) iconic northern NSW headlands exhibiting north facing cusp 
asymmetry. b) schematic parameterization of a north facing cusp 
headland with deviation from standard triangular headland  
parameterised by Δ ; and,  c) Cape Byron, the most prominent north 
facing cusp headland in NSW (images courtesy Google Earth). 
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Figure 7.3 Morphometric classification for NSW bays (images courtesy Google 
Earth). 

Figure 7.4 Morphometric classification for NSW special cases: engineered 
training walls; and, chains of headlands/bay. Protrusion lengths are 
given for both north (LN) and south (LS) engineered training walls 
(images courtesy Google Earth). 

Figure 7.5 NSW Triangular headland lengths (Short in green <500m; Medium in 
orange 500>L1500m; and, Long in red (>1500m) and width to length 
ratios. 

Figure 7.6 Headland length-depth distributions shown in relation to Wake 
Parameter, P = 1.  Below P=1 (tan colour zone) flow separation and 
wake features such as re-circulation cells are favoured whereas above 
P=1 (green colour zone) frictional forces dominate to limit flow 
separation. 

Figure 7.7 Cumulative offsets of NSW Coastal Step ‘headlands’ plotted against 
distance south of Queensland border with major coastal offsets as 
labeled (top). Coastal Step headland width-to-length ratios indicate 
consistent step angles (as defined in Figure 7.1). 

Figure 7.8 NSW islands located >1km from shore showing north-south 
distribution (from Queensland border), distance offshore, and size 
(maximum dimension proportional to area). See Table 7.6 for numeric 
island codes. 

Figure 7.9: Hill-shaded bathymetric model of the seabed in the vicinity of Fish 
Rock off Smokey Cape, New South Wales. Source: Jordan,A.,  
Davies,P., Ingleton,T., Mesley,E., Neilson,J. and Pritchard,T. (2010). 

Figure 7.10 Latitudinal distribution of NSW bay types: Open Rectangular (OR); 
Open Sweep (OS); Semi Enclosed (SE); Open Triangular (OT). 

Figure 7.11 NSW bay type dimensions: Open Rectangular (OR); Open Sweep 
(OS); Semi Enclosed (SE); Open Triangular (OT). 

Figure 7.12 NSW training walls ranked by hydrodynamic factors relating to 
protruding wall length (top) and ratios of average flows to entrance 
widths (bottom right). Average annual flows (bottom left) are from de 
la Cruz, et al. (2009). 

Figure 7.13 Trained entrance of the Richmond River at Ballina illustrating wave 
structures and turbulence along the seaward front of the river plume 
indicating vigorous frontal mixing processes. OEH Aerial Photogram 
13/5/83. 

 

Pritchard, T.R., Lee, R.S., Ingleton, T.C., and Black, K.P. (2001) Dispersion in 
the lee of a headland: a case study of circulation off Coffs Harbour. 
Proceedings of the 15th Australasian Coastal and Ocean Engineering 
Conference, Institute of Engineers, Australia. 

Figure 1: Study location showing ADCP deployments (A-D) and transects (dotted 
lines). 
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Figure 2: Alongshore winds and surface currents Site A (14m) and Site C (30m). 
Current scale is 1% of wind scale for Site A and 2% of wind scale for 
Site C. 

Figure 3: Alongshore local wind distributions for our study (Sept-Nov 2000) and 
long-term (1996-2000). 

Figure 4: Distributions of surface along-shore currents at Sites A (Boambee 14m), 
B (Korffs Islet 23m), C (Boambee 30m) and D (Boambee 38m).  
Negative speeds indicate southward flows. 

Figure 5: Along-shore excursion events calculated from records of surface 
currents observed at Site A (inshore Boambee) and Site C (offshore 
Boambee).   

Figure 6: Surface north-south current shear between inshore Boambee site (A) and 
offshore Boambee site (C).  Blocked intervals indicate periods 
opposing currents. 

Figure 7: West-east cross section oriented along the proposed outfall alignment 
showing along-shore current strengths (2m depth bins; negative = 
southward). Arrow indicates proposed outfall location. 

Figure 8: Simulated depth averaged flows due to pressure gradient reversals. 

Figure 9: Indicative effluent dilutions for 20th percentile northward flow scenarios 
(CORMIX simulation). 

 

Pritchard, T.R., Holden, C., Lee, R.S., Black, K.P. and Healy, T. (2007) 
Dynamics and Dispersion in the Coastal Boundary Layer off Coffs Harbour in 
Eastern Australia. Journal of Coastal Research, SI 50, 848-857. 

Figure 1. Study location showing local bathymetry, ADCP deployments (A-D) 
and transects (dotted lines). 

Figure 2. Water temperature profile (ºC), north-south current profile (m/s) time 
series at Site D and local north-south wind (m/s) time series recorded 
at the airport just west of Boambee beach. Negative southward 
currents and winds. 

Figure 3. Variance preserving spectra illustrating energy distribution throughout 
the water column at Sites A, B, C and D. 

Figure 4. Variance preserving spectra illustrating shifts in diurnal energy 
distributions through the water column at Site D. 

Figure 5. Three dimensional flow field illustrated by progressive vector plots for 
alternate one metre depth bins at Sites A, B, C and D with uppermost 
bins indicated by bold black traces and lowermost bins indicated by 
bold white traces (top); and, direction of total displacements 
(anticlockwise w.r.t. true north) corresponding to end points of the 
progressive vector plots for each ADCP depth bin (bottom). Note 
duration of record at Site A is approximately one month shorter than 
at other sites. 

Figure 6. Difference in north-south current components observed at Sites A and C 
which lie along the alignment of the outfall straddling the shear zone 
caused by the wake of Corambirra Point.  Plots based on uppermost 
(top trace) and lowermost (middle trace) ADCP depth bins with 
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rotation (dark blocks) indicated by arrows. Positive current differences 
correspond to clockwise rotation.   

Figure 7. 3DD model simulations compared to independent ADCP observations 
for along shelf and cross shelf components of upper and lower 
currents at Site C. 

Figure 8. Vector averaged upper layer velocities based on 3DD model simulations 
(top) together with alongshore and cross shore vector averaged 
velocities across transect T1-T2 (bottom). 

Figure 9. Total number of particle visits mapped across the modeling domain 
(left) and along transects N1-N2, T1-T2 and S1-S2 based on POL3DD 
particle tracking using conservative, neutrally buoyant particles 
released at every time step from a line source just south of transect T1-
T2. Advection driven by the three dimensional flow field generated by 
model 3DD and results plotted as depth integrated total particle visits.   

Figure 8A: Indicative Benefit-Cost based expressed as a ratio of potential dilution 
to relative cost. Incident averaged current speed is plotted and the 
arrow indicates the Outfall location. 

 

Figure 9.1 Schematic representations of the temporal and spatial scales of coastal 
boundary layer effects in NSW offshore waters. CBL Modifiers 
introduce density gradients (and are major pollutant vectors) while 
CBL Oscillators introduce vorticity. Ellipses represent indicative 
ranges of cross-shelf extents and dominant temporal expression 
(energy) based on data presented in this thesis, including referenced 
material and remote sensed imagery discussed in Pritchard & Koop 
(2005). This figure was first presented and discussed in Chapter 4. 

Figure 9.2 Continental shelf profile (cross shelf distance to isobaths) at each NSW 
headland location illustrating variability of shelf width and inner shelf 
profile with distance south from Tweed. 

Figure 9.3 Range of cross-shelf profiles illustrating the steep sloping, narrow shelf  
off Smoky Cape in blue (similar to Jervis Bay and Narooma); the 
shallow sloping inner and mid shelf regions off Evans Head in 
magenta; and the broad, low gradient extension of the outer shelf off 
Newcastle in yellow. 

Figure 9.4. A:  Inner CBL features which appear to be bounded by headlands 
under the influence of a shore parallel free flow (sediment from the 
Richmond River acts as a tracer). Wake effects appear at 
approximately the same spatial scale as the headland length with 
expansion associated with clockwise southward rotation of coastline 
orientation. Cresswell et al.(1983) noted the presence of weak 
clockwise cells in embayments of northern New South Wales.  
[GoogleEarth: Data SIO, NOAA, Us Nay, NGA, GEBCO. Image 
20011GeoEye, SPOT IMAGE]. B:  Outer CBL features illustrated by 
SeaWiFS ocean colour derived estimates of ninetieth percentile 
relative cholorophyll_a concentration (μg/L) for summer seasons from 
1998-2003. 

Figure 9.5 Schematic locations of two major case studies – Sydney (Chapter 5) 
and Coffs Harbour (Chapter 6) - in relation to configuration of major 
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coastal boundary layer types of New South Wales proposed in Chapter 
4. [WZ=Wave Zone; HW=Headland Wake; CC=Counter Current; 
EF=Effluent Field; BJ=Boundary Jet; EAC=East Australian Current; 
CTW=Coastal Trapped Waves] 

Figure 9.6 Coffs Harbour continental shelf and slope morphologies (depths in 
metres). Source bathymetry: Jordan et al., 2010 

Figure 9.7 Location of current meter deployments at A: Coffs Harbour (from 
Chapter 8), and, B: Sydney IMOS moorings at CH070, CH100, 
ORS065, SYD100 and SYD140. Note that IMOS monitoring stations 
off Port Hacking (PH100) do not include current meter deployments. 

Figure 9.8 Current strengths at increasing distances from shore at A: Coffs 
Harbour (simulated currents across the alignment of A-C-D shown in 
Figure 9.7A from Chapter 8), and, B: vertical profiles at the three 
deployed current meter stations located along the IMOS transect 
shown in Figure 9.7B. (ORS: 28 September 2010 to 9 May 2011. 
SYD100 & SYD140: 14 October 2010 to 14 April 2011. Data from 
IMOS). Interestingly, current strengths increase with depth over the 
depth interval from 65m to 80m. at SYD100 in Figure 9.8. 

Figure 9.9a Variance preserving power spectra for currents at ORS: 28 September 
2010 to 9 May 2011. Data from IMOS 

Figure 9.9b Variance preserving power spectra for currents at SYD100: 14 
October 2010 to 14 April 2011. Data from IMOS 

Figure 9.9c Variance preserving power spectra for currents at SYD140: 14 
October 2010 to 14 April 2011. Data from IMOS. 

Figure 9.10 Energetic cold core and warm core eddies off the NSW coast during 
January 2011. Isostatically adjusted sea level anomalies courtesy of 
BLUElink> Ocean forecasting Australia. Current speed data courtesy 
of IMOS (SYD140 location depicted in Figure 9.7B). 

Figure 9.10 Shallow water island wakes corresponding to increasing dominance of 
inertial forces (increasing Reynolds Numbers and/or Wake 
Parameter): (a) vortex pair forms with central return flow; (b) 
turbulent wake exhibits wave disturbances; (c) meanders develop 
instabilities and roll to form a von Karmon vortex street; (d) fully 
turbulent (three dimensional) wake.  Modified from Wolanski (2007) 
and Tomczac (1998). 

Figure 9.11 Wake Parameter (P) = UH2/KzL for depths (H) to 100m and obstacle 
lengths (L) to 8 km, where current (U) = 0.2m/s, and vertical eddy.  
diffusion coefficient (Kz) = 0.1 m2/s. Indicative turbulent flow 
regimes have been suggested by Wolanski (2007): 
P < 1, the flow does not separate and there is no eddy. 
P ≈ 1, an eddy or an eddy pair exists – similar to (a) in Figure 9.10 
P = 1–3, meanders develop – similar to (b) in Figure 9.10 
P = 3–15, meanders develop instabilities & roll – similar to (c) in 
Figure 9.10 
P > 20, the wake is fully turbulent downstream – similar to (d) in 
Figure 9.10 
NSW Triangular Headlands are also plotted based on data in Chapter 
7. 
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Figure 9.12 Sensitivity analysis showing relationship between vertical eddy 
diffusion coefficient (KZ) and flow separation (Wake Parameter = 1) 
for various headland lengths and water depths (blue section 
expanded). 

Figure 9.13 Stable turbid waters trapped in a coastal boundary layer attached to 
the Illawarra shoreline, New South Wales. 

Figure 9.14 Sydney’s deepwater outfalls. 

Figure 9.15 Former shoreline outfall plumes such as at North Head (A) prompted 
health warnings at local beaches such as at Malabar (B). 

Figure 9.16  Malabar plume behaviour illustrating effects of dilution and die-off 
for thermo tolerant faecal coliform indicator bacteria from Pritchard et 
al. (1993) 

Figure 9.17 Cross-shelf bathymetry profile profiles along a transect passing 
through Bondi deepwater outfall (shown as blue box). 

Figure 9.18 Study location showing local bathymetry, ADCP deployments (A-D) 
and transects (dotted lines).  From Pritchard et al. (2007) 

Figure 9.19 Cross-shelf bathymetry (A) and residual current (B) profiles along the 
prescribed alignment of the outfall (T1-T2). Outfall located at 21m 
water depth shown as box on T1-T2. Derived from data presented in 
Figures 1 and 8 in Pritchard et al. (2007). 

Figure 9.20 Time series wind and surface current data observed during the Coffs 
Harbour Case Study – images from OFS data visualisation tool in 
Appendix 4. 

Figure 9.21 A: Bay dimensions and outfall location (GoogleEarth image). B: 
Location of Boulder Bay outfall and regional bathymetry (CEE, 
2010). 

Figure 9.22 Detailed local bathymetry of Boulder Bay outfall (CEE, 2010). 

Figure 9.23 Examples of drogue paths in Boulder Bay modified from MHL 
(1991). 

Figure 9.24 Bate Bay . A: Dimensions and outfall location (GoogleEarth image); 
B: Local bathymetry (from Ingleton and Large, 2002). 

Figure 9.25 Bate Bay circulation. Separation of the southward EAC driven flow at 
Potter Point, depicted by sea surface temperature Daedalus airborne 
multispectral scanner image. A: Effluent trapping in the lee of Potter 
Point, depicted in the visible spectrum by Daedalus airborne 
multispectral scanner image. The shoreline outfall is indicated by the 
block arrow. B: Schematic of wave induced anti-clockwise circulation 
in Bate Bay (from Anderson and Gordon, 1993) based on extensive 
moored and profiling (ADCP) current meter deployments, drogues, 
aerial photography, satellite observations, salinity, temperature, and 
water quality observation together with modeling (Riddle, 1994; Large 
et al., 1994). (Daedalus image from Wilson et al., 1995 – a component 
of the Sydney EMP described by Pritchard, 1997). 

Figure 9.26: Indicative Benefit-Cost based expressed as a ratio of current strength 
to relative cost. Incident averaged current speed is plotted and the 
arrow indicates the Outfall location. 
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Figure 10.1 Schematic representation of the temporal spatial scales of coastal 
boundary layer effects in NSW offshore waters. Ellipses represent 
indicative ranges of cross-shelf extents and dominant temporal 
expression of the CBL effects (Pritchard et al., 2011). 
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1. INTRODUCTION 
 

1.1 Background  
 

The vast majority of the wastewater generated by the 7.3 million people of New 

South Wales (NSW) is discharged directly to the ocean. Coastal waters are under 

pressure because about 85% of NSW people live near the coast, mostly 

concentrated in the coastal strip straddling the cities of Newcastle, Sydney and 

Wollongong (Figure 1.1) (SOE 2006, 2009).  Sydney Water Corporation alone 

pumps about 390 billion litres of wastewater directly to the ocean every year and 

over 92% of this receives only primary treatment prior to discharge (SWC, 2005). 

To the north and south of Sydney, smaller quantities of more highly treated 

sewage effluent are discharged from outfalls mostly at the shoreline.  

 

The coastal focus and beach culture of Australia’s population in general, and the 

people of NSW in particular, means that coastal systems are both highly prized 

and subjected to great pressure (James et al., 2006).  The coastal zone is an asset 

which supports a vibrant tourist industry; most overseas visitors to Australia have 

a destination in coastal NSW (ABS 2000 & Tourism NSW, 1999 – see SoE2000).  

Both commercial and domestic sectors, therefore, demand a high level of 

protection.  Sewage discharges to the ocean have been a focus for extreme 

community outrage while the appearance of algal blooms has caused alarm and 

public outcry (Figure 1.2).  

 

The inherent value of the main constituents of sewage (water and nutrients) has 

been recognized and re-use has been promoted by the NSW Government.  Despite 

this, in the Australian context, existing re-use is minimal and options for large 

scale re-use appear prohibitively costly in the near and medium terms, due to the 

existing infrastructure, health concerns, the low price of potable water and the 

current socio-economic climate. Significant quantities of treated sewage will, 

therefore, continue to be discharged to the ocean for the foreseeable future.  

 

Coastal catchments also continue to discharge anthropogenic pollutants to NSW 

coastal waters. Further urban development will increase pollutant loadings to 

coastal waters from both diffuse and point sources within coastal catchments. As 
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yet poorly defined fluxes of atmospheric pollutants also enter coastal waters at the 

sea surface while groundwater and sediment fluxes can exchange pollutants at the 

sea floor.   

 
 
Figure 1.1:  New South Wales coastal catchments, shoreline configuration and shelf 
bathymetry  

Newcastle

Wollongong 
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Figure 1.2:  Media and community outrage over ocean outfall  issues (top) and 
outpourings of concern over eutrophication issues (bottom) in New South Wales 
coastal waters 
 

 

The dispersion and fate of these pollutants and their potential to impact coastal 

environments are fundamentally determined by the dynamics of the receiving 

waters.  Coastal morphology constrains and controls flows.  In particular, 

headlands and changes in the orientation of the coastline disrupt stream flows, 

resulting in wakes, and turbulent re-circulation cells. Many of these features result 

in the formation of a coastal boundary layer. 
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The NSW continental shelf is relatively narrow and shelf waters are exposed to a 

diverse range of driving mechanisms. At a large scale, NSW coastal waters are 

dominated by a western boundary current – the East Australian Current – which 

flows southward along a relatively narrow continental shelf.  In the north, warm, 

oligotrophic East Australian Current waters flow parallel to isobaths until the 

orientation of the coastline changes between Sugarloaf Point and Port Stephens.  

Here the East Australian Current separates from the shelf, shedding turbulent 

eddies which extend southwards from Port Stephens to about Jervis Bay. 

Superimposed on these primary forcing mechanisms are the effects of coastal 

trapped waves, internal waves, wave induced turbulence, and transport 

(nearshore).  Winds are an important driver for shallow nearshore flows, which 

can be modified by estuarine discharges, headlands, embayments, nearshore 

islands reefs and other bathymetric features. 

 

The greatest pollutant loadings to NSW coastal waters occur off Sydney where 

alongshore bathymetry is relatively uniform.  In contrast, relatively low pollutant 

loadings to the ocean occur in northern NSW, such as Coffs Harbour, but these 

areas are experiencing rapid urban development. 

 

Ecological responses to pollutant and many other stressors remain poorly 

understood at both species and community levels.  However, it is clear that 

hydrodynamics are fundamental to understanding relationships between stressors 

and impacts in marine ecosystems. Flows and vertical density structures control 

distributions of both pollutants and biota.  The dilution, dispersion and fate of 

pollutants is driven by turbulent mixing and advection while biological 

distributions are affected by physical connectivity, retention times, settlement 

rates, and the physicochemical variability of marine habitats which is often 

determined by the passage of water bodies. 

 

Advection (mean transport) generally decreases with proximity to the coast due to 

bottom friction and the roughness of the coastline slowing alongshore flows. The 

solid boundary against the coast also inhibits cross shelf flows but may promote 

baroclinic flows such as upwelling dynamics. Turbulence can develop near the 

coast due to interactions with inner shelf bathymetry, irregular coastlines and 
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estuarine outflows. In this coastal boundary layer flows are retarded and residence 

times increase relative to offshore regional flows.  

 

Human activities are concentrated on land so loadings and stressors are generally 

greatest close to the coast (e.g. wastewater discharges; polluted estuarine 

outflows; introduced species in ports; and, recreational fishing). Clearly, the 

hydrodynamic characteristics of the coastal boundary layer are critical in 

determining the fates and impacts of pollutants and the distribution of biota. For 

example, physical processes are critical in determining concentrations and 

distributions of pollutants, the spread of introduced species, and the biological 

connectivity between marine protected areas. 

 

1.2 Aims and Objectives 
 

The aims of this thesis are to investigate the processes within the coastal boundary 

layer that affect dispersal and advection of pollutants and, in doing so, develop 

conceptual models to facilitate coastal management.  

 

To achieve these aims, the specific objectives of this study were to: 

 

 classify coastal boundary layer types observed off New South Wales based 

on coastal bathymetry, satellite sensed data, aerial photography, and 

observations of local and regional flow dynamics 

 

 determine the utility of remotely sensed ocean colour and sea surface 

temperature (SST) data to characterise broad scale ecosystem and coastal 

boundary layer processes and to investigate applications to support coastal 

management 

 

 investigate CBL processes, their relationship to coastal morphology, and 

their role in controlling the dispersion, fate and potential impacts of 

pollutants discharged to the New South Wales coastal waters 

 

 develop a hydrodynamically relevant morphological classification of 

headlands, islands and open bays for New South Wales 
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 investigate physical processes and dispersion characteristics for specific 

pollutant discharges to New South Wales coastal waters through case 

studies off Sydney (outer coastal boundary layer) and Coffs Harbour 

(inner coastal boundary layer) 

 

 identify applications of the coastal boundary layer classification for coastal 

management and develop and demonstrate simple risk assessment tools to 

identify factors and processes which can mitigate potential pollutant 

impacts 

1.3 Structure of Thesis 
 

In order to address the objectives listed above, the thesis is structured as follows:  

 

Chapter 2 evaluates major terrestrial pollutant sources in terms of loadings, 

concentrations and patterns of delivery. Likewise, existing knowledge of the 

physico-chemical environment and current understanding of processes and 

impacts are summarised as a background to this study.  

 

Chapter 3 describes sources of new data, quality assurance, and tools used for 

analysis of new and existing data to develop predictive understanding. 

 

The coastal boundary layer concept is introduced in Chapter 4 as a framework to 

structure and focus investigations of the effects of interactions of flows and 

coastal morphologies. Conceptual models are presented to characterise New South 

Wales coastal boundary layer processes. 

 

Broad scale characteristics of nearshore waters are explored through remotely 

sensed data in Chapter 5 to provide a context for selection and extrapolation of 

case studies and to explore processes operating in the outer coastal boundary 

layer. 

 

Two case studies investigate in detail the principal forcing mechanisms and the 

importance of morphology in controlling the dispersion and retention times of 

pollutants and the potential for ecological impacts. 
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The first case study is focused on Sydney coastal waters (Chapter 6) where 

pollutant loadings are greater in magnitude and different in character than 

elsewhere in NSW due to existing and historical population pressures. Here the 

coastline is relatively open in contrast to the second case study in Chapter 8 which 

focuses on the effects of inner coastal boundary layer processes.   

 

Chapter 7 develops a hydrodynamically relevant morphological classification of 

New South Wales bays, headlands and islands to target morphological settings 

that may be pre-disposed to wake effects. This provides a means to target case 

studies, prioritise environmental assessments and inform the possible 

extrapolation of findings from specific studies;  

 

The second case study (Chapter 8) is drawn from northern NSW coastal waters 

where a new outfall was required off Coffs Harbour to accommodate rapid urban 

development. Here, flows interact with a headland and irregularities in inner shelf 

bathymetry. 

 

Findings from this thesis and previous studies are drawn together in Chapter 9 to 

explore and evaluate the Coastal Boundary Layer (CBL) classification first 

proposed in Chapter 4. This chapter also explores how coastal boundary layer 

processes shape the distributions of the biological species and communities that 

can be impacted by pollutants. Finally, the management implications are 

considered and developed, illustrating the importance of a process based 

understanding of the coastal boundary layer. 

 

Chapter 10 highlights the findings and implications of these studies in the context 

of current scientific and management paradigms and concludes with suggestions 

for future research. 
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2. BACKGROUND 
 

The NSW coastline is 1,900 km in length, ranging from warm subtropical in the north 

to cool temperate in the south. The dominant influences in New South Wales (NSW) 

marine waters are oceanographic (NSW SoE, 2006). 

 

A major western boundary current – the East Australian Current (EAC) - streams 

southward from the Coral Sea and interacts with continental shelf morphology of 

coastal NSW, defining two broad regions (Figure 2.1). Northern NSW shelf waters, 

such as those off Coffs Harbour, experience strong and persistent EAC flows which 

carry warm, oligotrophic waters and associated tropical species (Ridgeway and Dunn, 

2003).  At about latitude 31˚S the continental shelf narrows, the orientation of the 

coastline changes, and the EAC often separates from the continental slope to flow 

southeastward. South of this separation point lies a second broad region where EAC 

and Tasman Sea waters mix, promoted by mesoscale eddies which are shed from the 

EAC. Central and southern NSW shelf waters, such as those off Sydney, fall within 

this region and are affected by the passage of these eddies as well as occasional 

southward excursions of the main EAC flow.  In southern NSW, Tasman Sea 

influences become more prominent, especially during winter (Ridgeway and Dunn, 

2003; Middleton, 1995).  

 

A compendium of multi-disciplinary research related to the dominant oceanographic 

feature – the EAC – was published in Deep Sea Research in 2011, including findings 

related to: broad-scale climate-induced effects, EAC eddy dynamics, boundary 

current transport, the influence the EAC has on connectivity in relation to life history 

strategies, plankton distribution, fisheries habitats, and, the effects of climate change 

(Suthers et al., 2011). 

 

NSW spans highly diverse environments supporting high biological diversity and 

endemism (IMCRA, 1998), which are subjected to pollutant loading and human 

disturbances. 
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Pollutant loadings to NSW coastal waters originate from diffuse catchment and 

atmospheric sources as well as from point sources such as ocean outfalls for sewage 

effluent.  In the context of this study estuary mouths can be regarded as point sources 

to coastal waters although they deliver pollutants derived from mainly diffuse sources 

distributed across coastal catchments.  These loadings, together with variable natural 

fluxes of organic and inorganic materials result in environmental disturbances, which 

drive changes (impacts) in communities of organisms. Physical, chemical and 

biological processes mediate the effects of these loadings and thus control the 

ecological responses.   

 

In this chapter major pollutant sources are identified together with salient features of 

receiving environments. Observed impacts are then summarised and information gaps 

are identified to focus the objectives of this thesis. 

 

2.1 Major Pollutant Sources 
 
2.1.1  Diffuse Sources 
 

Pollutants originate from a myriad of sources across coastal catchments including 

roads, sewer overflows, spills, industrial activities, building sites, and agricultural 

activities especially land clearing (erosion), and fertiliser and pesticide use.  

 

Urban catchments export sediments, nutrients, hydrocarbons, heavy metals, 

pathogens, and other toxic and occasionally persistent chemicals to coastal water 

bodies while rural catchments typically export sediments, nutrients, pesticides and 

herbicides.  These pollutant loadings can result in reduced diversity of species, loss of 

pollution-sensitive species, and increased levels of persistent toxicants in sediments 

and marine species (NSW SoE, 2006).   
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Figure 2.1 Remotely sensed sea surface temperatures (NOAA AVHRR) showing 
dynamic East Australian Current features in relation to the two key study locations 
off Coffs Harbour and Sydney (NOAA image courtesy of CSIRO Marine, Hobart). 
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Pollutant loadings from diffuse sources are driven by rainfall run off which is highly 

variable, often dominated by large sporadic events. El Niño Southern Oscillation 

(ENSO) patterns, typically explain as much as 40% of the variance in eastern 

Australian rainfall (Partridge, 1994).  Pollutant loadings from catchments to NSW 

coastal waters are correspondingly variable. 
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Few data exist to quantify pollutant loadings from NSW coastal catchments although 

a number of assessments have been made for nutrients.  

 

Unlike in the Northern Hemisphere, conditions in temperate Australia are 

characterized by irregular flood and fire regimes that strongly influence catchment 

hydrology and nutrient inputs (Roy et al., 2001). NSW coastal catchments provided 

highly episodic nutrient loadings to ocean waters mostly via estuaries (Pritchard et 

al., 2003). Direct measurements of nutrient exports from coastal catchments are 

scarce and costly because flows and nutrient concentrations must be measured 

simultaneously in order to calculate loads, especially during critical high flow events. 

Nutrient exports are, therefore, often estimated from catchment models which 

simulate exports according to landuse types.  

 

Comprehensive modelling of NSW coastal catchments has been restricted to broad 

scale models based on the unit load model Catchment Management Support System 

(Baginska, Pritchard & Krogh, 2003; Baginska & Pritchard, 2000 & 1999) and the 

Long-Term Hydrologic Impact Assessment (L-THIA) model which simulates run-off 

using the curve number method and derives loads by applying event mean 

concentrations to the run-off volumes (Lu, Baginska & Pritchard, 2004). A dearth of 

relevant observations emphasises the need to maximize the use of available data and 

improve estimates of confidence limits (e.g. Baginska, Pritchard & Krogh, 2003). 

 

L-THIA modeling by Baginska, Lu, Mawer and Pritchard (2004) found increasing 

nutrient exports associated with rapid development in the NSW coastal zone 

especially in northern NSW where in some coastal catchments urban areas have 

doubled in the last two decades.  Agriculture/Cropping land uses also have high 

nutrient emission rates. Overall anthropogenic contributions are shown in Figure 2.2. 
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Figure 2.2: Relative proportions of Total Nitrogen exports from diffuse anthropogenic 
sources in NSW coastal catchments (excluding the Wollongong-Sydney-Newcastle 
conurbation).  Modified from Baginska, Lu, Mawer & Pritchard (2004). 
 
 
 
The average annual nutrient export potential from NSW coastal catchments is 

represented in Figure 2.3. 
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Figure 2.3 Average annual nutrient export potential from NSW coastal catchments based on Pritchard et al. (2003) for 
metropolitan catchments (Wollongong-Sydney-Newcastle marked by asterisk) and Baginska, Lu, Mawer & Pritchard (2004) 
for non-metropolitan catchments. Coffs Harbour and Sydney catchments highlighted in black. 
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In urban areas overflows from the sewerage system during high rainfall conditions 

can result in a significant contribution of nutrients to estuaries such as the two 

estuaries closest to the centre of Sydney, Port Jackson and Botany Bay (Sydney 

Water, 1996).   

 

Catchment modeling, such as that by Baginska, Lu, Mawer and Pritchard (2004), 

merely estimates the nutrient export potential from diffuse sources across coastal 

catchments without determining the proportion of this potential that may escape the 

estuary and enter open coastal waters. 

 
Many catchments along the NSW coast have well-developed estuarine systems which 

act as natural buffers, regulating exchanges between freshwater and ocean systems. 

For instance, the freshwater section of the Hawkesbury River ends some 80 

kilometres upstream from the ocean. There is a steep transition from freshwater to 

marine conditions over a distance of 30km and this transition appears to be relatively 

insensitive to flow rate (Wolanski and Collis, 1976). The transport of nutrients from 

their sources in the catchment to their ultimate sink in the estuary or the ocean can, 

therefore, be long and convoluted. Sediments in waterways can act as both a source 

and a sink for nutrients with sorption depending on particle chemistry and size, water 

temperature, flow (sediment suspension), concentration gradient, redox potential and 

salinity.  Nutrients are also modified within estuaries by biological processes 

particularly via uptake by vegetation including algae. The net effect of these 

processes generally results in declining nutrient concentrations with downstream 

distance from nutrient sources in the catchment. As a result a relatively small 

proportion of the nutrient load exported from the catchment to the estuary may escape 

to the ocean except under extreme flood conditions.  

 

Eyre and Pepperill (1999) estimated that the seven major rivers of northern NSW 

discharge some 12,646 x 106 m3 of freshwater to the shelf annually. These discharges 

carried some 8,805 tonnes of dissolved nitrogen and 895 tonnes of dissolved 

phosphorus.  
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Major discharges from the two large central NSW coastal catchments (Hunter and 

Hawkesbury /Nepean) were investigated when widespread rainfalls in July/August 

1998 broke drought conditions, causing 1 in 2 year floods (Lee & Pritchard, 1999). 

During these events, nutrient concentrations at estuary mouths were 2-5 times greater 

than those observed during typical dry weather conditions. For over 2 weeks of 

flooding, saline (ocean water) intrusions were limited to the lower 20km of the 

Hawkesbury estuary.  Observations during this period showed negligible loss of 

nutrients from the surface fresh (flood) water as it traveled through the estuarine 

system and aerial photography and SeaWiFs satellite imagery indicated flood plumes 

extending many kilometres offshore within a coastal boundary layer.  

 

Direct diffuse pollution sources to coastal waters include marine debris and 

atmospheric deposition.  

 

Few data exist to assess the direct pollutant loading from the atmosphere to NSW 

coastal waters. In some parts of the world, such as the western Baltic Sea, western 

Mediterranean and the North Atlantic, atmospheric nitrogen is the most rapidly 

growing source of new nitrogen in seawater (Pelley, 1998).  Activities, which 

promote these increases, include fossil fuel combustion and ammonia vaporisation 

from manure and fertilisers. Therefore, expanding urbanisation and agricultural and 

industrial activities associated with coastal population growth have the potential to 

make atmospheric deposition an important source of new nitrogen in coastal waters. 

Data from Ayres et al. (1987) suggest atmospheric fluxes of total nitrogen of 4.6 

kg/hectare/year based on typical (1981/1982) Sydney rainwater concentrations of 170 

μg/L nitrate & 210 μg/L ammonia, average rainfall of 1225mm/yr  (assuming 

negligible organic N in air). Carnovale and Saunders (1987) estimated aerial 

deposition to Port Phillip Bay (Melbourne) at 2.56 kgN/hectare/yr while a US review 

(Feth, 1966) indicated a range of 0.6-13 kgN/hectare/yr.  These available data may 

not be representative of NSW coastal waters but indicate potential for significant 

atmospheric loads. 

 

Marine debris impacts marine wildlife through entanglement, ghost fishing, and 

ingestion (Gregory, 1999) and is a worldwide problem. A survey in the Greater 
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Sydney Region indicated the abundance of marine debris within the Greater Sydney 

Region was comparable to some of the most polluted beaches around the world 

(Cunningham & Wilson, 2003). The vast majority (89.8%) of debris found was 

plastic, particularly hard plastic (52.3%) predominantly originating from stormwater 

or beachgoers.  The high proportion of plastics is consistent with overseas studies 

(e.g. Goldberg, 1995 and Kusui & Noda, 2003). 

 
 
2.1.2   Point Sources 

 

Loadings to NSW coastal waters from point sources are generally continuous and 

easily quantified compared to the highly episodic and poorly defined nutrient 

loadings from diffuse catchment sources described above.  Treated sewage effluent 

accounts for the vast majority of licensed discharges to NSW marine waters, 

exhibiting limited interannual variability with total annual loadings of >3,000 tonnes 

total phosphorus, >15,000 tonnes total nitrogen, and >55,000 tonnes total suspended 

solids. 

 

New South Wales discharges the majority of its treated sewage directly to the ocean 

with more than thirty ocean outfalls operating between Lennox Head and Eden 

(Figure 2.4).  These discharges are described and quantified in the NSW Coastal 

Outfalls Atlas (Krogh, Pritchard & Holden, 2000), which appears on the CD 

accompanying this chapter and is summarised on the following page. Most NSW 

outfalls discharge relatively small volumes of secondary or tertiary treated sewage 

(e.g. Coffs Harbour), but three deepwater outfalls off Sydney discharge large 

quantities of primary treated sewage.  Together Sydney’s three deepwater outfalls 

account for over 80% of the total nitrogen and 90% of the total suspended solids 

discharged from point sources to NSW coastal waters.  
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Ocean Outfall Inventory (Appendix 4 DVD) 

Martin Krogh, Tim Pritchard & Clive Holden 
 
PURPOSE:  
 

 summarise and make accessible available information on ocean outfalls 
in NSW 

 

 
METHODS:  
 

Information sources included scientific literature, ‘grey’ literature (consultant reports), effluent 
monitoring data, compliance reports, aerial photography and site inspections. 
 

Information included general descriptions of location, sewerage system, known future plans, 
landscape, receiving environment, biota observed near outfall, outfall configuration, effluent quality 
and quantity and previous monitoring results. 
 

Information presented as: 
 outfall-by-outfall summaries  
 comparisons of effluent quality and quantity data across all NSW outfalls (see figure) 
 summaries of observed environmental impacts (by ecological issue) 
 interactive Intranet and CD information systems 

 

 
RELEVANCE & APPLICATIONS: 
 

The Ocean Outfall Inventory was developed as an information resource and did not attempt to interpret 
information in a strategic context. It has served as a foundation for: 

 ranking ocean outfall performance 
 justification of less assessment monitoring where previous studies at other similar outfalls 

have demonstrated little or no impacts  
 review consistency of monitoring requirements across NSW outfalls 
 ready access to information to support regulatory advice 
 demonstration of an information system with possible broader EPA application 
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Sydney’s deepwater outfalls, which were commissioned during 1990-91, consist of a 

series of diffuser heads positioned along shore normal outfall systems located 2 to 4 

kilometers offshore in water depths of 60m to 80m. Effluent is dispersed by 

barotropic and baroclinic processes as described by Lee and Pritchard (1996) and as 

observed by Pritchard et al. (1996b).  Nitrogen is present in effluent mostly as 

ammonia which is readily available to phytoplankton (Parsons et al., 1997). 

Likewise, phosphorus is mostly present in biologically available dissolved forms 

(70%) (Pritchard et al., 2003).  

 

NSW ocean outfalls ranged from single pipes located in beach foredunes to multi-

port rose head diffusers located 3-4 kilometres offshore (see Figure 2.5). Clearly 

many early outfall designs failed to optimise outfall performance and demonstrate 

little or no consideration of sensitive receiving environments and the need to 

maximise dilution and dispersion. The USEPA model CORMIX was applied to 

predict the near field plume behaviour of NSW ocean outfalls under a standard set of 

ambient conditions (Ingleton & Large, 2004) with the following findings: 

 
 Offshore multiport diffuser outfalls were found to be highly efficient (e.g. 

Bondi, North Head, Malabar, Burwood and to a lesser extent, Boulder Bay 

and Belmont). 

 Some single port shoreline outfalls were moderately efficient (e.g. Tomakin & 

Norah) 

 Other single port shoreline outfalls were very inefficient (e.g. Bellambi, 

Cronulla, Sawtell, Wonga, Warriewood, First Pt) 

 
It is noteworthy that deepwater outfalls in Sydney performed well while all existing 

outfalls in the Coffs Harbour region performed poorly. Ingleton & Large (2004) 

identified considerable scope to improve the efficiency (initial dilution) of many 

existing shoreline outfalls and reduce the severity of environmental exposure without 

necessarily resorting to deepwater outfalls. Common problems with these existing 

outfalls included low discharge velocities and limited three-dimensional mixing due 

to boundary contact. 
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Figure 2.4 Sewage Treatment Plant discharges to New South Wales ocean waters during 2004-05 (DEC data). Coffs Harbour and 
Sydney outfalls loads highlighted in black. See attached Ocean Outfall Inventory (attached CD) for location map. 
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Figure 2.5 Examples of NSW outfall settings (photos by Pritchard and Krogh) 
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2.1.3   Other Sources 
 
Spills and shipping accidents are direct discharges that can be regarded as a diffuse 

source or as a series of transient point source discharges. The majority of reported 

pollution incidents have been minor oil spills in Sydney Harbour and Botany Bay, 

most from land-based sources (NSW SoE 2006) with few detectable impacts in 

offshore coastal waters. However, shipping accidents such as the grounding of HMS 

Nottingham on Lord Howe Island in July 2002 (fuel tanks not damaged in this case) 

are potentially significant pollutant sources.   

 

The terms ‘biological pollution’ and ‘biological pollutants’ have emerged recently 

with impacts of introduction and invasion of species throughout the world 

(Boudouresque & Verlaque, 2002).  Plants such as the green alga Caulerpa taxifolia 

are well known as invasive species in the Mediterranean (Islam & Tanaka, 2004) and 

now in New South Wales (NSW Fisheries, 2004).  Mainly anecdotal reports indicate 

that invasive Caulerpa filiformis is displacing native species across large tracts of 

exposed, shallow, subtidal platforms in NSW coastal waters.  Introduced toxic 

dinoflagellates have also been observed in NSW coastal waters both as blooms and in 

sediments of harbours and estuaries (Ajani, Hallegraeff & Pritchard, 2001a). The 

role of hydrodynamic processes in the spread of these species remains poorly defined 

or unknown. 

 

2.2 Receiving Environment 
 

The shape and physical characteristics of the coastal margin (Geomorphic Setting) 

both influence and reflect hydrodynamic processes (Hydrodynamic Setting).  

Pollutants (described above) are transported and dispersed by these processes thus 

affecting the chemical status of coastal waters (Chemical Setting). Biota (Biological 

Setting) respond to, and interact with, this dynamic system, which is increasingly 

impacted at all scales by human activity (Observed Impacts).  
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2.2.1   Geomorphic Setting 
 

NSW’s continental shelf is very narrow, varying in width from about 30 km to 50 km 

(see Figure 1.1). Shelves worldwide display a variety of configurations but can 

extend up to 1,500km in width (e.g. Siberian shelf in the Arctic Ocean). The NSW 

continental shelf is narrow compared to most other Australian regions where the shelf 

width typically varies from about 50 to more than 300km. Worldwide, narrow 

continental shelves are found mostly at active margins such as off Peru, California 

and Hawaii. NSW’s narrow and steep continental margin is a result of its tectonic 

history of asymmetric passive margin rifting (Boyd et al., 2004). The NSW shelf 

narrows near Smokey Cape and changes orientation just north of Port Stephens. 

 

Most of the sediments overlying the shelf were deposited during the Holocene 

transgression some 7000 years ago.  Three sedimentary zones have often been 

identified (eg Roy and Thom 1981): an inner zone to water depths of 60 m, 

characterised by coarse, clean (<2% mud) and relatively well sorted sands; a mid-

shelf zone from 60 to 120 m water depth, characterised by coarse sands with a high 

mud content (5 to 30% mud); and an outer zone of relic carbonate sediments (<5% 

mud) at depths greater than 120 m.  The surface sediments nearer shore appear to be 

highly mobile with potential for resuspension (reworking) of the top metre of 

sediment at water depths of 40 m and of the top 0.5 m of sediment at water depths 

corresponding to the deepwater outfalls (Schneider et al. 1994).  Resuspension events 

(associated with high wave activity and/or strong currents) are expected to occur 

irregularly and vary in intensity, but may occur within time spans as short as seasons 

(Schneider et al. 1994). 

 

The regional coastline is aligned obliquely to the south-east, inner-shelf, modal wave 

direction, and hence sediment is transported obliquely on the shoreface with a net 

northward movement (Goodwin et al., 2006). Large sandy beaches are prominent in 

the north of the State while smaller pocket beaches bounded by rocky headlands tend 

to dominate in the south. 
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2.2.2   Hydrodynamic Setting 
 

NSW coastal waters are dynamic with complex current and density stratification, 

driven by processes, which operate over a wide range of spatial and temporal scales.   

 

Pronounced density stratification is a dominant feature of the water column, 

principally driven by temperature differences which are especially prominent in 

spring, summer and early autumn each year (Rendell & Pritchard, 1996). A 30 year 

record of water temperature at a site off Port Hacking (southern Sydney) in 55m of 

water indicates maximum mean monthly top to bottom temperature difference of 

about 5ºC with maximum sea surface temperatures occurring in late summer 

(February - March).  

 

Critical oceanographic processes in the study region include the mainly southward 

flowing East Australian Current (EAC) and associated eddies (Cresswell and 

Legeckis, 1986; Roughan & Middelton, 2004), northward propagating coastal trapped 

waves (Church et al., 1986; Griffin and Middleton, 1991), local wind driven currents 

and relatively high frequency internal tides and waves (Griffin and Middleton, 1992), 

local winds (Griffin and Middleton, 1991) and swell waves. Tides are semidiurnal 

with a microtidal range (mean spring tidal range is approximately 1.2 m)  (Harris et 

al. 1991).   

 

These processes operate over a wide range of spatial and temporal scales.  For 

instance, instability along the front between the warm EAC and the cooler Tasman 

Sea water often leads to the formation of both large (about 150 km diameter) warm 

core (anticlockwise) eddies  and smaller (20 to 50 km) cold core (clockwise) eddies. 

These eddies may persist off central and southern NSW for periods of days to many 

weeks during which time they profoundly affect the currents and temperature 

structure of the water column. Low frequency, inter-annual to multi-decadal 

variability in EAC transports can be significant as depicted in Figure 2.6.  
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Figure 2.6 Estimated net monthly southward EAC transports (Sverdrup) calculated 
from model-hindcast results along a zonal transect extending eastwards from Sydney 
(modified from Holbrook et al. (2011) based on Ridgway et al. (2008)). 
 

 
Griffin and Middleton (1991) have indicated that approximately 60% to 70% of the 

‘weather band’ (40 hour to 20 day period) current variance is wind driven, with the 

major contributors being the southern New South Wales and Bass Strait winds, both 

lagged by intervals corresponding to the propagation speed of the first Coastal 

Trapped Wave (CTW) mode.  Local winds operate over distances of 10 to 100 km 

and periods of hours to a few days: south-easterly winds favour downwelling while 

upwelling can be associated with north-easterly winds.  Although barotropic tidal 

currents are weak (except near the entrances of estuaries), internal wave disturbances 

of various frequencies are able to propagate along the thermocline when the water 

column is stratified (Griffin and Middleton, 1992).  Internal waves of tidal frequency 

can result in thermocline displacements as large as 20 m (Lee and Pritchard, 1996).  

Higher frequency internal waves with periods in the range of 10 to 30 minutes, 

wavelengths of the order of 1 km and amplitudes of about 10m have also been 

observed off Sydney. 

 

These processes are important in determining the dispersion and fate of pollutants as 

illustrated by Lee & Pritchard (1996).  Radioisotope tracer studies conducted during 

the early 1990’s (e.g. Table 2.1) investigated the behavior of effluent plumes released 

from Sydney’s deepwater outfalls under a range of oceanographic conditions and 

provided validation data for near field models used in Chapter 6 (Pritchard et al., 

1993 & 1996b).  
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Table 2.1 Observed Plume Behaviour: Malabar Deepwater Outfall 

 09/04/91 17/05/91 18/12/91 30/01/92 17-18/06/92 
 CONDITIONS AND TRACERS 

Temperature: upper-
lower (ºC) 

19.5 – 21.0 18.55-18.6 15-20 15-22 19-20 

ORS Current  
(m/s, Direction) 

0.15-0.1 N-S 
(current 
reversal) 

0.1-0.25 S 
(baratropic) 

0.3-
0.4S/0.5S-N 
(baroclinic) 

0.2-0.4-0.2 N-
N-S / 0.1-0.2-
0.1 N-N-S 
(baroclinic 
reversal) 

0.15-0.45 S / 
0.1-0.3 S 
(baratropic) 

STP Flow ML/day) 315-540 385 520 420 330 

Tracers Technetium, 
Salinity 

Technetium, 
Salinity 

Gold-198, 
Tritium, 
Salinity 

Gold-198, 
Tritium, 
Salinity 

Gold-198, 
Tritium, 
Salinity, 

Transmissivity 
Duration (hrs) 9 9 9.5 18 30 

 RESULTS 

Initial Dilution (1:X) 200-400 700-1300 200-300 400-600 1000-1200 

Depth of upper limit 
of labeled field (m) 

0-50 0 (surface) 35-40 45-50 35-40 

Labeled field 
thickness (m) 

10-40 30-40 20-30 20-30 40 

Field Width 1 km 
downstream (m) 

Reversal 2100 1650 900 900 

Compiled from Pritchard et al. (1993) 

 

Nutrient enrichment phenomena are critical to marine systems whether they be due to 

pollutants (as described above) or natural processes such as slope water intrusions 

and upwelling.  Generally, western oceanic boundaries such as off the east coast of 

Australia experience mean wind fields that are not conducive to the persistent 

upwellings, unlike those seen in the productive waters off Peru, Oregon and NW 

Africa.  However, episodic coastal upwellings occur in NSW coastal waters when 

favourable weather patterns persist for more than a couple of days and when EAC-

shelf interactions promote shoreward slope water intrusions (Pritchard et al., 2003). 

Analysis of data from an extensive array of thermistors deployed for 12 months (8/97 

to 8/98) in water depths of 50 – 100m from Port Stephens to Jervis Bay indicated that 

slope water intrusions operated over (alongshore) length scales of hundreds of 

kilometres, and occurred over time scales of a few days to a few weeks with 

surprisingly small phase lags across the study region (Pritchard et al., 1999). 

Investigative modelling using the Princeton Ocean Model (POM) at a regional scale 

and in the vicinities of Port Stephens (Oke & Middleton, 2001) and Jervis Bay (Gibbs 
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et al., 1997, & 1998), revealed the importance of shelf configuration in the processes 

that drive slope water intrusions.  Narrowing of the shelf near Laurieton accelerated 

East Australian Current flows (which are constrained to the shelf by vorticity 

considerations) and thus increased bottom stress (See Figures 1.1 and 2.7 A). This 

stress tended to drive water in the bottom boundary layer (including ‘slope water’) 

towards the coast in much the same way as wind stress drives surface waters to the 

left of wind direction in the southern hemisphere. Slope water was thus ‘uplifted’ 

onto the mid and outer shelf and carried alongshore with the southward flow. 

Regional climatology data (Ridgeway et al., 2002; Dunn & Ridgeway, 2002) exhibit 

consistent temperature and nitrate patterns, with cool, nitrate rich water (indicative of 

slope water) located downstream of Smoky Cape. 

 

However, these modelling exercises indicated that steady EAC activity alone was 

ineffective in driving slope water onto the inner shelf and up into the euphotic zone 

because the bottom boundary layer rapidly ‘shut down’.  When shoreward advection 

of dense slope water created a horizontal density gradient, vertical shear in the along 

shelf velocities reduced bottom stress and ‘shut down’ the boundary layer (according 

to the thermal wind relation).    

 

The combination of EAC activity on the shelf break (enhancing stratification and 

bottom stress) and upwelling favourable winds was found to promote significant 

upwelling in both the Port Stephens and Jervis Bay modelling investigations. Other 

factors promoting upwelling/uplifting included divergence of EAC flows from the 

coast (at about 31°S) and baroclinic instabilities, especially cold core eddies which 

tend to be associated with along-shelf topographic variability such as that seen near 

Port Stephens and Jervis Bay (see Figure 1.1). Cold core eddies, spun-up inshore of 

the EAC front, promote localised upwelling (‘Ekman Pumping’) because bottom 

stress associated with the clockwise rotation promotes convergence of bottom waters 

(towards the centre of the eddy) and, consequent upward transport together with 

divergence at the surface. Slope water intrusions have been observed inshore of an 

EAC front off Sydney in association with a southward moving cold core eddy 

(Cresswell, 1974).   



A. B. 

 

C. 

 

 
Figure 2.7:  

A. Model results showing areas of high bottom stress off Laurieton. Grey scale ranges from -2.5 to 10.0 (m2s-2) x 104 
(modified from Oke & Middleton (2001). 

B. CARS climatological temperature (modified form Suthers et al., 2011) 
C. CARS climatological nitrate concentration (modified form Suthers et al., 2011) 

Plots B and C were derived from a quality-controlled depth and seasonal- averaged observations (0–100 m) archived in the 
CSIRO Atlas of Regional Seas (CARS) as described by Ridgeway et al.(2002) and Dunn & Ridgeway (2002). 
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Similar topographically induced instabilities and localised nutrient enrichments have 

been observed elsewhere including on the inshore edge of the Gulf Stream 

(Anderson, 1992), the Agulhas Current system in the South Indian Ocean (Gill &  

Schumann, 1979) and off Cape Sable, Nova Scotia (Tee and Smith, 1993).  In the 

example off Cape Sable, upwelled waters were advected alongshore causing nutrient 

enrichment of coastal water well downstream of the upwelling location.  

 

These driving mechanisms are generally consistent with available thermistor and 

current data sets (Pritchard et al., 1999) and NOAA satellite imagery of sea surface 

temperatures (see Rochford, 1975 & 1984; Cresswell,1994; Tranter et al., 1986; 

Griffin & Middleton, 1992; Pritchard et al., 2003).  

 

Recent pelagic ecosystem modeling (nitrogen-phytoplankton-zooplankton coupled to 

an EAC configuration of the Princeton Ocean Model) has described the formation of 

a deep chlorophyll maximum during downwelling favourable winds and coastally 

confined phytoplankton blooms during upwelling favourable winds in NSW coastal 

waters (Baird et al., 2006).  These simulations revealed the importance of the 

transport and entrainment of upwelled filaments in determining the plankton 

distributions in NSW coastal waters.   

 

South eastern Australian waters are a global hot-spot for ocean temperature change. 

The strength and influence of the EAC has increased along eastern Australia due to 

ocean warming (Ridgway, 2007) with observed multi-decadal warming at rates 

between three and four times the global average. Holbrook and Bindoff (1997) 

observed average warming to 100m depth of 1.5°C century-1 off Tasmania from 1955 

to 1988, while Ridgway (2007) reported SST warming at 1.5°C century-1 based on 

data from 1944 to 2002. The EAC is predicted to both strengthen and warm 

significantly under global warming scenarios (Cai et al., 2005). A range of diverse 

effects are expected from changing weather patterns to shifts in marine species 

distribution (Hobday et al., 2011). 

 

Closer to shore and at smaller scales, wind and waves are increasingly important 

drivers of coastal circulation and sediment transport.  
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Local winds are major drivers of inner shelf currents, they promote vertical mixing of 

the water column, and contribute to mixing within bays and estuaries (Wolanski, 

2007) which increases potential for exchange of particles across bay entrances. 

 

Long term wind data from the Australian Bureau of Meteorology, summarised in 

Figure 2.8, indicate significant spatial variability across NSW coastal waters thus 

signaling the imperative for local assessments of wind conditions. However, some 

patterns are discernable: afternoon mostly summer northeasterly sea breezes at most 

sites except Williamstown and Nowra (where easterly or southeasterly winds 

dominate); morning westerlies (ranging from SW-NW) especially during winter; and, 

southerly and south-easterly wind events.   

 

Maximum internal bay dimensions along the preferred axes for winds indicate fetch 

for local wind waves (ie wave induced mixing potential) and local wind driven 

current pathways (advection potential) within bays.  Observed preferred directional 

axes for winds (from Figure 2.8) are summaries below in Table 2.2. 

 

Table 2 .2 Ranking of axes of preferred wind directions by location 

 NE-SW N-S NW-SE E-W 

Coffs Harbour 1 2 3 4 

Pt Macquarie 1 4 3 2 

Williamstown 4 3 1 2 

Sydney 4 1 2 3 

Nowra 4 3 2 1 

Bega 1 4 2 3 

 

No consistent statewide pattern of preferred wind axes are apparent in Table 2.2 

although the frequency of winds oriented along the NE-SW axis exhibit an apparent 

latitudinal distribution being dominant at sites in northern and far south NSW but 

subordinate at sites in central NSW.   
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Figure 2.8: Average wind roses based on long term observation at 9am & 3pm. 
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Breaking waves have the potential to increase vertical mixing, re-suspend particles 

and drive circulation in bays (e.g. Bate Bay, NSW as reported by Large et al., 1994). 

Furthermore ocean waves are the single most important process affecting the coast 

(Short and Woodroffe, 2009) thus shaping and orientating geomorphic features that 

interact with regional flows. 

 

NSW wave data collected at seven locations over periods of up to 28yrs indicate 

average significant wave heights of ~1.6m, spectral peak periods of ~9.6s and 

maximum wave heights of ~7.1m as shown in Figure 2.9.  Directional data are 

available from three of these locations for lesser durations, exhibiting predominantly 

south-south-easterly wave directions.  

 

Central NSW appears to have a higher frequency of storms (wave height > 2.5m) due 

to mid latitude and east coast cyclones, based on historical records from 1920 to 1980 

(Short 1993). This is consistent with maximum wave height data depicted in Figure 

2.9.  However, in general for significant wave heights <4m there is a similar 

exceedance distribution for all sites except Batemans Bay (Kulmar et al., 2005) which 

is reflected by the lower average HSIG in Figure 2.9. Although Kulmar et al. (2005) 

suggest that it is generally possible to extrapolate between waverider sites there is no 

evidence to indicate the spatial extent of the exceptional Batemans Bay waverider 

observations.  

 

Refraction and diminished energies of dominant south easterly waves can create low 

wave energy depositional environments on the northern sides of headlands.     

 

Wave induced rip currents return water previously brought shoreward by broken 

waves and may result in narrow offshore jets of up to 2 m/s, usually dissipating 

within a distance of one to three times the width of the surf zone (Short and 

Woodroffe, 2009). Wave induced alongshore feeder currents can be diverted offshore 

by topographic features such as headlands, reefs and training walls resulting in 

stronger rips which penetrate further offshore. Under high wave conditions (>3m)  

megarips can dominate the circulation of embayments when erosional rips increase in 
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spacing and merge with topographic rips. These megarips can reach velocities of 3 

m/s and extend 1-2 km offshore as shown in Chapter 8. Rips are a feature of almost 

all wave dominated embayments although their spacing and intensity depends on 

wave conditions. Short and Woodroffe (2009) identified 2952 rips across 755 open 

coast beaches in NSW, with a mean spacing of 246m, of which 677 were 

topographically controlled.  

 

2.2.3   Chemical Setting 
 

The chemical characteristics of NSW coastal waters are profoundly affected by the 

physical processes outline above. At any particular time a variety of water masses 

with different origins and physical and chemical characteristics (eg salinity, 

temperature, nutrient and trace contaminant levels) may be present.  Their position 

and extent (both horizontal and vertical), the duration they are present, and the extent 

of mixing are all dependant on a combination of processes described above. 

 

Ridgeway et al.(2002) and Dunn & Ridgeway(2002) describe the nutrient 

distributions as shown in Figure 2.7 while Rendell and Pritchard (1996) and 

Pritchard et al. (1999, 2003) described the nutrient characteristics of coastal waters 

based on previous studies in the shelf waters off Sydney extending back to the 1940s 

(e.g. Newell 1966, Hahn et al. 1977, Rochford 1984, Tranter et al. 1986, Cresswell 

1994). The emphasis in much of this work was on nitrate and to a lesser extent 

phosphate.  While concentrations vary considerably, the pattern that has emerged is 

of low levels of nutrients in surface waters, nutrient levels increasing with depth and 

seasonal cycles in nutrient levels for both surface and deeper waters.  The smallest 

differences between surface and deeper waters tend to occur in late autumn and 

winter when thermal stratification is absent or at its weakest.  During this period, 

nutrient concentrations in surface waters tend to be at their highest and nutrient 

concentrations at depth tend to be at their lowest. Nitrate concentrations in surface 

waters off Sydney are typically less than 1 µg atom/L (14 µg nitrate-N/L) for most of 

the year.  Reactive phosphate concentrations in surface waters are typically less than 

0.25 µg atom/L (7.7 µg phosphate-P/L).  At depth, concentrations of nitrate greater 
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than 10 µg atom/L occur episodically in association with the intrusion of slope water 

onto the shelf. 
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Figure 2.9: NSW waverider buoy data summaries to December 2004 (data derived 
from Kulmar et al. (2005). Top showing spectral peak period (TS1), maximum wave 
height (HMAX) and significant wave height (HSIG).  Lower showing directional 
distributions of waves at three locations. 
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Surface water concentrations of trace metals in New South Wales coastal waters are 

among the lowest reported in the Southern Hemisphere and are consistent with 

oceanographic data for the surface waters of the Pacific Ocean (Apte et al., 1998). 

 

Contaminant levels observed in marine sediments off NSW represent only minor 

environmental impact although some estuaries contain highly contaminated 

sediments (Birch, 2000). This is indicative of how efficiently contaminants are 

dispersed from the high energy continental margins. However, surficial sediment 

concentrations of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) in the fine fraction 

(<62.5 mu m) of sediments adjacent to the major urban centres of Sydney, Newcastle 

and Wollongong on the central New South Wales (NSW) continental margin, 

Australia, are elevated above regional background (Matthai and Birch, 2000). 

Disposal of dredged harbour spoil off Newcastle and disposal of large volumes of 

sewage effluent off Sydney were implicated.  Contaminated sediments in estuaries 

such as Sydney Harbour have also been implicated as a source of offshore sediment 

contamination (Schneider et al., 1994). 

 
2.2.4   Biological Setting 
 

New South Wales has rich and diverse biological assemblages, structured to a large 

extent by the morphological setting, physico-chemical conditions and hydrodynamic 

processes. Biological processes in turn alter their physico-chemical environment 

especially through biogeochemical cycles.  

 

Biological settings include rocky shores, sand beach, subtidal rocky reef, coral 

communities and the water column. Habitat maps have recently become available for 

NSW coastal waters (Jordan et al., 2010). 

 

Rocky shores have high biodiversity with mostly temperate species and some tropical 

species mostly in the north of the region. Communities are very patchy in time and 

space because of variables in the dynamic physical environment, irregular recruitment 

and complex ecological interactions such as competition and predation (Underwood 
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and Chapman, 1995). Typically, there is an overlapping zonation on rocky shores of 

foliose and encrusting algae, barnacles, molluscs, polychaetes and other organisms 

(Zann, 2000). 

 

The distribution of sandy beach fauna is also affected by physical processes with 

distinct zonation and species diversity and abundances increasing as wave exposure 

decreases. Sandy shores have a rich meiofauna (nematodes, copepods, mites, 

gastrotrichs, oligochaetes, polychaetes, nemerteans, tardigrades, rotifers, protozoans 

and turbellarians) and macrofauna (crabs, hermit crabs, mysid shrimps, isopods, 

amphipods, insects, polychaete worms, gastropods, bivalves) (Jones and Short, 1995). 

 

Subtidal rocky reef biota are structured by depth presumably influenced by 

availability of light and levels of turbulence and scouring. Shallow temperate rocky 

reefs are typically dominated by canopy-forming large brown algae (e.g. Ecklonia, 

Sargassum, Phyllospora) and a high diversity of sessile colonial animals (e.g. 

sponges, hydroids, soft corals, bryozoans and ascidians. In deeper waters, reefs are 

dominated by sponges which at least off Sydney, increase in species diversity with 

depth (>15 m) (Roberts and Davis, 1996). 

 

There is a strong association between the distribution of coral communities and the 

persistence of the East Australian Current on the continental shelf (as described 

above). Rich coral dominated communities are found in northern NSW coastal waters 

on shallow, sheltered subtidal rocky reefs away from freshwater influences to South-

West Rocks (31°S) (Harriett & Banks, 2002). Ninety species of corals have been 

recorded in the Solitary Islands just north of Coffs Harbour (~30°S) – see Figure 

2.10. Hermatypic or reef-building corals are generally the dominant benthic species, 

but they form a veneer over the existing rocky substratum rather than limestone based 

reefs (Harriot et al., 1994). Coral species diversity is often high with unique 

associations of tropical species near their southern latitudinal range and subtropical 

species that are absent or rare in the Great Barrier Reef area. However, turn-over of 

species is rapid.  
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Figure 2.10 Coral systems in the Solitary Islands Marine Park near Coffs Harbour 
 
 

Planktonic communities in NSW coastal waters range from tropical oceanic in the 

north to temperate oceanic in the south (Zann, 2000). Phytoplankton productivity is 

limited by nutrient runoff and low levels of nutrient-rich upwellings.  Phytoplankton 

patterns have been observed and investigated through a series of studies at long term 

monitoring stations in 50m and/or 100m of water off Port Hacking, southern Sydney 

(e.g. Humphrey, 1960 & 1963; Grant & Kerr, 1970; Jeffrey and Carpenter, 1974; 

Hallegraeff, 1981; Hallegraeff and Reid, 1986; Ajani, Lee, Pritchard and Krogh, 

2001b). Early studies distinguished three major phytoplankton categories: a large 

group of species which were present throughout the year; a group of diatom species, 

which bloomed following episodic nutrient enrichments; and, a group of warm water 

species associated with tropical water masses. Recent studies (Ajani, Lee, Pritchard 

and Krogh, 2001b) observed blooms with similar frequency and magnitude to those 

seen in previous studies but found that the small diatom Thalassiosira partheneia 

generally dominated blooms unlike previous studies which found a variety of taxa 

(Lee, Ajani, Krogh and Pritchard, 2001). Furthermore, the heterotrophic 

dinoflagellate, Noctiluca scintillans, was found at dramatically higher frequency than 

previously documented.  This is consistent with a dramatic increase in the number of 

visible blooms of Noctiluca scintillans as reported by Ajani, Hallegraeff and 

Pritchard, (2001a) and shown in Figure 2.11. Annual variations in abundance of 

Noctiluca were related to episodic uplifting events, which stimulate blooms of the 

phytoplankton prey of Noctiluca during the austral spring and summer (Dela-Cruz, 

Ajani, Lee, Pritchard and Suthers, 2002).  
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Figure 2.11 Recorded algal blooms in NSW marine and estuarine waters (1970 - 
2000) with human population data shown by the dashed line (from Ajani, Hallegraeff 
and Pritchard, 2001a) 
 

Fish stocks are quite small due to low primary productivity and consequently NSW 

lacks the large demersal fisheries that characterise many northern hemisphere 

continental shelf systems. Despite this, coastal fish communities are highly diverse 

ranging from tropical species (e.g. wrasses and damsel fish on northern reefs), to 

mainly temperate species in the south (e.g. weed whitings, rock cales and 

Morwongs).  

 

Detailed descriptions of the geomorphic, hydrodynamic, chemical and biological 

characteristics of the environments that receive treated sewage from NSW outfalls are 

provided in the interactive NSW Coastal Outfalls Atlas (Krogh, Pritchard & Holden, 

2000) which appears on the CD that accompanies this chapter 

 

2.3 Observed Pollutant Impacts 
 

Impacts are defined here as the biological consequences of human induced 

environmental disturbances. It is a major challenge to rigorously discriminate human 

impacts from natural variability (Green, 1979).  Observed pollutant impacts 

summarised here and provided in more detail on the attached CD (Krogh, Pritchard 

& Holden, 2000) are based on assessments which range from purely descriptive 

studies to sophisticated  experimental designs (Underwood 1994; Clarke & Warwick 

1994; Schmitt & Osenberg 1996). Impacts have been summarised by outfall and 
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according to the major biological communities affected (algae, intertidal fauna, 

subtidal hard substrate fauna, subtidal soft substrate fauna, subtidal algal associated 

fauna, fish, shellfish, bacteria and viruses) on the accompanying CD while examples 

from Coffs Harbour and Sydney are provided here as examples of small shoreline 

outfalls discharging secondary treated effluent and large deepwater outfalls 

discharging effluent after just primary treatment (respectively). 

 

‘Natural’ variability has become a moot point given that human induced 

environmental disturbances now occur at regional and global scales which affect 

long-term variability. Therefore, the interpretation and extrapolation of time limited 

impact assessments is also considered below. 

 

2.3.1   Coffs Harbour 
 
Sewage effluent was discharged from the shoreline outfall on Corambirra Point at 

Coffs Harbour for over 40 years before a new outfall was commissioned in early 

2005.  The old outfall discharged effluent at ~10 ML/day when it was de-

commissioned although discharges from the new outfall will increase to over 20 

ML/day by 2021, due to expansion of the sewerage system and closures of two other 

outfalls (at Willis Creek and Sawtell). The new outfall lies 1.5km off Boambee Beach 

in ~20 metres of water, immediately south of the Solitary Islands Marine Park (Figure 

2.12). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.12 Locations of Coffs Harbour’s old and new outfalls (2006 
TerraMetrics/DigitalGlobe image via Google) 
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The Corambirra Point outfall was not designed to maximize initial dilutions and 

minimize boundary contact (see Figure 2.5 above); the dilution was typically 5:1 

within 50 m of the outlet and 50:1 within 250 m of the outlet (CHEIS, 2000). Smith 

(1996) and CHEIS (2000) summarised the findings of a series of quantitative impact 

assessments that began in May 1987 and ran until 1991: 

 

 the abundance of ephemeral green algae Ulva lactuca was elevated at all 

monitoring sites along Corambirra Point compared to control sites, indicated 

that effluent impact extended the full length of the Point (~460 m). Increased 

coverage of Ulva lactuca is the most obvious and often quoted impact of 

sewage outfalls in NSW (Krogh, Pritchard & Holden, 2000).   

 algal species richness near the outfall was much lower than at the reference 

locations, sometimes reducing to half that of the reference locations. 

 the community structure of animals in the algal holdfasts showed a gradient of 

change along Corambirra Point including a decrease in abundance of 

suspension feeders with distance from the outlet and a corresponding increase 

in omnivorous species, extending over 400m from the outfall. 

 concentrations of both nitrogen and phosphorus in Ulva lactuca were higher 

at Corambirra Point compared to control sites, corresponding with elevated 

Ulva abundances 

 the density of intertidal bivalves (L. australis) was substantially higher at 

Corambirra Point than at reference locations during most surveys 

 

These impacts were generally consistent with those found at other shoreline outfalls 

in NSW (see attached CD: Krogh, Pritchard & Holden, 2000) and elsewhere 

although there is considerable variability in the type and scale of impacts due to 

differences in effluent quality, outfall hydraulic performance and local receiving 

environment. 
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2.3.2   Sydney deepwater outfalls 
 

A five year, $24M, multi-disciplinary Environmental Monitoring Program (EMP) 

measured the environmental performance of Sydney’s new deepwater outfalls against 

a wide range of criteria related to impacts on marine ecosystems and on human 

utilisation of marine resources (Philip and Pritchard, 1996). Findings from 

component studies of the EMP were reported in a special volume of Marine Pollution 

Bulletin (Koop & Hutchings 1996) while the overall assessment was reported by 

Pritchard et al. (1996a) and Pritchard (1997). 

 

The EMP assessed the performance of the deepwater outfalls during the first two 

years of their operation (August 1991 to August 1993) by comparing conditions 

before and after the commissioning of deepwater outfalls. 

 

Before the commissioning of deepwater outfalls, discharges at cliff face outfalls often 

led to poor beach and bathing water quality (Robinson et al., 1996), high levels of 

some contaminants in certain fish (Lincoln-Smith and Mann 1989a & b; McLean et 

al, 1991) and reduced diversity of some biological communities at least in the 

immediate vicinity of the outfalls (Fairweather, 1990).  The gross visual impact of 

effluent from the former cliff face outfall at North Head is clearly evident in Figure 

2.13. Through the 1980s, public opinion had increasingly demanded action to 

overcome often severe pollution and a decision was taken to divert the effluent of 

three major sewage treatment plants from the shoreline to offshore deepwater 

outfalls, using multi-port diffusers in water depths of 60 to 80 metres.  The three new 

outfalls were commissioned during the period from  September 1990 to August 1991. 

 

Effluent discharged from the new deepwater outfalls was found to undergo rapid 

initial dilution, typically within 500 metres of the outfall, before reaching either a 

level of neutral buoyancy or the ocean surface. Initial dilutions were one to two 

orders of magnitude greater than those achieved at the former cliff face outfalls and 

effluent plumes remained trapped below the sea surface for more than 80% of the 

time (Pritchard et al., 1993, 1996b, 1997). 

 

 41



Effluent plume emanating from shoreline outfall in 
1990 under typical conditions 

Effluent plume emanating from deepwater diffuser 
system in 1992 on a rare occasion when plume 
surfaced 

 
Figure 2.13 Surface effluent plumes off Sydney (North Head) before and after the diversion 
to an offshore diffuser system in December 1990. [photo by Pritchard] 
 

 

Most EMP studies focused on the near vicinity of the outfalls and compared changes 

at outfall sites (before vs after) with those at distant control (reference) sites. The fate 

of a range of known effluent constituents was investigated directly through 

monitoring in the water column (faecal bacteria, nutrients and suspended solids), in 

deployed oysters and in fish (contaminants), in sediments (contaminants and 

sediment characteristics) and on beaches (faecal bacteria and sewage grease).  Further 

studies measured the impacts of effluent on marine ecosystems (fish and benthos) and 

on human utilisation of marine resources (seafood contamination and recreation).  

The EMP assessment concluded that the new outfalls mitigated most of the 

environmental problems previously experienced when shoreline outfalls were 

operating without creating any major new problems in the ocean waters in the short 

term.  During the EMP there were no sustained effects of the outfalls on the overall 

diversity (number of species) of biological communities found near the deepwater 

outfalls.  However, the outfalls caused both increases and decreases in the abundance 

of a number of components of the soft bottom, planktonic and demersal fish 

communities near the outfalls.  Modelling of plume behaviour and the studies of biota 

and sediments indicated that the enhanced dilution and dispersion had resulted in a 

decreased likelihood of any given organism or area of sediment encountering (and 

therefore accumulating) high loads of a contaminant, but concomitantly there had 
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been an increased likelihood of more organisms (or sediment) accumulating or being 

exposed to small amounts of contaminants. 

 

A number of residual environmental issues emerged from EMP studies.  Some of 

these were associated with the deepwater outfalls while others were common to a 

broad area of NSW coastal waters. 

 

Remaining outfall issues included:  

 potential for accumulations of sewage particles and associated contaminants 

in offshore sediments, especially given the large suspended solids loading (see 

Figure 2.4 above) and the relocation of the discharge to the mid-shelf which 

has a greater potential for accumulation (see Geomorphic Setting above); 

 unexplained minor changes in abundances of certain bottom dwelling 

organisms and free swimming fish near outfalls; 

 occasional presence of sewage grease on beaches; and 

 faecal pathogens in sewage plumes. 

  

Further marine issues raised not specifically attributable to the operation of the 

deepwater outfalls, included: 

 occasional exceedances of National Food Authority Maximum Residue 

Levels for some trace metals in fish from NSW coastal waters; 

 possible nutrient enrichment of coastal waters and its effect on phytoplankton 

growth (algal blooms); and 

 beach and bathing water pollution originating from stormwater sources and 

the remaining cliff-face outfalls discharging primary treated sewage. 

 

2.3.3   Interpretation and extrapolation of time limited impact assessments 
 

Impact assessment studies including many of the component EMP studies adopt 

Before and After Control Impact (BACI) designs to isolate outfall impacts on the 

marine ecosystem from background variability. These studies involved data 

collection before and after a putative impact at replicated 'control' and 'impact' 

locations. In this way BACI designs take into account background variability, which 
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is common to both control and impacted sites. In many cases it is reasonable to 

assume that long-term patterns in the ocean would affect the background variability at 

outfall and control sites equally. For instance, fish carried with (or attracted to) warm 

East Australian Current waters are likely to be present in similar numbers at both 

control and outfall sites if they receive EAC waters at similar times.  However, 

careful consideration needs to be given to both the selection of appropriate ‘control’ 

sites and the temporal context of time limited impact assessment. 

 

Unfortunately, spatial variability is generally not known a priori if at all, but 

selection of appropriate ‘control’ locations can often be informed by an understanding 

of critical ambient processes. For example, natural sediment transport rates are often 

markedly different on opposite sides of a headland due to different exposures to 

waves.  In such circumstances, impact assessments to determine the effects of 

increased sediment load from a new outfall on benthic communities on the headland 

would need ‘control’ sites on equivalent positions (w.r.t. wave driven sediment 

transport) of equivalent headlands especially if directional wave energy changed 

between ‘before’ and ‘after ‘ periods. Similar considerations apply to pollutants and 

biota in the water column. This emphasises the need to develop a predictive 

understanding of both pollutant transport/behavour and ambient variability. 

 

An understanding of temporal context is also critical if findings from time limited 

impact assessments are to be extrapolated or generalised to inform broad management 

decisions or long term strategies.  If a long-term pattern changed the nature of the 

impact by either affecting the distribution (fate) of pollutants or the environmental 

sensitivity to pollutant impacts, then time limited impact assessment studies could 

have identified impacts (or lack of impacts), which only occur under rare 

circumstances (Lee and Pritchard, 1996).  In addition to this, many impact 

assessments lack sufficient ‘before’ data (e.g. Krogh and Robinson, 1996) which 

further emphasises the need for a temporal context in which to interpret the results.   
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2.4 Conclusions and information gaps  
 

The interactions of flows with continental shelf bathymetry are wonderfully complex 

especially in the near shore region. The near shore coastal boundary layer which is 

shaped by patterns of turbulence associated with inner shelf coastal morphology, 

receives pollutants continuously from point sources and intermittently from diffuse 

coastal catchment sources.  

 

Case study scenarios for this thesis include: Coffs Harbour, a medium sized coastal 

town disposing highly treated sewage effluent in shallow water just south of a modest 

headland on a section of the continental shelf that is regionally dominated by the 

tropical influences of the East Australian Current stream flow; and, Sydney, 

Australia’s largest city disposing vast quantities of primary treated effluent via deep 

water diffuser systems located on a section of the shelf regionally dominated by the 

EAC eddy field.  

 

NSW coastal waters currently support high biodiversity values but are exposed to 

growing human induced disturbances and pollutant loadings. 

 

Pollutant exports to the ocean from diffuse sources in NSW coastal catchments are 

poorly quantified due to very limited event based monitoring data and a poor 

understanding of pollutant assimilation within catchments and estuaries en route to 

the ocean.  Collecting data to fill these information gaps is a formidable task and well 

beyond the scope of this thesis.  However, there is scope to investigate factors that 

determine the fate of pollutants discharged at or near the land-sea interface.  That is, 

classify and where possible map coastal boundary layer characteristics that affect 

pollutant residence times and distributions, exploiting the increasing availability of 

remote sensed data products.   

 
As discussed above, sewage discharges account for the vast majority of point source 

loadings to NSW offshore waters and of these Sydney’s deepwater outfalls account 

for more than 80% of the total nitrogen loadings. Nutrient concentrations in all 

treated effluent discharged at all NSW sewage outfalls exceed national water quality 
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trigger criteria (ANZECC/AMCANZ, 2000), and the greatest exceedances occur in 

primary treated effluent discharged from Sydney’s deepwater outfalls. Few impact 

assessments anywhere in NSW have considered water column eutrophication. Even 

the $24M Sydney Deepwater Outfalls Environmental Monitoring Program failed to 

adequately address possible nutrient enrichment of coastal waters and its effect on 

phytoplankton growth (Pritchard, 1997). Information is required to determine 

ambient (non outfall) nutrient distributions and patterns, quantify nutrient enrichment 

patterns due to Sydney’s deepwater outfalls and, assess the importance of outfall 

nutrients in relation to phytoplankton activity. 

 

In contrast to Sydney’s deepwater outfalls, the vast majority of NSW sewage outfalls 

discharge relatively small pollutant loads at the shoreline after at least secondary 

levels of treatment. These outfalls were rarely located and designed to optimise initial 

dilution and avoid contact with sensitive habitats to minimise environmental impacts.  

With rapid population growth in the NSW coastal zone the development of regional 

effluent management strategies provide windows of opportunity to optimise ocean 

discharge, such as in the Coffs Harbour area.  However, this requires an 

understanding of dispersion potential across the local receiving environment.  

Although many aspects will be site specific, case studies are required to illustrate key 

processes and approaches to determine and exploit dispersion potential in relation to 

outfall location and design for small, coastal sewage treatment systems.  

 

Although climate variability in Australia has been described in terms of large scale 

phenomena such as the El Nino Southern Oscillation (Allan 2000) and the 

Interdecadal Pacific Oscillation (Micevski et al., 2006) there is little information on 

how these and other phenomena are manifest at a site specific level in NSW coastal 

waters.  Small scale process based understanding will be critical to determine the 

local consequences of global scale climate variability/change scenarios. That is, in the 

context of this thesis there is a need to investigate the importance of morphology in 

controlling the dispersion and fate of pollutants discharged to the NSW coastal 

waters in order to develop a predictive understanding of pollutant impacts. 

 

 

 46



2.5  References 
 
Ajani, P.A., Hallegraeff,G. and Pritchard,T.R. (2001a) Historic Overview of Algal 

Blooms in Marine and Estuarine Waters of New South Wales, Australia. 
Proceedings of the Linnean Society of New South Wales, 123, pp. 1-22 

Ajani,P., Lee,R., Pritchard,T.R. and Krogh,M. (2001b)  Phytoplankton patterns at 
CSIRO’s long-term coastal station off Sydney. Journal of Coastal Research, 34, 
60-73. 

Allan, R.J., 2000. ENSO and climatic variability in the last 150 years. In: Diaz, H.F., 
Markgraf, V. (Eds.), El Nin˜o and the Southern Oscillation: Multiscale 
Variability and Global and Regional Impacts. Cambridge University Press, 
Cambridge, pp. 3–56 (Chapter 1). 

Anderson, D.M. (1994) Red Tides, Scientific American 271, 62-68. 

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and 
Marine Water Quality. Australian and New Zealand Environment & 
Conservation Council and Agriculture & Resource Management Council of 
Australia & New Zealand. 

Apte S.C., Batley G.E., Szymczak R., Rendell P.S., Lee R., Waite T.D. (1998) 
Baseline trace metal concentrations in New South Wales coastal waters. Marine 
and Freshwater Research 49 (3): 203-214 1998 

Ayres, C.P., Gillett, R.W. and Cernot, U. (1987) Rainwater Acidity in Sydney, An 
Addendum, Clean Air, Vol. 21/2, 8p. 

Baginska,B., Pritchard,T. and Krogh,M. (2003) Roles of land use resolution and 
unit-area load rates in assessment of diffuse nutrient emissions. Journal of 
Environmental Management 69, 39-46. 

Baginska, B. and Pritchard,T.R. (2000) Nutrient Emissions for Manning and 
Richmond Catchments (NSW). NSW Environment Protection Authority Report 
prepared for the National Pollutant Inventory Program. 

Baginska, B. and Pritchard,T.R. (1999) CMSS as a tool for assessment of 
aggregated catchment emissions  - sensitivity testing. NSW Environment 
Protection Authority. 

Baginska, B., Lu,Y. Mawer, D. and Pritchard, T.R. (2004) Linking Land Use 
Decisions to Nutrient Exports. Department of Environment and Conservation. 
Refereed report, November 2004.  

Baird ME, Timko PG, Suthers IM, Middleton JH (2006) Coupled physical–biological 
modelling study of the East Australian Current with idealised wind forcing. Part 
I: Biological model intercomparison. Journal of Marine Systems 59 (2006) 249– 
270 

Birch G.F. (2000) Marine pollution in Australia, with special emphasis on central 
New South Wales estuaries and adjacent continental margin. International 
Journal of Environment and Pollution 13 (1-6): 573-607. 

 47

http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/CCC/CIW.cgi?SID=H2aIE7NBaibiedd2g2J&Func=OneClickSearch&field=AU&val=Apte,+SC&curr_doc=1/21&Form=FullRecordPage&doc=1/21
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/CCC/CIW.cgi?SID=H2aIE7NBaibiedd2g2J&Func=OneClickSearch&field=AU&val=Batley,+GE&curr_doc=1/21&Form=FullRecordPage&doc=1/21
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/CCC/CIW.cgi?SID=H2aIE7NBaibiedd2g2J&Func=OneClickSearch&field=AU&val=Szymczak,+R&curr_doc=1/21&Form=FullRecordPage&doc=1/21
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/CCC/CIW.cgi?SID=H2aIE7NBaibiedd2g2J&Func=OneClickSearch&field=AU&val=Rendell,+PS&curr_doc=1/21&Form=FullRecordPage&doc=1/21
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/CCC/CIW.cgi?SID=H2aIE7NBaibiedd2g2J&Func=OneClickSearch&field=AU&val=Lee,+R&curr_doc=1/21&Form=FullRecordPage&doc=1/21
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/CCC/CIW.cgi?SID=H2aIE7NBaibiedd2g2J&Func=OneClickSearch&field=AU&val=Waite,+TD&curr_doc=1/21&Form=FullRecordPage&doc=1/21
http://toc.isiknowledge.com.ezproxy.waikato.ac.nz:2048/ToC/ToC.cgi?SID=H2aIE7NBaibiedd2g2J&Func=BrowseToC&recid=3891372&instid=19&CCC_ReturnLink=http%3A//apps.isiknowledge.com%3A80/CCC/CIW.cgi%3F%26ServiceName%3DTransferToWos%26PointOfEntry%3DLastPage%26Func%3DLinks%26SID%3DH2aIE7NBaibiedd2g2J
http://toc.isiknowledge.com.ezproxy.waikato.ac.nz:2048/ToC/ToC.cgi?SID=H2aIE7NBaibiedd2g2J&Func=BrowseToC&recid=3891372&instid=19&CCC_ReturnLink=http%3A//apps.isiknowledge.com%3A80/CCC/CIW.cgi%3F%26ServiceName%3DTransferToWos%26PointOfEntry%3DLastPage%26Func%3DLinks%26SID%3DH2aIE7NBaibiedd2g2J
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Birch+GF&curr_doc=19/1&Form=FullRecordPage&doc=19/1


Boudouresque, C.F. and Verlaque, V.M. (2002) Biological pollution in the 
Mediterranean Sea: invasive versus introduced macrophytes. Marine Pollution 
Bulletin 44 (1), 32–38. 

Boyd, R., Ruming, K. & Roberts, J. J. (2004) Geomorphology and surficial sediments 
of the southeast Australian continental margin. Australian Journal of Earth 
Sciences 51 (5), 743-764. 

Cai, W., Shi,G., Cowan,T., Bi,D., Ribbe,J. (2005) The response of the Southern 

Annular Mode, the East Australian Current, and the southern mid-latitude ocean 
circulation to global warming. Geophysical Research Letters,32. 

Carnovale, F. and Saunders,J. (1987) The Deposition of Atmospheric Nitrogenous 
Species to Port Phillip Bay – addendum. SRS Report No. 87/002, Victorian 
EPA, Melbourne. 

CHEIS (2000) Coffs Harbour Sewerage Strategy Environmental Impact Statement. 
Vol 1-10. Coff Harbour City Council, NSW, Australia. 

Church, J.A., Freeland, H.J. and Smith, R.L. (1986) Coastal trapped waves on the 
east Australian continental shelf Part I: propogation of modes. Journal of 
Physical Oceanography, 6, 1929-1943. 

Clarke, K.M. & Warwick, R.M. (1994) Change in Marine Communities: An 
Approach to Statistical Analysis and Interpretation. Natural Environment 
Research Council, UK, 144pp. 

Cresswell, G. (1994) Nutrient Enrichment of the Sydney Continental Shelf. 
Aust.J.Mar.Freshwater Res., 45, pp677-691 

Cresswell G.R. (1974) Ocean currents measured concurrently on and off the Sydney 
area continental shelf, Australian Journal of Marine and Freshwater Research, 
25, 427-438. 

Cresswell, G.R. and Legechis, R. (1986) Eddies off southeastern Australia.  Deep Sea 
Research, 33, 1527-1562. 

Cunningham D.J., Wilson S.P. (2003) Marine debris on beaches of the Greater 
Sydney Region. Journal of Coastal Research 19 (2): 421-430. 

Dela-Cruz, J, Ajani, P, Lee, R, Pritchard, T and Suthers, I (2002), Temporal 
abundance patterns of the red tide dinoflagellate Noctiluca scintillans along the 
southeast coast of Australia, Marine Ecology Progress Series, 236, 75-88. 

Dunn, J.R., Ridgway,K.R. (2002) Mapping ocean properties in regions of complex 
topography. Deep-Sea Research, I49, 591–604. 

Eyre, B. and Pepperell, P. (1999) Budgets for Australian estuarine systems: Sub-
tropical Systems. In: Smith, S.V., C.J. Crossland, Australasian Estuarine 
Systems: Carbon, Nitrogen and Phosphorus Fluxes . LOICZ Reports & Studies 
No. 12, ii + 182 pp. LOICZ, Texel, The Netherlands 

Feth, J.H. (1966) Nitrogen Compounds in Natural Water – A Review, US Geological 
Service. 

 48

http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Cunningham+DJ&curr_doc=18/1&Form=FullRecordPage&doc=18/1
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Wilson+SP&curr_doc=18/1&Form=FullRecordPage&doc=18/1


Fairweather, P. (1990) Sewage and the biota on seashores: assessment of impact in 
relation to natural variability. Environmental Monitoring and Assessment, 14, 
197-210. 

Gibbs, M.T., Middleton, J.H., Marchesiello, P., 1998. Baroclinic response of Sydney 
shelf waters to local wind and deep ocean forcing. J. Phys. Oceanogr. 28, 178– 
190. 

Gibbs,M.T., Marchesiello, P. and Middleton, J.H., “Nutrient enrichment of Jervis Bay 
during the massive 1992 coccolithophorid bloom”. (1997) Mar.Freshwater Res, 
48, 473-8 

Gill A.E. and Schumann E.H. (1979) Topographically induced changes in the 
structure of an inertial coastal jet: application to the Algulhas current, J. Phys. 
Oceanogr., 9,  975-991. 

Goldberg, E.D. (1995) Emerging problems in the coastal zone for the twenty-first 
century. Marine Pollution Bulletin 31 (4–12), 152–158. 

Goodwin, I.D., Stables, M.A. and Olley, J.M. (2006) Wave climate, sand budget and 
shoreline alignment evolution of the Iluka–Woody Bay sand barrier, northern 
New South Wales, Australia, since 3000 yr BP. Marine Geology 226 (2006) 
127– 144. 

Grant, B. R. and Kerr, J. D. (1970)  Phytoplankton numbers and species at Port 
Hacking station and their relationship to the physical environment. Australian 
Journal of Marine and Freshwater Research 21, 35-45. 

Green R. H. (1979).  Sampling Design and Statistical Methods for Environmental 
Biologists.  Wiley & Sons.  New York. 

Gregory, M.R. (1999) Plastics and South Pacific Island shores: environmental 
implications. Ocean and Coastal Management 42, 603–615. 

Griffin, D.A. and Middleton, J.H. (1991) Local and Remote wind forcing of New 
South Wales inner shelf currents and sea level. Journal of Geophysical 
Research, 21, 304-322. 

Griffin, D.A. and Middleton, J.H. (1992) Upwelling and internal tides over the inner 
New South Wales continental  shelf, Journal of Geophysical Research, 97, C9, 
14389-14405. 

Hahn, S. D., Rochford D. J., Godfrey, J. S., 1977. Long term variability of 
oceanographic data at the Port Hacking 50-metre station. Aust. J. Mar. 
Freshwater Res. 28, 57-66. 

Hallegraeff, G. M. (1981)  Seasonal study of phytoplankton pigments and species at a 
coastal station off Sydney, Marine Biology 61, 107-118. 

Hallegraeff, G. M. and Reid, D. D. (1986)  Phytoplankton species successions and 
their hydrological environment at a coastal station off Sydney. Australian 
Journal of Marine and Freshwater Research 37, 361-377. 

Harriott V.J. & Banks S.A. (2002) Latitudinal variation in coral communities in 
eastern Australia: a qualitative biophysical model of factors regulating coral 
reefs. Coral Reefs 21 (1): 83-94 

 49

http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Harriott+VJ&curr_doc=9/1&Form=FullRecordPage&doc=9/1
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Banks+SA&curr_doc=9/1&Form=FullRecordPage&doc=9/1


Harriott, V. J., Smith, S. D. A. and Harrison, P. (1994) Patterns of coral community 
structure of subtropical reefs in the Solitary Islands Marine Reserve, Eastern 
Australia. Marine Ecology Progress Series 109, 67-76 

Harris, P. T., Baker, E. K. and Cole, A. R. (1991) Physical Sedimentology of the 
Australian Continental Shelf. Ocean Sciences Institute Report No. 51, 
University of Sydney, Sydney 

Hobday, A.J., Young, J.W., Moeseneder, C., Dambacher,J.M. (2011) Defining 
dynamic pelagic habitats in oceanic waters off eastern Australia. Deep-Sea 
Research II58(5),734–745. 

Holbrook N.J., Goodwin,I.D., McGregor,S., Molina,E., Power,S.B. (2011) ENSO to 
multi-decadal timescale changes in East Australian Current transports and Fort 
Denison sea level: oceanic Rossby waves as the connecting mechanism. Deep-
Sea Research II58(5), 547–558. 

Holbrook, N.J. and Bindoff,N.L. (1997) Interannual and decadal temperature 
variability in the southwest Pacific Ocean between 1955 and 1988. Journal of 
Climate10, 1035–1049. 

Humphrey, G. F. (1960) The concentration of planktonic pigments in Australian 
waters, CSIRO Division of Fisheries and Oceanography Technical Paper No. 9. 

Humphrey, G. F. (1963) Seasonal variations in plankton pigments in waters off 
Sydney. Australian Journal of Marine and Freshwater Research 14(1), 24-36. 

IMCRA (1998) Interim Marine and Coastal Regionalisation for Australia: an 
ecosystem based classification for marine and coastal environments, Version 
3.3. Environment Australia, Commonwealth Department of the Environment, 
Canberra. 

Ingleton, T and Large D. (2004). NSW Ocean Outfalls: Using Near-field models to 
investigate hydrodynamic performance. Australian Journal of Water Resources 
Vol 8, No. 1, 45 – 56 

Islam, M.S. & Tanaka, M. (2004) Impacts of pollution on coastal and marine 
ecosystems including coastal and marine fisheries and approach for 
management: a review and synthesis. Marine Pollution Bulletin 48 624–649 

Jeffrey, S.W. and Carpenter, S. M. (1974)  Seasonal succession of phytoplankton at a 
coastal station off Sydney. Australian Journal of Marine and Freshwater 
Research 25, 361-369. 

Jones, A. R. & Short, A. D. (1995) Sandy beaches. In Coastal Marine Ecology of 
Temperate Australia, eds. A. J. Underwood and M. G. Chapman, pp. 136-151. 
UNSW Press, Sydney. 

Jordan,A., Davies,P., Ingleton,T., Foulsham,E., Neilson,J. and Pritchard,T. (2010) 
Seabed habitat mapping of the continental shelf of NSW. DECCW 2010/1057,  
ISBN 978 1 74293 085 5. 

Koop, K and Hutchings, P. (1996) Ocean Outfalls – Sustainable Solution? Mar. 
Pollut. Bull., 33 ( 7-12), 121-308. 

Krogh, M., Pritchard, T.R. & Holden, C. (2000) NSW Coastal Outfalls Atlas. 
Provided in Appendix 4 of this thesis. 

 50



Krogh, M. and Robinson, L. (1996) Environmental variables and their association 
with faecal coliform and faecal streptococci densities at thirteen Sydney 
beaches. Marine Pollution Bulletin 33(7-12), 239-248. 

Kulmar,M., Lord,D., Sanderson,B. (2005) Future Directions for Wave Data 
Collection in New South Wales. Coasts and Ports: Coastal Living - Living 
Coast; Australasian Conference 2005; Proceedings. Barton, A.C.T.: Institution 
of Engineers, Australia, 167-172. 

Kusui, T. & Noda, M. (2003) International survey on the distribution of stranded and 
buried litter on beaches along the Sea of Japan. Marine Pollution Bulletin 47 
(1–6), 175–179. 

Large, D., Holden, C., Xie, J.,Tate, P. (1994) Bate Bay Pollution Study Volume 2 
Physical Oceanography Summary Report. Australian Water Technologies 
Water Board, Sydney. 

Lee,R., Ajani,P., Krogh,M. and Pritchard,T.R. (2001) Resolving climatic variance 
in the context of retrospective phytoplankton pattern investigations off the east 
coast of Australia. Journal of Coastal Research, 34, 74-86. 

Lee, R. S. and  Pritchard, T. R., (1999) Extreme Discharges into the Coastal Ocean: 
A Case Study of August 1998 Flooding on the Hawkesbury and Hunter Rivers. 
Pacific Coasts and Ports ’99 Proceedings, Perth, W.A. 341-346. Institute of 
Engineers, Australia. 

Lee, R.S. and Pritchard, T. R. (1996)  How Do Long-term Patterns Affect Time-
limited Environmental Monitoring Programmes ?  Mar. Pollut. Bull. 33, 260-
268. 

Lee, R. S. and Pritchard, T. R. (1996) “Dispersion of effluent from Sydney’s new 
deepwater outfalls Part 1: ocean processes”. In Mixing Processes in Estuaries 
and Coastal Seas (C. Pattiaratchi, ed), 430-438. American Geophysical Union, 
Washington. 

Lincoln-Smith and Mann (1989a) Bioaccumulation in nearshore marine organisms. 
Organochlorine compounds in the red morwong Cheilodactylus fuscus, around 
Sydney's three major sewage outfalls. State Pollution Control Commission, 
Sydney 

Lincoln-Smith and Mann (1989b) Bioaccumulation in nearshore marine organisms. 
Organochlorine compounds in the rocky reef animals near Malabar sewage 
ocean outfall. State Pollution Control Commission, Sydney 

Lu,Y, Baginska, B. and Pritchard, T.R. (2004) Applying remote sensing to 
Managing Impacts of Diffuse Sources of Pollution due to landuse change in 
Tweed catchment, NSW, Australia.13th International Soil Conservation 
Organisation Conference, Brisbane, July 2004. 

McLean, C., Miskiewics, A. and Roberts, E. (1991) Effect of Three Primary 
Treatment Sewage Outfalls on Metal Concentrations in the Fish Cheilodactylus 
fiscus Collected Along the Coast of Sydney, Australia. Marine Pollution 
Bulletin, 22(3), 134-140. 

 51



Matthai C., Birch G.F. (2000) Effect of coastal cities on surficial sediments mantling 
an adjacent high-energy continental margin - central New South Wales, 
Australia. Marine and Freshwater Research 51 (6): 565-576. 

Micevski, T., Franks, S.W. & Kuczera, G. (2006) Multidecadal variability in coastal 
eastern Australian flood data. Journal of Hydrology (2006) 327, 219– 225. 

Middleton, J.H. (1995). The oceanography of Australian seas. In: Zann, L.P. (ed) 
State of the Marine Environment Report for Australia: The Marine Environment 
- Technical Annex: 1. Department of the Environment, Sport and Territories, 
Canberra, ISBN 0 642 17399 0 

National Climate Centre of the Bureau of Meteorology (2004) webclim@bom.gov.au  

Newell, B. S., 1966. Seasonal changes in the hydrological and biological 
environments off Port Hacking, Sydney. Aust. J. Mar. Freshwater Res. 17, 77-
91. 

NSW Fisheries (2004) NSW Control Plan for the noxious marine weed Caulerpa 
taxifolia in NSW waters NSW Fisheries, February 2004, 1-19 

NSW SoE (2006) New South Wales State of the Environment Report. NSW 
Department of Environment and Conservation. 

Oke, P.R., Middleton, J.H., 2001. Nutrient enrichment off Port Stephens: the role of 
the East Australian Current. Cont. Shelf Res. 21, 587–606. 

Parsons, T.R., Takahashi, M. & Hargrave, B., 1997. Biological Oceanographic 
Processes Second Edition. Pergamon Press. 

Partridge, I.J. (ed), 1994. Will it Rain?, Agricultural Production Townsville, State of 
Queensland, Dept. of Primary Industries. 

Pelley, J. (1998) ‘Is Coastal Eutrophication Out of Control?’ Environmental Science 
and Technology, October 1998, 462-466. 

Philip, N.A. and Pritchard, T. R. (1996)  Australia’s First Deepwater Sewage 
Outfalls: Design Considerations and Environmental Performance Monitoring.  
Mar. Pollut. Bull. 33, 132-139. 

Pritchard, T.R., Holden, C. and Healy, T. (2005) Variability of coastal dynamics of 
New South Wales, Australia and its relevance to anthropogenic impacts. 
Refereed Proceedings of the 17th Australasian Coastal and Ocean Engineering 
Conference, Institute of Engineers, Australia, 61-66. 

Pritchard, T. R., Lee, R. S. and Ajani, P. (1999) Anthropogenic and Oceanic 
Nutrients in NSW’s Dynamic Coastal Waters and Their Effect on 
Phytoplankton Populations. Pacific Coasts and Ports ’99 Proceedings. 537-543. 
Institure of Engineers, Australia.  

Pritchard, T.R. , 1997. Environmental Performance of Sydney's Deepwater Outfalls, 
Journal of Australian Water and Wastewater Association, Vol 24, No.1. 
March/April 1997. 

Pritchard, T.R., Rendell, P. Scanes, P. and Phillip, N., 1996a Volume 1: Assessment 
of the Deepwater outfalls, Sydney Deepwater Outfalls Environmental 

 52

http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Matthai+C&curr_doc=20/1&Form=FullRecordPage&doc=20/1
http://apps.isiknowledge.com.ezproxy.waikato.ac.nz:2048/WoS/CIW.cgi?SID=J2EH2hB64E2DlC3mA5@&Func=OneClickSearch&field=AU&val=Birch+GF&curr_doc=20/1&Form=FullRecordPage&doc=20/1
mailto:webclim@bom.gov.au


Monitoring Program Final Report Series. NSW Environment Protection 
Authority, Sydney. 

Pritchard, T. R., Lee, R. S. and Davison, A. (1996b) “Dispersion of effluent from 
Sydney’s new deepwater outfalls Part 2: Observations of Plume Behaviour: 
Winter and Summer Examples” In Mixing Processes in Estuaries and Coastal 
Seas (C. Pattiaratchi, ed), pp. 430-438. American Geophysical Union, 
Washington. 

Pritchard, T.R., Lee, R.S. and Davison, A., 1993. Sydney’s Deepwater Outfalls.  In 
situ Observations of Plume Characteristics.  In:Proceedings of 1th Australasian 
Conference in Coastal and Ocean Engineering, Townsville, 23-27 August 1993. 
Institute of Engineers, Australia. 

Rendell, P.S. and Pritchard, T. R. (1996)  Physicochemical Conditions in Coastal 
Waters off Sydney, Central NSW, Australia. Mar. Pollut. Bull. 33, 132-139. 

Ridgway, K.R. (2007) Long-term trend and decadal variability of the southward 
penetration of the East Australian Current.Geophysical Research Letters34, 
L13613. doi:10.1029/2007 GL030393 

Ridgway, K.R., Coleman,R.C., Bailey,R.J., Sutton,P. (2008) Decadal variability of 
East Australian Current transport inferred from repeated high-density XBT 
transects, a CTD survey and satellite altimetry. Journal of Geophysical Research 
113, C08039.doi:10.1029/2007JC004664. 

Ridgway, K.R. and Dunn, J.R. (2003). Mesoscale structure of the mean East 
Australian Current System and its relationship with topography. Prog. 
Oceanogr. 56, 189–222. 

Ridgway, K.R., Dunn, J.R., Wilkin, J.L. (2002) Ocean interpolation by four-
dimensional least squares – Application to the waters around Australia. Journal 
of Atmospheric and Oceanic Technology 19,1357–1375. 

Roberts, D. E. and Davis, A. R. (1996) patterns in sponge (Porifera) assemblages on 
temperate coastal reefs off Sydney, Australia. Journal of Marine and Freshwater 
Research 47, pp. 897-906. 

Robinson, L., Heggie A. and Coade, G. (1996).  Sydney Deepwater Outfalls 
Environmental Monitoring Program, Final Report Series, Volume 3: Water 
Quality.  Environment Protection Authority.  Sydney. 

Rochford, D.J. (1984).  Nitrates in eastern Australian coastal waters.  Aust. J. Mar. 
Freshw. Res., 35, pp. 385-397. 

Rochford, D. J. (1975) Nutrient enrichment of East Australian coastal waters.  II 
Laurieton upwelling. Aust. J. Mar. Freshwater Res. 26, 233-243. 

Roughan, M., Middleton, J.H., 2004. On the East Australia Current: variability, 
encroachment, and upwelling. J. Geophys. Res. 109, C07003. 

Roy, P.S., and Thom, B.G. (1981) Late Quaternary marine deposition in New South 
Wales and southern Queensland: an evolutionary model. Journal of the 
Geological Society of Australia, 28, 471-489. 

Roy, P. S., Williams, R. J., Jones, A. R.,  Yassini, I., Gibbs, P. J., Coates, B., 

 53



 54

West, R. J., Scanes, P. R., Hudson, J. P. & Nichol, S. (2001) Structure and Function 
of South-east Australian Estuaries Estuarine, Coastal and Shelf Science, 53, 
351–384 

Schneider P.M., Davey, S.B. and Lock, N (1994) Offshore sydney sediment 
contaminants – their distribution & associations. AWT Ensight March 1994. 

Schmitt, R.J. & Osenberg, C.W. 1996. Detecting Ecological Impacts: Concepts and 
Applications in Coastal Habitats. Academic Press, San Diego, 401pp.  

Short, A. (1993) Beaches of the New South Wales Coast: a guide to their nature, 
characteristics, surf and safety. Australian Beach Safety and Management 
Program. ISBN 0 646 15055 3. 

Short,A.D. and Woodroffe,C.D (2009) The Coast of Australia, Cambridge University 
Press, pp288. 

Smith, S.D.A. (1996) The Effects of Domestic Sewage Effluent on Marine 
Communities at Coffs Harbour, New South Wales, Australia. Marine Pollution 
Bulletin, Vol. 33, Nos 7-12, pp. 309-316, 

Suthers, I.M., Everett,J.D., Roughan,M., Young, J.W., Oke, P.R., Condie,S.A., 
Hartog,J.R., Hobday, A.J., Thompson, P.A., Ridgway, K.,  Baird, M.E., 
Hassler, C.S., Brassington, G.B., Byrne, M., Holbrook, N.J. Malcolm, H.A. 
(2011) The strengthening East Australian Current, its eddies and biological 
effects — an introduction and overview. Deep-Sea Research II 58, 538–546. 

Sydney Water, 1996. Environmental Indicators Monitoring Report & Special 
Objectives Statement. Sydney Water Annual Environment Report Auxiliary 
volume.  Sydney Water Corp. 

Tee K.T. and Smith P.C. (1993) Topographic upwelling off southwest Nova Scotia, J. 
Phys. Oceanogr., 23, 1703-26. 

Tranter, D.J., Carpenter,D.J. and Leech,G.S. (1986)  The coastal enrichment effect of 
the East Australian Current eddy field, Deep Sea Research, 33 (11/12), 1705-
1728. 

Underwood, A.J. 1994. On beyond BACI: Sampling designs that might reliably 
detect environmental disturbances. Ecological Applications, 4, 3-15. 

Underwood, A. J. & Chapman, M. G. (1995) Rocky shores. In Coastal Marine 
Ecology of Temperate Australia, eds. A. J. Underwood and M. G. Chapman, pp. 
55-82. UNSW Press, Sydney. 

Wolanski (2007). Estuarine Ecohydrology, pp 17-39 

Wolanski, E., and Collis, P. (1976) Aspects of aquatic ecology of the Hawkesbury 
River, 1 Hydrodynamical processes, Aust. J. Mar. Freshwater Res., 27, pp565-
582. 

Zann, L.P. (2000) The Eastern Australian Region: a Dynamic Tropical/Temperate 
Biotone. Marine Pollution Bulletin Vol. 41, Nos. 1-6, pp. 188-203. 



3. OBSERVATIONS, DATA ANALYSIS AND MODELLING 
 

In order to address information gaps outlined in the previous chapter it was 

necessary to collect new data, collate and re-analyse existing data, and develop 

predictive understanding through modelling. This chapter describes sampling 

methods, instrument specifications, analytical methods, sources of existing data, 

catchment, dispersion and hydrodynamic models, quality assurance and data 

validation. As such this chapter complements the core chapters that follow in this 

thesis, especially those based on journal papers which are necessarily concise. 

3.1 Oceanographic Observations 
 
3.1.1   Vessels 
 

The NSW Environment Protection Authority (EPA) (now Department of 

Environment and Climate Change - DECC) research vessel Glaucus (Figure 3.1) 

was used for monthly Port Hacking sampling at the Commonwealth Science and 

Industrial Research Organisation (CSIRO) monitoring stations and for 

Conductivity/Temperature/Depth (CTD) and Acoustic Doppler Current Profiling 

(ADCP).  The EPA (DECC) research vessel Aquila (Figure 3.5 & 3.6) was used 

for CTD and ADCP current meter profiling and for tracking drogues at Coffs 

Harbour. Moored current meters were deployed and recovered from chartered 

vessels at Coffs Harbour. 

 

 

  

Figure 3.1 The 8.5m twin hulled RV Glaucus used for routine Port Hacking 
sampling, Nisken, CTD and ADCP profiling. 
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3.1.2   Currents 
 
Flow characteristics of regional currents and the coastal boundary effects were 

observed using a range of Acoustic Doppler Current Profiling (ADCP) current 

meters. 

 

Four RDI Broadband Workhorse ADCPs were deployed during the Coffs Harbour 

study. Commercial trawl resistant bottom mounting with pod recovery and 

conventional concrete mountings (Figure 3.2) were used for ADCP moorings. 

 

Off Coffs Harbour, two shallow water units (1200KHz) were positioned close 

inshore at sites A and B, and two deep water units (300KHz) were deployed at 

offshore sites C and D. GPS site coordinates are given in Table 3-1 and locations 

are shown in Figure 3.3. 

 

All instruments were deployed on 6 September 2000. Those at sites A, B and D 

were recovered on 28 November 2000 and that at site C, shortly after, on 30 

November 2000. Current meters at sites B, C and D operated continuously for the 

full deployment period. Current data from site A ceased towards the end of 

October due to excessive marine growth around the transducer head. Water 

temperature data, however, continued to be recorded at site A until the instrument 

was recovered on 28 November 2000.  

 

 
 

 

Figure 3.2 Trawl resistant bottom mounting with gimble cradle for ADCP (top 
left) and recovery of floatation pod and mounting (bottom left); and, concrete 
mounting with gimbaled ADCP cradle (right). 
 

 56



The profiling range of the ADCP is limited by the transducer design, the acoustic 

attenuation properties of sea water and the proximity of the sea surface. Range 

limitations occur at both ends of the profile, often causing a loss of data at crucial 

interfaces. Ringing (persistent transducer oscillations after each ping) prevents 

reliable current measurements within 0.5m (1200 KHz ADCP) and 1.75m (300 

KHz ADCP) of the transducer; this is the ‘blanking depth’. The hard signal 

reflection at the sea surface produces a sharp echo response that can contaminate 

data in the upper 6% of the water column. For the purpose of determining the ‘last 

good bin’, the sea surface range was taken to be the distance between the 

transducer head and the sea surface at low tide (determined using the ADCP echo 

intensity strength).  
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Figure 3.3 ADCP current meter locations at Coffs Harbour. 
 
 
 
 
 
Table 3-1 Coffs Harbour ADCP locations, specifications and settings 
 

SITE Latitude S Longitude E Head 
Depth (m) 

Blanking 
Depth (m) 

Frequency 
(KHz) 

No. Bins 
(after QA) 

A 30º 19.555´ 153º 08.062´ 13 0.5 1200 11 
B 30º 19.033´ 153º 09.540´ 21 0.5 1200 17 
C 30º 20.445´ 153º 09.646´ 28 1.75 300 22 
D 30º 21.055´ 153º 10.774´ 35 1.75 300 33 
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Setting Value 

 
Time Local 

 
time = Eastern Australian Time (EST) + 1 hour 

 
Burst sampling interval 

 
Every 30 minutes 

 
Data Out  

 
Current speed and direction, correlation magnitude, echo intensity, 
percentage-good data and water  temperature. 

 
Ping rate 

 
2 Hz (0.5 cps) 

 
Depth cell size 

 
1 meter 

 
Centre of first bin, measured 
from the transducer head 

 
1200 KHz: approx. 1 m 
300 KHz : approx 2.25m 

 
Magnetic variation 

 
12.4 degrees East (applied during post processing) 
 

 
 
Setting Site A 1200KHz Site B 1200 KHz Site C 300 KHz Site D 300 KHz 
 
Pings per ensemble 

 
240 

 
480 

 
240 

 
240 

 
Number of depth cells 

 
15 

 
24 

 
33 

 
44 

 
Depth of transducer head 
above sea floor (m) 

 
1.0 

 
0.5 

 
0.5 

 
0.5 

 
Random error estimation 
() in cm/s * 

 
0.9 

 
0.6 

 
3.5 

 
3.5 

 
* The random error for the horizontal current velocity () is given by(m/s) = (1.6 x 102)/(fDN½) 
where f is the ADCP frequency (kHz), D is the depth cell thickness and N is the number of pings 
per ensemble. 
 
 

A soft and hard iron compass calibration was conducted on all four current meters 

prior to deployment. With one exception, all instruments were calibrated to within 

± 1 degree. Repeated calibration of the ADCP deployed at site C failed to improve 

upon the starting accuracy of ± 2.7 degrees. This prompted a software message, 

advising that the unit be returned to RDI for factory calibration. [However, after 

the deployment, the instrument was re-calibrated without any difficulty to ± 0.8 

degrees. The reason for the apparent fix is unknown. One explanation is that the 

battery pack may not have been properly degaussed by the supplier]. 

 

The RDI Broadband ADCP applies four levels of internal data screening based on 

the beam correlation (auto correlation between pings), percent-good (a range of 

RDI acceptance criteria) and vertical error velocity (difference between 

simultaneous vertical velocity estimates from adjacent beams) and fish detection 

(inconsistencies in target echo intensity across the 4 beams). All screening 

measures except fish detection are logged. Acceptance checks were performed on 
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data from each site at Coffs Harbour; for example, Figure 3.4 provides sample 

time-series (20 days) plots of the beam correlation, percent-good and vertical error 

velocity data for the top three (least accurate) depth bins from Site A.  

 

ADCP data captured for the Coffs Harbour study following quality assurance 

screening is summarised in Table 3.2. 

 
Table 3.2 Coffs Harbour data capture summary 
Site First ensemble Last ensemble Start  End  Last Good Bin 
A 17 2323 18:00 6-Sep 19:00 24-Oct 10 
B 16 4043 17:30 6-Sep 14:30 29-Nov 17 
C 13 4136 16:00 6-Sep 13:30 1-Dec 22 
D 8 4030 13:30 6-Sep 8:30 29-Nov 30 
 
 
 
ADCP and wind data from Coffs Harbour were input to a visual assessment tool 

produced with assistance from Oceanographic Field Services and can be viewed 

on the attached compact disc.   

 

In addition to the fixed ADCP deployments described above, current profile 

transects were run at Coffs Harbour using a 300 KHz RD Instruments ADCP 

(Figure 3.5). Depth bins were set at 1m and 20 pings per ensemble recorded every 

~3 seconds.  Most transects were ~7km in length, ranging from water depths of 

10m to 50m.  
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Figure 3.4 Beam correlation, percent good and vertical error velocity for the top three 
bins at site A. The gray panel shown in the vertical error velocity plot marks the 
region enclosed by ± 6 times the standard error. Green lines mark the 50% cut-off 
threshold. 
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Figure 3.5 RDI 300KHz profiling ADCP (left), deployment (right), and operation 
(centre). 
 
 
3.1.3   Trackable Drifters 
 
Headland wake effects were investigated during limited deployments of trackable 

drifters (drogues) in near surface waters. 

 

Four Innotech Coastal Lagrangian Drifters (passive drifter buoys) were released at 

increasing distances along the proposed Coffs Harbour outfall alignment to 

investigate current shear and possible re-circulation cells in the vicinity of the 

proposed outfall.  These limited duration drifter deployments did not coincide 

with re-circulation in the lee of Corambirra Point but nevertheless were useful for 

qualitative verification of numerical model simulations.  

 

The drifter buoys used the Differential Global Positioning System and 

downloaded position fixes via mobile phone communication systems.  

Deployments lasted about 2 to 3 hours on three separate days (7/9/00, 28/11/00 & 

30/11/00). These drifter tracks indicate moderate southward stream flow offshore 

with shorter and/or more erratic paths inshore of the 30m isobath as shown in 

Figure 3.6. 
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Figure 3.6 Paths traveled by passive drifters released on 5 occasions. 
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3.1.4   Winds 
 
Wind observations were required to determine the wind driven component of flow 

fields, to assess potential bias during the investigation period, and for numerical 

model simulations.  

 

The Bureau of Meteorology provided average wind speed and direction for the 

last five years at 30 minute intervals from a weather station at Coffs Harbour 

airport, located immediately inshore from Boambee Beach. 

 

The distribution of winds during the four month sampling period was compared 

with long term distributions of winds (Figure 3.7) to assess the degree to which 

the study period represented long term average conditions.  In the absence of long 

term current data and given the strong correlation between local winds and 

currents (Chapter 8), bias in wind data is indicative of bias in observed currents 

(w.r.t long term average). 

 

The Coffs Harbour study sampling period included a greater proportion of wind 

driven southward currents than would normally be expected – Figure 3.7.  Indeed 

long-term wind data suggested a tendency for wind driven currents to be 

 62



northward  (53%) at least as often as southward currents in the study region as 

indicated by Table 3.3.  

 

 

 

 

 

 

 

 

 
 

Table 3.3: Percentile along-shore wind 
velocities (northward>0 ; southward<0)  

Figure 3.7: Southward (negative) alongshore 
winds distributions for our study period (Sept-
Nov 2000 in red) and long-term local wind 
monitoring (1996-2000 in blue). 
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3.1.5   CTD and Nutrients 
 
Conductivity Temperature Depth (CTD) profiles were taken at the ends of ADCP 

transect lines off Coffs Harbour (in Figure 3.3. and described above) and during 

regular monitoring off Port Hacking in southern Sydney at sites shown in Table 

3.4 and Figure 3.8. 

 

Table 3.4: Port Hacking sampling locations 
 

SITE Latitude  
(deg S) 

Longitude  
(deg E) 

Water 
Depth 

(m) 

CTD 
(Y/N) 

NISKIN sample depths 
(m) 

PH01 34º 04.92´  151º 10.82´ 25 Y N/A 
PH02 

(PH50)* 
34º 05.66´ 151º 11.60´    55-60 Y 50, 40, 30, 20, 10, 0 

PH04 
(PH100)* 

34º 07.05´ 151º 13.13´  105-108 Y 100, 75, 50, 25, 10, 0 

PH05 34º 08.89´ 151º 15.40´  125 Y N/A 
* long term CSIRO monitoring stations 
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Figure 3.8 Locations of the Sydney Ocean Reference Station and four sampling 
locations along the Port Hacking transect including long term CSIRO stations at 
PH02 (CSIRO PH50) and PH04 (CSIRO PH100).  Sydney’s major ocean outfalls 
are also shown together with the sewerage catchments that they serve. 
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A profiling SEABIRD SBE25 Sealogger CTD probe was used: the probe logged 

at 8Hz with respective conductivity, temperature and pressure accuracy 

(resolution) of 0.0003 (0.00004S/m), 0.004 (0.0003)°C and 1.25 (0.75)m. The 

instrument was also configured with a Chelsea Instruments Fluorometer 

(0.01mg/L), Seabird dissolved oxygen and pH sensor, and a Seatech 25 cm 

pathlength Transmissometer. A constant flow was ensured across  temperature, 

conductivity, and dissolved oxygen sensors by an in-line pump that delivered a 
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constant flow regardless of the instruments profiling speed. All in-line sensors 

were routinely soaked in distilled water while the pH sensors was soaked in pH 4 

buffer solution and the fluorometer lens was protected by a cap between 

deployments. Seasoft software was used for initial data processing (pressure 

reversals, wild point editing, thermal expansion of the conductivity cell) and 

profile data were then averaged over 1m bins. 

 

Monthly CTD profiles have been sampled at PH01, PH02 (PH50), PH04 (PH100) 

and PH05 since 1997. 

 

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) has 

maintained mainly physico-chemical data offshore from Port Hacking (PH50 and 

PH100) since the 1940’s (Humphrey, 1963).  Ambient nutrient concentrations 

were obtained for the surface and at 10 m depth intervals to 50 m at CSIRO PH50 

(PH02 in Figure 3.8) in water depths of 55-60 m and at CSIRO PH100 

(0,10,25,50,75,100m). Nutrient data used in this thesis were limited to those from 

periods of more consistent chemical analyses prior to the commissioning of 

Sydney’s deepwater outfalls: nitrate (NO3-N) from 1965 to September 1990 and 

phosphate (PO4-P) from 1957 to September 1990. Prior to 1990, similar 

quantities of effluent were discharged via shoreline outfalls at North Head, Bondi 

and Malabar resulting in surface plumes but extensive monitoring prior to the 

commissioning of deepwater outfalls suggested little or no impact at PH50 

(Pritchard et al., 1996a).  Therefore, these pre-commissioning data from CSIRO 

Port Hacking monitoring stations are assumed to approximate ambient nutrient 

conditions prior to the diversion of effluent offshore through the deepwater 

outfalls.  

 

Analytical methods have been described elsewhere by Major et al. (1972) and 

Airey and Sanders (1987). Sampling frequencies varied from approximately 

weekly (~47 year-1) before 1985 to about monthly (~10 year-1) after 1985.  The 

change in sampling frequency was not expected to bias nutrient distributions with 

respect to variability associated with El Niño Southern Oscillation because the 

period of reduced sampling included similar periods of cold (La Nina) and warm 

(El Niño)  (Lee et al., 2001). 
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Figure 3.9 Niskin (left) and CTD (right) vertical profile system (centre) 
 
 

The author together with staff from the NSW Office of Environment and Heritage 

have monitored hydrographic parameters at Port Hacking since the mid 1990’s, 

under contract to CSIRO using equipment including that shown in Figure 3.9.  

 

The author was instrumental in securing these sites as a National Reference 

Transect during the establishment of the Australian Integrated Marine Observing 

System. 

 
3.1.6   Sydney Ocean Reference Station 
 
The Sydney Ocean Reference Station (ORS) located in 65 m of water, ~3km due 

east of Ben Buckler Head, Bondi at 33° 53.685’ S, 151° 18.972’ E and is operated 

by Sydney Water Corporation. 

 

The ORS is an instrumented buoy configured with two R.M. Young wind speed 

and direction sensors, a Datawell heave sensor (for measuring wave height and 

period), two InterOcean S4 electromagnetic current meters (at 17m and 53m 

below the surface) and a string of 14 Aanderaa thermistors (nominally 3m apart, 

to provide ocean stratification data) plus two semi-conductor thermistors located 

in the hull of the buoy (Figure 3.10).  Data are collected from the wave sensor 

every second and at 30sec intervals from the other instruments.  Five-minute 

block averages of wind, current and temperature data were obtained for this thesis 

(Chapter 6) with most analysis focused on the thirteen year period from 

November 1990 to November 2003.  
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Figure 3.10 Ocean Reference Station configuration  (photo courtesy Sydney 
Water Corporation) 

WAVE SENSOR 
ARGOS satellite transmitter 
                      

                SURFACE (0m) 
 

ANEMOMETERS (R.M. Young) 

CURRENT METER 
(InterOcean S4) 

Ballast Weight 

BOTTOM (65m)

 9 THERMISTORS 
(Aanderaa) 

17 m 

52 m 
CURRENT METER 

(InterOcean S4) 

5 THERMISTORS 
(Aanderaa) 

 
  

Validation of ORS data 

In 2003, concerns about diminishing continuity of ORS data and questions about 

recent quality assurance prompted an evaluation of the contemporary ORS data.   

 

Technological advances have surpassed the original ORS instrument 

configuration but the ORS data set remains a unique long term time series of 

oceanographic conditions off Sydney. Knowledge of the directional stability 

(accuracy) of the ORS current measurements is critical, especially when 

investigating intra-annual variability as in Chapter 6. The validity of observations 

from the ORS was tested by deploying a 300 kHz acoustic Doppler current 

profiler (ADCP) about 500m south of the ORS in about 66 m water depth, 

between 8 August 2003 and 28 January 2005 in partnership with Clive Holden 

and Sydney Water Corporation (Figure 3.11). The purpose of this study was to 

compare simultaneous data sets to determine the consistency and relative accuracy 

of the present ORS current meter records.  
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Figure 3.11. Mooring locations for the ADCP deployments for August 2003 to 
January 2005 in relation to the Ocean Reference Station (ORS Mk1).  
 

ADCP hard and soft iron compass calibrations were conducted to ensure that the 

ADCP had a directional accuracy of better than 1 degree (magnetic) on 

deployment (& re-deployments). No internal timing errors were found in any of 

the raw data files. 

 

The ORS current meter data were corrected for local magnetic variation (+ 13 

deg) to facilitate direct comparison with the processed ADCP files. 

 

The ADCP data captured for the ORS validation study following quality 

assurance screening, is detailed in Table 3.5, while data coverage for ADCP and 

top (TS4) and bottom (BS4) ORS current meters is shown in Figure 3.12. 

Progressive vector displacement plots (Figures 3.13 & 3.14) are highly sensitive 

for visual discrimination of directional differences between current meter records 

because even small consistent offsets result in large cumulative differences. 
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Table 3.5 Sydney ADCP data capture summary 
No First 

good 
ensemble 

Start 
time 
(EST) 

Last 
good 
ensemble 

End 
time 
(EST) 

Last 
good 
bin 

Depth 
above 
bottom 
(m) 

1 37 8Aug03 10:00 33658 3Dec03 03:45 55 57.75 
2 31 30Dec03 05:30 36337 4May04 07:00 54 56,75 
3 11 04May04 11:30 38267 14Sep04 07:30 47 ŧ 49.75 
4 6 14Sep04 12:15 39107 28Jan05 06:40 57 59.75 

ŧ. This is the minimum last good bin taken over the record as a whole. However, good data occur 
in all bins up to bin 55 early in the record, before the first major current event. 
 

 
 

Figure 3.12 Timeline of ADCP and ORS current data. 
 

 
 

Comparison between ADCP and ORS data revealed: 

(1) Broad agreement between ADCP (2003-2005) and historic ORS (1991 - 

2002) data. The principal current direction recorded by the ADCP between 

August 2003 to January 2005 was about 20/200 deg (true) at 17 m (Figure 

3.13). This is identical to the long-term mean determined from ORS upper 

current meters between 1991 to 2002 (presented in Chapter 6). In addition, 

the ADCP showed an average transport of 12.7 km/day and 3.1 km/day at 

17m and 52m respectively, broadly consistent with the long-term ORS 

estimates of 12 km/day and 2.4 km/day at the equivalent depths (Chapter 

6). In this regard the ADCP results are broadly consistent with historic 

records.  

(2) Inconsistencies in the recent ORS data (2003-2005). Successive ORS plots 

for August 2003 to January 2005 highlighted several inconsistencies in the 

ORS data. The most obvious of these was that the data characteristics 

altered almost every time the ORS was serviced (e.g. Figure 3.14).  This 

suggests that the fault lies with the current meters, possibly because the 
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(3) Significant differences in comparable ADCP and ORS current velocity. 

Table 3.6 lists the ORS and ADCP estimates of mean current speed and 

direction at 17m and 52 m for three periods in 2004, ranging from 6 weeks 

to four months. Values for the upper current meter records show that the 

ADCP estimate of the mean current alignment is about 200 deg, which is 

consistent with that determined from the ORS historic records. In contrast 

the recent ORS data estimate the current alignment to be between 163 deg 

and 204 deg - a range of 40 degrees. A similar case is presented for the 

lower current meter records, with the ADCP estimating the mean current 

orientation to be between 194 and 210 degrees, while the ORS estimates 

cover a wider range of between 153 to 182 degrees.   

 

These findings indicate that historical records are generally consistent with 

rigorous contemporary ADCP observations but that at least recent ORS current 

observations should be regarded with a degree of skepticism.  Chapter 6 

(including Pritchard et al., 2005) restricted its analysis to the ORS data collected 

prior to November 2003.  During and following this study, the regulator (NSW 

Environment Protection Authority) expressed concerns regarding the continuity 

and quality of data presently being obtained by the ORS and requested that the 

operator of the ORS (Sydney Water Corporation - SWC) address this problem. 

SWC have since developed a new ORS configuration and quality assurance 

system including a bottom mounted ADCP, which is returning quality assured 

data with vastly improved continuity.  This experience is now contributing to the 

development of other moorings for the NSW node of the national Integrated 

Marine Observing System.  

Table 3.6. Comparison on mean current speed and direction between the ADCP 
and ORS. 

Top (17m depth) Bottom (52m depth) 
ADCP Top S4 ADCP Bottom S4 

 
Period 

Mean 
Speed 
(m/s) 

Mean 
Direction 
(deg. T) 

Mean 
Speed 
(m/s) 

Mean 
Direction 
(deg. T) 

Mean 
Speed 
(m/s) 

Mean 
Direction 
(deg. T) 

Mean 
Speed 
(m/s) 

Mean 
Direction 
(deg. T) 

2 Mar – 2 May 2004 0.15 202 0.13 188 0.01 194 0.01 157 
2 Jun – 30 Sep 2004 0.19 197 0.30 163 0.07 199 0.10 182 

14 Dec 2004 – 28 Jan 2005 0.24 198 0.19 204 0.02 210 0.06 153 
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Figure 3.13 Progressive vector displacements for ADCP bins 12 (52m depth ) 
and 47 (17m depth) for 30 December 2003 to 28 January 2005. 
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Directional offset 
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S4s, especially lower S4, often problematic – perhaps offset error (a known issue with electromagnetic 
current meters, Jones 1980) or 3rd quadrant conversion error (InterOcean S4 Current Meter User’s Manual, 
1987) or transcription errors. To some extent, the natural differences between the Nov-Dec 03 52 m records 
may have been exaggerated by the series of alongshore reversals but even so results are clearly problematic. 

 

Figure 3.14 Visual comparison of progressive vector displacements for coincident ORS (S4 current meters) and ADCP time series data 
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Time Series Analysis 
 
Variance preserving spectra of current and wind time series were produced, using 

the method of Emery and Thomson (2001), to assess dominant energy frequencies 

and to infer forcing mechanisms. MATLAB routines were used for each depth 

layer (bin) of ADCP data using a lag window of 256 hours. Variance preserving 

spectra were selected for graphical presentation because equal areas under the 

curve represents equal energy. 

3.2 Modelling and Bathymetry 
 
3.2.1   Bathymetry 
 
The majority of NSW bathymetric data has been collected by two agencies: the 

Royal Australian Navy Hydrographic Service (RAN) and, the former Australian 

Division of National Mapping in the Department of Natural Resources 

(1:250,000).  

 

3.2.2   Coffs Harbour hydrodynamic modeling – 3DD 
 
The 3-dimensional baroclinic model 3DD was used for Coffs Harbour flow 

simulations. 3DD is based on established momentum and mass conservation 

equations as described by Black (1987); it provides an explicit finite difference 

(Eulerian) solution of the momentum and continuity equations for velocity and 

sea level, through a series of vertical layers that are hydrodynamically linked by a 

vertical eddy viscosity. The physical representations of various terms in the 

momentum equation are: local acceleration; inertia; Coriolis; pressure gradient 

resulting from sea level variation; pressure gradient resulting from atmospheric 

pressure (which was not included in the small scale Coffs Harbour simulation); 

horizontal eddy viscosity, wind stress, and bed friction.  

 

The model 3DD has been successfully applied and verified in a diverse range of 

situations (Black 1987, 1989; Black & Gay 1991; Black et al. 1993; Middleton & 

Black 1994; Young et al. 1994; Black et al. 2005) and the model has been 

previously applied to investigate the parameters responsible for eddy formation 

behind islands and reefs (Black & Gay 1987; Black 1989; Hume et al. 2000; 

Black et al. 2005). 
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For the Coffs Harbour simulations in this thesis a body force was applied based on 

ADCP observations to simulate large-scale pressure gradients. The body force is a 

surrogate for a calculated sea gradient, obtained by inverting the vertically-

averaged momentum equation and solving using measurements of currents, sea 

levels and winds. The body force is, 

 

where ς is sea level, U and V are velocities in x and y directions, Wx and Wy are 

the wind stress components, C is Chezy's C, f the Coriolis parameter and h the 

depth. 

 

Specific details of model parameterisation and boundary conditions for Coffs 

Harbour simulations are provided in Chapter 8. 

 
3.2.3   Coffs Harbour dispersion modelling – CORMIX 
 
The CORMIX mixing zone model was used to simulate effluent plume behaviour 

(effluent dilution and plume extent/position) for a range of discharge scenarios 

across coastal boundary layer features. CORMIX is well suited as a tool for 

evaluation of discharge design options (Jirka and Akar, 1991; Jirka and 

Doneker,1991).  

 

CORMIX is a robust composite flow and mixing zone prediction model 

developed by the School of Environmental Science and Engineering at Cornell 

University, New York (www.steens.ese.ogi.edu). It is a USEPA recommended 

analysis tool for industrial, municipal, thermal and other point source discharges 

to receiving waters.  

 

The model provides a prediction for both near-field and far-field plume behaviour 

and design recommendations to improve outfall hydrodynamic performance.  

 

Subsystem CORMIX2 (Jirka and Doneker,1991) was used to examine dilutions 

achieved by the entire diffuser while Subsystem CORMIX1 (Jirka and Akar, 

1991) was used to examine merging of adjacent port plumes using single diffuser 

port simuations. Model scenarios were conducted using northward and southward 
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flowing (along-shore axis 22.5 - 202.5 degrees; see Figure 3.15) currents at 20th, 

50th and 80th percentile ambient velocities. Velocities were calculated from 

ADCP data collected at three locations along a shore normal transect along the 

alignment of a proposed outfall site. Discharge flow rates included Average Dry 

Weather Flow (ADWF of 20.7ML/day) and high flow Wet Weather (130ML/day) 

conditions (from CHEIS, 2000). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Currents observed at ADCP Site C indicate the predominant axis of 
flow was along shore, parallel to isobaths and coastline (022). 
 

 
3.2.4   Sydney outfalls near field modeling – JETLAG 
 
The near-field model JETLAG (Lee and Cheung, 1990) was used, together with 

Ocean Reference Station data and Sewage Treatment Plant effluent data to 

provide a long term time series of initial effluent dilutions, plume thickness, and 

plume centre line depth for Sydney’s deepwater outfalls off North Head, Bondi 

and Malabar (see Figure 3.8 above). This model was selected because it has been 

subjected to extensive verification for application to Sydney’s deepwater outfalls 

(Pritchard et al., 1993, 1996b) and because JETLAG facilitates the compilation of 

a time series of plume characteristics immediately after initial momentum and 

buoyancy driven dilution. 

 

The formulation of JETLAG tracks the evolution of the average properties of 

plume elements at various time steps by conservation of horizontal and vertical 

momentum, conservation of mass accounting for entrainment, and conservation of 

tracer mass.  Sensitivity testing and comparisons with data obtained from plume 
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tracing experiments conducted off Malabar indicated that JETLAG provided a 

good representation of plume behaviour (Cathers and Peirson, 1991).  

 

Hourly average JETLAG model results were obtained for periods when both STP 

and ORS data were available during the period from January 1991 to December 

1998 (54856 records or 78% coverage).  The Water Research Laboratory (Manly 

Vale, NSW) generated the time series of model results under directions specified 

by the author. 

 

Although this long-term time series can be expected to capture most of the 

possible variability (extremes) in plume behaviour, there is the potential for the 

distribution of plume characteristics to be biased by longer term variability 

associated with teleconnections such as the El Niño Southern Oscillation  (ENSO) 

and Pacific Decadal Oscillation. This was investigated by comparing cold and 

warm ENSO episodes (NOAA, 2000) within the model simulation period.  The 

seven year simulation period was associated with a ~17% bias to El Niño 

conditions; that is, the modelled period included an excess of El Niño conditions 

equivalent of nearly 400 (of 2290) days of moderate El Niño conditions. 

3.3 Remote Sensing and other Spatial Data 
 
3.3.1   Ocean colour – SeaWiFS 
 
Data from the Sea-viewing-Wide Field of view Sensor (SeaWiFS) were 

extensively used: in Chapter 5 to link hydrodynamic features to primary 

productivity and ecosystems assessments; and, in Chapter 4 for coarse scale 

classification of the coastal boundary layer. SeaWiFS was launched in 1997 as the 

operational successor to the Coastal Zone Colour Scanner and was one of the first 

of a new generation of ocean colour satellites. Much of the processing, quality 

control and initial analysis of SeaWiFS data was undertaken using SeaDAS 

software (freely available from http://seadas.gsfc.nasa.gov ). 

 

Ocean colour (or reflectance) is the ratio of water leaving radiance to 

downwelling irradiance. Water leaving radiance depends on backscatter (change 

in direction of a photon) and absorption (the loss of a photon) in the water column 

as well as the downwelling irradiance. Not surprisingly, water absorbs strongly in 

the red and scatters strongly in the blue giving it a blue colour.  Backscattering is 
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of the order of 0.1% to 2% in the sea with dominant forward scattering. 

Backscatter and absorption are used to define the optical properties of the water 

column and are wavelength dependant. SeaWiFS provides 8 band spectral data: 

402-422, 433-453, 480-500, 500-520, 545-565, 660-680, 750-780, 845-880 nm. 

The absorbing and scattering constituents of seawater include both dissolved and 

particulate material including the water itself, plankton, coloured dissolved 

organic material (CDOM), and other suspended particulate such as algal detritus 

and suspended sediment. Other particles and characteristics can have a minor 

effect on optical properties including bacteria, viruses and bubbles.  

 

Incident irradiance is typically attenuated in an exponential manner described by 

the downwelling diffuse attenuation coefficient - either spectrally with Kd(8) or 

broadband (400 nm - 700 nm ) with Kd  (PAR). 

  

zK
dd

deEzE  )0()( zKdepthoptical d

The euphotic (well lit) zone is defined as being the layer within which Ed(PAR) 

falls to within 1% of the subsurface value. ~ 90 % of water leaving radiance, or 

the satellite signal, emerges from the first optical depth or 1/Kd. 

 

SeaWiFS is one of a series of ocean colour scanners. Other scanners used today 

for biological oceanography include the Medium resolution imaging 

spectrophotometer (MERIS), and Moderate resolution imaging spectrophotometer 

(MODIS) which provide a spatial resolution of between 750-2000 m. The data 

collected by SeaWiFS and these scanners are highly correlated (in strong 

agreement) with each other and with in situ measurements of chlorophyll a and 

with other pigments, such as yellow substances derived from terrestrial run-off. 

SeaWiFS presently provides complete global coverage of the oceans every 2 days, 

MODIS allows global coverage every 1-2 days and MERIS every 3 days. 

 

Ocean colour validation data are extremely sparse in NSW coastal waters. 

However, NSW Environment Protection Authority (including this author) 

collected weekly samples at two sites off Port Hacking (CSIRO PH50 and PH100 

shown in Figure 3.8) at the surface and from a depth of 10m during the period 

from September 1997 to March 1998.  
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HPLC (Spectrophotometry) laboratory determinations of chlorophyll 

concentrations from discrete water samples were compared with arithmetic means 

of chlorophyll concentrations estimated from up to eight SeaWiFS pixels (1km x 

1km) surrounding the sampling site (Figure 3.16). Estimates were rarely available 

for all 8 pixels because SeaWifs estimates of chlorophyll concentrations were 

often either not available or flagged as non-optimal (due to confounding factors 

like stray light, missing atmospheric data and sun glint), especially at the inshore 

site (PH50). 

PORT HACKING CHLOROPHYLL DISTRIBUTIONS
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Figure 3.16: Percentile distributions based on SeaWiFS estimates and combined in situ 
observations at PH50 and PH100 (surface and 10m depths) (NSW EPA data) 
 

Based on Figure 3.16, SeaWiFS provides reasonable estimates of the median and 

80th percentiles but overestimates the upper 5-10% of the chlorophyll distribution 

for surface waters. Correlations between contemporary SeaWiFS and in situ 

determinations were generally better at the offshore site (PH100) than at the 

inshore site (PH50) (R2 ranged from 0.48 to 0.79) which could be expected given 

the high proportion of sub-optimal or absent SeaWiFS estimates at PH50. 
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3.3.2   Sea surface temperature - AVHRR 
 

Data from the Advanced Very High Resolution Radiometers (AVHRR) aboard 

the US National Oceanographic and Atmospheric Administration (NOAA) series 

of satellites were used throughout this thesis to provide a regional perspective 

especially in relation to East Australian Current activity, slope water intrusions 

and mesoscale coastal boundary layer features.   

 

AVHRR scanners deliver 4-5 channels (depending on model) including visible 

and sea surface temperature (SST) images at spatial resolutions comparable to 

most satellite borne ocean scanner data (Hastings and Emery, 1992).  Sea surface 

temperatures (SST) are estimated across ~1km pixels with an accuracy of 0.1°C. 

Successive satellites have resulted in a time series of AVHRR data back to 1986. 

 

Satellite data used in this thesis were received and processed (corrected for 

atmospheric, radiation pressure, etc) by the CSIRO Marine Laboratories. 

 

3.2.3   BlueLink ReANalysis (BRAN) hindcast  
 

Mesoscale flow fields such as those from BRAN reveal dynamic, large scale, 

coastal boundary layer features. BRAN provides 4km resolution, daily 

experimental estimates of flow fields dating back to 1992, freely available from 

CSIRO for research purposes (http://www.marine.csiro.au/ofam1/ ). 

 

The Bluelink ReANalysis is a multi-year model integration with data assimilation 

(Oke et al., 2005). The Bluelink model is a global ocean general circulation model 

that is eddy-resolving in the Australian region. Observations that are assimilated 

into BRAN include satellite altimetry, sea surface temperature and in situ 

temperature and salinity data from Argo, Expendable Bathythermograph (XBT), 

Tropical Atmosphere Ocean (TAO) project and other sources. 

 

3.2.4   CARS Atlas 
 

Mapped seasonal ocean water properties were used to characterise persistent, 

large scale, coastal boundary layer features. 
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CARS is a digital atlas of seasonal ocean water properties, mapping temperature, 

salinity, oxygen, nitrate, silicate and phosphate in the Coastal And Regional Seas 

around Australia. The atlas is derived from two major datasets, interpolated onto 

standard depths: the US Nation Oceanographic Data Center World Ocean Atlas 

1998 hydrographic data, and the CSIRO archive of Australian hydrographic data. 

The mapping algorithm was a sophisticated weighted least-squares quadratic 

smoother which was applied in horizontal and vertical coordinates, with 

bathymetry-influenced weighting as described by Dunn and Ridgway (2002) and 

Ridgway et al. (2002). CARS provides information on a 0.5º by 0.5º grid. 

3.4 Pollutant Load Estimates 
 
3.4.1   Diffuse Catchment Sources 
 
Run-off and pollutant exports from coastal catchments are critical inputs to the 

coastal boundary layer.  

 

The paucity of data for calibration and simulation limit the use of sophisticated 

models in most Australian catchments. Simple unit load models such as the 

Catchment Management Support System (CMSS) were initially investigated and 

new applications of bootstrap techniques were applied to reduce subjectivity and 

to improve estimates of confidence limits (Baginska, Pritchard and Krogh, 

2003).  However, the Long-Term Hydrologic Impact Assessment (L-THIA) 

model (Lim et al., 1999) was ultimately selected because it is a spatially 

distributed model that provides greater scope to simulate the effects of climate 

variance.  This facilitates better specification and evaluation of catchment 

landuse/management scenarios and provides for assessment of climatic variability 

(e.g. Baginska, Lu, and Pritchard, 2005). 

 
L-THIA has medium data requirements and uses well established concepts to 

simulate runoff volumes. The basic input for the model consists of soil, 

precipitation and land use data  as described by Baginska, Lu, Mawer & 

Pritchard (2004) (Figure 3.17).   

 

Runoff volumes are predicted using the Curve Number (CN) method which uses 

commonly available information such as soil type, cover and hydrologic 

conditions to estimate runoff (USDA, 1986).  The method has been applied to a 
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wide range of catchments and climatic conditions for estimation of runoff 

volumes in ungauged areas in the United States (Browne, 1999, Knisel, 1980).   

 

Contemporary 6-band Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data 

were used to determine 14 generic land use classes which were verified using 

IKONOS imagery and aerial photography. Daily rainfall was extracted from the 

Bureau of Meteorology records of rainfall gauging stations across NSW coastal 

catchments for the period 1990 –2002  and interpolated across the modeling 

domain using a Thiessen polygon method. Hydrologic soil groups were assigned 

based on a range of soil properties such as runoff potential, drainage, hydraulic 

conductivity, soil depth, texture, infiltration, transmission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17 L-THIA Model Structure 

 

SOILS

PRECIPITATION 

LAND USE 

L-THIA COMPUTATIONS CUSTOMISED 
OUTPUTS 

Curve Number Values
Runoff Depths 

Runoff Volumes 

TN & TP Loadings 

C
on

ve
rs

io
n 

F
ac

to
rs

 

M
ap

s 
of

 N
ut

rie
nt

 
E

m
is

si
on

s 

S
ub

ca
tc

hm
en

t 
O

ut
pu

ts
 

INPUT DATA 

 81



 
 
3.4.2   Point Sources 
 
All sewage effluent discharged to the ocean from NSW sewage treatment plants 

requires significant dilution in the coastal boundary layer in order to meet criteria 

set out in national water quality guidelines (ANZECC/ARMCANZ, 2000).  Some 

treatment plants provide high levels of treatment while others, such as Sydney’s 

deepwater outfalls, rely more heavily on outfall design to rapidly dilute and 

disperse pollutants to ‘acceptable levels’. 

 

Loads and concentrations of pollutant discharged to ocean from NSW sewage 

treatment plants are publicly available through mandatory reporting specified in 

licenses granted by the NSW Environment Protection Authority under the POEO 

Act. Point source discharge data are also available through the National Pollutant 

Inventory (http://www.npi.gov.au/ ). 

 

Impacts associated with existing NSW ocean outfalls were assessed through a 

review of a plethora of studies published in scientific journals and technical 

reports (‘grey literature’) – see attached compact disc containing the NSW Coastal 

Outfalls Atlas. 
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4 THE COASTAL BOUNDARY LAYER:                            
CLASSIFICATION AND CHARACTERISTICS IN NSW 

 

4.1 Introduction  
 

This chapter introduces the Coastal Boundary Layer (CBL) and draws from 

Chapter 2 and other sources to provide a framework to characterise the 

interactions of flow, local bathymetry and coastline irregularities in relation to the 

dispersion of pollution in New South Wales (NSW) coastal waters.   

 

Past failures to consider the morphological settings of pollutant discharges to 

NSW coastal waters have resulted in gross inefficiencies of pollutant discharge 

systems and potential environmental impacts, as will be discussed further in 

Chapter 9. Classification of NSW coastal boundary layer effects provides a simple 

process based framework to guide and focus assessments of potential pollutant 

impacts.  

 

Concise summaries of each element of the CBL classification are provided with 

schematic conceptual models and selected examples from NSW. Although the 

coastal boundary layer classification and characterisations presented here are 

based on available data from NSW coastal waters, the framework serves as a basis 

for general application elsewhere, and as a foundation for further refinement in 

NSW. 

 

4.2 Coastal Boundary Layer 
 

The coastal boundary layer is the turbulent interface between the coastline and 

open water where regional currents and ocean waves are profoundly affected by 

changes in the orientation and variable morphology of the coastline and 

continental shelf.   

 

The CBL is analogous to the Planetary or Atmospheric Boundary Layer (PBL) 

albeit in the horizontal plane rather than the vertical plane. The CBL results from 

the interaction between regional currents and coastal bathymetry while the PBL 
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results from interactions between regional winds and the planetary surface (Stull, 

1997). Both are characterised by high levels of turbulence, strong gradients and 

rapid mixing with extreme variability and heterogeneity. Above the PBL (in the 

free atmosphere) and outside the CBL (in the deep ocean) flows are typically 

geostrophic, with comparatively low levels of turbulence, except at the boundaries 

of different water masses.  The physical characteristics of both the CBL and the 

PBL are important in dispersion of pollutants and transport of biological and 

anthropogenic materials (e.g. sewage discharges in the CBL and photo chemical 

smog and dust in the PBL).  

 

As early as 1972 Gabriel Csanady used the term ‘coastal boundary layer’ to 

describe a zone of dynamic features that were peculiar to near shore waters of the 

Great Lakes (Csanady, 1972). Following on from this work a COastal BOundary 

Layer Transect (COBOLT) experiment was designed to study the dynamic 

complexity of the coastal waters up to 12km off the southern coast of Long Island, 

New York (May, 1979). The COBOLT study focused on internal tidal oscillations 

that were trapped to the shore in “that band of water adjacent to the coast where 

ocean currents adjust to the presence of a boundary”; this zone was thought to be 

“roughly 10km wide”.  However, since this work only occasional reference has 

been made to the coastal boundary layer (eg King and Wolanski,1990; Thorrold & 

McKinnon, 1991; and, Zaker et al., 2007) and no systematic CBL classification 

relevant to NSW coastal waters is evident in the scientific literature. Likewise, no 

systematic hydrodynamically relevant morphological classification exists for 

coastal NSW.  

 

In the ocean, advection (mean transport) generally decreases with proximity to the 

coast due to bottom friction, highly variable nearshore bathymetry and the 

roughness of the coastline slowing alongshore flows. Relationships such as the 

Law of the Wall (von Kármán, 1930) have been used to characterise frictional 

boundary effects whereby the average shore parallel velocity of a turbulent flow 

ideally displays a logarithmic decline towards the coast/wall, with the slope of 

log-linear segments (of log distance vs velocity) representing scales of coast/wall 

roughness which exert frictional forces on the flow (analogous to the roughness 

lengths of seafloor bedforms reported by Lefebvre et al., 2010). Unfortunately, an 

approach like this is unlikely to be successfully applied to the NSW coastal 
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boundary layer because depths are small compared to horizontal length scales and 

velocity observations along cross shelf transects are too sparse to use this 

approach to characterise NSW coastal roughness lengths. 

 

The solid boundary against the coast also inhibits cross shelf flows but may 

promote baroclinic flows such as upwelling dynamics as will be explored in 

Chapter 5 (and Pritchard and Koop, 2005). Turbulence, shear zones and frontal 

features develop near the coast due to interactions with inner shelf bathymetry, 

irregular coastlines and estuarine outflows. It is hypothesized that residence times 

of pollutants introduced to this coastal boundary layer are long relative to offshore 

regional flows due to retarded flows, turbulent re-circulation and zones of 

convergence: this will be tested in Chapter 8 where headland wake effects are 

investigated, near Coffs Harbour, on the northern NSW coast. 

 

Oceanographic processes are modified on the shelf by discharges from coastal 

catchments and oscillatory disturbances are accentuated by vorticity effects 

making the coastal boundary layer extraordinarily dynamic and variable. As the 

water depth decreases the relative importance of wind stress and bottom boundary 

stress increases. These coastal boundary layer processes affect the dispersion and 

fate of pollutants and influence the distributions of biota that may be exposed to 

pollutants, as will be illustrated in Chapters 6 and 9. 

 

Bottom boundary layer effects are more intense on the shelf because bottom water 

flows are much stronger than in the deep ocean: bottom boundary stress produces 

similar effects to wind stress at the surface, as illustrated off Port Stephens NSW 

by Oke and Middleton  (1999). Fluctuations of sea levels are also much greater on 

the continental shelf where flows are constrained by the coast and the shallow 

shelf: extreme sea level set-up can occur along the cost in response to atmospheric 

storms (Nielson and Hanslow, 1991); and, coastal trapped waves which are 

constrained to the sloping shelf by vorticity considerations result in sea level 

excursions that propagate along the shelf (Church et al., 1986). Salinity gradients 

are extreme in inner shelf waters following the influx of freshwater from coastal 

catchments (Lee and Pritchard, 1999): this can have a substantial impact on the 

density field on the shelf and create its own circulation. For NSW this is typically 

episodic in response to major floods from coastal catchments, as described in 
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Chapter 2. The suspended material associated with these extreme coastal 

discharges provide a dramatic tracer of this CBL feature. 

 

A coastal boundary layer classification structure is proposed for NSW in Table 

4.1 which recognises that coastal boundary layer effects operate over a broad 

range of temporal and spatial scales as discussed in Chapter 2 and illustrated 

schematically in Figure 4.1.  
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Figure 4.1 Schematic representation of the temporal and spatial scales of coastal 
boundary layer effects in NSW offshore waters. CBL Modifiers introduce density 
gradients (and are major pollutant vectors) while CBL Oscillators introduce vorticity. 
Ellipses represent indicative ranges of cross-shelf extents and dominant temporal 
expression (energy) based on data presented in this thesis, including referenced material 
(see Figures 4.3 to 4.11 for specific examples) and remote sensed imagery discussed in 
Pritchard & Koop (2005).  
 

 

Two categories of coastal boundary layer types are proposed: outer and inner 

(Figure 4.2). Outer CBL types find expression over large spatial and temporal 

scales including the East Australian Current (EAC), counter currents, upwelling 

related to variable shelf morphologies, while Inner CBL types operate at smaller 

scales closer to shore influenced by local coastal morphology.  Outer CBL 

processes generally drive the outer boundary conditions for Inner CBL 

phenomena.
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Table 4.1 Coastal Boundary Layer (CBL) Classification Structure for New South Wales 
 

CBL Types 
At the largest scale in the Outer CBL, the East Australian 
Current (EAC) is a poleward boundary jet which diverges from 
the coast off central NSW to form an eddy field. Separation and 
recirculation of the EAC within the Tasman Abyssal basin are 
constrained by bathymetry (Ridgway and Dunn, 2003), the 
EAC interacts with the continental shelf to produce consistent 
upwelling zones (Oke and Middleton, 2000), sustained periods 
of strong counter currents on its inside edge (Roughan et al., 
2003) and mesoscale eddies. 
At smaller scales in the Inner CBL regional flows interact with 
the irregular coastline and near shore bathymetry to form 
turbulent flows around islands, headlands and bays. The 
shoaling and breaking of surface waves can also transport large 
volumes of water and sediment alongshore resulting in a wave 
dominated zone.    

CBL Modifiers 
Coastal catchment run-off and wastewater 
discharges result in identifiable plumes that 
contribute ‘fresh’ water and various dissolved 
and particulate loads of natural and 
anthropogenic material. These plumes carry 
momentum, modify the density structure of the 
Inner CBL, and promote density driven 
dynamics often across extreme density 
gradients. Their temporal expression 
distinguishes CBL Modifiers in NSW CBLs. 
River and stormwater plumes are highly 
episodic Modifiers, especially in southern NSW, 
whereas effluent plumes are continual CBL 
Modifiers. 

CBL Oscillators 
Various dynamic features introduce vorticity to the 
CBL including wind induced long period waves that are 
trapped on the continental shelf by vorticity 
considerations, and tidal ebb jets that result from tidal 
exchanges between estuaries and open water.   
CBL Oscillators can be distinguished by their frequency 
band in the energy spectrum. Not surprisingly Wind 
Oscillators are expressed in the energetic weather band 
(days to weeks), including the remotely generated 
coastal trapped waves, as described in Chapter 2. Tidal 
Oscillators are relatively weak mostly semi-diurnal 
signals in NSW coastal waters due to the micro-tidal 
regime and the lack of significant tidal phase 
differences along the NSW open coastline. However, 
tidal exchanges with estuaries can be significant.    

 
Outer CBL 
 BOUNDARY JET (EAST AUSTRALIAN CURRENT) – 

BJ - Figure 4.3 
 BOUNDARY EDDY FIELD – EF - Figure 4.4 
 COUNTER CURRENT – CC - Figure 4.5 
Inner CBL 
 ISLAND AND HEADLAND WAKES - I/HW - Figure 4.6 
 WAVE ZONE - WZ - Figure 4.7 

 
 RIVER PLUMES – RP - Figure 4.8 
 EFFLUENT PLUMES – EP - Figure 4.9 

 
 WIND especially COASTAL TRAPPED WAVES - 

W/CTW - Figure 4.10 
 TIDAL especially EBB JETS - T / EJ - Figure 4.11 

CBL Convergence/Accumulation Zones 
From time to time natural accumulation zones form in the ocean, usually along fronts which separate water bodies with different physical characteristics. Fronts are  
fundamental features of the CBL and have the potential to concentrate both pollutant particles and the marine biota that become exposed to these pollutants. 
 

 NSW CBL FRONTAL FEATURES – Figure 4.12 
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Figure 4.2 Idealised cross-shelf zonation of NSW CBL effects.  Acronym 
listings are provided in Figure 4.1 and described below.  

 

 

This chapter provides an overview of CBL types, modifiers (inputs resulting in 

density perturbations), oscillators (features contributing vorticity), and 

convergence zones (fronts of accumulation) with examples drawn wherever 

possible from NSW coastal waters.  

 

4.2.1 CBL Types in NSW 

 

Each of the Outer CBL and Inner CBL types are illustrated below (Figures 4.3 to 

4.7) with schematic conceptual models and simple examples observed of New 

South Wales, sourced from earlier Chapters and referenced literature as indicated.  

 

Many studies have attempted to quantify the broad scale transport/retention of 

particles (mostly larvae) between coastal and offshore environments. For 

example, Condie et al. (2011), simulated particle dispersion and transport across 

cells of the order of  0.2° x 0.2°; they found limited local retention rates of less 

than 3% after a dispersal time of 28 days presumably due to major current systems 

over the outer shelf and upper-slope.  However, these types of analysis fail to take 

in to account Inner CBL phenomena such as the wake effects of headlands and 

retention within embayments. 
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Outer CBL types include a plethora of effects driven by the East Australian 

Current (EAC). The general EAC characteristics and variability of the EAC have 

been described by Mata et al. (2000) and Ridgway & Dunn (2003) while a special 

edition of Deep Sea Research carrying the title “The East Australian Current – its 

eddies and impacts” compiles more recent research findings. Upwelling 

processes, including those involving EAC dynamics, have been summarised by 

Roughan et al. (2002), and are explored further in Chapters 5 and 6. 

 

Both the main flow of the EAC, and the eddy field downstream of the separation 

zone are highly variable across a range of scales including seasonal, interannual, 

El Ninõ –Southern Oscillation (ENSO), decadal and multi-decadal variability 

(Ridgway et al., 2008; Ridgway and Godfrey,1997; Holbrook et al., 2011). The 

strength of the poleward extension of the EAC has an approximately 10–15 year 

oscillation (Hill et al., 2008). Large (about 150 km diameter) warm core 

(anticlockwise) eddies and smaller (20 to 50 km) cold core (clockwise) eddies  

may persist off central and southern NSW for periods of days to many weeks 

during which time they profoundly affect the currents and temperature structure of 

the water column. Other important CBL features are less well understood, for 

example: “We do not understand the relationship of the EAC and/or eddies with 

the northward, coastal counter-current(s), which is likely of great importance to 

understanding the effects of climate change, connectivity and even northward 

sediment transport” (Suthers et al, 2011). There is evidence of northward counter 

currents from Gabo Island (near the Victoria-NSW border) to the EAC separation 

point (mid-NSW), associated with EAC eddies, coastal trapped waves, coastal 

winds and EAC separation (Roughan et al., 2011;  Huyer et al., 1988) 

 

Inner CBL types, especially Island and Headland Wakes (I/HW), will be 

described at length in relation to coastal morphology and potential pollutant 

impacts in Chapters 8 and 9. The focus on Inner CBL types is driven by the 

preponderance of pollutant discharges and detected impacts in NSW coastal 

waters often at spatial scales of tens or hundreds of metres. The need for the focus 

on turbulent flows across irregular coastlines is accentuated by the fact that, to 

date, there has been no hydrodynamically relevant morphological classification of 

bays, headlands and islands for NSW coastal waters. 
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The Wave Zone (WZ) and its relationship to various beach morphologies is not 

considered in detail here because existing classifications have previously been 

well developed, described and applied to NSW beaches (e.g. Short, 1993).  
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OUTER CBL TYPE:  BOUNDARY JET (EAST AUSTRALIN CURRENT)  

 
The East Australian Current (EAC) is a major western boundary current flowing from the 
southern Coral Sea in a jet centered over the northern NSW continental slope. It is 
typically ~30 km wide and ~200 m deep with an annual southward transport ranging 
from about 20 to 30 Sv, reaching speeds of up to 4 knots (2 ms-1) (Mata et al., 2000; 
Ridgway & Dunn, 2003).  
 
Indicative cross shelf spatial scale:  
30-50km 

Indicative temporal scale: >100 days 

A 

 

 

                                from Oke & Middleton, 1998, 2000 

B 

 
JAN 98-03 

 
Figure 4.3 Boundary jet with uplifting of slope water resulting from the interaction of the 
EAC with continental shelf topography. 
 
A: Enhanced bottom stress due to acceleration of the East Australian Current through the 
narrowing continental shelf off Smokey Cape and Laurieton draws nutrient rich slope 
waters into shallower coastal regions. Slope water is carried along the shelf to Port 
Stephens, where divergence associated with change in the orientation of the 
shelf/coastline contributes to upwelling (from Oke and Middleton, 2000).  
 
B: Long term ocean colour data illustrate upwelling zones on the inside edge of the EAC 
jet expressed as high chlorophyll: note that chlorophyll distribution is highly influenced 
by changes in coastline orientation (DECC SeaWiFS data summary by Davies and 
Pritchard - unpublished).  
 

LAURIETON
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STEPHENS

SMOKY CAPE
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OUTER CBL TYPE: BOUNDARY EDDY FIELD (EF) 

 
Complex eddies migrate southward in response to the interaction of turbulent EAC 
dynamics with the changing orientation and morphology of the continental shelf. 
 
Indicative cross shelf spatial scale: 20-300km Indicative temporal scale: 20 - 300 days 

A 

 

B 
Cold core eddy dynamics  

(from Oke & Middleton, 1999) 

C 

 

D 

 
Figure 4.4 Mesoscale Eddy field 
 
A: Sea Surface Temperature (SST) image with  inferred surface currents depicting EAC 
jet diverging from the shelf and the spawned an eddy field: 29th September 1991 NOAA11 
TM45S (SST data source: CSIRO); 
 
B: cyclonic (cold core) eddy schematic: bottom stress in shallow shelf waters results in 
formation of a convergent bottom boundary layer (BBL) so mass balance considerations 
require upwelling at the centre of the eddy (from Oke and Middleton, 1999);  
 
C: ADCP alongshore currents showing cyclonic eddy dynamics; and,  
 
D: contoured discrete nutrient data along a cross shelf transect off Port Stephens depicting 
nutrient rich upwelling (C and D from Lee et al., 2007). 
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OUTER CBL TYPE: COUNTER CURRENTS (CC) 

 

Northward counter currents can form on the landward side of the EAC. 

Indicative cross shelf spatial scale: 1-20kms Indicative temporal scale:  
7–30 days (sparse data/understanding) 

A B 

 
Figure 4.5 East Australian Current stream flow and counter currents. 
 
A:  Near surface currents obtained from ADCP measurements during November 1998 
(Roughan et al., 2003) depicting southward EAC jet following isobaths, accelerating 
where the shelf narrows south of Smoky Cape, and ultimately separating from the shelf 
where the shelf orientation shifts to the southwest. At Smoky Cape the core of the jet 
was approximately 20 km offshore with a southward velocity of ~1.6 ms-1, reducing to 
~0.8 m s-1 at 10 km off the coast. Downstream of the EAC separation point off Diamond 
Head, a northward countercurrent formed about 20km wide inshore of the main jet. The 
counter current is required by conservation of mass in response to divergence 
(anticlockwise rotation) of EAC from the shelf: a weak counter current was drawn 
northward on the inside edge of the EAC (up to 0.3 ms-1 at 10 km from the coast). The 
divergence at the shelf break also generated upward vertical velocities of up to 0.003 
ms-1 at the shelf break. Figure modified from Roughan et al. (2003). 
 
B. While large scale divergence is the dominant driver for counter currents (see A), 
southerly (northward) winds can enhance these northward flows. The schematic shows 
the relative dominance of local wind driven currents in shallow inner shelf waters 
compared to deeper offshore waters, which are dominated by the inertial energy of the 
southward flowing EAC. 
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INNER CBL TYPE : ISLAND & HEADLAND WAKE ZONE  (I/HW) 

 
Wakes form when flow separation occurs as currents impinge on bathymetric or coastal 
obstacles; that is, when inertial forces of the stream flow dominate over frictional forces, 
which tend to drag particles along the obstacle, resulting in a range of turbulent flow 
patterns such as eddies. 
  
Indicative spatial scale: 100m – 8km Indicative temporal scale: 1 - 10 days 

A 

 

               (a)            (b)            (c)           (d) 

B 

 

 

 

 

 

 

 

 

 

 
Figure 4.6 Island and headland wakes 
 

A: Schematic shallow water island wakes corresponding to increasing dominance of 
inertial forces (separating flow from the obstacle) over frictional forces (dragging flow 
around the obstacle):  
(a) vortex pair forms with central return flow;  
(b) turbulent wake exhibits wave disturbances;  
(c) meanders develop instabilities and roll to form a von Karmon vortex street;  
(d) fully turbulent (three dimensional) wake.   
Modified from Wolanski (2007). Many studies have attempted to characterise wakes in 
terms of these modal instabilities often relating them to a critical Reynolds number (e.g. 
Wolanski, 1988; Tomczak, 1988; Denniss and Middleton, 1995). However, some more 
recent studies suggest that the transition to unsteady flows in coastal waters occurs 
through non-modal growth excited by the stochastic variability (turbulence) in the 
incident flow (Aiken et al., 2003) suggesting that wake characteristics may be pre-
conditioned by morphological irregularities. 
 
B: Re-circulation cell associated with a headland wake south of Coffs Harbour, New 
South Wales, Australia (Pritchard et al., 2007). 
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INNER CBL TYPE: WAVE ZONE (WZ) 

 
Wave zones are driven by breaking waves which set up transient rip current (return flow) 
circulation cells which are pre-conditioned by near shore morphology.  
 
Indicative cross shelf spatial scale: 20m-1km Indicative temporal scale: hours to days 

 

A 

 

B 

 
Figure 4.7 Wave Zone 
 
A. Schematic of wave induced flows adapted from Short (1993) based on Intermediate 
Bar and Rip Beach.  
 
B. Aerial photograph of Long Reef to Dee Why (Sydney northern beaches) under high 
wave conditions illustrating distinct sediment laden plume, similar in appearance to 
plumes of stormwater and primary treated sewage effluent. Under such conditions wave 
induced flows can dominate circulation at beach and bay scales. (photo by T.Pritchard) 
 

RIP RIP
BAR

(or REEF)
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4.2.2 CBL Modifiers in NSW 

 

Coastal catchments transport terrestrial material to the oceans (River Plumes) and 

anthropogenic activities generate a variety of waste streams that are discharged at 

the coast (Effluent Plumes). These loads modify the physical, chemical and 

biological characteristics of the coastal boundary layer, although here only the 

physical characteristics are considered.  

 

Identified CBL Modifiers are illustrated below (Figures 4.8 to 4.9) with schematic 

conceptual models and simple examples observed in New South Wales, as 

sourced from earlier Chapters and referenced literature.  

 

The physical characteristics of idealised River Plumes (Figure 4.8) are 

fundamentally the result of three major processes (Fong and Geyer, 2002): (1) 

non-linear acceleration due to the balance between buoyancy forces and inertia 

which controls the degree to which the plume penetrates and spreads into coastal 

waters; (2) shear at the boundaries of the plume which determines the extent of 

mixing of plume waters with ambient coastal waters; and, (3) geostrophy which 

causes anticlockwise rotation in the southern hemisphere, where the Coriolis force 

is balanced by the cross-shore pressure gradient.  In this way idealised river 

plumes can form a ‘bulge’ off the river mouth and a ‘coastal current’ (northward 

in NSW); the coastal current is trapped to the coast with a width equal to a few 

times the Internal Rossby Radius* (Kourafalou et al., 1996).  A steady state can 

be achieved with an ambient, alongshore current (García Berdeal et al., 2002).  

 

While river plume features depicted in Figure 4.8 A-C are consistent with some 

observation in NSW coastal waters, other factors often modify this idealised 

expression of river plumes, especially the effects of ambient currents, local winds, 

and density stratification of receiving waters.  

 

* The internal (baroclinic) Rossby radius of deformation is the ratio between the phase speeds of 

the long internal waves to the Coriolis parameter. Basically, it is the horizontal scale at which 

rotation effects become as important as buoyancy effects.  
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Ambient regional dynamics and coastal topography often dictate the along shelf 

extent of river plumes in NSW. The southward East Australia Current dominates 

regional flows on the continental shelf especially in northern NSW where the 

EAC jet dominates, and this flows in an opposing direction to that in which a 

Kelvin wave would propagate. Therefore, in contrast to the idealized situation in 

Figure 4.8, major river plumes can extend southward from river mouths such as 

during the major flood in 2001 (MODIS data archive for 5 February 2001) which 

was the first major flood of the Clarence River since 1996. In theory a steady state 

can arise with a constant background ambient current (Kourafalou et al., 1996) 

although ambient coastal currents and river discharges are rarely constant in 

NSW, especially within the turbulent EAC eddy field. The highly variable nature 

of Australian river flows, as evident from NSW river flow hydrographs 

(OEH/MHL data), result in few major river plumes. As a result there has been 

limited opportunity to study river plumes in NSW coastal waters (Lee and 

Pritchard 1999). Studies overseas have investigated variations of river plume 

behaviour under a range of conditions. For example, investigations focused on the 

Columbia River on the Washington coast (USA) found rapid response (on the 

time scale of hours) of a river plume generated by a sequence of wind reversals 

and ambient currents that opposed the direction of propagation of Kelvin waves 

(García Berdeal et al., 2002). This baroclinic instability was thought to be 

responsible for the formation of detached eddies or ‘freshwater pools’. 

 

Upwelling dynamics can increase stratification and promote offshore transport of 

surface waters including buoyant river plumes, while downwelling favourable 

conditions tend to confine river plumes to the coast and increase their vertical 

extent. Spreading of the plume under upwelling conditions (and/or local offshore 

winds) lead to a larger surface area being exposed to boundary turbulence (wind 

stress at the surface and current shear at other boundaries) and simulations have 

demonstrated increased mixing as a consequence of these conditions (e.g. Fong 

and Geyer, 2002; Kourafalou et al., 1996).  Roughan et al. (2002) and Pritchard 

et al. (2003) described conditions that favoured upwelling in NSW coastal waters 

including sustained northeasterly winds and EAC activity on the shelf, while Lee 

et al. (2007) showed that some locations were predisposed to upwelling due to 

changes in the orientation of the coast/shelf.  
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In contrast to River Plumes, the behavior of Effluent Plumes has been well 

described in NSW for a variety of surface and submerged discharges (e.g. 

Pritchard et al., 2001; Pritchard et al., 1996; Pritchard, 1997; Ingleton and 

Large , 2004), while theoretical and conceptual models of plume behavior have 

been summarized by Jirka et al. (1996) and others (e.g. Tate and Middelton, 

2000).  
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CBL MODIFIERS: RIVER PLUMES 

Turbid, low density, river plumes result from outpourings from coastal catchments. 

Indicative cross shelf spatial scale: 
100m-30km 

Indicative temporal scale:  
days-weeks 
 

A. Momentum dominated (plan) 

 

B. Buoyancy dominated (plan) 

 

C. Buoyancy dominated mixing (3-D) 

 

 

 

 

 

 

 

 

D. MODIS image 

 

 
Figure 4.8 Cross shelf dynamics introduce vorticity to the CBL. Inertia and buoyancy 
determine the penetration and spread of river plumes into surface coastal waters.   
 
A. Schematic of momentum dominated  river plume where geostrophy causes 
anticlockwise rotation resulting in the formation of a bulge.  
B. Schematic of buoyancy dominated river plume similar to effluent plume described 
below.  River plume trajectory is dominated by the ambient current when ambient flows 
are strong (schematic based on Fong and Geyer, 2002).  
C. Schematic of buoyancy dominated mixing (from Wolanski, 2007) 
D. MODIS image for 13 June 2007 showing turbid river plume waters following a high 
rainfall event (image courtesy CSIRO Land and Water.) 
 
Modified from Jirka et al. (1996) and Fong and Geyer (2002). 

Aqua 13 June 2007
MODIS Image: CSIRO L&W
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CBL MODIFIER: EFFLUENT PLUMES 

 
Effluent plumes result from discharges of buoyant (e.g. treated sewage) or negatively 
buoyant (e.g. desalination effluent) with mixing enhanced by high exit velocities 
(momentum dominated mixing).  
 
Indicative cross shelf spatial scale:  
20m-2km 

Indicative temporal scale: initial (near field) 
mixing within minutes (continual discharges) 
 

Modified from Ingleton and Large (2004)  

photo courtesy NSW EPA 

 
Figure 4.9 Shoreline outfalls (depicted in A & D) achieve low initial dilution & maintain 
prominent fronts at the upstream boundary of the plume.  In contrast well designed 
deepwater outfalls (B and C) typically achieve high dilutions due to greater exit velocities 
and greater scope for entrainment of ambient waters during buoyant rise of plume waters. 
 
A. Cross-sectional view of a plume arising from a single port shoreline discharge.  
 
B. Plan view of a plume arising from a multi-port gas-burner diffuser type outfall. 
 
C. Cross-sectional view of plume arising from a multi-port diffuser type outfall.  
 
D. Aerial photograph of effluent plume resulting from the former shoreline discharge of 
primary treated sewage effluent at North Head, Sydney (Photo DECCW). 
 

D) 
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4.2.3  CBL Oscillators in NSW 

 

Winds and tides can introduce harmonic disturbances to the coastal boundary 

layer in the form of Coastal Trapped Waves and Ebb Jets, as described in Figures 

4.10 and 4.11. 

 

Freeland et al. (1986) and Church et al. (1986) first verified the existence of 

coastal trapped waves and explained their dynamics in Eastern Australia as part of 

the Australian Coastal Experiment which was conducted between September 1983 

and March 1984. Major weather systems produce wind driven currents which can 

carry angular momentum across the sloping continental shelf. As depth varies 

across the shelf, vorticity considerations explain the formation of oscillations 

which propagate along the shelf as Coastal Trapped Waves. 

 

Ebb Jets result from the tidal exchanges of water between estuaries and offshore 

coastal areas. Wolanski (2007) describes general entrance and return (re-

entrainment) hydrodynamics associated with ebb jets. 

 

Other CBL oscillations include high frequency internal waves which have been 

observed in NSW coastal waters such as at the Sydney Ocean Reference Station 

(Pritchard et al., 2005) and in the data streams from the NSW moorings of the 

Integrated Marine Observing System (IMOS) (http://imos.org.au/oceanportal.html 

). These may be baroclinic responses to tidal forces at the shelf break, changes in 

atmospheric pressure, lateral movement of oceanic fronts, and shear instabilities, 

and thus may also introduce vorticity to the coastal boundary layer; their potential 

effects on pollutants in the coastal boundary layer are discussed by Pritchard et 

al. (2005). For example, buoyant plumes rising through internal wave fields may 

differ significantly in height of rise and dilution compared to plume behaviour 

under mean stratification. 
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CBL OSCILLATOR: COASTAL TRAPPED WAVES (CTW) 

 
Coastal trapped waves are wind-forced long shelf waves which propagate northward 
along the NSW continental shelf. Approximately 60% to 70% of the ‘weather band’ (40 
hour to 20 day period) current variance is wind driven, with the major contributors being 
the southern New South Wales and Bass Strait winds, both lagged by intervals 
corresponding to the propagation speed of the first Coastal Trapped Wave (CTW) mode 
(Griffin and Middleton, 1991).   
 
Indicative cross shelf spatial scale:  
15 – 45km (shelf width) 

Indicative temporal scale:  
7-20 days (weatherband) 
 

A.. 

Source: CSIRO 

B. 

Modified from Lee and Pritchard (1996) 

 
Figure 4.10 Coastal trapped wave characteristics. 
 
A. Schematic representation of the passage a northward propagating coastal trapped wave 
showing characteristic current reversal. Vorticity considerations (conservation of angular 
momentum) affect the movement of water across the sloping continental shelf waves 
resulting in CTWs. The wave is trapped against the coast, but unlike a Kelvin wave its 
profile does not fall off monotonically from the coast out to sea but shows a second 
region of large amplitudes over the shelf edge. 
 
B. Wind, current meter and temperature data observed at the Ocean Reference Station off 
Sydney showing weather band variability associated with the passage of coastal trapped 
waves, which resulted in cross shore oscillation of shear zones (Lee and Pritchard, 
1996).  
 

WIND
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CBL OSCILLATOR:  EBB JETS (EJ) 

 
Ebb jets are seaward flows from estuaries or tidal rivers during the lowering tidal phase; 
their extent, magnitude, and complexity of ebb jets is influenced by the estuarine tidal 
prism, configuration of the estuary mouth, and dynamics of ambient coastal waters. 
 
Indicative cross shelf spatial scale:  
20m – 1km 

Indicative temporal scale:  
6hrs (semi diurnal tide in NSW) 
 

A. 

 

B. 

 

 
Figure 4.11 Ebb Tide Jets.  
 
A. Large scale ebb jet: Acoustic Doppler Current Profiler observations at Botany Bay - 
ebb flow initially occurred at depth, strengthening and becoming more uniform with 
depth before forming a narrow jet on the northern side of the entrance. Strongest currents 
(~0.6m/s) were observed at the surface while weak re-circulation cells formed to the 
north and south of the entrance.   The ebb jet was ~10m thick and extended ~4km 
offshore. (from Cox et al., 1993). In wide estuaries, the Coriolis force steers seaward 
flows to the left hand side of the estuary entrance in the southern hemisphere (Dyer, 
1997), creating a tidally-averaged, net in flow on one side and a net outflow on the other 
side. Note that if the coastal currents are small and the estuary mouth is large, the plume 
does not form a jet at falling tide; instead it forms a radially symmetric plume which is 
similar in form to the flood tidal currents thus limiting net exchange (Wolanski, 2007). 
 
B. Complex hydraulic features of a typical trained coastal entrance at Forster-Tuncurry 
on the NSW mid north coast. Breakwaters and training walls can significantly modify the 
hydraulic behaviour and sedimentation processes both within the estuaries and along their 
adjacent coastlines (from NSW, 1990). 
 

Botany Bay

ADCP ebb jet observations

11th January 1993
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4.2.4  CBL Fronts and Convergence (Accumulation) Zones in NSW 

 

Accumulation usually occurs when convergent flows bring particles, such as 

pollutants and plankton, together.  If particles are sufficiently buoyant, they will 

remain at the surface when two water bodies converge while the convergent water 

descends usually in the downwelling arm of a three dimensional circulation cell.  

Positively buoyant particles (e.g. buoyant pollutants and plankton) accumulate to 

the extent that abundances of plankton may be 10 to 1000 times greater in these 

zone of convergence than in surrounding waters (Kingsford, 1995).  

Accumulations of natural and anthropogenic material may be sufficiently dense to 

be visible in their own right or they may affect the surface tension of the water to 

such an extent (for example, through the surfactant properties of their breakdown 

products) that they are visible as lines in the ocean, as evident in Figure 4.12. 

 

Zones of accumulation may be driven by many phenomena including winds, 

propagation of surface and internal waves, and density gradients. Wind effects can 

lead to the establishment of three dimensional Langmuir Cells which result in 

surface convergence along lines (along windrows) which run parallel to the 

direction of the wind (Figure 4.12C).  Likewise, the passage of internal waves 

which originate on the shelf break (Pritchard et al., 2005), may set up similar 

three dimensional circulation cells but for internal waves the lines of surface level 

convergence run perpendicular to the direction of propagation.  

 

Convergent accumulation zones may also occur when breaking surface waves 

create a water set-up which is opposed by local winds (Figure 4.12D). 

 

Inner CBL fronts typically occur as nonlinear features and represent a dynamic 

equilibrium brought about by a balance between two or more forces. For example, 

gradients of water characteristics like salinity are often an order of magnitude 

greater across effluent or stormwater plume fronts than within or outside the 

plumes. Current shear between the two different water masses can establish a 

zone of convergence such as that which occurs at the mouths of many estuaries 

(Figure 4.12B). Visible organic and floating debris accumulates along these front 

together with biota such as seabirds and their prey. 
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Local topography may make particular areas more prone to convergence through 

the establishment of re-circulation zones in the lee of promontories. 

 

Large scale Outer CBL fronts occur most frequently on the inner edge of the EAC 

as is evident in ocean colour imagery presented in Figure 4.12A and Chapter 5. 

Shallow waters inshore of the EAC are well mixed by surface wind stress, waves 

and bottom frictional stress (as seen off Coffs Harbour in Chapter 8 for nearshore 

waters <40m), in contrast to mid-shelf waters which are typically stratified and 

often dominated by the EAC and its eddies (as seen off Sydney in Chapter 6 for 

water at >65m). This vertical mixing of these inner shelf waters with integration 

of cool bottom waters results in well-mixed waters which are significantly cooler 

than EAC which is of tropical origin. Therefore, a horizontal density gradient 

occurs between these nearshore waters and the EAC. Likewise, the waters 

underlying the EAC are significantly cooler that the EAC and generally cooler 

than the well-mixed inner shelf waters. The temperature of inner shelf waters 

typically corresponds to the temperature found somewhere in the centre of the 

thermocline. Because the probability of achieving neutral buoyancy is greatest 

where vertical density gradients are strongest, pollutant and plankton particles 

tend to accumulate near the thermocline (or more accurately the pycnocline) 

which is also in close proximity to cool nutrient rich bottom waters. A pathway of 

neutral density exists along this thermocline which outcrops as the surface 

expression of the front.  Surface accumulations are frequently evident along EAC 

fronts in ocean colour imagery as filaments of high chlorophyll as shown in 

Figure 4.12A; this will be explored further in Chapter 5. 
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CBL CONVERGENCE/ACCUMULATION ZONES 

Accumulation zones result from convergent processes along fronts which may be driven and 
sustained by density gradients, wind and wave forcing and current shear operating. 

Indicative cross shelf spatial scale:  
Hundreds of kilometers to tens of meters 

Indicative temporal scale:  
Weeks to hours 

 

 
A: DENSITY – EAC: Sea Surface 
Temperature (left) and chlorophyll estimates, 
derived from MODIS data for 14th August 
2008 (courtesy CSIRO). Accumulation and 
high productivity clearly delineated along the 
inner edge of the EAC. The density gradient 
supports a geostrophic jet along the front, 
which can cause eddies to form and break off. 
Like all other fronts it is also linked with a 
convergence of the surface current. 
Images provided by Dr Mark Baird (2008). 

 

 

B: DENSITY - ESTUARIES: Current shear 
between the different water masses can 
establish a zone of convergence such as that 
which occurs at the mouths of many 
estuaries.  
For example, fontal accumulations of 
Noctiluca scintillans occur at the mouth of 
the Hawkesbury River (Broken Bay, 1997). 
Photo courtesy of Beachwatch, NSW EPA. 

 

 

 

C: LOCAL WIND: Wind can lead to the 
establishment on Langmuir Cells and lines 
called windrows which run parallel to the 
direction of the wind. Frontal processes (local 
convergence) accumulated Noctiluca 
scintillans off Manly near Sydney, NSW, 
during 1997. This accumulation was then 
fragmented by the onshore wind into bright 
red streaks directed shoreward (windrows). 
Photo from Pritchard and Koop (2005) 

 

 

 

D: SURFACE WAVES: Breaking waves 
create a water set-up that generates a seaward 
surface current that is opposite to the 
shoreward wind (Wolanski, 2007). These 
opposite effects meet at the convergence 
point where they form a slick line parallel to 
the shore. 
Photo T.Pritchard: Warriewood, NSW on 
23/04/91 under high wave conditions (NSW)   
 

Figure 4.12 Selected examples of NSW CBL frontal features: A (Density EAC), B (Density 
Estuaries), C (Local Wind) & D(Surface Waves) 
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4.3  Exploration and Application of the NSW CBL Classification 
 

The following chapters of this thesis explore the interactions of flows with coastal 

bathymetry in the context of this CBL classification for the purpose of pollutant 

impact assessments. Coastal boundary layer effects that control the dilution, 

dispersion and fates of pollutants are explored at various scales within the Outer 

and Inner CBL.  

 

The utility of remote sensing techniques to reveal mostly Outer CBL processes 

and to inform broad scale marine ecosystem assessments is investigated in 

Chapter 5. Analyses of these spatial data sets are complemented by interrogation 

of temporal (time series) data from Sydney coastal waters in Chapter 6. This 

Sydney case study in Chapter 6, explores scales of mostly Outer CBL variability 

and investigates environmental impacts, especially those related to discharges 

from NSW’s largest sewage treatment plants. In particular, investigations attempt 

to address  the question: how do ocean outfalls affect nutrient phytoplankton 

relationships in coastal waters of New South Wales, Australia? These Outer CBL 

studies also furnish an understanding of the dynamic processes that drive the outer 

boundary conditions for Inner CBL phenomena.  

 

In Chapter 7 the focus shifts to the Inner CBL where the effects of coastal 

roughness and orientation – headlands and bays – are investigated in relation to 

their potential to limit dispersion and trap pollutants. A new morphological 

classification is developed and applied to NSW headlands and bays and island as 

a basis to screen nearshore morphological settings for potential pollutant 

‘trapping’. 

 

Headland Wake effects are the focus of investigation in the second case study 

conducted off Coffs Harbour on the NSW mid north coast (Chapter 8), where a 

regional sewage management strategy required  a relocation of the discharge of 

treated effluent to the ocean.  

 

These and other case studies across a range of NSW morphological settings are 

drawn together in Chapter 9 to test and improve the new CBL classification.  
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Ecological and management implications of the CBL dynamics are also explored 

in this discussion chapter. 
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5. SATELLITE REMOTE SENSING 
 

5.1 Introduction 
 

In this chapter remote sensing tools, especially satellite mounted ocean colour 

sensors, are reviewed to determine their usefulness for marine ecosystem 

assessments. The unsurpassed spatial coverage of satellite mounted sensors and 

high return frequencies offer vast potential for investigation of broad scale 

characteristics of marine waters.  The increased spectral coverage of recent 

sensors presents new opportunities to link physico-chemical and biological 

processes. Integration of these inherently coupled physicochemical and biological 

components of the natural system promises to reveal greater scientific insights and 

deliver more pertinent information to environmental and natural resource 

managers.  

 

The body of this chapter (Section 5.3) reviews published research and provides 

case studies of the application of mostly ocean colour and sea surface temperature 

data; it was peer reviewed prior to international publication as a book chapter by 

Taylor and Francis in 2005:  

 

Pritchard, T.R. and Koop, K  (2005). Satellite Remote Sensing in Marine 

Ecosystem Assessments. Chapter 6 in: ed. den Besten, P.J. & Munawar, M. 

Ecotoxicological Testing of Marine and Freshwater Systems: emerging 

techniques, trends and strategies. Ecovision World Monograph Series, 

Taylor & Francis, 195-228. 

 

5.2 Motivation and Relevance to Thesis Objectives  
 

Relevant long term monitoring of NSW coastal waters, which extend out to 3 

nautical miles offshore, is sparse (see chapters 2 and 3), comprising of near shore 

tide gauges (Manly Hydraulics Laboratory), a waverider buoy network (Manly 

Hydraulics Laboratory), an instrumented Ocean Reference Station off Sydney 

(Sydney Water Corporation), long term nutrient and temperature monitoring at 
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two stations offshore from Port Hacking (CSIRO), bacterial water quality 

monitoring (DECC Beachwatch) and remote sensing.   

 

This chapter focuses on available long term remote sensed data.  It includes a 

general overview and review of ocean colour products and highlights those 

aspects relevant to the coastal boundary layer with examples from NSW coastal 

waters.  Although remote sensed data offers the most comprehensive coverage of 

NSW coastal waters it has received comparatively little attention.  The strengths 

and weaknesses of remote sensed data are reviewed in this chapter and areas for 

further research and development are highlighted especially in relation to the 

optically complex Type 2 waters of the coastal boundary layer. 

 

The specific objective of this chapter is to: 

 

 determine the utility of remotely sensed ocean colour and sea surface 

temperature (SST) data to characterise broad scale ecosystem and coastal 

boundary layer processes and to investigate applications to support coastal 

management 

 

This is achieved by reference to previously published research and through case 

studies 

 

The findings from this chapter provide the necessary limitations and caveats for 

the use of ocean colour data products and delivers specific examples that elucidate 

the characteristics and features of the NSW coastal boundary layer as developed 

in Chapter 4 and discussed in Chapter 9.  In this way it also provides a context for 

case studies that follow in Chapter 6 and Chapter 8. 
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5.3 ‘Satellite Remote Sensing in Marine Ecosystem 
Assessments’ 

 

Citation: Pritchard, T.R. and Koop, K  (2005). Satellite Remote Sensing in 

Marine Ecosystem Assessments. Chapter 6 in: ed. den Besten, P.J. & 

Munawar, M. Ecotoxicological Testing of Marine and Freshwater Systems: 

emerging techniques, trends and strategies. Ecovision World Monograph 

Series, Taylor & Francis, 195-228. 

 

Introduction 

Remote sensing technologies range from small scale high frequency devices such 

as towed video plankton recorders (Davies et al., 1992) to satellite mounted 

sensor arrays providing global estimates of primary production (Joint & Groom, 

2000). This chapter describes a range of applications of satellite sensed data, 

especially ocean colour and sea surface temperature products, to illustrate how 

they can be used to develop an understanding of ecosystems and human impacts 

on them.  Global, regional and local scale applications are summarised after which 

a more detailed case study is presented to illustrate how ocean colour technology 

can be employed to develop a predictive understanding of algal bloom 

development and associated issues in the coastal waters of New South Wales, 

Australia.  

 

Satellite borne ocean colour products have improved in recent years and many are 

freely available, so with increased personal computer processing power, 

applications now fall within the reach of a vast number of potential users.   

 

Background 

The world’s immense human population exerts profound stresses on aquatic 

ecosystems at all scales.  Direct impacts occur through catchment run-off, 

discharge of wastes, atmospheric deposition of pollutants, over exploitation and 

habitat modification. Further, insidious impacts include the spread of introduced 

species and manifestations of global warming.  Monitoring, predicting and 

managing changes within coastal ecosystems are clearly important: remote 
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sensing technologies provide unsurpassed spatial coverage with ever increasing 

spatial, temporal and spectral resolutions to help address these issues. 

 

Although this chapter deals with remote sensing and information technologies that 

are fast evolving, the type of information needed for assessment and management 

of aquatic ecosystems remains essentially the same.    

 

History and Relevance of Ocean Colour 

The colour of the ocean can indicate levels of phytoplankton activity. To the 

casual observer, the colour of seawater may vary from the dark green of eutrophic 

estuarine waters, to the deep blue of oligotrophic oceanic waters. Coastal water 

colourations, however, are often complex with various hues of grey, brown and 

yellow due to terrigenous influences such as estuarine plumes, anthropogenic 

discharges, re-suspended sediments, and the presence of dissolved organic 

substances. 

 

Shipboard and aircraft studies first showed that radiance upwelling from the ocean 

in the visible region (400-700 nm) was related to the concentration of chlorophyll 

and other plant pigments.   

 

Following this, the first satellite borne ocean-colour sensor – the Coastal Zone 

Colour Scanner (CZCS) – was launched in 1978 as a one year ‘proof-of-concept’ 

mission.  Despite this, CZCS delivered ocean colour data for 8 years and led to 

the development of algorithms to estimate primary productivity in our surface 

oceans (e.g. Platt and Sathyendranath, 1988). Data from CZCS revolutionised the 

understanding of phytoplankton distributions and dynamics at a global scale and 

in many coastal systems (e.g. Shannon, 1985). Remote sensing provided a 

synoptic view of large zonal structures which had been overlooked in field studies 

and ignored in mathematical models because time and length scales were not 

easily detected by classical field investigations (Nihoul, 1984). 

 

After a hiatus of nearly a decade, new ocean colour sensors were launched in the 

mid and late 1990s in response to the need to quantify the carbon cycle motivated 

by increasing concerns about climate change and an appreciation of interactions 

between climate effects and marine ecosystems. 
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Key Satellite Mounted Sensors 

Present, future and past ocean colour scanners are summarised in Table 1 - 

information is updated by the International Ocean Colour Ocean Coordination 

Group at http://www.ioccg.org/sensors/500m.html.   

 

Table 1: Satellite mounted ocean colour sensors 

SENSOR AGENCY SATELLITE
LAUNCH

DATE 

SWATH

(km) 

RESOLUTION 

(m) 

# OF 

BANDS 

SPECTRAL

RANGE (nm)
 

PRESENT:        

  COCTS 
CNSA 
(China) 

HaiYang-1 
(China) 

15/05/02 1400 1100 10 402-12500 

  MERIS 
ESA 
(Europe) 

ENVISAT-1 
(Europe) 

01/03/02 1150 300/1200 15 412-1050 

  MODIS-
Aqua 

NASA 
(USA) 

Aqua 
(EOS-PM1) 

04/05/02 2330 1000 36 405-14385 

  MODIS-
Terra 

NASA 
(USA) 

Terra 
(USA) 

18/12/99 2330 1000 36 405-14385 

  OCI 
NEC 
(Japan) 

ROCSAT-1 
(Taiwan) 

27/01/99 690 825 6 433-12500 

  OCM 
ISRO 
(India) 

IRS-P4 
(India) 

26/05/99 1420 350 8 402-885 

  OSMI 
KARI 
(Korea) 

KOMPSAT 
(Korea) 

20/12/99 800 850 6 400-900 

  SeaWiFS 
NASA 
(USA) 

OrbView-2 
(USA) 

01/08/97 2806 1100 8 402-885 
 

FUTURE:        

  S-GLI 
NASDA 
(Japan) 

GCOM 
(Japan) 

2007 1600 750 11 412-865 

  VIIRS NASA/IPO NPP 2006 3000 370/740 22 402-11800 
  VIIRS NASA/IPO NPOESS 2009 3000 370/740 22 402-11800 

  OCM-II 
ISRO 
(India) 

IRS-P7  
(India) 

2005/06 -- -- -- -- 

  KGOCI* Korea -- 2008 3000 500 8 400 - 865 
 

PAST:        

  CMODIS 
CNSA 
(China) 

Shen Zhou-3 
(China) 

25/03/02  
- 15/9/02

- 400 34 403-12500 

  CZCS 
NASA 
(USA) 

Nimbus-7 
(USA) 

24/10/78  
- 
22/06/86

1556 825 6 433-12500 

  CZI 
CNSA 
(China) 

HaiYang-1 
(China) 

15/05/02  
- 1/12/03

500 250 4 420-890 

  GLI 
NASDA 
(Japan) 

ADEOS-II 
(Japan) 

14/12/02  
- 
25/10/03

1600 250/1000 36 375-12500 

  MOS 
DLR 
(Germany) 

IRS P3 
(India) 

21/03/96 
– early 
04 

200 500 18 408-1600 

 Source: International Ocean Colour Ocean Coordination Group at 
http://www.ioccg.org/sensors/500m.html.   
* KGOCI will be in geostationary orbit.  All others are in polar orbits with typical revisit times of 
2-3 days. 
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The principal source of published ocean colour data presented or referred to in this 

chapter is the sea-viewing-wide field of view sensor (SeaWiFS). SeaWiFS was 

launched in 1997 as the operational successor to the CZCS and was one of the 

first of a new generation of ocean colour satellites (Hooker and McClain, 2000; 

Acker et al., 2002).  Much of the processing, quality control and initial analysis of 

SeaWiFS data in this chapter was undertaken using SeaDAS software (freely 

available from http://seadas.gsfc.nasa.gov ). 

 

Analysis and interpretation of ocean colour data is often supported by data from 

the Advanced Very High Resolution Radiometers (AVHRR) aboard the US 

National Oceanographic and Atmospheric Administration (NOAA) series of 

satellites.  AVHRR scanners deliver 4-5 channels (depending on model) including 

visible and sea surface temperature (SST) images at spatial resolutions 

comparable to most satellite borne ocean scanner data (Hastings and Emery, 

1992).  Successive satellites have resulted in a time series of AVHRR data back to 

1986.  

 

The launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) in 

December 1999 represented a further leap in ocean colour capability compared to 

SeaWiFS with more spectral bands, higher signal to noise ratio, more complex on-

board calibration, and the capability of simultaneous observations of ocean colour 

and sea surface temperature (Joint and Groom, 2000).  MODIS provides global 

coverage every 1-2 days.  NASA provides free and open access to MODIS data, 

including access to merged data products (e.g. SeaWiFS/MODIS) – see 

http://modis.gsfc.nasa.gov/.  

 

The MODIS sensors together with the European MEdium Resolution Imaging 

Spectrometer (MERIS) launched in March 2002 and the Chinese Moderate 

Resolution Imaging Spectroradiometer (CMODIS) launched in May 2002 provide 

increased coverage with correspondingly greater opportunities to capture short 

duration events. 
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Ocean Colour Products  

Ocean colour sensors capture light scattered by the atmosphere and reflected from 

the sea surface as well as the light radiating from surface waters of the ocean.  It is 

this ‘water leaving radiance’ which carries ecologically important signals.  Ocean 

colour algorithms extract this signal and deliver various ocean colour products 

such as those listed in Table 2 (derived from Parslow et al. (2000)).   

 

Table 2: Remote Sensed Products 

 
Chlor Chlorophyll fluorescence as a measure of phytoplankton biomass 
 
ProductionW Water column primary production using photosynthesis-irradiance 

relationships  although suspended solids and dissolved organic 
matter in coastal waters may confound estimates of light 
attenuation which is required together with chlorophyll-a and 
surface irradiance, to calculate primary production. 

 
Light Light attenuation and water colour resulting from organic biomass 

(chlorophyll and other pigments), dissolved substances (yellow), 
and mineral particles 

 
Pigment/type Pigment composition and bloom type based on differences in 

absorption spectra (and perhaps back-scattering spectra) across 
algal classes 

 
SS  Suspended sediments (particle back-scattering)  
 
Yellow  Yellow substances – coloured dissolved organic matter 
 
Dynamics Physical dynamics using reflecting optical properties (ocean 

colour) of the upper layer which are considered better than infra 
red imagery. 

 
Habitat Bottom depth, benthic reflectance and habitat for optically shallow 

coastal waters (using hyperspectral sensor) 
 
ProductionB  Benthic primary production may be derived from bottom light 

intensity (derived from surface irradiance and attenuation 
coefficients) and plant biomass distributions. 

 
Note: Product identifiers relate to Table 3 
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Various texts describe the optical properties of ocean and coastal waters and 

provide the theoretical basis to extract signals of biological significance (e.g. 

Bukata et al., 1995; Kirk, 1994; Mobley, 1994).   

 

Satellite mounted sensors have clear advantages over direct in situ observations 

but also suffer from some critical limitations mainly due to limited light 

penetration and ‘noise’ acquired as the signal passes through the water and 

atmosphere to the satellite.   

 

Cloud cover fundamentally limits the areal extent of coverage although this can be 

minimised by extrapolation over time and space through modelling (Aiken et al., 

1992) and, in some cases, by compositing successive images if features change 

slowly with respect to successive or complementary overpasses. Sun glint can also 

obscure the signal (Lockhart, 1994) although optimising the aspect of the sensor 

and careful analysis (e.g. appropriate stray light thresholds) can reduce this.   

 

Another fundamental limitation is limited light penetration through water which 

restricts vertical coverage.  Ocean colour sensors receive radiance from the 

‘optical depth’ (depth of light penetration) which is related to the visible depth 

and ranges from >20m in oligotrophic tropical oceans to 5-10m in typical 

mesotrophic conditions and as little as 1-2m in high concentration phytoplankton 

blooms or sediment laden waters (Aiken et al., 1992). This can be a critical 

limitation for sub-surface chlorophyll maxima.  

 

Other confounding factors relate to the effects of the water and atmosphere 

through which the signal passes. Algorithms must account for the bulk optical 

properties of the upper water column in order to extract relevant ocean colour 

products (Bukata et al., 1995) and optical effects due to gases and aerosols in the 

atmosphere must be addressed (Joint and Groom, 2000). 

 

The development of inverse modelling techniques for the interpretation of ocean 

colour measurements is an ongoing process. Ground truth data are required to 

better quantify confidence limits for ocean colour products, especially for coastal 

applications including benthic mapping.  
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Recognition of these limitations of satellite borne ocean colour data and the need 

for integrated assessments has led to emphatic recommendations for remote 

sensing to complement rather than entirely replace in situ observations (e.g. 

IOCCG, 2000). 

 

Chlorophyll and Primary Productivity 

Ocean colour sensors were primarily developed for their potential to monitor 

chlorophyll and primary production.  In general, chlorophyll-a can be measured 

more accurately in situ than from space (Engelsen et al., 2002) but remotely 

mounted sensors provide synoptic coverage over un-paralleled spatial scales and 

at frequencies unobtainable by any other sampling procedure.  

 

Chlorophyll pigments are among the principal ocean colourants, but estimates of 

chlorophyll concentrations from satellite data are subject to the non-uniform 

distribution of chlorophyll concentration with depth. Furthermore, the non-linear 

relationship between photosynthetic primary production and photosynthetically 

available radiance can confound estimations of primary productivity.  

 

Despite these problems, good estimates of open ocean primary production can be 

obtained and it is possible to estimate phytoplankton primary production for 

coastal waters by using algorithms which take local water characteristics into 

account (e.g. Bukata et al., 1995).  Standard algorithms for estimating water 

column primary production are based on photosynthesis-irradiance relationships 

which rely on remote sensed chlorophyll-a, light attenuation and estimated surface 

irradiance. These estimates of primary production are extremely sensitive to light 

attenuation by substances other than phytoplankton (Platt et al., 1988) which can 

be problematic in coastal waters where high levels of suspended sediments and 

dissolved organic matter may be present.  Furthermore, remotely sensed surface 

chlorophyll concentrations must be extrapolated to vertical chlorophyll profiles in 

order to estimate primary production.  Historical in situ data, or supplementary sea 

surface temperature data, or physical modelling of mixed layer depths are usually 

used to extrapolate to chlorophyll profiles (Parslow et al., 2000). 
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Optically Complex Coastal Waters (Case 2 Waters) 

Initial applications of ocean colour data focused on open ocean systems (Case 1 

Waters) but with improved sensors, interest has focused on applications in coastal 

waters which are optically more complex (Case 2 Waters).  

 

Unfortunately, the degree of optical complexity of a natural water body is, in 

general, directly related to its proximity to land masses (Bukata et al., 1995). In 

particular, coastal waters contain a variety of absorbing and scattering centres due 

to distributions of dissolved organic matter, suspended matter and air bubbles.  

Algorithms continue to be developed to improve both atmospheric corrections and  

chlorophyll-a estimates for Case 2 Waters. For instance, early atmospheric 

correction algorithms for open ocean (Case 1) waters assumed zero water leaving 

radiance from red or near infra-red wavelengths; these wavebands were used 

together with a prescribed aerosol reflectance spectrum to extrapolate and remove 

aerosols effects.  However, the assumption of negligible near infra-red water 

leaving radiance breaks down for Case 2 waters. Additional wave bands and new 

algorithms have overcome some of these added complexities (e.g. Ruddick et al., 

2000) but further scope remains for improvements. 

 

The International Ocean Colour Coordination Group (IOCCG) reviewed 

algorithm development for Case 2 waters (IOCCG, 2000). The limited number of 

wavebands on CZCS did not allow the development of elaborate multi-waveband 

algorithms required for optically complex coastal waters. Significant advances 

have been made with the advent of the latest generation of satellite mounted ocean 

colour sensors and associated algorithm development.  However, quantitative 

remote sensing of Case 2 waters will remain challenging because it is 

fundamentally a multivariable, non-linear problem. Accuracy of remotely sensed 

products will improve as the inherent optical properties of coastal waters are 

better understood.  The development of inverse modelling techniques for coastal 

regions requires precise multispectral radiances, with contemporary optical and 

concentration measurements of the water constituents (Doerffer et al., 1999).  

IOCCG (2000) identified a general trend in Case 2 algorithm approaches towards 

model based techniques based on the first principles of ocean optics rather than on 
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purely empirical approaches. Regional algorithms, optimised for local conditions, 

were found to perform well compared to global algorithms.  Considerable scope 

exists for integration of regional or special case algorithms within an overarching 

branching algorithm.  

 

IOCCG have emphasised a need for further work to ensure that error information 

is routinely available to avoid inappropriate application of remotely sensed data.  

The accuracy and precision of remote sensed products varies over conditions and 

concentrations due to the non-linearity of the system and the extreme ranges in the 

concentrations of individual components that contribute to ocean colour.  Error 

estimates can be obtained from sensitivity analysis (models) and comparisons 

with in situ data recognising that there may be a mismatch in temporal and spatial 

scales of in situ data. 

 

Environmental Issues and Applications 

Satellite ocean colour imagery can provide cause and effect indicators at 

appropriate time and space scales for assessment and management of coastal 

systems (Parslow et al., 2000).  Satellite mounted ocean colour sensors provide 

complete global coverage, unencumbered by political and military sensitivities 

which can limit other observing systems, such as aerial photography. Potential 

and actual applications of ocean colour products have been categorised by issue or 

sector - see Table 3. The focus in this chapter will be on the top five issues in 

Table 3 because relevant ocean colour products are well established and freely 

available (e.g. MODIS and research applications using SeaWiFS).  Published 

applications of data from more recent satellite scanners such as COCTS, MERIS 

and MODIS-aqua are less numerous than those from SeaWiFS, although 

recognised applications are equally varied (Doerffer et al., 1999). 
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Table 3: Environmental and management issues served by remote sensed 
products* 

Issues Key 
Products** 

global change and regional biogeochemical cycles 
The fundamental dynamics of coastal ecosystems and their role in 
the global carbon cycle will continue to change due to the  
cumulative effects of: climate induced changes to sea level, upper 
ocean temperatures and storm activity/erosion; coastal habitat 
change; fresh water impoundments; nutrient loading to coastal 
waters from catchments, sewage and atmospheric sources; and, 
over fishing. Changes need to be monitored, understood and where 
possible managed. 

Chlor 
ProductionW 
Dynamics 
 

eutrophication 
Excessive nutrient loadings from catchment and point sources can 
increase algal biomass and change species composition often 
favouring nuisance algae. 

Chlor 
 

harmful algal blooms 
Evidence suggests worldwide increase in incidence of harmful algal 
blooms over the last few decades (Anderson, 1995) possibly due to 
anthropogenic nutrient loadings, changed flushing regimes and 
introduced exotic species which can threaten wild and cultivated 
fisheries and tourism. 

Chlor 
Pigment/type 
 

impacts of catchment activities on estuarine and coastal waters  
Agriculture, forestry, mining, dams, irrigation schemes and  
urban/industrial development can change patterns of freshwater, 
sediment and nutrient and pollutant delivery and thus impact on 
coastal waters. 

Light 
Chlor 
SS 

wild fisheries 
Effective management of fisheries requires an ecosystem approach 
which in turn requires development of understanding and tools 
relating to many of the above. 

Light 
Chlor 
Pigment/type 
Dynamics 

aquaculture 
The rapidly growing aquaculture industry needs appropriate siting 
and monitoring of environmental impacts of, and on, the industry: 

Macroalgae culture depends on water quality including light 
attenuation 
Shellfish culture depends on phytoplankton biomass and 
composition (including harmful algae), and particle bound 
contaminants 
Crustacean/fish ponds are typically highly eutrophic so 
interactions with adjacent waters can be problematic 
Fish cage culture represents a large source of recycled nutrients 
but requires high water quality and is vulnerable to harmful algal 
blooms and anoxic sediments and bottom waters.  

Light 
Chlor 
Pigment/type 
Habitat 
ProductionW 
ProductionB 
SS 
Dynamics 
 

maritime operations 
Navigation, shipping, diving and hazard detection 

Light 
Habitat 
Dynamics 

impacts of coastal development on coastal habitats and changes in 
flushing rates 
Urban/tourist development, port/harbour development, dredging 

Light 
Habitat 
SS 
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and outfalls can disturb or remove critical habitats, remobilise 
sediments and pollutants and change circulation patterns 
conservation 
Effective conservation requires an understanding of the spatial and 
temporal patterns of environmental forcing and the dynamical 
response of the marine ecosystem. 

all 

tourism 
Healthy coastal environments are critical in attracting visitors 
especially in high conservation areas which in turn can be 
threatened by tourist development. 

Light 
Chlor 
SS 

integrated coastal zone management  
Issues and uses of remote sensed data (above) interact strongly 
through coastal ecosystems.  Core and derived remote sensed 
products contribute to assessments and a predictive understanding 
that will facilitate integrated management. 

all 

* based on Parslow et al. (2000)  
** Key Products relate to Table 2. 
 

Benthic habitat mapping requires spatial and spectral resolutions typically 

restricted to commercial airborne scanners and experimental satellite mounted 

hyperspectral scanners which are beyond the scope of this chapter.  Green et al. 

(2000) provide general practical guidance on reliability, accuracy and cost of a 

wide range of remote sensing products, including habitat mapping with a focus on 

tropical coastal management.   

 

The examples that follow serve to illustrate the spectrum of existing and potential 

applications of remote sensed ocean colour data.  These applications are 

considered here: at the global scale (hundreds to thousands of kilometres) where 

emphasis has been on climate change and biogeochemical cycles; at the scale of 

regional seas (many tens to hundreds of kilometres) where mesoscale systems and 

processes have been investigated; and, within the coastal zone (scales of several to 

many tens of kilometres) where the effects of human activity on ecosystem health 

are often most apparent.   

 

Global scale phenomena - biogeochemical cycles, climate change and El Niño 

Southern Oscillation 

 

Early CZCS data revealed significant differences between northern and southern 

hemispheres: in the northern regions spring blooms dominated distributions of 

chlorophyll concentration whereas, in the southern ocean, currents and prevailing 
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winds were the dominant factors explaining chlorophyll concentrations (Harris et 

al., 1993).  A comprehensive re-analysis of CZCS data with improved algorithms 

incorporating in situ data now permits quantitative analysis of trends in global 

ocean chlorophyll spanning two decades (Gregg et al., 2002).  CZCS (1979-1986) 

data have been reprocessed for comparison with SeaWiFS data (September 1997 

– present) processed using the same algorithms (Antoine et al., 2003; data 

available at http://www.rsmas.miami.edu/groups/rrsl/lpcm-seawifs-CZCS).  

 

The oceans contain approximately 85% of the carbon circulating in the earth’s 

biosphere and provide the main long term control of atmospheric CO2 and the 

strength of the natural ‘greenhouse effect’ (Aiken et al., 2000). Remotely sensed 

ocean colour has been used with models and other data to estimate carbon 

‘removal’ through the fixation of dissolved carbon by phytoplankton and its 

subsequent burial in sediment or export to deep ocean waters.  Such research has 

suggested that the global ocean is a major sink for fossil and biogenic carbon 

released to the atmosphere by human activities (Parslow et al., 2000) while 

coastal areas appear to act globally as a net source because rivers inject massive 

quantities of land derived carbon (Smith and Hollibaugh, 1993). However, there is 

significant variability between various coastal zones (Smith and Hollibaugh, 

1993) and through time (Kempe, 1995). 

 

Ocean colour was used to assess sequestration of carbon to depth following the 

first in situ iron fertilisation experiment in the region of intermediate and deep 

water formation in the Southern Ocean (Boyd and Law, 2001). Iron limitation of 

phytoplankton growth was confirmed during summer but SeaWiFs imagery 

together with modelling suggested no significant downward particulate export of 

the accumulated phytoplankton. Boyd and Law speculated that mass algal 

sedimentation may have been prevented by horizontal dispersion of high 

chlorophyll-a waters to adjacent waters. 

 

SeaWiFS has provided routine global chlorophyll observations since 1997 

capturing the response of ocean phytoplankton to major El Niño and La Niña 

events as well as observing interannual variability unrelated to these phenomena.   
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SeaWiFS data, such as those presented in Figure 1, revealed seasonal chlorophyll 

distributions across the surface waters of the world’s ocean as described by Gregg 

(2002).  High latitudes regions experience a very wide seasonal range of 

chlorophyll, with a prominent and large local spring/summer bloom and a large 

die-off in local winter.  Mid latitude regions exhibited much smaller seasonal 

differences, with local winter maxima. Chlorophyll patterns around India are 

associated with the northwest monsoon in December and the larger southwest 

monsoon in July (Gregg, 2002).  Elevated chlorophyll levels in the equatorial 

Atlantic correspond to maximum upwelling (Monger et al., 1997) while high 

levels during winter (e.g. December 1997) are associated with maximum 

discharge from the Congo River (Gregg, 2002).   

 

Figure 1:  Monthly mean SeaWiFS chlorophyll for December 1997 and July 1998.  
These observations span a major transition from El Niño to La Niña. Areas of the 
Arabian Sea failed SeaWiFS criteria due to aerosol effects in December 1997. 
(modified from Gregg, 2002). 
 

A major El Niño was underway in September 1997 when SeaWiFS was launched 

and continued until May 1998 when it was succeeded by a La Niña episode in the 

tropical Pacific. El Niño suppressed upwelling in equatorial Pacific resulting in a 

band of low chlorophyll just above the equator corresponding to the equatorial 

counter current (Figure 1). During the El Niño, abnormally high wind stresses in 

the eastern tropical Indian Ocean produced anomalous upwelling which resulted 

in high chlorophyll levels during December 1997. Re-establishment and 

intensification of upwelling conditions occurred in the equatorial Pacific when La 

Niña conditions developed. 
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A bloom developed rapidly during mid-1998 with a wave pattern centred on the 

equator culminating in the highest surface chlorophyll concentrations ever 

observed in the central equatorial Pacific, i.e. >1 mg m-3 (McClain et al., 2002).  

The magnitude and persistence of this bloom is self evident in the time sequence 

of estimated primary production shown in Figure 2.  These data pose as yet 

unanswered questions about the mechanism that caused the bloom and how it was 

maintained for so long. In this region, iron is assumed to be the primary limiting 

nutrient (e.g. Coale et al., 1996) although wind data appear to discount Ekman 

upwelling as a source of iron and atmospheric iron supply remains equivocal 

(McClain et al., 2002).  The persistence of the bloom and the apparent absence of 

a sustained source of iron suggest efficient retention within the surface layer and 

ineffective sedimentation over a few weeks or even months. 

 

 

Figure 2: Longitude-time plot of primary production (mg C m-2 day-1) based on 
OCTS and SeaWiFS monthly mean chlorophyll from McClain et al. (2002). 
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Recent research has focused on numerical modelling to investigate causal 

mechanisms and interrelationships of the variability observed in the ocean colour 

data.  For example, Gregg (2002) tracked the SeaWiFS record with a coupled 

physical/biogeochemical/radiative model of the global oceans.  Simulations 

suggested different phytoplankton responses of the Pacific and Indian ocean 

basins to El Niño: diatoms were predominant in the tropical Pacific during the La 

Niña, but other groups were predominant during El Niño – however, the opposite 

condition occurred in the tropical Indian Ocean.  

 

Other studies have established linkages to meteorological forcing. Follows and 

Dutkiewicz (2002) used SeaWiFS data to identify meteorological modulation of 

the spring bloom in the North Atlantic and to examine the implications of decadal 

changes on biological productivity with a simplified model; Yakov et al. (2001) 

related seasonal phytoplankton cycles to meteorological factors influencing water 

stratification of the water column.  

 

SeaWiFS data have also been used to develop and verify ocean general circulation 

models (OCMCs) which are critical in global warming assessments. For example, 

global monthly mean fields of the attenuation of photosynthetic radiation derived 

from SeaWiFS data have been used to investigate the importance of subsurface 

heating on surface mixed layer properties in OGCMs resulting in a marked 

increase in the sea surface temperature (SST) predictive skill of the OGCM at low 

latitudes (Rochford et al., 2002). 

 

SeaWiFS data have also been used together with UV irradiance at the ocean 

surface (remotely sensed via the Total Ozone Mapping Spectrophotometer) to 

investigate the potential ecological effects of ozone depletion via a model of 

seawater optical properties in the UV spectral region (Vasilkov et al., 2001). 

 

These studies are examples from a much larger body of work that has employed 

remote sensed ocean colour data to better understand global scale impacts 

resulting from human activities.  
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Regional seas – mesoscale processes and biological variability 

 

Ocean colour data have been crucial in relating mesoscale processes to continental 

shelf ecology through studies of frontal features (Armstrong, 1994), eddies 

(Bardey et al., 1999), upwelling zones (Sathyendranath et al, 1991; Barlow et al. 

2001), island wakes (Blain et al., 2001; Caldeira et al., 2002), current patterns 

(Lee et al., 2001), water mass distributions (Van Der Piepen et al., 1999; 

Karabashev et al., 2002 ; Gomes et al., 2000), and various water quality 

parameters.   

 

Research has increasingly focused on integration of various remote sensed and in 

situ data. For example, McClain et al. (2002) analysed chlorophyll concentrations 

derived from SeaWiFS together with winds (in part from the satellite mounted 

scatterometer SeaWinds), sea surface temperature distributions (from AVHRR) 

and bathymetry data to investigate upwelling phenomena off the west coast of 

Central America.  This region was known for strong upwelling and jets driven by 

winds that blow from the Atlantic through three narrow mountain passes 

(McCreary et al., 1989). Synoptic coverage of recent remote sensed data allowed 

elucidation of interactions between coastal upwelling jets and mesoscale eddies 

(McClain et al., 2002).  Figure 3 shows monthly average data for March 1999 

when all three upwelling regions were active.  High chlorophyll levels (>1 mg m-

3) extended many hundreds of kilometers offshore from the three mountain passes 

and were associated with strong offshore wind stress and cool surface waters (1-

3ºC contrast) consistent with jet-driven upwelling.  Large mesoscale eddies were 

spawned by these wind driven offshore jets (McClain et al.,2002).  
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Figure 3: Monthly mean SeaWiFS chlorophyll-a (mg m-3) and monthly mean sea 
surface temperature and wind stress vectors for March 1999. ‘P’ indicates location 
of mountain pass - modified from McClain et al. (2002). 
 

 

A similar multi-faceted study used a range of simultaneous remote sensed data to 

investigate interactions between flow fields and topography/bathymetry around 

Madeira Island in the Northeast Atlantic (Caldeira, et al., 2002).  AVHRR, CZCS 

and SeaWiFS data revealed: wind spiral vortices (Von Karman Vortex Street) in 

the lee of Madeira Island which served to expose the sea surface layer to intense 

solar radiation compared to cloud covered waters surrounding it; a warm water 

wake possibly associated with this solar heating (Figure 4); geostrophically 

balanced lee eddies spinning off both flanks of the island including cold core 

eddies associated with high productivity; localised upwelling and high 

productivity associated with an underwater ridge; and, evidence of the presence of  

a subtropical front at Madeira’s latitude which may influence dispersion.   
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Figure 4: AVHRR image showing island mass effects causing interrupted cloud 
cover and spiral vortices in the lee of Madeira Island, North East Atlantic 
(19/8/94). An AVHRR sea surface temperature image illustrates typical warm 
water island wake off Madeira Island (28/7/96) when the wind was north 
northeast. Modified from Caldeira et al. (2002). 
 

Semovski et al. (1999) used CZCS chlorophyll estimates together with AVHRR 

sea surface temperature data, AVHRR channel 1 data as a turbidity indicator, in 

situ data and modelling to describe the three dimensional ecosystem structure of 

mesoscale features in Baltic coastal waters. 

 

A number of studies have used remote sensed ocean colour to monitor population 

dynamics of organisms dependent on phytoplankton. For example, early CZCS 

studies by Shannon (1985) related ocean colour to phytoplankton and pelagic fish 

distributions. Jaquet et al. (1996) showed that the distribution of sperm whales 

was strongly correlated with ocean colour (chlorophyll) and identified the time 

(and space) lag between peak chlorophyll concentration and peak sperm whale 

density with the coefficient of correlation increasing with increasing spatial 

scales.   Polovina et al. (2000) identified an association between loggerhead 

turtles and frontal zones through analysis of remote sensed sea surface 

temperature, chlorophyll and geostrophic currents; this conclusion was offered to 

explain high incidental catches of loggerhead turtles when long line fishing 

coincided with frontal zones off Hawaii.    

 

Understanding seasonally high primary productivity can be of great importance in 

some regions.  For example, spring blooms in the Barents Sea provide a strong 
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pulse of energy through the ice-associated and pelagic marine food webs which 

directly influences the abundance of upper trophic levels including large marine 

mammal and sea bird populations (Engelsen et al., 2002). Empirical formulae 

developed by Engelsen et al. (2002) provided estimates of integrated water 

column phytoplankton biomass using SeaWiFS data which held provided that 

light was the limiting factor.  

 

Together these studies show that a great deal of mesoscale variability can only be 

observed using satellite remote sensing. 

 

Coastal zones - human activity and ecosystem health  

The feasibility of using remote sensing techniques for monitoring water quality in 

inland and coastal waters was initially limited by their complex optical properties 

(e.g. Kondratyev et al., 1998), but advances in sensors and algorithms deliver a 

means to discriminate the three main components that account for the optical 

complexity of Case 2 waters: phytoplankton, suspended sediments and dissolved 

organic matter.  These same components may be used for assessing WATER 

QUALITY, ALGAL BLOOMS and FISHERIES in the coastal zone.   

 

WATER QUALITY 

Ocean colour (SeaWiFS data) supported by in situ observations has been used to 

investigate outpourings from rivers and coastal catchments.  For instance: Mertes 

and Warrick (2001) found that disproportionately large plumes with high 

concentrations of suspended solids emanated from small coastal Californian 

catchments compared to large rivers; Siddorn et al. (2001) found an inverse 

relationship between salinity and yellow substances that could be used to 

determine the distribution of the Zambezi River plume; Del Castillo (2001) 

mapped the intrusion of the Mississippi River plume in the West Florida Shelf; 

and Andrefouet et al. (2002) found that river plumes off Honduras may extend to 

offshore coral reefs, indicating connectivity of these reefs with the mainland. 

 

Turbid plumes originating from five coastal catchments in south east Australia 

after a high rainfall event are shown in Figure 5 (from Lee and Pritchard, 1999). 

In situ observations during this event confirmed low ocean chlorophyll levels 
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(<1g/L) thus verifying that the plume images were due to terrigenous matter: the 

ocean colour scale corresponded to log ranges in measured total suspended 

sediments.  A similar logarithmic relationship was found for the Gironde turbid 

plume in the Bay of Biscay  (Froidefond et al., 2002). Spatial analyses were used 

in the Australian example to estimate the areal extent of the flood plumes as 

tabulated in Figure 5. The Hunter plume carried an estimated sediment load ~7000 

tonnes based on remotely sensed areal extent and direct observations along 

offshore transects which indicated a plume layer thickness of ~1m out to 10 km 

from the entrance. Significant fallout and dispersion was inferred from the 

difference between the load carried within the plume and the discharge load 

estimated at the river mouth. 

 

Woodruff et al. (1999) suggested that photosynthetically available radiation 

(PAR) attenuation may be estimated from long term AVHRR satellite data sets as 

a measure of turbidity: they developed a robust relationship between reflectance 

observed by AVHRR and light attenuation in Pamlico Sound estuary in North 

Carolina, USA although consistent relationships between reflectance and 

suspended sediment concentrations were elusive due to changing sediment 

characteristics. 

 

Most studies focus on biological responses (of phytoplankton) to water quality but 

Budd et al. (2001) focused on water quality responses to biological activity (filter 

feeding). AVHRR reflectance imagery indicated distinct and persistent increases 

in water clarity after zebra mussels (Dreissena polymorpha) were discovered in 

1991 in Saginaw Bay, Lake Huron, USA. 

 

Few if any investigations of sewage plumes were found in the international 

scientific literature because, for satellite mounted ocean sensors, spatial scales are 

typically too coarse to resolve sewage plumes.  However, untreated sewage 

discharged from Iraq via a man-made river was implicated as the source of 

pollution and algal blooms evident in SeaWiFS imagery off the shores of Kuwait 

in the Persian Gulf (Antonenko et al., 2001). 
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Figure 5: SeaWiFs image for 11 August 1998 indicated plumes emanating from 
the Hunter, Hawkesbury, Pt. Jackson, Botany Bay and Shoalhaven catchments in 
New South Wales, Australia (modified from Lee and Pritchard, 1999). 

Hunter

Hawkesbury

Pt. Jackson

Botany Bay

Shoalhaven

11 August 1998

Catchment Plume km2

Hunter 980
Hawkesbury 805
Pt. Jackson 158
Botany Bay 74
Shoalhaven 1069

 

 

ALGAL BLOOMS 

The ability to track harmful algal blooms from space can provide coastal 

communities and seafood harvesting industries with warnings of approaching 

blooms (Antonenko et al., 2001).  

 

Algorithms are currently unavailable to distinguish between most types of 

phytoplankton blooms although SeaWiFS data have been used together with field 

data to monitor and predict specific harmful algal blooms (e.g. Karenia brevis 

blooms in the Gulf of Mexico – Stumpf, R.P., 2001).   

 

Some bloom types have distinctive ocean colour signatures which allow them to 

be recognised from SeaWiFS data.  Examples are the highly reflective 

coccolithophores which can have a profound effect on the ecosystem mainly due 

to extreme reductions in water clarity (Vance et al., 1998) – see Figure 6 - and, 
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Trichodesmium erythraeum due to its distinctive spectral response (Subramaniam 

et al., 2002).  Indeed SeaWiFS-derived Trichodesmium chlorophyll concentration 

has been used for remote estimation of nitrogen fixation by Trichodesmium (Hood 

et al., 2002). 

 

Opportunities exist to use multiple sensors to monitor algal blooms: Lin et al. 

(1999) attempted to assess the relative performance of nine different types of 

satellite mounted ocean colour and high resolution visible sensors to monitor algal 

blooms while Rud and Gade (2000) have explored the benefits of using multi-

sensor data (AVHRR, SeaWiFS, Landsat Thematic Mapper and ERS Synthetic 

Aperture Radar) for algal bloom monitoring.  

 

 

 

Figure 6: Coccolithophore bloom off Cornwall, United Kingdom, on 18 May, 
1998.  True colour (Modular Optoelectric Scanner - MOS) from Deutsches 
Zentrum für Luft- und Raumfahrt, DLR (German Aerospace Centre). 
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The utility of remote sensed data for diagnostic and prognostic assessment of algal 

blooms is demonstrated in the Case Study later in this chapter.  

 

FISHERIES  

SeaWiFS data were used to demonstrate the relatively clear, pigment poor, 

surface waters of the Mediterranean with a generally increasing oligotrophy 

eastwards. Turley et al. (2000) suggested that the combination of low primary 

production and bacterial dominance of secondary production in the east could 

account for the low fisheries production, the low vertical flux of material and low 

biomass of benthic organisms in this region.   

 

At a finer scale of resolution, Agostini and Bakun (2002) used mean seasonal 

satellite-sensed ocean colour, wind data and bathymetry to identify potentially 

favourable fish reproductive habitats in the Mediterranean based on nutrient 

enrichment, larval food distributions and local retention of eggs and larvae.  

 

Platt et al. (2003) used ocean colour data from the periods 1979-81 (CZCS), 1997 

(POLDER) and 1998-2001 (SeaWiFS) to demonstrate that the survival of larval 

fish (haddock - Melanogrammus aeglefinus) off the eastern continental shelf of 

Nova Scotia, Canada, depends on the timing of the local spring bloom of 

phytoplankton.  They compared an index of survival (the year-class size at age 1 

year divided by the spawning stock biomass) with anomalies in the timing of 

spring blooms (the difference in bloom timing from the mean timing for the 

series).  89% of the variance in larval survival could be accounted for by variation 

in the timing of the spring bloom. Early spring blooms favoured high survival 

rates, possibly due to greater overlap of spawning and bloom periods.  Direct 

evidence for a putative trophic link such as this is an important factor in analysis 

of dwindling fish stocks.   
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Routine synergistic analysis of satellite borne ocean colour and sea surface 

temperature data sets is currently possible (eg. Solanki et al., 2001) for targeting 

fishing efforts and monitoring algal bloom development. In the future more 

frequent coincidence of data from existing and future sensors will deliver synergy 

between a greater range of remote sensed data including synthetic aperture radar 

data and data from thermal and optical satellite sensors as demonstrated by 

Ufermann et al. (2001). 

 

Parslow et al. (2000) suggest that ocean colour data could best contribute to 

integrated coastal management via diagnostic and prognostic models that also 

assimilate in situ observations and supplementary remote sensed data (e.g. sea 

surface temperature via AVHRR, sea surface height via TOPEX/POSON, and 

winds via GEOSAT). At present, integration of ocean colour data for the coastal 

zone with corresponding physical/biogeochemical/radiative models remains a 

challenge due to the optical complexity of Case 2 waters and the requirement for 

higher spatial resolution compared to open ocean approaches.  

 

 

Case study: marine algal blooms in coastal waters off southeast Australia 

Management Issues 

Eutrophication has been recognised as a serious threat to the health of coastal 

ecosystems both globally (e.g. Pelley, 1998) and within Australia (e.g. Zann, 

1995). Phytoplankton represent the floating pastures of the ocean so changes in 

phytoplankton type and abundance due to eutrophication may profoundly affect 

the food web.  Furthermore, some evidence exists for a worldwide increase in the 

occurrence of harmful algal blooms (Anderson, 1995; Paerl, 1997). Some 

biotoxins selectively kill fish by inhibiting their respiration while others affect 

humans generally via seafood. 

 

Visible and/or harmful algal blooms have the potential to affect tourism in New 

South Wales (NSW), Australia, which is focused on coastal regions and is worth 

more than $A6 billion p.a. In NSW coastal waters, the magnitude and frequency 

of ‘red tides’ of the non-toxic dinoflagellate Noctiluca scintillans appear to have 

increased during the last two decades (Ajani et al., 2001a).   
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Prior to the 1990’s, N. scintillans appeared as a relatively minor component of the 

phytoplankton community in NSW coastal waters (Dakin and Colifax, 1933), 

blooming infrequently (Hallegraeff, 1995; Ajani et al., 2001b).  Since 1990, most 

‘red tides’ in NSW have been due to Noctiluca scintillans (Figure 7) and in 

weekly sampling at Port Hacking off Sydney Ajani et al. (2001a) found  N. 

scintillans in most samples. Major visible blooms of Noctiluca scintillans have 

aroused community and media concern in recent years such as that during January 

1998 (see below). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Spectacular Noctiluca scintillans bloom off the popular tourist beach at 
Manly near Sydney, New South Wales, Australia during 1997. Frontal processes 
(local convergence) accumulated Noctiluca which was then fragmented by the 
wind into bright red streaks directed shoreward (windrows). Photo courtesy of 
Beachwatch, NSW EPA. 
 

 

The NSW aquaculture industry, currently worth $A 42-45 million pa, is projected 

to increase to $A 250 million pa by 2010.  Phytoplankton have been implicated in 

seafood contamination and fish kills at different times elsewhere in NSW coastal 

waters (Ajani et al., 2001b). For example, Dinophysis acuminata, a producer of 

diarrhetic shellfish poisoning (DSP), was implicated in the contamination of pipis 
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(edible surf clam, Donax sp) at Ballina ~700km north of Sydney (December 1997) 

and Newcastle just south of Port Stephens (February 1998) with a total of 82 cases 

of gastroenteritis in consumers.  

 

Regional Algal Coordination Committees have been established by the state 

government to manage responses to reports of algal blooms while seafood 

(biotoxin) issues are addressed through a Pipi Biotoxin Management Plan and a 

SafeFood Marine Algal Biotoxin Contingency/Management Plan.  The Pipi 

Biotoxin Management Plan requires focused routine monitoring of phytoplankton 

in water samples while other plans are responsive to alerts (e.g. visible algal 

blooms).  Prognostic and diagnostic tools would assist risk management of algal 

blooms relating to both recreational and seafood issues. 

 

Developing a predictive understanding using remote sensed data 

Natural upwelling/uplifting have been identified as the principal driver of marine 

(offshore) algal blooms in NSW coastal waters despite significant sewage inputs 

near major urban centres (Hallegraeff and Reid, 1986; Ajani et al., 2001a; 

Pritchard et al., 2003).  This finding together with an understanding of 

upwelling/uplifting processes provides an opportunity to use remote sensed 

products together with meteorological data to predict periods of increased risk of 

marine algal blooms. 

 

The combination of EAC activity on the shelf break (enhancing stratification and 

bottom stress) and upwelling favourable winds promotes upwelling (Tranter et al., 

1986; Oke and Middelton, 1999, 2000; Pritchard et al., 2003). The thermal 

signatures of the East Australian Current and associated eddies are readily 

identifiable from remotely sensed sea surface temperature (via NOAA/AVHRR).  

 

Most slope water intrusions that precede phytoplankton blooms on the NSW 

continental shelf do not outpour at the surface although in many instances surface 

water temperatures are depressed and can be identified on AVHRR images 

(Cresswell, 1994; Pritchard et al., 1999). Phytoplankton responses were found to 

lag several days behind intrusions of nutrient rich slope water so AVHRR images 

can provide early indications of risk of algal blooms. 
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Companion synoptic ocean colour can indicate oligotrophic EAC waters and 

monitor phytoplankton responses through time due to nutrient enrichment and 

cycling, and through space due to advection. 

 

The vast majority of ‘red tide’ (visible) blooms in NSW marine waters have been 

due to either Noctiluca scintillans or Trichodesmium erythraeum.  Remote sensed 

data provide a predictive and diagnostic capability as illustrated by the events 

described below. 

 

Noctiluca Bloom – January 1998 

AVHRR SST (Figure 8) and SeaWiFS ocean colour (Figure 9) for 11-12/1/98 

identify the warm oligotrophic East Australian Current waters diverging from the 

coast off Port Stephens with cool water and high phytoplankton activity on the 

inside edge of this southward EAC flow. Meteorological observations indicated 

upwelling favourable winds during early and mid January 1998 (Lee et al., 2001). 

Investigative modelling has shown a tendency for intrusions of cool nutrient rich 

slope water onto the shelf associated with the changing shelf configuration to the 

north of Port Stephens (Oke and Middelton, 2000).  More localised phytoplankton 

activity near Jervis Bay (12/1/98) is associated with a bathymetric protrusion 

which has also been shown to favour upwelling (Gibbs et al., 1997).  A similar 

scenario appears to be in operation off Eden on the NSW south coast where a 

mesoscale anticyclonic eddy has intensified the divergent flow from the coast. 

 

Regional southward flows on the shelf are indicated by wake effects in the lee of 

most major changes in the orientation of the coastline (SeaWiFS 12/1/98).  Time 

series of ocean colour imagery provided greater resolution of flow features than 

AVHRR SST imagery although ocean colour cannot be regarded as a 

conservative tracer. 

 

SeaWiFS imagery for 20/1/98 indicates the formation of a cyclonic (clockwise) 

back eddy inshore of the EAC front in the lee of a major change in shelf 

orientation near Port Stephens.  Baroclinic instabilities, such as this eddy also 

favour upwelling and tend to be associated with along-shelf topographic 
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variability such as that seen near Port Stephens (and Jervis Bay). Cyclonic eddies 

promote localised upwelling (‘Ekman Pumping’) because bottom stress associated 

with the clockwise rotation promotes convergence of bottom waters (towards the 

centre of the eddy) and, consequent upward transport together with divergence at 

the surface.  Intense phytoplankton activity in this re-circulation cell, evident in 

Figure 9 (20/1/98), is consistent with further localised upwelling.  The cell also 

tends to isolate nutrient rich waters, incubating phytoplankton which leaks 

southward with the regional flow on the shelf.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Sea surface temperature (SST) image showing separation of the East 
Australian Current from the shelf off Port Stephens (200m isobath shelf break 
indicated). Image courtesy of CSIRO Marine Laboratory. 
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In situ observations of temperature and chlorophyll-a throughout the water 

column off Sydney (Figure 10) support the notion of a remote source – that is, 

near simultaneous arrival of both slope water (nutrients to the euphotic zone) and 

phytoplankton with no evidence of a lag corresponding to expected phytoplankton 

response times.  The notion of a remote source is consistent with indications of a 

maturing Noctiluca population with increasing southerly extent (Murray and 
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Suthers, 1999); modelling suggesting propensity for uplifting of slope water north 

of Port Stephens and subsequent southward transit (Oke and Middleton, 2000); 

and previous observations of EAC induced upwellings being advected southward 

as a plume by ambient flows (Cresswell, 1994). 

 

In situ observations (Figure 10) were important in verifying SeaWiFS 

chlorophyll-a distributions with respect to the vertical position of chlorophyll-a 

maxima.  CTD data (not shown) along the transect between PH50 and PH100 on 

15/1/98 indicated prominent shoreward tilting of isotherms, consistent with the 

vertical distribution of chlorophyll-a at PH100 due to the upwelling forcing.  

Figure 10 shows phytoplankton blooms were clearly within the upper mixed layer 

and thus amenable to mapping by satellite borne ocean colour scanners.  In situ 

data complements remote sensed data by highlighting the role of thermal structure 

in controlling the vertical distributions of phytoplankton and raising questions 

about the relative importance of temperature, nutrient and light limitation and the 

effects of density stratification. 

 

Widespread visible blooms (“red tides”) of the heterotrophic dinoflagellate 

Noctiluca scintillans were recorded from 22 January, consistent with the end 

stages of the bloom when senescent cells become buoyant and accumulate along 

surface zones of convergence (Ajani et al, 2000b).  

 

Clearly, remote sensed ocean colour together with SST supported by some in situ 

observations provide the means to forecast algal bloom risk and diagnose 

initiation sites, which in this case were distant from major anthropogenic nutrient 

discharges off Sydney. Indeed during the summer of 1998 all major visible 

blooms reported in the NSW marine waters were preceded by predictions of high 

algal bloom risk based mainly on remote sensed data. 
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Figure 9: SeaWifS chlorophyll-a estimates during January 1998 indicate 
phytoplankton accumulations along fronts in the lee of major changes in the 
orientation of the coastline especially along the inner edge of the East Australian 
Current south of Port Stephens which ultimately formed a plankton-rich cyclonic 
eddy on 20/1/98.  Images courtesy of CSIRO Marine Laboratory. 
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Figure 10: Contoured time series CTD temperature data (ºC) and in situ 
chlorophyll-a data (μg/L) off southern Sydney at PH50 (2km offshore in 55m of 
water) and chlorophyll-a at PH100 (5km offshore in 105m of water) - based on 
sampling at 10m depth intervals on 8,13,15 & 20 January and 3 & 12 March 1998.  
SeaWiFS images were obtained for dates indicated by white stripes. 
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Trichodesmium Bloom – March/April 1998 

A large Trichodesmium erythraeum bloom developed at Batemans Bay on the 

south coast of NSW in early April 1998.  The cyanobacterium T. erythraeum is a 

common ‘red tide’ organism in NSW coastal waters transported there from 

northern tropical waters by the East Australian Current. The annual distribution of 

this species monitored off Port Hacking shows peak concentrations in the coastal 

waters off Sydney in mid-April when surface waters were >~22oC (Ajani et al., 

2001a).  

 

One week before the bloom was reported, AVHHR imagery for 28th March 1998 

showed unusually warm water throughout the NSW south coast area associated 

with a strong manifestation of the EAC (Figure 11). Corresponding SeaWiFS data 

showed low levels of chlorophyll-a within the EAC filament but high levels of 

productivity accumulated and entrained along the inner edge of EAC water.   The 

zone of high productivity moved southward to Batemans Bay (5 April 1998) 

where the resulting Trichodesmium erythraeum bloom caused oysters from the 

estuary to be withdrawn from markets over Easter. Toxicity testing using a mouse 

bioassay technique revealed a present, but unknown, toxin. Previous reports 

(Hahn and Capra, 1992; Endean et al. 1993) also suggest that T. erythraeum can 

produce compounds with mouse intraperitoneal potency but this requires further 

investigation. No human health impacts were reported.   

 

This case study provides a powerful example of the ability of remote sensed 

synoptic data to diagnose the origins and suggest the likely prevalence of algal 

blooms. 

 

Conclusions 

The purpose of this chapter was to demonstrate the utility of remote sensed ocean 

colour data in order to expose opportunities for future marine ecosystem 

assessments. 

 

Remotely sensed data have been critical in developing mechanistic connections 

between meteorological/climate change, biological productivity, carbon 

sequestration and thus oceanic ecosystem health.  Satellite mounted ocean colour 
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sensors deliver a range of products including chlorophyll estimates that provide a 

synoptic (and global) view of phytoplankton distributions in near real time. A 

myriad of applications to coastal ecosystems have been spawned by the current 

generation of ocean colour sensors. Together these studies show that a great deal 

of mesoscale variability can only be observed using satellite remote sensing.  

 

The main limitations in the use of ocean colour are cloud cover, confounding 

optical effects and limited penetration in cases where maximum phytoplankton 

biomass occurs at depth. Algorithms for open ocean (Case 1) waters are 

reasonably robust while algorithms for coastal (Case 2) waters are less reliable.   

Precise multispectral radiances, with contemporary optical and concentration 

measurements of the water constituents are required to further develop and 

validate these algorithms.   

 

There is a concerted effort to correlate the data collected by different scanners to 

realise the combined coverage offered by various ocean colour sensors currently 

in orbit. Furthermore, new algorithms have been developed to provide greater 

consistency between new and archived ocean colour data in order to investigate 

trends in global ocean chlorophyll since the 1980’s.  

 

Most current research using ocean colour data includes synergistic analysis of a 

range of remote sensed and in situ data often through modelling approaches.  

Ocean colour data are increasingly applied for initialisation, assimilation, 

calibration and verification of physical/biogeochemical models. 

 

Further developments are expected for monitoring marine primary production 

(and its role in sequestering atmospheric carbon), algal blooms, impacts of human 

activities on coastal waters, and to support wild and aquaculture fisheries.  

Opportunities exist and will continue to emerge for synergistic analysis of 

multiple synoptic data sensed from space.  

 

Free and open access of ocean colour data such as that from NASA’s MODIS 

sensors and access to merged data products promises to launch a new era of 
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accelerated ocean colour research with broad applications in ecosystem 

assessments. 
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Figure 11:  East Australian Current waters depicted by warm sea surface temperature (SST in °C) carried Trichodesmium erythraeum with high 
chlorophyll waters on the EAC front to Batemans Bay (depicted by SeaWiFS chlorophyll-a in mg/m3) where oyster fisheries were disrupted during 
Easter 1998.  Images courtesy of CSIRO Marine Laboratory. 
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5.4 Summary and Outcomes 
 

This chapter has shown that while AVHRR SST observations are well established, 

there is promising scope for significant improvement in remotely sensed ocean 

colour products in the optically complex wasters of the coastal boundary layer. 

 

 A great deal of mesoscale variability can only be observed using satellite 

remote sensing of ocean color especially when combined with AVHRR 

SST and other observations. 

 Satellite ocean color imagery can provide cause-and-effect indicators at 

appropriate time and space scales for assessment and management of 

coastal systems. 

 NSW coastal boundary layer features and processes have been elucidated 

by satellite remote sensed observations (in case studies). 

 Continuous SeaWiFS ocean colour time series data have been available 

since August 1997 although SeaWiFS has exceeded its mission life; 

MODIS (Aqua and Terra) ocean colour time series data are freely 

available since late 1999 (Dec 1999 for MODIS Terra; May 2002 for 

MODIS Aqua); and, various other satellite ocean colour data are available 

with various degrees of accessibility/cost. 

 Key limitations include cloud cover, confounding optical effects, 

especially for the optically complex coastal boundary layer, and limited 

penetration in cases where maximum phytoplankton biomass occurs at 

depth.   

 In NSW optical depths may vary from 1-2m in extremely sediment 

ladened stormwater plumes to >20m in oligotrophic EAC waters. 

 Quantitative remote sensing of Case 2 waters, such as the NSW coastal 

boundary layer, remains challenging. 

 The accuracy and precision of remote sensed products varies over 

conditions and concentrations due to the non-linearity of the system and 

the extreme ranges in the concentrations of individual components that 

contribute to ocean colour.   

 Regional algorithms, optimised for local conditions, perform well 

compared to global algorithms but no NSW regional algorithms are 
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 The development of more sophisticated inverse modelling techniques for 

NSW coastal waters (& other coastal regions) requires precise 

multispectral radiances, with contemporary optical and concentration 

measurements of the water constituents. 

 Remote sensed observations complement (not replace) in situ 

observations. 

 Satellite remote sensing is a key tool to understanding the broad spatial 

extent (> 1km resolution) and temporal variance (~1day resolution) of 

coastal boundary layer features.  

 Remote sensed ocean colour together with SST supported by some in situ 

observations provide the means to forecast algal bloom risk and diagnose 

initiation sites.  

 



6 SYDNEY: A CASE STUDY OF OUTER CBL DISPERSION 

6.1 Introduction 
 

The continental shelf off Sydney section is similar in width (~30km) to that off 

Coffs Harbour (Figure 6.1) although it slopes more steeply to a depth of over 

100m less than 10km from the coast. Furthermore, Sydney lies south of the EAC 

separation point, in the EAC eddy field.   

 

Sydney (Port Hacking) continental shelf profile 

 
Coffs Harbour (Boambee Beach) continental shelf profile 

 
Figure 6.1 Cross shelf profiles off Sydney and Coffs Harbour (WNW-ESE). Boxes depict 
the principal focus of each case study presented in this thesis. Depths in metres and 
distances in kilometres. 
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Unlike Coffs Harbour, most of Sydney’s sewage effluent is discharged beyond the 

direct influence of coastal bays and headlands of the Inner CBL.  Nevertheless the 

dynamic physical processes that dominate these waters are heavily influenced by 

interactions with the continental shelf, through bottom stress, and the physical 

constraint imposed by the coastline.  As such coastal boundary layer effects in the 

mid shelf region off Sydney are less variable over smaller spatial scales and more 

readily investigated by exploring temporal patterns of variability associated with 

larger scale processes. 

 

This Chapter focuses mostly on the potential impacts of the single largest 

pollutant discharge to Sydney’s coastal waters; that is, the ~1000 ML/day of 

nutrient rich sewage effluent that is discharged to coastal waters via Sydney’s 

three deepwater outfalls. Sydney’s sewage effluent management strategy is based 
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on the premise that the current levels of environmental impact are acceptably low.  

Huge investment decisions would be required to increase levels of treatment 

(from less than primary to secondary or tertiary) or to develop alternatives to 

ocean discharge.  Clearly there were management as well as scientific imperatives 

for the research reported in this chapter. 

 

As outlined in Chapter 2, a five year multi-disciplinary Environmental Monitoring 

Program (EMP) in the 1990’s measured the environmental performance of 

Sydney’s deepwater outfalls against a wide range of criteria related to impacts on 

marine ecosystems and on human utilisation of marine resources (Philip and 

Pritchard, 1996; Pritchard et al., 1996; and, Pritchard, 1997 in Appendix 3 of 

this thesis).  Residual concerns at the conclusion of this major study included 

possible nutrient enrichment of coastal waters and its effect on phytoplankton 

growth (algal blooms).  This concern was heightened by a dramatic increase in the 

number of visible blooms of the heterotrophic dinoflagellate Noctiluca scintillans 

beginning at about the time that Sydney’s deepwater outfalls were commissioned 

(Ajani, Hallegraeff and Pritchard, 2001; Ajani, Ingleton, Pritchard and Armand, 

2011). Noctiluca scintillans also began to be found at dramatically higher 

frequencies in the water column in the absence of conspicuous blooms compared 

to previous studies (Ajani Lee, Pritchard and Krogh, 2001).  

 

‘Natural’ nutrient enrichment resulting from slope water intrusions (‘upwellings’) 

is an inherently physical process constrained and affected by shelf bathymetry.  

Roughan and Middleton (2002) identified four physical nutrient enrichment 

mechanisms and demonstrated that both the strength of the current and its 

proximity to the coast determine the nature of the upwelling response. 

 

Physical processes also control the fate of anthropogenic nutrients, from sewage 

treatment plants and from diffuse sources in coastal catchments via estuaries 

although direct interactions with the seafloor are unlikely because of the buoyant 

nature of these ‘freshwater’ discharges. The behaviour of effluent discharged from 

Sydney’s deepwater ocean outfalls has been investigated, especially initial mixing 

processes (Pritchard et al., 1993, 1996, and Pritchard,1997). The dispersion 

(and biochemical) processes that operate over times scales necessary for algal 
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bloom responses (~several days) are not well understood and have not been 

quantified for specific outfalls in Australia or overseas.  

 

Sydney is fortunate to have significant long-term time series data for winds, 

waves, currents and temperature through the water column off Ben Buckler Head, 

Bondi (~15 years of near continuous ORS data) and for nutrients and temperatures 

through the water column off Port Hacking (several decades of mostly monthly 

CSIRO data), as described in Chapter 3.     

 

This Chapter interrogates these and other data sets to describe scales of 

variability, relates them to dominant physical processes and demonstrates how 

this variability can affect anthropogenic disturbances, impacts and biotic 

distributions. Specific attention is then given to the effects of sewage nutrients by 

determining ambient (non outfall) nutrient distributions and patterns and 

quantifying nutrient enrichment patterns due to major outfall sources in relation to 

phytoplankton activity. 

    

The body of this chapter (Section 6.3 and 6.4) has been published as international 

peer reviewed papers:  

 

Pritchard, T.R., Holden, C. and Healy, T. (2005) Variability of coastal 

dynamics of New South Wales, Australia and its relevance to anthropogenic 

impacts. Refereed Proceedings of the 17th Australasian Coastal and Ocean 

Engineering Conference, Institute of Engineers, Australia, 61-66. 

 

Pritchard, T. R., Rendell, P., Lee, R. S. and Ajani, P. (2001) How do 

Ocean Outfalls Affect Nutrient Phytoplankton Relationships in Coastal 

Waters of New South Wales, Australia? Journal of Coastal Research, 34, 96-

109. 

 

The first paper (Pritchard et al., 2005) analyses long term time series data 

(winds, currents, temperature) and explores various scales of variability 

(frequency bands within the power spectra) ranging from high frequency internal 

waves to inter annual variability associated with teleconnections such as the El 
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Niño Southern Oscillation. These key dynamic processes are described in relation 

to their effects on the dispersion and fate of anthropogenic pollutants 

 

The second paper (Pritchard et al., 2001) quantifies patterns of nutrient 

enrichment due to ocean outfalls using a 6 year record of hourly effluent plume 

modelling, effluent quality data and long term records (~25yrs) of ambient 

nutrient concentrations. This was used to assess the potential for enhanced or 

anomalous algal growth. 

 

Further background information on the study region is provided in Chapter 2 

while sampling methodologies, data validation and quality assurance procedures 

are described in detail in Chapter 3. 

 

6.2 Motivation and Relevance to Thesis Objectives 
 

The purpose of this chapter is to investigate and characterise the local expression 

of regional phenomena on the inner and mid shelfs in areas removed from the 

direct effects of coastal irregularities like headlands and bays. This is a transition 

zone where coastal boundary layer effects are dominated by the effects of cross 

shelf shoaling, bottom stresses and the land boundary rather than local 

bathymetric irregularities.   

 

The research presented here investigates the principal forcing mechanisms that 

drive flows and density structures within inner and mid shelf waters off Sydney 

and relates this to nutrient enrichment and the potential for environmental 

impacts. As such this chapter relates directly to the following thesis objectives: 

 

 investigate CBL processes, their relationship to coastal morphology, and their 

role in controlling the dispersion, fate and potential impacts of pollutants 

discharged to the New South Wales coastal waters 

 

 investigate physical processes and dispersion characteristics for specific 

pollutant discharges to New South Wales coastal waters through case studies 

off Sydney (outer coastal boundary layer) and Coffs Harbour (inner coastal 

boundary layer) 
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To understand the local expression of regional forcing in inner shelf waters off 

Sydney it was necessary to quantify: 

 power spectra to define: semi-diurnal tides; diurnal energy peaks 

representing sea/land breeze effects, transient weather systems and inertial 

motions; synoptic weather band energy driven by local and distant weather 

systems (including coastal trapped wave trains); EAC effects which can 

span weeks; and, seasonal peaks due to latitudinal shifts in atmospheric 

pressure systems and seasonal EAC effects.   

 inter annual variability and low frequency signals that may be related to 

teleconnections. 

 

To understand potential nutrient enrichment due to sewage effluent discharges 

from Sydney’s deepwater outfalls it was necessary to quantify: 

 long term distributions of near-field effluent plume behaviour (initial 

dilution, plume thickness and position in the water column).  

 concentrations of target pollutants in effluent (total and dissolved fractions 

of nitrogen and phosphorus). 

 distributions of ambient nutrient concentrations throughout water column 

and through seasonal cycles prior to the commissioning of Sydney’s 

deepwater outfalls. 

 possible bias due interpolation and extrapolation of limited data 

throughout the water column (discrete current meter observations) and due 

to various source data spanning different periods (effects of 

teleconnections such as the El Niño Southern Oscillation). 

 

To assess the potential for pollutant impacts in Sydney coastal waters it was 

necessary to estimate: 

 relative contributions from other nutrient sources (slope water, coastal 

catchments, atmospheric). 

 downstream spatial extent of effluent plumes. 

 possible indirect effects such as entrainment and uplift of ambient waters 

in buoyant plumes. 

 nutrient enrichment factors, nutrient speciation, nutrient ratios (w.r.t. 

natural stoichiometric ratios) and observed phytoplankton patterns. 
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 periods of the year and depth intervals in the water column at most risk of 

nutrient impacts. 
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6.3  ‘Variability of coastal dynamics of New South Wales, 
Australia and its relevance to anthropogenic impacts’ 

 

Citation: Pritchard, T.R., Holden, C. and Healy, T. (2005) Variability of 

coastal dynamics of New South Wales, Australia and its relevance to 

anthropogenic impacts. Refereed Proceedings of the 17th Australasian 

Coastal and Ocean Engineering Conference, Institute of Engineers, 

Australia, 61-66. 

 

 

Abstract 

A near-continuous 13-year time series of current, wind and temperature data, from 

the Sydney Ocean Reference Station (ORS) was evaluated and analysed to 

determine scales of variability in the dominant near-shore dynamics.  Deficiencies 

due to the current ORS configuration are quantified, highlighting non-linear shear 

within the water column, which may have significant implications for near field 

modelling. Key dynamic processes are described in relation to their effects on the 

dispersion and fate of anthropogenic pollutants and on distributions of planktonic 

biota, including: sub inertial internal wave energy; weatherband phenomena such 

as coastal trapped waves, local wind induced de-stratification and slope water 

intrusions; and, seasonal and inter-annual variability. Evidence of significant 

inter-annual variability in flow patterns was observed at the ORS.  Long term data 

sets such as the ORS, together with satellite oceanography and numerical models 

provide a process based understanding that can improve impact assessments and 

the management of natural resources in NSW coastal waters.  

 

Keywords:  Tasman Sea, coastal processes, ocean reference station, pollutant 

dispersion, anthropogenic impacts 

.   
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1 Introduction 

 

The dispersion and fate of pollutants discharged to coastal waters and the 

distributions of planktonic and pelagic biota that they may affect are critically 

dependent on velocity fields and density structures of ambient waters. 

Unfortunately direct long-term marine observations of velocity fields and density 

structures are scarce in New South Wales (NSW) coastal waters. Here we explore 

flow, temperature and wind data from a moored instrumented buoy, the Sydney 

Ocean Reference Station. 

 

This paper evaluates and analyses these time series data to describe scales of 

variability and demonstrates how this variability affects anthropogenic 

disturbances, impacts and biotic distributions. 

 

1.1 Regional Setting 

 

The NSW continental shelf is narrow, varying in width from about 20 km to 50 

km with overlying waters exhibiting complex current structure often dominated 

by the East Australian Current (EAC) as indicated in Figure 1. The physico-

chemical setting of Sydney has been summarised by Rendell and Pritchard (1996). 

 

2 Methods 

 

2.1 Sydney Ocean Reference Station (ORS) 

 

The Sydney Ocean Reference Station (ORS) is located in 65 m of water, ~3km 

due east of Ben Buckler Head, Bondi at 33° 53.685’ S, 151° 18.972’ E. It has 

captured wind, wave, current and temperature data (5-minute block averages) for 

the thirteen year period from November 1990 to November 2003 (Figure 2). The 

ORS is operated by Sydney Water Corporation. 
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Figure 1 Remotely sensed sea surface temperatures (NOAA AVHRR) showing 
dynamic EAC features. 
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Figure 2 Ocean Reference Station configuration  
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Summary plots, displacement plots and times series analyses were used to 

characterise and interrogate the vast ORS data set. Figures 8, 9 and 10 show water 

temperatures observed at depths of 0.6, 6.5, 10.5, 14.5, 17, 22.7, 26.1, 29.5, 32.9, 

36.3, 39.7, 43.1, 46.5, 49.9, 52 (metres from the surface warmest at the surface 

and no inversions). 

 

Variance-preserving spectra of the ORS wind and current meter data were 

estimated, using the method of Emery and Thomson (2001), to quantify the 

dominant periodic events that affect the Sydney coastal region. 
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Contour plots of weekly average displacements were produced to depict low 

frequency (long term) characteristics of surface current velocities (see Figure 12). 

For each week, the frequency and average current speed were calculated for each 

10 ° (directional) bin in the range between 0° and 360°. The relative weekly 

average displacement was calculated as the frequency multiplied by the average 

velocity (m/s) within each 10° bin. Absolute weekly average displacement 

(m/week) can be obtained by multiplying relative displacement by 300 (seconds 

corresponding to each 5 minute data interval). For example, the peak 

isplacement per 10° bin in Figure 12 is about 6 km/week. 

 ambient current strength 

nd decreases with density stratification (buoyant rise). 

y to dominate 

sulting in less density stratification and diminished EAC effects. 

.2 ADCP Observations 

ent meters characterised vertical flow structures throughout the water 

olumn.  

eriods shorter than 24 hours and the record 

as sub-sampled to 3 hour intervals. 

d

 

ORS and effluent flow data were used to estimate initial effluent dilution, plume 

thickness, and plume centre line depth using the near-field model JETLAG (Lee 

and Cheung, 1990).  Dilution generally increases with

a

 

It must be noted that data observed at the ORS cannot be extrapolated to shallow 

water coastal environments where local wind effects are likel

re

 

2

 

A 300KHz Acoustic Doppler Current Profiler (ADCP) was deployed 

approximately 500m south of the ORS at 33° 53.958’ S, 151° 18.934’ E in 64m of 

water for the period from 30/12/03 to 28/01/05 to determine the degree to which 

ORS curr

c

 

ADCP observations in 1 m bins spanned from 3m above the sea floor to up to 

60m above the sea floor although sea conditions occasionally limited quality in 

the upper 10m. In order to visualise comparative times series, a Chebyshev type 1 

low-pass filter was used to suppress p

w
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3. Results 

.1   Comparison of ORS and ADCP data 

 mid point errors of ~1cm/s (w.r.t. ADCP 

bservations) as shown in Figure 3. 

ies anomalies which 

ay be problematic for the purpose of near field modelling.   

inear interpolation/extrapolation of mean speeds at S4 depths (thin black 
). 

 

 

3

 

It was prudent to investigate the degree to which the two ORS S4 current meters 

can be used to estimate (interpolate) the current structure within the water column. 

Linear interpolation between average north-south speeds at depths corresponding 

to ORS S4 current meters delivers

o

 

Time series anomalies between actual (ADCP) and interpolated currents have also 

been evaluated because near field effluent plume models for Sydney’s deepwater 

outfalls use hourly means. Figure 4 shows significant time ser

m

 

Figure 3 Mean N-S speed profile - ADCP average N-S speeds for 30/12/03 to 
28/01/05 (diamonds for each 1m depth bin); S4 depths (grey line 1-2m thick); 
nd, la
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Figure 4: Time series anomalies for mid point interpolation of N-S current 
velocity between S4 depths during August to December 2004.   
 

Special consideration must be given to observations of current (and temperature) 

stratification below the bottom ORS current meter because investigations of 

plume behaviour (Pritchard et al., 2001) suggest that most initial mixing can occur 

within the bottom 10-15 m of the water column. Figure 3 demonstrates that ADCP 

data are vastly superior to extrapolation below the bottom ORS current meter. 

 

3.2 Progressive Vector Displacements 

 

Progressive vector displacements (Figure 5) allow visualisation of ADCP data sets 

and suggest bounds on advection of conservative pollutants and plankton. Flows 

observed near the ORS may not be representative of flows at distant locations so 

progressive vector plots must not be confused with actual flow paths. Figure 5 

indicates prevailing southward transport punctuated by a number of ‘events’ when 

rapid accelerations and/or flow reversal interrupted the southward trajectory. 

However, these events were rarely significant in terms of overall displacement 

trajectories. The similarity of total displacements at 5m, 10 & 20m above sea floor 

indicates remarkable overall consistency in the lower water column in contrast to 

the pronounced increase in displacements towards the surface. When viewed from 

above, vectors exhibit clockwise rotation downward through the water column 

which is consistent with surface wind stress and bottom stress:  that is, southwards 

flows, tend to drive the bottom boundary layer towards the coast in much the 

same way as wind stress drives surface waters to the left of wind direction. 

 175



Pritchard et al. (2005) / Australasian Coastal and Ocean Engineering, 61-66 

Curvature of vector trajectories in the upper water column suggest possible 

seasonal effects which are not evident lower in the water column.  

 

 

 

Figure 5.  Current progressive vectors at 5m, 10m, 20m, 30m, 40m, and 50m 
above the bottom. Record spans 30 December 2003 to 28 January 2005.  
 

 

Lower water displacements derived from ADCP observations (Figure 5) 

correspond to a velocities of  ~0.03m/s or ~2.4km/day while upper equivalent 

velocities reach 0.14 m/s or 12.0km/day.  

 

 

3.3 Scales of Variability 

 

3.3.1 Power spectra 

 

Variability about mean conditions affects distributions of pollutant concentrations 

and patterns of biotic exposure. This variability (extreme deviations from mean 

conditions) can also affect the inherent vulnerability of natural systems. Variance 

preserving power spectra (Figure 6) illustrate variability by partitioning energy 

according to scales of temporal variability (frequency) - equal areas under the 

curve represent equal energies.   

 

Semi-diurnal tides are prominent but relatively low energy.  The lack of 

significant phase difference along the coast generally results in weak tidal 

currents.  Strong, coincident (wind and current), diurnal energy peaks represent 
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sea/land breeze effects, transient weather systems and inertial motions (inertial 

period 23.6hrs at ORS). Synoptic weather band energy dominates the signal 

driven by local weather systems (several days as shown in the wind spectra), 

distant weather systems (e.g. coastal trapped waves) and EAC effects which can 

span weeks. Both winds and currents show prominent seasonal peaks due to 

latitudinal shifts in atmospheric pressure systems and seasonal differences in EAC 

effects. The annual cycle is subtle in the current meter record and virtually absent 

in the wind record.  

 

The physical expression of these scales of variability is illustrated and explored in 

relation to anthropogenic impacts and planktonic distributions below. 

 

3.3.2 Examples of high frequency and diurnal variability  

 

High frequency internal waves are evident in the ORS record (Figures 6 and 7).  

These may be baroclinic response to tidal forces at the shelf break, changes in 

atmospheric pressure, lateral movement of oceanic fronts, shear instabilities and 

bathymetric features. 

 

Although there is no net movement associated with the passage of internal waves 

(unless breaking occurs due to shoaling near the coast), they can operate at time 

frames relevant to initial mixing processes for primary treated effluent (total 

~1000ML/day) discharged at depths of 60-80m from Sydney’s deepwater outfalls.  

 

Figure 7 shows high frequency internal waves observed at the ORS: period ~30 

minutes and amplitude ~10 m compared to the buoyant rise of effluent plume 

from Sydney’s deepwater outfalls which operates over periods of about 5-

10 minutes. Modelling by Tate & Middleton (submitted) showed that buoyant 

plumes rising through internal wave fields may differ in height of rise and dilution 

by a factor of two or more compared to plume behaviour under mean 

stratification.   
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Figure 6.  ORS variance preserving power spectrum for upper ORS currents and 
ORS winds (1990-2003) 
[(cm/s)2 for current and (m/s)2 for wind vs log10 cycles per hour] 
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Figure 7 High frequency internal waves observed in ORS isotherms (modified 
with permission from Tate & Middleton, submitted). 

Time of day

-80

-70

-60

-50

-40

-30

-20

-10

0

W
at

er
 d

ep
th

 (
m

)

00:00        01:00        02:00        03:00        04:00        05:00        06:00        07:00        08:00        09:00

21 
o

C

20 
o

C
19 

o
C

18 oC

17 
o

C
16 oC

15 
o

C

ORS thermistor string

 

 

The passage of internal waves is also expressed as rotational shear in the water 

column as illustrated by the ORS current and temperature record in Figure 8: 

semi-diurnal oscillations dominate the temperature record close to the bottom, 

whereas a diurnal signal is clearly visible in near surface isotherms. 

 

Cross-shelf flows such as those quantified by the ORS (Figure 8) can result in 

large variances in the distributions of ichthyoplankton concentrations within 

similar water masses off Sydney (Dempster et al., 1997).  These flows must, 

therefore, be considered when selecting reference sites for impact assessment 

studies such as those associated with ocean outfalls. 
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Figure 8 Semi-diurnal waves evident in both upper and lower current meter 
records which are 180 degrees out of phase.  
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3.3.3 Examples of synoptic weather band variability 

 

Weather band variability dominates the power spectrum (Figure 6).  Griffin and 

Middleton (1991) showed that approximately 60% to 70% of the ‘weather band’ 

(40 hour to 20 day period) current variance is wind driven, with the major 

contributors being the southern New South Wales and Bass Strait winds, both 

lagged by intervals corresponding to the propagation speed of the first Coastal 

Trapped Wave (CTW) mode. Coastal trapped waves can be expressed by 7-20 day 

current reversals which affect the fate of both biota and pollutants and increase the 

potential for re-entrainment of effluent discharged from Sydney’s deepwater 

outfalls.  
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Local winds can prompt a more rapid response with faster de-stratification of the 

water column as illustrated by the top down mixing associated with a strong 

south-easterly (20 knots) wind during early January 1995 (Figure 9). A second 

event during late January 1995 illustrated combined effects of a southerly wind 

and cool slope water intrusion dynamics (indicated by water ~14°C). In this case 

vertical mixing reduced surface water temperatures. A diurnal signal is also 

apparent in the wind and sea surface temperature.   

 

Reduced stratification allows buoyant effluent released near sea floor to penetrate 

higher within the water column (see Figure 11). Furthermore, vertical mixing 

associated with these events brings naturally nutrient rich bottom waters up into 

the euphotic zone to stimulate higher levels of primary production.   
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Figure 9.  De-stratification: ORS wind and temperature  
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The generally oligotrophic coastal waters of NSW experience nutrient enrichment 

due to slope water intrusions driven by upwelling favourable winds (persistent 

northeastly winds) and interactions between regional flows (EAC & eddies) and 

continental shelf bathymetry (Pritchard et al., 1999; Roughan & Middleton, 

2002).  Both winds and upwelling favourable dynamics are monitored by ORS 

(and satellite oceanography) thus providing a diagnostic and predictive tool. 

Figure 10 illustrates slope water dynamics sensed at the ORS with offshore 

transport of surface waters during the second week of January 1998 together with 

progressive cooling of bottom waters. Observations at CSIRO Port Hacking 

monitoring station (from Lee et al., 2001) indicate phytoplankton bloom 

responses to this event.   

 

 

 

Figure 10. Upper ORS E-W currents (top), temperature profile (middle) and 
plankton counts (bottom) for January 1998.  
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3.3.4 Examples of seasonal & inter annual variability 

 

Figure 11 shows seasonal temperature stratification with significant inter annual 

variability: peak stratification ranges from ~7°C in summer 1993 to ~4°C in 

summer 1994. Near field model time series in Figure 11 reflect similar seasonal 

and interannual variability although current speed and effluent flow also effect 

dilution and height of rise.  Plumes generally surface (and achieve high effluent 

dilutions) when stratification is less that 1°C as exemplified by winter 1993. 

Stratification minima and associated high plume surfacing frequencies are 

confined to the El Niño episodes which dominated the period in Figure 11 (grey 

bar). 

 

Interannual variability associated with teleconnections such as the El Niño 

Southern Oscillation (ENSO) affects the physico-chemical environment and 

phytoplankton populations. For example, empirical orthogonal function analysis 

of long term data collected off Port Hacking, Sydney (at CSIRO PH50) suggested 

that ENSO was responsible for 1/3 to 1/8 of mean seasonal range of temperature, 

salinity, nitrate, phosphate and oxygen (Hsieh and Hamon, 1991).  
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Figure 11.  Stratification ([T0m – T52m] °C) and near field model results (initial dilution 
& median exposure) for North Head ocean outfall. 
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A low frequency signal is apparent when the directional current displacements for 

the entire ORS time series are plotted in Figure 12. Here a spline has been fitted to 

peak values of current displacement and shaded bars at top indicate warm El Niño 

episodes. Eastward deviations are apparent for events centred on 1996 and 2001 

prompting validation and investigation.  
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Figure 12.  Relative average weekly displacements for upper ORS currents calculated

as the frequency multiplied by the average velocity (m/s) within each 10° bin. 

Multiply by data interval (300 s) to obtain absolute weekly displacements (m/week). 

 

 

 

Investigations of responses to climate variability such as ENSO may provide 

insights and sensitivity analysis relevant to (as yet poorly defined) climate change 

scenarios for NSW coastal marine environments. 

 

 

4 Discussion 

 

The relevance of simple but extensive physico-chemical data sets to impact 

assessments and biotic distributions is explored in this discussion. 
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4.1 Impact Assessments 

 

The original purpose of the Ocean Reference Station was to drive hydrodynamic 

and effluent dispersion models to investigate the dilution and fate of treated 

effluent from Sydney’s deepwater ocean outfalls.  Ongoing near field modelling 

utilises ORS data to report on outfall performance and thus provides the basis 

(initial dilution) to assess the environmental significance of results from ongoing 

whole effluent toxicity testing.  

 

However, time series observations of dynamic coastal waters also deliver an 

understanding of physical processes, which is necessary for effective design, and 

interpretation (including extrapolation) of impact assessments.  

 

Experimental approaches derived from laboratory methodologies such as Before 

and After Control Impact (BACI) assessments (Green 1979, Underwood, 1992) 

have been embraced to detect anthropogenic impacts.  These studies involve data 

collection before and after an intervention or putative impact at replicated 

“control” and “impact” locations.  In this way BACI designs take into account 

variability at both control and impacted sites.  

 

However, in many cases impact assessments are unable to satisfy the full 

requirements and assumptions of rigorous BACI (and ‘Beyond BACI’) designs.  

Often ‘before’ data are limited, ‘control’ sites may be compromised (respond in a 

fundamentally different way to each other and to the putative impact site/s) and 

statistical assumptions may be challenged (e.g. homogeneity of variances).  In 

these circumstances, an understanding of the relative importance of various 

drivers of temporal and spatial variability can assist in the interpretation of impact 

assessments especially when ambient conditions are dissimilar before and after 

the disturbance/impact.  

 

Even when BACI investigations are appropriately designed variability in ambient 

conditions must be considered in order to extrapolate (generalise) outcomes to 

other times because hydrodynamic factors can change the nature of the impact by 

affecting: fates of pollutants; distributions of potentially impacted organisms; and, 

the environmental sensitivity to pollutants or disturbance impacts.  
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Long term data sets such as those from the ORS (and satellite oceanography) 

provide the opportunity to place time limited impact assessments within a broader 

range of possible ambient conditions. 

 

4.2 Hydrodynamic controls on biotic distributions 

 

Hydrodynamic processes profoundly affect primary productivity (e.g. Pritchard et 

al., 1999) as well as higher trophic levels such as zooplankton (e.g. Tranter et al., 

1983), crustaceans and fish (e.g. Griffiths & Wadley, 1986) and marine birds (e.g. 

Mickelson et al., 1992). 

 

Instrumented platforms such as the ORS have broad application as they provide 

the basis for the hydrodynamic understanding necessary to understand/predict and 

investigate biotic distributions.  For example, physical phenomena such as island 

and headland wakes, re-circulation and turbulence, frontal features, windrows, and 

wave driven currents result in zones of convergence and accumulation for biota as 

well as pollutants.  

 

Regional flows observed at the ORS and inferred from satellite oceanography 

affect both dispersion (Lee & Pritchard, 1996) and biological connectivity (e.g. 

Murray-Jones & Ayre, 1997).  

 

Although Eulerian observations from moored instrumented buoys cannot be 

extrapolated to distant locations, data can be used to develop testable connectivity 

hypotheses especially when used in conjunction with satellite oceanography and 

hydrodynamic models.  

 

Likewise, temporal patterns of phytoplankton biomass due to slope water 

intrusions can be predicted from simple physico-chemical observations especially 

when combined with satellite oceanography.  
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5 Conclusions 

 

Moored instrumented buoys such as the ORS deliver fundamental information 

necessary to determine pollutant dispersion and reveal key driving mechanisms 

leading to a predictive understanding of dynamic coastal waters.  Such 

information is necessary to develop testable biophysical hypotheses, to focus 

monitoring and evaluation programs and to interpret the results from impact 

assessments.  

 

Significant opportunities exist to improve the ORS configuration, especially by 

focusing on more complete coverage of the water column using contemporary 

technology. 

 

Quality assured, long-term time series data, when used in conjunction with remote 

sensed data and numerical models, becomes a pre-requisite for the effective 

management of our natural marine resources in a time of rapid change.  
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6.4 ‘How do ocean outfalls affect nutrient patterns in coastal 
waters of New South Wales, Australia?’ 

 

Citation: Pritchard, T. R., Rendell, P., Lee, R. S. and Ajani, P. (2001) How 

do Ocean Outfalls Affect Nutrient Phytoplankton Relationships in Coastal 

Waters of New South Wales, Australia? Journal of Coastal Research, 34, 96-

109. 

ABSTRACT  

We investigated the effects of major sewage and estuarine discharges on nutrient 

distributions in the central New South Wales (NSW) coastal waters. The 

hinterland of the study region includes the sewerage and rainwater catchments of 

major population centres of Newcastle, Sydney and Wollongong. New South 

Wales discharges the majority of its treated sewage to the ocean, with about 80% 

from just three deepwater outfalls off Sydney. These discharges were found to be 

the principal, continuous, anthropogenic source of nutrients to NSW coastal 

waters. The deepwater outfalls delivered most of their nitrogen as ammonia and 

were responsible for nutrient (NH4-N and PO4-P) enrichment within usually 

submerged effluent plumes. Direct observations and modelling indicate that after 

initial dilution, effluent plumes typically occupy ~30m of the water column (60-

80m).  Rapid initial dilution was observed with subsequent gradual far field 

dispersion typically broadening the effluent field to1-2 kilometres by about 10 

kilometres downstream. Flows generally follow isobaths, predominantly to the 

south. Vertical and seasonal distributions of sewage derived nutrients, were 

estimated from a 6 year record of initial dilution modelling and effluent data. 

Comparisons were made with ambient nutrient distributions derived from long 

term monitoring prior to the commissioning of the outfalls (1990), at the CSIRO 

Port Hacking Station (5 to 10 kilometres south of the deepwater outfalls).  The 

pycnocline seasonally limited the vertical extent of sewage plumes emitted from 

the deepwater outfalls.  Upwelling/uplifting processes were associated with 

stratified conditions during spring and summer. Therefore, density stratification 

was a critical factor in determining the vertical movement of oceanic and sewage 

derived nutrients into the euphotic zone.  Despite clear nutrient enrichment due to 

sewage discharges, no new evidence has been presented to contradict previous 
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findings that algal blooms are principally driven by oceanic nutrient enrichment. 

However, by considering simulations of near field effluent plume behaviour in 

relation to long term ambient nutrient patterns we have identified specific periods 

of the year and depth intervals with maximum risk of outfall impacts, such as the 

upper half of the water column during late summer.  

ADDITIONAL INDEX WORDS: New South Wales, sewage outfalls, nutrients, 

algal blooms. 

 

INTRODUCTION  

New South Wales’s (NSW) population is concentrated along the coast and in 

particular in Sydney, Newcastle, Wollongong and adjacent areas.  Most of the 

sewage generated in the coastal zone of NSW is discharged to the ocean after 

being treated to varying degrees. High levels of nutrients are found in sewage 

effluent. 

In NSW coastal waters, there have been concerns that the periodic occurrence of 

marine algal blooms, particularly ‘red tides’ of the dinoflagellate Noctiluca 

scintillans (HALLEGRAEFF, 1993, AJANI et al., 2001), may be related to major 

anthropogenic nutrient loadings such as those from sewage treatment plants. 

Eutrophication has been recognised as a serious threat to the health of coastal 

ecosystems both in Australia (e.g. ZANN, 1995) and globally (e.g. PELLEY, 

1998). Furthermore, some evidence exists for a worldwide increase in the 

occurrence of harmful blooms (ANDERSON, 1985; PAERL,H., 1997). 

Anthropogenic discharges such as from sewage treatment plants have been 

identified as a possible factor in the increased eutrophication of some coastal 

waters (SMAYDA 1990, 1997).  And, some laboratory studies have shown that 

sewage effluent enrichment (dilution range 1:200 to 1:5) can increase the 

populations of ‘nuisance’ and potentially harmful phytoplankton at the expense of 

naturally occurring benign diatoms as well as increasing overall phytoplankton 

production (PAN and RAO, 1997).   
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The purpose of this paper was to investigate the contributions to coastal waters of 

nutrients from major sewage ocean outfalls. In order to achieve this we attempted 

to determine ambient (non outfall) nutrient distributions and patterns, quantify 

nutrient enrichment patterns due to major outfall sources and, discuss the 

importance of outfall nutrients in relation to phytoplankton activity. 

Study Region 

Our study focused on the waters of the continental shelf between Port Stephens 

and Jervis Bay (Figure 1). In this region the continental shelf (to 200m isobath) is 

relatively narrow, ranging from about 45 kilometres in the north to about 20 

kilometres off Jervis Bay in the south. The hinterland of this region includes the 

sewerage and rainwater catchments of the major population centres of Newcastle, 

Sydney and Wollongong.  At least twenty outfalls discharge sewage effluent 

directly to the ocean in this region. 

Particular emphasis was given to the Sydney coastal waters which receive the vast 

majority of sewage effluent mainly via three deepwater ocean outfalls off North 

Head, Bondi and Malabar.  These outfalls were commissioned between September 

1990 and August 1991 to replace cliff face outfalls. 

The study region lies in a transitional zone.  From the north the warm, 

oligotrophic waters of the East Australian Current (EAC) carry plankton of 

tropical origin.  The main EAC flow typically separates from the NSW coast and 

flows eastward just north of the study region.  Instability along the front between 

the warm EAC water and the colder Tasman Sea water often leads to the 

formation of both large (~150km) warm core anticyclonic eddies and smaller (20-

50km) cold core cyclonic eddies which may persist for days to many weeks 

(CRESSWELL and LEGECKIS, 1986).  Ekman pumping can lead to the uplifting 

of nutrient rich bottom waters shoreward across the shelf when southward EAC 

flows impinge on the shelf and can also lead to more localised uplifting/upwelling 

at the centre of cold core eddies (OKE and MIDDLETON, 1999).  Local changes 

in coastal bathymetry/orientation appear to pre-dispose certain locations, such as 

areas Port Stephens to Newcastle, Port Hacking to Wollongong and Jervis Bay, to 

EAC induced nutrient rich slope water intrusions (LEE et al., 2001). 
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Figure 1. Study location showing ocean outfalls and locations of principal data 
sources. 

 

Other dynamic processes controlling the introduction and dispersion of oceanic 

and anthropogenic nutrients in the study region include local winds (GRIFFIN 

and MIDDLETON, 1991), northward propagating coastal trapped waves 

(CHURCH et al., 1986; GRIFFIN and MIDDLETON, 1991), relatively high 

frequency internal waves and tides (GRIFFIN and MIDDLETON, 1992) and 
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swell waves.  Local winds operate over distances of 10 to 100 km and periods of 

hours to a few days: south-easterly winds favour downwelling while upwelling 

favourable north-easterly winds have been shown to be critical in pre-conditioning 

for upwelling (GIBBS et al., 1998).  

Vertical mixing of nutrients is critical to light limited phytoplankton populations.  

Offshore waters remain stratified for most of the time with temperature 

stratification of up to nearly 10°C reported by WILSON et al. (1995).  Some 

vertical mixing may occur across the thermocline due to current shear but 

significant stratification generally persists unless either an oceanic water mass 

moves in to swamp shelfwaters or a vigorous mixing process erodes the 

thermocline.  De-stratification of the entire water column has been observed over 

periods of less than 24 hrs under the influence of strong winds and waves (LEE 

and PRITCHARD, 1996).  Internal waves may also contribute to vertical mixing 

if they shoal and break on the inner shelf. 

 

METHODS AND DATA ASSESSMENT 

In addressing our objectives we analysed data and information from a range of 

sources.  

Various catchment and effluent monitoring data were accessed to indicate the 

relative importance of various non-oceanic nutrient loadings to coastal waters 

although sparse or inappropriate data coverage limited the extent to which load 

data could be analysed.  Nutrient exports from coastal catchments were based on 

various observed and modelled estimates for 11 major catchments from the 

Hunter (Newcastle) in the north to Jervis Bay in the south as described by SKM 

(1997). Flow data were generally well represented but temporal and spatial 

coverages of nutrient concentration data were variable (especially for smaller 

catchments) limiting some quantitative assessments.  

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) has 

collected mainly physico-chemical data offshore from Port Hacking (PH) since 

the 1940’s (HUMPHREY, 1963).  Ambient nutrient concentrations were obtained 

for the surface and at 10 m depth intervals to 50 m at CSIRO PH50 (34° 05’S, 
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151º13’E.) in water depths of 50-60 m. Data were limited to those from periods of 

more consistent chemical analyses prior to the commissioning of Sydney’s first 

deepwater outfalls: nitrate (NO3-N) from 1965 to September 1990 and phosphate 

(PO4-P) from 1957 to September 1990. Prior to 1990, similar quantities of 

effluent were discharged via shoreline outfalls resulting in surface plumes but 

extensive monitoring prior to the commissioning of deepwater outfalls suggested 

little or no impact at PH50 (Pritchard et al., 1996).  Analytical methods have been 

described elsewhere by LEE et al. (2001), MAJOR et al (1972), AIREY and 

SANDERS (1987). Sampling frequencies varied from approximately weekly (~47 

year-1) before 1985 to about monthly (~10 year-1) after 1985.  The change in 

sampling frequency was not expected to bias nutrient distributions with respect to 

variability associated with El Niño Southern Oscillation (see LEE et al., 2001 – 

this volume) because the period of reduced sampling included similar periods of 

cold (La Nina) and warm (El Niño). For the purpose of contouring, CSIRO PH50 

data were grouped by month of the year and depth before percentiles were 

calculated  (as in Figure 4). 

Sydney Water’s Ocean Reference Station (ORS) located 3 to 4 kilometres off 

Bondi in 64m of water, provided near continuous current measurements at 17 m 

and 52 m depths (Interocean S4 current meter accuracy 0.01 m/s) and 

temperatures throughout the upper 52 m of the water column. Sydney Water 

continuously monitors Sewage Treatment Plant (STP) flows while Sydney Water 

effluent nutrient concentrations were obtained from focused sampling during 

1993/94 and 1996/97 (SYDNEY WATER, 1997; MHL, 1997). Organic nitrogen 

was calculated as the difference between total Kjeldahl nitrogen (TKN), and 

ammonia-N (plus nitrate).  Its splitting into dissolved and particulate organic 

nitrogen was done on the basis of unpublished concentration data collected by 

Sydney water in 1993/94. 

For Sydney’s deepwater outfalls, the near-field model JETLAG (LEE and 

CHEUNG, 1990) was used, together with ORS and STP data to estimate initial 

effluent dilution, plume thickness, and plume centre line depth. The formulation 

of JETLAG tracks the evolution of the average properties of plume elements at 

various time steps by conservation of horizontal and vertical momentum, 

conservation of mass accounting for entrainment, and conservation of tracer mass.  
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Sensitivity testing and comparisons with data obtained from plume tracing 

experiments conducted off Malabar indicated that JETLAG provided a good 

representation of plume behaviour (CATHERS and PEIRSON, 1991). JETLAG 

was therefore selected to simulate a time series of the average effluent dilutions 

and the vertical positions of the plume after initial mixing; that is, after the plume 

had reached its level of neutral buoyancy or the surface.   

Hourly average JETLAG model results were obtained for periods when both STP 

and ORS data were available during the period from January 1991 to December 

1998 (54856 records or 78% coverage).  When compared to cold and warm 

episodes, modelled coverage was equivalent to a ~17% bias to El Niño conditions.  

That is, when a simple scoring system was employed, the modelled period 

included an excess of El Niño conditions equivalent of nearly 400 (of 2290) days 

of moderate El Niño conditions. 

The water column was divided into 2m depth bins in order to represent the 

effluent contribution to the water column after initial dilution.  For each model 

run, the average initial dilution was assigned to those depth bins spanned by the 

vertical extent of the plume and a null result was assigned to bins which fell 

outside the plume. Depth bins were then grouped by month of the year and 10m 

depth intervals in order to estimate frequency of occurrence of effluent (percent 

effluent present – as in Figure 6) and percentile effluent concentrations 

(1/dilution) over a 12 months x 5 depths grid.  Nutrient contributions were then 

calculated for each grid element based on fixed average nutrient concentrations 

observed in primary treated effluent, modelled (percentile) effluent plume 

dilutions and ambient (percentile) nutrient concentrations observed during long 

term monitoring at PH50 (as in Figures 7 and 8). 

In addition, all near-field model results for each outfall were allocated to 2m depth 

bins irrespective of month of the year and results were grouped by 10m depth 

intervals.  Percentile effluent dilutions were then estimated for each 10m depth 

interval (i.e. 5 x 2m bins) by including only results for when effluent was present.  

In this way, it was possible to estimate initial effluent dilutions with respect to 

plume depth (as in Figure 6).   
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Effluent plume behaviour was illuminated using data drawn from various near-

field model verification experiments conducted using a SEABIRD SBE25 

Sealogger CTD (temperature accuracy 0.004ºC and conductivity 0.0003 S/m) and 

radioisotope tracer (introduced Tritium, Gold-198 and Technetium-99m isotopes) 

techniques similar to those described by PRITCHARD et al. (1993).  

Radioisotope studies were conducted in collaboration with Australian Nuclear 

Science and Technology Organisation. 

 

NUTRIENT SOURCES 

In nutrient limited systems, algal responses are driven by the concentration of 

nutrients in the water column while the overall algal biomass (extent and 

longevity of blooms) is also a function of the nutrient load entering the system. 

Therefore, both concentrations and loads of nutrients are important when 

considering nutrient sources.  

Nutrients enter the study region from discrete point sources such as ocean outfalls 

and estuaries (coastal catchments), from diffuse atmospheric and sediment sources 

at the upper and lower boundaries of the system and from oceanic sources such as 

the cross shelf nutrient fluxes associated with slope water intrusions. Various 

bio/geo-chemical processes act to exchange and transform these nutrients within 

the system. 

Nutrient concentration data (Table 1) for ambient ocean waters and key sources of 

nutrients to coastal waters indicate the potential for enrichment of surface waters 

due to estuarine discharges (especially nitrate and ammonia) and outfalls 

(especially ammonia) on those occasions when sewage effluent plumes surface.  

Bottom waters may be enriched by slope water intrusions (especially nitrate and 

phosphate) and by outfalls (especially ammonia).  There is also a potential for 

vertical transport (upwelling or mixing) to dramatically enrich surface waters.  
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Table 1 Indicative Nutrient Concentrations 

 Nitrate 
NO3-N  
(μg/L) 

Ammonia 
NH4-N  
(μg/L) 

Phosphate 
PO4-P  
(μg/L) 

Reference 1 10-60 <5 1-10I 
Primary Effluent 2 30 23,000 – 

28,000 
3,200 – 6,400

Run-off  3 110 – 450 NOx 50 - 360 40 - 90 
Ambient shelf Upper waters 4 10 8* 7 
Ambient shelf Lower waters 4 70 8* 15 
Slope Waters  5 > ~ 140 ~ 6-8# 22 

 
Sources: 1 ANZECC (1992);  2 Range of geometric means for Sydney Water’s 
Sewage Treatment Plants at North Head, Bondi and Malabar 1994-95 (no 
dilution);  3  Range of 90 percentile values across a variety of catchment types 
based on 1993 & 1994 data from the Sydney Water Corporation’s Stormwater 
Monitoring Program (from SKM, 1997). Values relate to stormwater entering the 
estuarine system which may or may not be representative of estuarine discharges 
to the ocean; 4 Median concentrations observed at CSIRO Port Hacking Station 
(PH50) in surface (0m) and bottom (50m) waters for periods 1965-95 (NO3-N) 
and 1957-95 (PO4-P);  5 TRANTER et al. (1986) and CRESSWELL (1994). 
* median concentrations based on NSW EPA data collected along transects across 
the shelf at Pt Stephens, Pt Hacking and Jervis Bay and from PH50/100 stations at 
0m (n=263) and 50m (n=170) depths for the period from August 1995 – April 
1997 
# typical averages based on NSW EPA data 1995-97. 
Notes: I reported as inorganic; NOx = nitrate plus nitrite. 

 

Slope Water 

Nutrient rich slope water intrusions (from depths >150-200m) were found to be 

seasonal (spring/summer peak) and episodic, operating over length scales of 

hundreds of kilometres and time scales of several days (PRITCHARD et al., 

1998).  Slope water intrusions delivered mainly dissolved nutrients (nitrate and 

phosphate) and typically remained submerged, but often penetrated inner shelf 

waters thus elevating nutrients to the euphotic zone. Association between slope 

water intrusions and phytoplankton responses were suggested by  HUMPHREY 

(1960, 1963) and have been illustrated by LEE et al. (2001). A standing nitrate 

load of 2,500 tonnes and corresponding phosphate load of 400 tonnes would be 

associated with a notional slope water intrusion 200 km in length, 3km in width 
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(inner mid shelf) and 30m in thickness (scale based on PRITCHARD et al., 1998; 

nutrient concentrations from Table 1). A significant proportion of these loads 

would be rendered unavailable to phytoplankton by other limiting factors and by 

finite residence times on the inner-mid shelf.  

Coastal Catchments 

Many coastal NSW catchments have extensive estuarine systems which act as 

natural buffers, regulating nutrient exchanges between fresh water and ocean 

systems.  Estuarine discharges were found to be sporadic, with high particulate 

nutrient loads and were dominated by the two estuaries/catchments 

(Newcastle/Hunter and Broken Bay/Hawkesbury) which together delivered ~40% 

and ~60% of catchment derived total nitrogen (TN) and total phosphorus (TP), 

respectively (SKM, 1997 and Figure 2). Total loads were estimated as 1,600 – 

7,400 tonnes/yr TN and 160 – 770 tonnes/yr TP (high ranges indicate total 

catchment exports while low ranges include an estimate of nutrient buffering). 

Extreme estuarine plumes have extended tens of kilometres for days to weeks 

(LEE and PRITCHARD, 1999). 

 

 

 

 

 

 

 

Figure 2a. Indicative total nitrogen loadings from coastal catchments. 
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Figure 2b. Indicative total phosphorus loadings from coastal catchments. 
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Atmospheric and Sediment 

Data from AYRES et al. (1987) suggest atmospheric fluxes of total nitrogen of 

4.6 kg/hectare/year based on typical (1981/1982) Sydney rainwater concentrations 

of 170 mg/L nitrate and 210 mg/L ammonia, average rainfall of 1225mm/yr  

(assuming negligible organic N in air). HARRIS et al. (1996) estimated aerial 

deposition to Port Phillip Bay (Melbourne) at 2.56 kgN/hectare/yr.  These 

available data may not be representative of NSW coastal waters but indicate 

potential for significant atmospheric loads. Significant biological nitrogen fixation 

was unlikely because relevant species such as Trichodesmium were typically 

present in low densities (AJANI et al., 2001) and only senescent Trichodesmium 

cells would be expected in our study region (HALLEGRAEFF pers comm., 

1997).  

Few relevant data were available to indicate nutrient fluxes across the sediment-

water interface in our study region (BICKFORD, 1996) and no data were 

available to characterise exchanges during re-mobilisation (high wave/current) 

events.  Remobilisation effects could be expected to be highly relevant given 
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evidence that the upper 30cm of the mainly sandy sediments may be re-mobilised 

during events (SCHNEIDER, 1999).   

Ocean Outfalls 

Figure 1 shows locations of outfalls associated with sewage treatment plants 

(STPs) within our study region while Figure 3 indicates STP nutrient loadings. 

Outfalls within the study region, together, contributed 97% of the total sewage 

effluent discharged to NSW marine waters (~99% of total nitrogen load and ~96% 

of total phosphorus load).  Dominant among them are Sydney’s three deepwater 

outfalls (North Head, Bondi and Malabar) which are located in the centre of the 

study area. The three deepwater outfalls together contributed about 76% of the 

total nitrogen and 71% of the total phosphorus.  

Ammonia-N was the dominant form of nitrogen (~73% of TN) with subordinate 

amounts of particulate-N (~18% of TN), dissolved organic-N (~9% of TN) and 

NOx-N (<0.5% of TN) in primary treated sewage effluent such as that discharged 

from North Head, Bondi, Malabar, Cronulla, Bellambi and Port Kembla. Table 2 

summarises nutrient concentrations observed in effluent from North Head, Bondi 

and Malabar STPs during 1996/97 – these results are consistent with previous 

available data spanning 1993-1996 (SYDNEY WATER, 1997). 

At Sydney Water outfalls discharging secondary effluent, ammonia-N, or 

ammonia-N and NOx-N, were the dominant forms.  The relative contributions of 

ammonia and NOx-N varied considerably among these outfalls.  Combined, 

ammonia-N and NOx-N made up greater than 83% of the total nitrogen.  Similar 

results would be expected at the other NSW outfalls discharging secondary 

effluent.  

Much less data is available on the forms of phosphorus.  Based on concentration 

data collected by Sydney Water in 1993/94 we would expect about 60 to 80% of 

the total phosphorus in primary effluent to be present as dissolved phosphorus 

(Table 3).  The proportion would be expected to be about 85 to 95% at outfalls 

discharging secondary effluent. 
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Figure 3. Total nitrogen and total phosphorus loadings from sewage treatment 
plants to NSW coastal waters. Data compiled for 1996/97 except ‘Others’ which 
includes data for 1991. 
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Load data for non-outfall sources were inadequate to allow statistical evaluation 

of apparent differences. Despite this, it was clear that nutrient loadings from 

coastal STPs were large with respect to other discrete sources. Based on the 

dominance of Sydney’s deepwater outfalls and the scale of this study, further 

consideration of outfall effects focused on these outfalls. 

 

Table 2  Nutrient concentrations in the effluent from Sydney’s three deepwater 
ocean outfalls (1996/97) 

Nutrient Outfall 
n Effluent concentration mg/L 

   Median Maximum 
 

Ammonia N North 
Head 

38 32.0 37.0 

 Bondi 40 27.0 37.0 
 Malabar 40 30.0 36.0 
     
Nox North 

Head 
12 <0.01 0.03 

 Bondi 12 <0.01 0.35 
 Malabar 12 <0.01 0.07 
     
Total N North 

Head 
13 44.1 49.9 

 Bondi 13 36.0 41.0 
 Malabar 13 39.1 44.9 
     
Total P North 

Head 
12 7.50 8.70 

 Bondi 12 4.45 5.80 
 Malabar 12 5.40 6.60 
     
Flow North 

Head 
 280ML/d  

(average  Bondi  130ML/d  
daily dry 
weather) 

Malabar  430ML/d  

n = number of samples Source: Sydney Water (1997) 
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Table 3  Phosphorus speciation 

STP/outfall Geometric mean 
concentration mg/L 

 

Dissolved P  
% of total 

 Dissolved P
 

Total P  

North Head 6.42 8.32 77 
Bondi 3.19 4.66 68 
Malabar 4.72 7.30 65 
Secondary Treatment 
Plants (4) 

 
4.71-7.76 

 
5.09-8.67 

 
86-93 

(15 samples for each STP) 

Source: Unpublished data collected by Sydney Water in 1993/94 

 

AMBIENT NUTRIENT PATTERNS 

Previous nutrient studies in these waters have generally focused on nitrate and to a 

lesser extent phosphate and date back to the 1940s (eg NEWELL, 1966; HAHN et 

al., 1977; ROCHFORD, 1984; TRANTER et al., 1986; CRESSWELL, 1994). 

These studies, and our characterisation of ambient nutrient distributions prior to 

the commission of Sydney’s deepwater outfalls, were based to varying degrees on 

data from long term monitoring by CSIRO at station PH50 off Port Hacking, 

southern Sydney. These ambient nutrient data represent the combined effects of 

all sources regulated by biological activity. 

Seasonal cycles of nutrient enrichment are apparent in Figure 4.  The smallest 

differences between surface and deeper waters tend to occur late in the austral 

autumn and winter when thermal stratification was absent or weakest.  During this 

period, nutrient concentrations in surface waters tended to be near their highest 

and nutrient concentrations at depth tend to be at their lowest.  Maximum nutrient 

concentrations in surface waters occurred during July-August whilst maximum 

nutrient concentrations in bottom waters occurred during the summer months, 

peaking during February. These general patterns were evident in all percentile 

plots and have been attributed to winter overturning of shelf waters and episodic 

slope water intrusions driven by summertime EAC activity and/or upwelling 
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favourable winds together with enhanced biological (phytoplankton) activity in 

surface waters during the warmer summer months. 

Effects of nutrient enrichment events are illustrated in Figure 5.  Absolute 

enrichment (upper plot) due to extreme events (95 percentile ambient 

concentration), was greatest at mid-depth (about the thermocline) from September 

through to April.  But when enrichment was considered as a fraction of median 

(‘typical’) concentrations (lower plot) the effect was generally contained within 

the upper half of the water column and up to an order of magnitude greater for 

nitrate than for phosphate.  

 

OUTFALL EFFECTS 

Nutrient fluxes across the three open boundaries of the study region remain 

elusive especially in the absence of comprehensive hydrodynamic data. However, 

local nutrient enrichment caused by major sewage outfalls can be quantified when 

ambient nutrient concentration patterns are considered in relation to effluent 

plume dynamics and known sewage effluent characteristics.    

Effluent Plume Characteristics 

The locations of the Sydney deepwater outfalls, which were commissioned in 

1990/91, are shown in Figure 1. Effluent is discharged at high velocity from “gas 

burner” like diffusers that are located on the sea floor along the length of a 

diffuser line. The diffuser lines are orientated in a shore normal direction and 

range in length from 510 m at Bondi to 765 m at Malabar.  Water depth is about 

60 m at North Head and Bondi, and 80 m at Malabar.  Because ORS data 

described density and current structure to maximum depths of only 52m, model 

results were considered to be most reliable for North Head and Bondi.  

Initial dilution of effluent occurs rapidly until plumes reach neutral buoyancy (or 

surface), typically within 500 m of the outfalls. Figure 6 illustrates modelled 

effluent exposure patterns which mirror those of ambient nutrient concentrations 

observed prior to the commissioning of deepwater outfalls (Figure 4), and reflect 

ambient density stratification. Plume surfacing was often associated with short 
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 205

duration (0.5 to 2 days) forcing events such as storms and internal tides.  Plumes 

were typically trapped at about 30m depth with an average thickness of ~20m. 

Although effluent exposure patterns were similar between all three outfalls, 

considerably higher dilutions were associated with lower effluent flow rates at 

Bondi. Initial dilutions were lower for trapped plumes and generally increased 

with decreasing density stratification and/or increasing current strength.  

Nutrient Enrichment due to Effluent Plumes 

Further analysis focused on North Head outfall, which discharges larger loads at 

lower dilutions than Bondi.  Figure 7 describes absolute and relative enrichment 

of dissolved inorganic nitrogen due to the presence of effluent after initial 

dilution, relative to ambient receiving waters. Dissolved phosphorus enrichment 

patterns followed a similar pattern to that of nitrogen. Dissolved inorganic 

nitrogen was calculated as ammonia-N plus NOx-N.  The relative bio-availability 

of ammonia (principal form of N in effluent) and nitrate (principal form of N in 

slope/bottom water) are discussed later.  

Median (‘typical’) and 95 percentile plume contributions are compared with 

median (‘typical’) ambient nutrient concentrations in Figure 7.  Likewise, median 

plume contributions are compared with 95 percentile ambient nutrient 

concentrations (‘high’ - including effects of slope water) in Figure 8.  The 

implications of these enrichment patterns are discussed later in relation to 

potential for algal problems. 
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Figure 4. Ambient nutrient patterns at PH50 prior to commissioning of Sydney’s deepwater outfalls (NO3-N and PO4-P percentile distributions 
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Figure 5. Nutrient enrichment at PH50 for extreme (95 percentile) events expressed as absolute enrichment relative to 50 percentile 
concentrations (top) and as a factor of 50 percentile concentrations (bottom) [Factor of 1 indicates 95 percentile equals 2 x 50 percentile] 
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Figure 6.  Average annual cycles (1991-1998) of effluent exposure (left) and initial dilutions (right) based on plume model results for 
North Head (top) and Bondi (bottom)   
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Figure 7.  Dissolved inorganic nitrogen contribution from North Head effluent plume after initial dilution expressed in absolute terms(top) 
and relative to ambient concentrations (bottom) for typical plume contributions (left) and extreme plume contributions (right). 
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Figure 8. Typical (50 percentile) contributions of dissolved inorganic nitrogen 
from North Head effluent plume expressed as a fraction of extreme (95 percentile) 
ambient conditions such as those that may be expected during slope water 
intrusions. 

 

Spatial Extent of Effluent Plumes 

Far-field modelling has shown that, after rapid initial dilution, effluent plumes 

tend to be advected mainly parallel to isobaths with slow subsequent dilution 

(WILSON et al. 1995).  Figure 9 illustrates results of far field tracer studies 

conducted at Malabar deepwater outfall where labelled effluent was observed as a 

40m thick effluent field trapped below a 1°C thermocline at ~40m depth. Effluent 

emerged from the diffuser system (720m length) achieving average initial 

dilutions of 1:1000 within a few hundred metres of the outfall while spreading to 

form an effluent field which was ~900m wide, about 1km downstream and 

~1950m wide, fifteen kilometres  downstream the effluent field was advected 15 

kilometres in nearly 14 hours but during this time dilution had increased to only 

1:2000.  Advection rates observed on this occasion were above average when 

compared to depth averaged ORS current data (i.e. ~15km/day). In contrast, tracer 

experiments reported by PRITCHARD et al. (1993) under low stratification, 
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indicated a surfacing effluent field that broadened to 2100m at 1km downstream 

of the outfall.  

 

 

Figure 9. Far field plume dilution and spreading based on radioisotope tracer 
studies at Malabar ocean outfall on 17/06/92 when the submerged plume was 
tracked with a vertical triple scintillation detector system (TDS - for Gold198) and 
a mobile vertical profiling system (VPS) towed at varying depths through and 
across the plume. Water samples were collected for tritium analysis. 

 

Indirect Factors – Entrainment and Uplift 

CTD profiles obtained approximately 500 m downstream from Malabar outfall 

during the summer of 1992 (Figure 10) illustrates entrainment and uplift of 

ambient (nutrient rich) bottom waters in the rising plume.  On this occasion a near 

linear temperature gradient (~4°C over 80m) and a salinity peak at about 40m 
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trapped the plume. Salinity differences between essentially ‘fresh’ effluent 

(~0.1psu) and receiving ocean waters (~35.4psu) clearly delineate the upper 

surface of the plume of diluted effluent at ~40 m depth at the downstream 

(impacted) location. The isothermal profile within the plume (impacted) between 

80 and 40 m indicated that cool ambient bottom water (depicted in the lower 

~10m of the control profile) dominated the profile/plume up to the trap depth. 

This suggests that most initial mixing occurred as effluent entered the ocean at 

80m depth, presumably during the jet (momentum) dominated phase.  Given 

increasing ambient nitrate (and phosphate) concentrations with depth (Figure 4), it 

is clear that the physical release of effluent can have an indirect effect on 

receiving water nitrate concentrations despite the virtual absence of nitrate in 

primary treated effluent.  That is, the entrainment and uplift of nutrient (nitrate) 

rich bottom waters results in a net upward flux of ambient nutrients irrespective of 

the contribution from the effluent. 

Other features such as a strong effluent concentration gradient (decreasing with 

increasing depth) to a discrete upper boundary are expressed in Figure 10. In 

combination with the information from the temperature trace, this suggests 

variable distributions achieved during chaotic jet dominated dilution occur prior to 

the rise to a level of neutral buoyancy where the plume stabilises.  These 

observations are however contrary to the near field model simulations which do 

not accommodate such vertical gradients within the neutrally buoyant plume. 

However, possible errors in our assessment of enrichment (due to effluent plumes) 

were minimised by the grouping of average effluent dilutions (in 2m bins) over 10 

m depth intervals and mitigated by the fact that JETLAG conserves mass when 

estimating average dilutions.  

 

POTENTIAL FOR ALGAL PROBLEMS  

For the deep water ocean outfalls, a consideration of only the nutrient 

concentrations and loads would suggest a considerable potential for algal 

problems.  Furthermore, nutrient rich ambient waters from deep in the water 

column are carried upwards in to the euphotic zone in the rising plume. 

Furthermore, nutrient rich ambient waters from deep in the water column are 
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carried upwards by the rising plume in to the euphotic zone. The nutrient 

concentrations in these vertically displaced ambient waters exceeds those 

typically found in ambient upper water (Table 1) and are generally at or above the 

concentrations (in surface water) that have been associated with problems 

elsewhere (ANZECC 1992). 

Light and nutrients, particularly nitrogen, have generally been regarded as primary 

limiting factors for the growth of phytoplankton in the ocean (OVIATT et al. 

1989; GABRIC and BELL, 1993; PELLEY, 1998).  Observed associations 

between nutrient enrichment and phytoplankton blooms (e.g. HUMPHREY, 1960; 

AJANI et al., 2001; LEE et al., 2001) together with observed N:P ratios 

(Figure11) support the notion that nutrients, especially dissolved inorganic 

nitrogen, are critical to the development of algal blooms in our study region. 

Although high concentrations and loads of nutrients are necessary for excessive 

growth of phytoplankton, many other factors can limit growth (ANZECC, 1992) 

including mixing conditions, hydraulic retention time, light, temperature and 

grazing pressure.  
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Figure 10. CTD data collected ~200m upstream (CONTROL) and ~500 m 
downstream (IMPACTED) from Malabar deepwater outfall during summer 1992. 

Consistent associations between algal blooms and slope water intrusions and the 

lack of associations with proximity to major outfalls (e.g. AJANI et al., 2001; 

LEE et al., 2001 - this volume) led PRITCHARD et al. (1999) to conclude that 
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slope water intrusions were the major factor leading to phytoplankton blooms in 

our study region. Despite this, potential remains for secondary effects due to 

sewage derived nutrients. 
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Figure 11. Molar ratios of NOx-N to PO4-P at Port Hacking site PH50 (top) and 
residual effect due to North Head (NHD) effluent plume 

Phytoplankton Patterns 

A range of studies off Port Hacking have found a seasonal pattern with several 

peaks in phytoplankton activity particularly in late summer and spring (e.g. 
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HUMPHREY, 1960; JEFFREY and CARPENTER, 1974; AJANI et al., 2001). 

These correspond to the two nutrient peaks within an annual cycle mentioned 

earlier. Greater phytoplankton biomass was found at the nearshore (PH50) 

monitoring station compared to observations at a station in 100-110m water depth 

off Port Hacking (PH100) (HUMPHREY, 1963).  Phytoplankton biomass was 

found to be about three times that of zooplankton communities (HUMPHREY, 

1963) with higher concentrations of phytoplankton in the upper half of the water 

column than in bottom waters (GRANT and KERR, 1970). Large chlorophyll 

peaks have been predominantly due to the >15 mm fraction, superimposed upon a 

nanoplankton fraction (<15 mm) which formed a more constant background level 

throughout the year and diatoms, coccolithophorids and green flagellates appeared 

to be the main primary producers at PH100 (HALLEGRAEFF, 1981).  

The phytoplankton population was found to consist of mainly neritic species 

(GRANT and KERR (1970). Three major phytoplankton categories were 

distinguished at PH100: a large group of species which were present throughout 

the year; a group of diatom species, which bloomed following episodic nutrient 

enrichments; and, a group of warm water species associated with tropical water 

masses (HALLEGRAEFF and REID, 1986) 

Studies at PH100 during 1997-98 (AJANI et al., 2001 - this volume) found 

phytoplankton blooms of similar frequency and magnitude to those seen at this 

location during 1978-79 (HALLEGRAEFF and REID, 1986).  However, the high 

frequency of occurrence of the chain forming diatom Thalassiosira spp. and the 

‘red tide’, heterotrophic, dinoflagellate Noctiluca scintillans observed during 

1997-98 was unprecedented in these waters.  Any explanation for this change was, 

however, complicated by the altered physico-chemical conditions associated with 

the prevailing El Niño conditions that were not present in previous phytoplankton 

studies at PH100 (LEE et al., 2001).  

 

Nutrient Enrichment 

Nutrient enrichment has the potential to affect both phytoplankton biomass and 

species composition – for example diatoms have high growth rates under nutrient 
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rich-conditions (GRANELI and MOREIRA, 1990) while flagellates do not 

(OVIATT et al. 1989). 

Both slope water intrusions and plume dynamics were strongly influenced by 

ambient density stratification of the water column. Patterns of exposure to effluent 

from Sydney’s deepwater outfalls (Figure 6), therefore, mimicked seasonal 

patterns of concentrations of ambient nutrients (Figure 4).  Thus, ‘natural’ 

enrichment events would appear to be enhanced by contributions from deepwater 

outfalls. Greatest risk of outfall impacts would be expected when the contribution 

from outfalls is large with respect to ambient nutrient concentrations especially 

when ambient concentrations are low relative to saturation levels for 

phytoplankton growth.  Figures 6 and 7 indicate that most of the nutrient loading 

from Sydney’s deepwater outfalls remained submerged in the bottom half of the 

water column although under extreme (95 percentile) plume conditions effluent 

enrichment factors (relative to typical ambient concentrations) were greatest in the 

upper half of the water column during late summer and spring (Figure 7).  When 

compared to enrichment associated with ambient extremes (Figure 5), it would 

appear that outfalls effects would be most apparent under specific scenarios (low 

stratification and low current) during late summer.  

Nutrient Speciation 

Both laboratory and coastal marine mesocosm experiments have demonstrated 

that different taxonomic groups of phytoplankton may respond to environmental 

variables in different ways.  Competitive differences in the ability of 

phytoplankton species to respond to sewage derived nutrients may provide the 

potential to shift phytoplankton species composition. Nitrate was the principal 

form of ‘natural’ nitrogen enrichment of ambient waters (associated with slope 

water) while ammonia (predominantly the ammonium ion) was the principal form 

of nitrogen in most of the treated effluent. Nitrate and ammonium are the primary 

forms of nitrogen used by phytoplankton, but nitrite, urea and other forms of 

organic nitrogen can also be used. Both nitrate and nitrite must be reduced to 

ammonium before incorporation into amino acids and other organic compounds in 

a cell.  Under conditions of nitrogen excess, therefore, the preferred source is 

usually the most reduced form, that is the ammonium ion (EPPLEY et al. 1969, 

SERRA et al., 1978). The ability of a species to utilise organic forms of nitrogen 
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varies with the habitat for which the organism is adapted.  For instance, inshore, 

littoral and benthic species are better able to utilise amino acids and other organic 

forms of nitrogen than offshore species (WHEELER et al., 1974).  

Cellular accumulation of nitrogen in an inactive storage form is limited in 

comparison to phosphorus, and when nitrogen is deficient, nitrogen compounds in 

cellular structures may degrade.  

Filterable reactive phosphorous (predominantly phosphate) was the principal form 

of phosphorus in slope/bottom waters, and comprised 60 to 80% of the total 

phosphorus in primary treated effluent. Phosphorus uptake by algae is almost 

exclusively as phosphate.  When inorganic phosphorus (predominantly phosphate) 

is low but organic forms of phosphorus are available, algae may excrete 

phosphatases to break down phosphorous compounds.  When phosphate is 

available in excess amounts, cells may take it up (luxury consumption) and store it 

as polyphosphates for later use when external supplies are low.  Therefore, under 

certain circumstances, the continuity of supply of phosphorus may be less critical 

than for nitrogen.  

Nutrient Ratios 

Ecosystem biomass is limited by the total amount of biochemically available 

nutrients through the natural stoichiometric ratios between the elements (C, N, P, 

S, Si, Fe, Cu, etc.) from which all living things are made. Literature cites the 

Redfield ratio (JUSTIC et al., 1995) of 16:16:1 for bio-available 

Silica:Nitrogen:Phosphorus as the idealised ratio of nutrients for optimal 

phytoplankton growth. Discharges of treated sewage can alter both the quantity 

and relative proportions of various nutrients in coastal waters over time, which 

numerous studies have indicated can lead to eutrophic conditions or shift the 

composition and abundance of phytoplankton (OVIATT et al. 1989, GRANELI 

and MOREIRA 1990, RIEGMAN et al. 1992).  

Ratios of dissolved inorganic N:P calculated from long term data collected at 

PH50 shown in Figure 11 indicate conditions that favour nitrogen limitation prior 

to the commissioning of Sydney’s deepwater outfalls.  The time series of N:P 

ratios showed no clear trend over the period of the data set.  
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The annual cycle of N:P ratios at PH50 (Figure 11) indicates low ambient 

inorganic N:P ratios that increase towards optimal 16:1 Redfield Ratios in bottom 

waters during Spring-Summer, when phytoplankton activity is greatest.   Model 

results suggest that these ratios are relatively unaffected by the discharge of 

effluent from North Head outfall (after initial dilution), especially during 

spring/summer in the upper half of the water column when and where 

phytoplankton activity is greatest (also Figure 11). 

Other Considerations 

LEE et al. (2001 – this volume) demonstrated the potential for strong El Niño 

Southern Oscillation (ENSO) signals to affect physico-chemical conditions.  

Therefore, long term variability must be considered especially for impact 

assessments when ‘before’ data are unavailable and/or where relevant control sites 

are unavailable/impractical.  Our investigations were based on ambient conditions 

defined by data with minimal ENSO bias while effluent plume data may be 

slightly biased in favour of El Niño, as indicated earlier.  No major ENSO bias is 

expected although El Niño conditions may be associated with decreased thermal 

stratification during the winter months which promotes a slightly greater 

frequency of surfacing plumes and associated higher dilutions at these times (LEE 

and PRITCHARD, 1996). 

The continual supply of nutrients from ocean outfalls may sustain background 

(low level) populations of specific plankton thus maintaining a seed stock which 

would otherwise be absent during sporadic enrichment events (SUTHERS pers 

comm). Effluent may be present in surface waters at high dilution for about 20-

40% of the time during winter, and over 60% of the time at lower dilutions within 

the bottom half of the water column (Figure 6).  However, when typical (50 

percentile) plume nutrient contributions were compared with typical (50 

percentile) ambient concentrations, enrichment due to outfalls was generally 

restricted well within the lower half of the water column - exceptions occur when 

extreme plume conditions (95 percentile) occur (Figure 7).   
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CONCLUSIONS 

Estimates of various nutrient loadings to NSW coastal waters indicated that 

loadings from coastal STPs were large with respect to other discrete sources. 

Furthermore, Sydney’s three deepwater outfalls were found to be responsible for 

the vast majority of sewage contributions to coastal waters. These loadings and a 

consideration of nutrient concentrations suggested a considerable potential for 

algal problems.  

No new evidence has been presented to contradict previous findings that algal 

blooms are principally driven by seasonal oceanic nutrient enrichments.  But 

recent studies in southern Sydney offshore waters did observe an unprecedented 

abundance of the chain forming diatom Thalassiosira spp. and the ‘red tide’, 

heterotrophic, dinoflagellate Noctiluca scintillans, although prevailling El Niño  

conditions had altered physico-chemical conditions and therefore complicated 

interpretations.  

If there are any undetected outfall impacts, they are likely to be subtle and require 

more focused investigation. An understanding of physical processes operating on 

the continental shelf is necessary to focus such investigations because of highly 

variable ambient nutrient concentrations together with considerable lag times for 

phytoplankton (and especially heterotroph) responses. By considering simulations 

of near field effluent plume behaviour in relation to long term ambient nutrient 

patterns we have identified specific periods of the year and depth intervals when 

outfalls would have an increased opportunity to influence bloom development, 

especially the upper half of the water column during late summer.  

Discharges from coastal sewage treatment plants were shown to contain large 

quantities and relatively high concentrations of bioavailable nutrients.  However, 

there is little evidence to suggest that plumes from Sydney’s deepwater outfalls 

result in major shifts in the ratio of dissolved inorganic nitrogen to dissolved 

phosphorus.  

Worthy areas for further research include focused studies during late summer 

scenarios, more detailed investigations of factors which limit phytoplankton 
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growth, and the role of biological processes (including zooplankton interactions 

and bacterial processes) in cycling and sequestering nutrients. 
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6.5 Summary and Outcomes  
 

Analysis of extensive current meter and temperature time series data revealed the 

dominant driving mechanisms, which are different to those within near shore 

coastal boundary layer features observed off Coffs Harbour (Chapter 8).  

Furthermore, the deepwater locations of effluent discharge off Sydney appears to 

mitigate many of the risk factors that lead to environmental impacts; initial 

dilutions are high and pollutant residence times are low in this high energy 

environment with limited flow disruption due to local bathymetric features. At the 

extremities of the inner shelf off Sydney, broad coastal boundary layer effects 

dominate such as the manifestation of a western boundary current in the form of 

the EAC and its eddies, associated bottom (and wind) stresses which promotes 

cross-shelf transport and upwelling/downwelling dynamics (an inevitable 

consequence of a closed western boundary).  The bathymetry of the continental 

shelf also has a broad effect in constraining the passage of coastal trapped waves.  

 

Differences between the dominant drivers at Coffs Harbour and Sydney and 

various scales of coastal boundary layer effects are discussed further in Chapter 9.   

 

Nutrient loadings from Sydney’s coastal sewage treatment plants were large with 

respect to other discrete sources. These loadings and a consideration of nutrient 

concentrations suggested a considerable potential for algal problems. However, 

significant outfall impacts remain undetected and, if present, are likely to be 

subtle. By considering simulations of near field effluent plume behaviour in 

relation to long term ambient nutrient patterns specific periods of the year and 

depth intervals have been identified when outfalls would have an increased 

opportunity to influence bloom development, especially the upper half of the 

water column during late summer. However, algal blooms appear to be principally 

driven by seasonal oceanic nutrient enrichment. 

 

Key findings include: 

 broad coastal boundary layer effects were observed at the ORS including: 

EAC influences; upwelling dynamics; coastal trapped waves; and, bottom 

(and surface wind) stress promoting cross shelf transport evident as 
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 ORS data indicate prevailing southward transport punctuated by a number 

of ‘events’ when rapid accelerations and/or flow reversal interrupted the 

southward trajectory. This supports the assumption that long-term CSIRO 

sampling stations off Port Hacking are typically downstream of Sydney’s 

deepwater outfalls.  

 

 high energy coastal waters off Sydney exhibit dynamic variability across a 

range of scales which can affect pollutant impacts: 

 high frequency internal waves are evident in the ORS record: 

buoyant plumes rising through internal wave fields may differ 

significantly in height of rise and dilution compared to plume 

behaviour under mean stratification; likewise, biological and water 

quality sampling designs must recognise variability associated with 

these vertical displacements.  

 de-stratification can occur over time frames of hours promoting 

vertical mixing of nutrient rich bottom waters and allowing 

effluent plumes to reach the surface. 

 temperature stratification exhibits seasonal and inter annual 

variability: peak stratification ranges from ~7°C in summer 1993 to 

~4°C in summer 1994. 

 plumes generally surface (and achieve high effluent dilutions) 

when stratification is less that 1°C as exemplified by winter 1993.  

 stratification minima and associated high plume surfacing 

frequencies were generally confined to El Niño (warm) episodes 

 

 power spectra for Sydney inner-mid shelf water are available for 

comparison with Coffs Harbour coastal waters (in Chapter 8): 

 semi-diurnal tides are prominent but relatively low energy.  

 strong, coincident (wind and current), diurnal energy peaks 

represent sea/land breeze effects, transient weather systems and 

inertial motions (inertial period 23.6hrs at ORS). 
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 synoptic weather band energy dominates the signal driven by local 

weather systems (several days as shown in the wind spectra), 

distant weather systems (e.g. coastal trapped waves) and EAC 

effects which can span weeks. 

 both winds and currents show prominent seasonal peaks due to 

latitudinal shifts in atmospheric pressure systems and seasonal 

differences in EAC effects. 

 the annual cycle is subtle in the current meter record and virtually 

absent in the wind record.  

 a low frequency signal is apparent when the directional current 

displacements are plotted for entire ORS time series; eastward 

deviations are apparent in the upper current meter record for events 

centred on 1996 and 2001. 

 

 Long term nutrient patterns prior to the commissioning of deepwater 

outfalls were consistent with winter overturning of shelf waters and 

episodic slope water intrusions and enhanced biological (phytoplankton) 

activity in surface waters during the warmer summer months. That is: 

 minimum nutrient (and thermal) stratification occurred late in the 

austral autumn and winter: at this time surface water nutrient 

concentrations tended to coincide with minimum deepwater 

nutrient concentrations. 

 maximum surface waters nutrient concentrations occurred during 

July-August 

 maximum deep waters nutrient concentrations occurred during 

spring and summer, peaking in February. 

 absolute enrichment due to extreme ‘natural’ events (95%ile minus 

50%ile) was greatest at mid-depth (about the thermocline) from 

September through to April. 

 relative enrichment due to extreme ‘natural’ events (95%ile 

divided by 50%ile) was most marked within the upper half of the 

water column and up to an order of magnitude greater for nitrate 

than for phosphate. 

 227



 ambient nutrient ratios suggest that nitrogen is the limiting 

nutrient; effluent discharged from the deepwater outfalls carries 

nitrogen mostly as ammonia which is available to algae 

 

 nutrient concentration data indicate the potential for enrichment of surface 

waters due to estuarine discharges (especially nitrate and ammonia) and 

outfalls (especially ammonia) on those occasions when sewage effluent 

plumes surface.  Bottom waters may be enriched by slope water intrusions 

(especially nitrate and phosphate) and by outfalls (especially ammonia). 

 

 Sydney’s three deepwater ocean outfalls were found to be the principal, 

continuous, anthropogenic source of nutrients to NSW coastal waters: 

 together they contribute nearly 75% of the nutrient loading to NSW 

waters from coastal sewage treatment plants  

 clear nutrient enrichment due to sewage discharges 

 effluent plumes (~30m thick) typically remain submerged, 

broadening to 1-2 kilometers by about 10 kilometers downstream 

of the outfall (predominantly southward) 

 sewage effluent typically remains submerged especially during 

spring and summer which is when algal blooms typically occur; 

maximum effluent dilutions occur when sewage effluent surfaces 

 

 ADCP data are vastly superior to extrapolation below the bottom ORS 

current meter which until recently was used for plume model simulations. 

This is a critical finding given that investigations of plume behaviour 

(Pritchard et al., 2001) suggest that most initial mixing can occur within 

the bottom 10-15 m of the water column (i.e. below the bottom ORS 

current meter). 

 

 density stratification (of ambient waters) was a critical factor in 

determining the vertical movement of both oceanic and sewage derived 

nutrients into the euphotic zone (where light is available for algal growth): 

 the entrainment and uplift of nutrient (nitrate) rich bottom waters in 

buoyant plumes results in a net upward flux of ambient nutrients 

irrespective of the contribution from the effluent. 
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 for the deepwater outfalls, a consideration of nutrient loads and 

concentrations alone would suggest a considerable potential for algal 

blooms although many other factors can limit algal blooms. 

 

 consistent associations between algal blooms and slope water intrusions 

and the lack of associations with proximity to major outfalls led Pritchard 

et al. (1999) to conclude that slope water intrusions were the major factor 

leading to phytoplankton blooms in our study region but raised the 

possibility of secondary effects due to sewage derived nutrients. For 

example: 

 competitive differences in the ability of phytoplankton species to 

respond to sewage derived nutrients may provide the potential to 

shift phytoplankton species composition. Studies have shown that 

under conditions of nitrogen excess the preferred source of 

nitrogen is usually the most reduced form, which is the ammonium 

ion. Results in this chapter show that nitrate was the principal form 

of ‘natural’ nitrogen enrichment of ambient waters (associated with 

slope water) while ammonia (predominantly the ammonium ion) 

was the principal form of nitrogen in most of the treated effluent.  

 patterns of nutrient delivery have the potential to affect both 

phytoplankton biomass and species composition. Results in this 

chapter indicate that the greatest risk of outfall impacts would be in 

surface waters during late summer when the contributions from 

outfalls are large with respect to ambient nutrient concentrations, 

and especially when ambient concentrations are low relative to 

saturation levels for phytoplankton growth. 

 continual supply of nutrients from ocean outfalls may sustain 

background (low level) populations of specific plankton thus 

maintaining a seed stock which would otherwise be absent during 

sporadic enrichment events (Suthers pers comm). Effluent may be 

present in surface waters at high dilution for about 20-40% of the 

time during winter.  However, when typical (50 percentile) plume 

nutrient contributions were compared with typical (50 percentile) 
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 changed nutrient ratios (Si:N:P) can change algal species 

compositions although analysis in this chapter suggests that 

nitrogen to phosphorus ratios (N:P) are typically little changed 

after initial dilution 

 

 

The research presented in this chapter, together with companion research (e.g. 

Pritchard,1997; Pritchard et al., 2003) and routine ongoing monitoring, indicate 

the viability of disposal of the vast majority of Sydney’s sewage effluent via 

existing deepwater outfalls. However, on going vigilance is required due to 

increasing loads and changing ambient conditions associated with global warming 

and cumulative impacts.  Furthermore, long-term variability must be considered in 

order to extrapolate (generalise) outcomes of impact assessments to other times 

because variability in hydrodynamic factors can change the sensitivity to, and 

nature of ecological impacts. 

 

A consideration of increasing human demands on resources in the context of the 

whole water cycle leads to the inevitable conclusion that water and nutrients in 

sewage are a valuable resource, which we must make concerted efforts to recover. 

As such discharges to the ocean and other waters are not appropriate until other 

options such as source control and re-use have been exhausted.  
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7 A MORPHOLOGICAL CLASSIFICATION OF NSW 
HEADLANDS, BAYS AND ISLANDS 

 

The purpose of this chapter is to develop a hydrodynamically relevant 

morphological classification of bays, headlands and islands for NSW, and to 

characterise observed morphologies within each of the classes.    

 

In this way NSW coastal morphologies can be quantified to identify potential 

coastal boundary layer effects. This provides a framework to assess the 

general significance of findings from specific case studies such as dispersion 

in the lee of Corambirra Point, Coffs Harbour in Chapter 8. It also provides a 

spatial dimension to the classification of Inner Coastal Boundary Layer types 

developed in Chapter 4.  Ultimately, this morphological classification of bays, 

headlands and islands provides the foundation for a risk based hydrodynamic 

assessment of near shore NSW (and other) waters.  Prospects for further 

research and development of this type are outlined in Chapter 10. This 

includes discussion on specific targets for research emerging from this 

morphological classification such as observation-based investigations and 

hydrodynamic modeling that falls outside the scope of this thesis.  

 

Various techniques have been employed to characterise coastal roughness 

such as fractal analysis (e.g. Wessel and Smith, 1996) and various 

classification systems exist for other coastal environments such as estuaries 

(e.g Roy 2001), beaches (e.g. Short 1993), coastal depositional environments 

(Harris et al., 2002) and sandbanks (e.g. Dyer and Huntley, 1999).  NSW bay 

shapes have been characterised in relation to likely differences in tsunami 

amplification and dissipation (Baldock, et al., 2007). However, this author is 

unaware of any previous morphological classification of bays and headlands 

based on potential for retention and dispersion of pollutants. 
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7.1 Introduction 

 

The general criterion for the usefulness of classification systems is that they 

identify coherent groups with similar properties that inform or simplify a 

management question (Kurtzi et al., 2006).  

 

In this chapter fundamental coastal morphologies are classified for New South 

Wales in relation to the key physical processes responsible for mixing, 

retaining and dispersing particles across the Inner Coastal Boundary Layer. 

Clear definitions and simplified assumptions based on key geometric 

attributes form the basis of this classification scheme. 

 

In NSW pollutants typically originate from coastal catchments and are 

discharged to the coastal waters directly via regulated outfalls and unregulated 

stormwater drains, or indirectly via estuaries, as discussed Chapter 2.  These 

pollutants enter the coastal boundary layer where complex flow fields  

comprising eddies, jets and stagnation zones occur due to interactions of flows 

with coastal morphology (as detailed in Chapter 4).   

 

The NSW coastal and shelf morphology is the product of past and present 

forces acting on its geology. The NSW coastline has been shaped by repeated 

fluctuations of sea level, especially the 120m rise that occurred during the 

most recent postglacial period. The current coastline was established when sea 

level reached its current level about 6,500 years ago so it is a relatively young 

coastline in geological terms (Short, 1993).  

 

Numerous headlands and small bays along much of the north and south coasts 

of NSW are associated with the hard metamorphic rocks of New England Fold 

Belt and the Lachlan Fold Belt (respectively) (Short, 1993; Branagan and 

Packham, 2000). Broader bays and fewer headlands exist along the coast 

between these fold belts and to the north where softer, mostly sedimentary 

rocks outcrop on the coastal fringes of the Sydney Basin and the Clarence-

Morton Basin. Harder Hawkesbury sandstones in the centre of the coast of the 

Sydney Basin have resulted in headland–bay topography that is characteristic 

of Central-Sydney-Wollongong coastal areas. 
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Unconsolidated coastal sediments of NSW are dominated by quartz rich 

sands, especially in northern NSW (Short and Woodroffe, 2009). Indeed the 

largest area of sediment accumulation in Australia is along northern NSW and 

southeast Queensland where almost pure quartz sand eroded from extensive 

granite rocks of the New England fold belt have been transported to the coast 

by the Hastings, Macleay, Richmond, Clarence, Brunswick and Tweed rivers 

before being transported northward by waves.  These vast sand deposits tend 

to migrate northward (~500,000m3yr-1 at the NSW – Queensland border) and 

have the potential to affect shelf bathymetry as well as shaping coastal 

features. This is evident off northern Fraser Island (Queensland) where the 

final terminus (Breaksea Spit) of this sand system extends across the 

continental shelf, spilling sand down the continental slope (Short and 

Woodroffe, 2009). Abundant mobile sand together with a southerly bias in 

wave direction gives rise to iconic asymmetric headland forms, especially in 

northern NSW, as illustrated below (Figure 7.2). South of Port Macquarie 

headlands essentially stop the northward transport of sand, particularly south 

of Newcastle, and few rivers presently supply sand to the coastal systems 

along the south coast. Instead sand from coastal catchments is deposited in the 

estuaries and coastal lakes.  

 

In the absence of high resolution near shore bathymetry analysis of coastal 

roughness has focused on coastlines. Fractal characterisation of rocky 

coastlines has been used elsewhere to predict the spatial distribution of the 

flux of pollutant diffusing ashore (Boffetta et al., 2008). That is, rocky 

shorelines with a fractal dimension of 4/3 were shown to be conformally 

invariant (an expression of rich symmetry) which allowed efficient 

computation of pollutant fluxes from offshore to the coastline using 

techniques borrowed from theoretical physics.  In this case the pollutant flux 

scaled exactly as Rπ/θ , where R can be interpreted as the length of a wedge (ie 

headland/bay) with an opening or apex angle of θ (Duplantier, 2000 in 

Boffetta et al., 2008). These parameters (length and apex angle) were included 

as descriptors in the morphological classification proposed here for the NSW 

shoreline. However, a fractal approach was not adopted. A stochastic analysis 

based on specific fractal characteristics has the potential to provide a general 
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description of possible dispersion characteristics but is fundamentally limited 

by its lack of explicit representation of physical processes and uncertainties 

about its general applicability to New South Wales.   

 

The morphological classification developed in this chapter is designed to 

combine coastal geometry with regional hydrodynamics to inform a risk based 

assessment of potential dispersion/retention. This forms an appropriate first 

step to inform management decisions relating to specific pollutant discharges. 

The full risk assessment approach is likely to require subsequent more detailed 

process based assessments (including modeling) for ‘high risk’ morphological 

settings that have been prioritised by this method. Therefore, fundamental 

morphologies are identified here and their parameterisation and context is 

discussed later in relation to hydrodynamic and dispersion processes. 

 

  7.2 Morphological Types 

 

For the purpose of this classification for NSW coastal waters, the following 

bay characteristics distinguish Bays (in scope) from Estuaries (which are out 

of the thesis scope): 

 permanently open to pervasive influences of ocean currents and ocean 

waves  

 tidal phase lag within bays indistinguishable from that of the open 

coastline  

 generally bounded by identifiable headlands 

 

The development and application of quantitative criteria to implement this 

definition was limited by available data. However, the above qualitative 

criteria served well in the implementation of this classification to NSW bays 

in Section 7.4.   

 

Headlands can occur in the absence of Bays so a working definition is also 

required to distinguish Bays from individual adjacent Headlands. For the 

purpose of this classification: 
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 the area between adjacent headlands constitute a bay when the distance 

between adjacent headlands is less than twice the average length of 

headlands. 

 

This working definition can be tested and refined when field observations and 

model simulations are available to rigorously determine relevant length scales 

at which hydrodynamic characteristics are principally determined by the 

interacting effects of adjacent headlands rather than the individual effects of 

two single headlands.  

 

Bays could have been parameterised as inverse headlands for the purpose of 

classification, as is the case in fractal analysis of coastlines. However, initial 

attempts to develop a generalised classification (for the NSW coast) based on 

roughness (i.e. a single paramterisation for both bays and headlands) were 

problematic due to the extensive and complex nature of many NSW bays.  

 

 

Two simplified headland types were evident from NSW coastal maps, aerial 

photography and bathymetric charts: Triangular and Coastal Step, as shown 

with case examples in Figure 7.1. 

 

Triangular Headlands (Figure 7.2) in NSW have been parameterised in the 

simplest way possible by assuming triangular form and defining headland 

length (L), the apex angle (Ω), and the orientation of the headland with respect 

to regional isobaths (θ).  This simple typology captures most salient features 

of NSW headlands although the representation of the classic NSW 

asymmetrical cusp headlands (Figure 7.2), required additional 

parameterisation. These iconic north facing cusp headlands are particularly 

prominent in sand dominated northern NSW. Variations to the idealized 

triangular headland form were parameterised by quantifying the convex or 

concave deviations (Δ) of the limbs of the headland as shown in Figure 7.2. 

 

Coastal Step Headlands (Figure 7.1) are effectively discontinuities in the 

coastline, or one-sided headlands, with extreme asymmetry generally caused 

by the northward longshore transport of sand.  A Coastal Step links two 
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parallel stretches of coastline, with clearly identifiable break points at both 

ends of the ‘step’. Major, broad scale, shifts in the orientation of the regional 

coastline, such as is evident in the Port Stephens/Stockton Bight area, are not 

included as Coastal Step ‘headlands’.  The hydrodynamic significance of these 

regional shifts in the orientation of the coastline and continental shelf on larger 

scale coastal boundary layer effects is discussed in Chapter 9. 

 

A practical, hydrodynamically relevant, morphological classification of 

coastal protrusions (headlands and islands) logically includes parameters 

relating to: 

 Headland or Island dimensions (length & width or length and apex 

angle of triangular headlands) 

 Water depth  

 Regional flow incident on the long axis of the headland or island 

 Local features such distance from adjacent headlands and nearest 

islands. 

 

Offshore Islands (Figure 7.1) also act as obstacles to regional flows and affect 

hydrodynamic processes of dispersion and accumulation in similar ways to 

headlands. Indeed nearshore islands may become permanent or transient 

headlands due to the formation of tombola in the low wave energy, 

depositional, zone behind (shoreward of) the island. The charcteristics of 

offshore islands were parameterised by simplified measures of island width 

(X), length (Y) and distance from shore (D), with salient widths (S) recorded 

when present.  

 

Simplification was an essential design principle in the development of this 

morphological classification. However, individual morphological features 

cannot always be considered in isolation because upstream turbulence caused 

by another morphological feature can effect the formation of wakes and thus 

affect dispersion potential at the site of interest.  For example, anomalously 

high turbulence near Bass Point (a 4 km wide headland near Sydney, 

Australia) was found to prevent the formation of a single narrow shear layer 

and limited large scale re-circulation (Middleton et al., 1993).  Instead a broad 

shear zone formed and the separation point was pushed far downstream.  
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Upstream morphological features such as islands, headlands and shoals can 

generate turbulence. 

 

Four simplified bay morphological types were evident from NSW coastal 

maps, aerial photography and bathymetric charts: Open Sweep, Open 

Triangular, Open Rectangular, and, Semi Enclosed as shown with case 

examples in Figure 7.3.   

 

Here a special case morphology consisting of a Chain of adjacent headlands 

and bays is defined for completeness (Figure 7.4).  

 

Likewise, engineered Training Walls, warrant special consideration (Figure 

7.4). Training walls were commonly constructed in NSW for estuary or 

harbour entrance management.  Indeed, most major rivers in northern New 

South Wales have training walls. These structures present an obstacle to shore 

parallel flows and can introduce vorticity to coastal waters through tidal 

exchanges and continuous or sporadic outflows of run-off from coastal 

catchments.  

 

A process based rationale for parameterisation of these headland and bay 

morphological types is provided below in Section 7.3, together with relevant 

contextual data to inform a risk based assessment of potential pollutant 

dispersal characteristics.  The implementation of this classification to NSW 

bays and headlands is described in Section 7.4. 
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 COASTAL MORPHOLOGIES: HEADLANDS & ISLANDS 

 
Triangular 

 

 
 e.g. Bass Pt 

 

Coastal Step  

 

 
e.g. Diamond Head (NstepE) 

 

 

Offshore Island  

 

 
e.g. Broughton Island 

 

Defining Parameters: 
L          = headland length            W          = headland width 
Ω         = headland apex angle                       θ           = orientation w.r.t. isobaths  
N E  = step east traveling N to S                N W = step west traveling N to S      step step

X,Y     = island dimensions                            D         = minimum distance to shore 
S         = salient width (if present)  
H         = water depth at L ‘upstream’ & ‘downstream’ from headland tip   

              (oriented along regional isobaths)  
 
 
Figure 7.1 Morphometric classification for NSW headlands and islands (images 
courtesy Google Earth). 
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a) 

 

b)  

 

c) 

 

 

Figure 7.2 a) iconic northern NSW headlands exhibiting north facing cusp 
asymmetry. b) schematic parameterization of a north facing cusp headland 
with deviation from standard triangular headland  parameterised by Δ ; and,  
c) Cape Byron, the most prominent north facing cusp headland in NSW 
(images courtesy Google Earth). 
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COASTAL MORPHOLOGIES: BAYS 

Open Sweep 

 

e.g. Merimbula Bay 

 

Open Triangular 

 

e.g. Batemans Bay 

 

Open Rectangular 

 

e.g. Disaster Bay 

Semi Enclosed 

 

e.g. Jervis Bay 

 

Defining Parameters: 
L   = Length    W     = Width    
E   = width at Entrance  θ       = orientation w.r.t. regional isobaths 
H½  = water depth at ½ L  Hmax = maximum water depth 
HE  = average water depth at entrance 
Working definition: a Bay exists when the separation between headlands is less 
than twice the average length of the headlands (i.e. W<2L) 
 
Figure 7.3 Morphometric classification for NSW bays (images courtesy Google 
Earth). 
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COASTAL MORPHOLOGIES: SPECIAL CASES 

 

Engineered Training Walls 

 

 
e.g. Tweed 

 

 

Chain of headlands/bays 

 

 
e.g. South Bateman's 

  

Figure 7.4 Morphometric classification for NSW special cases: engineered 
training walls; and, chains of headlands/bay. Protrusion lengths are given for both 
north (LN) and south (LS) engineered training walls (images courtesy Google 
Earth). 

W

LS

LN θ

θ

R
E

G
IO

N
A

L
 I

SO
B

A
T

H
S

L
W

 

 

7.3 Contextual Data related to Hydrodynamic Processes  

 

Processes affecting retention and dispersion of pollutant in the vicinity of 

headlands, bays and islands include local currents, waves, winds, riverine 

inflows, tides, and other system specific processes. Bay and headland 

circulation patterns and dispersion characteristics exhibit spatial and temporal 

variability at various scales due to a range of periodic and episodic phenomena 

such as: regional current reversals (e.g. affecting headland wakes), episodic 

freshwater discharges (e.g. affecting bay flushing), transient high wave events 

and differential seasonal cooling (e.g. affecting bay wide circulation).  

Simplified representation of morphological features related to these processes 
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is critical to a hydrodynamically relevant morphological classification of bays 

and headlands.  

 

Local currents incident on headlands, bays and estuaries determine wake 

effects and drive advection and dispersion processes.  

 

Although few data exist to describe local area currents in NSW coastal waters, 

broad scale regional circulation and the driving processes are well described 

for NSW shelf waters (see Chapter 2).  

 

Accurate representation of flow regimes at the scale of headlands and bays 

would enhance the classification of NSW coastal features. However, 

insufficient data are available for a classification system incorporating all 

complex hydrodynamic processes to be broadly applied to NSW coastal 

waters. A simplified morphological classification, commensurate with 

available data, is necessary and appropriate, especially for shallow coastal 

water and screening level applications. Such a classification can focus 

subsequent studies to resolve more complex three dimensional flows 

interactions between regional currents and bathymetry in the coastal boundary 

layer which can be physically and ecologically important (e.g. Black et al., 

2005; Berthot and Pattiaratchi, 2006). 

 

Well validated hydrodynamic model simulations are not currently available to 

provide comprehensive coverage of near shore currents incident on headlands, 

islands and bays for near-shore NSW coastal waters. Recent initiatives such as 

the Australian Integrated Marine Observing System (IMOS) (Suthers et al., 

2010) together with re-analysis products such as the Bluelink ReANalysis (a 

multi-year model integration with data assimilation described by Oke et al., 

2005), and regional modeling (Roughan, et al., 2011) have improved coverage 

of coastal hydrodynamics but are as yet too coarse and lack extensive 

nearshore validation. Encouraging developments include the immanent 

deployment of an IMOS high frequency coastal radar WERA system 

(http://ifmaxp1.ifm.unihamburg.de/WERA.shtml) off Coffs Harbour to map 

surface current velocities from 2011, and further high resolution coastal 

hydrodynamic modeling is underway (Roughan, pers comm., 2010)   
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Until near shore circulation patterns have been mapped and quantified at an 

appropriate resolution there is little justification to impose current regimes 

over the morphological classification of NSW headlands, bays and islands. 

However, simple flow scenarios can be constructed from observations of 

Outer CBL processes together with the sparse existing near shore current time 

series data. For example, observed offshore Sydney mean upper current speed 

was 0.22 m/s (Chapter 6; Pritchard et al., 1996) while mean depth averaged 

current speed at the outer Coffs Harbour site (Site D) was 0.19 m/s (Chapter 8; 

Pritchard et al., 2001 and 2007).  

 

Sydney’s Ocean Reference Station (ORS) has captured the longest time series 

of high frequency flow observations in Sydney offshore waters, now spanning 

nearly two decades. Pritchard et al., (2005) analysed these data to describe 

temporal variability including:  

 prominent but relatively low energy semi-diurnal tides 

 strong diurnal energy peaks represent sea/land breeze effects, transient 

weather systems and inertial motions (inertial period 23.6hrs at ORS).  

 dominant synoptic weather band energy driven by local weather 

systems, distant weather systems (e.g. coastal trapped waves) and East 

Australian Current effects which can span weeks.  

 prominent seasonal peaks due to latitudinal shifts in atmospheric 

pressure systems and seasonal differences in EAC effects. 

 subtle annual cycle 

 

The orientation of morphological features with respect to regional flows has 

the potential to affect the location and extent of wakes and associated 

dispersion potential.  Previous studies, such as those reported in Chapter 6 of 

this thesis (Pritchard et al., 2001 & 2007) indicate that regional current 

vectors on the NSW inner continental shelf tend to follow isobaths.  In the 

absence of site specific current data, critical contextual data include: 

 Orientation of morphological features (headland axis and orientation of 

bay entrance) with respect to alignment of regional isobaths (surrogate 

for regional flow axis)  
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Local winds are major drivers of inner shelf currents (Pritchard et al., 2001), 

they promote vertical mixing of the water column (Pritchard et al., 2005), 

and contribute to mixing within bays and estuaries (Wolanski, 2007) which 

increases potential for exchange of particles across bay entrances. 

 

Wind patterns across NSW coastal waters have been described in Chapter 2. 

That is, afternoon northeasterly seabreezes are typically observed in summer 

across the coastal observing network although easterly or southeasterly winds 

dominate at Williamstown (north of Newcastle) and Nowra (south of Sydney). 

Morning westerlies, ranging from southwest to northwest, frequently occur 

during winter, while extreme events are often associated with southerly and 

south-easterly winds.  Important morphologic parameters affecting mixing and 

exchanges with offshore waters are the length and orientation of long axes of 

bays (and headlands) relative to dominant wind vectors. This could not be 

applied across the NSW coast due to significant temporal and spatial 

variability of coastal winds and limited observations of local winds across 

relevant coastal features, but is an important next step when assessing a 

prioritized coastal site for further investigation. For this broader assessment, a 

more simplistic approach is appropriate for the preliminary classification 

presented here, whereby internal bay dimensions are considered in relation to 

entrance dimensions to indicate relative clearance potential for bays, using: 

 Bay Centerline Length: distance to entrance (m) 

 Bay Entrance Area/Bay Volume: exchange potential at entrance (m-1) 

 

Breaking waves have the potential to increase vertical mixing, re-suspend 

particles and drive circulation in bays (e.g. Bate Bay – Large et al., 1994).  

 

Most bays encompass beaches and all beach morphologies observed in NSW 

have been classified as wave-dominated (transverse bar and rip/reflective/low 

tide terrace/rhythmic bar and beach) (Short, 1993). Thus the fine scale 

morphology of bays is often dominated by bars and rips, which are often 

regularly spaced at typical intervals of about 250m (Short and Woodroffe, 

2009). However, the hydrodynamically relevant morphological classification 
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of bays and headlands developed here focuses on broader scale wave induced 

mixing and potential for wave induced pollutant transport.  

 

NSW wave data collected at seven locations over periods of up to 28yrs 

indicate average significant wave heights of ~1.6m, spectral peak periods of 

~9.6s and maximum wave heights of ~7.1m (see Chapter 2).  Directional data 

are available from three of these locations for lesser durations, exhibiting 

predominantly south-south-easterly wave directions. The NSW waverider 

network is currently being upgraded to include directional observations across 

all seven observing stations. Based on available data there is some evidence 

for more intense extreme wave events in central NSW (Sydney and Pt 

Kembla) but little justification to impose latitudinal wave zonation over the 

morphological classification of bays and headlands. However, the following 

morphological parameters determine penetration of wave energy into bays or 

indicate finer scale variability in dispersion characteristics: 

 entrance width and depth; and, 

 entrance orientation with respect to dominant wave directions 

 orientation of headlands (and islands and reefs) with respect to 

dominant wave directions and major rips (often reflected in headland 

morphologies) 

 

Tidal currents are generally minor in open coastal waters of NSW because of 

the micro-tide range (mean ~1.3m; maximum ~2m) combined with little tidal 

phase difference along the coast. By definition tidal currents within Bays are 

minimal (Section 7.2) although the entrances of some semi-enclosed Bays and 

Training Walls may exhibit tidal flows. Entrance tidal exchange observations 

from the Sydney region (Fig 4.11 in Chapter 4) show ebb jets extending 4km 

offshore and buffering alongshore flows.   

 

 

Riverine (freshwater) outflows have the potential to drive or influence 

circulation within bays and therefore affect pollutant retention/flushing.  

 

River inflows were derived from 2CSalt modeling undertaken by Littleboy et 

al. (2009) and Roper, et al. (2011) for all NSW coastal catchments: 198 
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catchments covering a total area of ~130 000 km2. Flows were simulated for 

the period from 1975 to 2007 using daily weather data together with 

hydrologic soil data, land use data (1:25,000), topography (100m DEM), and 

groundwater attributes. S2CSalt quantifies monthly surface and subsurface 

contributions of water (and salt) exports at a catchment scale, based on 

monthly groundwater time steps and daily surface hydrology time steps, 

which were summed to monthly totals. Annual averages were calculated from 

the monthly times series and river inflows were estimated by summing 

average annual exports from all relevant sub-catchments. 

 

River inflows from all subcatchments are not necessarily equal to freshwater 

outflows to coastal waters or bay flushing because estuarine processes and bay 

entrance conditions regulate the connection between catchments and offshore 

waters and mixing within the bay (e.g. retention within estuarine systems and 

evaporation). However, for the purposes of this classification river inflows 

were used as a surrogate for potential freshwater outflows. This is a 

reasonable first approximation given that it favours a conservative evaluation 

that would trigger more detailed investigation within a risk assessment 

framework.  

 

 A Fluvial Factor was estimated for bays as the ratio of long term daily 

average freshwater inflow (m3 day-1) multiplied by the flushing time 

(day) to the estimated volume of the bay (m3).  

 

Volume was calculated from the bay Length, Width and Average Depth. This 

provided a reasonable representation of bay volume for most bay types but 

may tend to over estimate bay volumes for semi-enclosed (SE) bay types 

resulting in under estimation of the flushing potential. SE bay types are often 

inherently less well flushed than open bay types so this is an appropriate 

conservative approach for a risk based assessment to flag potential pollutant 

impacts for further investigation (an intended use of this classification). In the 

absence of bay residence flushing times, and for the purpose of this NSW 

assessment only, the bay residence time was set at 1 day for comparative 

purposes.  
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By necessity morphological classifications seek to simplify often-complex real 

world morphologies and interacting processes.  A process based understanding 

(outlined above) informs the limitations of this simplification and examples 

provided below illustrate how the specific configuration of key morphological 

features can affect circulation patterns.  

 

Discussions and specific case studies in Chapter 9 illustrate the hydrodynamic 

importance of various morphologies and demonstrate how hypotheses about 

pollutant dispersal developed using this classification can be tested and refined 

by direct observations and validated model simulations. 

 

7.4 Implementing Morphological Classification of NSW Headlands, 

Bays and Islands  

 

Existing NSW near shore bathymetry is inadequate to determine sub-tidal 

bathymetric expressions of most Headlands and Bays across all NSW coastal 

waters so this classification is biased by the morphological expression of the 

coastline. 

 

Fractal considerations introduced in Section 7.1 (above) require definition of a 

scale or lower length threshold for coastal roughness. This classification was 

based on parameterisation of Headlands and Bays at a scale of 1:25,000 which 

resulted in headland length scales greater than 185m and internal bay 

dimensions greater than 120m.  

 

Training walls and Offshore islands, were included in this classification for 

completeness because they operate as obstacles to regional flows in similar 

ways to headlands. However, these features introduce hydrodynamic 

complexity which required special consideration, which is beyond the scope 

of this thesis. Near-shore islands with dynamic salient/tombola features have 

not been parameterised in this classification because of the highly variable 

passage of water between the island and the shore due to tidal extremes and 

sand movements. These features are flagged for case specific consideration 

rather than generalised within the classification because variable ‘leakage’ 
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through these ‘transient headlands’ has the potential to profoundly affect 

pollutant residence times.  

 

Oceanic islands such as Lord Howe Island that cause no expression on the 

mainland coastal boundary layer are not included in this classification due to 

their uniqueness and distance from mainland Australia. 

 

Simple prescriptive methodologies were developed to interrogate the 

following morphological data sources in developing this morphological 

classification of NSW bays and headlands: GoogleEarth (2009) at view 

altitude of ~4km and associated measurement tools, NSW Department of 

Environment and Climate Change bathymetric database and associated 

ArcMap Fieldmap and measurement tools, and Admiralty Charts (Australian 

Hydrographic Office, 1962). Contextual data sources have been described 

above. 

 

Parameters used to classify hydrodynamically relevant NSW coastal 

morphologies are listed in Table 7.1, and illustrated in Figure 7.2, 7.3, 7.4 and 

7.5. 
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Table 7.1 NSW Headland parameters 

HEADLANDS Observed and Calculated Parameters 
Name Headland name 
Location Latitude, Longitude, Distance south of Queensland border (km)

Type Triangular Headland (H), Southward step East or West (SstepE 
or SstepW) - see Section 7.2 

Centerline Length (m) 
  Orientation wrt true north  
  (assumes idealised triangular form for both Triangular and 

Step headlands) 

Width & Apex Angle Width at 1/2L  
  Apex Angle is the internal angle at the tip of the idealised 

headland triangular calculated from measured Length and 
Width of the headland 

Triangular Deviation &
Cusp Parameter 

 Concave/convex/straight morphologic type of North and South 
limbs of the headland (Scv/Scx/Sst/Ncv/Ncx/Nst) . 

  

Maximum deviation from each of the ocean facing sides of an 
idealised triangular headland (negative concave, positive 
convex). 

  

'Cusp Parameter' = radius of curvature (m) of an arc passing 
through end points of an ocean facing side of the idealised 
headland triangle plus the central point of deviation (note that 
the maximum deviation' (above) is the perpendicular distance 
from the centre of the side of the triangle to the arc).   

  (applied to both Triangular and Step headlands) 
Depth Water depth one headland length north (DN) and south (DS) of 

tip of the headland in a direction parallel to regional isobaths 
and regional coastline (generally perpendicular to headland 
centreline), Average depth (DN + DS)/2 for triangular 
headlands. 

'Flow' Orientation  Orientation of an isobath (default 60m) which charcterises 
regional inner and mid shelf orientation (indicative of regional 
flows) w.r.t. true north  

  Orientation of headland w.r.t. regional isobaths 
Cross shelf profile Distances (km) from shore to 25m, 40m, 60m, 100m, 200m 

isobaths 

Nearest island Name, Distance from headland (km) 
Comments Site specific characteristics and notable features  
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Table 7.2 NSW Bay parameters  

BAYS Observed and Calculated Parameters 
Name Bay name 
Location Latitude & Longitude at intersection of bay centreline and shore; 

plus calculated distance south of Queensland border (km)  

Type Open Rectangular (OR), Open Sweep (OS), Open Triangular (OT), 
Semi enclosed (SE) - see Section 7.2 

Entrance Width (head to head) (m) 
  Average depth (m) 
  Calculated cross sectional area (W x D) 
  Orientation w.r.t. true north and w.r.t. regional isobaths  
  Orientation w.r.t. dominant south-south-easterly waves 
Centreline Length from shore to mid point of entrance (m) 
  Orientation wrt true north  
Width Width at 1/2L at right angle to centreline (m) 
  Maximum width at right angle to centreline (m) 
Bay Volume Approximated as Width x Length x Average Depth (m3) 

Depth Average water depth in bay (m)  
'Flow' Orientation  Orientation of an isobath (default 60m) which characterises regional 

inner and mid shelf orientation w.r.t. true north (indicative of 
regional flows)  

  Calculated orientation of bay entrance w.r.t. regional isobaths 
Coastline Orientation Regional orientation of the coastline  
  Orientation of bay entrance w.r.t. regional coastline 
Fluvial Input Name of river discharging to Bay 
  Average annual discharge (ML/yr) derived from Roper, et al. (2011) 

based on the methodology described in Littleboy et al. (2009) 

Cross shelf profile Distances (km) from shore to 25m, 40m, 60m, 100m, 200m 
isobaths 

Indicative clearance 
factors (calculated) Centreline Length: distance to entrance (m) 
  Entrance Area/Bay Volume: exchange potential at entrance (m-1) 

  Fluvial Factor (d-1) = 100% x (average annual freshwater input/365 
(m3d-1) / (Bay Volume (m3) )  which is a first order approximation of 
the percent ratio of bay volume to daily freshwater input 

  Effective entrance width facing SSE vs maximum bay width: relative 
wave penetration assuming no breaking (m)  

  Effective entrance aspect w.r.t. regional isobaths: entrance 
exposure to regional flows (m) 

Comments Site specific characteristics and notable features  
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Table 7.3 NSW Island Parameters  

ISLANDS Observed and Calculated Parameters 
Name Island name 
Location Latitude, Longitude, Distance south of Queensland border (km)

Distance from shore Shortest distance to mainland (m) 

Dimensions East-West extent (km) 
  North-South extent (km) 
  Maximum dimension (E-W or N-S) (km) 
Depth Estimated from regional along shelf isobaths (m) 
Salient width Estimated maximum departure from regional coastline 

between island and shore (m) 

Comments Site specific characteristics and notable features  
 

Table 7.4 NSW Training Walls parameters  

TRAINING WALLS Observed and Calculated Parameters 
Name Location name 
Location Latitude, Longitude, Distance south of Queensland border (km)

Wall length North wall protrusion (m) 
  South wall protrusion (m) 
  Average protrusion (m) 
Freshwater outflow River name 
  Average annual discharge (ML/yr) derived from Roper, et al. 

(2011) based on the methodology described in Littleboy et al. 
(2009) expressed as High/Medium/Low  

Entrance Width Width between walls at mouth (m) 
Wall Orientation  Wall orientation w.r.t. true north 
Coastal discontinuity Shoreline discontinuity across walls (m)   

  Southward step East or West (SstepE or SstepW) if applicable 

Normalised flow factor
(calculated) 

Flow/Entrance width categorised as High/Medium/Low  

Comments Site specific characteristics and notable features  
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7.5 Results: coastal morphologies of NSW 

 

Headland morphologies ranged from sand dominated asymmetric cusp shaped 

headlands such as near Crowdy Head to rocky headlands with conspicuously 

fractal characteristics near Batemans Bay. One hundred and forty four NSW 

headlands were classified, from Fingal Head just south of the Queensland 

border to Green Cape near the border with Victoria. Of these one hundred and 

fourteen (~80%) were identified as Triangular headlands and thirty as Coastal 

Step (one-sided) headlands. 

 

Triangular headlands in this NSW classification ranged up to 5768m in length 

(Green Cape) with a median length of 624m (Table 7.5). The distribution was 

skewed towards short (39 or 26.4%) and medium length  headlands with just 

14 (20.1%) headlands greater than 1500m in length and most (63 or 53.5%) 

falling with the range from 500m to 1500m. The shortest Triangular headland 

to be classified was 186m joining 36 other short headlands spanning the NSW 

coastline (Figure 7.5). The triangular representation captured a broad range of 

headland shapes with standardised apex angles varying from 20° to 119° 

(mean 70°; standard deviation 24°). 

 

Table 7.5  NSW Headland Statistics (lengths in meters)  

HEADLANDS Count Minimum Maximum Mean Standard 
Deviation 

Triangular 114     
       Length (L)  186 5,768 857 740 
       Width (W)  110 2,338 572 422 
        Apex Angle (Ω)  20 119 70 24 
      
Coastal Step 30     
      Length (L)  230 13,980 1,324 1,879 
      Width (W)  113 8,800 875 1,206 
      Apex Angle (Ω)  23 102 65 19 
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The nature of headland (and island) wake effects is determined by the relative 

importance of inertial forces and frictional forces, which can be expressed in 

terms of a Wake Parameter (Wolanski et al, 1984).  Although the Wake 

Parameter (P) is a simple representation of often-complex natural 

morphologies it serves well to indicate the relative importance of 

morphological parameters (water depth and headland length) in determining 

turbulent characteristics in the wakes of headlands. The Wake Parameter has 

been shown to work well in the description of re-circulation in two 

imensional steady flows (Wolanski et al., 1984; Pattiaratchi et al., 1986; 

ar headlands in NSW (Figure 

.6). A curve corresponding to P=1 on Figure 7.6 shows the theoretical 

hold above which inertial forces dominate over frictional forces.  
Below P=1 (tan colour zone) flow separation and wake features such as re-circulation 
c te to 
l

d

Denniss and Middleton, 1994). 

 

Here unknown variables needed to calculate the Wake Parameter are held 

constant at ‘typical’ values (current velocity =  0.2 m/s; and,  vertical eddy 

diffusion coefficient = 0.1 m2/s) in order to indicate the relative propensities 

for flow separation and re-circulation for triangul

7

threshold for flow separation and re-circulation. 

 

NSW HEADLAND LENGTH vs WATER DEPTH PROPENSITY FOR WAKE EFFECTS

1000

2000

3000

4000

5000

6000

7000

8000

0

0 10 20 30 40 50 60 70

H
E

A
D

L
A

N
D

 L
E

N
G

T
H

 (
m

)

WATER DEPTH (m)

 

Figure 7.6 Headland length-depth distributions shown in relation to Wake Parameter, P 
=1, which is the thres

ells are favoured whereas above P=1 (green colour zone) frictional forces domina
imit flow separation. 
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The propensity to develop wakes, as indicated by the Wake Parameter (and many 

other similar dimensionless indices), is proportional to the square of the water 

depth and inversely proportional to the length of the headland (Figure 7.6). 

Therefore, headlands protruding across steeply shelving inner shelf bathymetries 

are predisposed to wakes effects. In NSW, wakes effects are predicted by the 

Wake Parameter  Conversely, 

NSW ciated with 

prominent wake effects. 

Figure 7.7 C
. 
 

 for headlands in water depths greater than 35m.

 headlands in water depths less than 15m are unlikely to be asso

 

 

umulative offsets of NSW Coastal Step ‘headlands’ plotted against 
distance south of Queensland border with major coastal offsets as labeled (top)
Coastal Step headland width-to-length ratios indicate consistent step angles (as
defined in Figure 7.1). 

 257



The Coastal Step headland type captured ‘one-sided’ headlands on otherwise 

straight stretches of coastline. Although the general orientation of the NSW 

coastline is NNE – SSW (~200˚N) there is a net eastward cumulative offset 

associated with Coastal Step headlands, as shown in Figure 7.7, due to underlying 

eology combined with northward sediment transport favouring infilling of bays 

The standardised Apex Angle of both Triangular and Coastal Step headlands was 

rem

resp

g

on the southern side of headlands, thus forming iconic NSW headlands shown in 

Figure 7.2.  

 

arkably consistent with mean apex angles of 70° (SD 24°) and 67° (SD 22°), 

ectively, and identical ranges (20°to119°).  

 

Offshore Islands have the potential to disrupt regional flows and express 

wake effects.  Few large islands exist close to mainland NSW. Two large 

ceanic islands - Lord Howe Island and Norfolk Island – lie within NSW 

nd, Green Island (Manyana), O'Hara 

land, and Bournda Island, were identified but omitted from the island 

jor offshore islands occur within NSW 

arine parks, especially Solitary Islands Marine Park (North Solitary Island), 

and Figure 7.8).   

o

coastal waters but do not interact with mainland coastal boundary layer effects 

so they are excluded from this classification. 

 

Forty-three offshore islands were identified. Other islands attached to the 

mainland by quasi-permanent tombola, such as Fingal Island (near Port 

Stephens), Broulee Island, Windang Isla

Is

classification because of their hydrodynamic complexity. These ‘islands’ 

generally operate as atypical headlands. 

 

Twenty four islands are located within one kilometer from shore, mostly too 

small or in water too shallow for large scale re-circulation wake features to 

develop (see Figure 7.8).  Most ma

m

Port Stephens Great Lake Marine Park (e.g. Broughton Island) and Batemans 

Marine Park (e.g. Montague Island)  

 

Of the remaining nineteen islands, Broughton Island, within the Port Stephens 

Great Lakes Marine Park, is the largest of NSWs offshore islands (Table 7.6 
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This classification was focused on hydrodynamic effects and as such some 

islands were more appropriately regarded as single entities. For example the 

o Tollgate islands off Batemans Bay are effectively a single obstacle to 

s classification 

ut have significant potential for the formation of salients.  Both emergent and 

rameter, Broughton 

land is unlikely to be associated with prominent large scale re-circulation in 

such as re-circulation 

ells. Most of the smaller offshore islands shown in Table 7.6 also appear to 

tw

regional flows and are classified as such.    

 

Islands affect dispersion and retention characteristics due to wake effects but 

they can also affect shoreline morphology by creating wave shadows and 

forming salients between the islands and the shoreline.  Analysis of aerial and 

satellite photography revealed that the formation of salients is common 

between the mainland and islands for islands located less than 200m from 

sandy shorelines. However, most NSW offshore islands are generally too 

small or too far offshore to result in the formation of major salients.  Emergent 

reefs (with no terrestrial vegetation) were not included in thi

b

submerged reefs have potential to develop turbulence in flows. 

 

The largest salient in NSW extends nearly 1.7km towards NSWs largest near 

shore island - Broughton Island - which is located just 2.3 km from shore (see 

Figure 7.1).  However, based on the indicative Wake Pa

Is

its wake because it is located in relatively shallow waters. 

 

Montague Island and North Solitary Island stand out from NSWs five largest 

offshore islands as targets for more detailed evaluation of wake effects as they 

appear most likely to be associated with wake effects 

c

be pre-disposed to wake effects (Wake Parameter >1).  

 

The island with the highest Indicative Wake Parameter was Fish Rock, a 

small island about 2km offshore from Smoky Cape.  Interestingly, recent high 

resolution swath bathymetry has revealed scour channels on the flanks and to 

the south of Fish Island in a pattern consistent with convergence of the strong 

southward flowing EAC and flow separation in the lee of the island (Figure 

7.9). An elongated scour channel 7-8 m deep (15 m at its deepest) almost 1 km 

long and up to 200 m wide runs southwest across soft sediments off the 
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strate which is consistent 

with flow acceleration. Clearly benthic habitats have been profoundly affected 

 

igure 7.8 NSW islands located >1km from shore showing north-south 
distribution (from Queensland border), distance offshore, and size (maximum 
dimension proportional to area). See Table 7.6 for numeric island codes. 
 

western side of the island. A similar scour channel is also evident east and 

southeast of Fish Rock (7 -10 m increase in depth over 100 m). Slightly higher 

backscatter intensity, within the depressions, indicated the scour around Fish 

Rock contained a comparatively coarse sandy sub

by island wake effects in the vicinity of Fish Rock.  

F

 
 

Figure 7.9: Hill-shaded bathymetric model of the seabed in the vicinity of Fish 
Rock off Smokey Cape, New South Wales. Source: Jordan,A.,  Davies,P., 
Ingleton,T., Mesley,E., Neilson,J. and Pritchard,T. (2010). 
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Table 7.6 NSW Offshore Islands (numeric code applies to Figure 7.8) 

NSW OFFSHORE (>1km) 
ISLANDS* 

 
Distance 
south of 

Qld border 
(km) 

 
Distance 

from shore 
(km) 

 
N-S 

Extent 
(km) 

 
E-W 

Extent 
(km) 

 
Max 

dimension 
(km) 

 
Indicative 
depth** 
(meters) 

 
Indicative Island 

Wake Parameter*** 

12. North West Rock 195 10.6 0.3 0.1 0.3 37 8.63 

17. Little Island 519 3.1 0.2 0.2 0.2 37 11.63 

19. Fish Rock 311 2.1 0.1 0.1 0.1 27 12.54 

2. Montague Island 947 6.7 1.9 0.7 1.9 37 1.40 

3. North Solitary Island 197 10.9 0.6 1.1 1.1 37 2.35 

6. Boondelbah Island 520 2.1 0.6 0.5 0.6 18 1.06 

7. South Solitary Island 228 7.6 0.6 0.4 0.6 37 4.39 

8. Groper Islet 224 1.8 0.4 0.5 0.5 24 2.26 

9. North West Solitary Island 209 5.2 0.5 0.2 0.5 27 3.34 

10. North Rock Island 203 1.6 0.3 0.3 0.3 18 2.09 

11. Split Solitary Island 233 2.4 0.2 0.3 0.3 18 2.09 

13. Flinders Islands 739 1.7 0.3 0.2 0.3 18 2.23 

14. Bird Island 591 1.4 0.3 0.3 0.3 18 2.31 

15. Bass Islet 740 2.8 0.2 0.3 0.3 18 2.48 

16. Martin Islet 743 1.3 0.1 0.2 0.2 18 2.91 

18. Julian Rocks 50 2.4 0.2 0.2 0.2 18 3.52 

1. Broughton Island 508 2.3 2.7 3.0 3.0 37 0.90 

4. Cabbage Tree Island 518 1.4 1.0 0.5 1.0 18 0.70 

5. Tollgate Islands (2) 894 2.2 0.7 0.7 0.7 18 0.88 
* numbered and ordered within category by size rank (consistent with bubbble plot annotation)  
** depths converted from fathoms using regional isobaths from Admiralty Charts (Australian Hydrogra[phic Office,1962) 

*** calculated using assumptions described in Section 7.3.1 and Figure 7.6     
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Bay morphologies ranged from sparse, sand dominated bays in northern NSW 

to abundant, highly variable, rocky bays in southern NSW, reflecting the 

supply of sediment and underlying geology, which has been described above 

and by Jordan et al. (2010).  The majority of all types of Bays identified in this 

classification were found in the southern half of the State (Figure 7.10). The 

length to width ratios (L:W) of Bays typically remained constant irrespective 

of size, especially for Open Rectangular (OR) and Open Sweep (OS) types 

(Figure 7.11). The vast majority of NSW Bays identified in this classification 

were less than 900m in length (L) and less than 1700m in width (W). 

 

 

 

LATITUDINAL DISTRIBUTION OF BAY TYPES & AREAS
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Figure 7.10 Latitudinal distribution of NSW bay types: Open Rectangular (OR); 
Open Sweep (OS); Semi Enclosed (SE); Open Triangular (OT). 
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Figure 7.11 NSW bay type dimensions: Open Rectangular (OR); Open Sweep 
(OS); Semi Enclosed (SE); Open Triangular (OT). 

 

 263



Training walls are included in this morphological classification because they 

protrude from the shoreline creating obstacles to regional flows, similar to 

headlands. However, freshwater emanating from trained river/estuary mouths 

also affects local circulation patterns due to momentum effects (exit velocity) 

and broader effects associated with plume dynamics.   

 

Categorical rankings based on flow (High/Medium/Low) are provided for 

both average annual flow and the ratio of flow to the width of the entrance 

maintained by the training walls (Figure 7.12).  The broader scale effects of 

large river plumes are discussed in more detail in Chapter 9.  Colour coded 

flow-based groupings of NSW training walls are not sensitive to entrance 

width although rankings within groups may differ when width (which 

influences exit velocity) is considered (bottom Figure 7.12).  

 

Seventeen NSW Training Walls have significant offshore expression, 

protruding up to nearly one kilometer from the shoreline and training the 

discharge of river and estuary water to the coastal boundary layer (Table 7.7 

and Figure 7.12). Training walls at Yamba extend the entrance of the Clarence 

River more than 0.8 km offshore and maintain the greatest coastal discharge 

of freshwater of any river in NSW. No other training wall protrudes further 

eastward from shore, although Port Kembla Harbour seawall is greater in 

length. Other significant training walls are likely to have affect local 

dispersion and advection of pollutants including Ballina at the mouth of the 

Richmond River (Figure 7.13) , Newcastle Harbour at the mouth of the Hunter 

River, South West Rocks at the mouth of the Macleay River, and Port 

Macqaurie at the mouth of the Hastings River (Table 7.7).  

 

The purpose of most of these training walls is to maintain a channel in to the 

river/estuary so it is not surprising that interception of northward bound 

sediment (mostly sand) results in ten SstepE discontinuities in the shoreline 

(eastward shoreline displacement when traveling southward) compared to just 

two SstepW training walls.  However, the direction and magnitude of shoreline 

displacement across the training walls was not correlated with 

length/protrusion of training walls or average annual discharge from 

river/estuary entrances.  
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The training wall system at the entrance of the Clarence River at Yamba is an 

obvious candidate for more detailed evaluation of the influence that such 

structures may have on boundary layer dynamics.  

 

Average Wall Length (km)
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Figure 7.12 NSW training walls ranked by hydrodynamic factors relating to protruding 
wall length (top) and ratios of average flows to entrance widths (bottom right). Average 
annual flows (bottom left) are from de la Cruz, et al. (2009). 
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Figure 7.13 Trained entrance of the Richmond River at Ballina illustrating 
wave structures and turbulence along the seaward front of the river plume. OEH 
Aerial Photogram 13/5/83. 
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Table 7.7 Hydrodynamic categorisation of NSW training walls 

TRAINING WALLS 
(human 

interventions) 

D
is

ta
nc

e 
so

ut
h 

of
 Q

ld
 b

or
de

r 
(k

m
) 

N
or

th
 W

al
l 

E
xt

en
si

on
 (

km
) 

S
ou

th
 W

al
l 

E
xt

en
si

on
 (

km
) 

A
ve

ra
ge

 W
al

l 
Le

ng
th

 (
km

) 
Le

ng
th

 F
ac

to
r*

 
(L

/M
/H

) 

A
ve

 A
nn

ua
l 

F
lo

w
**

 (
M

L/
yr

) 

N
or

m
al

is
ed

 
F

lo
w

/W
id

th
**

* 

F
lo

w
 F

ac
to

r 
(H

/M
/L

) 

O
ve

ra
ll 

F
ac

to
r 

   
   

   
   

   
  

(F
lo

w
/ L

en
gt

h)
 

Yamba 140.95 0.98 0.75 0.865 H 3153224 1.0 H HH 

Ballina 79.03 0.28 0.39 0.335 M 1891884 0.8 H HM 

Newcastle 532.69 0.72 0.46 0.59 M 2232712 0.6 H HM 

South West Rocks 305.24 0.04 0.06 0.05 L 1640980 0.8 H HL 

Port Macquarie 367.20 0.37 0.05 0.21 L 1306676 0.8 H HL 

Pt Kembla Harbour 740.78 0.7 1.04 0.87 H 2434 0.0 L LH 

Tweed 0.47 0.32 0.15 0.235 L 516372 0.4 M ML 

Brunswick 41.36 0.2 0.13 0.165 L 172230 0.3 M ML 

Forster 456.13 0.1 0.06 0.08 L 339332 0.3 M ML 

Shoalhaven River 790.58 0.34 0 0.17 L 1065761 0.3 M ML 

Cudgen 10.78 0.08 0.05 0.065 L 37571 0.1 L LL 

Evans Head 106.00 0.07 0.18 0.125 L 19232 0.0 L LL 

Wolli 195.03 0.14 0.13 0.135 L 31689 0.1 L LL 

Swansea 574.34 0.26 0.15 0.205 L 125922 0.0 L LL 

Lake Illawarra 749.89 0.12 0.08 0.1 L 92099 0.1 L LL 

Narooma 945.08 0.14 0.15 0.145 L 21321 0.0 L LL 

Bermagui 968.97 0.11 - 0.11 L 14874 0.0 L LL 

Notes: *Length factor categorisations are based on eastward extent of seawalls  
 **Annual flow estimates based on Roper, et al. (2011)    
  *** (flow/width) expressed as proportion of maximum    
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7.6 Conclusion 

 

All geomorphic classification systems attempt to infer environmental 

attributes from limited but broadly available physical information to provide 

immediate preliminary advice and focus subsequent research. As such 

classifications can be employed to inform immediate, broad scale, 

management decisions and they provide a logical framework to structure and 

justify subsequent more detailed examination of research and management 

questions.  This may rightly challenge the classification system itself. For 

example, debate continues to question the ecological relevance of well-

established geomorphologic estuarine classifications (Zacharias and Roff, 

2001; Salomon et al. 2001; Dye 2006; Harris and Heap, 2007). This 

morphological classification of bays and headlands is no different. It has been 

developed to focus investigations, for researchers to challenge its broad 

predictive skill and for managers to evaluate its relevance to environmental 

protection and conservation management. The scientific, ecological and 

management implications of this classification are explored further in the 

Chapter 9. 

 

The classification of headlands presented in this chapter indicated a borderline 

propensity for flow separation and re-circulation in the lee of Corambirra 

Point at Coffs Harbour in northern NSW. This will be explored in the next 

chapter as a detailed case study. 
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8. COFFS HARBOUR: A CASE STUDY OF INNER CBL 
DISPERSION 

8.1 Introduction 
 

There were scientific and management imperatives for the research reported in 

this chapter.  

 

The scientific imperative was to provide a case study to explore the formation and 

characteristics of the coastal boundary layer in northern NSW coastal waters, an 

area where the East Australian Current generally flows along the continental shelf 

while near shore currents are heavily influenced by local winds and interactions 

with irregular coastal bathymetry including headlands.  Shear zones and eddies 

can form in the wake of headlands such as Corambirra Point, immediately south 

of Coffs Harbour. Turbulent wake effects are fundamental to the formation of the 

coastal boundary layer at the land sea interface. 

 

Modified flow patterns associated with headland wakes determine the potential 

for pollutant impacts because they affect pollutant dispersal, residence times, as 

well as having the potential to modify biological systems by affecting the 

distribution of and productivity of biological systems that are exposed to 

pollutants (e.g. transport and settlement of larvae/juveniles, aggregating prey and 

predators and primary productivity as described in Section 8.4). Very few 

previous studies have investigated wake effects in relation to dispersion of 

pollutants from point source discharges such as sewage outfalls.  

 

The management imperative was to assess and develop options for an ocean 

discharge. After a long and contentious history a Coffs Harbour Sewage Strategy 

was proposed to accommodate rapid urban development in and around Coffs 

Harbour (CHEIS, 2000).  The Strategy proposed to sewer new areas to the north 

of Coffs Harbour, maximize re-use and discharge excess effluent to the ocean 

from a new outfall that would replace three existing outfalls.  The proposed outfall 

was to be located in about 20m of water off Boambee Beach immediately south of 

Coffs Harbour, with a discharge of over 20ML/day by 2021.  This area is bounded 

to the north by the Solitary Islands Marine Park, which includes rich natural assets 
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such as extensive corals as described in Chapter 2.  Understanding the local 

circulation of ocean waters is critical to determine the fate and possible impacts of 

effluent discharged from the new outfall. 

 

The body of this chapter (Section 8.3 and 8.4) has been published as international 

peer reviewed papers:  

 

Pritchard, T.R., Lee, R.S., Ingleton, T.C., and Black, K.P. (2001) 

Dispersion in the lee of a headland: a case study of circulation off Coffs 

Harbour. Proceedings of the 15th Australasian Coastal and Ocean 

Engineering Conference, Institute of Engineers, Australia. 

 

Pritchard, T.R., Holden, C., Lee, R.S., Black, K.P. and Healy, T. (2007) 

Dynamics and Dispersion in the Coastal Boundary Layer off Coffs Harbour 

in Eastern Australia. Journal of Coastal Research, SI 50, 848-857. 

 

The first paper (Pritchard et al., 2001) analyses and explores mostly current meter 

and wind data in order to identify driving processes, assess the representativeness 

of the sampling period, simulate dispersion characteristics along a shore normal 

transect, and focus subsequent three dimensional model simulations.  These 

analyses delivered timely advice to inform critical management decisions. 

 

The second paper (Pritchard et al., 2007) describes time series analysis and three 

dimensional model simulations that define coastal boundary layer formation off 

Coffs Harbour.  This paper focuses on transient re-circulation in the lee of 

Corambirra Point to improve understanding of dynamics and to map dispersion 

capacity across the study region. 

 

Further background information on the study region is provided in Chapter 2 

while sampling methodologies, data validation and quality assurance procedures 

are described in detail in Chapter 3. 

8.2 Motivation and Relevance to Thesis Objectives 
 

The purpose of this chapter is to investigate the principal forcing mechanisms, the 

importance of morphology in controlling the dispersion and retention times of 
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pollutants and the potential for ecological impacts. As such this chapter relates 

directly to the following thesis objectives: 

 

 investigate Coastal Boundary Layer processes, their relationship to coastal 

morphology, and their role in controlling the dispersion, fate and potential 

impacts of pollutants discharged to the New South Wales coastal waters 

 

 investigate physical processes and dispersion characteristics for specific 

pollutant discharges to New South Wales coastal waters through case studies 

off Sydney (outer coastal boundary layer) and Coffs Harbour (inner coastal 

boundary layer) 

 

To understand possible impacts and optimise the performance (location) of the 

new Coffs Harbour outfall it was necessary to quantify: 

 

 location and persistence of any recirculation cells off Boambee Beach – 

this is a defining characteristic of the coastal boundary layer which can 

result in re-entrainment of effluent and limit flushing  

 current shear along a shore normal transect aligned with the preferred 

orientation of the outfall – shear is a fundamental feature of the wake and a 

fundamental limiting factor that determines maximum potential initial 

effluent dilution (i.e. ambient water available for dilution equals incident 

current speed multiplied by the effective cross sectional area through the 

water column above the outfall) 

 distributions of predominant along-shore and cross shore flows (Section 

8.3) and particle retention times within the study area (Section 8.4) – this 

is necessary to understand the fate of effluent (especially with respect to 

the frequency of possible effluent exposure in Solitary Islands Marine 

Park) and may influence the distribution of biota.  

 
 



Pritchard et al. (2001) / Australasian Coastal and Ocean Engineering Conference 
 
 

8.3 ‘Dispersion in the lee of a headland: a case study of 
circulation off Coffs Harbour’ 

 

Citation: Pritchard, T.R., Lee, R.S., Ingleton, T.C., and Black, K.P. (2001) 

Dispersion in the lee of a headland: a case study of circulation off Coffs 

Harbour. Proceedings of the 15th Australasian Coastal and Ocean 

Engineering Conference, Institute of Engineers, Australia. 

 

SUMMARY: Efficient dispersion of pollutants discharged into coastal 

environments is predicated on a detailed understanding of the interactions of flow 

and local bathymetry.  The purpose of our study was to investigate such 

interactions in order to assess the dispersion of effluent from the Coffs Harbour 

Sewerage Strategy. Times series and transect Acoustic Doppler Current Profiles 

(ADCP) were used together with local wind data, 3DD hydrodynamic modelling  

and CORMIX modelling to evaluate dispersion characteristics in coastal waters 

south of Corambirra Point just beyond the southern limit of the Solitary Islands 

Marine Park. Based on the good correlation between local winds and observed 

surface currents we found that our study period (September to November 2000) 

favoured southward flows compared to long-term wind data which indicated that 

wind driven along-shore flows were typically equally distributed northward and 

southward. Current meter records indicated wake effects and phase eddies 

(transient re-circulation) in the lee of Corambirra Point. The resulting shear zone 

was located inshore of the 30m isobath, where surface flows were 2-3 times less 

than those offshore. Retarded and variable flows within this sheltered zone in the 

lee of Corambirra Point limit the potential for dispersion and increase potential for 

re-entrainment of plume waters compared to offshore waters. ADCP transects 

suggested that the shear zone may be relatively discrete with little evidence of 

increasing along-shore current gradient offshore from the 30m isobath.  Offshore 

flows included a lower proportion of northward currents compared to inshore 

locations. Observations together with plume modelling (CORMIX) indicate 

potential benefits in discharging beyond the shear zone. These factors together 

with cost considerations provide a basis to optimise discharge designs and 

subsequent monitoring strategies.  
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INTRODUCTION 

 

Natural physical processes profoundly effect the dispersion, fate and consequent 

impacts of discharges of effluent to the dynamic coastal waters. If it becomes 

necessary to discharge effluent to coastal waters, environmental impacts can be 

minimised by optimising outfall location and configuration.  In this way, sensitive 

areas can be avoided, initial mixing can be maximised and residency times within 

the coastal boundary layer can be minimised.       

 

A clear understanding of flow structures over various spatial and temporal scales 

is also necessary to design adequate impact assessment monitoring programs.  

 

Our study focused on the near shore environment off Boambee Beach 

immediately south of Coffs Harbour, New South Wales, Australia where a new 

ocean outfall will be constructed to replace three existing outfalls as part of a 

regional sewerage management strategy (CHEIS, 2000).  This area is bounded to 

the north by the Solitary Islands Marine Park, which includes rich natural assets 

such as extensive corals. 

 

Our study investigated flow structures off Boambee Beach, especially wake 

effects and re-circulation associated with the complex morphology around 

Corambirra Point. We also assessed the potential impact of these flows on the 

dispersion of effluent discharged at locations offshore from Boambee Beach.  

 

BACKGROUND 

 

Interactions between regional currents and local bathymetry are a major factor 

controlling flow structures and thus the dispersion and fate of both water borne 

and sediment bound pollutants. 

 

Outer shelf current flows tend to be directed primarily alongshore and are usually 

consistent, both in speed and direction, for distances of hundreds of kilometers 

alongshore (Middleton, 1995).  But bathymetry is more convoluted on the inner 

shelf where reefs, islands, headlands and embayments modify flows 
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(Deleersnijder, Norro & Wolanski 1992, Middleton, Griffin & Moore 1993). 

Near-shore bathymetry can predispose some areas to rotational flows and result in 

semi-closed recirculation and/or complex transient eddies.  

 

Observations and numerical simulations have shed light on the processes that 

induce and modify flows around headlands, reefs and islands to form eddies 

(Black and Gray 1987, Black 1989, Signell and Geyer 1991, Middleton et al. 

1993, Denniss et al. 1995).  From these studies it is clear that a multiplicity of 

processes determine the characteristics, prevalence and persistence of eddies 

including near-shore bathymetry, bottom friction, unsteadiness of flow, tidal 

excursion and current direction, and horizontal eddy viscosity.  It is therefore, not 

surprising that eddy characteristics are highly site specific. General hypothesises 

have, however, been developed to explain the effect of headlands on the 

development of eddies. 'Phase eddies' may develop in response to large scale 

pressure gradient reversals (Black and Gray 1987).  That is, a phase eddy evolves 

when flow reversals occur earlier in the wake of the headland than in the free 

stream where currents are still continuing to decelerate. In this way the formation 

of phase eddies is governed by the inertia of the wake relative to the free stream 

flow. An alternative hypothesis is that eddies develop as a consequence of the 

separation of flow downstream of the tip of the headland which carries high 

vorticity fluid from the coastal boundary to the interior of the flow. In this way 

eddies form within the wake initiated by vorticity entrained into the flow 

downstream of the point of separation (Signell and Geyer 1991).  

 

In the Coffs Harbour region, isobaths are aligned approximately parallel to the 

coastline with local irregularities associated with reefs, headlands and the Solitary 

Islands.  Significant bathymetric features lie within the 35m isobath off Boambee 

Beach  including Corambirra Point, Korffs Islet and a number of offshore reefs. 

Previous studies (PWD 1979 in CHEIS R28) off Coffs Harbour found large 

offshore areas of exposed rock with much of the inner shelf covered by a thin 

veneer of sands and gravels (~15 m thick at shore, 1-2 m at 30 m depth). 

 

Density stratification is less than 0.5 kg m-3 between the surface and seabed 

during May to November with essentially unstratified conditions in the upper 20 
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m of the water column, based on observations during the late fifties by 

Commonwealth Scientific and Industrial Research Organisation at a site off Coffs 

Harbour in 50m of water.  In summer, density stratification increases reaching a 

maximum density difference of ~1.5 kg m-3 between the surface and seabed in 

February and March (<1.0 kg m-3 in upper 20 m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Study location showing ADCP deployments (A-D) and transects (dotted 
lines). 
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Major factors driving offshore dynamics include the East Australian Current and 

wind forcing. Tidal ranges are typically less than 1.5 m with minimal phase 

difference along the New South Wales coastline, so tidal currents are weak except 

near the mouths of estuaries and harbours. 
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METHODS 

 

Observations 

 

Four upward looking Acoustic Doppler Current Profilers (ADCPs) were deployed 

from 6/9/00 to 29/11/00. Two ADCPs were positioned along the alignment of the 

proposed outfall (Sites A and C).  Other ADCPs were located within offshore 

flows (Site D) and as close as practicable to the eastern end of the bathymetric 

high that extends offshore to Korffs Islet (Site B) - Figure 1 and Table 1. Prior to 

deployment,  ADCP compasses were calibrated, and units were set to 240 pings 

per ensemble every 30 minutes with ping rate at 2 Hz.  Transducer heads were 

located 0.5m (Sites B,C,D) or 1.0m (Site A) above the sea floor and currents were 

recorded in 1 metre depth bins.  Blanking depths of 1.75m (300KHz ADCPs) and 

0.5m (1200KHz ADCPs) were set to avoid 'ringing' effects near the transducer 

heads.   

 

Table 1: ADCP deployment specifications 

SITE Head 

Depth 

(m) 

Blanking 

Depth (m) 

Frequency 

(KHz) 

No. Bins 

(after QA) 

A 13 0.5 1200 11 

B 21 0.5 1200 17 

C 28 1.75 300 22 

D 35 1.75 300 33 

 

ADCPs at sites B, C and D operated continuously for the full deployments but 

reliable data ceased to be recorded at Site A towards the end of October when 

excessive marine growth developed around the transducer head.  

 

Our interest focused on the upper water column where hard signal reflection at the 

sea-surface and other factors such as bubbles, waves, current shear and turbulence 

may reduce the profiling range. We adopted manufacturer criteria (beam 

correlation, error velocity, fish detection and percent good) for quality assurance 

and used the uppermost good bin for much of the analysis reported here.  
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In addition to moored ADCPs, we conducted across shelf transects along the 

proposed outfall alignment to investigate shear (evidence for re-circulation cells) 

and along two similar northern alignments (not provided here) to investigate 

potential for northward counter currents (Figure 1). A 300KHz ADCP was used 

for transects with depth bins set at 1m and 20 pings per ensemble recorded every 

~3 seconds.  Most transects were ~7km in length, ranging from water depths of 

10m to 50m. 

 

The Bureau of Meteorology provided average wind speed and direction for the 

last five years at 30 minute intervals from a weather station at Coffs Harbour 

airport, located immediately inshore from Boambee Beach. 

 

Modelling 

 

Two modelling approaches were pursued.  Model 3DD (Black, 1995) was used to 

investigate effects of reversing pressure gradient fields on the development of 

eddies in the study area.  And the model CORMIX which incorporates near field 

mixing processes, was used to investigate relative differences in effluent 

dispersion for various outfall locations along the outfall alignment. 

 

Model 3DD is an explicit finite difference model, which has been applied to many 

studies of this type (e.g. Black and Gay 1987, Young et al. 1994, Jenkins et al. 

1997).  While the model is 3-dimensional, in this paper, the model was configured 

in two-dimensional depth averaged mode.  The boundary conditions were set to 

oscillate to simulate the flow reversals.  Reversals in the current can occur due to 

tides, winds, coastal trapped waves or regional scale circulation.  As such, we 

have not attempted to calibrate the model but use the model instead to examine 

the spatial variations in flow structure around the complex morphology in a non-

steady simulation.  The need for this type of simulation became evident after 

analysis of the field measurements which showed that flow reversal and eddy 

formation were characteristic features of the local circulation. To accentuate the 

effect of flow reversal, a short period oscillation of 20,000 s (5.56 hrs) period was 

adopted.  The northern boundary was a 0.7 m.s-1 sinusoidally oscillating current, 
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while the southern boundary was a 0.5 m sinusoidally oscillating sea level.  The 

offshore (eastern) boundary was a zero through-flow boundary, which guided 

currents longshore.  The model grid size was 150 m and seabed roughness length 

was 0.001 m.  The horizontal eddy viscosity was 1 m2s-1 in accordance with 

previous studies (e.g. Black, 1989).  The wind was neglected in the simulation. 

 

Bathymetry was based on Australian Hydrographic Chart AUS 812 (1:150,000) 

and studies reported in CHEIS R28 (2000), gridded by Kriging using Surfer 

software. 

 

CORMIX is a robust composite flow and mixing zone prediction model 

developed by the School of Environmental Science and Engineering at Cornell 

University, New York (www.steens.ese.ogi.edu) and recommended by United 

States Environment Protection Agency for analysis of point source discharges to 

waters. The model provides a prediction for both near-field and far-field plume 

behaviour. A multi-port diffuser system has been proposed for Coffs Harbour 

(CHEIS, 2000).  In the absence of an existing offshore outfall, the model was not 

calibrated, but a range of model scenarios were conducted to test sensitivity.  The 

simulations used northward and southward flowing (along-shore axis 22.5N) 

currents at 20th, 50th and 80th percentile ambient velocities although only 20th 

percentile simulations are reported here. Velocities were calculated from ADCP 

data at Sites A (14m depth) and C (28m depth), and at the proposed outfall site 

(20m depth - using data collected by Lawson and Treloar for CHEIS 2000). 

Discharge flow rates included Average Dry Weather Flow (ADWF of 

20.7ML/day) and high flow Wet Weather (130ML/day) conditions. 

 

RESULTS 

 

Our analysis focused on near surface currents and northward transport because 

predominantly surface effluent plumes were expected and the Solitary Islands 

Marine Park lies approximately 4 kilometres north of the proposed outfall 

alignment. 
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Based on near surface currents observed offshore from Boambee Beach at four 

ADCP moorings (A-D), the predominant axis of flow was along shore, parallel to 

isobaths and coastline. Consequently, current components were defined as along-

shore (022) and cross-shore (112). 

 

Wind Driven Flows 

 

Alongshore components of near surface currents and winds were well correlated 

(r2 ~ 0.65) with the currents typically corresponding to about 1% of the wind 

speed at the inshore Boambee site (A) and 2-3% of the wind speed at the offshore 

Boambee site (C) - Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Alongshore winds and surface currents Site A (14m) and Site C (30m). 
Current scale is 1% of wind scale for Site A and 2% of wind scale for Site C.  
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Temporal Context 

 

Given the strong correlation between alongshore winds and currents we compared 

the distribution of winds during our sampling period with long term distributions 

 281



Pritchard et al. (2001) / Australasian Coastal and Ocean Engineering Conference 
 
 

of winds and found that our sampling period may include a greater proportion of 

wind driven southward currents than would normally be expected - Figure 3.  

Indeed long-term wind data suggested a tendency for wind driven currents to be 

northward  (53%) at least as often as southward currents in the study region.  

 

 

Figure 3: Alongshore local wind distributions for our study (Sept-Nov 2000) and 
long-term (1996-2000). 
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Spatial Flow Structure 

 

Current magnitude controls the quantities of water available to dilute the effluent 

while current direction is a major factor controlling the fate of effluent.  

 

A clear outcome from a cursory assessment of the current meter data was that 

current strengths at the inshore Boambee Site A were considerably less (2-3 

times) than those at sites further offshore (Figure 4).  The proportion of northward 

surface currents was greatest at the inshore Boambee Site A (A = 49%) with 

fewer northward and more southward currents observed at the offshore sites  

(B=30%; C=24% & D=20% northward). Winds were northward for ~35% of the 

time during these deployments (compared to average of 53%). There was little 
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difference in the distributions of currents at the two offshore Boambee sites.  And, 

not surprisingly, the proportion of eastward currents (not shown) was greatest 

inshore of the 30m isobath because land constrains surface flows at the western 

boundary. However, conclusions based on these comparisons must be tempered 

by the fact that a shorter data record existed for the inshore site (A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Distributions of surface along-shore currents at Sites A (Boambee 14m), 
B (Korffs Islet 23m), C (Boambee 30m) and D (Boambee 38m).  Negative speeds 
indicate southward flows. 
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Along-shore surface currents have the potential to carry effluent toward or away 

from the Solitary Islands Marine Park some 4 km north of the proposed outfall 

site.  So current meter records (Sites A and C) were examined for along-shore 

excursion 'events' - Figure 5.   
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At the inshore Boambee site (A) currents were weak and variable resulting in 

relatively small excursions (average ~500m) lasting on average less than a day 

(17hrs).  In contrast, at the offshore Boambee site (C) currents were stronger with 

'events' persisting for an average of 3.5 days, resulted in excursions of ~6km 

(average). Furthermore, along-shore currents reverse in direction more frequently 

at the inshore site thus increasing the likelihood of re-entrainment of diluted 

effluent into subsequent discharges.  A greater proportion of southward 

flows/events was evident at the offshore Boambee site (C). 

 

 

Figure 5: Along-shore excursion events calculated from records of surface 
currents observed at Site A (inshore Boambee) and Site C (offshore Boambee).   
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Excursions shown above were based on the simplifying assumption that currents 

observed at the current meter site were representative of currents throughout the 

range of the excursion. This assumption becomes tenuous close to shore where 

complex bathymetry and other processes such as wave-induced transport, produce 

complex current patterns such as re-circulation cells.     
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Rotational Flows 

 

Much of the current structure described above can be explained in terms of wakes 

and rotational flows in the presence of Corambirra Point and associated 

bathymetric features.  

 

Re-circulation is evident in current meter records as unidirectional shear between 

two sites on the same side of a rotational centre, or as opposing current shear 

between two sites which span the centre of a closed circulation cell.  

 

Shear observed between the inshore (Site A) and offshore (Site C) sites along the 

outfall alignment is consistent with clockwise (positive) shear/rotation during 

most of the period - Figure 6.  Significant variability was apparent with transient 

'events' of opposing current shear mostly persisting for less than 2 days.  Closed 

re-circulation cells (inferred by opposing current directions at sites A and C and 

indicated by blocked intervals in Figure 6) were typically associated with periods 

when the rate of change of shear was greatest.  We have already noted that the 

magnitude of offshore currents were typically 2-3 times that of inshore currents so 

much of the variability seen in Figure 6 is due to variability of the stream flow 

(offshore).  Thus, eddies appear to be developing after peak flow as the free 

stream is decelerating. This is a defining characteristic of phase eddies (Black and 

Gay, 1987).   

 

There was little evidence for the development of stable (persistent) re-circulation 

cells during our study period (a full revolution would take ~1.5 days with a 

notional current speed of 0.1m/s and a cell diameter of 2km which is equivalent to 

the separation between Sites A & C).  
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Surface Current Shear & Rotation
 Boambee 14m vs Boambee 30m
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Figure 6: Surface north-south current difference between inshore Boambee site (A) 
and offshore Boambee site (C).  Blocked intervals indicate periods opposing 
currents. 
 

ADCP transects along the proposed outfall alignment from water depths of ~10m 

to ~50m defined general southward offshore flows (~0.4m/s) with currents 

generally decreasing shoreward (Figure 7).  On these occasions, rotational flows 

were evident with weak northward flows (~0.1m/s) inshore of Site C and currents 

appeared relatively homogeneous offshore from Site C. 

 

Numerical simulations (3DD) were used to investigate the formation of phase 

eddies off Coffs Harbour under the influence of idealised north-south reversing 

pressure gradients (Figure 8).  

 

Simulations show convergence and acceleration of flow around the bathymetric 

feature associated with Corambirra Point and Korffs Islet and a wake develops in 

the lee of the tip of the headland as offshore southward stream flow is established 

(14.5hrs) 

 

Currents in the wake begin to accelerate toward the headland and the eddy grows 

while the free flow reaches a peak and begins to decelerate (15.5hrs) 
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Figure 7: West-east cross section oriented along the proposed outfall alignment 
showing along-shore current strengths (2m depth bins; negative = southward). 
Arrow indicates proposed outfall location. 

ADCP – COFFS HARBOUR

ADCP – COFFS HARBOUR

 

Flows along the tip of the Corambirra/Korffs headland remain strong while the 

free stream is essentially stationary and the core of the eddy migrates offshore 

(16.5 hrs) 

 

A similar pattern evolves on the other side of the headland albeit somewhat more 

complex due to differing morphology (17.5hrs). 
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In this way near-shore currents respond more rapidly to reversing pressure 

gradients and lead the offshore stream flow, forming transient phase eddies in the 

lee of the headland. Simulations by others have shown that phase eddies may 

develop wherever there is bathymetric sheltering and transience of flow even in 

the absence of advection of momentum and horizontal shear (e.g. Hume et al. 

1997). 

 

Effluent Dispersion 

 

Effluent dilution modelling was undertaken to identify the relative benefits of 

various discharge locations under wet and dry effluent flow scenarios with a 

specific emphasis on northward flowing scenarios which result in effluent 

travelling towards the Solitary Islands Marine Park (Figure 9). 

 

CORMIX simulations indicated that the proposed outfall achieved effluent 

dilutions only slightly better than those at the inshore Boambee Site A (14m) but 

significantly worse than at the offshore Boambee Site C (30m) which was 

typically within the offshore stream flow. 

 

DISCUSSION & CONCLUSIONS 

 

Implications for Outfall Performance 

 

Our study indicates that the presence of an eddy in the lee of the headland has a 

potentially profound effect on the fate of the plume.  While the eddy is ephemeral, 

it nevertheless has a strong influence on net movement.  Similarly, the sheltering 

caused by the headland creates a low current zone, which is not an optimal site for 

effluent discharge.   
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Figure 8: Simulated depth averaged flows due to pressure gradient reversals. 
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During our study, the low current zone was typically located inshore of the ~30m 

isobath, where flows were 2-3 times less than those offshore. These retarded 

inshore flows limit the potential for effluent dilution compared to conditions at 

and beyond the 30m isobath. ADCP transects suggest that the shear zone may be 

relatively sharp with little evidence of increasing current strengths offshore from 

the 30m isobath.  Offshore flows included a lower proportion of northward 

currents compared to inshore locations. 

 

The relative benefit of offshore outfalls was clearly demonstrated by CORMIX 

modelling (Figure 9). For a well designed outfall, dilution is fundamentally a 

function of the volume of ambient water available for dilution (i.e. water velocity 

and depth).  The high dilutions achieved for discharges at Site C under dry 

weather effluent flow conditions are due to the significantly greater depths at Site 

 289



Pritchard et al. (2001) / Australasian Coastal and Ocean Engineering Conference 
 
 

C (30m compared to 14m at Site A), significantly stronger currents (0.095m/s 

compared to 0.04m/s at Site A), and low effluent flow rates (20.7ML/day 

compared to 130ML/day for WWF).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Indicative effluent dilutions for 20th percentile northward flow scenarios 
(CORMIX simulation) for average dry weather effluent flows (ADWF of 
20.7ML/day) and wet weather effluent flows (WWF of 130ML/day) at Sites A 
and C, and at the proposed outfall location (between sites A & C). 
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Implications for Subsequent Monitoring 

 

In principle, biological measures are the most relevant indicators of environmental 

impact. However, high natural variability, lack of appropriate replicate control 

locations and poorly understood relationships between components of the 

ecosystem limit the precision with which biological measures can distinguish 

natural from anthropogenic changes. Causal relationships are, therefore, often 

inferred and justified by correlation between biological differences/changes and 

anthropogenic disturbances such as the presence of sewage derived pollutants. An 

understanding of the dispersion and fate of the introduced pollutants is, therefore, 

critical to all impact assessment monitoring designs. 
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Conclusions from time-limited studies are often implicitly extrapolated to all 

times without proper evaluation of assumptions. In our study currents were 

principally wind driven, as is the case for many near-shore environments with 

minimal tidal forcing. The long-term wind record, therefore, provided a means to 

assess the degree to which our study represented average (long-term) conditions.  

Our study period was found to include a small bias favouring southward currents 

compared to long term wind data, which were evenly distributed northward and 

southward.  

 

Opportunities 

 

Further hydrodynamic simulations based on actual scenarios may clarify the 

spatial context and relative importance of wake effects and rotational flows which 

have the potential to reduce dispersion of effluent by retarding flows and re-

entraining plume waters especially for discharges near the centre of eddies.  

 

Likewise, time series analysis (power spectra) may provide a better understanding 

of the temporal scales of variability and the relative importance of associated 

driving mechanisms at various levels through the water column. 

 

Worthy areas for research include the development of techniques to extract 

information currently obscured in the uppermost bins of ADCP records.  This 

information is important because effluents discharged to near-shore environments 

typically form surface plumes.  

 

Information such as that derived from our study provides the means to conduct a 

rigorous cost effectiveness assessment to optimise the location and design of 

outfalls.  Furthermore, it serves to focus and interpret data from subsequent 

environmental monitoring programs.  
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8.4 ‘Dynamics and Dispersion in the Coastal Boundary Layer 
off Coffs Harbour in Eastern Australia’ 

 

Citation: Pritchard, T.R., Holden, C., Lee, R.S., Black, K.P. and Healy, T. 

(2007) Dynamics and Dispersion in the Coastal Boundary Layer off Coffs 

Harbour in Eastern Australia. Journal of Coastal Research, SI 50, 848-857. 

 

ABSTRACT 

Time series analysis and model simulations defined dynamics of coastal boundary 

layer formation off Coffs Harbour based on four deployed acoustic Doppler 

current (ADCP) meters and wind data from Coffs Harbour airport. Variance 

preserving spectra revealed peak energies at 7.8, 3.9 and 2.5 days plus ~24 and 

~12 hours consistent with dominant forcing by winds. At inshore sites the highest 

energy levels occurred at the surface and decrease uniformly with depth at all 

frequencies with local peaks centred at exactly 24 hours, corresponding to peak 

local wind energy.  In contrast, offshore sites showed depth dependency in the 

peak spectral energy with evidence of regional influences and wave-guide effects 

due to density stratification. Hydrodynamic simulations using the 3-dimensional 

explicit finite difference model 3DD revealed local bathymetric controls on 

circulation. A coastal boundary layer, delineated by a shear zone ~2km offshore in 

the lee of Corambirra Point, south of Coffs Harbour, was associated with 

formation of transient eddies. Model simulations and independent ADCP data 

identified 3 dimensional flow structures typified by clockwise rotation of flows 

down through the water column at all sites except for the quiescent, shallow water 

site in the headland wake south of Corambirra Point. The area south of 

Corambirra Point was predisposed to clockwise eddy rotation while offshore 

flows were generally shore-parallel. Pollutant dispersal was shown to be 

significantly less within this coastal boundary layer thus highlighting the need to 

consider effects of coastal boundary layers when locating discharges such as 

ocean outfalls. 

ADDITIONAL INDEX WORDS: Headland wake, pollutant trapping, ocean 

outfall, coastal boundary layer 
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INTRODUCTION 

The coastal settlement of Coffs Harbour is located at 30.16ºS 153.05ºE, about 

550km north of Sydney, with a population of ~65,000 and an economy dominated 

by tourism. It’s rapidly growing population demands sewerage services without 

compromising the adjacent high value marine environment. Until recently, the 

discharge of treated effluent from an existing shoreline outfall at Coffs Harbour 

resulted in significant impacts observed along the length of Corambirra Point 

(SMITH, 1996; SMITH and SIMPSON, 1993). In the late 1990’s a $170 million 

Coffs Harbour Sewerage Strategy was developed to serve the community to the 

year 2021 including the construction of a new offshore outfall off Boambee Beach 

immediately south of the Solitary Islands Marine Park. This paper examines the 

physical characteristics of Coffs Harbour coastal waters to illustrate the 

importance of the coastal boundary layer and its role in determining the dispersal 

of pollutants for management decision making.  

The continental shelf off Coffs Harbour is narrow (<30km) with isobaths aligned 

approximately parallel to the coast across the mid and outer shelf but interrupted 

near shore by reefs, islands and headlands such as Corambirra Point (Figure 1). 

The inner shelf is covered by a thin veneer of sands and gravels: ~15 m thick at 

shore decreasing to 1-2 m at 30 m depth (CHEIS, 2000), indicative of a high 

energy environment (ROY and THOM, 1981). The sea floor offshore from 

Boambee Beach includes outcrops of rock near Corambirra Point and Korffs Islet 

in the north and Whitmore Shoal and Sawtell Shoal in the south. The regional 

coastline is aligned obliquely to the south-east, inner-shelf, modal wave direction 

and hence sediment is transported obliquely on the shoreface with a net northward 

movement (GOODWIN et al., 2006). However, further offshore shelf waters 

experience strong and persistent southward East Australian Current (EAC) flows 

which carry warm, oligotrophic waters and associated tropical species. Indeed, the 

Solitary Islands just north of Coffs Harbour mark the southernmost extent of some 

of the ninety species of corals found there (HARRIOTT et al., 1994). 

Coastal waters are driven by processes that operate over a wide range of spatial 

and temporal scales from high frequency internal tides and waves (e.g. GRIFFIN 

and MIDDLETON, 1992) to weatherband, northward propagating coastal trapped 
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waves (e.g. CHURCH et al., 1986) and wind driven upwelling/downwelling, to 

seasonal variation of the EAC on the shelf off Coffs Harbour. While the EAC 

often dominates offshore regional flows (e.g. MIDDLETON, 1995;  ROUGHAN 

and MIDDELTON, 2004), winds typically drive shallow water flows on the 

continental shelf (e.g. PRITCHARD et al., 2001) and to a lesser extent waves 

drive flows near the shoreline (e.g. GOODWIN et al., 2006). Tides are 

semidiurnal with a microtidal range (mean spring range ~1.2 m) and little phase 

difference along the coast so barotropic tidal currents are weak except near the 

entrances of estuaries and harbours (HARRIS et al. 1991). In many cases counter 

currents flow northward while offshore deep ocean currents flow southward (e.g. 

FREELAND et al. 1986). Furthermore, constraints imposed by the coastline and 

inner shelf morphology modify the effects of near shore flows to define a complex 

coastal boundary layer where dispersion is spatially highly variable.  
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Figure 1. Study location showing local bathymetry, ADCP deployments (A-D) 
and transects (dotted lines). 
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Initial analysis of current meter records deployed for a three month period in late 

2000 revealed evidence of wake effects and transient re-circulation in the lee of 

Corambirra Point with a shear zone located inshore of the 30m isobath off 

Boambee Beach (PRITCHARD et al., 2001). Constrained and variable flows 

within this sheltered zone in the lee of Corambirra Point limit the potential for 

dispersion and increase potential for re-entrainment of plume waters compared to 

offshore waters. Observations together with plume modelling (CORMIX) 

indicated potential benefits in discharging beyond the shear zone (PRITCHARD 

et al., 2001). The objective of research presented here is to improve understanding 

of dynamics and map dispersion capacity within the coastal boundary layer near 

Coffs Harbour. 

Headland wake effects 

The term headland wake is used to describe the area of quiet water adjacent to the 

free stream current. At the tip of the headland a separation point can develop 

where inertia carries the free stream current past slower currents in the lee of the 

headland creating a pronounced shear zone. 

Eddies associated with headland wakes can induce cross-shelf advection and 

mixing (e.g. BLACK et al., 2005), enhance vertical mixing (e.g. FARMER et al., 

2002), bring nutrients to the surface at the centre of eddies (e.g. ROUGHAN et 

al., 2005) and act to trap effluent along irregular coastlines (e.g. CHEN et al., 

2005). These attributes of headland wakes have great potential to modify 

biological systems by affecting biological exposure to pollutants, primary 

production (e.g. ROUGHAN et al., 2005), transport and settlement of larvae and 

juveniles (e.g. RANKIN et al., 1994) and by aggregating prey and predators (e.g. 

JOHNSTON et al., 2005).   

Most intensive headland wake investigations have tended to focus on individual, 

prominent headlands such as Bass Point in eastern Australia (DENNISS et al, 

1995; AITKIN et al, 2002) and Cape Rodney in New Zealand (BLACK et al., 

2005). Early investigations of flow separation and the formation of eddies in the 

lee of these features involved two dimensional simulations often with simplified 

geometries (WOLANSKI, et al., 1984; BLACK and GAY, 1987; SIGNELL and 

GEYER 1991). More recently, three dimensional flow simulations have been 
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attempted (e.g. WOLANSKI, et al., 1996; FURUKAWA AND WOLANSKI, 

1998) but few have been adequately verified with corresponding three 

dimensional flow observations.  Some notable exceptions include wave, current 

and temperature measurements which revealed the detailed internal dynamics of a 

baroclinic eddy off Cape Rodney, New Zealand (BLACK et al., 2005) and 

Eulerian and Lagrangian current measurements which revealed tidally driven 

three dimensional headland wake effects off Cape Levillain in northwest Australia 

(BERTHOT and PATTIARATCHI, 2006).  

The majority of these studies were seeking an understanding of larval settlement 

potential or sediment dynamics. Very few studies have investigated wake effects 

in relation to dispersion of pollutants from point source discharges such as sewage 

outfalls.  

 

METHODS 

Currents 

Four upward looking Acoustic Doppler Current Profilers (ADCPs) were deployed 

for three months (6th September, 2000 to 29th November, 2000) to investigate 

possible headland wake effects. Two ADCPs were positioned along the alignment 

of the proposed outfall (Sites A and C).  Other ADCPs were located within 

offshore flows (Site D) and as close as practicable to the eastern end of the 

bathymetric high that extends offshore to Korffs Islet (Site B) - Figure 1 and 

Table 1. Prior to deployment, ADCP compasses were calibrated, and units were 

set to 240 pings per ensemble every 30 minutes with ping rate at 2 Hz.  

Transducer heads were located 0.5m (Sites B, C, D) or 1.0m (Site A) above the 

sea floor and currents were recorded in 1 metre depth bins.  Blanking depths of 

1.75m (300KHz ADCPs) and 0.5m (1200KHz ADCPs) were set to avoid 'ringing' 

effects near the transducer heads.   

ADCPs at sites B, C and D operated continuously for the full deployments but 

reliable data ceased to be recorded at Site A towards the end of October when 

excessive marine growth developed around the transducer head. 
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Table 1: ADCP deployment specifications 

SITE Head 

Depth (m) 

Blanking 

Depth (m) 

Frequency 

(KHz) 

No. Bins 

after QA 

A 13 0.5 1200 11 

B 21 0.5 1200 17 

C 28 1.75 300 22 

D 35 1.75 300 33 

Across shelf transects using 300KHz ADCPs were conducted at 4 knots along the 

alignment of Sites A, C and D from water depths of about 10m to 50m with depth 

bins set at 1m and 20 pings per ensemble recorded every ~3 seconds (~6m along 

track). 

Acceptance criteria for ADCP data were based on time series plots of beam 

correlation (auto correlation between pings), percent-good (a range of RDI 

acceptance criteria) and vertical error velocity (difference between simultaneous 

vertical velocity estimates from adjacent beams).  

Progressive vector displacements were calculated from ADCP data sets to 

characterise overall flow patterns and to suggest relative advection of pollutants 

and plankton. Variance preserving spectra were produced to assess dominant 

energy frequencies and related to various forcing using MATLAB routines for 

each depth layer (bin) using a lag window of 256 hours; equal areas under the 

curve represents equal energy. 

Bathymetry, Winds and Water Temperatures  

Bathymetry based on Australian Hydrographic Chart AUS 812 (1:150,000) and 

studies reported in CHEIS (2000) was gridded for modelling by Kriging using 

Surfer software.  

The Australian Bureau of Meteorology provided wind speed and direction data at 

30 minutes from Coffs Harbour airport located behind Boambee Beach for the 

study period. For modelling, the bathymetry was rotated 18 degrees anticlockwise 
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from true north in order to align the modelling grid with the preferred orientation 

of surface currents observed at Site C which was in approximate alignment with 

isobaths.  

StowAway� temperature loggers (range –5ºC to 37ºC; accuracy 0.1ºC) were 

deployed at each of the four ADCP sites at 10m intervals through the water 

column to measure thermal stratification and its sensitivity to forcing. Each logger 

was calibrated prior to deployment and on recovery according to the 

manufacturer’s instructions.   

Modelling 

Model 3DD (BLACK, 1995) was used to simulate three dimensional flows over 

the study region because ADCP data from our study revealed vertical shear and 

rotation (described below) and recent headland and island wake investigations 

have demonstrated the importance of three dimensional flow structures (e.g. 

BERTHOT and PATTIARATCHI, 2006; BLACK et al., 2005). The critical value 

above which a stable wake is formed can be considerably overestimated by depth-

averaged modelling in the case of shallow wakes (STANSBY, 2006). The three-

dimensional baroclinic form of model 3DD is based on well established 

momentum and mass conservation equations. An explicit finite difference 

(Eulerian) solution is used to solve the momentum and continuity equations for 

velocity and sea level, through a series of vertical layers that are 

hydrodynamically linked by the vertical eddy viscosity. The model provides for 

spatial variation in roughness length and horizontal eddy viscosity. Non-linear 

terms and Coriolis force can be included or neglected, whereas the land/sea 

boundaries can be set to free slip or no-slip. The model 3DD has been 

successfully applied and verified in a diverse range of situations (BLACK 1987, 

BLACK et al. 1989, 1993; MIDDLETON and BLACK 1994; YOUNG et al. 

1994) and has been previously applied to investigate the parameters responsible 

for eddy formation behind islands and reefs (BLACK and GAY 1987; BLACK 

1989; HUME et al. 2000; BLACK et al., 2005). 

For the Coffs Harbour application horizontal grid cell size was set at 100m with 

six vertical layers increasing in thickness from surface to bottom (1, 3, 6 , 10, 10, 

100m) reflecting the variability of vertical shear observed in the water column.  A 
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body force was applied based on ADCP observations at Site C to simulate large-

scale pressure gradients. The body force is a surrogate for a calculated sea 

gradient, obtained by inverting the vertically-averaged momentum equation and 

solving using measurements of currents, sea levels and winds. The body force is,  

 

where ς is sea level, U and V are velocities in x and y directions, Wx and Wy are 

the wind stress components, C is Chezy's C, f the Coriolis parameter and h the 

depth. 

Representation of bottom friction in the model requires parameterisation of the 

bed roughness length. In the area offshore from Boambee Beach the seabed is 

predominantly fine to medium sand with outcrops of rock scattered to the north 

(Corambirra Point, Korffs Islet and adjacent reefs) and to the south on shoals off 

Sawtell (CHEIS, 2000).  In order to reproduce frictional characteristics over this 

seabed we used a roughness length parameter of 0.001m similar to that used by 

BLACK et al. (1989). We used a free-slip boundary at the land-sea interface so no 

lateral friction exists to generate vorticity in the simulation. This gives more 

realistic results in the context of a 100m numerical modelling grid where 

velocities would be unrealistically damped up to at least two cells from land; this 

means that vorticity and eddies are generated by other mechanisms. 

The input that is typically least well known is the horizontal eddy viscosity, as it 

represents processes that are not resolved by the model physics (SIGNELL and 

GEYER, 1991). The horizontal eddy viscosity was set at 5 m2 s−1 which takes into 

account the 100m grid size that does not allow accurate representation of small 

scale natural viscous processes. Eddy viscosity can range to extremes of 15 m2 s−1 

as observed off Bass Point (a headland some 500kms south of Coffs Harbour) by 

MIDDLETON et al. (1993) but observed horizontal eddy viscosity is typically 

orders of magnitude less than this.    

 Pollutant dispersion potential was mapped using a three dimensional numerical 

dispersal model called POL3DD (BLACK, 1995) which solves the 

transport/dispersion equations using Lagrangian particle tracking techniques. 
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POL3DD outputs gridded arrays of concentration, particle numbers, integrated 

particle visits, and various particle characteristics. Neutrally buoyant, conservative 

particle simulations were adopted in order to examine potential pollutant 

pathways, destinations and residence times and thus construct maps to indicate 

generalised dispersion potential. Particles were tracked until they all left the 

model region or until the simulation was terminated and the numbers of particle 

visits to model cells were logged. 

 

RESULTS 

Hydrographic setting and drivers 

 During the ADCP deployment period (6th September, 2000 to 29th November, 

2000) East Australian Current stream flow occurred on or near the continental 

shelf with elevated water temperatures reflecting proximity of EAC influences 

(Figure 2).  

During early November the EAC impinged on the inner shelf with strong 

southward advection of warm (24ºC) waters. Despite this regional southward 

dynamic, a local northward flow was driven by a strong southerly (northward) 

bluster demonstrating the dominance of local winds.  Indeed PRITCHARD et al. 

(2001) found alongshore components of near surface currents and winds were 

well correlated (r2 ~ 0.65) with the currents typically corresponding to about 1% 

of the wind speed at the Site A and 2-3% of the wind speed at Site C.  

Temperature stratification at offshore Site D varied through the period from 

essentially homogenous barotropic conditions during early spring (September) to 

baroclinic with temperature differences of up to 4ºC through the water column by 

late spring (November). When present, the thermocline was typically found at 

about 20m depth. This is consistent with observations during the late fifties by 

Commonwealth Scientific and Industrial Research Organisation at a site off Coffs 

Harbour in 50m of water (PRITCHARD et al., 2001). Local wind events such as 

the southerly bluster in early November rapidly de-stratified the water column 

(indicated by the double arrow in Figure 2).  At all other shallower sites (Sites A, 
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B & C) the water column was well mixed with vertical temperature differences 

rarely exceeding 0.5ºC. 
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Figure 2. Water temperature profile (ºC), north-south current profile (m/s) time 
series at Site D and local north-south wind (m/s) time series recorded at the airport 
just west of Boambee beach. Negative southward currents and winds. 

 

Time series analysis of ADCP data revealed patterns of spectral energy through 

the water column (Figure 3). In general, variance preserving spectra for the four 

ADCP sites show prominent peaks at ~12 and ~24 hours, highlighting the relative 

contribution of the semi-diurnal tides, inertial motions and local land-sea breezes. 

Strong peaks are also evident at 2.5, 3.9 and 7.8 days, associated with the regional 

weather band. Complex spectral features are also present in the vertical energy 

structure, particularly within the diurnal band at Site D as shown in Figure 4, and 

to a lesser extent at Sites B and C. At Site D energy levels fall steadily from the 

surface to a depth of 15m (bin 19), and throughout the lower 11m (25-36m). In 

between, the diurnal energy shows local maxima, most likely coincident with the 
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pycnocline layer, which acts a waveguide, trapping energy entering from above 

and below.  Temperature data in Figure 2 are consistent with a pycnocline 

typically at this depth interval.  There are distinct albeit small, shifts in peak 

energy between the three layers shown in Figure 4 with peaks equivalent to 

periods of 23.8 hrs (upper), 24.2 hrs (mid) and 24hrs (bottom).  These peaks are 

all close to the inertial period at this latitude (23.7hrs) so it is difficult to infer 

remote or local forcing. 

Observed wake effects – shear and rotational flows 

Although the spectra at all sites exhibit peaks at similar frequency bands, Site A 

exhibits energy levels across the spectrum that are significantly lower than all 

other sites indicating shallow water frictional effects and wake effects which are 

expected to result in quiescent zones in the lee of the headland. Furthermore, the 

weatherband signal at Site A is diminished relative to diurnal and semi-diurnal 

bands when compared to spectra from other sites which is consistent with 

observations of headland wakes elsewhere (e.g. DENNISS et al., 1995). 

In contrast to Site A, energy levels at Site B are generally high relative to the two 

offshore sites C and D due to its close proximity to the tip of the bathymetric 

extension of Corambirra Point where convergence is likely to result in local 

current accelerations. However, the high energy levels at Site B are mostly 

confined to the upper water column with near bottom energy levels well below 

those evident in the offshore spectra at Sites C and D.  

Progressive vector plots for the entire deployment (Figure 5) revealed patterns of 

long term rotation across sites and through the water column. Near surface 

circulation (indicated by bold dark displacement traces) is characterised by 

surface divergence between mainstream and the coast in the lee of Coffs Harbour 

especially at Site B, and net offshore displacement at Site A.  
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Figure 3. Variance preserving spectra illustrating energy distribution throughout the water column at Sites A, B, C and D. Spectra shown 

for 1m depth bins at Sites A (11 bins across 13m depth), B (17 bins; depth = 21m), C (22 bins; depth = 28m) and D (33 bins; depth = 

35m depth). 
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Figure 4. Variance preserving spectra illustrating shifts in diurnal energy 
distributions through the water column at Site D. 



Pritchard et al. (2007) / Journal of Coastal Research, SI 50, 848-857 

 307

Despite this net offshore displacement at Site A, the vector displacement path 

comprises a series of reversing path segments reflecting intervals of southward 

flows similar in direction to that seen at Sites C (and Site D) interspersed by 

periods of northward flows which were steered offshore. These northward flows 

are consistent with recirculation in the lee of Corambirra Point centred about a 

point southeast of Site A.  Similar reversing flow patterns were observed in upper 

waters at Site B although southward segments dominated the displacement path 

suggesting near proximity to flow separation off Corambirra Point. 

Net bottom water displacements (indicated by bold white traces in Figure 5) also 

indicate a predisposition for cyclonic eddy recirculation in the lee of Corambirra 

Point (Sites A, B and C) and shore parallel flow along isobaths at Site D. Net 

bottom water vector displacements are almost diametrically opposed at Sites A 

and C while flow patterns at Site D are similar to those at Site C. Increased 

bottom stress and accelerations associated with the bathymetric extension of 

Corambirra Point contribute to the clockwise rotation of currents downwards 

through the water column exhibited at Sites C and D. 

Site A clearly falls within a headland wake with a shear zone located between 

Sites A and C.  Figure 6 shows the north-south velocity differences across the 

3025m that separates Sites A and C. Near surface and near bottom velocity 

differences are highly correlated although opposing flows (solid blocks) occurred 

more frequently in near bottom waters. The variability in north-south flow 

differences presented in Figure 6 reflects the flow variability at Site C and 

indicates a propensity for clockwise rotation inshore of Site C. A number of cross-

shelf ADCP transects were undertaken to assess the gradients and eddy formation 

suggested from the moored data. Results (not shown) indicated discrete shear 

zones that were investigated further through model simulations. 
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Figure 5. Three dimensional flow field illustrated by progressive vector plots for alternate one metre depth bins at Sites A, B, C and D with uppermo
bins indicated by bold black traces and lowermost bins indicated by bold white traces (top); and, direction of total displacements (anticlockwise w.r.t. tr
north) corresponding to end points of the progressive vector plots for each ADCP depth bin (bottom). Note duration of record at Site A is approximate
one month shorter than at other sites. 

 308



Pritchard et al. (2007) / Journal of Coastal Research, SI 50, 848-857 

 309

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Difference in north-south current components observed at Sites A and C 
which lie along the alignment of the outfall straddling the shear zone caused by 
the wake of Corambirra Point.  Plots based on uppermost (top trace) and 
lowermost (middle trace) ADCP depth bins with rotation (dark blocks) indicated 
by arrows. Positive current differences correspond to clockwise rotation.   
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Model Simulations 

Model simulations were undertaken to investigate the spatial extent of wake 

effects, to better define the shear zone indicated by ADCP observations at Sites A 

and C, and to investigate potential pollutant trapping due to wake effects. Three 

dimensional simulations were employed because ADCP observations indicated 

three dimensional flow features.  
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Model simulations reproduced salient features of independent ADCP data 

collected in the model domain (Figure 7).  For example, the amplitude and phase 

of simulated and observed alongshore current reversals were well matched with 

observations although at depth, simulated along shore current amplitudes were 

overestimated by about 0.05m/s. This difference may be due in part to the reduced 

vertical resolution of simulations compared to ADCP observations (i.e. 10-20m 

simulation vs 15-16m ADCP bin). Across shore current components throughout 

the water column at Site C were significantly weaker than along shore 

components in both simulated and observed data sets but similar across shore flow 

patterns were discernable in both simulated and observed cross shore flows; the 

model generally underestimated the amplitudes of observed cross shore 

variability. 

Simulated vector averaged flow fields (Figure 8) were generally consistent with 

ADCP observations (Figures 5 and 6) with convergence of flows approaching the 

tip of Corambirra Point and divergent flows in the lee of the point. The shear zone 

located between sites A and C was clearly evident in model simulations as a 2km 

wide zone centered 2km offshore (Figure 8). Horizontal shear is represented in 

Figure 8 by the gradient of along-shelf and cross-shelf velocity components of the 

velocity gradients along the transect T1-T2 which is aligned with the Coffs 

Harbour outfall. 

Numerical particles were released into the simulated flow field at various discrete 

locations along transect T1-T2 to investigate potential exposure and fate 

scenarios. Rather than presenting this compendium of individual scenario outputs 

we illustrate generalised particle visitations for particles released from along the 

entire transect; that is, transect T1-T2 was treated as a line source and subsequent 

particles visitations were mapped across all cells in the modeling domain (Figure 

9).  
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Figure 7. 3DD model simulations compared to independent ADCP observations 
for along shelf and cross shelf components of upper and lower currents at Site C.  
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Figure 8. Vector averaged upper layer velocities based on 3DD model simulations 
(top) together with alongshore and cross shore vector averaged velocities across 
transect T1-T2 (bottom).  
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Figure 9. Total number of particle visits mapped across the modelling domain (left) and along transects N1-N2, T1-T2 and S1-S2 
based on POL3DD particle tracking using conservative, neutrally buoyant particles released at every time step from a line source just 
south of transect T1-T2. Advection driven by the three dimensional flow field generated by model 3DD and results plotted as depth 
integrated total particle visits.   
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DISCUSSION 

Headland wakes 

In simple terms topographic features like headlands lead to local flow separation, 

formation of an intense transverse shear layer and return velocities in the lee of 

the feature. Ultimately re-circulation cells decay due to turbulent bottom friction 

or are displaced by stream flow reversals. However, the formation of headland 

wakes is often variable and case specific. For example, some prominent headlands 

rarely develop recirculation cells: Bass Point, south of Sydney (NSW, Australia) 

protrudes almost 4km onto the continental shelf where strong longshore currents 

(0.2–0.5 m s−1) often exist yet large-scale recirculation is rarely observed in the 

lee of the headland (MIDDLETON et al., 1993).  

Spectral observations off Coffs Harbour were consistent with those off Bass Point 

(DENNISS et al., 1995) where weatherband spectral energy dominated in the 

stream flow while diurnal energy dominated in the lee of the headland. However, 

the tendency for re-circulation south of Corambirra Point (Figure 7) differs from 

the broad turbulent wake observed off Bass Point. DENNISS et al. (1995) 

attributed this broad wake to high levels of turbulence near the tip of the Bass 

Point  (eddy viscosity of 15 m2 s−1) which appeared to prevent the formation of a 

single narrow shear layer (caused by separation at the point).  Instead a much 

wider turbulent shear layer developed off Bass Point which was not conducive to 

large-scale recirculation. AIKEN et al. (2002) attributed this turbulence to three 

sources of stochastic forcing: variability in the wind stress; variability in the flow 

incident on the headland; and, variability generated in the flow by complex reef 

topography at the headland's tip and upstream. 

The offshore environment at Coffs Harbour shares some similarities, with 

turbulent flows associated with the complex bathymetry of Corambirra Point 

including Korffs Islet (Figure 1), and the Solitary Islands group to the north may 

increase turbulence in incident flows. These external sources of vorticity may 

have contributed to the turbulent wake especially in the shear zone but inertial 

forces appear to contribute to the formation of re-circulation cells. That is, 

frequent short duration (<36 hrs) opposing flows (re-circulation) appear to be 

associated with accelerations of flow (especially during regional flow reversals) 
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rather than periods of sustained high shear/difference (Figures 5 and 6).  This led 

PRITCHARD et al. (2001) to suggest that re-circulation may result from flow 

reversals when reversal occurs earlier in the wake of the headland than in the free 

stream where currents continue to decelerate. In this way the formation of phase 

eddies is governed by the inertia of the wake relative to the free stream flow. 

Three dimensional flow structures were also observed with somewhat different 

near surface and near bed flow patterns (Figure 5 & 6) which is consistent with 

observations of re-circulation wake effects at Cape Rodney in northeast New 

Zealand where the structure of the eddy was often partitioned vertically  (BLACK 

et al., 2005). In both cases wake effects were strongly influenced by wind. 

Dispersion and advection of pollutants 

Few studies have investigated pollutant trapping although experimental dye 

studies by CHEN et al. (2005) found significant trapping for discharge points in 

the recirculation zone behind a model headland due to the slower velocities.  

Dilution and dispersion can be limited by re-entrainment of pollutants trapped in 

re-circulation cells. The propensity for re-circulation south of Corambirra Point is 

clearly evident in ADCP data (Figures 5 & 6) and model simulations (Figure 8).  

However, in this case re-circulation cells are not considered to be the most 

important wake effect limiting near field dilution of treated effluent discharged off 

Coffs Harbour because re-circulation cells occur sporadically with opposing 

currents at Site A and Site C persisting for periods mostly less than 10 hours and 

always less than 36 hours.  Model simulations suggest typical re-circulation cell 

diameters of 2-3km in the lee of Corambirra Point (Figure 8) so for an average 

water depth of ~20m the volume of the re-circulation cell is four orders of 

magnitude greater than daily effluent discharged from the outfall.  

Instead the most profound effect of the wake created by Corambirra Point is the 

reduced ambient current speeds. For a well designed outfall, initial mixing is 

fundamentally a function of the volume of ambient water available for dilution 

(i.e. water velocity and depth). Consequently, dilution potential varies 

dramatically across shear zones such as along transect T1-T2 in Figure 8, where 

the upper limit of initial dilution increases by a factor of up to 18 over a cross-
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shore distance of just 1.4km (from 1.6km to 3km along T1-T2), mostly due to 

increasing velocity rather than increasing depth.  Given a relatively constant sea 

floor slope the rate at which potential dilution increases in an offshore direction is 

almost directly proportional to this velocity gradient. Therefore, the greatest gain 

per unit extension of the discharge point coincides with the greatest shear given 

by the greatest slope in Figure 8 at the centre of the shear zone located 2km 

offshore.  

Slower current velocities in the lee of Corambirra Point also serve to reduce 

clearance times of pollutants in the coastal boundary layer shoreward of the shear 

zone defined in Figure 8. Wake effects due to Corambirra Point were 

characterised and mapped in terms of pollutant clearance by releasing numerical 

particles into the simulated flow field at random from along the entire length of a 

shore normal transect along the alignment of the Coffs Harbour outfall (adjacent 

to T1-T2 in Figure 9).  The numbers of particle visits to each cell in the model 

domain were recorded for the entire simulation period and mapped in Figure 9 for 

upper layer cells.  Numerical particles were assigned conservative and neutrally 

buoyant properties so it is not surprising that during the model simulation particles 

visited most of the model domain. Notably high numbers of particle visits were 

recorded within the island wake reflecting the combined effects of quiescence 

waters and re-circulation. Transects through this wake region (N1-N2, T1-T2 and 

S1-S2) indicated low relative levels of clearance (high number of visitations) 

within 1.5km of the coast, with wake effects detectable out to 4km offshore.  

Particle clearance increases (visits decreases) most rapidly between 1.5km and 

2km offshore along the outfall alignment (T1-T2), generally consistent with the 

shear zone depicted in Figure 8. 

These results are generally consistent with experimental studies by CHEN et al. 

(2005) which found that flushing times for dye discharged into the re-circulation 

zone were very much greater than for the main current.  

Results clearly indicate that the greatest scope to increase offshore outfall 

performance (dilution and dispersion) results from offshore extension of the 

outfall within the interval from 1.5km to 2.5km along transect T1-T2. In this case, 

the Coffs Harbour line diffuser outfall was located 1.5km offshore (indicated by 
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the open rectangle on T1-T2 in Figure 9), based on a range of factors including 

existing commitments to high levels of treatment prior to discharge and economic 

considerations.  

Coastal Boundary Layer Effects 

Headland wake effects are just one expression of the coastal boundary layer which 

is the transition zone between the shoreline and the open ocean. Turbulence, shear 

zones and frontal features develop near the coast due to a range of interactions 

with inner shelf bathymetry, irregular coastlines and estuarine outflows. Headland 

wakes generally operate over length scales of hundreds to thousands of metres but 

major changes in coastline/shelf orientation can result in coastal boundary layer 

effects that are orders magnitude greater than this, such the large cold core eddy 

(~60km diameter) observed by LEE et al. (2001) in the lee of Port Stephens some 

250km south of Coffs Harbour.  

Anthropogenic pollutant loadings typically enter the ocean via the coastal 

boundary layer and these coastal waters are highly valued by the rapidly 

increasing coastal populations. Clearly, the hydrodynamic characteristics of the 

coastal boundary layer are critical in determining the fates and impacts of 

pollutants. This paper has illustrated a common characteristic of coastal boundary 

layers; that is, long residence times relative to offshore regional flows due to flow 

retardation, re-circulation and zones of convergence as a function of the local 

coastal topography and variable coastal bathymetry. 

However, the implications of boundary layer formation extend far beyond the 

dispersion of sewerage effluent. Regions of enhanced relative vorticity, like 

headland wakes, may aggregate prey and represent important foraging habitat for 

predators like cetaceans (JOHNSTON et al (2005). Wake induced upwelling and 

plankton retention can result in high productivity (e.g. ROUGHAN et al. 2005). 

Even in the absence of a well-defined eddy biological distributions can be affected 

by headland wakes; for example, RANKIN et al. (1994) found that juvenile Gem 

clams were deposited just inside the wake perimeter, where shear velocities 

decreased to levels below critical erosion velocities of the clams. Re-circulation 

can also shape the benthic environment of infauna and epibiota by driving sand 
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circulation such as that observed between sandbanks and headlands by 

BERTHOT and PATTIARATCHI (2006). 

 

CONCLUSION 

Three dimensional characteristics of the coastal boundary layer off Coffs Harbour, 

especially flow retardation and re-circulation, have been revealed by direct 

observations and model simulation. Significant gains in initial dilution and 

dispersion of pollutants can be made across shear zones associated with headland 

wakes.  A comprehensive assessment of sewerage management options should 

therefore consider the benefits of increased dilution against the incremental costs 

of extending the outfall across significant shear zones.   

 

ACKNOWLEDGEMENTS 

This study was supported by the New South Wales Department of Environment 

and Conservation (including the NSW Environment Protection Authority) 

especially Dr Klaus Koop. The authors gratefully acknowledge mainly field 

assistance from Paul Watts, EPA Water Science staff especially Tim Ingleton and 

staff from the Solitary Islands Marine Park Authority.  

 

REFERENCES 

AIKEN C.M.; MOORE A.M. and MIDDLETON J.H (2002) The non normality 
of coastal ocean flows around obstacles, and their response to stochastic 
forcing. Journal of Physical Oceanography 32 (10): 2955-2974. 

BERTHOT, A. and PATTIARATCHI, C. (2006) Field measurements of the three-
dimensional current structure in the vicinity of a headland-associated linear 
sandbank. Continental Shelf Research 26, 295–317. 

BLACK, K.P. (1995) The hydronamic model 3DD and support software. 
Occasional Report No.19, Department of Earth Sciences, Uni.Waikato. 
53pp. 

BLACK, K. P. (1989) Numerical simulation of steady and unsteady meso-scale 
eddies. Proceedings of the 9th Australasian Conference on Coastal and 
Ocean Engineering, Adelaide. pp. 204–208. 



Pritchard et al. (2007) / Journal of Coastal Research, SI 50, 848-857 

 319

BLACK K.; OLDMAN J and HUME T (2005) Dynamics of a 3-dimensional, 
baroclinic, headland eddy. New Zealand Journal of Marine and Freshwater 
Research 39 (1), 91-120. 

BLACK, K. P.; HATTON, D. and ROSENBERG, M. (1993) Locally and 
externally-driven dynamics of a large semi-enclosed bay in southern 
Australia. Journal of Coastal Research 9(2): 509–538. 

BLACK, K. P.; HEALY, T.R. and HUNTER, M. (1989) Sediment dynamics in 
the lower section of a mixed sand and shell-lagged tidal estuary. Journal of 
Coastal Research 5(3), 503–521. 

BLACK, K. P. and GAY, S. L. (1987) Eddy formation in unsteady flows. Journal 
of Geophysical Research, 92: 9514–9522. 

CHEIS (2000) Coffs Harbour Sewerage Strategy Environmental Impact 
Statement. Vol 1-10. Coffs Harbour City Council, NSW, Australia. 

CHEN D.Y.; TANG F.E. and CHEN, C.Q. (2005) Pollutant trapping at a coastal 
headland. Journal of Waterway Port Coastal and Ocean Engineering-ASCE 
131 (3): 98-114 

CHURCH, J. A.; FREELAND, H. J. and SMITH, R. L. (1986) Coastal trapped 
waves on the east Australian continental shelf. Part I: propagation of modes. 
Journal of Physical Oceanography 6, 1929-1943. 

DENNISS, T.; MIDDLETON, J.H. and MANASSEH, R. (1995), Recirculation in 
the lee of complicated headlands: A case study of Bass Point, J. Geophys. 
Res., 100(C8), 16,087–16,102. 

FARMER, D.; PAWLOWICZ, R. and JIANG, R. (2002) Tilting separation flows: 
a mechanism for intense vertical mixing in the coastal ocean. Dynamics of 
Atmospheres and Oceans, 36, 43–58 

FREELAND H.J.; BOLAND F.M.; CHURCH J.A.; CLARKE A.J.; FORBES 
A.M.G.; HUYER A.; SMITH R.L.; THOMPSON R. and WHITE N.J. 
(1986) The Australian Coastal Experiment – a search for coastal trapped 
waves. Journal of Physical Oceanography 16 (7): 1230-1249. 

FURUKAWA, K. and WOLANSKI, E. (1998) Shallow water frictional effects in 
island wakes. Estuarine, Coastal and Shelf Science 31: 231–253. 

GOODWIN, I.D.; STABLES, M.A. AND OLLEY, J.M. (2006) Wave climate, 
sand budget and shoreline alignment evolution of the Iluka–Woody Bay 
sand barrier, northern New South Wales, Australia, since 3000 yr BP. 
Marine Geology 226 (2006) 127– 144. 

GRIFFIN, D.A. and MIDDLETON, J.H. (1992) Upwelling and internal tides over 
the inner New South Wales continental shelf. Journal of Geophysical 
Research 97(C9), 14389-14405. 

HARRIOTT, V. J.; SMITH, S.D.A. and HARRISON, P. (1994) Patterns of coral 
community structure of subtropical reefs in the Solitary Islands Marine 
Reserve, Eastern Australia. Marine Ecology Progress Series 109, 67-76. 

HUME, T.M.; OLDMAN, J.W. AND BLACK, K.P. (2000) Sediment facies and 
pathways of sand transport about a large deep water headland, Cape Rodney, 
New Zealand. New Zealand Journal of Marine and Freshwater Research 34: 
695–717. 



Pritchard et al. (2007) / Journal of Coastal Research, SI 50, 848-857 

 320

HARRIS, P.T.; BAKER, E.K. and COLE, A.R. (1991) Physical Sedimentology of 
the Australian Continental Shelf. Ocean Sciences Institute Report No. 51, 
University of Sydney, Sydney. 

JOHNSTON, D.W.; WESTGATE, A.J. and READ. A.J. (2005) Effects of fine-
scale oceanographic features on the distribution and movements of harbour 
porpoises Phocoena in the Bay of Fundy. Marine Ecology-Progress Series 
295: 279-293 

LEE, R.S.; AJANI, P.A.; WALLACE, S.; PRITCHARD, T.R. and BLACK, K.P.  
(2001). Anomalous Upwelling along Australia’s East Coast. Journal of 
Coastal Research, 34, 87-95. 

MIDDLETON, J.H. (1995) The oceanography of Australian seas. In Leon P. 
Zann, State of the Marine Environment Report for Australia: The Marine 
Environment - Technical Annex: 1. 

MIDDLETON, J.F. and BLACK, K.P. (1994) The low frequency circulation in 
and around Bass Strait: a numerical study. Continental Shelf Research 14 
(13/14): 1495–1521. 

MIDDLETON, J.H.; GRIFFIN, D.A. and MOORE, A.M. (1993) Oceanic 
circulation and turbulence in the coastal zone. Continental Shelf Research, 
13 (2-3): 143-168. 

PRITCHARD, T.R., LEE, R.S., INGLETON, T.C. and BLACK, K.P. (2001) 
Dispersion in the lee of a headland: a case study of circulation off Coffs 
Harbour, Proceedings of the 15th Australasian Coastal and Ocean 
Engineering Conference, Institution of Engineers, Australia. 

RANKIN, K.L.; MILLINEAUX, L.S. and GEYER, W.R. (1994) Transport of 
Juvenile Gem Clams (Gemma) in a Headland Wake. Estuaries, 17, (3), 655-
667. 

ROUGHAN, M.; MACE, A.J.; LARGIER, J.L.; MORGAN, S.G.; FISHER, J.L. 
and CARTER, M.L. (2005) Subsurface recirculation and larval retention in 
the lee of a small headland: A variation on the upwelling shadow theme. 
Journal of Geophysical Research, 110. 

ROUGHAN, M. and MIDDLETON, J.H., (2004). On the East Australia Current: 
variability, encroachment, and upwelling. J. Geophys. Res. 109, C07003. 

ROY, P.S. and THOM, B.G. (1981) Late Quaternary marine deposition in New 
South Wales and southern Queensland: an evolutionary model. Journal of 
the Geological Society of Australia, 28, 471-489. 

SIGNELL, R. P. and GEYER, W. R. (1991) Transient eddy formation around 
headlands. Journal of Geophysical Research 96(C2): 2561–2575. 

SMITH, S.D.A. (1996) The Effects of Domestic Sewage Effluent on Marine 
Communities at Coffs Harbour, New South Wales, Australia. Marine 
Pollution Bulletin, Vol. 33 (7-12), pp. 309-316. 

SMITH, S.D.A. and SIMPSON, R.D. (1993) The effects of pollution on the 
holdfast macrofauna of the kelp Ecklonia radiata: discrimination at different 
taxonomic levels. Marine Ecology Progress Series 96, 199-208. 

STANSBY, P.K. (2006) Limitations of Depth-Averaged Modelling for Shallow 
Wakes J. Hydr. Engrg., 132 (7), 737-740. 



Pritchard et al. (2007) / Journal of Coastal Research, SI 50, 848-857 

 321

WOLANSKI, E.; ASAEDA, T.; TANAKA, A. and DELEERSNIJDER, E. (1996) 
3-Dimensional island wakes in the field, laboratory experiments and 
numerical models. Continental Shelf Research 16(11): 1437–1452. 

WOLANSKI, E.; IMBERGER, J. and HERON, M. L. (1984) Island wakes in 
shallow coastal waters. Journal of Geophysical Research 89(C6): 10,553–10, 
569. 

YOUNG, I.R.; BLACK, K.P. and HERON, M.L. (1994) Circulation in the Ribbon 
Reef Region of the Great Barrier Reef. Continental Shelf Research. 

 



8.5 Summary and Outcomes 
 

8.5.1 Scientific Findings: coastal boundary layer formation 
 

Direct observations and model simulation revealed the attributes of the headland 

wake and the importance of morphology in controlling the dispersion and fate of 

pollutants discharged in to the coastal boundary layer off Coffs Harbour.  

 

Key findings include: 

 Coastal boundary layer effects include flow retardation and re-circulation. 

 Current meter data revealed surface divergence between mainstream and 

the coast in the lee of Coffs Harbour. Net bottom water displacements also 

indicate a predisposition for cyclonic eddy recirculation in the lee of 

Corambirra Point (Sites A, B and C) and shore parallel flow along isobaths 

at offshore Site D. 

 Simulations confirm a propensity for short duration (<36hrs) re-circulation 

cells south of Corambirra Point with typical re-circulation cell diameters 

of 2-3km. 

 Clearance increases (simulated particle visits decreases) most rapidly in 

the interval 1.5km to 2km offshore from Boambee Beach (along the outfall 

alignment). 

 Recirculation may result from flow reversals when reversal occurs earlier 

in the wake of the headland than in the free stream where currents continue 

to decelerate; that is, the formation of phase eddies is governed by the 

inertia of the wake relative to the free stream flow. 

 But the most profound wake effect is a persistent shear zone located 2km 

offshore from Boambee Beach created by Corambirra Point. 

 Inshore currents (Site A) exhibits energy levels across the spectrum that 

are significantly lower than all other sites indicating quiescent wake 

effects; observed current strengths at Site A were 2-3 times less than those 

at sites further offshore.  

 Observed along-shore flow ‘events' lasted on average less than a day 

(17hrs) inshore at Site A while comparable ‘events’ persisted for an 

average of 3.5 days offshore at Site (C). 
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 Observed alongshore components of near surface currents and winds were 

well correlated (r2 ~ 0.65) with the currents typically corresponding to 

about 1% of the wind speed at the inshore Site A and 2-3% of the wind 

speed at the offshore Site C. 

 Variance preserving spectra for the four ADCP sites show prominent 

peaks at ~12 and ~24 hours, highlighting the relative contribution of the 

semi-diurnal tides, inertial motions and local land-sea breezes. Strong 

peaks evident at 2.5, 3.9 and 7.8 days are associated with the regional 

weather band. 

 The vertical distribution of diurnal energy suggests that in the pycnocline 

layer may act as a waveguide, trapping energy entering from above and 

below. 

 The study period may include a greater proportion of wind driven 

southward currents than would be expected based on long term wind data. 

Long-term wind data suggested a tendency for wind driven currents to be 

northward  (53%) at least as often as southward currents in the study 

region; winds were northward ~35% of the study duration. 

 

8.5.2 Management Findings: outfall optimisation options 
 

There is significant scope to increase offshore outfall performance (dilution and 

dispersion) by extending the outfall across the interval from 1.5km to 2.5km 

offshore. Note that the initial preferred outfall location was 1.5km from shore 

(CHEIS, 2000).  

 

Key findings include: 

 

 The greatest gain per unit extension of the proposed discharge point 

coincides with the centre of the shear zone located ~2km offshore along 

the prescribed alignment of the outfall. 

 The upper limit of initial dilution increases by up to 18 x over a cross-

shore distance of just 1.4km (from 1.6km to 3km along outfall alignment). 

 Along-shore currents reverse in direction more frequently at the inshore 

Site A compared to the offshore Site C, thus increasing the likelihood of 

re-entrainment of diluted effluent into plumes.  
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 However, recirculation cells are not considered to be the most important 

wake effect limiting dilution of effluent discharged off Coffs Harbour 

because re-circulation cells occur sporadically and the re-circulation cell 

volume (2-3km dia x 20m) is typically four orders of magnitude greater 

than daily effluent discharged from the outfall. 

 A comprehensive assessment of sewerage management options should 

therefore follow consideration of the benefits of increased dilution against 

the incremental costs of extending the outfall across significant shear 

zones.  

 

An indicative benefit-cost curve for outfalls located across the shear zones is 

shown in Figure 8A. The Indicative Benefit-Cost is expressed as a ratio of current 

strength to relative cost: averaged alongshore current speed is proportional to 

volume of water potentially available to mix with and disperse effluent; and, 

‘relative cost’ is the outfall construction cost interpolated from engineering cost 

estimates provided by CHCC (pers comm., 2001) for outfalls extending to 1500m, 

2500m and 3500m. 
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Figure 8A: Indicative Benefit-Cost based expressed as a ratio of current strength 
to relative cost. Incident averaged current speed is plotted and the arrow indicates 
the Outfall location. 
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Outfall construction cost estimates increased almost linearly with distance 

offshore.  Detailed cost breakdowns were not provided although the almost 

constant cost per unit outfall length for all distances offshore suggests that 

initiation costs (mobilization including costs for construction of a temporary jetty) 

were insignificant compared to the incremental cost of extending the outfall.  

Other construction scenarios/locations may result in non-linear cost curves, 

especially if alternatives are considered earlier in the planning process. If the cost 

curve were flatter across the shear zone (i.e. if initiation costs were large 

compared to the incremental cost for extending the outfall) there would be an even 

greater incentive to extend the outfall beyond the shear zone.  

 

In this case the management option to increase the length of the outfall was not 

selected possibly due to the inflexibility of funding and relatively high levels of 

treatment prior to release: a new outfall was commissioned about 1.5 km from 

shore in early 2005. 
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9 COASTAL BOUNDARY LAYER DYNAMICS AND 
POTENTIAL IMPACTS 

 

9.1 Introduction 
 

The purpose of this chapter is to explore and evaluate the Coastal Boundary Layer 

(CBL) classification first proposed in Chapter 4 (Figure 9.1) by considering 

evidence mostly in the form of case studies. It attempts to examine and illustrate 

how coastal and shelf morphologies interact with regional and local currents to 

shape Coastal Boundary Layer (CBL) processes, which in turn drive pollutant 

dispersion and determine potential environmental impacts.  

 

In doing so this chapter brings together the findings from previous chapters, with 

particular emphasis on near-shore NSW waters which receive the bulk of NSW 

pollutants, and where CBL processes are mostly shaped by coastal irregularities. 

The morphological classification of headlands, bays and islands proposed in 

Chapter 7 provides an opportunity to develop a predictive risk-based framework 

for assessing potential pollutant impacts in various morphological settings. 

 

This chapter also seeks to establish the link between coastal boundary layer 

processes and the distributions of the biological species and communities that are 

impacted by pollutants which are released in to the CBL. Finally, management 

implications are discussed and developed, illustrating the ways in which a process 

based understanding of the coastal boundary layer can deliver better and/or more 

efficient environmental outcomes. 

 

9.1.2 Morphological Settings and Regional Circulation 
 

In NSW pollutants typically originate from coastal catchments and are discharged 

to the coastal boundary layer via regulated outfalls and un-regulated flows, mostly 

through estuaries, as discussed Chapter 2. The dispersive characteristics vary 

across the Coastal Boundary Layer (CBL) due to the configuration of the 

continental shelf, including nearshore morphologies and irregularities in the 

coastline which until now have not previously been considered in a systematic 

manner. 
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Figure 9.1 Schematic representations of the temporal and spatial scales of coastal 
boundary layer effects in NSW offshore waters. CBL Modifiers introduce density 
gradients (and are major pollutant vectors) while CBL Oscillators introduce vorticity. 
Ellipses represent indicative ranges of cross-shelf extents and dominant temporal 
expression (energy) based on data presented in this thesis, including referenced material 
and remote sensed imagery discussed in Pritchard & Koop (2005). This figure was first 
presented and discussed in Chapter 4. 
 

 

 

The NSW coastal and shelf morphology is the product of past and present forces 

acting on its geology, including repeated fluctuations of sea level, as discussed in 

Chapter 7. Here coastal and shelf morphology are discussed in relation to Outer 

and Inner Coastal Boundary Layer processes, as described in Chapter 4. 

 

Outer CBL processes are profoundly affected by the morphology and orientation 

of the continental shelf.  Cross-shelf widths and slopes vary with latitude as 

shown in Figure 9.2, which is derived from the mapping exercise reported in 

Chapter 7. 
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COFFS HARBOUR

SYDNEY

 

Figure 9.2 Continental shelf profile (cross shelf distance to isobaths) at each NSW 
headland location illustrating variability of shelf width and inner shelf profile with 
distance south from the NSW-Queensland border (28°10’S) to the NSW-Victorian 
border (37°30’S).  
 

The structural complexity and orientation of the continental shelf exerts a 

profound influence on Outer Coastal Boundary Layer dynamics, especially 

through its interactions with the East Australian Current.  The cross shelf profile 

of the continental shelf varies as illustrated by Figure 9.3. The local importance of 

narrowing of the continental shelf off Laurieton, just south of Smokey Cape, was 

first recognised by Rochford (1975) when he attempted to explain observations of 

upwelling in this region. Oke and Middleton (2000, 2001) later revealed how 

alongshore topographic variations near Laurieton caused local acceleration of the 

EAC over the narrowing continental shelf, with consequent bottom boundary 

layer dynamics uplifting nutrient rich slope water onto the shelf. Over a zone from 
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31ºS to 33 ºS, immediately south of Smokey Cape where the shelf is at its 

narrowest (~15 km),  most of the current separates from the coast forming the 

Tasman Front, which trends eastward (Ridgway and Dunn, 2003).  
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Figure 9.3 Range of cross-shelf profiles illustrating the steep sloping, narrow shelf  
off Smoky Cape in blue (similar to Jervis Bay and Narooma); the shallow sloping 
inner and mid shelf regions off Evans Head in magenta; and the broad, low 
gradient extension of the outer shelf off Newcastle in yellow. 
 

Further north, topographic irregularities associated with mainland Australia’s 

most eastern protrusion, Cape Byron, were also found to promote upwelling 

immediately south, off Evans Head, through the mechanism proposed by Oke and 

Middleton (2001).  Much further south, prominent topographic features such as 

the rotation of the coastline near Port Stephens and the protrusion of Jervis Bay 

onto the continental shelf have also been associated with high frequencies of 

upwelling (Lee et al., 2007); that is, higher frequencies of anomalously cool, 

bottom water derived from the continental slope were observed immediately south 

(downstream of average EAC flow) of these changes of up to 50º in the 

orientation of shelf and shoreline. The narrow, steeply sloping, cross-shelf profile 

off Jervis Bay is similar to that of Smokey Cape (shown in Figure 9.3). The 

dynamics and biological significance of complex interactions of EAC eddies with 

the continental shelf are currently the target of challenging research led by the 

Sydney Institute of Marine Sciences using facilities provided by the Integrated 

Marine Observing System (IMOS), including autonomous gliders, remote sensed 

ocean colour and various onboard observations from Australia’s marine research 

vessel, the Southern Surveyor (Suthers et al., 2010). 
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Together, these topographic induced upwellings explain much of the observed 

spatial variability of primary productivity in NSW coastal waters as seen in ocean 

colour satellite data (Figure 5.3 in Chapter 5, and Figure 9.4). Similar 

topographically induced CBL effects also provide insights into ecosystems 

dynamics operating in other areas affected by western boundary currents such as 

the Gulf Stream, the Kuroshio Current, the Brazil Current and the Agulhas 

Current, where alongshore topographic irregularities exist. 

 

The entire NSW continental shelf is relatively narrow so steeply shelving inner 

shelf profiles, such as off Sydney (660 km south of the NSW-Queensland border 

in Figure 9.2), provide good  opportunities for rapid mixing of pollutants 

relatively near to shore (Pritchard et al., 2001).  

 

At both small and large spatial scales the roughness and configuration of the 

shoreline/shelf appear to result in similar flow patterns, as illustrated in Figure 

9.4.  

 

The ‘roughness’ of the coastline and the extreme complexity of near shore 

morphology exerts a profound influence on often highly variable Inner  Coastal 

Boundary Layer dynamics.  Natural headlands, bays, islands and shoals together 

with man-made rock walls, trained estuary mouths and harbors contribute to 

coastal ‘roughness’. 

 

Various environmental assessments have been conducted in relation to pollutants 

discharged to the Inner CBL, as required by NSW legislation (e.g. POEO, 1997).  

The morphological classification of NSW headlands, bays and islands proposed in 

Chapter 7 and the summary of previous studies provided in the NSW Ocean 

Outfall Inventory (Appendix 4 - attached DVD) describe the morphological 

setting for each of the licensed sewage discharges to NSW coastal waters.  By 

applying this classification, simple morphological characteristics have been 

quantified along the entire NSW coastline. This can be used for environmental 

risk assessments of both controlled pollutant releases to the CBL via ocean 

outfalls and sporadic releases to the CBL via estuaries from diffuse pollutant 

sources in coastal catchments.    

 



              A.  

 

             B. 

 
 
 
 
Figure 9.4. A:  Inner CBL features which appear to be bounded by headlands under the influence of a shore parallel free flow (sediment from the Richmond River acts as a 
tracer). Wake effects appear at approximately the same spatial scale as the headland length with expansion associated with clockwise southward rotation of coastline 
orientation. Cresswell et al.(1983) noted the presence of weak clockwise cells in embayments of northern New South Wales.  [GoogleEarth: Data SIO, NOAA, Us Nay, 
NGA, GEBCO. Image 20011GeoEye, SPOT IMAGE]. B:  Outer CBL features illustrated by SeaWiFS ocean colour derived estimates of ninetieth percentile relative 
cholorophyll_a (μg/L) for summer seasons from 1998-2003.  
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This thesis presented two major case studies of pollutant discharges to the Inner 

CBL off Coffs Harbour (Chapter 8), and to the Outer CBL off Sydney (Chapter 6), 

as shown schematically in relation to Coastal Boundary Layer features in Figure 

9.5.  The CBL classification motivates consideration of Headland Wakes and 

Wave Zone effects for Coffs Harbour and consideration of regional oceanographic 

drivers for Sydney. Another significant difference between the settings of the two 

case studies is that Sydney lies south of the EAC separation point, in the EAC 

Eddy Field.   

 

A 

 

B 

 

 
Figure 9.5 Schematic locations of two major case studies – Sydney (Chapter 5) 
and Coffs Harbour (Chapter 6) - in relation to configuration of major coastal 
boundary layer types of New South Wales proposed in Chapter 4. [WZ=Wave 
Zone; HW=Headland Wake; CC=Counter Current; EF=Effluent Field; 
BJ=Boundary Jet; EAC=East Australian Current; CTW=Coastal Trapped Waves] 
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The broad morphological settings of the two case studies are illustrated in Figure 

9.6. Although the continental shelf width (to 200m isobath) is comparable at both 

case study sites and consistent with average shelf widths along this part of the 

coast  (Figure 9.2), the inner- and mid- shelf slopes are very different 

corresponding to extremes illustrated in Figure 9.3. The inner shelf off Sydney is 

about twice as steep as that off Coffs Habour: the 110m isobath is 11-12 km from 

shore off Sydney while the more gently sloping shelf off Coffs Harbour reaches 

the 110m isobath some 25 km from shore.  

 

 333



 

COFFS HARBOUR 

 

SYNDEY (PORT HACKING) 

  

 

 

  

Figure 9.6 Coffs Harbour and Sydney continental shelf and slope morphologies (depths in metres). Source data: Jordan et al., 2010 
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9.2 Outer CBL  
 
9.2.1 Outer CBL Dispersal Processes 
 

The Outer CBL establishes the outer boundary conditions for the Inner CBL and 

affects pollutants discharged directly in to the Outer CBL. Here we consider the 

way that coastal morphologies and various Outer CBL processes shape flows.  

 

Two new data streams from offshore Sydney have been established by the 

Integrated Marine Observing System (IMOS) since the analysis of long-term 

current and temperature data collected at the Sydney Ocean Reference Station 

(ORS), presented in Chapter 6 and Pritchard et al. (2005). Together with the 

ORS, they deliver observations of currents and temperatures along a cross shelf 

IMOS transect which now constitutes a National Reference Station (Figure 9.7).   

 

Currents generally increase with distance from shore (Figure 9.8A) and with 

distance from the sea floor (Figure 9.8B) due to the effects of coastal roughness 

and frictional drag on the sea floor, respectively.  However, the increase of current 

speed with distance from shore is restricted in extent (mostly to nearshore Inner 

CBL) and non-linear, especially where Inner CBL features like wakes result in 

discrete, small-scale, spatial heterogeneity. The non-linear increase in flow with 

distance from a lateral boundary has been generalised and expressed by 

relationships such as the Law of the Wall (Karman, 1931) which describes the 

average (alongshore) velocity of a turbulent flow as a function of the logarithm of 

the distance from the wall. This relationship applies to parts of the flow that are 

close to the wall and is valid for flows at high Reynolds numbers (ie when inertia 

dominates over friction). This Law of the Wall has been useful for some coastal 

investigations* although application of the Law to characterise the roughness of 

the coastlines is likely to be confounded by frictional effects associated with 

shallow seafloors sloping upwards towards coast. Furthermore, in NSW there is a 

scarcity of appropriate validation data.  

 

* Lefebvre et al. (2010) applied the Law of the Wall to characterise variable  roughness length scales of the seabed (‘wall’) 

in relation to log-linear gradients of the velocity above the seabed in a tidal inlet.  
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A. Coffs Harbour 

 

B. Sydney IMOS 

 

 

Figure 9.7 Location of current meter deployments at A: Coffs Harbour (from 
Chapter 8), and, B: Sydney IMOS moorings at ORS065, SYD100 and SYD140. 
Note that IMOS monitoring stations off Port Hacking (PH100) do not include 
current meter deployments. 
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Figure 9.8 Current strengths at increasing distances from shore at A: Coffs 
Harbour (simulated currents across the alignment of A-C-D shown in Figure 9.7A 
from Chapter 8), and, B: vertical profiles at the three deployed current meter 
stations located along the IMOS transect shown in Figure 9.7B. (ORS: 28 
September 2010 to 9 May 2011. SYD100 & SYD140: 14 October 2010 to 14 
April 2011. Data from IMOS). Interestingly, current strengths increase with depth 
over the depth interval from 65m to 80m at SYD100 in Figure 9.8. 

SYDNEY

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5

SOLITARY ISLA NDS
MARINE PA RK BOUNDA RY

NORTH

ADCPD

C

B
A

SAWTELL

BOAMBEE 
BEACH

CORAMBIRRA POINT

KORFFS ISLET

OUTFALL

COFFS 
HARBOUR

-2
0

 

 

 336



 337

Current speeds appear to increase with distance offshore in the Outer CBL 

between the ORS site (2.1km offshore) and the SYD100 site (9.9 km offshore), 

although upper current speeds at the SYD140 site appear to lie between these 

extremes, as shown in Figure 9.8B. In contrast, spectral analysis shows a clear 

offshore increase across all three sites in peak energy in the diurnal frequency 

band (~1.4 log cycles per hour), and to a lesser extent in weather-band energy 

(centered on ~2 log cycles per hour), during the period of this IMOS deployment 

(Figure 9.9). The semi-diurnal band carries greater peak energy at the ORS 

compared to other sites. 

 

Outer CBL effects observed off Sydney were described in Chapter 6 and 

Pritchard et al. (2005) and will not be repeated at length here; they include EAC 

Eddy Field influences and upwelling dynamics, as well as the effects of CBL 

Oscillators such as local wind, coastal trapped waves and tides, and CBL 

Modifiers like River Plumes and Effluent Plumes.  

 

The latitudinal difference between case study locations places them under 

different influences of the East Australian Current (EAC): Coffs Harbour 

experiences variable southward EAC flows depending on the degree of westward 

encroachment of the EAC Boundary Jet onto the shelf; while, Sydney is affected 

by southward and northward flows associated with the encroachment of warm and 

cold cores EAC Eddies, such as those shown in Figure 9.10. These Eddy Field 

effects are partially responsible for the increase in weatherband spectral energy 

with increasing distance from shore off Sydney, as shown in Figure 9.9.  In 

January 2011 a warm core eddy (W1) carrying East Australian Current water was 

embedded within the main EAC flow with a huge cold-core eddy (C) sitting 

immediately south, adjacent to an already detached warm core eddy (W2) (Figure 

9.10). The encroachment of this second eddy (W2) dominated mid-shelf 

(southward) currents observed off Sydney in mid January 2011.  While warm and 

cold core eddies such as these are common features of the Eddy Field, the sea 

surface elevation gradients associated with these eddies are extreme: up to ~1m 

over a distance of ~100km! 
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Figure 9.9a Variance preserving power spectra 
for currents at ORS: 28 September 2010 to 9 
May 2011. Data from IMOS. 

Figure 9.9b Variance preserving power spectra 
for currents at SYD100: 14 October 2010 to 14 
April 2011. Data from IMOS. 

Figure 9.9c Variance preserving power spectra 
for currents at SYD140: 14 October 2010 to 14 
April 2011. Data from IMOS. 

[Hamming window applied with a 128 hour lag. Plot shows (cm/s)2 vs log cycles per hour] 
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Figure 9.10 Energetic cold core and warm core eddies off the NSW coast during 
January 2011. Isostatically adjusted sea level anomalies courtesy of BLUElink 
Ocean forecasting Australia. Current speed data courtesy of IMOS (SYD140 
location depicted in Figure 9.7B).  
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CBL Oscillators effects such as local Wind effects can de-stratify the water 

column over time frames of hours allowing effluent plumes to reach the surface 

and promoting vertical mixing of nutrient rich bottom waters. 

 

Other CBL Oscillators effects such as Tides were implicated in the generation of 

internal waves at the shelf break with possible impacts on the initial mixing of 

effluent plumes, and on the vertical mixing of far-field effluent plumes in the 

shallow waters of the Inner CBL where internal waves may break (Pritchard et 

al., 2005).  Similar internal wave breaking phenomena have been observed in 

California with water quality implications (Omand, et al., 2011). Other Tidal 
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phenomena such as the effects of  ebbs jets from Broken Bay, Sydney Harbour 

and Botany Bay were investigated during the Sydney Deepwater Outfalls 

Environmental Monitoring Program (EMP) because the presence of an ebb jet in 

the vicinity of Sydney’s deepwater outfalls has the potential to influence the 

dispersion of effluent through local changes in currents and density stratification 

as well as concentrating the effect of floatable material along a surface front or the 

perturbation of the ambient along shelf current (Wilson et al., 1995).  Ebb jet 

observations by a team including the author, defined a ~10m thick surface layer of 

relatively fresh and turbid water flowing up to 4 km offshore (4 km off Botany 

Bay; 2-3 km off Sydney Harbour; and, 4 km off Broken Bay), sometimes 

associated with small re-circulation eddies.  

 
River Plumes discharging nutrient-rich catchment run-off to coastal waters have 

the potential to elevate nutrient concentrations (especially nitrate and ammonia) in 

surface waters as indicated by nutrient concentration data which was presented 

and discussed in Chapter 6 and in Pritchard et al. (2001, 2003). Likewise, 

Effluent Plumes of treated sewage were shown to have the potential to 

significantly elevate nutrient concentrations (especially ammonia) in coastal 

waters, while bottom waters may be enriched by slope water intrusions (especially 

nitrate and phosphate).  

 

 
9.2.2 Ecological Consequences of Outer CBL Processes 
 

In this section Outer Coastal Boundary Layer phenomena are discussed mostly in 

relation to distributions of biological communities and life histories of species, 

which may be impacted by pollutants.  Environmental impacts of direct 

discharges to the Outer CBL are considered through Case Studies (Section 9.5) 

noting that few pollutants from both point sources (ocean outfalls and stormwater 

drains) and diffuse sources (coastal catchments) are discharged directly to the 

Outer CBL. In NSW only five ocean outfalls are located offshore and effectively 

removed from the influences of the Inner CBL: Malabar, North Head, and Bondi 

outfalls are located off Sydney, while smaller outfalls are located off Newcastle at 

Burwood and Belmont (see Outfall Inventory attached to Chapter 2). Other, more 

recently constructed offshore outfalls off Coffs Harbour and off Wollongong are 

potentially affected by coastline effects (points and harbours). However, 
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dispersion of pollutants from these five outfalls is dominated by Outer CBL 

effects as well as CBL Modifiers and CBL Oscillators. Some of these discharges 

are discussed in relation to CBL effects as case studies in Section 9.5. 

 

Suthers et al. (2011) contend that the greatest expression of the influence of the 

East Australian Current (EAC) Boundary Jet and its Eddy Field may be 

demonstrated by its relationship with the top end of the food web and from there 

to the fisheries that exist within and outside the EAC. The southward penetration 

of warm EAC waters provides the necessary thermal refuge for subtropical 

species such as yellowfin tuna, Thunnus albacares (Ward et al., 1996 cited in 

Suthers et al., 2011). Even when suitable habitat is abundant elsewhere flow fields 

have the potential to constrain a species' geographic range, as indicated by 

coupled population dispersal modeling undertaken by Gaylord and Gaines (2000). 

 

Fish habitats on the continental shelf are influenced by EAC eddy encroachment 

as well as by sporadic discharges of freshwater in River Plumes (Kingsford and 

Suthers 1996).  At lower trophic levels Moore et al. (2007) suggests that cold-core 

eddies represent an important offshore dispersal mechanism for phytoplankton has 

been confirmed by recent biomarker pigments studies (Hassler et al., 2011). 

 

Overseas studies have shown that variability of coastal topography is ecologically 

important at large and small scales. For example, Botsford et al. (2001) found that 

100-km spatial variability in the coastal topography of California influenced 

recruitment of crabs and sea urchins, while Roughan et al. (2005) reported 

retention of plankton associated with a small headland at the northern extremity of 

Bodega Bay in California, which represented a shoreward displacement of just 2-3 

km. Other studies demonstrating the ecological importance of CBL processes are 

discussed later in Section 9.3.3. 

 

Counter Currents have received little attention in eastern Australia although they 

are clearly important in relation to the dispersion of biological particles (such as 

larvae, propagules, pest species, etc.), sediments and pollutants many of which 

originate at the shoreline from coastal catchments and estuaries.  
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Coastal Boundary Layer (CBL) processes occurring on different spatial scales can 

explain the distributions of specific species or communities. For example, 

Coleman and Kelaher (2009) speculated that patterns of genetic differentiation 

seen for habitat-forming macroalgae (Phyllospora comosa) in NSW coastal 

waters were due to the combination of mesoscale EAC eddies and small scale 

coastal ‘barriers’. That is, EAC eddies may be responsible for substantial genetic 

connectivity among fragmented populations of Phyllospora spanning hundreds of 

kilometres (nonlinear dispersal in ‘leaps’) while coastal features such as sandy 

embayments may act as barriers to dispersal resulting in separation of genetically 

different populations at scales of tens of kilometres. Others confirm that sandy 

beaches can restrict macroalgae gene flow (Faugeron et al., 2001, Billot et al., 

2003). These examples, illustrate the interplay between Inner and Outer CBL 

processes. 

 

Clearly the physical processes operating in the Outer CBL establish the physical 

boundary conditions for Inner CBL phenomena as well as profoundly affecting 

biological distributions which may be impacted by pollutants discharged to the 

Inner CBL. 

 
 

9.3 Inner CBL 
 
9.3.1 Inner CBL Pollutant Dispersal Processes: Wake Effects 

 

Although Creswell et al. (1983) noted the presence of weak clockwise cells in 

the embayments of northern NSW (e.g. between Smoky Cape and Korogoro 

Pt, Hat Head and Crescent Head; Crescent Head and Pt Plomer) there has been 

no systematic evaluation of the potential for wake effects in NSW coastal 

waters. 

 

Turbulent flows, including eddies, are shed in the wakes of headlands, islands, 

shoals, man-made structures such as training walls, and in sudden expansions 

such as changes in the orientation of the coastline. The relative importance of 

inertial forces (advection of momentum) and frictional forces governs the 

nature of flow patterns in wakes of such obstacles (Tomczak, M., 1988; 

Wolanski, et al., 1984; Black and Gay, 1987; Signell and Geyer, 1991). If the 
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frictional force dominates the particles will be dragged along the obstacle but 

if the inertial force dominates, the flow accelerates perpendicular to its 

intended path and separates from the obstacle resulting in a range of turbulent 

flow patterns, as illustrated in idealised form in Figure 9.10. The ratio of 

inertial and frictional forces and associated flow patterns have been expressed 

by various indices such as the Reynolds Number, the Wake Parameter which 

incorporates shallow water frictional effects (Wolanski et al, 1984), and the 

Keuleugan-Carpenter number which also incorporates headland width (Signell 

and Geyer, 1991). Other indices express the ratio between inertial forces and 

rotational effects of the Earth’s rotation (Rossby number), the ratio between 

frictional and Coriolis terms (Ekman number), frictional damping effects 

(Frictional length scale) (Pattiaratchi et al., 1986; Signell and Geyer, 1991). 

The length and width of obstacles (headlands and islands) in the path of 

ambient flows together with water depth are common parameters in most of 

these indices.  

 

A simple index - the Wake Parameter - was selected to illustrate idealised 

turbulence patterns and the relative importance of obstacle (headland or 

island) dimensions and water depths.  

 

Wake Parameter,   P  =  U H2 
Kz L 

 

where,  U = shear velocity  

   H = water depth 

Kz =  vertical eddy diffusion coefficient 

   L = length of obstacle 

 

The Wake Parameter is the correct formulation for the Reynolds Number 

when the effects of lateral and bottom boundary frictional layer are taken in to 

account (Barton, 2009).  It has been shown to work well in the description of 

re-circulation in two dimensional steady flows (Wolanski et al., 1984; 

Pattiaratchi et al., 1986; Dennis and Middleton, 1994). A stable wake is 

expected when P~1, while bottom friction effects dominate when P<<1 and 

bottom frictional effects are negligible when P>>1. 
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The Wake Parameter was calculated for a range of headland/island lengths and 

water depths as shown in Figure 9.11 by assuming a steady current of 0.2 m/s 

and a ubiquitous constant vertical eddy diffusion coefficient (Kz) of 0.1 m2/s. 

An ambient current of 0.2 m/s is consistent with average current speeds 

observed at the Ocean Reference Station off Sydney (see Chapter 6) and 

within the range of currents observed off Coffs Harbour (see Chapter 8).  The 

vertical eddy diffusion coefficient (Kz) of 0.1 m2/s represents the turbulent 

transport of momentum in the vertical direction which is of great importance 

in shallow waters where frictional forces associated with the surface and 

bottom boundary layers can dominate the water column. The Wake Parameter 

is directly proportional to ambient current velocity and inversely proportional 

to vertical eddy diffusion coefficient so the pattern in Figure 9.11 can be 

readily scaled according to variations in these parameters.  

 

The vertical eddy diffusion coefficient (KZ) is poorly defined across NSW 

coastal waters with limited relevant observations, and known spatial and 

temporal variability. Sensitivity analysis shows the relationship between 

vertical eddy diffusion coefficient (KZ) and flow separation (Wake Parameter 

= 1) for various headland lengths and water depths (Figure 9.12).  

 

By applying the theoretical Wake Parameter across a range of waters depth 

and headland depths (Figure 9.11) it is clear that in general shallow water 

depths inhibit large scale turbulent circulations. That is, wakes with large scale 

wave disturbances (Figure 9.10 b) and vortex streets (Figure 9.10 c) are not 

expected to be common in shallow coastal waters.  

 

When applied to the Coffs Harbour case study in Chapter 8 (Corambirra Point 

L=860m, D=20m) the Wake Parameter equates to almost 1 (P= 0.93 based on 

assumptions outlined in Figure 9.11) and indicates a marginal propensity for 

eddy formation, which is consistent with observations (Chapter 8). 

 

However, the specific Wake Parameter (or Reynolds number) values 

corresponding to the transition through the various turbulent flow states 

outlined in Figure 9.10 vary with upstream flow velocities and vertical eddy 

diffusion coefficients (Kz).  For example, heterogeneous Kz fields may exist 
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due to patchy reefs which affects bottom stress, and temporal variations in 

wind regimes which affects surface wind stress.   

 

Indices such as the Wake Parameter were developed for simple morphologies 

and steady flows so real world factors associated with complex morphologies 

and unsteady flows must be expected to reduce the applicability of these 

indices. For instance, inertial forces would be expected to dominate over 

frictional forces around the sharp tip of a headland, promoting flow separation 

and re-circulation, consistent with mechanisms outlined by Signell and Geyer 

(1991). In contrast the greater surface area and the geometry of a round tipped 

headland would be expected to reduce the influence of inertial forces relative 

to frictional forces resulting in weaker wake effects. Likewise, submerged 

offshore extensions of headlands (reefs) may steer flows to promote or inhibit 

re-circulation depending on their configuration. In a similar way the temporal 

variability of flows, including current reversals, can profoundly affect re-

circulation through processes such as phase eddies, as discussed in Chapter 8 

and Pritchard et al. (2007).  

 

Some studies have suggested that the transition to unsteadiness in coastal 

waters occurs through non-modal growth excited by the stochastic variability 

in the incident flow (e.g. Aiken et al., 2003); that is, it may be determined by 

the non-normality of the system. For example, some prominent headlands 

rarely develop recirculation cells: Bass Point, south of Sydney protrudes 

almost 4km onto the continental shelf where strong longshore currents (0.2–

0.5 m s−1) often exist yet large-scale recirculation is rarely observed in the lee 

of the headland (Middleton et al, 1993). Instead a broad turbulent wake was 

observed by Denniss et al. (1995) which Aiken et al. (2002) attributed to three 

sources of stochastic forcing: variability in the wind stress; variability in the 

flow incident on the headland; and, variability generated in the flow by 

complex reef topography at the headland's tip and upstream. Laboratory flume 

experiments confirmed that topography upstream of a headland can lead to a 

wider shear layer, a headland wake that extends further downstream, and 

enhanced horizontal diffusion out of the wake relative to the case with 

unperturbed oncoming flow (O’Byrne, et al., 2007). This wider shear layer 
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means that the nonlinear terms are less effective at rolling up the flow to form 

a large-scale recirculation (Middleton et al., 1993). 

 

In summary, the Wake Parameter and other dimensionless flow indices 

provide a highly generalised relative measure of the propensity for various 

turbulent flow regimes: they signal key morphological parameters that are 

critical to a hydrodynamically relevant morphological classification.  

 

It is then possible for morphological classifications to spawn testable 

hypothesis because morphological parameters can be related through flow 

indices to broad classes of turbulent states.  The appropriate applications of 

the morphological classification and flow indices are for screening level 

assessments which serve to develop hypotheses, and in turn focus and 

structure more detailed investigations. 

 

The challenge for an index is to identify relevant morphological parameters to 

facilitate recognition of both likely (generalised) flow characteristics and 

possible exceptions, due to other factors such as wind regimes and proximity 

to islands in the flow path.  

 

 

Figure 9.10 Shallow water island wakes corresponding to increasing 
dominance of inertial forces (increasing Reynolds Numbers and/or Wake 
Parameter): (a) vortex pair forms with central return flow; (b) turbulent wake 
exhibits wave disturbances; (c) meanders develop instabilities and roll to form 
a von Karmon vortex street; (d) fully turbulent (three dimensional) wake.  
Modified from Wolanski (2007) and Tomczac (1998). 
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Figure 9.11 Wake Parameter (P) = UH2/KzL for depths (H) to 100m and 
obstacle lengths (L) to 8 km, where current (U) = 0.2m/s, and vertical eddy. 
diffusion coefficient (Kz) = 0.1 m2/s. Indicative turbulent flow regimes have 
been suggested by Wolanski (2007): 
P < 1, the flow does not separate and there is no eddy. 
P ≈ 1, an eddy or an eddy pair exists – similar to (a) in Figure 9.10 
P = 1–3, meanders develop – similar to (b) in Figure 9.10 
P = 3–15, meanders develop instabilities & roll – similar to (c) in Figure 9.10 
P > 20, the wake is fully turbulent downstream – similar to (d) in Figure 9.10 
NSW Triangular Headlands are also plotted based on data in Chapter 7. 
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Here unknown variables needed to calculate the Wake Parameter are held 

constant at ‘typical’ values (current velocity =  0.2 m/s; and,  vertical eddy 

diffusion coefficient = 0.1 m2/s as discussed in Chapter 7) in order to indicate 

the relative propensities for flow separation and re-circulation based on the 

ratio of headland length to depth (Figure 9.11). A curve corresponding to P=1 

on Figure 9.11 shows the theoretical threshold for flow separation and re-

circulation.  As outlined in Chapter 7, headlands protruding across steeply 

shelving inner shelf bathymetries are predisposed to wakes effects because the 

propensity for wakes as indicated by the Wake Parameter, is proportional to 

the square of the water depth and inversely proportional to the length of the 

headland.  
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Figure 9.12 Sensitivity analysis showing relationship between vertical eddy 
diffusion coefficient (KZ) and flow separation (Wake Parameter = 1) for various 
headland lengths and water depths (blue section expanded). 
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NSW Triangular Headland dimensions plotted in Figure 9.11 reveal that flow 

separation and wake effects are unlikely in water depths less than 15m and likely 

for headlands in water depths greater than ~35m. In this way, Figure 9.11 can 

operate as a screening level assessment tool to evaluate headland settings for their 

inherent propensity for wake effects. Generally, the worst case for pollutant 

trapping would be associated with discharges in to attached re-circulation cells 

which are indicated by Wake Parameter values of ~1.  

 

Two adjacent headlands form a Bay when their flow fields interact by affecting 

the flow incident on the other headland or by constraining respective wake effects.  

Previous studies of headlands (e.g. Chapter 7 and Figure 9.10) indicate wakes 
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typically extend at least a headland/island length downstream of the 

headland/island.  

 

In summary, the following simple process based understanding and practical 

assumptions are critical in assessing the propensity for re-circulation and particle 

trapping in the wake of a headland or island: 

 free stream flows (offshore) are typically driven by alongshore 

pressure gradients 

 low velocity flows follow isobaths around the headland (frictional 

forces dominate) 

 high velocity flows separate from the tip of the headland (inertial terms 

dominate) 

 separation results in a flow downstream of the headland, which 

decelerates, spreads and re-attaches with the coastline at some distance 

downstream 

 eddies occur in a wake region delimited by the offshore protrusion of 

the headland and the downstream flow which re-attaches with the coast 

 Recirculation can occur in the wake due to a number of contributing 

factors. 

 the Bernoulli effect can produce a depression of sea level near 

the tip of the headland, and high vorticities generated by 

friction in a narrow boundary layer at the tip of the headland 

are injected into the interior of the flow at the point of 

separation as the source of the eddies vorticity (Signell and 

Geyer, 1991). 

 differences in the dynamic response to reversing pressure 

gradients may cause ‘phase eddies’ to spin up (Black and Gay, 

1987). That is, a phase eddy evolves when flow reversals occur 

earlier in the wake of the headland than in the free stream 

where currents are still continuing to decelerate. In this way the 

formation of phase eddies is governed by the inertia of the 

wake relative to the free stream flow. 

 Recirculation is favoured by: 

 Wake Parameter values close to, or in excess of unity. That is, 

when inertial forces manifest (currents) begin to dominate over 
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 very high Wake Parameter values (e.g. due to very high 

velocities) can cause unstable turbulent flows which disrupt re-

circulation cells 

 sharp tipped headlands which promote flow separation and 

spawn vorticity within the wake (Signell and Geyer, 1991) 

 Likewise recirculation can be inhibited by a number factors such as: 

 high levels of stochastically forced turbulence near the tip of a 

headland may prevent the formation of a single narrow 

headland jet, instead resulting in a wider turbulent shear layer 

which may be much less conducive to large-scale recirculation 

(Aiken et al., 2002). This, and other mixing processes, may be 

expressed by an eddy viscosity parameter which, when high, 

inhibits the formation of re-circulation / retention cells. 

 

No indices are apparent in the literature for general morphological 

characterisation of particle retention (or ‘flushing time’) for Island/Headland 

Wake zones or for Open Sweep, Open Square and Open Triangular bays.  

 

If a coastal configuration predisposes areas to the formation of a Wake Zone then 

a worse case re-entrainment scenario is assumed for screening level assessments 

using an Eddy Retention Value (ERV) which is proposed as the ratio of volume of 

effluent discharged during the lifetime of a re-circulating lee eddy to the volume 

of water within the eddy.  

 

ERV = .      EF T      . 

      RL
2 HA 

 

where   RL = eddy dimension (m) 

 T    = duration of eddy persistence (s) 

 HA  = average water depth in Wake Zone 
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RL and T are preferably determined by observations and/or through model 

simulations but RL may also be estimated as follows: 

 

Wolanski et al. (1984) proposed eddy length scale (RL). 

 

RL =        UHA 1/2    

              3/4KZ
1/4 

 

where KZ = vertical eddy viscosity (m2/s). 

 

Pattiaratchi et al. (1986) noted that as the currents in the re-circulating region of 

the obstacle are of the same magnitude as the current approaching the obstacle the 

angular velocity of the eddy () is ~ U/RL Therefore, Wolanski et al.’s (1984) 

eddy length scale (RL) becomes 

 

RL  =    UHA
2 / KZ 

            

Not surprisingly this is equivalent to the Wake Parameter (P) multiplied by the 

length of the headland (L). 

 

So the Eddy Retention Value (ERV) is given by  

 

ERV  =   EF T  KZ
2.  

     U2HA
5 

 

 

Other Inner CBL effects such as those associated with the Wave Zone typically 

exhibit extreme small scale spatial and temporal variability and are best dealt with 

by example (see Sections 9.3.2 and 9.5).  

 

Most Inner CBL phenomena cannot be considered in isolation of Outer CBL 

processes because Outer CBL processes set the outer boundary condition for the 

Inner CBL and pre-condition for Inner CBL phenomena.  For example, at a large-

scale bottom boundary stress associated with Outer CBL Boundary Jet/EAC flow, 
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shelf irregularities and regional Winds promotes cross-shelf currents which are 

constrained by the coastline, resulting in upwelling. These episodic upwelled 

nutrients can stimulate primary production. In some instances, decay of the 

resulting plankton and macroalgae plus organic material from coastal catchments 

(River Plumes) produce surfactants. Waves shoaling in the Inner CBL together 

with local Winds create sufficient small-scale turbulence for bubbles to form and 

coalesce, which in the presence of surfactants can form ‘seafoam’. The coast can 

further act to constrain seafoam so it accumulates at the shoreline, as depicted by 

the graphic image of Yamba during August 2007, in the Preface of this thesis. 

 

9.3.2 Impacts and Ecological Consequences of Inner CBL Processes  
 

A range of Inner CBL processes shape biotic pathways as well as pollutant 

pathways, thus affecting a range of environmental values. Here Inner CBL 

processes are examined in relation to their roles in shaping both biological 

distributions and pollutant dispersion. 

 

Island and Headland Wakes shape distributions of biota, often leading to high 

conservation value areas which can warrant special protection against impacts.  

 

The influences and impacts of Island and Headland Wakes on biological 

communities and individual species are well reported in the scientific literature. 

As discussed in Chapter 8, regions of enhanced relative vorticity, like headland 

wakes, may aggregate prey and represent important foraging habitat for predators 

like cetaceans (Johnston, et al.,2005). Wake induced upwelling and plankton 

retention can result in high productivity (e.g. Roughan et al. 2005). Even in the 

absence of a well-defined eddy biological distributions can be affected by 

headland wakes; for example, Rankin et al. (1994) found that juvenile Gem clams 

were deposited just inside the wake perimeter, where shear velocities decreased to 

levels below critical erosion velocities of the clams. Re-circulation can also shape 

the benthic environment of infauna and epibiota by driving sand circulation such 

as that observed between sandbanks and headlands by Berthot and Pattiaratchi 

(2006). 
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The clockwise rotating cells observed in the embayments of northern NSW 

(Pritchard et al. 2007; Creswell, 1983) could have significant importance for 

genetic structuring of benthic invertebrates and other marine organisms (Banks et 

al. 2007). Investigations of source and sink regions do not necessarily identify the 

pathway that larvae take between spawning and settlement. The form and viability 

of both biological particles and pollutants vary with time along pathways from 

source to sink, for example: larvae caught in a rotating eddy may be more prone to 

predation, become starved of food, or subject to adverse environmental conditions 

for long periods of time; populations contained within re-circulation cells may 

experience extended periods of exposure to ‘trapped’ contaminants; and, over 

time bioavailable forms of nutrients may be transformed to less available (eg 

oxidization of inorganic) forms or inaccessible (eg conversion to organic) forms 

due to biogeochemical processes associated with algal successions, bacterial loops 

and trophic interactions. 

 

Various studies have shown or speculated that sandy embayments can restrict 

macroalgae gene flow by acting as barriers to dispersal (Faugeron et al., 2001, 

Billot et al., 2003; Coleman and Kelaher; 2009). Other studies have revealed 

similar findings for species at higher trophic levels. Archambault et al. (1998) 

found higher abundance of zooplankton inside embayments compared to straight 

sections of the Canadian coast and confirmed retention and local production of 

larvae inside embayments. Diehl et al. (2007) observed recruitment of the sand 

crab Emerita analoga at sites distributed along > 800 km of the California 

coastline and suggested that the California coast may be composed of separate 

retentive cells of populations separated by headlands. Nicastro et al. (2008) 

showed that coastal configuration strongly affects selection, larval dispersal and 

haplotype diversity of mussel population in South Africa with differences in 

genetic structure on scales of 10s of kilometres. Their gene flow analysis based on 

mussel populations inside bays and on the open coast in South Africa showed that 

bays act as discrete sources. 

 

Jessopp et al. (2007) found that flushing time due to the effect of coastline 

configuration (embayments) was a useful predictor for species richness and 

turnover of benthic marine invertebrate larvae along the Irish coast, particularly 

when combined with topographic variables, chlorophyll, tidal range and salinity. 
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Headland Wakes can interact with Effluent Plumes to retard dispersion of 

pollutants and increase the risk of environmental impacts. 

 

Wakes effects, such as re-entrainment of effluent and pollutant trapping, were 

likely to be a contributing factor leading to observed impacts at Boulder Bay in 

central NSW. Within 3 months of the commissioning of the outfall, significant 

reductions in the cover of crustose and foliose algae, and several species of 

sponge were apparent at the outfall location when compared to control locations 

(Roberts et al., 1998). The overall composition of the community at the outfall 

changed from one in which algae and sponges were well represented to an 

assemblage dominated by silt and ascidians. After commissioning of the outfall, 

the cover of a nondescript matrix comprising silt and microorganisms doubled its 

representation to almost 60%. A before/after/control/impact (BACI) investigation 

of the impacts of the newly commissioned Boulder Bay outfall on fish found 

declines in species richness and in the abundances of eastern hulafish (Trachinops 

taeniatus), yellowtail (Trachurus novaezelandiae) and the urchin 

(Centrostephanus rodgersii) at the outfall location together with increases in the 

abundances of some cryptic fish species (Smith et al., 1999).  

 

The anticlockwise residual circulation in the wake to the south of Corambirra 

Point (Pritchard et al., 2007) may explain some of the unusually extensive 

impacts observed along the entire length of the point when sewage was discharged 

at the base of the headland. Prior to the commissioning of a deepwater outfall at 

Coffs Harbour, treated sewage effluent was discharged at the shoreline at the 

landward (south-western) end of Corambirra Point. Smith (1996) and Smith and 

Simpson (1993) found that effluent discharged through this shoreline outfall had 

an impact on the benthic communities on Corambirra Point: the cover of Ulva 

lactuca was increased for the full length of Corambirra Point (approximately 

600m) and within 400m of the outfall there was a reduction in intertidal algal 

species richness and a change in the pattern of dominance in the animal 

community inhabiting kelp holdfasts.  
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Headland Wakes can interact with River Plumes to shape patterns of exposure to 

pollutants derived from coastal catchments and the fate of sediments exported 

from rivers and estuaries. 

 

There are few reported studies of the interactions between headland wakes and 

River Plumes although small rivers commonly discharge into coastal settings with 

topographic complexities such as headlands and islands. A notable exception was 

the recent study by Warrick and Stevens (2011) in the Strait of Juan de Fuca on 

the American/Canadian west coast, which found that tidally induced transient 

eddies in the lee of a headland were responsible for the Elwha River Plume being 

directed eastward, and shoreline attached, twice as frequently as it was directed 

westward. Clearly, headland induced flow separation and transient eddies can 

strongly influence the sediment dispersal pathways and behaviour of buoyant 

plumes emanating from coastal catchments. 

 

River Plumes strongly influence fish larvae and may play a significant role in the 

recruitment of local fishes (Grimes and Kingsford, 1996). Physical dynamics 

support high productivity, act to accumulate biomass in frontal waters, and 

transport organisms across the shelf and along the front. Temperate estuaries that 

feed the east Australian coastal zone have the most variable seasonal freshwater 

inputs in the world (Gillanders and Kingsford 2002), which has a strong effect on 

estuarine and coastal fisheries (Gillson et al. 2009).  

 

Although a focus of this section has been on wake effects it is clear from the case 

studies presented above that a broad range of CBL processes determine the fate 

and potential impacts of pollutants, including those associated with the Wave 

Zone, Tides and River Plumes. 

 

River Plumes emanating from NSW coastal catchments were discussed in 

Chapter 5, especially in relation to studies of a high rainfall event in 1998 when 

Lee and Pritchard (1999) mapped turbid plumes from five coastal catchments in 

south east Australia, extending over a total area of over 3000 km2 . 

 

Wave Zone processes can directly impact recreational amenity and beach user 

health risks. For example, Riddle (1994) and Large et al. (1994) found effluent, 
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from Cronulla Sewage Treatment Plant (STP), discharged at Potter Point was 

drawn in to the northern end of Bate Bay by wind and waves breaking over 

Merries Reef (see Section 9.5.4 below). This anticlockwise circulation left the 

northern most beach of Boat Harbour contaminated by sewage under high wave 

conditions with a strong gradient of improving beach water quality running 

southward from Boat Harbour (Riddle, 1994).   

 

Wave Zone effects also have the ability to re-suspend sediments together with any 

contaminants that may be sorbed to sediment particles. For example, major turbid 

plumes developed in the absence of any significant coastal catchments outflows, 

during a period of high wave activity in April 2006 in the Illawarra region south 

of Sydney (Figure 9.13). Erosion and sediment re-suspension by large long period 

swells, and the subsequent persistence of sediment plumes, indicated limited cross 

shelf movement of sediments which appear to be constrained within a shore 

attached coastal boundary layer.  Sediment plumes were equally persistent in a 

shoreline attached coastal boundary layer when River Plumes emerged from these 

small,‘flashy’, coastal catchments abutting the Illawarra escarpment following 

extreme local rainfall in August 1998; these plumes merged and remained 

attached to the shoreline for several days to weeks (Figure 9.13).  

 

Interestingly, sediment transport studies in California by Curran et al (2002) found 

that suspended sediment concentrations were set in the surf zone rather than at the 

river mouth (Eel River) where similarly small rivers discharged sediment laden 

run-off to coastal water. They suggested that the surf zone may play a significant 

role in the cross-shore re-supply of sediments to the river plume, highlighting the 

need for accurate measurements of sediment concentration, currents, waves, and 

boundary shear stress in energetic near-shore environments. 

 

CBL Fronts and Convergence (Accumulation) Zones (see Section 4.2.4) may 

explain the "recruitment problem" of marine population dynamics (Roughgarden 

et al., 1991); that is, why larvae arrive at an adult population in large discrete 

pulses rather than in a continuous trickle. Roughgarden et al. (1991) hypothesised 

that barnacle larvae from central California accumulate along an offshore front, 

separating the California Current from upwelled water adjacent to the coast, with 

the front eventually colliding with the coast to deposit clumps of larvae.  
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Figure 9.13 Stable turbid waters trapped in a coastal boundary layer attached to the Illawarra shoreline, New SouthWales. 
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9.4 Case Studies 
 

The importance of a process based understanding of Inner CBL dynamics on the 

fate of pollutants is further illustrated by the following examples: 

o Sydney:  Outer CBL    (see also Chapter 6 and Pritchard et al., 1997) 

o Coffs Harbour: Inner CBL Headland Wake (see also Chapter 8) 

o Boulder Bay: Inner CBL Headland Wake with re-circulation cells and 

embayment quiescence limiting dispersion of effluent released from an 

outfall just inside the shear zone at the outer limit of the bay.   

o Bate Bay: Inner CBL Headland Wake (HW) and Wave Zone (WZ) with 

episodic wave induced circulation plus flow separation, shear & quiescent 

zones affecting pollutants released at the northern extremity of Bate Bay.  

 

9.4.1 Sydney 
 

The Sydney Case Study is located in the Outer CBL where NSW’s greatest loads 

of sewage derived pollutants are discharged via three deepwater outfalls shown in 

Figure 9.14 (Pritchard et al., 2001). 

 

 

 

Figure 9.14 Sydney’s deepwater outfalls 

 358



 

The specific findings from the Sydney Case Study have been reported in two 

published papers (Pritchard et al., 2001 and 2005) which appear in Chapter 6; 

these findings are not repeated in detail here. Sewage effluent is discharged from 

three deepwater outfalls after high rate primary treatment at a combined rate of 

over 12m3/s. The locations of Sydney’s deepwater sewage outfalls are shown in 

Figure 9.14. Prior to the commissioning of these deepwater outfall 1990/91, 

effluent from sewage treatment plants at North Head, Bondi and Malabar was 

discharged to the Inner CBL from cliff face outfall resulting in spectacular water 

quality impacts (Figure 9.15). The findings of a $24M, multi-disciplinary 

Environmental Monitoring Program which assessed the performance of Sydney’s 

deepwater outfalls during the first two years of their operation are published in 

Pritchard (1997) which is provided in Appendix 3. 

 

A 

 

B 

 

 

Figure 9.15 Former shoreline outfall plumes such as at North Head (A) prompted 
health warnings at local beaches such as at Malabar (B).  
 

 

Not surprisingly, Headland Wake effects do not interact with Sydney’s deepwater 

Effluent Plumes because the three major deepwater outfall systems are located 

well beyond the effects of the Inner CBL. Indeed the Effluent Plumes generally 

follow free stream flow and achieve high initial dilutions as demonstrated by EMP 

models (Wilson et al., 1995) and direct observations shown in Figure 9.16 

(Pritchard et al., 1993).  

 

Current reversals have been observed in the current record (see Figure 5 in 

Pritchard et al., 2005 in Chapter 6) which presents an opportunity for re-

entrainment of effluent as plumes ‘blow-back’ over the diffuser systems with 
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some reduction in the potential dilution of effluent.  However, high initial mixing 

(due to deep water), rapid advection away from the outfall (see Figure 9.16),  and 

the rotation of currents during reversals reduce the effect of re-entrainment, as was 

evident when current reversals were observed during tracer studies (see Table 2.1 

in Chapter 2 based on Pritchard et al., 1993). The long term effect of ‘blow-

back’ was assumed negligible for the purpose of the analysis below. 

 

 

 
Figure 9.16  Malabar plume behaviour illustrating effects of dilution and die-off 
for thermo tolerant faecal coliform indicator bacteria from Pritchard et al. (1993) 
 

 

Average (median) initial dilutions based on validated near-field models (from 

Pritchard et al., 1997) achieved by Sydney’s three deepwater outfalls 

are provided in Table 9.1.  Compared to the former shoreline outfalls which they 

replaced, the deepwater outfalls provided more than a ten fold increase in initial 

dilutions and avoided boundary contact (shoreline and sea floor).  Figure 9.17 

illustrates that the deepwater outfalls (Bondi in this case) are optimally located to 

maximise buoyancy driven mixing by exploiting the steep inner shelf gradient.  
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Table 9.1 Sydney’s deepwater ocean outfalls 

Deepwater Outfall / STP  

North 

Head 

Bondi Malabar

Average Effluent Flow (m3/s) 4.46 1.91 5.67 

Diffuser Length (m) 765 510 720 

Water Depth (m) 60 60 80 

Average Upper Current (m/s)  0.22 0.22 0.22 

Average Lower Current (m/s)  0.14 0.14 0.14 

Median Modelled Dilutions TRAPPED PLUME 349 414 513 

Median Modelled Dilutions SURFACE PLUME 817 1193 636 

Based on information provided by Pritchard et al., (1997): median initial dilutions were based on 
hourly near-field model results (JETLAG) using measured hourly effluent flow rates and ambient 
currents and vertical temperature stratification observed at the Ocean Reference Station for the 
period from March 1991 to March 1994. Average current speeds are based on ORS data for the 
same period. The innermost diffusers at North Head and Malabar are both 2900m from shore. 
 

 

 

 

 

 

 

 

 

 

 

Figure 9.17 Cross-shelf bathymetry profile along a transect passing through Bondi 
deepwater outfall (shown as blue box). 
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Observed and potential impacts of Sydney’s three deepwater outfalls, which  

together contribute nearly 75% of the nutrient loading to coastal waters from 

NSW coastal sewage treatment plants, have been described in detail by Pritchard 

(1997) and Pritchard et al. (1993, 1996, 1997, 1999, 2001, 2003) and others. For 
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these deepwater outfalls, a consideration of effluent pollutant loads and 

concentrations alone would suggest a considerable potential for adverse effects, 

including algal blooms. However, physical processes facilitate rapid dispersion of 

sewage pollutants which alleviates many potential impacts. Ongoing monitoring 

including a major, long-term, ocean sediment and benthos  monitoring program 

designed by Krogh, Pritchard & Rendell (1998), has been unable to detect major 

environmental impacts associated with these discharges to the Outer CBL off 

Sydney (SWC 2010). 

 

Given the magnitude of these discharges, ongoing vigilance and possibly further 

investigations are warranted with a focus on emerging pollutants and more subtle, 

second order ecosystem effects such as possible changes to trophic dynamics and 

species composition. Such investigations can be targeted and informed by studies 

such as those described in Chapter 6 which concluded that the greatest risk of 

nutrient driven outfall impacts would be in surface waters during late summer 

when the contributions from outfalls are large with respect to ambient nutrient 

concentrations, and especially when ambient concentrations are low relative to 

saturation levels for phytoplankton growth. 

 

 

9.4.2 Coffs Harbour 
 

The Coffs Harbour Case Study is located in the Inner CBL where a new ocean 

outfall was required to implement a regional effluent management strategy 

(CHEIS, 2000) which recognised unacceptable impacts of former shore line 

outfalls (Figure 9.18). 

 

The specific findings from the Coffs Harbour Case Study have been reported in 

two published papers (Pritchard et al., 2001 and 2007) which appear in Chapter 

6; these findings are not repeated in detail here.  

 

Key characteristics of the Coffs Harbour discharge and its morphological setting 

are provided in Table 9.2. 
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Figure 9.18 Study location showing local bathymetry, ADCP deployments (A-D) 
and transects (dotted lines).  From Pritchard et al. (2007) 
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The Wake Parameter indicates borderline conditions for wake formation which is 

consistent with observations of only transient re-circulation cell formation.  

 

The calculated and observed eddy length scales are remarkably similar (800m vs 

1000m respectively). Expansion south of Corambirra Point due to the clockwise 

rotation of the coastline may contribute to the slight underestimation of eddy size 

by the Eddy Length Scale Parameter (RL).  

 

 363



A cross-shelf bathymetry profile and shore parallel residual currents along the 

prescribed alignment of the new outfall are shown in Figure 9.19. For the residual 

current scenario, the wake is clearly shown with significant horizontal shear 

across the interval from 1.5 to 2km offshore.  The propensity for a lee eddy offers 

only limited potential for pollutant trapping (ERV = 0.02%). 

 

 

Table 9.2 Coffs Harbour Case Study Morphological and Discharge Characteristics 
 
Observed and Assumed Characteristics 

CBL Type:  Inner CBL Headland Wake 

Bay Type:  Open Sweep (Boambee Beach) 

Headland Type: Triangular (complex) : broad scale Coastal Step (SstepW) 

Key Features:  Complex headland bathymetry (Harbour and Korffs Islet) 

Headland Length (Corambirra Point)  L  =  860m 

Water Depth (Wake Parameter calculation)    H  =  20m  

Assumed vertical eddy diffusion coefficient Kz   =  0.1 m2/s 

Assumed current velocity                                       = 0.2 m/s 

Observed/simulated  eddy length scale     Obs RL =  ~1000m (radius) 

Outfall (as constructed) 

Diffuser Length   D = 185m 

Outfall length (from shore)        = 1500m 

Effluent Flow Rate     EF = 0.24 m3/s 

 

Calculated Parameters  

Wake Parameter   P    = 0.93 

Eddy length scale   RL  = 800m 

Eddy Retention Value             ERV = 0.02% 
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Figure 9.19 Cross-shelf bathymetry (A) and residual current (B) profiles along the 
prescribed alignment of the outfall (T1-T2). Outfall located at 21m water depth 
shown as box on T1-T2. Derived from data presented in Figures 1 and 8 in 
Pritchard et al. (2007). 
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A short sequence of current and wind reversals is shown in Figure 9.20, which 

illustrates a phase difference in the response of offshore currents compared to free 

stream flows. Visualisation of the complete time series is available via the tool 

provided in Appendix 4. Clearly, in some cases the more rapid response of near 

shore waters to changes in local drivers promotes shear and occasionally re-

circulation in the lee of Corambirra Point. 
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Figure 9.20 Time series wind and surface current data observed during the Coffs 
Harbour Case Study – images from OFS data visualisation tool in Appendix 4.  

18/9/00: SOUTHWARD FLOWS THROUGHOUT
(Local Wind Dominant)

19/9/00: RE-CIRCULATION
(Stream Flow Effects – Low Winds)

20/9/00: CROSS SHELF SHEAR and RE-CIRCULATION
(Local Wind Reversal – Cross Shelf Phase Lag in Current Response)

21/9/00: SOUTHWARD NEARSHORE FLOWS 
(Local Wind and Near-shore Current Reversals)

8/9/00: RE-CIRCULATION
(Stream Flow Effects – Low Winds)

11/9/00: SOUTHWARD FLOWS THROUGHOUT
(Local Wind Dominant)

12/9/00: CROSS-SHELF SHEAR and RE-CIRCULATION
(Local Wind Reversal – Cross-Shelf Phase Lag in Current Response)

17/9/00: SOUTHWARD FLOWS THROUGHOUT
(Local Wind and Near-shore Current Reversals)
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9.4.3 Boulder Bay  
 
Boulder Bay is located within the Inner CBL in the Port Stephens Great Lakes 

Marine Park, 150 km north of Sydney. The complex bathymetry of Boulder Bay 

is bounded by obstacles, the largest of which is Snapper Island which extends up 

to 200m offshore (Figure 9.21). Snapper Island was not picked up as a significant 

‘headland’ in the morphological classification in Chapter 7, due to its relatively 

small scale and complex morphological setting.   

                                        A 

 

           B 

 

Figure 9.21 A: Bay dimensions and outfall location (GoogleEarth image).  
B: Location of Boulder Bay outfall and regional bathymetry (CEE, 2010). 
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The Boulder Bay Waste Water Treatment Works accepts waste water from Port 

Stephens and nearby towns. In November 1993, an offshore outfall was 

commissioned with three rose head diffusers with eight ports each located in 16 to 

20 m water depth, just east of Snapper Island. The outfall diffuser is on the upper 
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section of a steep undersea escarpment which extends between the 15 and 27 m 

depth contours (Figure 9.22).  

 

At a regional scale divergence of southward EAC flows associated with the 

change in the orientation of the coastline and continental shelf south of Port 

Stephens (SstepW in Figure 9.4B) promotes a northward flowing Counter Current 

past Boulder Bay (Laurie, Montgomery and Pettit, 1977a,b; Figure 9 in Pritchard 

and Koop 2005 in Chapter 5), while at a local scale wind stress can dominate local 

circulation (AWACS, 1991). 

 

Key characteristics of the Boulder Bay discharge and its morphological setting are 

provided in Table 9.3. Current effluent discharge rates are 0.1 – 0.15 m3/s with a 

summer peak (CEE, 2010). 

 
Table 9.3 Boulder Bay Morphological and Discharge Characteristics 
Observed and Assumed Characteristics 

CBL Type:  Inner CBL Headland Wake 

Bay Type:  Complex Open Rectangular 

Headland Type: Rugged Triangular 

Key Features:  Complex bathymetry within and outside the bay 

Headland Length (Snapper Island)       L  =  200m 

Water Depth (Wake Parameter calculation)         H  =  17m  

Typical Current Velocity (observed median)         U  =  0.09 m/s  

Assumed vertical eddy diffusion coefficient       Kz  =  0.1 m2/s 

Assumed duration of re-circulation (weatherband) T =  6.048 x 105s 

Observed eddy radius (n=13)                         Obs RL =  ~75m (median) 

Outfall (as constructed) 

Diffuser system length (3 diffusers)       D = 99m 

Outfall distance offshore           = 500m 

Effluent Flow Rate (summer peak)      EF = 0.15m3/s 

Calculated Parameters  

Wake Parameter   P    = 1.3 

Eddy length scale   RL  = 260m 

Eddy Retention Value              ERV = 0.51 
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The bathymetry of the coastline either side of Boulder Bay, from Telegraph Point 

to Point Stephens is complex (Figure 9.22), with a series of rocky headlands and 

small rocky coves. There are also a series of small rocky islands and submerged 

reefs scattered across steeply sloping seabed, with the 20 m depth contour 

between 300 and 500 m offshore in the proximity of Boulder Bay. Offshore from 

the 20m isobath the seabed is less steep, with 50 m depth contour more than 2 km  

offshore. 

 

The Wake Parameter, based on the configuration of the shoreline, indicates a 

propensity for wake effects (1.3). This belies simple interpretation due to the 

complex bathymetry, especially the broad, offshore, gully ending in a steep 

escarpment immediately south east of Snapper Island (Figure 9.22).  

 

Near field dilution modeling generally fails to take in to account the re-

entrainment of effluent which may have been trapped or re-circulated in vicinity 

of the discharge point and thus can overestimate the degree of pollutant dilution 

(underestimates pollutant concentrations in receiving waters). 

 

A series of oceanographic investigations were undertaken during the 1980’s to 

assist with the design and placement of the offshore outfall at Boulder Bay, as 

illustrated in Figure 9.23 (CEE, 1987; AWACS,1991). Current meters and drogue 

deployments revealed two zones: within Boulder Bay (inshore from Snapper 

Island) where trapped anticlockwise eddies of variable size often developed and 

were observed for up to several hours. Eddies were at times small and generally 

confined to the northern and western parts of the bay but some extend across most 

of the bay influenced by stronger, predominantly shore-parallel offshore currents. 

Median currents within the bay were ~0.06 m/s, while currents near Snapper 

Island averaged 0.08 m/s and currents outside the bay in 27 m depth averaged 

0.09 m/s.  
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Figure 9.22 Detailed local bathymetry of Boulder Bay outfall (CEE, 2010). 
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Figure 9.23 Examples of drogue paths in Boulder Bay modified from MHL 
(1991). 
 

 

Current shear and anticlockwise rotation of offshore currents was frequently 

observed (eg 13/5/87). Interestingly the rotation of the recirculation cell is 

invariably anticlockwise, often in small intense cells to the north east of Snapper 

Island (eg 4/5/87 and 11/11/85).  These anticlockwise rotating cells persist even 

under the influence of complex, reversing offshore flows (eg 4/5/87), presumably 

due to channeling of flows across the complex bathymetry of the Bay. 

Unfortunately, current meter deployments did not coincide with drogue 

experiments and detailed high resolution hydrodynamic modeling is unavailable 

to explore interactions with bay morphology. 
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Soon after commissioning of the outfall in 1993 impacts were detected due to 

discharge of secondary treated sewage effluent from the outfall shown in Figure 

9.22 including: 

o increased the abundance of both adult and juvenile kelp plants 

immediately after the commissioning of the extended outfall (Ajani et al., 

1999); 

o decreased the abundance of the eastern hulafish (Trachinops taeniatus), 

yellowtail (Trachurus novaezelandiae) and the urchin (Centrostephanus 

rodgersii), decreased the abundance and species richness of fish at the 

outfall compared to fish assemblages at the control locations, and 

increased the abundance of some cryptic (small, cave dwelling or 

camouflaged) fish species over time at the outfall (Smith et al., 1999); and,  

o significantly reduced the cover of crustose and foliose algae at the outfall 

location compared to control (Port Stephens and Tomaree Head) locations 

within 3 months of the commissioning of the outfall; decreased the cover 

of several species of sponge, including Cymbastela concentrica, 

Geodinella sp. and Spongia sp., however, declines in the cover and 

number of species of sponges or total fauna did not change significantly;  

increased the cover of a nondescript matrix comprising silt and 

microorganisms doubled its representation to almost 60%; and, changed 

the overall composition of the community at the outfall from one in which 

algae and sponges were well represented to an assemblage dominated by 

silt and ascidians (Roberts et al., 1998).  

Subsequent impact assessment studies by Roberts and Murray (2006) found no 

detectable impact on sessile biota although silt was a major component of cover 

on all reefs. 

 

Identification and delineation of the turbulent retention zone within Boulder Bay 

at an early stage in the wastewater system planning and decision making process 

would allow optimisation of the outfall location.  In this case a relatively short 

extension of the outfall beyond the extremities of the Bay would have resulted in a 

considerable reduction of the ERV with a corresponding improvement in the 

performance of the outfall system.  This in turn would alleviate some of the 

concerns about potential impacts in the vicinity of the outfall, especially as 

effluent flows increase with population growth in the sewerage catchment.    
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9.4.4 Bate Bay  
 

Bate Bay in southern Sydney is an Open Sweep bay type with a sewage outfall at 

its northern extremity at Potter Point and a major reef called Merries Reef running 

2km southwestward between the outfall and popular sandy beaches inside the Bay 

(Figure 9.24), with potential for Wave Zone, Wake Zone (flow separation) and Bay 

effects. 

 

A. 

 

 

 

 

 

 

 

 

B. 

 

 

Figure 9.24 Bate Bay  
A: Dimensions and outfall location (GoogleEarth image); B: Local bathymetry 
(from Ingleton and Large, 2002). 
 

 

The seabed in the vicinity of Potter Point is characterised by a series of sandstone 

shelves stepping down to a depth of 30m approximately 500m offshore. Effluent 

from Cronulla Sewage Treatment Plant is discharged into 6m of water from a 

shoreline outfall located at Potter Point outfall on the southern side of the Kurnell 

Peninsula (Ingleton and Large, 2002).  

 

In the early nineties, just after the bulk of Sydney’s sewage effluent was 

transferred from offshore via deepwater outfalls (Pritchard 1997), the beach at 

the northern end of Bate Bay (Boat Harbour) was the beach most frequently 

affected by sewage contamination in Sydney with a very strong gradient of 

improving water quality in Bate Bay from north to south (Riddle, 1994).  In the 

1990’s Sydney Water Corporation (then Sydney Water Board) committed to a 

comprehensive assessment program to determine the sources and causes of 

occasional pollution incidents in the Cronulla Region (Riddle, 1994). 
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Key characteristics of the Bate Bay discharge and its morphological setting are 

provided in Table 9.4. 

 
Table 9.4 Bate Bay Morphological and Discharge Characteristics 
 
Observed and Assumed Characteristics 

CBL Type:  Inner CBL Wave Zone and Wake (flow separation)  

Bay Type:  Open Sweep 

Headland Type: Coastal Step (Potter Point = NstepE) 

Key Features:  Wave effects/complex internal bathymetry/riverine inputs 

         Headland Length (Potter Point)                    L  =  3600m (NstepE) 

Water Depth (for Wake Parameter calculation)       H  =  20m  

Indicative Current Velocity           U  =  0.2 m/s  

Outfall (as constructed) 

Diffuser system length       D =  point source 

Outfall distance offshore              shoreline 

Effluent Flow Rate            EF = 0.63 m3/s 

 

Calculated Parameters  

Wake Parameter                                P  =  0.2 

 

Potter Point does not present a significant obstacle to southward flows although 

flow separation is favoured at Potter Point by the sudden expansion associated 

with the Coastal Step in to Bate Bay, albeit complicated by the presence of 

Merries Reef. Indeed the presence of this reef system signals a need to consider 

Wave Zone effects. 

 

Extensive studies (Riddle, 1994; Large et al., 1994) found that cross-shelf flows 

were limited near Bate Bay except under high wave conditions when an 

anticlockwise circulation was driven by winds and waves breaking across Merries 

Reef.  Under such conditions effluent from a sewage outfall at Potter Point was 

drawn over Merries Reef and into Bate Bay, impacting recreational water quality. 

In contrast, under calm wave conditions Merries Reef appeared to act as a barrier 

so water to the west of the reef had a greater residence time than throughout the 

rest of the Bay.  
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Currents at the entrance of Bate Bay were predominantly southward and flowed 

parallel to isobaths, consistent with observations off Coffs Harbour and Sydney 

(presented in Chapters 6 and 8).  On occasions Large et al.  (1994) found evidence 

of northward Counter Currents off the Royal National Park to the south of Bate 

Bay (weak) and along the Kurnell Peninsula (stronger), possibly associated with 

divergence of regional southward flows as the orientation of the shelf rotates 

clockwise in the proximity of Bate Bay.  A significant near shore shear zone was 

observed with typically low and variable current velocities inside the Bay and 

energetic synoptic weather band (2-30 days) currents offshore. Salinity 

observations indicated higher residence times within the Bay. 

 

Interestingly the Bate Bay study (Riddle, 1994) found no evidence of pollutants 

entering Bate Bay from sources outside the Bay, although discharges of sewage 

effluent from Malabar deepwater outfall were detected offshore (east) of Bate 

Bay. Other pollutant discharge points outside but in close proximity to Bate Bay 

included industrial outfalls with localized impacts detected at Tabbigai and Yena 

gap on the Kurnell Peninsula to the north of Bate Bay.  

 

High resolution Daedalus  airborne scanner imagery shows the flow separation to 

the northeast of Potter Point with a front constraining the then primary treated 

sewage plume discharged at Potter Point (Figure 9.25). This flow separation is the 

likely explanation for the isolation of Bate Bay from other external pollutant 

sources (Riddle, 1994) although it serves to constrain effluent discharged from 

Potter Point outfall, placing it at the head of any wave induced circulation across 

Merries Reef and in to the northern part of Bate Bay.  

 

Early consideration of CBL effects would provide an efficient pathway to rapidly 

focus on the primary factors leading to pollutant impacts in Bate Bay, identify 

possible solutions (eg upgraded treatment at Cronulla STP in 2001) and dispel the 

notion that the offshore transfer of Sydney sewage to deepwater outfalls was 

responsible for pollution incidents in Bate Bay. 
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Figure 9.25 Bate Bay circulation 
A. Separation of the southward EAC driven flow at Potter Point, depicted by 

sea surface temperature Daedalus airborne multispectral scanner image  
B. Effluent trapping in the lee of Potter Point, depicted in the visible sprectrum 

by Daedalus airborne multispectral scanner image. The shoreline outfall is 
indicated by the block arrow. 

C. Schematic of wave induced anti-clockwise circulation in Bate Bay (from 
Anderson and Gordon, 1993) based on extensive moored and profiling 
(ADCP) current meter deployments, drogues, aerial photography, satellite 
observations, salinity, temperature, and water quality observation together 
with modeling (Riddle, 1994; Large et al., 1994). 

(Daedalus image from Wilson et al., 1995 – a component of the Sydney EMP 
described by Pritchard, 1997). 
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9.5 Management Implications  
 

This thesis has provided a new understanding of the way that the interactions 

between flows and coastal morphologies in the Coastal Boundary Layer can 

affect both pollutant dispersion and the distributions of marine communities and 

species that are potentially impacted by these pollutants.  

 

Explicit recognition of the Coastal Boundary Layer, including CBL Modifiers and 

CBL Oscillators, provides an opportunity to improve the management and 

regulation of human actions to deliver better outcomes for the marine 

environment. Specific management applications include but are not limited to 

approvals, regulation and management of: point source discharges of pollutants to 

the ocean; algal blooms including biotoxins issues; and, marine protected areas. 

 

9.5.1 Discharges of pollutants to the ocean 
 

Wastewater managers are required to pursue a range of wastewater management 

objectives such as source control, beneficial re-uses, and minimisation of overall 

impacts to a socially acceptable level while complying with legislative 

requirements (POEO, 1997). Australia and New Zealand share a set of 

comprehensive water quality guidelines (ANZECC/ARMCANZ, 2000) which 

guide users to identify environmental values, develop water quality objectives 

(e.g. DEC, 2005), and assess potential impacts in a risk based framework. 

 

Even when stringent effluent limits are set and strict waste minimisation is 

practiced, sewage effluents are generally of poorer quality than the receiving 

water (Pritchard et al., 2003). It has been accepted practice to apply the concept 

of the mixing zone as outlined in national guidelines (ANZECC/ARMCANZ, 

2000). That is, an explicitly defined area around an effluent discharge where 

certain environmental values are not fully protected. Although mixing zones have 

this special status they remain subject to assessment criteria to provide minimum 

levels of protection for local environmental values which preclude major 

irreversible impacts, acute toxicity and unacceptable long term accumulation of 

contaminants. In such circumstances, early investigation and definition of mixing 
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patterns and potential effluent dispersion are of paramount importance in order 

that outfalls are located and configured to minimise potential impacts.  

 

For many decades there has been intense scrutiny of sewage discharges to the 

ocean; a long standing NSW Government policy ‘opposes ocean outfalls except in 

instances where the environmental and public health risks of alternative sewage 

managements systems would be demonstrably greater’ (P.Marczan pers com, 

2010). Despite this emphasis on environmental and public health risks, options for 

ocean outfalls can be artificially constrained by a limited prescribed range of 

assumed engineering solutions and a failure to recognise heterogeneous flow 

regimes within the CBL early in the planning process.  

 

Two of the case studies identified above – Coffs Harbour and Boulder Bay -

illustrate the need for early screening level assessments to scope an appropriate 

range of possible solutions.  Initial assessments at both locations failed to 

explicitly consider re-circulation and headland/bay wake effects.   

 

Ironically, as recently as 2010 an environmental assessment suggested that the 

recirculation cell observed in Boulder Bay may be advantageous: “…. drogue 

studies revealed a regular recirculation current within Boulder Bay. The study 

found that effluent was likely to be entrained in these eddies within the Bay which 

would allow time for dilution of effluent with seawater, before it was transported 

away from the bay.” (CEE, 2010). This demonstrates an ongoing limited 

understanding of both CBL effects and the regulatory context.  

 

The sampling design for initial current meter deployments to characterise local 

circulations for the assessment of Coffs Harbour outfall options was not suitable 

to describe wake effects in the lee of Corambirra Point. Likewise, initial 

assessment of engineering options for the offshore outfall at Boulder Bay focused 

on mixing through turbulence and entrainment due to jet effects and buoyant rise 

of the effluent plume, with little consideration of the potential for re-entrainment 

or the benefit-cost analysis of a small extension of the outfall to clear the wake 

effects.  
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High levels of treatment prior to discharge are often necessary but not sufficient to 

minimise environmental impacts associated with wastewater discharges. Impacts 

can occur even with high levels of sewage treatment if effluent is trapped within 

the CBL.  For example, failure to extend the Boulder Bay discharge point to 

beyond the extremity of the embayment, and associated recirculation, 

fundamentally limits the environmental performance of the system; Roberts et al. 

(2006) showed through a series of manipulative field experiments that decreasing 

salinity impacted sponge dominated marine assemblages.  

 

Many sewage discharges to the ocean prior to 1990 were designed with little 

regard to the dispersion characteristics of the coastal boundary layer (see 

Appendix 4); indeed many outfalls appear to have been designed for remote 

concealment rather than dispersion. For example, ten of the thirty two regulated 

NSW ocean outfalls were designed with so little consideration of mixing 

processes that they could not be represented for standard dispersion models such 

as United States Environmental Protection Agency’s hydrodynamic mixing zone 

model CORMIX (Ingleton and Large, 2004). 

 

This approach would be useful to scope options for other poor performing NSW 

outfalls (described by Krogh, Pritchard and Holden in Appendix 4) within 

embayments such as: 

 Janies Corner outfall inside a small embayment near Forster; and, 

 Merimbula/Pambula outfall at the shoreline within a large semi enclosed 

bay. 

and  in the lee of headlands such as at: 

 Sawtell inshore on the southern side of Boambee Head 

 Camden Haven on the southern side of Camden Head/Perpendicular Point 

 

Wastewater management solutions inevitably balance environmental/scientific 

factors with social-economic factors. After exploiting feasible source control and 

re-use opportunities all foreseeable ‘solutions’ for coastal sewerage systems 

require a proportion of the wastewater to be discharged to the environment. A 

hierarchical screening of risks driven by an understanding of CBL processes is 

particularly relevant to highly dynamic marine environments, and promotes 

transparent decision making which in turn promotes cost effective solutions. 
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Some of the factors contributing to environmental exposure to high concentrations 

of pollutants are fundamental (beyond human control) while other factors are 

readily controllable such as: 

 location of the discharge point to avoid sensitive habitats and wake zones 

with high Eddy Retention Values; while maximising water depth and 

exposure to high ambient current velocities at the point of discharge.  

 level of wastewater treatment prior to discharge to minimise initial 

concentrations and loads of pollutants. 

 hydraulic design of the outfall to maximise initial mixing potential  

 

Pollutant concentrations tend to increase with improvements to sewerage systems 

(less as rainwater ingress) and with increasing re-use (higher pollutant 

concentrations in waste streams). Likewise, waste streams associated with de-

salination plants have increased in recent times due to major droughts in Australia 

during the first decade of this century. This increased coupling of water supplies 

and wastewater disposal systems across the Inner CBL further emphasises the 

need to understand and map CBL processes, especially near centers of human 

population where engineering solutions tighten local ocean loops in the water 

cycle .   

 

Feasible, cost efficient, options can be scoped by performing screening level 

assessments, based on readily available data, early in the planning and budgeting 

process. Screening level assessments can be focused through consideration of 

CBL processes outlined in Chapter 4 and can exploit existing basic data sets such 

as: morphological assessments proposed in Chapter 7; readily available remote 

sensed data described in Chapter 5; existing time series data such as from the long 

term CSIRO Port Hacking monitoring stations used in Chapter 6; recent 

observational data streams such as those from the recently established national 

Integrated Marine Observing System (IMOS); and, available coastal modeling 

such as emerging ‘Ribbon’ modeling approaches which are utilising global 

models by developing adequate turbulence closure and open boundary algorithms 

for broad scale characterisation of coastal processes (CSIRO, 2011). In this way, a 

set of rational options can be identified through screening level assessments and 

prioritised for more detailed assessments. Subsequent, targeted assessments may 
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then require acquisition of additional data and more sophisticated modeling tools, 

as demonstrated in the case of Coffs Harbour in Chapter 8. 

 

Having undertaken screening, and then more focused environmental assessments 

of outfall options, we have a sound platform for negotiations that lead to 

transparent decision making, taking in to account important socio-economic 

factors (i.e. explicit compromise).   

 

For example, in the case of Coffs Harbour, the combination of observations and 

model simulations allowed the development of a benefit-cost curve, where 

benefits were expressed in terms of current speed (an agent of dispersion) and 

costs were expressed as incremental engineering costs of extending the outfall 

further offshore (Figure 9.26). Here a shear zone located ~2-3km offshore 

associated with the CBL Wake provided the greatest opportunity to optimize 

dilution benefits for relatively small additional cost increments. This benefit-cost 

curve assumed that outfall construction cost estimates would increase almost 

linearly with distance offshore although in many instances incremental offshore 

extension of outfalls could be expected to be less due to mobilization costs. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000

DISTANCE OFFSHORE (m)

A
L

O
N

G
S

H
O

R
E

 S
P

E
E

D
 (m

/s
)

B
E

N
E

F
IT

-C
O

S
T

 (1
0 

x 
m

/s
 p

er
 $

M
)

Alongshore Speed

Benefit-Cost Ratio

 

Figure 9.26: Indicative Benefit-Cost based expressed as a ratio of current strength 
to relative cost. Incident averaged current speed is plotted and the arrow indicates 
the Outfall location. 
 

At a more conceptual level the identification of causal mechanisms to explain the 

correlation between bacterial contamination of beaches and wave induced 

circulation across Merries Reef at the northern end of Bate Bay implicated the 
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discharge of sewage at Potter Point (see 9.5.4 above). This facilitated management 

action to improve the level of treatment at Cronulla STP to address beach 

pollution issues in northern Bate Bay, and avoided expenditure on ineffective 

‘solutions’ to Bate Bay pollution issues such as massive expenditure to improve 

levels of treatment for sewage released via Sydney’s deepwater outfalls. 

 

Other Inner CBL effects such as the persistence of shoreline attached River 

Plumes (eg Figure 9.13) motivate stringent regulation and coastal management 

strategies, especially those associated with urban development and earth works in 

coastal catchments, stormwater management, and disposal of dredge material. 

 

Understanding the interactions of CBL effects can be critical in predicting the 

spatial focus of potential impacts which must be monitored in order to inform 

decisions which contribute to cumulative pollutant loadings.  For example, 

Warrick and Stevens (2011) noted the importance of the interaction of a River 

Plume with a Headland Wake where the Elwha River flows to the Strait of Juan 

de Fuca near the border of USA and Canada. Here the Elwha River Plume was 

directed eastward and shoreline attached twice as frequently as it was directed 

westward, due to tidally induced transient eddies which developed in the lee of a 

deltaic headland near the entrance of the Elwha River.  This controlled the initial 

coastal sediment dispersal pathways following a dam removal project in Elwha 

River. 

 

Many biological studies construct Before and After Control Impact (BACI) 

experiments (Green 1979, Underwood 1991, 1992, 1993) to detect environmental 

impacts. These impact assessments involve data collection before and after a 

putative impact at (where possible) replicated “control” and “impact” locations.  

In this way BACI designs take into account background variability that is 

common to both control and impacted sites.  In many cases it is reasonable to 

assume that shifts in environmental factors in the ocean would affect the 

background variability at outfall and control sites equally. However, poorly 

selected ‘Control’ sites, combined with before-after shifts in the spatial structure 

of the CBL (and associated ambient factors), have the potential to bias results of 

real world impact assessments (Lee and Pritchard, 1996).  Consider BACI 

assessments of the impact of a new ocean outfall on fish populations. Fish 
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distributions are affected by East Australian Current (EAC) dynamics (Young et 

al., 2001) but EAC dynamics can exhibit significant spatio-temporal variability 

(Suthers et al., 2011). So for instance, fish carried with (or attracted to) warm East 

Australian Current (EAC) waters are likely to be present in similar numbers at 

both control and outfall sites if they receive EAC waters at similar times. 

However, if CBL processes result in EAC waters arriving at different times 

(spanning the before-after periods) then the experimental design is compromised. 

Therefore, control and impact sites should be selection based on an understanding 

of the inherent spatio-temporal variability of relevant CBL features. 

 

9.5.2 Algal blooms including biotoxins 
 

Visible and/or harmful algal blooms (HABs) have the potential to affect tourism 

in New South Wales (NSW), Australia, which is focused on coastal regions and is 

worth more than A$6 billion p.a.  In NSW coastal waters, the magnitude and 

frequency of ‘red tides’ of the non-toxic dinoflagellate Noctiluca scintillans 

appear to have greatly increased since the early 1990’s (Ajani et al., 2001a, 2011).   

 

Phytoplankton have been implicated in seafood contamination and fish kills in 

NSW coastal waters. For example, during the summer of 1997-1998 Dinophysis 

acuminata, a producer of diarrhetic shellfish poisoning, was implicated in the 

contamination of edible surf clams (pipis /Donax sp) at Ballina some 700km north 

of Sydney and Newcastle just north of Sydney with a total of 82 cases of 

gastroenteritis in consumers (Ajani et al., 2001b). Recently, in February 2011, a 

toxic microalgae, Karlodinium micrum, was implicated in a massive fish kill in 

northern Jervis Bay which indiscriminately killed thousands of fish (N.Knott pers 

comm., 2010). 

 

In Chapter 5, a predictive understanding of algal blooms was developed and 

illustrated based on an understanding of CBL processes, and available remotely 

sensed data complemented by established meteorological and oceanographic  data 

streams. This was possible because natural upwelling/uplifting were identified as 

the principal driver of marine (offshore) algal blooms in NSW coastal waters 

despite significant sewage inputs near major urban centres (Pritchard et al., 

2003; Ajani et al., 2001a; Hallegraeff and Reid, 1986).  Furnished with this 
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knowledge and an understanding of specific upwelling/uplifting processes, 

periods of increased risk of marine algal blooms can be identified to inform timely 

management responses, through established procedures such as those outlined by 

NSW Regional Algal Coordination Committees.  

 

Developments in the capabilities and applications of satellite remote sensing 

reported by Pritchard and Koop (2005) in Chapter 5, and a subsequent review by 

McClain (2009) noted the feasibility of monitoring for HABs and red tides using 

ocean colour data streams. However, management applications must recognize 

limitations in coastal waters where coastal boundary layer phenomena lead to 

heterogeneous and complex optical properties that challenge the prescribed 

algorithms used to infer algal pigment concentrations. Although the limited spatial 

and spectral resolutions of freely available ocean colour data streams remains a 

limitation, initiatives are underway in NSW and elsewhere to improve ocean 

colour products through acquisition of relevant local validation data, and the 

development of more sophisticated algorithms based on observed optical 

properties of coastal (‘Case 2’) waters (P.Davies and A.Dekker pers comm. 2011).  

 

Management responses to algal blooms include warnings and advisory alerts 

which rely on an understanding of the potential evolution and fate of algal blooms 

in the CBL. There have been precautionary oyster market closures (see Chapter 5 

especially Figure 11, and Pritchard et al., 2001), and many NSW recreational 

beaches have been closed due to perceived or actual risks of red tides.  Although 

Outer CBL processes drive upwellings of nutrient rich waters as shown in Chapter 

4, Inner CBL processes determine the fine scale distribution of algal blooms and 

the tendency for coastal trapping where they become a greater risk to recreation 

and aquaculture.  Recent high-resolution spatial and temporal resolution 

observations in California emphasise the role of Inner CBL physical dynamics in 

controlling the duration and intensity of red tide exposure to coastal habitats 

(Omand, et al., 2011). A red tide forming dinoflagellate (Lingulodinium 

polyedrum) initially developed as a subsurface layer before internal wave-

breaking vertically mixed it to the surface where it formed an alongshore surface 

band which remained 500m from shore as it was blocked by a density barrier of 

warm water adjacent to the beach.  
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9.5.3 Connectivity – managing Marine Protected Areas and marine pests 
 

The identification of CBL types and their spatial distribution is critical for marine 

protected area planning and management of marine pests because CBL processes 

determine the inherent physical connectivity across coastal waters. 

 

The management importance of marine connectivity was recent highlighted by an 

independent expert review of marine park science in New South Wales 

(Fairweather et al., 2009) which found that “Movement and population 

connectivity for most organisms is poorly understood. The effectiveness of the 

network (in terms of size, location and zonation) is therefore unknown”. This 

statement recognises that a key component for designing networks of marine 

reserves is connectivity (Palumbi 2003). By understanding scales of connectivity 

we can enhance our ability to predict population dynamics and our ability to 

manage for population recovery or rehabilitation (Coleman et al., 2011 

submitted). Mace and Morgan (2006) argued that larval accumulation zones 

should be included in networks of marine reserves based on dominant settlement 

of benthic invertebrates (crabs, barnacles and mussels) in the lee of a small 

headland in California. 

 

The majority of marine organisms produce pelagically-dispersing larvae so 

connectivity between populations is strongly influenced by dispersal mechanisms, 

thus highlighting the importance of CBL current patterns, together with 

knowledge of life histories and key habitats distributions. Metapopulation 

analyses incorporating the dynamics of local oceanography and the life histories 

of protected species have demonstrated how the spacing of protected areas can be 

optimised to maximise population persistence across the geographic range of the 

population (Botsford et al. 2003; Palumbi 2003).  Configurations of marine 

protected areas that facilitate connectivity amongst individual protected areas, and 

with non-protected areas, build biodiversity resilience and contribute to 

conservation outcomes.  

 

Connectivity varies spatially and temporally and can be related to CBL processes 

and their interactions with coastal morphology. For example, assessments of  

proposed networks of marine protected areas across Australia’s Southwest Marine 
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Region included simplified modelling which indicated contrasting dispersal 

patterns between shallow (0-100m) and upper slope (100-500m) waters and 

stronger connectivity in autumn months and La Niña years when Leeuwin Current 

flow is maximal (England et al., 2009).  

 

Similar connectivity issues were investigated through modelling on the east coast 

of Australia in relation to the potential for spread of marine pests. These studies 

(Roughan et al., 2011) indicated that particles released inshore of the EAC jet 

exhibited a greater coastal connectivity than those released offshore of the EAC 

front, and the separation point of the EAC strongly influenced connectivity 

patterns with more sites being connected (with lower concentration) downstream 

of the separation point of the EAC. El Niño Southern Oscillation patterns were 

also evident with La Niña periods having a tendency to increase summer time 

connectivity and El Niño periods increasing winter connectivity. 

 

Roughan et al (2011) point out that the although propagules of marine pests can 

remain in the water column for periods of weeks to months, the dispersal of 

marine pests has typically been assessed in relation to more easily measured 

vectors such as ships (hulls and ballastwater), or aquaculture infrastructure. A 

systematic identification of the coastal boundary layer and an understanding of 

CBL processes can profoundly affect the ways we manage (limit) the spread of 

marine pests. For instance, by quantifying connectivity we can optimise rules for 

maximum distances from shore for the release of ballast water, and following 

known releases we can identify appropriate surveillance targets. von der Meden et 

al. (2008) found that coastline topography and local processes affected the 

dynamics of invasive and indigenous intertidal species in South Africa due to 

wave exposure being strongly dependent upon coastline topography (bays and 

headlands) and differential environmental preferences of invasive (Mytilus 

galloprovincialis) and indigenous (Perna perna) mussels. 

 

9.6 Conclusion 
 

Within the Coastal Boundary Layer (CBL), oceanographic processes operating at 

various scales drive flows which interact with complex shelf and coastal 

morphologies to shape dispersion pathways and fates of pollutants released in to 
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the CBL, as well as structuring the biological communities that are affected by 

these pollutants. The Coastal Boundary Layer classification presented here, as 

applied to NSW marine waters, provides a useful framework to focus research and 

assessments of the potential impacts of pollutants.  

 

Simple, readily available, data can be used for initial screening level assessments 

to identify the critical processes and factors contributing to potential impacts, for 

subsequent more detailed research and assessment of options within a risk based 

framework. For example, NSW Triangular Headland dimensions plotted in 

Figure 9.11 revealed that flow separation and wake effects were unlikely in water 

depths less than 15m and likely for headlands in water depths greater than ~35m. 

 

Case studies have been presented to illustrate approaches to address the different 

impact assessment issues that arise due to the morphological setting within the 

Inner CBL (Coffs Harbour – Chapter 8) or the Outer CBL (Sydney – Chapter 6).  

The various parameterisations developed in this thesis are calculated for these 

cases.  

 

They demonstrate how the CBL classification can focus and improve impact 

assessments to reveal options that deliver cost-effective outcomes for the marine 

environment.  
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10 SUMMARY AND CONCLUSION 
 
The aim of this thesis was to investigate the processes within the coastal boundary 

layer that affect dispersal and advection of pollutants and, in doing so, develop 

conceptual models to facilitate coastal management.  Six objectives were 

addressed to achieve this aim. 

10.1  Attainment of thesis objectives 
 

OBJECTIVE 1: Classify coastal boundary layer types observed off New South 

Wales based on coastal bathymetry, satellite sensed data, aerial photography, 

and observations of local and regional flow dynamics 

 

This thesis presents the first classification of the Coastal Boundary Layer (Figure 

10.l and Chapter 4), complemented by a new hydrodynamically relevant 

morphological classification of NSW headlands, islands and bays (Chapter 7). 

Together these classifications facilitate screening level assessments of pollutant 

impacts which highlight factors and processes contributing to potential 

environmental impacts, including impacts due to pollutant trapping in the Inner 

CBL (Chapter 9). 

 

The Coastal Boundary Layer (CBL) is defined for the first time in this thesis as 

the turbulent interface between the coastline and the deep oceans, where regional 

currents and ocean waves are profoundly affected by changes in the orientation 

and variable morphology of the coastline and continental shelf.  Concise, one-

page summaries of CBL Types, Modifiers and Oscillators are provided in Chapter 

4, with schematic conceptual models and selected examples from New South 

Wales. 

 

No previous research is evident in published literature to characterise coastal 

domains through classification of the CBL and morphology.   
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Figure 10.1 Coastal Boundary Layer types. 
Schematic representation of the temporal 
spatial scales of coastal boundary layer 
effects in NSW offshore waters. Ellipses 
represent indicative ranges of cross-shelf 
extents and dominant temporal expression of 
the CBL effects (above).  Case study 
locations – Coffs Harbour and Sydney - are 
also shown (left). 
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CBL processes shape dispersion pathways and fates of pollutants released into the 

CBL, as well as structuring the biological communities that are affected by these 

pollutants. Therefore, the CBL classification, together with the morphological 

classification in Chapter 7, provides a logical framework to structure marine 

ecosystem studies. The CBL classification utilises readily available data to 

identify the critical processes and factors contributing to potential pollutant 

impacts, thus focusing subsequent more detailed investigations and assessment of 

options within a risk-based framework. Case studies demonstrate how subsequent 

detailed assessments relate CBL processes to potential pollutant impact 

assessments. Furthermore, these case studies reveal options that deliver cost-
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effective outcomes to understand and protect the marine environment (Chapters 6, 

8 & 9).  

 

OBJECTIVE 2: Determine the utility of remotely sensed ocean colour and sea 

surface temperature (SST) data to characterise broad scale ecosystem and 

coastal boundary layer processes and to investigate applications to support 

coastal management 

 

Simple approaches to explain and predict algal blooms in NSW coastal waters are 

developed and demonstrated in Chapter 5, based mostly on freely available 

remotely sensed data streams.  Broader applications are also explored, leading to a 

separate research agenda which is now developing algorithms capable of 

revealing and quantifying characteristics of the optically complex waters of the 

Inner CBL of NSW (see Section 10.3.3).  Key research findings, relevant to NSW 

coastal waters, include: 

 a great deal of mesoscale variability can only be observed using satellite 

remote sensing of ocean colour especially when combined with AVHRR 

SST and supported by some in situ observations 

 satellite ocean colour imagery can provide cause-and-effect indicators at 

appropriate time and space scales for assessment and management of 

coastal systems 

 a methodology is developed and demonstrated to forecast algal bloom risk 

and diagnose initiation sites (Chapter 5) 

 quantitative remote sensing of Case 2 waters, such as the NSW coastal 

boundary layer, remains challenging although considerable scope exists 

for integration of regional or special case algorithms within an overarching 

branching algorithm 

 the development of more sophisticated inverse modelling techniques for 

NSW coastal waters (& other coastal regions) requires precise 

multispectral radiances, with contemporary optical and concentration 

measurements of the water constituents. 
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OBJECTIVE 3: Investigate CBL processes, their relationship to coastal 

morphology, and their role in controlling the dispersion, fate and potential 

impacts of pollutants discharged to the New South Wales coastal waters 

 

Together the findings presented in this thesis demonstrate the dominant role of 

Coastal Boundary Layer dynamics in determining the potential impacts of 

pollutants in high energy coastal marine environments. 

 

The structural complexity and variable orientation of the continental shelf is 

described in Chapter 9, and ‘coastal roughness’ is classified across NSW in terms 

of types of headlands, bays and islands in Chapter 7 (see Objective 4). Dominant 

CBL processes and their role in controlling the dispersion of pollutants off Sydney 

and off Coffs Harbour are investigated in the context of their morphological 

settings in Chapters 6 and 8, respectively (see Objective 5). Likewise, the spatial 

extent of mesoscale CBL processes and their relationship to coastal morphology 

are demonstrated in Chapter 5, using mostly-remotely sensed ocean colour and 

sea surface temperature data.   

 

Analysis of long term data sets such as the current and temperature time series 

data from the Sydney Ocean Reference Station and near field model results 

(Chapter 6) reveal CBL processes and patterns which affect the dilution and 

dispersion of pollutants at a range of temporal scales: 

 high frequency internal waves are evident in the ORS record. Buoyant 

plumes rising through internal wave fields may differ significantly in 

height of rise and dilution compared to plume behaviour under mean 

stratification; likewise, biological and water quality sampling designs must 

recognise variability associated with these vertical displacements 

 plumes generally surface (and achieve high effluent dilutions) when top-

to-bottom temperature differences are less that 1°C 

 de-stratification which can occur over time frames of hours promotes 

vertical mixing of nutrient rich bottom waters and allows effluent plumes 

to reach the surface 

 398



 temperature stratification exhibits seasonal and inter annual variability: 

peak stratification ranges from ~7°C in summer 1993 to ~4°C in summer 

1994 

 stratification minima and associated high plume surfacing frequencies 

were generally confined to El Niño (warm) episodes 

 both winds and currents show prominent seasonal peaks due to latitudinal 

shifts in atmospheric pressure systems and seasonal differences in EAC 

effects (Section 6.3, Figure 6) 

 the annual cycle is subtle in the current meter record and virtually absent 

in the wind record (Section 6.3, Figure 6) 

 a low frequency signal is apparent when the directional current 

displacements are plotted for entire ORS time series; eastward deviations 

are apparent in the upper current meter record for events centered on 1996 

and 2001 (Section 6.3, Figure 12). 

 

OBJECTIVE 4: Develop a hydrodynamically relevant morphological 

classification of headlands, islands and open bays for New South Wales 

 

A new hydrodynamically-relevant morphological classification of coastal features 

is developed, and applied to the New South Wales Inner CBL in Chapter 7, based 

on literature reviews, coastal maps, bathymetry charts and aerial imagery.  A 

simple index - the Wake Parameter - is explored and applied to NSW headlands to 

indicate the propensity for various turbulent flow regimes for more detailed 

investigations (Chapter 9). The hydrodynamic implications of coastal features 

described in this morphological classification will be further explored through 

separate research collaboration (see Section 10.3). 

 

At both small and large spatial scales the roughness and configuration of the 

shoreline/shelf appear to result in similar flow patterns. The new morphological 

classification of coastal features in New South Wales in Chapter 7 found: 

 the majority of all types of bays are in the southern half of the State 

 the length to width ratios of bays typically remains approximately  

constant irrespective of size, especially for Open Rectangular and Open 

Sweep bays (~1:2) 
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 headland morphologies range from sand dominated asymmetric cusp 

shaped headlands near Crowdy Head to rocky headlands with 

conspicuously fractal characteristics near Batemans Bay 

 the median length of 114 headlands classified as Triangular is 624m 

(range 186-5768m) 

 the median length of 30 headlands classified as Coastal Step (one-sided) is 

1,324m (range 230-13,980m) 

 standardised Apex Angles of both Triangular and Coastal Step headlands 

are remarkably consistent with mean apex angles of 70° (SD 24°) and 67° 

(SD 22°), respectively, and with identical ranges (20°to119°) 

 wake effects are predicted by the Wake Parameter (P>1) for Triangular 

headlands in NSW coastal water depths greater than 35m. Conversely, 

NSW headlands in water depths less than 15m are unlikely to be 

associated with prominent wake effects 

 Montague Island and North Solitary Island stand out from NSWs five 

largest offshore islands as targets for more detailed evaluation of wake 

effects as they appear most likely to be associated with large-scale wake 

effects. However, based on the Wake Parameter, Fish Rock, a small island 

about 2km offshore from Smoky Cape, has the greatest propensity for flow 

separation.  

 

Based on literature reviews plus observations and modelling undertaken for the 

Coffs Harbour Case Study (Chapter 8), a simple process-based understanding was 

developed to assess the propensity for re-circulation and particle trapping in the 

wake of a headland or island. 

 

OBJECTIVE 5: Investigate physical processes and dispersion characteristics 

for specific pollutant discharges to New South Wales coastal waters through 

case studies off Sydney (outer coastal boundary layer) and Coffs Harbour 

(inner coastal boundary layer) 

 

The vast majority of New South Wales’s sewage wastewater is discharged to the 

Outer CBL off Sydney. Processes affecting pollutant dispersion off Sydney are 

revealed and quantified in Chapter 6.  Outer CBL processes also determine the 

outer boundary condition and regional drivers for Inner CBL dynamics which are 
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explored in a second case study off the coast of Coffs Harbour. Here pollutant 

trapping and optimal initial mixing are quantified across the Wake Zone 

associated with a headland (Chapter 8).  

 

SYDNEY 

Sydney’s three deepwater ocean outfalls were found to be the principal, 

continuous, anthropogenic source of nutrients to NSW coastal waters. Research 

findings based on new analysis of mostly existing long-term time series data, long 

term near field model simulations, and previous research found that: 

 Outer CBL processes significantly mitigate many of the risk factors that 

lead to environmental impacts: high initial dilutions are possible and 

pollutant residence times are low in this high energy environment with 

limited flow disruption due to local bathymetric features (Chapter 6; 

Pritchard et al., 2001, 2005) 

 consideration of sewage-derived pollutant loadings and concentrations 

discharged from Sydney’s deepwater outfalls suggests a considerable 

potential for environmental impacts. However, significant outfall impacts 

remain undetected and, if present, are likely to be subtle (Chapter 6; 

Pritchard 1997; Pritchard et al., 1993, 1996, 1997, 1999, 2001, 2003 and 

others). Consistent associations between algal blooms and slope water 

intrusions and the lack of associations with proximity to major outfalls led 

Pritchard et al. (1999, 2003) to conclude that CBL processes leading to 

slope water intrusions (‘upwellings’) were the major factor responsible for 

phytoplankton blooms. 

 

New analysis of long-term data from CSIRO sampling stations off Port Hacking 

(Chapter 6) found that prior to the commissioning of Sydney’s deepwater outfalls 

nutrient patterns are consistent with winter overturning of shelf waters and 

episodic slope water intrusions, with enhanced biological (phytoplankton) activity 

depleting nutrients in surface waters during the warmer summer months. These 

analyses revealed that:  

 relative nutrient enrichment due to extreme natural events is most marked 

within the upper half of the water column and up to an order of magnitude 

greater for nitrate than for phosphate (Section 6.4, Figure 5) 

 ambient nutrient ratios suggest that nitrogen is a limiting nutrient. 
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When simulations of near field effluent plume behaviour were analysed in relation 

to long term ambient nutrient patterns it was found that: 

 there is little evidence to suggest that plumes from Sydney’s deepwater 

outfalls result in major shifts in the ratio of dissolved inorganic nitrogen to 

dissolved phosphorus 

 discharges from Sydney’s deepwater outfalls have the greatest opportunity 

to influence algal bloom development in the upper half of the water 

column during late summer. 

 

Understanding of CBL Modifiers such as Effluent Plumes (Chapter 6) yielded the 

following insights: 

 the entrainment and uplift of nutrient (nitrate) rich bottom waters in 

buoyant plumes results in a net upward flux of ambient nutrients 

irrespective of the contribution from the effluent 

 ADCP data are vastly superior to extrapolation below the bottom ORS 

current meter. This is a critical finding given that investigations of plume 

behaviour (Pritchard et al., 2001) suggest that most initial mixing can 

occur within the bottom 10-15 m of the water column (i.e. below the 

bottom ORS current meter). 

 

COFFS HARBOUR 

Most pollutants originate in coastal catchments and outfalls in New South Wales 

discharge to the Inner Coastal Boundary Layer where heterogeneous pollutant 

dispersion patterns are structured by coastal roughness.  Investigations of 

pollutant trapping due to wake effects are rare in the published literature.  

 

Observational and modelling investigations found current shear, transient re-

circulation, and heterogeneous patterns of pollutant dispersion capacity in the lee 

of Corambirra Point, immediately south of Coffs Harbour. These studies found 

that there is significant scope to increase offshore outfall performance (dilution 

and dispersion) by extending the outfall across the interval from 1.5km to 2.5km 

offshore.  Specific findings include: 
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 the most profound wake effect is a persistent shear zone located ~2km 

offshore from Boambee Beach created by Corambirra Point 

 consistent flow retardation (30-50% of free flow) and short duration 

cyclonic eddy re-circulation (<36hr; 2-3km diameter) in the Wake Zone to 

the south of Corambirra Point 

 pollutant particle clearance and initial mixing increases rapidly across the 

shear zone along prescribed  outfall alignment; the flux of ambient water 

flowing across the transect increases eighteen fold over a cross-shore 

distance of just 1.4km (1.6 to 3km offshore) 

 current reversals are more frequent within the wake (inshore) compared to 

the free stream flow (offshore), thus increasing the likelihood of re-

entrainment of previously discharged effluent into new plumes 

 recirculation cells are not considered to be the most important wake effect 

limiting dilution of effluent discharged off Coffs Harbour because re-

circulation cells occur sporadically and the re-circulation cell volume is 

typically four orders of magnitude greater than daily effluent discharged 

from the outfall; that is, the Eddy Retention Value is low. 

 

Other findings which may have broader relevance include: 

 prominent spectral peaks in all current meter data (Sites A, B, C & D) at 

~12 and ~24 hours, highlight the relative contribution of the semi-diurnal 

tides, inertial motions and local land-sea breezes, while strong peaks at 

2.5, 3.9 and 7.8 days appear to be associated with the regional weather 

band  (Section 8.4, Figure 3) 

 the vertical distribution of diurnal energy suggests that the pycnocline 

layer may act as a waveguide (Section 8.4, Figure 4) 

 inshore currents (Site A) exhibit energy levels across the spectrum that are 

significantly lower than all other sites indicating quiescent wake effects; 

observed current strengths at Site A were 2-3 times less than those at sites 

further offshore (Section 8.4, Figure 3) 

 along shore surface currents were correlated with local winds, typically 

corresponding to about 1% of the wind speed at the inshore site (13m 

depth) and 2-3% of the wind speed at the offshore site (35m depth) 

 the study period may include a greater proportion of wind driven 

southward currents than would be expected based on long term wind data. 
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The Coffs Harbour case study provokes questions about the dynamics of re-

circulation in the lee of headlands, especially the role of phase lagged responses to 

reversing alongshore pressure gradients.  That is, sporadic recirculation may result 

from flow reversals when reversal occurs earlier in the wake of the headland than 

in the free stream where currents continue to decelerate; phase differences 

between the inertial responses of shallow, nearshore waters and offshore free flow 

promotes rotational effects. 

 

 

OBJECTIVE 6: Identify applications of the coastal boundary layer 

classification for coastal management and develop and demonstrate simple risk 

assessment tools to identify factors and processes which can mitigate potential 

pollutant impacts 

 

Past failures to consider the morphological settings of pollutant discharges to 

NSW coastal waters have resulted in gross inefficiencies of pollutant discharge 

systems and potential environmental impacts.   

 

Chapter 9 explores the management implications of the interactions between 

flows and coastal morphologies in the Coastal Boundary Layer in relation to 

approvals, regulation and management of discharges of pollutants to the ocean. It 

also outlines how an understanding of CBL processes is a pre-requisite for 

effective management of algal blooms including biotxoins issues, configuration of 

networks of marine protected areas, and marine pest control.  

 

The importance of a process-based understanding of CBL dynamics on the fate of 

pollutants and the application of simple risk assessment tools is illustrated by four 

examples: 

 Sydney: Outer CBL  Effluent Plume  

 Coffs Harbour: Inner CBL Headland Wake  

 Boulder Bay: Inner CBL Headland Wake  
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 Bate Bay: Inner CBL Headland Wake (HW) and Wave Zone (WZ) 

Early consideration of CBL effects would provide an efficient pathway to rapidly 

focus on the primary factors leading to potential pollutant impacts for each of 

these examples. 

 

Case studies off Sydney and Coffs Harbour demonstrate how coarse screening 

level frameworks, such as the CBL and coastal morphological classification can 

be used to structure site-specific assessments to address specific scientific and 

management issues.   

 

For the Coffs Habour study, a new Eddy Retention Value (ERV) is applied to 

estimate an upper bound on the re-entrainment potential of re-circulation cells 

which may form in the Wake Zone. The ERV represents a hypothetical worst case 

re-entrainment scenario where ERV is the ratio of volume of effluent discharged 

during the lifetime of a re-circulating lee eddy to the volume of water within the 

eddy.  In the case of Coffs Harbour, re-entrainment potential associated with re-

circulation was found to be minimal. However, definition of the shear zone which 

formed in the Wake Zone in the lee of Corrambirra Point is found to be a critical 

factor in optimising location of the outfall to maximum dispersion efficiency. This 

is developed to form the basis for a simple cost benefit analysis.  

 

The Sydney Case study supports the case for ongoing disposal of the majority of 

Sydney’s sewage effluent without requiring significant upgrades to the level of 

treatment due to the benefits of relocating the discharge points to deepwater 

locations which provide greater opportunities for effluent dilution and are 

removed from the effects of coastal roughness. Potential eutrophication issues are 

assessed in Chapter 6, while analysis of remote sensed data streams in Chapter 5 

explain the development of specific algal blooms in terms of Outer CBL 

dynamics.  

 

This thesis focuses on New South Wales coastal waters although the approaches 

and findings are relevant to a broader range of applications.   

 

This thesis deals with the minimisation potential impacts associated with the 

discharge of pollutant but also emphasises that a consideration of increasing 
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human demands on resources in the context of the whole water cycle leads to the 

conclusion that water and nutrients in sewage are a valuable resource, which we 

must make concerted efforts to recover, irrespective of the lack of major impacts 

near the point of discharge. 

 

10.3 Shaping research agenda 
 

Although this thesis is successful in addressing the major research questions 

captured by the thesis objectives, it also exposes fundamental data gaps, 

stimulates further research questions, and motivates for the further development 

of management applications.   

 

Research outlined in this thesis has already shaped a broader research agenda, 

mostly in collaboration with the author.   

 

10.3.1 Bathymetry 
 

Accurate near-shore bathymetry data are a fundamental pre-requisite for 

investigation of CBL processes.  However, the morphological classification of 

headlands, bays and islands described in Chapter 7 of this thesis revealed highly 

variable bathymetry data coverage. As a consequence the classification of NSW 

headlands and bays was restricted to the subaerial expression of the coastline due 

to the inadequacy of near shore bathymetry. Improved near-shore bathymetry 

would facilitate representation of important sub-tidal morphological 

characteristics of NSW headland and bay types in future classifications. 

 

Accurate near-shore bathymetry is also required as a fundamental boundary 

condition for all coastal hydrodynamic, wave propagation and sediment transport 

models. Turbulent effects, represented by the Wake Parameter (P) described in 

Chapter 9, are highly sensitive to water depth (i.e. depth2). These are strong 

arguments to improve the quality and resolution of near shore bathymetry data.  

 

The author is working with colleagues in the New South Wales Office of 

Environment and Heritage to establish a State Bathymetry Mapping Strategy to 

target critical mapping targets. This builds on the NSW HabMap Program which 
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recently delivered the first marine habitat maps for NSW built on a compilation of 

best available bathymetry data together with 1,500 km2 of newly acquired high 

resolution swath mapped bathymetry data (Jordan, Davies, Ingleton, Foulsham, 

Neilson and Pritchard, 2010). The NSW Government is currently investing in 

acquisition of offshore bathymetry data including LiDAR/LADS and 

hydroacoustic surveys to build an improved digital elevation model of the NSW 

coastal zone (Pritchard et al., 2011).  

 
 
10.3.2 Near-shore flows 
 

Few sustained observations or accurate model simulations are available to 

characterise near-shore flow fields. However, since 2007 a national Integrated 

Marine Observing System (IMOS) has invested in research infrastructure to 

observe the oceans around Australia, including the establishment of cross-shelf 

transects comprising moored instruments which observe the current and density 

profiles throughout the water column. In addition IMOS is investing in a High 

Frequency (HF) WERA Radar system to observe near-shore surface currents 

across an array off Coffs Harbour at ~30ºS. Furthermore, recent reviews of IMOS 

research plans (e.g. Malone, 2010) motivate a greater emphasis on coupling the 

observational systems with modelling initiatives to facilitate spatial and temporal 

extrapolation and interpolation of direct and remote sensed observations. The 

author has been actively engaged in shaping investments in this coastal research 

infrastructure through formal and informal engagement with the IMOS, and with 

the coastal components of the complementary Terrestrial Ecosystem Research 

Network (TERN).  Observations of this type will be required to calibrate and 

validate broad scale modelling of the coastal boundary layer processes at 

appropriate resolution. Recent and developing broad scale coastal modelling 

relevant to the east coast of Australia initiatives include recent applications of 

Regional Ocean Model System by the University of NSW (Roughan pers comm 

2011, http://www.myroms.org/ ) and Ribbon modelling by CSIRO in 

collaboration with the Bureau of Meteorology 

 (http://www.emg.cmar.csiro.au/www/en/emg/projects/-Ribbon--Model.html ). 

 

At a more specific level, worthy areas for research include the development of 

techniques to extract information currently obscured in the uppermost bins of 

 407

http://www.myroms.org/
http://www.emg.cmar.csiro.au/www/en/emg/projects/-Ribbon--Model.html


Acoustic Doppler Current Profiler (ADCP) records.  This information is important 

because effluents discharged to near-shore environments typically form surface 

plumes. 

 

10.3.3 Satellite ocean colour products 
 

Chapter 5 revealed the need for a systematic appraisal of existing ocean colour 

algorithms as applied to the optically complex (Case 2) waters of the NSW coastal 

boundary layer, including better multi-spectral characterisation of the optical 

properties of coastal boundary layer water masses. This motivated a successful 

application for research funding from the NSW Environmental Trust 

(2009/RD0016) to: 

 

1. Quantify the uncertainty associated with application of existing ocean 

colour algorithms to NSW coastal waters for chlorophyll, suspended 

sediments (SS) and coloured dissolved organic matter (CDOM). 

2. Investigate the complex optical properties of NSW coastal waters to 

determine the relative importance of various error factors in ocean colour 

estimates of chlorophyll, SS and CDOM 

3. Initiate and maintain a spectral library for NSW coastal waters for 

improving ocean colour remote sensing algorithms in Coastal NSW.  

 

This three year project will be completed in December 2012 although initial 

findings have been reported by Davies, Ingleton, Pritchard, Mesley and Wright 

(2010), and comprehensive bio-optical observations of a complex mélange of 

water masses originating from the EAC, shelf waters, slope intrusions and riverine 

inputs have been collected by Davies et al. (2011).  

 

Ocean colour products will become increasingly valuable for CBL applications as 

spatial and spectral resolutions of ocean colour data streams improve and as more 

sophisticated algorithms incorporate observed optical properties of coastal waters. 
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10.3.4 Extending headland, bay and island classifications 
 

Further development and investigation of the classification of headlands, bays and 

islands proposed in Chapter 7 of this thesis is required to evaluate and extend its 

application to pollutant dispersion. 

 

Modelling is required to examine the spatial patterns of particle retention within 

embayments and headland wakes for  

• idealised coastal morphologies based on the known range of types and 

characteristics (classes of headlands and bays identified in Chapter 7); and, 

• actual NSW coastal morphology to map relative dispersion potential.  

In the first instance a limited range of regional flow scenarios could be used to 

drive two dimensional model simulations, commensurate with the objective of 

determining relative residence times to indicate generalised dispersion potential 

for typical NSW coastal morphologies. Neutrally buoyant, conservative 

(numerical) particles released into each of these simulated flow fields would 

determine indicative extents of re-circulation cells and relative residence times.  

This is essentially a sensitivity analysis based on known ranges of NSW headland 

morphologies to target subsequent more detailed modelling and observational 

investigations of specific dispersion characteristics.   

 

Similarly, the working definition of Bays in Chapter 7 warrants testing: “the area 

between adjacent headlands constitute a bay when the distance between adjacent 

headlands is less than twice the average length of headlands.” This can be tested 

and refined when field observations and model simulations are available to 

rigorously determine relevant length scales at which hydrodynamic characteristics 

are principally determined by the interacting effects of adjacent headlands rather 

than the individual effects of two single headlands. 

 

Montague Island and North Solitary Island stand out from NSW’s five largest 

offshore islands as targets for more detailed evaluation of wake effects as they 

appear most likely to be associated with wake effects such as re-circulation cells. 

However, based on the Wake Parameter, Fish Rock, a small island about 2km 

offshore from Smoky Cape, has the greatest propensity for wake effects. 
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The training wall system at the entrance of the Clarence River at Yamba is an 

obvious candidate for more detailed evaluation of the influence that such 

structures may have on boundary layer dynamics. Training walls at Yamba extend 

the entrance of the Clarence River more than 0.8 km offshore and maintain the 

greatest coastal discharge of freshwater of any river in NSW. No other training 

wall protrudes further eastward from shore. 

 

10.4  Closing Remarks 
 

This thesis has provided a new framework to understand the ways in which flows 

interact with coastal morphologies within the Coastal Boundary Layer and how 

this determines both pollutant dispersion patterns and distributions of marine 

communities and species.  

 

This knowledge is a prerequisite to understanding pollutant impacts, marine 

ecosystem functions and appropriate management responses.   
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APPENDIX 2: PUBLICATIONS AUTHORED BY 

T.PRITCHARD AND USED IN THIS THESIS 

 

Only those publications authored or co-authored by T.Pritchard and used in this 
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candidature (indicated in bold). 
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Abstract 
Coastal Boundary Layer processes are investigated to assess how coastal and shelf morphologies affect 
flows which control the dispersion of pollutants discharged from coastal catchments on the New South Wales 
Coast, with case studies off Sydney and Coffs Harbour. Simple morphological risk assessment tools are 
presented to identify factors and processes which limit the exposure of sensitive environments to high 
pollutant concentrations and loads. A new Maximum Dilution Potential is developed and applied to case 
studies with contrasting morphologies in coastal waters. Eddy retention effects are generally not 
incorporated in existing near field models but, by including an Eddy Retention Value, the Maximum Dilution 
Potential incorporates potential re-entrainment effects in Wake Zones. Case studies illustrate specific 
Coastal Boundary Layer effects and indicate how an understanding of the spatial and temporal scales of 
these effects can be used to target more specific assessments of potential pollutant impacts. Although the 
approach presented here is focused on NSW coastal waters, the framework serves as a basis for general 
application elsewhere, and as a foundation for further refinement for application to NSW coastal waters. 
 
Keywords: Pollutant dispersion, coastal boundary layer, New South Wales 
 
 
 
1. Introduction 
Pollutant loadings from coastal catchments enter 
coastal waters directly via regulated outfalls and 
unregulated stormwater drains, or indirectly via 
estuaries. These pollutants are advected and 
dispersed by coastal boundary layer (CBL) 
processes which result from interactions between 
flows and coastal/shelf morphologies including 
boundary jets, turbulent eddies, wake effects and 
tidal effects.  
 
The aims of this study are to investigate the 
processes within the coastal boundary layer that 
affect dispersal and advection of pollution to 
facilitate coastal management.  
 
In this paper we introduce the Coastal Boundary 
Layer, outline the results of a morphological 
classification of New South Wales (NSW) 
headlands in relation to their potential for wake 
effects, and develop a simple Maximum Dilution 
Potential index, which incorporates an Eddy 
Retention Value to take into account the effects of 
re-circulation in the lee of headlands. Case studies 
from NSW are discussed to illustrate this 
approach. 
 
2. Background 
 
2.1 The Coastal Boundary Layer 
As early as 1972 Gabriel Csanady used the term 
‘coastal boundary layer’ to describe a zone of 
dynamic features that were peculiar to near shore 
waters of the Great Lakes [6]. 
 

However, since then only occasional reference has 
been made to the coastal boundary layer [9,19,24] 
and no systematic CBL classification relevant to 
NSW coastal waters is evident in the scientific 
literature. 
 
The coastal boundary layer (CBL) can be defined 
as the turbulent interface between the coastline 
and open water where regional currents and ocean 
waves are profoundly affected by changes in the 
orientation and variable morphology of the 
coastline and the continental shelf.   
 
The CBL is analogous to the Planetary or 
Atmospheric Boundary Layer (PBL) albeit in the 
horizontal plane rather than the vertical plane. The 
CBL results from the interaction between regional 
currents and coastal bathymetry while the PBL 
results from interactions between regional winds 
and the planetary surface (e.g. [18]). Both are 
characterised by high levels of turbulence, strong 
gradients and rapid mixing with extreme variability 
and heterogeneity. 
 
The physical characteristics of both the CBL and 
the PBL are important in dispersion of pollutants 
and transport of biological and anthropogenic 
materials (e.g. sewage discharges in the CBL and 
photo chemical smog and dust in the PBL).  
 
This paper focuses on the Inner CBL effects 
associated with headland on pollutant dispersion 
(HW in Figure 1).  
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Figure 1 Schematic representation of the temporal
spatial scales of coastal boundary layer effects in NSW 
offshore waters. Ellipses represent indicative ranges of 
cross-shelf extents and dominant temporal expression of 
the CBL effects [10].  

3.  New South Wales Coastal Morphology
Various techniques have previously 
employed to characterise coastal roughness such 
as fractal analysis [22] and various classification 
systems exist for coastal environments such as 
estuaries [16], beaches [17], coastal depositional 
environments [8] and sandbanks [7]
shapes have previously been characterised in 
relation to likely differences in tsunami 
amplification and dissipation [2]. The results of the 
first morphological classification of 
headlands [10] based on potential for retention and 
dispersion of pollutants have expanded on this 
earlier focussed impact study, and are summarised 
here. 
 
One hundred and forty four NSW headlands were 
classified from Fingal Head just south of the 
Queensland border to Green Cape near the border 
with Victoria [7] (Figure 2). Of these one hundred 
and fourteen were identified as 
headlands with a median length of 624m (range 
186-5768m), and thirty as Coastal Step 
sided) headlands (length range 230
Cusp headlands result from the expression of 
regional geology and the northward sediment 
transport which tends to fill the northern ends of 
bays, often producing iconic north facing cusp 
asymmetry. Sand dominated asymmetric cusp 
shaped headlands were conspicuous in northern 
NSW such as near Crowdy Head
headlands were more numerous in the south such 
as around   Batemans Bay 
morphologies exhibited obvious fractal 
characteristics. 
 
The standardised Apex Angles of both 
and Coastal Step headlands were remarkably 
consistent with mean apex angles of 70° (SD 24°) 
and 67° (SD 22°), respectively, and identical 
ranges (20°to119°). 
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Figure 2 Simplified headland types relevant to NSW 
coastal morphologies 

 
4. Pollutant Dispersion in 
 
4.1 Wake Effects 
Although Cresswell et al. [4]
weak clockwise cells in the embayments of 
northern NSW (e.g. between Smoky Cape and 
Korogoro Pt, Hat Head and Crescent Head; 
Crescent Head and Pt Plomer) there has been no 
systematic evaluation of the potential for wake 
effects in NSW coastal and shelf 
 
Turbulent flows, including eddies, are shed in the 
wakes of headlands, islands, shoals, man
structures such as training walls, and in sudden 
expansions such as changes in the orientation of 
the coastline. The relative impo
forces (advection of momentum) and frictional 
forces governs the nature of flow patterns in wakes 
of such obstacles [21, 23, 3, 18]
force dominates the particles will be dragged along 
the obstacle but if the inertial f
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Pollutant Dispersion in the Inner CBL 

swell et al. [4] noted the presence of 
weak clockwise cells in the embayments of 
northern NSW (e.g. between Smoky Cape and 
Korogoro Pt, Hat Head and Crescent Head; 
Crescent Head and Pt Plomer) there has been no 
systematic evaluation of the potential for wake 

and shelf waters. 

Turbulent flows, including eddies, are shed in the 
wakes of headlands, islands, shoals, man-made 
structures such as training walls, and in sudden 
expansions such as changes in the orientation of 

The relative importance of inertial 
forces (advection of momentum) and frictional 
forces governs the nature of flow patterns in wakes 

[21, 23, 3, 18]. If the frictional 
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flow accelerate perpendicular to its intended path 
and separate from the obstacle resulting in a range 
of turbulent flow patterns. The ratio of inertial and 
frictional forces and associated flow patterns have 
been expressed by various indices such as the 
Reynolds Number and the Wake Parameter
which incorporates shallow water frictional effects
[23]. 
 
Wake Parameter,   P  =  U H

2
   

              Kz L 
 

where, U  = shear velocity  
  H  = water depth 

Kz = vertical eddy diffusion coefficient
  L    = length of obstacle 

 
The Wake Parameter was calculated for a range of 
NSW headland lengths and water depths as 
shown in Figure 3 by assuming a steady current of 
0.2 m/s and a ubiquitous constant vertical eddy 
diffusion coefficient (Kz) of 0.1 m
Parameter is directly proportional to ambient 
current velocity and inversely proportional to 
vertical eddy diffusion coefficient so the pattern in 
Figure 3 can be readily scaled according to 
variations in these parameters. B
preliminary analysis, wake effects are predicted by 
the Wake Parameter (P>1) for 
headlands in water depths greater than 35m 
(Figure 3). Conversely, NSW headlands in water 
depths less than 15m are unlikely to be associated 
with prominent, large scale, wake effects
bottom shear stress and wave energy would be 
expected to be more dominant. 

Figure 3 Headland length-depth distributions shown in 
relation to Wake Parameter, P = 1.  Below P=1 (
shade) flow separation and wake features such as re
circulation cells are favoured whereas above P=1 (lighter 

shade) frictional forces dominate to limit flow separation

 
Indices such as the Wake Parameter
developed for simple morphologies and steady 
flows so real world factors associated with complex 
morphologies and unsteady flows must be 
expected to reduce the applicability of these 
indices. However, the Wake Parameter
dimensionless flow indices provide a highly 
generalised relative measure of the propensity for 
various turbulent flow regimes. T
important morphological parameters 
used with caution to indicate broad classes of 

flow accelerate perpendicular to its intended path 
and separate from the obstacle resulting in a range 

The ratio of inertial and 
frictional forces and associated flow patterns have 
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which incorporates shallow water frictional effects 

            (1)
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developed for simple morphologies and steady 

ciated with complex 
morphologies and unsteady flows must be 
expected to reduce the applicability of these 

Wake Parameter and other 
dimensionless flow indices provide a highly 
generalised relative measure of the propensity for 

. They signal 
morphological parameters and can be 

used with caution to indicate broad classes of 

potential turbulent states and to 
hypothesis for more detailed observational and 
modelling studies. 
 
In general, recirculation is favoured by: deeper 
water due to lesser frictional effects; stronger 
currents although very high velocities can cause 
unstable turbulent flows; and, sharp tipped 
headlands which promote flow separation and 
spawn vorticity within the wake 
recirculation can be inhibited by a number factors 
such as: high levels of stochastically forced 
turbulence near the tip of a headland which may 
prevent the formation of a single narrow headland 
jet, instead resulting in a wider turbulent sh
layer which may be much less conducive to large
scale recirculation [1]. This, and other mixing 
processes, may be expressed by an eddy viscosity 
parameter which, when high, inhibits the formation 
of re-circulation / retention cells.
 
4.2 Maximum Dilution P
Maximum Dilution Potential
in terms which incorporate both maximum mixing 
of effluent with ambient waters and potential 
(maximum) effluent retention due to re
cells, which promote re-entrainment of previously 
discharged effluent in emerging effluent p
 
Initial or near-field dilution of pollutants discharged 
to coastal waters is fundamentally limited by the 
availability of ambient water; therefore, 
fundamental limiting factors are the effluent 
discharge rate, the flux of ambient water available 
for dilution, and the degree to which the 
discharged effluent escapes re
Engineering solutions such as well designed outfall 
diffuser systems with controlled exit velocities 
maximise initial dilutions in the near
overlook the complexitie
environment to fully optimise dilution capacity of 
the designed system [11].  
 
If we can assume near complete vertical mixing 
through the water column, an upper limit on near 
field effluent dilution is given by a proposed 
Maximum Dilution Potential
 

MDP(x)  =  U(x) H(x) D (1
              
where 

U(x) = ambient current velocity 
perpendicular to outfall orientation 
at a distance x from shore (m/s)

H(x)   = water depth at a distance x from 
shore (m)  

D    = diffuser length (m)
EF  = effluent flow (m
ERV = Eddy Retention 

(dimensionless)
 
If coastal configuration predisposes areas to the 
formation of a Wake Zone 

tates and to spawn testable 
for more detailed observational and 

recirculation is favoured by: deeper 
water due to lesser frictional effects; stronger 
currents although very high velocities can cause 

and, sharp tipped 
headlands which promote flow separation and 
spawn vorticity within the wake [18]. Likewise 
recirculation can be inhibited by a number factors 

high levels of stochastically forced 
turbulence near the tip of a headland which may 
prevent the formation of a single narrow headland 
jet, instead resulting in a wider turbulent shear 
layer which may be much less conducive to large-
scale recirculation [1]. This, and other mixing 
processes, may be expressed by an eddy viscosity 
parameter which, when high, inhibits the formation 

circulation / retention cells. 

Maximum Dilution Potential 
Maximum Dilution Potential (MDP) is defined here 
in terms which incorporate both maximum mixing 
of effluent with ambient waters and potential 
(maximum) effluent retention due to re-circulation 

entrainment of previously 
harged effluent in emerging effluent plumes. 

field dilution of pollutants discharged 
to coastal waters is fundamentally limited by the 
availability of ambient water; therefore, 
fundamental limiting factors are the effluent 
discharge rate, the flux of ambient water available 

on, and the degree to which the 
discharged effluent escapes re-entrainment. 
Engineering solutions such as well designed outfall 
diffuser systems with controlled exit velocities 
maximise initial dilutions in the near-field but often 
overlook the complexities of the receiving 
environment to fully optimise dilution capacity of 

 

If we can assume near complete vertical mixing 
through the water column, an upper limit on near 
field effluent dilution is given by a proposed 

n Potential (MDP): 

U(x) H(x) D (1-ERV)     (2) 
  EF 

ambient current velocity 
perpendicular to outfall orientation 
at a distance x from shore (m/s) 
= water depth at a distance x from 
shore (m)   

length (m) 
= effluent flow (m

3
/s) 

Eddy Retention Value 
(dimensionless) 

If coastal configuration predisposes areas to the 
Wake Zone then a worse case re-
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entrainment scenario is assumed. Here an Eddy 
Retention Value (ERV) is proposed as the ratio of 
volume of effluent discharged during the lifetime of 
a re-circulating lee eddy to the volume of water 
within the eddy.  
 

ERV = .       
E

F
T

                (3) 

      π RL
2
 HA 

where 
RL  = eddy dimension (m) 
T   = duration of eddy persistence (s) 
HA = average water depth in Wake Zone (m) 

 
RL and T are preferably determined by 
observations and/or through model simulations but, 
where water depth is well constrained, RL may also 
be estimated as the Wake Parameter (Equation 1) 
scaled (multiplied) by the Headland Length (L) 
giving 
 

RL    =    UHA
2
               (4) 

   KZ 
     
So by substituting RL in Equation 3 the Eddy 
Retention Value (ERV) becomes  
 

ERV  =   EF T  KZ
2
.            (5) 

     π U
2
HA

5
 

 
Clearly, ERV is highly sensitive to HA which limits 
its broader application to areas of simple and well 
defined bathymetry. 
 
5.  NSW Case Studies 
Here two case studies are outlined for sewage 
discharges off Coffs Harbour and off Sydney. 
 
5.1 Coffs Harbour 
The Coffs Harbour Case Study is located in the 
Inner CBL where a new ocean outfall was required 
to implement a regional effluent management 
strategy [5] which recognised Poor environmental 
outcomes of former shore line outfalls (Figure 4). 
 
The Wake Parameter here indicates borderline 
conditions for wake formation which is consistent 
with observations of transient re-circulation cell 
formation [11] and the characteristics listed below. 
 
Observed and Assumed Characteristics 
� Complex headland bathymetry (Harbour and 

Korffs Islet) 
� Headland Length (Corambirra Point) (L) =  860m 
� Water Depth (H) =  20m  
� Assumed vertical eddy diffusion coefficient (Kz) 

= 0.1 m
2
/s 

� Assumed current velocity  = 0.2 m/s 
 
 
 
 
 

 

 

Figure 4 Coffs Harbour study location showing local 
bathymetry, ADCP deployments (A-D) and transect T1-
T2 (dotted line).  Modified from Pritchard et al. [11] 
 

 
 
� Observed/simulated eddy length scale (Obs RL) 

~1000m 
� Outfall diffuser length (D) = 185m 
� Outfall distance from shore = 1500m 
� Effluent Flow Rate (EF) = 0.24 m

3
/s 

Calculated Parameters  
� Wake Parameter (P) = 0.93 
� Eddy length scale (RL) = 800m 
� Eddy Retention Value (ERV) = 0.0002 
 
The calculated and observed eddy length scales 
are remarkably similar (800m vs 1000m 
respectively). Expansion south of Corambirra Point 
due to the clockwise rotation of the orientation of 
the coastline may contribute to the slight 
underestimation of eddy size by the Eddy Length 
Scale Parameter (RL).  
 
A cross-shelf bathymetry profile and shore parallel 
residual currents along the prescribed alignment of 
the new outfall are shown in Figure 5. For the 
residual current scenario, the average MDP 
increases from about 1:250 within the wake (0-2km 
offshore) to about 1:3,500 in the free stream flow ( 
3-5km offshore), taking in to account an almost 
insignificant Eddy Retention Value (ERV = 0.02%); 
that is, the MDP is 14.4 times greater in the free 
stream than in the wake. 
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A 

 
 
B 

 
 
Figure 5 Cross-shelf bathymetry (A) and residual 
current (B) profiles along the prescribed alignment of 
the outfall (T1-T2). Outfall located at 21m water depth 
shown as box on T1-T2. Derived from data and model 
results presented in Pritchard et al. [11] 

 
5.2 Sydney 
The Sydney Case Study is located in the Outer 
CBL where NSW’s greatest loads of sewage 
derived pollutants are discharged via three 
deepwater outfalls [12]. 
 
Not surprisingly, Headland Wake effects do not 
interact with Sydney’s deepwater effluent plumes 
because the three major deepwater outfall systems 
are located well beyond the effects of the Inner 
CBL. Indeed the effluent plumes generally follow 
free stream flow and achieve high levels of dilution 
efficiency as demonstrated by models [24] and 
direct observations [14]. Therefore, the Eddy 
Retention Value (ERV) is zero. The Maximum 
Dilution Potential (MDP) was calculated for 
possible discharges along a cross-shelf transect 
that passes through the Bondi deepwater outfall 
(Figure 6B) as well as for each of the three actual 
outfalls (Table 1). The length of the diffuser was 
set at 510m (ie as constructed) and the effluent 
flow rate was fixed at 1.91 m

3
/s [13]. Cross-shelf 

current speeds [U(x)] were based on extrapolation 
of data observed along the Sydney Integrated 
Marine Observing System transect, while cross-
shelf bathymetry [H(x)] was based on Royal 
Australian Navy Charts (ISBN 1 86333 115 8).  
Based on the MDP cross-shelf profile Bondi 
deepwater outfall was located at an optimum 
distance from shore, at the base of a ‘steep’ inner 
shelf slope (Figure 6A). MDP calculations 

represented in Figure 6B account for stratification 
effects here by assuming that the maximum height 
of rise of plumes trapped by ambient stratification 
is half the water depth which is consistent with 
observed patterns [12,15].   

 

A 

 

 

 

 

 

 
B 
 
 
 
 
 
 

 
Figure 6 Profiles along a transect passing through Bondi 
deepwater outfall (shown as shaded box). 
A: Cross-shelf bathymetry profile 
B: Maximum Dilution Potential (MDP) 

 
When actual average initial dilutions based on 
validated near-field models [13] are compared with 
the theoretical Maximum Dilution Potential it is 
clear that Sydney’s three deepwater outfalls 
perform well, achieving 39% to 53% of their 
Maximum Dilution Potential (Table 1).  It is notable 
that Malabar outfall has the lowest Maximum 
Dilution Potential but the greatest outfall efficiency. 
 
Table 1  Maximum Dilution Potential calculation for 
Sydney’s deepwater ocean outfalls 

 Outfall / STP 

NH BON MAL 

Average Effluent Flow (m
3
/s) 4.46 1.91 5.67 

Diffuser Length (m) 765 510 720 

Water Depth (m) 60 60 80 

Median Dilutions TRAPPED 349 414 513 

MDPTRAPPED 721 1122 711 

Median Dilutions SURFACE 817 1193 636 

MDPSURFACE 1854 2884 1828 

Outfall Efficiency TRAPPED (%) 48% 37% 72% 

Outfall Efficiency SURFACE (%) 44% 41% 35% 

Outfall Efficiency AVERAGE (%) 46% 39% 53% 

Based on information provided by Pritchard et al. [13].  The 
innermost diffusers at North Head and Malabar are both 2900m 
from shore. 
 

6.  Conclusions: Management Implications 
Wastewater managers and regulators are required 
to pursue a range of wastewater management 
solutions, such as source control, beneficial re-
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uses, and minimization of overall impacts in order 
to achieve sustainable, socially acceptable 
outcomes. 
 
A hierarchical screening of potential environmental 
impacts driven by an understanding of CBL 
processes is particularly relevant to highly dynamic 
marine environments, and promotes transparent 
decision making which in turn promotes cost 
effective solutions.  
 
Feasible, cost efficient, options can be scoped by 
performing screening level assessments early in 
the planning and budgeting process based on 
readily available data such as coastal 
morphological and existing time series data. In this 
way, a set of rational options can be identified and 
prioritised for more detailed assessments. 
Subsequent, targeted assessments may then 
require acquisition of additional data and the use of 
more sophisticated modeling tools. 
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APPENDIX 4: DATA VISUALISATION TOOLS 

 

A4.1 NSW Ocean Outfall Inventory 

 

 

 

Available on attached USB 
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A4.2 Coffs Harbour Wind and Current Visualisation  

 
 

 
 
 
Available on attached USB which includes data files 
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