
Working Paper Series
ISSN 1177-777X

SYNTHESIS OBSERVATION EQUIVALENCE AND
WEAK SYNTHESIS OBSERVATION EQUIVALENCE

Sahar Mohajerani, Robi Malik, Martin Fabian

Working Paper: 03/2012
July 30, 2012

c©Sahar Mohajerani, Robi Malik, Martin Fabian

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton, 3240
New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29200325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SYNTHESIS OBSERVATION EQUIVALENCE
AND WEAK SYNTHESIS OBSERVATION

EQUIVALENCE

Sahar Mohajerani
Department of Signals and Systems
Chalmers University of Technology

Göteborg, Sweden
mohajera@chalmers.se

Robi Malik
Department of Computer Science

The University of Waikato
Hamilton, New Zealand
robi@waikato.ac.nz

Martin Fabian
Department of Signals and Systems
Chalmers University of Technology

Göteborg, Sweden
fabian@chalmers.se

July 30, 2012

Abstract

This working paper proposes an algorithm to simplify automata in such
a way that compositional synthesis results are preserved inevery possible
context. It relaxes some requirements of synthesis observation equivalence
from previous work, so that better abstractions can be obtained. The paper
describes the algorithm, adapted from known bisimulation equivalence algo-
rithms, for the improved abstraction method. The algorithmhas been imple-
mented in the DES software tool Supremica and has been used tocompute
modular supervisors for several large benchmark examples.It successfully
computes modular supervisors for systems with more than1012 reachable
states.

1

1 Introduction

Compositional methods are of great interest insupervisory control theory[15],
firstly in order to find more comprehensible supervisor representations, and sec-
ondly to overcome the problem ofstate-space explosionfor systems with a large
number of components.

Compositional synthesis[7, 10, 12] computes a supervisor for a large discrete
event system by repeatedabstraction. Individual system components are replaced
by simpler versions obtained from abstraction, and synchronous composition is
computed step-by-step on abstracted components. At each step, partial supervisors
are computed, which in the end give a modular supervisor for the original system.
In this way, state-space explosion is mitigated, making synthesis possible for very
large systems.

Several methods of compositional synthesis exist that differ in how abstrac-
tions are computed.Natural projectionis easy to compute, but it is restrictive
and additional conditions must be imposed to ensure synthesis of least restrictive
nonblocking supervisors [5, 16].Conflict-preservingabstractions andobservation
equivalenceare adequate for the synthesis of nonblocking supervisors, but least
restrictiveness is only guaranteed if all observable events are retainedin the ab-
straction [9,17].

More recently, a stronger version of observation equivalence knownassynthe-
sis observation equivalencehas been proposed [14]. Synthesis observation equiva-
lence is adequate for compositional synthesis of least restrictive supervisors. It has
been combined with other abstraction methods and used to compute supervisors
for practical applications [12].

This working paper proposes a relaxation of synthesis observation equivalence,
calledweak synthesis observation equivalence, which achieves better abstraction.
A polynomial complexity algorithm to compute the abstraction is presented.

This working paper is an extended version of [13]. After the preliminaries
in section 2, weak synthesis observation equivalence is defined in section3. The
algorithm to compute it is given in section 4, followed by experimental results in
section 5, and concluding remarks in section 6. Proofs of the technical results can
be found in the appendix.

2 Preliminaries and Notation

2.1 Events and Languages

Discrete event systems are modelled using events and languages [15]. Events are
taken from a finite alphabetΣ, which is partitioned into two disjoint subsets, the

2

setΣc of controllableevents and the setΣu of uncontrollableevents. The special
eventω ∈ Σc denotestermination.

The set of all finitetracesof elements ofΣ, including theempty traceε, is
denoted byΣ∗. A subsetL ⊆ Σ∗ is called alanguage. The concatenation of two
tracess, t ∈ Σ∗ is written asst. A traces ∈ Σ∗ is called aprefix of t ∈ Σ∗,
written s ⊑ t, if t = su for someu ∈ Σ∗. For Ω ⊆ Σ, thenatural projection
PΩ : Σ∗ → Ω∗ is the operation that removes from tracess ∈ Σ∗ all events not
in Ω.

2.2 Nondeterministic Automata

System behaviours are typically modelled by deterministic automata, but nonde-
terministic automata may arise as intermediate results during abstraction.

Definition 1 A (nondeterministic) finite-state automaton is a tupleG = 〈Σ, Q,
→, Q◦〉, whereΣ is a finite set of events,Q is a finite set ofstates, → ⊆ Q ×
Σ×Q is thestate transition relation, andQ◦ ⊆ Q is the set ofinitial states. G is
deterministic, if |Q◦| ≤ 1 andx

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

The transition relation is written in infix notationx
σ
→ y, and is extended to

traces inΣ∗ by lettingx
ε
→ x for all x ∈ Q, andx

sσ
→ z if x

s
→ y andy

σ
→ z for

somey ∈ Q. Furthermore,x
s
→ meansx

s
→ y for somey ∈ Q, andx→ y means

x
s
→ y for somes ∈ Σ∗. These notations also apply to state sets and to automata:

X
s
→ Y for X, Y ⊆ Q meansx

s
→ y for somex ∈ X andy ∈ Y , andG

s
→means

Q◦ s
→, etc. Theaccepted languageof automatonG isL(G) = { s ∈ Σ∗ | G

s
→}.

The termination eventω marks the completion of tasks. It is required to be in
the alphabet of every automaton, and states reached byω cannot have any outgoing
transitions. That is, ifx

ω
→ y theny

σ
→ does not hold for anyσ ∈ Σ. Thus,ω only

occurs as the final event of traces accepted by an automaton. The traditional set of
marked states isQω = {x ∈ Q | x

ω
→} in this notation. For graphical simplicity,

states inQω are shaded in the figures of this working paper instead of explicitly
showingω-transitions.

When automata are brought together to interact, synchronisation occurs on
shared events occurring synchronously or not at all. This is modelled bysyn-
chronous composition[8].

Definition 2 Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 andG2 = 〈Σ2, Q2,→2, Q

◦
2〉 be two

automata. Thesynchronous compositionof G1 andG2 is defined as

G1 ‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2,→, Q◦
1 ×Q◦

2〉 (1)

3

where

(x1, x2)
σ
→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1

σ
→1 y1, x2

σ
→2 y2 ; (2)

(x1, x2)
σ
→ (y1, x2) if σ ∈ Σ1 \ Σ2, x1

σ
→1 y2 ; (3)

(x1, x2)
σ
→ (x1, y2) if σ ∈ Σ2 \ Σ1, x2

σ
→2 y2 . (4)

Another common automaton operation is thequotientmodulo an equivalence
relation on the state set.

Definition 3 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let∼ ⊆ Q ×Q be an
equivalence relation. Thequotient automatonof G modulo∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (5)

where→/∼ = { [x]
σ
→ [y] | x

σ
→ y } and Q̃◦ = { [x◦] | x◦ ∈ Q◦ }. Here,

[x] = {x′ ∈ Q | x ∼ x′ } denotes theequivalence classof x ∈ Q, andQ/∼ =
{ [x] | x ∈ Q } is the set of all equivalence classes modulo∼.

2.3 Supervisory Control Theory

Given aplant automatonG and aspecificationautomatonK, supervisory control
theory[15] provides a method to synthesise a supervisor that restricts the behaviour
of the plant such that the specification is always fulfilled. Two common require-
ments for the supervisor arecontrollability andnonblocking.

Definition 4 Let G andK be two automata using the same alphabetΣ. K is
controllablewith respect toG if, for every traces ∈ Σ∗, every statex of K, and
every uncontrollable eventυ ∈ Σu such thatK

s
→ x andG

sυ
→, it holds thatx

υ
→

in K.

Definition 5 An automatonG = 〈Σ, Q,→, Q◦〉 is nonblocking, if for every state
x ∈ Q and every traces ∈ (Σ \ {ω})∗ such thatG

s
→ x there existst ∈ Σ∗ such

thatx
tω
→.

For a deterministic plantG, it is well-known [15] that there exists a supre-
mal controllable and nonblocking sublanguage ofL(G), which represents theleast
restrictive feasible supervisor. Algorithmically, it is more convenient to perform
synthesis on the automatonG instead of this language, or more precisely on the
lattice of subautomataof G [4]. This approach also works for nondeterministic
automata.

4

Definition 6 [7] G1 = 〈Σ, Q1,→1, Q
◦
1〉 is asubautomatonof G2 = 〈Σ, Q2,→2,

Q◦
2〉, writtenG1 ⊆ G2, if Q1 ⊆ Q2,→1 ⊆ →2, andQ◦

1 ⊆ Q◦
2.

Theorem 1 [7] Every deterministic automatonG has a supremal controllable and
nonblocking subautomaton,

supCN (G) = sup{K ⊆ G | K is controllable with respect toG and non-
blocking} .

(6)

Here, the supremal element is defined based on the subautomaton relationship
(definition 6). The result is equivalent to that of traditional supervisorycontrol
theory [15]. That is,supCN (G) represents the behaviour of the least restrictive
supervisor that disables only controllable events inG such that nonblocking is
ensured.

The synthesis resultsupCN (G) can be computed by removing blocking and
uncontrollable states from the plant, until a fixpoint is reached, and restricting the
original automatonG to these states.

Definition 7 [10] Therestrictionof G = 〈Σ, Q,→, Q◦〉 to X ⊆ Q is

G|X = 〈Σ, Q,→|X , Q◦ ∩X〉 , (7)

where→|X = { (x, σ, y) ∈ → | x, y ∈ X } ∪ { (x, ω, y) ∈ → | x ∈ X }.

Note that restriction only removes transitions, not states. Moreover, transitions
with the termination eventω are retained even if their successor state is not con-
tained inX. Typically, some states become unreachable after restriction, and these
states can be removed, but this is not considered further in this working paper.

Definition 8 [10] Thesynthesis step operatorΘG : 2Q → 2Q for G = 〈Σ, Q,→,
Q◦〉 is defined asΘG(X) = Θcont

G (X) ∩Θnonb
G (X), where

Θcont
G (X) = {x ∈ X | for all σ ∈ Σu, x

σ
→ y impliesy ∈ X } ;

Θnonb
G (X) = {x ∈ X | x

tω
→|X for somet ∈ Σ∗ } .

Θcont
G captures controllability, andΘnonb

G captures nonblocking. The synthesis
result forG is obtained by restrictingG to the greatest fixpoint ofΘG.

Theorem 2 [10] Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton. The
synthesis step operatorΘG has a greatest fixpointgfpΘG = Θ̂G ⊆ Q, such that
G|Θ̂G

is the greatest subautomaton ofG that is both controllable with respect toG
and nonblocking, i.e.,

supCN (G) = G|Θ̂G
. (8)

5

If the state setQ is finite, the sequenceX0 = Q, Xi+1 = ΘG(Xi) reaches this
fixpoint in a finite number of steps, i.e.,̂ΘG = Xn for somen ≥ 0.

2.4 Compositional Synthesis

Most discrete event systems aremodularand consist of several interacting com-
ponents. Then the synthesis problem is to find a least restrictive, controllable and
nonblocking supervisor for the synchronous composition of a set of plants

G = {G1, G2, . . . , Gn} . (9)

Compositional methods seek to build the synchronous composition incrementally,
replacing individual componentsGi by simplerabstractionsG′

i. Such simplifica-
tion typically exploits a setΥ ⊆ Σ of local events. These events are used only in
the automaton being abstracted and contribute substantially to its simplification.

The abstraction relation must ensure that the results obtained from the ab-
stracted model are the same as for the original model. An appropriate condition
that works for compositional synthesis issynthesis abstraction.

Definition 9 [14] Let G andH be deterministic automata with alphabetΣ. Then
H is asynthesis abstractionof G with respect toΥ ⊆ Σ, writtenG .synth,Υ H, if
for every deterministic automatonT = 〈ΣT , QT ,→T , Q◦

T 〉 such thatΣT ∩Υ = ∅
the following holds,

L(G ‖ supCN (H ‖ T)) = L(G ‖ supCN (G ‖ T)) . (10)

Synthesis abstraction requires that the supervisor synthesised from theab-
stracted automatonH, in combination with every possible rest of the systemT ,
yields the same language when controlling the system, as would the supervisor
synthesised from the original automatonG together withT .

3 Synthesis Observation Equivalence

Synthesis abstraction describes, in a general way, the kind of abstraction feasible
for compositional synthesis. This section presents a concrete method to simplify
a given automaton such that synthesis abstraction is satisfied, and the following
section presents an algorithm to implement this method.

The proposed method is based onbisimulationandobservation equivalence,
which are standard examples of branching equivalences [11]. For twostates to be
equivalent, they must have the same nondeterministic future. This requirement is
described using an equivalence relation that isstablewith respect to certain transi-
tion relations.

6

G1 (α)

(β) !υ!µ

q0 q1

G1/∼

!υ!µ

q01 (α, β)

T1

!υ!µ

G2
q0

q1 q2

q3 q4
α

α

α

(β)

γ

G2/∼
q0

q123

q4

α

α, γ

(β)

G3

q0
q1

q2

q3

q4 q5

q6

q7

α

α
α

α

(β)(β)

(β)

γγ

γ

Figure 1: Example Automata. Uncontrollable events are prefixed with!, and local
events have parentheses around them.

Definition 10 Let→ ⊆ X ×X be a relation on a setX. An equivalence relation
∼ ⊆ X×X is stablewith respect to→, if for all x1, x2, y1 ∈ X such thatx1 ∼ x2

andx1 → y1 there existsy2 ∈ X such thatx2 → y2 andy1 ∼ y2.

Definition 11 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence relation
∼ ⊆ Q × Q is called abisimulationon G, if ∼ is stable with respect to

σ
→ for all

σ ∈ Σ.

Definition 12 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ. An
equivalence relation∼ ⊆ Q × Q is called anobservation equivalenceon G with
respect toΥ, if ∼ is stable with respect to

σ
⇒ for all σ ∈ Σ, wherex

σ
⇒ y if and

only if x
t1PΩ(σ)t2
−−−−−−→ y for somet1, t2 ∈ Υ∗.

Unlike bisimulation, observation equivalence takes local events into account.
ProjectionPΩ is used in the definition of

σ
⇒ to ensure that it covers both shared

eventsσ ∈ Ω and local eventsσ ∈ Υ.
Bisimulation and observation equivalence preserve all temporal logic proper-

ties [3]. Once an equivalence∼ on G is found, the quotient automatonG/∼ can
be considered as an abstraction. For bisimulation this results in a synthesis abstrac-
tion, but it does not for observation equivalence [14].

Example 1 [14] Consider automataG1 andT1 in figure 1, whereΥ = {α, β}
andΣu = {!µ, !υ}. Statesq0 andq1 are observation equivalent and merging them
results inG1/∼. However,G1/∼ ‖ T1 does not have the same least restrictive

7

supervisor asG1 ‖ T1. A supervisor forG1 ‖ T1 can disableα to prevent block-
ing via !υ, but after mergingq0 andq1, disablingα is not enough to prevent the
dangerous uncontrollable event!υ.

While observation equivalence does not lead to synthesis abstraction in general,
it can be strengthened [14] such that it does.

Definition 13 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ. An
equivalence relation∼ ⊆ Q×Q is asynthesis observation equivalenceonG with

respect toΥ, if ∼ is stable with respect to
Υ
⇒soe, to

σ
⇒soe for eachσ ∈ Σc ∩Ω, and

to
υ
⇒u for eachυ ∈ Σu, defined as follows.

• x
Υ
⇒soe y if there exists a pathx = z0

τ1→ · · ·
τk→ zk = y such that

τ1, . . . , τk ∈ Υ, andτj ∈ Σc impliesx ∼ zj or j = k.

• x
σ
⇒soe y if there exists a pathx = z0

τ1→ · · ·
τk→ zk

σ
→ y such that

τ1, . . . , τk ∈ Υ, andτj ∈ Σc impliesx ∼ zj .

• x
υ
⇒u y if x

t1PΩ(υ)t2
−−−−−−→ y for somet1, t2 ∈ (Σu ∩Υ)∗.

Definition 13 modifies observation equivalence based on event types. Uncon-
trollable events are treated by⇒u in the same way as in observation equivalence,
except that the local events on the path must all be uncontrollable. Controllable
events can be preceded by local events according to⇒soe, provided that states
reached by controllable local events are equivalent to the start state of the path.

Example 2 Consider automatonG2 in figure 1, where all events are controllable
andΥ = {β}. The equivalence relation∼ with q1 ∼ q2 ∼ q3 is a synthesis

observation equivalence. For example, the transitionq2
α
→ q4 is matched byq1

β
→

q3
α
→ q4 where stateq3, reached by the local controllable eventβ, is equivalent

to q2. Merging the equivalent states results in the synthesis observation equivalent
abstractionG2/∼ shown in figure 1.

The definition of
σ
⇒soe does not allow any local eventsafter the controllable

eventσ. This is not necessary, and the condition can be relaxed as follows.

Definition 14 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ. An
equivalence relation∼ ⊆ Q × Q is a weak synthesis observation equivalence

on G with respect toΥ, if ∼ is stable with respect to
Υ
⇒wsoe, to

σ
⇒wsoe for each

σ ∈ Σc ∩ Ω, and to
υ
⇒u for eachυ ∈ Σu.

• x
Υ
⇒wsoe y if x

Υ
⇒soe z

Υ
⇒c y for somez ∈ Q.

8

• x
σ
⇒wsoe y if x

σ
⇒soe z

Υ
⇒c y for somez ∈ Q.

• x
Υ
⇒c y if there exists a pathx = z0

τ1→ · · ·
τk→ zk = y such thatτ1, . . . , τk ∈

Υ, andzj
u
→ z′ for u ∈ (Σu ∩Υ)∗ impliesz′ ∼ zi for some0 ≤ i ≤ k, and

zj
υ
⇒u z′ for υ ∈ Σu ∩ Ω impliesy

υ
⇒u z′′ for somez′′ ∼ z′.

The modified relation⇒wsoe allows for a path of local events after a control-
lable event, if local uncontrollable transitions outgoing from the path lead to a state
equivalent to a state on the path, and shared uncontrollable transitions arealso
possible in the end state of the path.

Example 3 Consider automatonG3 in figure 1, with all events controllable and
Υ = {β}. An equivalence relation withq1 ∼ q2 ∼ q3 andq4 ∼ q7 is a weak
synthesis observation equivalence. For example, transitionq2

α
→ q6 is matched

by q1
α
→ q7

β
→ q6, and stateq7 has no uncontrollable transitions outgoing. Note

that statesq1 and q2 are not synthesis observation equivalent, because the path

q1
α
→ q7

β
→ q6 does not satisfy the conditions for

α
⇒soe.

As shown in appendix B, every synthesis observation equivalence alsois a
weak synthesis observation equivalence. Therefore, the following result confirms
that both methods are feasible for compositional synthesis.

Theorem 3 Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton withΥ ⊆ Σ,
and let∼ be a weak synthesis observation equivalence onG with respect toΥ such
thatG/∼ is deterministic. ThenG .synth,Υ G/∼.

The proof follows from proposition 4 and proposition 6 in appendix A.

4 Algorithm

Given an automatonG = 〈Σ, Q,→, Q◦〉 and a setΥ of local events, a coarsest
weak synthesis observation equivalence relation can be computed by a partition
refinement algorithm similar to [6]. This algorithm represents an equivalence re-
lation as apartition, i.e., a set ofequivalence classeseach representing a set of
equivalent states. The algorithm starts with aninitial partition consisting of a sin-
gle equivalence class, which is iteratively refined until a stable partition is reached.
At each step, asplit is performed on each known equivalence classC for each re-
lation⇒ for which stability is required, separating statesx with x⇒ C from other
states. This principle is shown in algorithm 1.

9

Algorithm 1 Weak Synthesis Observation Equivalence
1: input G = 〈Σ, Q,→, Q◦〉
2: partition ← {Q}
3: repeat
4: for all C ∈ partition do
5: for all σ ∈ Σ do
6: SplitOn(partition, C, σ)
7: end for
8: end for
9: until there has been no further split

10: return partition

The bisimulation algorithm [6] performs clever bookkeeping when classes are
split, which reduces the need to check whether further splits are necessary and en-
sures an overall time complexity ofO(|→| log |Q|). For observation equivalence,
the transitive closureof the local event transitions needs to be computed, and this
transitive closure computation dominates complexity. A partition based on obser-
vation equivalence can be computed inO(|Q|3) time complexity [2].

The partition refinement algorithm uses several data structures to facilitate the
splitting of classes [6]. Each equivalence class is an object containing a list of the
states in the class, and each state has a reference back to the class containing it. In
addition, each equivalence class has asplit list containing states to be split off from
it.

TheSplitOnalgorithm (algorithm 2) performs the splitting for paths leading to
a target classC, called asplitter. States with a path to thesplitter based on each
relation⇒wsoe and⇒u in definition 14 are separated from states without such a
path. This is done by visiting each stateendin thesplitterand searching backwards
for all statessrc with appropriate paths toend. These states are put in the split list
of their class. After exploring the predecessors of allendstates, the split lists are
checked in lines 12–16. Classes with an empty split list or a split list containing
all states in the class are left unchanged, other classes are split and replaced by two
new classes.

For uncontrollable events, the source states for⇒u are found by a standard
backwards search (lines 2–6), whereas for controllable events a special proce-
dureBSis used to follow the paths generated by⇒wsoe (lines 8–10).

The procedureBS(algorithm 3) performs a backward search for a given con-
trollable eventσ andendstate to find pathsx ⇒soe z ⇒c end . It uses aqueueof
search records〈current , part , startclass〉, each containing acurrentstate, whether
the search is in the first (⇒soe) or second (⇒c) part of the path, and thestartclass

10

Algorithm 2 SplitOn(partition⊆2Q, splitter⊆Q, σ∈Σ)

1: if σ ∈ Σu then
2: for all end ∈ splitter do
3: for all src

σ
⇒u end do

4: movesrc to split list in [src]
5: end for
6: end for
7: else
8: for all end ∈ splitter do
9: BS (σ, end)

10: end for
11: end if
12: for all class ∈ partition do
13: if classhas a non-trivial split listthen
14: split classand updatepartition
15: end if
16: end for

(class of the yet unknown start statex) of the path. The search starts with theend
state, in the second part of the path, and with an unassignedstartclass, so the queue
is initialised with the search record〈end , 2, none〉 in line 1.

When exploring acurrent state in the first part of the path, it is first checked
whether this state can be the start of a path generated by⇒soe. This is possible if
it belongs to thestartclass, or if the startclassis unassigned, and in this case the
currentstate is marked as a candidate to be split off from its class (lines 5–7).

Afterwards the loop in lines 8–14 scans all local transitions leading to thecur-
rent state. If the event is uncontrollable, a new search record with the previous
startclassis created in line 10. If the event is controllable, then based on defini-
tion 13 thecurrentstate must be equivalent to the yet unknown start statex of the
path. If thestartclassis unassigned or the same as the class ofcurrent, thencurrent
can potentially bex, so its class is used to form a new search record in line 12.

If the algorithm is in the second part of the path, it checks for possible pre-
decessors according to⇒c. This is only needed for weak synthesis observation
equivalence; synthesis observation equivalence is checked by the same algorithm
if lines 16–32 are deleted fromBS. These lines check, for each local transition lead-
ing to thecurrent state, whether the source statesrc is controllable. This is done
by exploring all states reachable by traces of local uncontrollable events. If one of
these states is not equivalent to thesrc, current, orendstate, or has a shared uncon-
trollable outgoing transition to a state with no matching state reachable from the

11

Algorithm 3 Backward SearchBS (σ ∈ Σc, end ∈ Q)

1: queue ← {〈end , 2, none〉}
2: while queue 6= ∅ do
3: remove〈current , part , startclass〉 from queue
4: if part = 1 then
5: if startclass ∈ {[current], none} then
6: movecurrent to split list in [current]
7: end if
8: for all transitionssrc

υ
→ current with υ ∈ Υ do

9: if υ ∈ Σu then
10: add〈src, 1, startclass〉 to queue
11: else ifstartclass ∈ {[current], none} then
12: add〈src, 1, [current]〉 to queue
13: end if
14: end for
15: else
16: for all transitionssrc

υ
→ current with υ ∈ Υ do

17: controllable ← true

18: for all src
u
→ succ with u ∈ (Σu ∩Υ)∗ do

19: if succ /∈ [src] ∪ [current] ∪ [end] then
20: controllable ← false

21: else
22: for all succ

γ
→ succ′ with γ ∈ Σu ∩ Ω do

23: if not [end]
γ
⇒u [succ′] then

24: controllable ← false

25: end if
26: end for
27: end if
28: end for
29: if controllablethen
30: add〈src, 2, none〉 to queue
31: end if
32: end for
33: if σ ∈ Υ then
34: add〈current , 1, none〉 to queue
35: else
36: for all transitionssrc

σ
→ current do

37: add〈src, 1, none〉 to queue
38: end for
39: end if
40: end if
41: end while

12

endclass, then thesrc state is notcontrollable. Otherwise, a new search record is
created in line 30. The condition checked here is stronger than⇒c in definition 14,
which allows the target states of uncontrollable local transitions to be anywhere
along the second part of the path. The algorithm still results in a weak synthe-
sis observation equivalence relation, but not necessarily a coarsestone, as shown
in appendix C. An exact implementation of⇒c requires search records to store
complete paths, making the algorithm exponential.

Next it is checked whether it is possible to move from the second part of the
path to the first. This is possible if the eventσ under consideration is local (line 34),
or if there is aσ-transition to thecurrentstate (lines 36–38).

The algorithm terminates when thequeueof search records is empty. To pre-
vent duplicates, thequeueis linked to a hash set to ensure that search records that
have been enqueued once are never added to thequeueagain. The hash set is reset
for each split operation, i.e., before line 8 in Algorithm 2.

Complexity. In the worst case, the main loop in line 3 of algorithm 1 is executed
once for each state, giving up to|Q| iterations. Inside the loop, a split on each class
is performed. This causes each state to be processed once for each event, using
either the loop in lines 2–6 or 8–10 of algorithm 2. The bodies of these loops are
executed|Σ||Q| times in total during each iteration of the main loop of algorithm 1.
The splitting of classes after line 12 can be executed in lower complexity using the
data structures outlined above.

The loop in lines 2–6 of algorithm 2 can be executed inO(|Q|2) time, assuming
the transition relation⇒u has been computed in advance. This is dominated by the
loop in lines 8–10 which calls algorithmBS.

In the worst case, algorithmBSvisits two search records for each combination
of a state and class, i.e., up to2|Q|2 search records. Each time, it executes either
the loop in lines 8–14 or 16–32. The loop in lines 8–14 visits all local incoming
transitions to a state, up to|Q| operations if the local transitions are appropriately
stored in advance. The loop in lines 16–32 also processes up to|Q| local predeces-
sor states, however each time the loop in lines 18–28 must be executed, potentially
increasing complexity. Fortunately, this can be avoided by caching. The⇒u-
successors of theendclass can be computed in advance, and it can be checked for
each statesrc whether it has exactly one successor class reachable by local uncon-
trollable events that is different from the class ofsrc and from theendclass, and
that also passes the test in lines 22–26. By caching this successor class,it is possi-
ble to execute the loop in lines 18–28 only once for each state during the execution
of the algorithm 3. With this caching, the complexity of algorithmBSis O(|Q|3).

Therefore, the execution of algorithm 1 involvesO(|Q|) iterations of the main
loop, each performingO(|Σ||Q|) search operations with ofO(|Q|3) complexity.

13

Table 1: Experimental Results
SOE WSOE

Model Aut States Time States Time States

agv 16 2.6·107 17.8 s 107747 18.2 s 106169
agvb 17 2.3·107 11.7 s 83577 11.5 s 82353
aip0alps 35 3.0·108 0.9 s 867 0.9 s 867
fencaiwon09b 31 8.9·107 0.1 s 73 0.1 s 73
fms 2003 31 1.4·107 83.6 s 673868 69.7 s 444922
koordwsp b 24 1.1·107 0.5 s 756 0.4 s 743
tbed noderailb 84 3.1·1012 5.7 s 18134 4.4 s 18134
tbed uncont 84 3.6·1012 5.0 s 9148 4.4 s 9148

The worst-case time complexity to calculate a coarsest synthesis observationequiv-
alence or a weak synthesis observation equivalence relation using this algorithm is
O(|Σ||Q|5).

5 Experimental results

The synthesis observation equivalence and weak synthesis observation equivalence
algorithms have been implemented in the DES software toolSupremica[1] and
used within a compositional supervisor synthesis algorithm that computes modular
supervisors [12].

This program has been used to compute synthesis abstractions for a set of
benchmark examples that include complex industrial models and case studies taken
from various application areas such as manufacturing systems and automotive body
electronics. The automata in each example are iteratively composed and simplified,
until a final abstraction is obtained and passed on to standard synthesis. All tests
were run on a standard desktop PC using a single core 2.66 GHz microprocessor.

Table 1 shows for each test case the number of automata (Aut) in the model
and the size of the reachable state space (States). It also shows the total runtime
of compositional synthesis (Time) and the number of states in the final abstraction
passed on to standard synthesis (States), when using synthesis observation equiva-
lence (SOE) or weak synthesis observation equivalence (WSOE).

Supervisors can be calculated for all models in less than two minutes, with
memory usage of no more than 600 MB. The size of the models is substantially
reduced compared to the size of the original systems. Weak synthesis observation
equivalence gives slightly less states than synthesis observation equivalence with
about the same computational cost.

All examples are too large for supervisors to be computed by standard synthesis

14

alone, and abstraction using only bisimulation results in a final abstraction with at
least2 · 106 states for all test cases.

6 Conclusions

Weak synthesis observation equivalence has been introduced as a means of abstrac-
tion for compositional synthesis algorithms. Weak synthesis observation equiva-
lence allows for better abstraction than previously possible with synthesis obser-
vation equivalence. A polynomial complexity algorithm for synthesis observation
equivalence and weak synthesis observation equivalence has been proposed and
implemented in the DES software tool Supremica. The experimental results show
that the algorithm can compute abstractions of automata with several thousand
states, making it possible to construct modular supervisors for systems with more
than1012 reachable states.

References

[1] Knut Åkesson, Martin Fabian, Hugo Flordal, and Robi Malik. Supremica—
an integrated environment for verification, synthesis and simulation of dis-
crete event systems. InProceedings of the 8th International Workshop on
Discrete Event Systems, WODES’06, pages 384–385, Ann Arbor, MI, USA,
July 2006.

[2] Tommaso Bolognesi and Scott A. Smolka. Fundamental results for the veri-
fication of observational equivalence: a survey. In Harry Rudin andColin H.
West, editors,Protocol Specification, Testing and Verification VII: Proceed-
ings of IFIP WG6.1 7th International Conference on Protocol Specification,
Testing and Verification, pages 165–179, Amsterdam, The Netherlands, 1987.
North Holland.

[3] Stephen D. Brookes and William C. Rounds. Behavioural equivalence rela-
tions induced by programming logics. InProceedings of 16th International
Colloquium on Automata, Languages, and Programming, ICALP ’83, volume
154 ofLNCS, pages 97–108. Springer-Verlag, 1983.

[4] Martin Fabian. On Object Oriented Nondeterministic Supervisory Control.
PhD thesis, Chalmers University of Technology, Göteborg, Sweden, 1995.

[5] Lei Feng and W. M. Wonham. Computationally efficient supervisor design:
Abstraction and modularity. InProceedings of the 8th International Work-

15

shop on Discrete Event Systems, WODES’06, pages 3–8, Ann Arbor, MI,
USA, July 2006.

[6] Jean-Claude Fernandez. An implementation of an efficient algorithm for
bisimulation equivalence.Science of Computer Programming, 13:219–236,
1990.

[7] Hugo Flordal, Robi Malik, Martin Fabian, and KnutÅkesson. Compositional
synthesis of maximally permissive supervisors using supervision equivalence.
Discrete Event Dynamic Systems: Theory and Applications, 17(4):475–504,
2007.

[8] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[9] Petra Malik, Robi Malik, David Streader, and Steve Reeves. Modularsynthe-
sis of discrete controllers. InProceedings of 12th IEEE International Con-
ference on Engineering of Complex Computer Systems, ICECCS ’07, pages
25–34, Auckland, New Zealand, 2007.

[10] Robi Malik and Hugo Flordal. Yet another approach to compositionalsyn-
thesis of discrete event systems. InProceedings of the 9th International
Workshop on Discrete Event Systems, WODES’08, pages 16–21, G̈oteborg,
Sweden, May 2008.

[11] Robin Milner.Communication and concurrency. Series in Computer Science.
Prentice-Hall, 1989.

[12] Sahar Mohajerani, Robi Malik, and Martin Fabian. Nondeterminism avoid-
ance in compositional synthesis of discrete event systems. InProceedings
of the 7th International Conference on Automation Science and Engineering,
CASE 2011, pages 19–24, Trieste, Italy, 2011.

[13] Sahar Mohajerani, Robi Malik, and Martin Fabian. An algorithm for weak
synthesis observation equivalence for compositional supervisor synthesis. In
Proceedings of the 11th International Workshop on Discrete Event Systems,
WODES’12, Guadalajara, Mexico, October 2012. to appear.

[14] Sahar Mohajerani, Robi Malik, Simon Ware, and Martin Fabian. On theuse
of observation equivalence in synthesis abstraction. InProceedings of the 3rd
IFAC Workshop on Dependable Control of Discrete Systems, DCDS 2011,
pages 84–89, Saarbrücken, Germany, 2011.

[15] Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event
systems.Proceedings of the IEEE, 77(1):81–98, January 1989.

16

[16] Klaus Schmidt and Christian Breindl. On maximal permissiveness of hierar-
chical and modular supervisory control approaches for discrete event systems.
In Proceedings of the 9th International Workshop on Discrete Event Systems,
WODES’08, pages 462–467, G̈oteborg, Sweden, May 2008.

[17] Rong Su, Jan H. van Schuppen, and Jacobus E. Rooda. Modelabstraction of
nondeterministic finite-state automata in supervisor synthesis.IEEE Trans-
actions on Automatic Control, 55(11):2527–2541, November 2010.

A Weak Synthesis Observation Equivalence

This appendix contains a proof of theorem 3, which states that weak synthesis
observation equivalence implies synthesis abstraction. Following the line of [14],
this is done by proving that weak synthesis observation equivalence impliesstate-
wise synthesis equivalence.

Definition 15 [14] Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence
relation∼ ⊆ Q × Q is a state-wise synthesis equivalenceon G with respect to
Υ ⊆ Σ, if for all x ∈ Q, all deterministic automataT = 〈ΣT , QT ,→T , Q◦

T 〉 such
thatΣT ⊆ Υ, and for all statesxT ∈ QT the following relations hold:

(i) if (x, xT) ∈ Θ̂G‖T , then([x], xT) ∈ Θ̂G/∼‖T ;

(ii) if ([x], xT) ∈ Θ̂G/∼‖T , then(x, xT) ∈ Θ̂G‖T .

State-wise synthesis equivalence means that for every equivalence classx̃, syn-
thesis must remove either all or none of the states inx̃, in every possible contextT .
It is a known result [14] that this is a sufficient condition for synthesis abstraction.

Proposition 4 [14] Let G = 〈Σ, Q,→, Q◦〉 be deterministic, and let∼ be a
state-wise synthesis equivalence onG with respect toΥ ⊆ Σ such thatG/∼ is
deterministic. ThenG .synth,Υ G/∼.

Proof. It must be shown that for any deterministic automatonT = 〈ΣT , QT ,→T ,
Q◦

T 〉 such thatΣT ∩Υ = ∅, equation (10) holds.
First, let s ∈ L(G ‖ supCN (G ‖ T)). This meansG ‖ supCN (G ‖ T)

s
→

(xG, yG, xT), and sinceG is deterministicxG = yG. Let s = σ1 · · ·σn, then
(xG

0 , xT
0)

σ1→|Θ̂G‖T
(xG

1 , xT
1)

σ2→|Θ̂G‖T
· · ·

σn→|Θ̂G‖T
(xG

n , xT
n) = (xG, xT) such

that (xG
k , xT

k) ∈ Θ̂G‖T or σk = ω for k = 0, . . . , n. By definition 15 (i),

([xG
k], xT

k) ∈ Θ̂G/∼‖T or σk = ω for k = 0, . . . , n, and thus([xG
0], xT

0)
σ1→|Θ̂G/∼‖T

17

([xG
1], xT

1)
σ2→|Θ̂G/∼‖T

· · ·
σn→|Θ̂G/∼‖T

([xG
n], xT

n) = ([xG], xT). Therefore,G ‖

supCN (G/∼‖T)
s
→ (xG, [xG], xT), which meanss ∈ L(G‖supCN (G/∼‖T)).

Conversely, lets ∈ L(G‖supCN (G/∼‖T)). SinceG andG/∼ are determin-
istic, this meansG‖supCN (G/∼‖T)

σ1→ (xG
1 , [xG

1], xT
1)

σ2→ · · ·
σn→ (xG

n , [xG
n], xT

n),
wheres = σ1 · · ·σn. Since([xG

k], xT
k) ∈ Θ̂G/∼‖T for k = 0, . . . , n by def-

inition 15 (ii), (xG
k , xT

k) ∈ Θ̂G‖T or σk = ω for k = 0, . . . , n. Therefore,

G ‖ supCN (G ‖ T)
σ1→ (xG

1 , xG
1 , xT

1)
σ2→ · · ·

σn→ (xG
n , xG

n , xT
n), and thus it can

be concluded thats ∈ L(G ‖ supCN (G ‖ T)). �

Proposition 6 below establishes the crucial result that every weak synthesis
observation equivalence is a state-wise synthesis equivalence. Before that, lemma 5
establishes an auxiliary result about the paths in a quotient automaton resulting
from weak synthesis observation equivalence.

Lemma 5 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q◦
T 〉 be two automata

with Σ∪ΣT = Ω ∪̇Υ andΥ∩ΣT = ∅, and let∼ be a weak synthesis observation
equivalence onG with respect toΥ. Let X ⊆ Q × QT such that([x], xT) ∈
Θ̂G/∼‖T always implies(x, xT) ∈ X. Furthermore, let(x1, x

T
1)

σ
→ (x2, x

T
2) such

that([x1], x
T
1)

σ
→|Θ̂G/∼‖T

([x2], x
T
2). Then for all statesy1 ∈ Q such thatx1 ∼ y1,

there existt1, t2 ∈ Υ∗ andy2 ∈ Q such that(y1, x
T
1)

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2) and

x2 ∼ y2.

Proof. Letx1, x2, y1 ∈ Q andxT
1 , xT

2 ∈ QT andσ ∈ Σ∪ΣT such that(x1, x
T
1)

σ
→

(x2, x
T
2), ([x1], x

T
1)

σ
→|Θ̂G/∼‖T

([x2], x
T
2), andx1 ∼ y1. Consider three cases.

(i) If σ /∈ Σ, thenσ 6= ω andσ ∈ ΣT \ Σ ⊆ Ω andx1 = x2 andxT
1

σ
→

xT
2 . Given ([x1], x

T
1)

σ
→|Θ̂G/∼‖T

([x2], x
T
2), it follows that ([y1], x

T
1) =

([x1], x
T
1) ∈ Θ̂G/∼‖T and([y1], x

T
2) = ([x1], x

T
2) = ([x2], x

T
2) ∈ Θ̂G/∼‖T ,

and therefore(y1, x
T
1), (y1, x

T
2) ∈ X by assumption. This implies that

(y1, x
T
1)

PΩ(σ)
−−−−→|X (y1, x

T
2).

(ii) If σ ∈ Σ ∩ Σu, thenx1
σ
⇒u x2, and sincex1 ∼ y1 and∼ is stable with re-

spect to
σ
⇒u, there existsy2 ∈ Q such thaty1

σ
⇒u y2. Thus,y1

t1PΩ(σ)t2
−−−−−−→ y2

for somet1, t2 ∈ (Υ ∩ Σu)
∗. Let r ⊑ t1PΩ(σ)t2 such thaty1

r
→ z. Then

[x1] = [y1]
r
→ [z], and sinceΣT ∩ Υ = ∅, it follows that ([x1], x

T
1)

r
→

([z], xT
d) for somed ∈ {1, 2}. Sincer ∈ Σ∗

u and ([x1], x
T
1) ∈ Θ̂G/∼‖T ,

it follows that ([z], xT
d) ∈ Θ̂G/∼‖T . This implies(z, xT

d) ∈ X by assump-

18

tion. This argument holds for all prefixesr ⊑ t1PΩ(σ)t2, and therefore

(y1, x
T
1)

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2).

(iii) If σ ∈ Σ ∩ Σc, thenx1
σ
⇒wsoe x2 or x1

Υ
⇒wsoe x2, and sincex1 ∼ y1

and∼ is stable with respect to these relations, there existsy2 ∼ x2 such

thaty1
σ
⇒wsoe y2 or y1

Υ
⇒wsoe y2. That is, there exists a pathy1 = z0

τ1→

· · ·
τk→ zk

PΩ(σ)
−−−−→ zk+1

τk+1
−−−→ · · ·

τl−1
−−→ zl = y2 such thatx2 ∼ y2 and

τ1, . . . , τl−1 ∈ Υ. The first part of this path satisfies the conditions for

z0
σ
⇒soe zk+1 or z0

Υ
⇒soe zk+1 in definition 13, and the second part sat-

isfies the conditions forzk+1
Υ
⇒c zl in definition 14. Sinceτ1, . . . , τl−1 ∈ Υ

andΣT ∩Υ = ∅, it holds that

(y1, x
T
1) = (z0, x

T
1)

τ1→ · · ·
τk→ (zk, x

T
1)

PΩ(σ)
−−−−→

(zk+1, x
T
2)

τk+1
−−−→ · · ·

τl−1
−−→ (zl, x

T
2) = (y2, x

T
2) (11)

It follows that

([z0], x
T
1)

τ1→ · · ·
τk→ ([zk], x

T
1)

PΩ(σ)
−−−−→

([zk+1], x
T
2)

τk+1
−−−→ · · ·

τl−1
−−→ ([zl], x

T
2) . (12)

It is shown in the following that this path also exists in the restriction of
G/∼ ‖ T to Θ̂G/∼‖T .

For the first part of the path (12), it is shown by induction oni that([zi], x
T
1) ∈

Θ̂G/∼‖T , for i = 0, . . . , k if σ ∈ Ω, and fori = 0, . . . , k − 1 if σ ∈ Υ.

Base case.Fori = 0, it follows by assumption that([z0], x
T
1) = ([y1], x

T
1) =

([x1], x
T
1) ∈ Θ̂G/∼‖T .

Inductive step. Assume the claim holds for somei ≥ 0, i.e., ([zi], x
T
1) ∈

Θ̂G/∼‖T . It must be shown that([zi+1], x
T
1) ∈ Θ̂G/∼‖T . There are two

possibilities forτi+1 ∈ Υ:

a) τi+1 ∈ Σc. In this case, it follows fromz0
σ
⇒soe zk+1 or z0

Υ
⇒soe zk+1

by definition 13 thatzi+1 ∼ x1, and thus([zi+1], x
T
1) = ([x1], x

T
1) ∈

Θ̂G/∼‖T by assumption.

b) τi+1 ∈ Σu. As (zi, x
T
1)

τi+1
−−→ (zi+1, x

T
1), it holds that([zi], x

T
1)

τi+1
−−→

([zi+1], x
T
1), and([zi], x

T
1) ∈ Θ̂G/∼‖T by inductive assumption. Then

([zi+1], x
T
1) ∈ Θ̂G/∼‖T becauseτi+1 ∈ Σu.

19

If σ = ω, the second part of the path (12) is empty and the claim follows.
Otherwise note that by assumption,

([x2], x
T
2) ∈ Θ̂G/∼‖T . (13)

It is shown that([zi], x
T
2) ∈ Θ̂G/∼‖T for k < i < l. LetΥT

u = Σu∩(ΣT \Σ)
and

Y T = { yT ∈ QT | x
T
2

u
→T yT for someu ∈ (ΥT

u)∗ } . (14)

AsxT
2 ∈ Y T , it is enough to show that([zi], y

T) ∈ Θ̂G/∼‖T for all yT ∈ Y T .
It is shown by induction onn ≥ 0 that for allk < i < l and for allyT ∈ Y T

it holds that([zi], y
T) ∈ X̃n = Θn

G/∼‖T (Q/∼×QT).

Base case.n = 0. Clearly ([zi], y
T) ∈ Q/∼ × QT = Θ0

G/∼‖T (Q/∼ ×

QT) = X̃0.

Inductive step. Let k < i < l and yT ∈ Y T . It must be shown that
([zi], y

T) ∈ X̃n+1 = ΘG/∼‖T (X̃n) = Θcont
G‖T (X̃n) ∩Θnonb

G‖T (X̃n).

To see that([zi], y
T) ∈ Θcont

G‖T (X̃n), let υ ∈ Σu and ([zi], y
T)

υ
→G/∼‖T

([z], zT). Consider three cases.

a) υ ∈ Σ ∩ Υ. In this caseyT = zT and [zi]
υ
→ [z], so there exist

z′i ∼ zi andz′ ∼ z such thatz′i
υ
→ z′ and thusz′i

υ
⇒u z′. As zi ∼ z′i

and∼ is stable with respect to
υ
⇒u, there existsz′′ ∼ z′ such that

zi
υ
⇒u z′′. As υ ∈ Σu ∩ Υ, this meanszi

u
→ z′′ for someu ∈ (Σu ∩

Υ)∗. As zi is on a pathzk+1
Υ
⇒c zl, it follows from definition 14 that

z′′ ∼ zj for somek < j ≤ l. If j < l, then by inductive assumption
([z], zT) = ([z′], zT) = ([z′′], zT) = ([zj], z

T) ∈ X̃n. If j = l, then
note that([x2], x

T
2)

u
→ ([x2], z

T) for someu ∈ (ΥT
u)∗ aszT = yT ∈

Y T , and given (13) it follows that([y2], z
T) = ([x2], z

T) ∈ Θ̂G/∼‖T .
Then([z], zT) = ([z′], zT) = ([z′′], zT) = ([zl], z

T) = ([y2], z
T) ∈

Θ̂G/∼‖T ⊆ X̃n.

b) υ ∈ Σ ∩ Ω. In this case[zi]
υ
→ [z], so there existz′i ∼ zi andz′ ∼ z

such thatz′i
υ
→ z′, and thusz′i

υ
⇒u z′. As zi ∼ z′i and∼ is stable

with respect to
υ
⇒u, there existsz′′ ∼ z′ such thatzi

υ
⇒u z′′. As zi

is on a pathzk+1
Υ
⇒c zl = y2 ∼ x2, it follows from definition 14

that x2
υ
⇒u z′′2 for somez′′2 ∼ z′′ ∼ z′ ∼ z. Then sinceyT ∈ Y T

and by definition of⇒u, there existu ∈ (ΥT
u)∗ andu1, u2 ∈ (Σu ∩

Υ)∗ such that([x2], x
T
2)

u
→G/∼‖T ([x2], y

T)
u1υu2−−−−→G/∼‖T ([z′′2], zT).

Given (13), it follows that([z], zT) = ([z′′2], zT) ∈ Θ̂G/∼‖T ⊆ X̃n.

20

c) υ /∈ Σ. In this case,υ ∈ ΣT \ Σ and [zi] = [z] andyT υ
→T zT .

Then clearlyzT ∈ Y T and([z], zT) = ([zi], z
T) ∈ X̃n by inductive

assumption.

Thus ([z], zT) ∈ X̃n can be shown for allυ ∈ Σu, and it follows that
([zi], y

T) ∈ Θcont
G/∼‖T (X̃n).

Next, it is shown that([zi], y
T) ∈ Θnonb

G/∼‖T (X̃n). As τk+1, . . . , τl ∈ Υ and
ΣT ∩Υ = ∅, it holds by inductive assumption that,

([zk+1], y
T)

τk+1
−−−→|X̃n · · ·

τk→|X̃n ([zl], y
T) . (15)

SinceyT ∈ Y T , there existsu ∈ (ΥT
u)∗ such thatxT

2
u
→T yT , and this

implies ([x2], x
T
2) = ([zl], x

T
2)

u
→G/∼‖T ([zl], y

T). Sinceu ∈ Σ∗
u, it fol-

lows by (13) that([zl], y
T) ∈ Θ̂G/∼‖T . Then there existst ∈ Σ∗ such that

([zl], y
T)

tω
→|Θ̂G/∼‖T

. Thus

([zi], y
T)

τi+1
−−→|X̃n · · ·

τk→|X̃n ([zl], y
T)

tω
→|X̃n . (16)

This implies([zi], y
T) ∈ Θnonb

G/∼‖T (X̃n).

It has been shown that all states([zi], x
T
d) on the path (12) are in̂ΘG/∼‖T , ex-

cept for the last state whenσ = ω. This implies by assumption(zi, x
T
d) ∈ X

for all states on the path (11), except for the last state whenσ = ω. Therefore,

(y1, x
T
1)

t1PΩ(σ)t2
−−−−−−→|X (y2, x

T
2). �

Proposition 6 Let∼ be a weak synthesis observation equivalence onG = 〈Σ, Q,
→, Q◦〉 with respect toΥ ⊆ Σ. Then∼ is a state-wise synthesis equivalence onG
with respect toΥ.

Proof. Let T = 〈ΣT , QT ,→T , Q◦
T 〉 with ΣT ∩Υ = ∅ andΣ∪ΣT = Ω ∪̇Υ. The

conditions of state-wise synthesis equivalence in definition 15 must be confirmed.

(i) It is shown by induction onn ≥ 0 that(x, xT) ∈ Θ̂G‖T implies([x], xT) ∈

X̃n = Θn
G/∼‖T (Q/∼×QT).

Base case. ([x], xT) ∈ Q/∼×QT = Θ0
G/∼‖T (Q/∼×QT) = X̃0.

Inductive step. Assume the claim holds for somen ≥ 0, i.e., if (x, xT) ∈
Θ̂G‖T then([x], xT) ∈ X̃n. Now let(x, xT) ∈ Θ̂G‖T . It must be shown that

([x], xT) ∈ X̃n+1 = ΘG/∼‖T (X̃n) = Θcont
G/∼‖T (X̃n) ∩Θnonb

G/∼‖T (X̃n).

21

To see that([x], xT) ∈ Θcont
G/∼‖T (X̃n), let υ ∈ Σu and([x], xT)

υ
→ ([y], yT).

Consider two cases.

a) υ /∈ Σ. In this case,[x] = [y] and(x, xT)
υ
→ (x, yT), and it follows

from (x, xT) ∈ Θ̂G‖T andυ ∈ Σu that (x, yT) ∈ Θ̂G‖T . Then by

inductive assumption([y], yT) = ([x], yT) ∈ X̃n.

b) υ ∈ Σ. In this case, there existx′ ∈ [x] andy′ ∈ [y] such thatx′ υ
→ y′.

Thusx′ υ
⇒u y′, and since∼ is stable with respect to

υ
⇒u, there exists

y′′ ∼ y′ such thatx
υ
⇒u y′′. Then (x, xT)

t1PΩ(υ)t2
−−−−−−→ (y′′, yT) for

somet1, t2 ∈ (Υ∩Σu)
∗. Since(x, xT) ∈ Θ̂G‖T andt1PΩ(υ)t2 ∈ Σ∗

u,

it follows that (y′′, yT) ∈ Θ̂G‖T . Therefore by inductive assumption

([y], yT) = ([y′], yT) = ([y′′], yT) ∈ X̃n.

Thus ([y], yT) ∈ X̃n can be shown for allυ ∈ Σu, and it follows that
([x], xT) ∈ Θcont

G/∼‖T (X̃n).

Next, it is shown that([x], xT) ∈ Θnonb
G/∼‖T (X̃n). Since(x, xT) ∈ Θ̂G‖T ,

there exists a path

(x, xT) = (x0, x
T
0)

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k)

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

Then(xl, x
T
l) ∈ Θ̂G‖T for l = 0, . . . , k. By inductive assumption, it follows

that([xl], x
T
l) ∈ X̃n for l = 0, . . . , k. Thus,

([x], xT) = ([x0], x
T
0)

σ1→|X̃n · · ·
σk→|X̃n ([xk], x

T
k)

ω
→|X̃n ([xk+1], x

T
k+1) ,

which implies([x], xT) ∈ Θnonb
G/∼‖T (X̃n).

Thus, it has been shown that([x], xT) ∈ Θcont
G/∼‖T (X̃n) ∩ Θnonb

G/∼‖T (X̃n) =

X̃n+1.

(ii) Now it is shown by induction onn ≥ 0 that ([x], xT) ∈ Θ̂G/∼‖T implies
(x, xT) ∈ Xn = Θn

G‖T (Q×QT).

Base case. (x, xT) ∈ Q×QT = Θ0
G‖T (Q×QT) = X0.

Inductive step. Assume the statement holds forn ≥ 0, i.e, if ([x], xT) ∈
Θ̂G/∼‖T then(x, xT) ∈ Xn. Let ([x], xT) ∈ Θ̂G/∼‖T . It must be shown
that(x, xT) ∈ Xn+1 = ΘG‖T (Xn) = Θcont

G‖T (Xn) ∩Θnonb
G‖T (Xn).

To see that(x, xT) ∈ Θcont
G‖T (Xn), let υ ∈ Σu and(x, xT)

υ
→ (y, yT). This

implies ([x], xT)
υ
→ ([y], yT). Since([x], xT) ∈ Θ̂G/∼‖T andυ ∈ Σu, it

22

follows that([y], yT) ∈ Θ̂G/∼‖T . Then by inductive assumption(y, yT) ∈
Xn, and thus(x, xT) ∈ Θcont

G‖T (Xn).

Next it is shown that(x, xT) ∈ Θnonb
G‖T (Xn). Since([x], xT) ∈ Θ̂G/∼‖T ,

there exists a path

([x], xT) = ([x0], x
T
0)

σ1→|Θ̂G/∼‖T
· · ·

σk→|Θ̂G/∼‖T

([xk], x
T
k)

ω
→|Θ̂G/∼‖T

([xk+1], x
T
k+1) . (17)

Consider the first transition in (17). Since[x0]
PΣ(σ1)
−−−−→ [x1], there exists

x′
0 ∈ [x0] andx′

1 ∈ [x1] such thatx′
0

PΣ(σ1)
−−−−→ x′

1. The conditions of lemma 5
apply to this transition: by inductive assumption,Xn can be used as the
setX in the lemma, and([x′

0], x
T
0) = ([x0], x

T
0) ∈ Θ̂G/∼‖T , ([x′

1], x
T
1) =

([x1], x
T
1) ∈ Θ̂G/∼‖T or σ1 = ω, (x′

0, x
T
0)

σ1→ (x′
1, x

T
1), andx′

0 ∼ x0.

So there existt1, u1 ∈ Υ∗ andx′′
1 ∈ Q such that(x0, x

T
0)

t1PΩ(σ1)u1
−−−−−−−→|Xn

(x′′
1, x

T
1) andx′

1 ∼ x′′
1.

Sincex′′
1 ∈ [x′

1] = [x1], the same logic also applies to the second tran-
sition in (17). Therefore, there existt2, u2 ∈ Υ∗ andx′′

2 ∈ Q such that

(x′′
1, x

T
1)

t2PΩ(σ2)u2
−−−−−−−→|Xn (x′′

2, x
T
2) andx2 ∼ x′

2 ∼ x′′
2. By induction, it fol-

lows that there existt1, u1, . . . , tk, uk, tk+1 ∈ Υ∗ andx′′
1, . . . , x

′′
k ∈ Q such

that

(x, xT) = (x0, x
T
0)

t1PΩ(σ1)u1
−−−−−−−→|Xn (x′′

1, x
T
1)

t2PΩ(σ2)u2
−−−−−−−→|Xn · · ·

tkPΩ(σk)uk
−−−−−−−→|Xn (x′′

k, x
T
k)

tk+1ω
−−−→|Xn . (18)

Therefore,(x, xT) ∈ Θnonb
G‖T (Xn).

Thus, it has been shown that(x, xT) ∈ Θcont
G‖T (Xn) ∩Θnonb

G‖T (Xn) = Xn+1.
�

B Synthesis Observation Equivalence

This appendix contains a proof that synthesis observation equivalenceis a special
case of weak synthesis observation equivalence, so all results aboutweak synthesis
observation equivalence shown in appendix A also apply to synthesis observation
equivalence. Theorem 8 shows the main result of this section, which statesthat ev-
ery weak synthesis observation equivalence also is a synthesis observation equiva-
lence. The proof uses a lemma about the uncontrollable transitions outgoing from

states along a pathx
Υ
⇒soe y.

23

Lemma 7 Let G = 〈Σ, Q,→, Q◦〉 be an automaton, and let∼ ⊆ Q×Q be stable

with respect to
υ
⇒u for all υ ∈ Σu. Furthermore, letΥ ⊆ Σ andx

Υ
⇒soe y. For

every statez on this path, ifz
υ
⇒u z′ for someυ ∈ Σu, then there existsz′′ ∈ Q

such thatx
υ
⇒u z′′ andz′ ∼ z′′.

Proof. Write the pathx
Υ
⇒soe y asx = z0

τ1→ . . .
τk→ zk = y. Let zj be a

state on the path such thatzj
υ
⇒u z′ for someυ ∈ Σu. We must show that there

existsz′′ such thatx
υ
⇒u z′′ and z′ ∼ z′′. Let i, 0 ≤ i ≤ j, be the greatest

index such thati = 0 or τi ∈ Σc. If i = 0 thenzi = z0 = x, and if i ≥ 1,
it follows from definition 13 thatzi ∼ x. Thus,zi ∼ x in both cases. Since
zi

τi+1
−−→ . . .

τj
→ zj

υ
⇒u z′ with τl ∈ Σu ∩ Υ for i + 1 ≤ l ≤ j it follows that

zi
υ
⇒u z′. Since∼ is stable with respect to

υ
⇒u there existsz′′ ∼ z′ such that

x
υ
⇒u z′′. �

Theorem 8 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let∼ be a synthe-
sis observation equivalence onG with respect toΥ. Then∼ is a weak synthesis
observation equivalence onG with respect toΥ.

Proof. Let x1, x2, y1 ∈ Q such thatx1 ∼ x2 andx1
Υ
⇒wsoe y1 or x1

σ
⇒wsoe y1

for someσ ∈ Σc ∩ Ω or x1
υ
⇒u y1 for someυ ∈ Σu. It must be shown that there

existsy2 such thatx2
σ
⇒wsoe y2 or x2

Υ
⇒wsoe y2 or x2

υ
⇒u y2 andy1 ∼ y2.

If x1
υ
⇒u y1 then sincex1 ∼ x2 and∼ is stable with respect to

υ
⇒u it follows

that there existsy2 such thatx2
υ
⇒u y2.

x1
σ
⇒wsoe y1 or x1

Υ
⇒wsoe y1 meansx1

σ
⇒soe q1

Υ
⇒c y1 or x1

Υ
⇒soe q1

Υ
⇒c

y1 respectively, whereq1
Υ
⇒c y1 is a pathq1 = z0

τ1→ · · ·
τk→ zk = y1 with

τ1, . . . , τk ∈ Υ. Sincex1 ∼ x2 and∼ is stable with respect to
σ
⇒soe and

Υ
⇒soe,

there existsq2 such thatx2
σ
⇒soe q2 or x2

Υ
⇒soe q2 andq1 ∼ q2. It is first shown

by induction oni = 0, . . . , k that there exists a path

q2 = z′0 ⇒ z′1 ⇒ · · · ⇒ z′k = y2 (19)

such thatz′i ∼ zi for all i, and eachz′i ⇒ z′i+1 is z′i
τi+1
=⇒u z′i+1 if τi+1 ∈ Σu and

z′i
Υ
⇒soe z′i+1 if τi+1 ∈ Σc.
Base case.For i = 0, the claim clearly holds asz′0 = q2 ∼ q1 = z0.
Inductive step.Assume the path up toz′i with zi ∼ z′i has been constructed for

somei. To obtainz′i+1 consider two cases. Ifτi+1 ∈ Σu, then since∼ is stable

with respect to
τi+1
=⇒u, from zi

τi+1
−−→ zi+1 it follows that there existsz′i+1 such that

z′i
τi+1
=⇒u z′i+1 andz′i+1 ∼ zi+1. If τi+1 ∈ Σc, then since∼ is stable with respect

24

to
Υ
⇒soe, from zi

τi+1
−−→ zi+1 it follows that there existsz′i+1 such thatz′i

Υ
⇒soe z′i+1

andz′i+1 ∼ zi+1.

Now it needs to be shown thatq2
Υ
⇒c y2. According to definition 14, the

following properties need to be shown for every statez on the path (19).

(i) If z
u
→ z′ for someu ∈ (Σu ∩Υ)∗ thenz′ ∼ z̄ for somez̄ on the path (19).

(ii) If z
υ
⇒u z′ for someυ ∈ Σu∩Ω then there existsy′2 ∼ z′ such thaty2

υ
⇒u y′2.

Let z be such a state on the path (19) and assume it is on the subpathz′i ⇒ z′i+1.
Then consider two cases.

Case 1:z is on a subpathz′i
τi+1
=⇒u z′i+1. Thenτi+1 ∈ Σu ∩Υ.

If z
u
→ z′ for someu ∈ (Σu ∩ Υ)∗, then clearlyz′i

τi+1
=⇒u z′. Since∼ is

stable with respect to
τi+1
=⇒u, from z′i ∼ zi it follows that there existsz′′ such that

zi
τi+1
=⇒u z′′ and z′ ∼ z′′. Sincezi is on the pathq1

Υ
⇒c y1, it follows from

definition 14 thatz′′ ∼ zj for somej. Thusz′ ∼ z′′ ∼ zj ∼ z′j , showing (i).

If z
υ
⇒u z′ for someυ ∈ Σu ∩ Ω, thenz′i

υ
⇒u z′. Since∼ is stable with

respect to
υ
⇒u, from z′i ∼ zi it follows that there existsz′′ such thatzi

υ
⇒u z′′ and

z′′ ∼ z′. Sincezi is on the pathq1
Υ
⇒c y1, by definition 14 there existsy′1 such that

y1
υ
⇒u y′1 andz′′ ∼ y′1. Sincey1 ∼ y2 and∼ is stable with respect to

υ
⇒u, there

existsy′2 such thaty2
υ
⇒u y′2 andy′2 ∼ y′1 ∼ z′′ ∼ z′, showing (ii).

Case 2:z is on a subpathz′i
Υ
⇒soe z′i+1.

If z
u
→ z′ for someu ∈ (Σu ∩ Υ)∗, then by lemma 7 there existsz′′ such that

z′i
u
⇒u z′′ andz′′ ∼ z′. Since∼ is stable with respect to

u
⇒u, fromzi ∼ z′i it follows

that there exists̄z such thatzi
u
⇒u z̄ andz̄ ∼ z′′. Sincezi is on the pathq1

Υ
⇒c y1,

it follows from definition 14 that̄z ∼ zj for somej. Thusz′ ∼ z′′ ∼ z̄ ∼ zj ∼ z′j ,
showing (i).

If z
υ
⇒u z′ for someυ ∈ Σu ∩ Ω, then by lemma 7 there existsz′′ such that

z′i
υ
⇒u z′′ andz′ ∼ z′′. Since∼ is stable with respect to

υ
⇒u and sincezi ∼ z′i, there

existsz̄ such thatzi
υ
⇒u z̄ andz̄ ∼ z′′. Sincezi is on the pathq1

Υ
⇒c y1, it follows

from definition 14 that there existsy′1 such thaty1
υ
⇒u y′1 and z̄ ∼ y′1. Since

y1 ∼ y2 and∼ is stable with respect to
υ
⇒u, there existsy′2 such thaty2

υ
⇒u y′2 and

y′2 ∼ y′1 ∼ z̄ ∼ z′′ ∼ z′, showing (ii).

This completes the proof thatq2
Υ
⇒c y2. �

25

G

αα

α β

β

γ

(!υ)

(!υ)

(!υ) (!υ)

(!µ)

q0

q1 q2

q3

q4

q5

Figure 2: Synthesis observation equivalence does not imply 3-state synthesis ob-
servation equivalence.

C Implemented Synthesis Observation Equivalence

This appendix discusses the properties of the implemented variation of weak syn-
thesis observation equivalence used for the experiments in section 5. Theim-
plementation differs from true weak synthesis observation equivalence,because
checking for equivalence to all states on a⇒c-path would make the Backward
Search (algorithm 3) exponential. To avoid this, the algorithm only compareswith
three states that are readily accessible at the time of testing. This results in the
following variation of synthesis observation equivalence.

Definition 16 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ. An
equivalence relation∼ ⊆ Q × Q is a 3-state synthesis observation equivalence

on G with respect toΥ, if ∼ is stable with respect to
Υ
⇒wsoe3, to

σ
⇒wsoe3 for each

σ ∈ Σc ∩ Ω, and to
υ
⇒u for eachυ ∈ Σu.

• x
Υ
⇒wsoe3 y if x

Υ
⇒soe z

Υ
⇒c3 y for somez ∈ Q.

• x
σ
⇒wsoe3 y if x

σ
⇒soe z

Υ
⇒c3 y for somez ∈ Q.

• x
Υ
⇒c3 y if there exists a pathx = z0

τ1→ · · ·
τk→ zk = y such thatτ1, . . . , τk ∈

Υ, andzj
u
→ z′ for u ∈ (Σu ∩ Υ)∗ impliesz′ ∼ zj or z′ ∼ zj+1 or z′ ∼ y,

andzj
υ
⇒u z′ for υ ∈ Σu ∩ Ω impliesy

υ
⇒u z′′ for somez′′ ∼ z′.

Example 4 Consider automatonG in figure 2 with Σu = Υ = {!υ, !µ}. An
equivalence relation∼ such thatq1 ∼ q2 is a synthesis observation equivalence and

26

a weak synthesis observation equivalence, but not a 3-state synthesis observation
equivalence relation.

Statesq1 andq2 are synthesis observation equivalent: statesq3, q4 andq5 are
reachable from bothq1 andq2 by exactly the same relations⇒soe and⇒u, and in
addition it holds thatq1

α
⇒soe q1 andq2

α
⇒soe q2 with q1 ∼ q2.

Also note thatq1
α
⇒wsoe q5 becauseq1

α
→ q1

!υ
→ q3

!υ
→ q4

!υ
→ q5 and the stateq4

reached byq1
!µ
→ q4 is on this path. Since alsoq2

α
⇒wsoe q5, statesq1 andq2 can

be weakly synthesis observation equivalent.
However,q1

α
⇒wsoe3 q5 does not hold, because the stateq4 is not equivalent to

q1, q3, or q5. As on the other handq2
α
⇒wsoe3 q5, statesq1 andq2 cannot be 3-state

synthesis observation equivalent.

The example shows that 3-state synthesis observation equivalence is differ-
ent from both synthesis observation equivalence and weak synthesis observation
equivalence. Most importantly, synthesis observation equivalence does not imply
3-state synthesis observation equivalence, although the experiments suggest that
3-state synthesis observation equivalence usually is coarser in practice.

On the other hand, it is true that 3-state synthesis observation equivalence im-
plies weak synthesis observation equivalence, so by theorem 3, 3-statesynthesis
observation equivalence also produces correct abstractions.

Theorem 9 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let∼ be a 3-state syn-
thesis observation equivalence onG with respect toΥ. Then∼ is a weak synthesis
observation equivalence onG with respect toΥ.

Proof. Let x1, x2, y1 ∈ Q such thatx1 ∼ x2 andx1
Υ
⇒wsoe y1 or x1

σ
⇒wsoe y1

for someσ ∈ Σc ∩ Ω or x1
υ
⇒u y1 for someυ ∈ Σu. It must be shown that there

existsy2 such thatx2
σ
⇒wsoe y2 or x2

Υ
⇒wsoe y2 or x2

υ
⇒u y2 andy1 ∼ y2.

If x1
υ
⇒u y1 then sincex1 ∼ x2 and∼ is stable with respect to

υ
⇒u it follows

that there existsy2 such thatx2
υ
⇒u y2.

x1
σ
⇒wsoe y1 or x1

Υ
⇒wsoe y1 meansx1

σ
⇒soe q1

Υ
⇒c y1 or x1

Υ
⇒soe q1

Υ
⇒c

y1 respectively, whereq1
Υ
⇒c y1 is a pathq1 = z0

τ1→ · · ·
τk→ zk = y1 with

τ1, . . . , τk ∈ Υ. Then alsox1
σ
⇒wsoe3 q1 or x1

Υ
⇒wsoe3 q1 by definition 16. Since

x1 ∼ x2 and∼ is stable with respect to
σ
⇒wsoe3 and

Υ
⇒wsoe3, there existsq2 such

thatx2
σ
⇒wsoe3 q2 or x2

Υ
⇒wsoe3 q2 andq1 ∼ q2. It is first shown by induction on

i = 0, . . . , k that there exists a path

q2 = z′0 ⇒ z′1 ⇒ · · · ⇒ z′k = y2 (20)

27

such thatz′i ∼ zi for all i, and eachz′i ⇒ z′i+1 is z′i
τi+1
=⇒u z′i+1 if τi+1 ∈ Σu and

z′i
Υ
⇒wsoe3 z′i+1 if τi+1 ∈ Σc.
Base case.For i = 0, the claim clearly holds asz′0 = q2 ∼ q1 = z0.
Inductive step.Assume the path up toz′i with zi ∼ z′i has been constructed

for somei. To obtainz′i+1 consider two cases. Ifτi+1 ∈ Σu, then since∼ is

stable with respect to
τi+1
=⇒u, from zi

τi+1
−−→ zi+1 it follows that there existsz′i+1

such thatz′i
τi+1
=⇒u z′i+1 andz′i+1 ∼ zi+1. If τi+1 ∈ Σc, then since∼ is stable with

respect to
Υ
⇒wsoe3, from zi

τi+1
−−→ zi+1 it follows that there existsz′i+1 such that

z′i
Υ
⇒wsoe3 z′i+1 andz′i+1 ∼ zi+1.

This shows the existence of the path (20). Asx2
σ
⇒wsoe3 q2 or x2

Υ
⇒wsoe3 q2,

there existsp2 such thatx2
σ
⇒soe p2

Υ
⇒c3 q2 or x2

Υ
⇒soe p2

Υ
⇒c3 q2. Then the path

p2
Υ
⇒c3 q2 ⇒ y2 can be written as

p2 = q′0
Υ
⇒c3 z′0 ⇒ q′1 ⇒ z′1 ⇒ · · · ⇒ q′k ⇒ z′k = y2 , (21)

where eachz′i ⇒ q′i+1 ⇒ z′i+1 is z′i
τi+1
=⇒u q′i+1 = z′i+1 if τi+1 ∈ Σu, andz′i

Υ
⇒soe

q′i+1
Υ
⇒c3 z′i+1 if τi+1 ∈ Σc. It remains to be shown thatp2

Υ
⇒c y2. According

to definition 14, the following properties need to be shown for every statez on the
path (21).

(i) If z
u
→ z′ for someu ∈ (Σu ∩Υ)∗ thenz′ ∼ z̄ for somez̄ on the path (21).

(ii) If z
υ
⇒u z′ for someυ ∈ Σu∩Ω then there existsy′2 ∼ z′ such thaty2

υ
⇒u y′2.

Let z be a state on the path (21). Consider three cases.
Case 1:z is on a subpathz′i

τi+1
=⇒u q′i+1 = z′i+1. Thenτi+1 ∈ Σu ∩Υ.

If z
u
→ z′ for someu ∈ (Σu ∩ Υ)∗, then clearlyz′i

τi+1
=⇒u z′. Since∼ is

stable with respect to
τi+1
=⇒u, from z′i ∼ zi it follows that there existsz′′ such that

zi
τi+1
=⇒u z′′ and z′′ ∼ z′. Sincezi is on the pathq1

Υ
⇒c y1, it follows from

definition 14 thatz′′ ∼ zj for somej. Thusz′ ∼ z′′ ∼ zj ∼ z′j , showing (i).

If z
υ
⇒u z′ for someυ ∈ Σu ∩ Ω, thenz′i

υ
⇒u z′. Since∼ is stable with

respect to
υ
⇒u, from z′i ∼ zi it follows that there existsz′′ such thatzi

υ
⇒u z′′ and

z′′ ∼ z′. Sincezi is on the pathq1
Υ
⇒c y1, by definition 14 there existsy′1 such that

y1
υ
⇒u y′1 andz′′ ∼ y′1. Sincey1 ∼ y2 and∼ is stable with respect to

υ
⇒u, there

existsy′2 such thaty2
υ
⇒u y′2 andy′2 ∼ y′1 ∼ z′′ ∼ z′, showing (ii).

Case 2:z is on a subpathz′i
Υ
⇒soe q′i+1.

28

If z
u
→ z′ for someu ∈ (Σu ∩ Υ)∗, then by lemma 7 there existsz′′ such that

z′i
u
⇒u z′′ andz′ ∼ z′′. Since∼ is stable with respect to

u
⇒u, fromzi ∼ z′i it follows

that there exists̄z such thatzi
u
⇒u z̄ andz̄ ∼ z′′. Sincezi is on the pathq1

Υ
⇒c y1,

it follows from definition 14 that̄z ∼ zj for somej. Thusz′ ∼ z′′ ∼ z̄ ∼ zj ∼ z′j ,
showing (i).

If z
υ
⇒u z′ for someυ ∈ Σu ∩ Ω, then by lemma 7 there existsz′′ such that

z′i
υ
⇒u z′′ andz′ ∼ z′′. Since∼ is stable with respect to

υ
⇒u and sincezi ∼ z′i, there

existsz̄ such thatzi
υ
⇒u z̄ andz̄ ∼ z′′. Sincezi is on the pathq1

Υ
⇒c y1, it follows

from definition 14 that there existsy′1 such thaty1
υ
⇒u y′1 and z̄ ∼ y′1. Since

y1 ∼ y2 and∼ is stable with respect to
υ
⇒u, there existsy′2 such thaty2

υ
⇒u y′2 and

y′2 ∼ y′1 ∼ z̄ ∼ z′′ ∼ z′, showing (ii).

Case 3:z is on a subpathq′i
Υ
⇒c3 z′i.

If z
u
→ z′ for someu ∈ (Σu∩Υ)∗, then by definition 16 it holds thatz′ ∼ z̄ for

somez̄ on the pathq′i
Υ
⇒c3 z′i. This statēz clearly is on the path (21), showing (i).

If z
υ
⇒u z′ for someυ ∈ Σu ∩ Ω, then by definition 16 there existsz′′ ∼ z′

such thatz′i
υ
⇒u z′′. Since∼ is stable with respect to

υ
⇒u and sincezi ∼ z′i, there

existsz̄ such thatzi
υ
⇒u z̄ andz̄ ∼ z′′. Sincezi is on the pathq1

Υ
⇒c y1, it follows

from definition 14 that there existsy′1 such thaty1
υ
⇒u y′1 and z̄ ∼ y′1. Since

y1 ∼ y2 and∼ is stable with respect to
υ
⇒u, there existsy′2 such thaty2

υ
⇒u y′2 and

y′2 ∼ y′1 ∼ z̄ ∼ z′′ ∼ z′, showing (ii).

This completes the proof thatp2
Υ
⇒c y2. �

29

