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Abstract This paper proposes to enhance compositional verification of the nonblocking
property of discrete event systems by introducingannotated automata. Annotations store
nondeterministic branching information, which would otherwise be stored in extra states
and transitions. This succinct representation makes it easier to simplify automata and en-
ables new efficient means ofabstraction, reducing the size of automata to be composed and
thus the size of the synchronous product state space encountered in verification. The abstrac-
tions proposed are of polynomial complexity, and they have been successfully applied for
nonblocking verification of the same set of large-scale industrial examples as used in related
work.

1 Introduction

With the continuously increasing size and complexity of reactive systems software, the au-
tomatic verification of large reactive systems is and remains a challenging problem. This
paper focuses on the verification of thenonblockingproperty, which is of great interest in
supervisory control of discrete event systems [2, 17]. Nonblocking is the question whether
the composed behaviour of a set of automata is under all circumstances capable of reaching
a terminal state.

The standard method to check whether a system is nonblockinginvolves the explicit
composition of all the automata involved and the construction of the complete state space.
This approach is limited by the well-knownstate-space explosionproblem.Symbolic model
checkinghas been used successfully to reduce the amount of memory required by represent-
ing the state space symbolically rather than enumerating itexplicitly [3].

As an alternative,compositionalverification tries to avoid constructing large state spaces
by progressively composing automata and usingabstractionto simplify intermediate re-
sults. This idea has been pursued with notable success in recent years. Automata can be
simplified for nonblocking verification usingobserver projection[6, 16] or weak observa-
tion equivalence[19]. These well-known general-purpose abstractions are more restrictive
than necessary for nonblocking verification. A possible alternative is to considertrajectory
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nonblocking[11], while conflict equivalenceis known to be the most general method of ab-
straction that preserves the nonblocking property in all contexts [12]. Conflict equivalence
can be used to implement heuristic simplification rules, making it possible to verify discrete
event systems models of industrial complexity [9].

This paper seeks to combine the advantages of bisimulation-based abstractions [19] with
the benefits of conflict-preserving simplification [9]. Using annotations, certain aspects of
the branching structure of nondeterministic automata can be unified. This makes it possible
to overcome some limitations of the previous approach basedon heuristics, and makes more
aspects of conflict-preserving abstraction amenable to global reduction algorithms such as
bisimulation.

This paper is an extended version of [20], including more detailed descriptions of anno-
tated automata and full proofs of all results. Section 2 briefly introduces the needed termi-
nology of languages, automata, and conflict equivalence. Then Section 3 presents annotated
automata and the rules to construct and simplify them, whichare explained using an exam-
ple. Section 4 contains formal proofs of the correctness of the abstraction rules. Afterwards,
Section 5 presents experimental results, and Section 6 addssome concluding remarks.

2 Preliminaries

2.1 Events and Traces

Event sequences and languages are a simple means to describediscrete system behaviours.
Their basic building blocks areevents, which are taken from a finitealphabetΣ. Two special
events are used, thesilent eventτ and thetermination eventω. These are never included
in an alphabetΣ unless mentioned explicitly. For this,Στ = Σ∪{τ}, Σω = Σ∪{ω}, and
Στ ,ω = Σ∪{τ,ω} are used.

Σ∗ denotes the set of all finitetracesof the formσ1σ2 · · ·σn of events fromΣ, including
theempty traceε. Theconcatenationof two tracess, t ∈ Σ∗ is written asst. A subsetL ⊆ Σ∗

is called alanguage. Given two alphabetsΣ1 andΣ2 ⊆Σ1, thenatural projection P: Σ∗
1 →Σ∗

2
is the operation that deletes from traces overΣ1 all events not inΣ2.

2.2 Nondeterministic Automata

System behaviours are modelled using finite-state automata. Typically, system models are
deterministic, but abstraction may result in nondeterminism.

Definition 1 A (nondeterministic)finite-state automatonis a 4-tupleG = 〈Σ,Q,→,Q◦〉
whereΣ is a finite alphabet ofevents, Q is a finite set ofstates, → ⊆ Q× Στ ,ω ×Q is
thestate transition relation, andQ◦ ⊆ Q is the set ofinitial states.

The transition relation is written in infix notationx
σ
→ y, and is extended to traces in

Σ∗
τ ,ω by lettingx

ε
→ x for all x ∈ Q, andx

sσ
→ y if x

s
→ z

σ
→ y for somez∈ Q. For state sets

X,Y ⊆ Q, the expressionX
s
→Y denotes the existence ofx ∈ X andy ∈Y such thatx

s
→ y.

Furthermore,x→ y denotes the existence of a traces∈ Σ∗
ω such thatx

s
→ y, andx

s
→ denotes

the existence of a statey ∈ Q such thatx
s
→ y. Finally,G

s
→ andG

s
→ X stand forQ◦ s

→ and
Q◦ s

→ X, respectively.
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The transition relation must satisfy the additional requirement that, wheneverx
ω
→ y,

there does not exist any outgoing transition fromy. That is, the termination eventω marks
states (such asx) as terminal states. The traditional set ofmarkedor terminalstates ofG can
be defined asQω = {x ∈ Q | x

ω
→}. For the sake of graphical simplicity, states inQω are

shaded in the figures of this paper instead of explicitly showing ω transitions.
To support silent transitions,x

s
⇒ y, with s∈ Σ∗

ω , denotes the existence of a tracet ∈ Σ∗
τ ,ω

such thatx
t
→ y andP(t) = s. That is,

s
→ denotes a path withexactlythe events ins, while

s
⇒ denotes a path with an arbitrary number ofτ shuffled with the events ins. Notations such
asX

s
⇒Y for state sets,x⇒ y, G

s
⇒, etc., are defined analogously to→. In addition, for a

statex ∈ Q, the set ofactiveor eligible eventsis EligG(x) = {σ ∈ Σω | x
σ
⇒}.

When two automata are running in parallel, lock-step synchronisation in the style of [10]
is used.

Definition 2 Let G1 = 〈Σ1,Q1,→1,Q
◦
1〉 andG2 = 〈Σ2,Q2,→2,Q

◦
2〉 be two automata. The

synchronous compositionof G1 andG2 is

G1 ‖G2 = 〈Σ1∪Σ2,Q1×Q2,→,Q◦
1×Q◦

2〉 (1)

where
(x,y)

σ
→ (x′,y′) if σ ∈ (Σ1∩Σ2)∪{ω}, x

σ
→1 x′, y

σ
→2 y′ ;

(x,y)
σ
→ (x′,y) if σ ∈ (Σ1\Σ2)∪{τ}, x

σ
→1 x′ ;

(x,y)
σ
→ (x,y′) if σ ∈ (Σ2\Σ1)∪{τ}, y

σ
→2 y′ .

In synchronous composition, shared events (includingω) must be executed by all au-
tomata synchronously, while other events (includingτ) are executed independently. In the
notation of this paper,

G1 ‖G2
s
⇒ (x1,x2) if and only if Gi

Pi(s)
=⇒ xi for i = 1,2 , (2)

wherePi : Σ → Σi denotes the natural projection.

2.3 Conflict Equivalence

The key liveness property in supervisory control theory is the nonblockingproperty. An
automaton is nonblocking if, from every reachable state, a terminal state can be reached;
otherwise it is calledblocking. When more than one automaton is involved, it also is com-
mon to use the termsnonconflictingandconflicting, respectively.

Definition 3 An automatonG = 〈Σ,Q,→,Q◦〉 is nonblockingif, for every statex ∈ Q and

every traces∈ Σ∗ such thatQ◦ s
⇒ x, there exists a tracet ∈ Σ∗ such thatx

tω
⇒. Two automata

G1 andG2 arenonconflictingif G1 ‖G2 is nonblocking.

To reason about conflicts in a compositional way, a notion ofconflict equivalenceis de-
veloped in [12]. According to process-algebraic testing theory, two automata are considered
as equivalent if they both respond in the same way to all testsof a certain type [4]. For
conflict equivalence, a test is an arbitrary automaton, and theresponseis the observation
whether the test composed with the automaton in question is nonblocking or not.

Definition 4 Two automataG1 andG2 are said to beconflict equivalent, written G1 ≃conf

G2, if, for any automatonT, G1 ‖T is nonblocking if and only ifG2 ‖T is nonblocking.
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Conflict equivalence is the coarsest possible congruence with respect to synchronous
composition that preserves nonblocking [12]. There are exponential algorithms to determine
whether two given automata are conflict equivalent [18,21].However, in general there is no
unique minimal conflict equivalent representation of a given automaton [8].

When verifying whether a composed system of automata

G1 ‖G2 ‖ · · · ‖Gn , (3)

is nonblocking, the compositional method [9] avoids building the complete synchronous
product immediately. Typically, some of the componentsGi havelocal events, i.e., events
used only byGi . These local events are abstracted using hiding, i.e., theyare replaced by
the silent eventτ. The resultant automaton can then be simplified in various ways, and
Gi is replaced by a typically smaller conflict equivalent automaton G′

i . Once no further
simplification is possible, a subsystem of automata(G j) j∈J is selected and replaced by its
synchronous composition, and the procedure starts over.

3 Annotated Automata

This section shows how annotations are used to bring automata in a more regular form to
make simplification with respect to conflict equivalence more effective. Using the running
example in Fig. 1, methods to construct an annotated automaton are described in 3.1 and 3.2,
and three abstraction rules to simplify annotated automataare presented in 3.3–3.5. In 3.6,
the complete abstraction procedure to simplify automata using annotations is presented.
Proofs of the propositions stated in this section can be found in Section 4.

3.1 Annotation

The states in a nondeterministic automaton carry several implicit requirements character-
ising their blocking or nonblocking behaviour in composition with other automata. For il-
lustration, consider stateq0 in automatonG in Fig. 1. Its eligible event set is EligG(q0) =
{α,β ,γ}; note thatβ is included because of the silent transition toq4. Blocking will occur
if stateq0 is composed with a state that does not enable at least one of the eventsα, β ,
or γ. Moreover, due to the silent transitions to statesq3 andq4, any state composed withq0

also needs to enable at least one event from their sets of eligible events, EligG(q4) = {α,β}
and EligG(q3) = {α}. In order to capture these nonblocking requirements in a more concise
manner, the three eligible event sets are associated with stateq0 asannotations.

Definition 5 An annotated automatonis a 5-tupleA = 〈Σ,Q,→,Q◦,Ann〉 such that〈Σ,Q,
→,Q◦〉 is an ordinary automaton withoutτ-transitions, andAnn⊆Q×2Σω is theannotation
relation, which satisfies the following conditions:

(i) for everyx ∈ Q, there existsa⊆ Σω such that(x,a) ∈ Ann;
(ii) for every (x,a) ∈ Ann, it holds thata⊆ EligA(x).

An annotation is a set of eventsa ⊆ Σω associated with a statex ∈ Q. The intended
meaning of(x,a) ∈ Ann is that, if the automaton is in statex, at least one of the events ina
must be enabled in the synchronous composition of the entiresystem in order to avert block-
ing. The empty set of events can also serve as an annotation, which is used to characterise
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Fig. 1 Simplification of automatonG using annotations givesG≃conf U ′′.

deadlock states. Annotations are similar toready sets[15] or the complements offailure
sets[10], but they can only be used to partially characterise conflict equivalence.

The two requirements (i) and (ii) ensure that annotations capture the idea of nonblock-
ing requirements correctly. Each state must have at least one annotation, and all annotations
must be subsets of the eligible event set of their state. Whenannotating automata in prac-
tice, every state can be associated with its own eligible event set as an annotation, and this
“maximal” annotation does not need to be stored explicitly in an annotated automaton as it
can be inferred from the transitions.
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The following definition shows how to transform an arbitrarynondeterministic automa-
ton into an annotated automaton, replacing silent (τ) transitions by annotations to represent
the associated nonblocking requirements.

Definition 6 Let G = 〈Σ,Q,→,Q◦〉 be an automaton. Theannotated formof G is

A (G) = 〈Σ,Q,→A,Q◦,Ann〉 , (4)

where

→A = {(x,σ ,y) ∈ Q×Σω ×Q | x
ε
⇒ z

σ
→ y for somez∈ Q} ; (5)

Ann= {(x,EligG(y)) | x
ε
⇒ y} . (6)

The annotated form clearly satisfies the two conditions (i) and (ii) in Def. 5, because
(x,EligG(x)) ∈ Ann for everyx ∈ Q, andx

ε
⇒ y implies EligG(y) ⊆ EligG(x).

The annotated form is obtained from the original automaton by replacing all silent tran-
sitions by the transitions originating from the silent successor states: if statezcan be reached
silently from statex, then all transitions originating fromz are copied tox. Due to this re-
moval of silent transitions, some states may become unreachable and then can be removed.
To retain the nonblocking conditions associated with the originally silently reached states,
their eligible event sets are added as annotations to the start states of the removed transitions.

Example 1 Fig. 1 shows an automatonG and its annotated formA (G). As each state can
be reached from itself after 0 silent transitions, it is associated with its own eligible event
set as an annotation. The stateq0 collects all the outgoing transitions ofq3 andq4, because
it is connected to these two states by silent transitions, and annotations are added toq0 for
each of these two states. Similarly,q1 has all the outgoing transitions and the annotation{α}
of q6. The statesq3, q4, andq6 have been deleted because they become unreachable after
the removal of silent transitions.

Complexity The annotated formA (G) of G= 〈Σ,Q,→,Q◦〉 has|Q| states, up to|Q|2|Σω |
transitions, and up to|Q|2 annotations. Thus, its size is bounded byO(|Q|2|Σ|). The time
complexity to constructA (G) is dominated by the computation of the transitive closure of
the silent transitions, i.e.,O(|Q|3) [14].

Annotation removes information, and it may well happen thattwo different automata
have equal annotated forms. The following proposition shows that this can only happen if
the two original automata are conflict equivalent, so the annotation procedure does indeed
yield a standardised form with respect to conflict equivalence.

Proposition 1 Let G andH be two automata such thatA (G) = A (H). ThenG≃conf H.

Conversely, it is not true that two conflict equivalent automata have the same annotated
forms. Annotations cannot be used to characterise conflict equivalence. This is due to the
fact that failures equivalence [10] does not imply conflict equivalence, and the same coun-
terexample as given in [12] applies.
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3.2 Unannotation

The annotation procedure can be reversed to obtain an ordinary automaton from a given
annotated automaton. The reverse operation is calledunannotationand is characterised by
the following definition.

Definition 7 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. Anunannotated form
of A is any automatonU = 〈Σ,QU ,→U ,Q◦〉 such that the following properties hold.

(i) QU = Q∪Ann;
(ii) x

τ
→U (x,a) for all (x,a) ∈ Ann, and these are the onlyτ-transitions inU ;

(iii) If x,y ∈ Q, thenx
σ
→U y if and only if x

σ
→ y.

(iv) If (x,a) ∈ Annandσ ∈ a, then(x,a)
σ
→U ;

(v) If (x,a)
σ
→U y, thenσ ∈ a andx

σ
→ y.

The state space of an unannotated form consists of all theoriginal statesof the anno-
tated automaton plus an additional so-calledannotation statefor each annotation (i), which
is linked to its original state by a silent transition (ii). Furthermore, the unannotated form
contains all the transitions of the annotated automaton (iii). In addition, the annotation states
must have outgoing transitions for each event in their respective annotation (iv), and these
transitions must lead to some successor state reached by thesame event from the corre-
sponding original state (v).

Given an annotated automatonA, an unannotated form can be constructed by includ-
ing the states and transitions according to (i), (ii), and (iii), and by arbitrarily choosing for
each annotation state(x,a) and each eventσ ∈ a a transitionx

σ
→ y, and then including

the transition(x,a)
σ
→ y in the unannotated form. There are several possibilities tochoose

transitions satisfying points (iv) and (v), but the ambiguity does not cause problems with
conflict-preserving abstraction.

Proposition 2 Let A be an annotated automaton, and letU1 andU2 be unannotated forms
of A. ThenU1 ≃conf U2.

This result confirms that unannotated forms are well-definedup to conflict equivalence,
so the ambiguity in Def. 7 does not affect the nonblocking property and can be exploited to
minimise unannotated forms.

Example 2 In Fig. 1, automatonU is an unannotated form of the annotated automatonA′′.
The three annotations inA′′ have been replaced by annotation states(q7,{ω}) (q8,{α}),
and(q0125,{α}). Note that the transition(q0125,{α})

α
→ q0125 is not included inU , although

it could be inherited fromq0125.

Complexity Given G = 〈Σ,Q,→,Q◦〉, an unannotated form ofA (G) has up to|Q|+
|Ann| ≤ |Q|+ |Q|2 states and up to|→|+ |Ann|+ |Ann||Σω | ≤ |Q|2|Σω | transitions. Its space
complexity isO(|Q|2|Σ|), and this is also the time complexity to construct it from an anno-
tated automaton. This worst-case is unusual in practice—inthe experiments in Section 5,
the number of states after unannotation is almost always less than it was before annotation.

The following result confirms that unannotation is a reverseoperation of the annotation
procedure, up to conflict equivalence. Conflict equivalenceis preserved by annotation and
subsequent unannotation.
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Proposition 3 Let G be an automaton, and letU be an unannotated form ofA (G). Then
U ≃conf G.

In the following sections, different methods are presentedto simplify annotated au-
tomata. The simplification needs to be carried out in a conflict-preserving way, and this
requires an appropriate notion of conflict equivalence of annotated automata. The following
definition is justified by Prop. 2 and 3, and by the fact that every annotated automaton has
an unannotated form.

Definition 8 Two annotated automataA1 andA2 are conflict equivalent, writtenA1 ≃conf A2,
if for every unannotated formU1 of A1 and for every unannotated formU2 of A2 it holds that
U1 ≃conf U2.

3.3 Subsumption

Annotations are sets of events that must be enabled to avert blocking. More precisely, when
a state is entered, at least one of the events in each of its annotations needs to be enabled in
order to avert blocking. This leads to the observation that certain annotations are redundant.
For example, if a state has both the annotations{α} and{α,β}, then the latter is implied
by the former. The state already requires eventα to be enabled, so the fact thatα or β
needs to be enabled adds no additional information. The annotation{α,β}, being a super-
set of{α}, is said to be covered orsubsumedby {α}, and subsumed annotations can be
removed without affecting conflict equivalence.

This gives rise to the followingsubsumption rule: if an annotated automaton contains
annotations(x,a) and (x,b) such thata $ b, then the annotation(x,b) can be removed.
The removal of subsumed annotations from an annotated automaton preserves conditions (i)
and (ii) in Def. 5, because no annotations are added and annotations can only be removed
from states that have more than one annotation.

Example 3 In stateq0 of automatonA (G) in Fig. 1, the annotation{α} subsumes{α,β}
and{α,β ,γ}, and the annotation{α} in stateq1 subsumes{α,β ,γ}. The subsumed anno-
tations are struck out in the figure.

Proposition 4 Let A = 〈Σ,Q,→,Q◦,Ann〉 andAsub = 〈Σ,Q,→,Q◦,Annsub〉 be two anno-
tated automata such thatAnnsub⊆ Ann and for all(x,a) ∈ Ann there existsasub⊆ a such
that(x,asub) ∈ Annsub. ThenA≃conf Asub.

Complexity The annotated formA (G) of G= 〈Σ,Q,→,Q◦〉 has up to|Q| annotations per
state, which givesO(|Q|2) subsumption tests per state, and the cost of each test isO(|Σ|). So
the worst-case time complexity of the subsumption test forA (G) is O(|Q|3|Σ|). This makes
subsumption one of the most expensive of the abstractions presented here, but experimental
results show that it is worthwhile. The subsumption test is best done immediately while
constructing annotated automata or introducing annotations, considerably reducing memory
requirements.

3.4 Incoming Equivalence

Incoming equivalence[9] identifies two states as equivalent if they have exactly the same
incoming transitions. The concept is extended to annotatedautomata as follows.
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Definition 9 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. The incoming equiva-
lence relation∼inc ⊆ Q×Q is defined such thatx ∼inc y if and only if the following condi-
tions hold.

– x ∈ Q◦ if and only if y ∈ Q◦;
– For all statesz∈ Q and all eventsσ ∈ Σω , it holds thatz

σ
→ x if and only if z

σ
→ y.

In [9], incoming equivalence is used as a restriction to makecertain simplification rules
applicable. Due to the improved regularity achieved by annotations, all incoming equivalent
states in an annotated automaton can be merged. This mergingis done using the standard au-
tomaton quotient, with the addition that, when merging several states into one, the resultant
state receives the annotations of all original states.

Definition 10 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and let∼⊆Q×Q be
an equivalence relation. Thequotient automatonof A modulo∼ is A/∼ = 〈Σ,Q/∼,→/∼,
Q̃◦, Ãnn〉, where

→/∼ = {([x],σ , [y]) | x
σ
→ y} ; (7)

Q̃◦ = { [x] | x ∈ Q◦ } ; (8)

Ãnn= {([x],a) | x∈ Q and there existsx′ ∼ x such that(x′,a) ∈ Ann} . (9)

Here,[x] = {x′ ∈ Q | x′ ∼ x} denotes theequivalence classof x ∈ Q with respect to∼, and
Q/∼ = { [x] | x ∈ Q} is the set of equivalence classes modulo∼.

It is easily confirmed that the quotientA/∼ of an annotated automatonA satisfies con-
ditions (i) and (ii) in Def. 5, because every merged state receives annotations from all its
original states, and the eligible events sets are increasedwhen merging.

Proposition 5 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. ThenA≃conf A/∼inc.

The merging of incoming equivalent states can be consideredas a generalisation of
the silent continuation rule [9]. An annotation symbolisesa silent transition to an implicit
state. When incoming equivalent states are merged, the nondeterministic decisions of the
predecessor states are deferred by one step, expressed by the merged annotations.

Example 4 The annotated automatonA′ in Fig. 1 is the result of using incoming equiva-
lence to simplifyA (G). Statesq2 andq5 are incoming equivalent and have been merged.
The resultant stateq25 receives the annotations{α} and{α,β ,γ}, but only{α} remains
because of subsumption.

Complexity The complexity of partitioning an automaton based on incoming equivalence
is O(|Q|2|Σ|). Two states are equivalent if they have equal sets of incoming transitions,
which can be determined efficiently using hash codes. Hash codes can be set up in a single
pass over all transitions of the automaton, of which there are up to|Q|2|Σω |, and the con-
struction of the simplified automaton is achieved by anotherloop over all transitions, in the
same complexity [9]. However, the merging of some states maymake other states incoming
equivalent, so the abstraction should be repeated to ensurea minimal result. The maximum
number of iterations is|Q|, as each merge except the last reduces the number of states, so
the complexity to obtain a minimal abstraction by incoming equivalence isO(|Q|3|Σ|).
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3.5 Bisimulation

Bisimulationandobservation equivalence[13] are general tools that have been used with
considerable success to simplify automata during nonblocking verification [9, 19]. Bisimu-
lation can also be applied to annotated automata, with the added restriction that bisimilar
states must have the same annotations. Nevertheless, the removal of silent transitions can
transform several conflict equivalent transition structures into the same annotated states,
even if they are not originally observation equivalent. So bisimulation on the annotated au-
tomaton can be more effective, particularly after the removal of subsumed annotations.

Definition 11 Let A1 = 〈Σ,Q1,→1,Q
◦
1,Ann1〉 andA2 = 〈Σ,Q2,→2,Q

◦
2,Ann2〉 be two anno-

tated automata. A relation≈ ⊆ Q1×Q2 is called abisimulationbetweenA1 andA2, if the
following conditions hold for all statesx1 ∈ Q1 andx2 ∈ Q2 such thatx1 ≈ x2.

– For all σ ∈ Σω , if x1
σ
→ y1 then there existsy2 ∈ Q2 such thaty1 ≈ y2 andx2

σ
→ y2.

– For all σ ∈ Σω , if x2
σ
→ y2 then there existsy1 ∈ Q1 such thaty1 ≈ y2 andx1

σ
→ y1.

– For all a⊆ Σω , it holds that(x1,a) ∈ Ann1 if and only if (x2,a) ∈ Ann2.

A1 andA2 arebisimulation equivalentor bisimilar, writtenA1 ≈ A2, if there exists a bisim-
ulation≈ betweenA1 andA2 such that, for every initial statex◦1 ∈ Q◦

1 there exists an initial
statex◦2 ∈ Q◦

2 such thatx◦1 ≈ x◦2, and vice versa.

It is easily confirmed that conditions (i) and (ii) in Def. 5 are preserved under bisimi-
larity of annotated automata. This is because bisimilar states always have the same sets of
annotations and eligible events.

Example 5 AutomatonA′′ in Fig. 1 is bisimilar toA′. Statesq0, q1, andq25 have been
merged due to the fact that they have the same annotations andequivalent outgoing tran-
sitions. Note that this only becomes possible after annotation, subsumption, and incoming
equivalence.

Proposition 6 Let A1 andA2 be annotated automata such thatA1 ≈ A2. ThenA1 ≃conf A2.

Complexity Given an annotated automaton, a coarsest bisimulation relation can be found
in time complexityO(|→| log|Q|) using the algorithm in [7]. The annotated form ofG =
〈Σ,Q,→,Q◦〉 hasO(|Q|2|Σ|) transitions, givingO(|Q|2|Σ| log|Q|) time complexity for its
simplification. An initial partition based on annotations can be established with lower time
complexity.

3.6 Abstraction Procedure

This section explains how the above results can be used to minimise a given automaton with
respect to conflict equivalence. Given an automatonG, the task is to compute a hopefully
smaller abstractionG′ conflict equivalent toG.

Given the complexity of the annotation procedure, it is advisable to reduce the size of
the input automatonG using some standard means before constructing an annotatedform.
While not necessarily optimal for conflict equivalence, bisimulation or observation equiva-
lence [13] can be computed efficiently and are known to achieve significant reduction, as is
the removal of blocking states [9].
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After simplification of the input automaton, the next step isto compute its annotated
form A (G), which then is simplified in several steps. While constructing the annotated
form, annotations can be checked for subsumption on the fly, suppressing the generation
of any redundant annotations. The resulting annotated formis next simplified by merging
incoming equivalent states, again checking for subsumption and removing annotations that
become redundant. Then the result is minimised according tobisimulation equivalence.

After simplifying the annotated automaton, it is unannotated to obtain an ordinary au-
tomaton that is conflict equivalent to the input. There are different ways to construct an unan-
notated form that satisfies the conditions of Def. 7, as thereis considerable leeway in how
outgoing transitions from annotation states can be chosen,and by making clever choices,
the new annotation states can become bisimilar to original states or other annotation states,
making it possible to further simplify the result.

An example of the abstraction procedure is shown in Fig. 1. AutomatonG is first anno-
tated to obtainA (G), with subsumption being tested on the fly to suppress some annotations
struck out in the figure. Next incoming equivalence leads to the abstractionA′, with another
annotation being suppressed due to subsumption as discussed in example 4, and the result is
further simplified using bisimulation, givingA′′.

Since the annotated automaton cannot be simplified further,it is replaced by its unan-
notated formU . As explained in example 2, the transition(q0125,{α})

α
→ q0125 is not in-

cluded inU . This choice makes the statesq8, (q8,{α}), and(q0125,{α}) observation equiv-
alent [13], so they can be merged in addition to statesq7 and(q7,{ω}). This results in the
observation equivalent abstractionU ′. Furthermore, the transitionq0125

α
→ q8 is redundant

according to observation equivalence [5] and can be removed, giving the final resultU ′′.
The abstraction steps in Fig. 1 can be justified by the propositions given in the previ-

ous sections. Note that, for every annotated automaton, there exists an unannotated form
although it does not always have to be constructed explicitly. Let V andV ′ be unannotated
forms ofA (G) andA′, respectively. ThenG≃conf V by Prop. 3 andV ≃conf V ′ ≃conf U by
Prop. 4–6. Furthermore,U is observation equivalent toU ′ andU ′′, which impliesU ≃confU ′′

according to [12]. Thus,

G≃conf V ≃conf V
′ ≃conf U ≃conf U

′ ≃conf U
′′ . (10)

Overall, the automatonG with nine states and 25 transitions is simplified to the conflict-
equivalent automatonU ′′ with three states and seven transitions.

4 Formal Proofs

This section contains formal proofs of the propositions stated in the previous section. The
properties of annotated automata and unannotated automataare established in Section 4.1
and 4.2, and these results are used in Section 4.3–4.5 to confirm the correctness of the
abstraction rules.

4.1 Annotation

The main result about annotated forms is Prop. 1 in Section 3.1, which states that automata
with equal annotated forms are conflict equivalent. Its proof depends on two lemmas that
describe the relationship between paths in an automaton andits annotated form.
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Lemma 7 Let G= 〈Σ,Q,→,Q◦〉 be an automaton, and letA (G) = 〈Σ,Q,→A,Q◦,Ann〉 be
its annotated form. For all tracess∈ Σ∗ and all eventsσ ∈ Σ, the annotated form has a path
x

sσ
→A z if and only if there exists a pathx

s
⇒ y

σ
→ z in G, for somey∈ Q.

Proof The claim is proved by induction on|s|.
In the base case,s= ε, the claim follows directly from the definition (5).
For the inductive step, lets= tσ ′. Then note,

x
sσ
→A z ⇐⇒ x

tσ ′σ
−→A z ⇐⇒ x

tσ ′

→A y
σ
→A z for somey∈ Q . (11)

By inductive assumption,x
tσ ′

→A y holds if and only ifx
s
⇒ y′

σ ′

→ y for somey′ ∈ Q, and by (5)
y

σ
→A z holds if and only ify

ε
⇒ z′

σ
→ z for somez′ ∈ Q. Thus, (11) becomes equivalent to,

x
s
⇒ y′

σ ′

→ y
ε
⇒ z′

σ
→ z for somey′,z′ ∈ Q ⇐⇒ x

sσ ′

⇒ z′
σ
→ z for somez′ ∈ Q . ⊓⊔

Lemma 8 Let G= 〈Σ,Q,→,Q◦〉 be an automaton, and letA (G) = 〈Σ,Q,→A,Q◦,Ann〉 be
its annotated form. Also letx,z∈ Q ands∈ Σ∗.

(i) If x
s
⇒ z, then there existsz′ ∈ Q such thatx

s
⇒A z′ and(z′,EligG(z)) ∈ Ann.

(ii) If x
s
→A zand(z,a) ∈ Ann, then there existsz′ ∈ Q such thatx

s
⇒ z′ and EligG(z′) = a.

Proof (i) Let x
s
⇒ z. If s= ε thenx

ε
⇒ z, sox

ε
→A x with (x,EligG(z)) ∈ Ann by Def. 6 (6).

Otherwise,s= tσ and thusx
t
⇒ y

σ
→ z′

ε
⇒ z for somey,z′ ∈ Q. By Lemma 7, it follows that

x
tσ
⇒A z′, and(z′,EligG(z)) ∈ Annsincez′

ε
⇒ z.

(ii) Let x
s
→A z and (z,a) ∈ Ann. By Def. 6 (6), there existsz′ ∈ Q such thatz

ε
⇒ z′

and EligG(z′) = a. If s= ε thenx = z
ε
⇒ z′ with EligG(z′) = a. Otherwise,s= tσ and by

Lemma 7, there existsy∈ Q such thatx
t
⇒ y

σ
→ z. Thenx

s
⇒ z

ε
⇒ z′ with EligG(z′) = a. ⊓⊔

Given these results, it is now possible to prove Prop. 1, the main result about annotated
forms introduced in Section 3.1.

Proposition 1 Let G andH be two automata such thatA (G) = A (H). ThenG≃conf H.

Proof Let G = 〈Σ,QG,→G,Q◦
G〉 andH = 〈Σ,QH ,→H ,Q◦

H〉, and letT = 〈ΣT ,QT ,→T ,Q◦
T〉

be an arbitrary automaton.
Assume thatG‖ T is nonblocking. It is enough to show that this implies thatH ‖ T

is nonblocking. Therefore, lets∈ (Σ∪ΣT)∗ such thatH ‖T
s
⇒ (xH ,xT). ThenH

P(s)
=⇒ xH

according to (2), whereP: Σ∪ΣT → Σ denotes the natural projection, and by Lemma 8 (i),

there exists a statexA ∈ QH such thatA (G) = A (H)
P(s)
−→ xA and(xA,EligH(xH))∈ AnnH =

AnnG. By Lemma 8 (ii), there also exists a statexG ∈QG such thatG
P(s)
=⇒ xG and EligG(xG) =

EligH(xH). Thus,G‖T
s
⇒ (xG,xT).

As G‖T is nonblocking, there exists a tracet ∈ (Σ∪ΣT)∗ such that(xG,xT)
tω
⇒. Clearly,

tω = uσv for someu∈ (ΣT \Σ)∗, σ ∈ Σω , andv∈ (Σω ∪ΣT)∗. ThenxG
u
⇒G xG

σ
→G, i.e.,

σ ∈ EligG(xG) = EligH(xH). If σ = ω, then clearlyH ‖T
s
⇒ (xH ,xT)

uω
⇒, which is enough to

show thatH ‖T is nonblocking. Otherwise, ifσ ∈ Σ, let yH ∈ QH such thatH
P(s)
=⇒ xH

σ
→ yH .

By Lemma 7, this impliesA (G) = A (H)
P(s)σ
−→ yH andG

P(s)σ
=⇒ yH . Sinceu ∈ (ΣT \Σ)∗, it
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also follows thatG‖T
suσ
=⇒ (yH ,yT) for some stateyT of T. SinceG‖T is nonblocking, there

exists a tracew∈ (Σ∪ΣT)∗ such that(yH ,yT)
wω
⇒. Therefore,

H ‖T
s
⇒ (xH ,xT)

uσ
⇒ (yH ,yT)

wω
⇒ . (12)

Since(xH ,xT) was chosen arbitrarily, it follows thatH ‖T is nonblocking. ⊓⊔

4.2 Unannotation

This section proves two key results about unannotation. Unannotated forms are equal with
respect to conflict equivalence (Prop. 2), and conflict equivalence is preserved when anno-
tating and unannotating again (Prop. 3).

These results depend on the relationship between traces in an annotated automaton and
its unannotated forms, which are first established. Lemma 9 shows that every nonempty
path of an annotated automaton corresponds to an equivalentpath of its unannotated form.
Lemma 10 lifts this result to all paths of an unannotated form, considering separately the
cases of original and annotation end states.

Lemma 9 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and letU = 〈Σ,QU ,→U ,
Q◦〉 be an unannotated form ofA. For all tracess∈ Σ∗, all eventsσ ∈ Σ, and all statesx∈ Q,
it holds thatx

sσ
→ z if and only if x

s
⇒U y

σ
→U z for somey∈ QU .

Proof The claim is proved by induction on|s|.

First consider the base cases = ε. If x
σ
→ z, it follows directly from Def. 7 (iii) that

x
σ
→U z. Conversely, ifx

ε
⇒U y

σ
→U z, then by Def. 7 (ii) eitherx= y or x

τ
→U y. If x= y

σ
→U z,

thenx
σ
→ zby Def. 7 (iii). If x

τ
→U y, theny= (x,a)∈ Annby Def. 7 (ii), and(x,a) = y

σ
→U z

impliesx
σ
→ z by Def. 7 (v).

For the inductive step, lets= tσ ′, and first assumex
tσ ′

→ y
σ
→ z. By inductive assumption,

it follows thatx
tσ ′

⇒U y, and by Def. 7 (iii) it holds thaty
σ
→U z. This impliesx

tσ ′

⇒U y
σ
→U z.

Conversely, assume thatx
tσ ′

⇒U y
σ
→U z, i.e.,

x
t
⇒U x′

σ ′

→U y′
ε
⇒U y

σ
→U z . (13)

Thenx
tσ ′

→ y′ by inductive assumption, and by Def. 7 (ii), it either holds thaty′ = y, and thus
y′

σ
→U z, which impliesy′

σ
→ z by Def. 7 (iii); or there is an annotation(y′,a) ∈ Ann such

thaty = (y′,a), i.e., (y′,a)
σ
→U z and thusy′

σ
→ z by Def. 7 (v). In both cases,x

tσ ′

→ y′
σ
→ z,

i.e.,x
sσ
→ z. ⊓⊔

Lemma 10 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and letU = 〈Σ,QU ,
→U ,Q◦〉 be an unannotated form ofA.

(i) For all tracess∈ Σ∗ and all statesx∈ Q, it holds thatA
s
→ x if and only if U

s
⇒ x.

(ii) For all tracess∈ Σ∗ and all annotations(x,a) ∈ Ann, it holds thatA
s
→ x if and only if

U
s
⇒ (x,a).
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Proof (i) Firstly, if s= ε, thenA
ε
→ x impliesx∈ Q◦ and thusU

ε
⇒ x, and converselyU

ε
⇒ x

with x ∈ Q implies x ∈ Q◦ by Def. 7 (ii) and thusA
ε
→ x. Secondly, ifs = tσ , the claim

follows immediately from Lemma 9.
(ii) Let (x,a) ∈ Ann. Thenx

τ
→U (x,a) by Def. 7 (ii), and this is the only way how(x,a)

can be reached inU . Then the claim follows from (i), becausex∈ Q and thusA
s
→ x if and

only if U
s
⇒ x

τ
→ (x,a). ⊓⊔

The result that two unannotated forms of the same annotated automaton are conflict
equivalent now becomes a consequence of Lemmas 9 and 10.

Proposition 2 Let A be an annotated automaton, and letU1 andU2 be unannotated forms
of A. ThenU1 ≃conf U2.

Proof Let A = 〈Σ,Q,→,Q◦,Ann〉, and letUi = 〈Σ,Q∪Ann,→i ,Q◦〉 for i = 1,2 be unan-
notated forms ofA. Furthermore, letT = 〈ΣT ,QT ,→T ,Q◦

T〉 be an arbitrary automaton such
thatU1‖T is nonblocking. It is enough to show that this implies thatU2‖T is nonblocking.
Therefore, lets∈ (Σ∪ΣT)∗ such thatU2 ‖T

s
⇒ (x,xT), and consider two cases.

Case 1: x= (xa,a) ∈ Ann. ThenU2
P(s)
=⇒ (xa,a), which impliesA

P(s)
−→ xa andU1

P(s)
=⇒

(xa,a) by Lemma 10 (ii). ThusU1 ‖ T
s
⇒ ((xa,a),xT), and sinceU1 ‖ T is nonblocking,

there existst ∈ Σ∗ such thatU1 ‖T
s
⇒ ((xa,a),xT)

tω
⇒. Write tω = uσv with u∈ (ΣT \Σ)∗,

σ ∈ Σω , and v ∈ (Σω ∪ ΣT)∗. ThenU1 ‖ T
s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y1,yT), so

σ ∈ EligU1
((xa,a)) = a = EligU2

((xa,a)) by Def. 7 (iv) and (v), and thus(xa,a)
σ
→2 y2 for

somey2 ∈ Q. ThusU2 ‖T
s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y2,yT). If σ = ω, then clearly

U2 ‖T
s
⇒ ((xa,a),xT)

uω
⇒, which is enough to show thatU2 ‖T is nonblocking. Otherwise,

U2 ‖T
suσ
=⇒ (y2,yT) with suσ ∈ (Σ∪ΣT)∗ andy2 ∈ Q, and the proof continues as inCase 2.

Case 2: x∈ Q. ThenU2
P(s)
=⇒ x implies A

P(s)
−→ x andU1

P(s)
=⇒ x by Lemma 10 (i). Thus

U1 ‖T
s
⇒ (x,xT), and sinceU1 ‖T is nonblocking, there existsw ∈ Σ∗ such thatU1 ‖T

s
⇒

(x,xT)
wω
⇒ (y,yT) wherey∈ Q. Thereforex

P(w)ω
=⇒ 1 y, which impliesx

P(w)ω
−→ y andx

P(w)ω
=⇒ 2 y

by Lemma 9. ThenU2 ‖T
s
⇒ (x,xT)

wω
⇒, and since(x,xT) was chosen arbitrarily, it follows

thatU2 ‖T is nonblocking. ⊓⊔

The second main result about unannotation is that conflict equivalence is preserved when
annotation is followed by unannotation. To prove this, it ishelpful to first establish a lemma
about annotations, namely that the annotated form of an automaton is equal to the annotated
form of its unannotation. Due to the way how annotated forms are defined in this paper,
Lemma 11 only applies to annotated forms of an ordinary automatonG, not to arbitrary
annotated automata.

Lemma 11 Let G be an automaton, and letU be an unannotated form ofA (G). Then
A (U) = A (G).

Proof Let A (G) = 〈Σ,Q,→,Q◦,Ann〉, let U = 〈Σ,QU ,→U ,Q◦〉 be an unannotated form
of A (G), and letA (U) = 〈Σ,QU ,→A (U),Q

◦,AnnA (U)〉. It will be shown that the reachable
parts ofA (G) andA (U) are equal, i.e., that→ = →A (U)|Q andAnn= AnnA (U)|Q, where
→A (U)|Q = →A (U) ∩ (Q×Σω ×QU ) andAnnA (U)|Q = AnnA (U) ∩ (Q×2Σω ).

First, letx
σ
→ y. Thenx ∈ Q andx

σ
→U y by Def. 7 (iii), andx

σ
→A (U) y by Def. 6 (5),

andx
σ
→A (U)|Q y asx ∈ Q.
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Conversely, letx
σ
→A (U)|Q y. Then x ∈ Q and x

ε
⇒U z

σ
→U y for somez ∈ QU by

Def. 6 (5). By Def. 7 (ii), this means that eitherx = z, which impliesx
σ
→U y andx

σ
→ y

by Def. 7 (iii), orz= (x,a)
σ
→U y, which impliesx

σ
→ y by Def. 7 (v).

Second, let(x,a)∈Ann. Thenx∈Q andx
τ
→U (x,a) by Def. 7 (ii) and EligU ((x,a)) = a

by Def. 7 (iv) and (v). By Def. 6 (6), it follows that(x,a) = (x,EligU ((x,a))) ∈ AnnA (U)|Q.
Conversely, let(x,a) ∈ AnnA (U)|Q. Thenx ∈ Q, and by Def. 6 (6), there existsy ∈ QU

such thatx
ε
⇒U y and EligU (y) = a. Here,x

ε
⇒U y means that eitherx = y or x

τ
→U y.

In the casex = y, note thaty = x∈Q, and EligU (y) = EligA(y)∪
⋃

(z,a)∈Anna= EligA(y)
by Def. 5 (ii), and EligA(y) = EligG(y) by Def. 6 (5). Therefore,(x,a) = (y,EligU (y)) =
(y,EligA(y)) = (y,EligG(y)) ∈ Ann.

In the casex
τ
→U y, note thaty ∈ Ann by Def. 7 (ii). Then it follows from EligU (y) = a

by Def. 7 (iv) and (v) that(x,a) = y∈ Ann. ⊓⊔

Proposition 3 Let G be an automaton, and letU be an unannotated form ofA (G). Then
U ≃conf G.

Proof By Lemma 11, it holds thatA (U) = A (G), which impliesU ≃conf G by Prop. 1. ⊓⊔

4.3 Subsumption

This section contains the proof of Prop. 4 introduced in 3.3,which says that conflict equiv-
alence of annotated automata is preserved under subsumption of annotations. Although
lengthy, the proof can be done using the properties of the paths of unannotated forms es-
tablished in 4.2.

Proposition 4 Let A = 〈Σ,Q,→,Q◦,Ann〉 andAsub = 〈Σ,Q,→,Q◦,Annsub〉 be two anno-
tated automata such thatAnnsub⊆ Ann and for all(x,a) ∈ Ann there existsasub⊆ a such
that(x,asub) ∈ Annsub. ThenA≃conf Asub.

Proof LetU = 〈Σ,Q∪Ann,→U ,Q◦〉 andUsub= 〈Σ,Q∪Annsub,→U,sub,Q◦〉 be unannotated
forms of A andAsub, respectively. It is to be shown thatU ≃conf Usub. Therefore, letT =
〈ΣT ,QT ,→T ,Q◦

T〉 be an arbitrary automaton.

First, assume thatU ‖ T is nonblocking, and lets∈ (Σ∪ΣT)∗ such thatUsub‖ T
s
⇒

(x,xT). ThenUsub
P(s)
=⇒ x∈ Q∪Annsub. Consider two cases.

Case 1: x= (xa,a) ∈ Annsub. From Usub
P(s)
=⇒ x = (xa,a), it follows that Asub

P(s)
−→ xa

by Lemma 10 (ii), which impliesA
P(s)
−→ xa becauseA and Asub have the same transition

relations. Furthermore, since(xa,a)∈Annsub⊆Ann, it follows by Lemma 10 (ii) thatU
P(s)
=⇒

(xa,a). This impliesU ‖T
s
⇒ ((xa,a),xT), and sinceU ‖T is nonblocking, there existst ∈ Σ∗

such thatU ‖T
s
⇒ ((xa,a),xT)

tω
⇒. Write tω = uσv with u ∈ (ΣT \Σ)∗, σ ∈ Σω , andv ∈

(Σω ∪ΣT)∗. ThenU ‖T
s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y,yT), soσ ∈ EligU ((xa,a)) =

a = EligUsub
((xa,a)) by Def. 7 (iv) and (v), and(xa,a)

σ
→U,sub ysub for someysub∈ Q. If

σ = ω, then clearlyUsub‖T
s
⇒ ((xa,a),xT)

uω
⇒, which is enough to show thatUsub‖T is

nonblocking. Otherwise,Usub‖T
suσ
=⇒ (ysub,yT) with suσ ∈ (Σ∪ΣT)∗ andysub∈ Q, and the

proof continues as inCase 2.
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Case 2: x∈ Q. From Usub
P(s)
=⇒ x, it follows that Asub

P(s)
−→ x by Lemma 10 (i), which

impliesA
P(s)
−→ x becauseAandAsubhave the same transition relations, which impliesU

P(s)
=⇒ x

again by Lemma 10 (i). ThenU ‖T
s
⇒ (x,xT), and sinceU ‖T is nonblocking, there exists

w∈ Σ∗ such thatU ‖T
s
⇒ (x,xT)

wω
⇒ (z,zT). This meansx

P(w)ω
=⇒ U z, which impliesx

P(w)ω
−→ zby

Lemma 9, which impliesx
P(w)ω
−→ subz becauseA andAsub have the same transition relations,

which impliesx
P(w)ω
−→ U,subzagain by Lemma 9. Thus,Usub‖T

s
⇒ (x,xT)

wω
⇒, and since(x,xT)

was chosen arbitrarily, it follows thatUsub‖T is nonblocking.
Conversely, assume thatUsub‖T is nonblocking, and lets∈ (Σ∪ΣT)∗ such thatU ‖T

s
⇒

(x,xT). ThenU
P(s)
=⇒ x∈ Q∪Ann. Consider two cases.

Case 1: x= (xa,a) ∈ Ann. By assumption there existsasub⊆ a such that(xa,asub) ∈

Annsub. FromU
P(s)
=⇒ x = (xa,a), it follows thatA

P(s)
−→ xa by Lemma 10 (ii), which implies

Asub
P(s)
−→ xa becauseA andAsubhave the same transition relations. Therefore,Usub

P(s)
=⇒ xa

τ
→

(xa,asub) by Lemma 10 (i) and by Def. 7 (ii). Thus,Usub‖T
s
⇒ ((xa,asub),xT), and since

Usub‖T is nonblocking, there existst ∈ Σ∗ such thatUsub‖T
s
⇒ ((xa,asub),xT)

tω
⇒. Write

tω = uσvwith u∈ (ΣT \Σ)∗, σ ∈Σω , andv∈ (Σω ∪ΣT)∗. ThenUsub‖T
s
⇒ ((xa,asub),xT)

u
⇒

((xa,asub),x′T)
σ
→ (ysub,yT), i.e., σ ∈ EligUsub

((xa,asub)) = asub ⊆ a = EligU ((xa,a)) by

Def. 7 (iv) and (v), and(xa,a)
σ
→U y for somey ∈ Q. If σ = ω, then clearlyU ‖ T

s
⇒

((xa,a),xT)
uω
⇒, which is enough to show thatU ‖T is nonblocking. Otherwise,U ‖T

suσ
=⇒

(y,yT) with suσ ∈ (Σ∪ΣT)∗ andy∈ Q, and the proof continues as inCase 2.

Case 2: x∈ Q. FromU
P(s)
=⇒ x, it follows thatA

P(s)
−→ x by Lemma 10 (i), which implies

Asub
P(s)
−→ x becauseA andAsub have the same transition relations, which impliesUsub

P(s)
=⇒ x

again by Lemma 10 (i). ThenUsub‖T
s
⇒ (x,xT), and sinceUsub‖T is nonblocking, there

existsw ∈ Σ∗ such thatUsub‖T
s
⇒ (x,xT)

wω
⇒ (z,zT). This meansx

P(w)ω
=⇒ U,sub z, which by

Lemma 9 impliesx
P(w)ω
−→ z, both inA andAsub, andx

P(w)ω
−→ U z. Thus,U ‖T

s
⇒ (x,xT)

wω
⇒,

and since(x,xT) was chosen arbitrarily, it follows thatU ‖T is nonblocking. ⊓⊔

4.4 Incoming Equivalence

To prove the correctness of abstractions based on automatonquotients, such as the incom-
ing equivalence abstraction, the relationship between thetraces in an automatonA and its
quotientA/∼ needs to be established. It is well-known that every trace inA also has a cor-
responding trace inA/∼. The following Lemma 12 is quoted from [9] and holds for every
equivalence relation. Conversely, not every path in a quotient automaton exists in the orig-
inal automaton, but Lemma 13 shows how such a path can be obtained if the quotient is
constructed using incoming equivalence.

Lemma 12 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and let∼ ⊆ Q×Q be
an equivalence relation. Then, for all statesx,y ∈ Q and all tracess∈ Σ∗ such thatx

s
→ y

in A, it holds that[x]
s
→ [y] in A/∼.

Proof Let x
s
→ y in A with s= σ1 . . .σn. Then there exist statesx0, . . . ,xn ∈ Q such that

x = x0
σ1→ x1

σ2→ ·· ·
σn→ xn = y . (14)
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By Def. 10, it holds that[xk−1]
σk→ [xk] for eachk = 1, . . . ,n, which implies[x]

s
→ [y] in A/∼.

⊓⊔

Lemma 13 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and let ˜x, z̃∈ Q/∼inc be
two states ofA/∼inc.

(i) For all s∈ Σ∗ and allσ ∈ Σ such that ˜x
sσ
→ z̃, there existsx∈ x̃ such that for allz′ ∈ z̃ it

holds thatx
sσ
→ z′.

(ii) For all s∈ Σ∗ such thatA/∼inc
s
→ z̃ and for allz′ ∈ z̃, it holds thatA

s
→ z′.

Proof (i) The claim is proved by induction on|s|.

Base case: s= ε. As x̃
σ
→ z̃, there must existx∈ x̃ andz∈ z̃ such thatx

σ
→ z. Let z′ ∈ z̃.

Thenz∼inc z′, and it follows from Def. 9 thatx
σ
→ z′.

Inductive step: s= tσ . Assume that ˜x
t
→ ỹ

σ
→ z̃. Then there are statesy∈ ỹ andz∈ z̃such

that y
σ
→ z. By inductive assumption, there exists a statex ∈ x̃ such thatx

t
→ y. Let z′ ∈ z̃.

Thenz∼inc z′, and it follows from Def. 9 thatx
t
→ y

σ
→ z′.

(ii) Let Q̃◦ = { [x◦] | x◦ ∈ Q◦ } be the set of initial states ofA/∼inc.
If s= ε, thenz̃∈ Q̃◦ and thus ˜z= [x◦] for somex◦ ∈ Q◦, which impliesx◦ ∈ z̃. Let z′ ∈ z̃.

Thenx◦ ∼inc z′, which impliesz′ ∈ Q◦ by Def. 9 and thusA
ε
→ z′.

Otherwises= tσ for somet ∈ Σ∗ andσ ∈ Σ, and there exists ˜x∈ Q̃◦ such that ˜x
tσ
→ z̃.

Let z′ ∈ z̃. It follows from (i) that there existsx ∈ x̃ such thatx
tσ
→ z′. Since ˜x ∈ Q̃◦, there

existsx◦ ∈ x̃ such thatx◦ ∈ Q◦. Thenx◦ ∼inc x impliesx∈ Q◦ and thusA
tσ
→ z′. ⊓⊔

Using the above two lemmas and the properties of the paths of unannotated forms estab-
lished in Section 4.2, the proof of Prop. 5 proceeds using similar ideas to that of theActive
Events Rule[9].

Proposition 5 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. ThenA≃conf A/∼inc.

Proof Let U = 〈Σ,Q∪Ann,→U ,Q◦〉 andŨ = 〈Σ,Q/∼inc∪ Ãnn,→Ũ ,Q̃◦〉 be unannotated
forms of A and Ã = A/∼inc, respectively. It is to be shown thatU ≃conf Ũ . Therefore, let
T = 〈ΣT ,QT ,→T ,Q◦

T〉 be an arbitrary automaton.

First, assume thatU ‖T is nonblocking, and lets∈ (Σ∪ΣT)∗ such thatŨ ‖T
s
⇒ (x̃,xT).

ThenŨ
P(s)
=⇒ x̃∈ Q/∼inc∪ Ãnn. Consider two cases.

Case 1:x̃ = (x̃a,a) ∈ Ãnn. Then there existsxa ∈ x̃a such that(xa,a) ∈ Ann. From

Ũ
P(s)
=⇒ x̃ = (x̃a,a), it follows that Ã

P(s)
−→ x̃a by Lemma 10 (ii), which impliesA

P(s)
−→ xa by

Lemma 13 (ii), andU
P(s)
=⇒ (xa,a) again by Lemma 10 (ii). Thus,U ‖T

s
⇒ ((xa,a),xT), and

sinceU ‖T is nonblocking, there existst ∈ Σ∗ such thatU ‖T
s
⇒ ((xa,a),xT)

tω
⇒. Write

tω = uσv with u∈ (ΣT \Σ)∗, σ ∈ Σω , andv∈ (Σω ∪ΣT)∗. ThenU ‖T
s
⇒ ((xa,a),xT)

u
⇒

((xa,a),x′T)
σ
→ (y,yT), i.e., σ ∈ EligU ((xa,a)) = a = EligŨ ((x̃a,a)) by Def. 7 (iv) and (v),

and (x̃a,a)
σ
→Ũ ỹ for some ˜y ∈ Q/∼inc. If σ = ω, then clearlyŨ ‖ T

s
⇒ ((x̃a,a),xT)

u
⇒

((x̃a,a),x′T)
ω
⇒, which is enough to show that̃U ‖T is nonblocking. Otherwise,̃U ‖T

s
⇒

((x̃a,a),xT)
u
⇒ ((x̃a,a),x′T)

σ
→ (ỹ,yT) with suσ ∈ (Σ∪ΣT)∗ andỹ∈ Q/∼inc, and the proof

continues as inCase 2.

Case 2:x̃ ∈ Q/∼inc. Then Ã
P(s)
−→ x̃ by Lemma 10 (i). Then letx ∈ x̃, and it follows

from Lemma 13 (ii) thatA
P(s)
−→ x, which impliesU

P(s)
=⇒ x again by Lemma 10 (i). Thus,
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U ‖T
P(s)
=⇒ (x,xT), and sinceU ‖T is nonblocking, there existsw∈ Σ∗ such thatU ‖T

P(s)
=⇒

(x,xT)
wω
⇒ (z,zT). Thenx

P(w)ω
=⇒ U z, with z∈ Q by Def. 7. This impliesx

P(w)ω
−→ zby Lemma 9,

and thus[x]
P(w)ω
−→ [z] in A/∼inc by Lemma 12, which implies ˜x = [x]

P(w)ω
=⇒ Ũ [z] again by

Lemma 9. Thus,̃U ‖T
s
⇒ (x̃,xT)

wω
⇒, and since(x̃,xT) was chosen arbitrarily, it follows that

Ũ ‖T is nonblocking.
Conversely, assume thatŨ ‖T is nonblocking, and lets∈ (Σ∪ΣT)∗ such thatU ‖T

s
⇒

(x,xT). ThenU
P(s)
=⇒ x∈ Q∪Ann. Consider two cases.

Case 1: x= (xa,a)∈Ann.FromU
P(s)
=⇒ (xa,a), it follows thatA

P(s)
−→ xa by Lemma 10 (ii),

which impliesÃ
P(s)
−→ [xa] by Lemma 12. Note that([xa],a) ∈ Ãnn and thusŨ

P(s)
=⇒ ([xa],a)

again by Lemma 10 (ii). Thus,̃U ‖ T
s
⇒ (([xa],a),xT), and sinceŨ ‖ T is nonblocking,

there existst ∈ Σ∗ such thatŨ ‖T
s
⇒ (([xa],a),xT)

tω
⇒. Write tω = uσv with u∈ (ΣT \Σ)∗,

σ ∈ Σω , andv ∈ (Σω ∪ΣT)∗. ThenŨ ‖T
s
⇒ (([xa],a),xT)

u
⇒ (([xa],a),x′T)

σ
→ (ỹ,yT), i.e.,

σ ∈ EligŨ (([xa],a)) = a = EligU ((xa,a)) by Def. 7 (iv) and (v), and(xa,a)
σ
→U y for some

y∈Q. ThusU ‖T
s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y,yT) with y∈Q. If σ = ω, then clearly

U ‖T
s
⇒ ((xa,a),xT)

uω
⇒, which is enough to show thatU ‖T is nonblocking. Otherwise,

U ‖T
suσ
=⇒ (y,yT) with suσ ∈ (Σ∪ΣT)∗ andy∈ Q, and the proof continues as inCase 2.

Case 2: x∈ Q. ThenA
P(s)
−→ x by Lemma 10 (i), which implies̃A

P(s)
−→ [x] by Lemma 12.

By Def. 5, there existsa⊆ EligA(x) such that(x,a) ∈ Ann. Then([x],a) ∈ Ãnn, andŨ
P(s)
=⇒

([x],a) by Lemma 10 (ii). Thus,Ũ ‖ T
s
⇒ (([x],a),xT), and sinceŨ ‖ T is nonblocking,

there existst ∈ Σ∗ such thatŨ ‖T
s
⇒ (([x],a),xT)

tω
⇒. Write tω = uσv with u∈ (ΣT \Σ)∗,

σ ∈ Σω , andv∈ (Σω ∪ΣT)∗. ThenŨ ‖T
s
⇒ (([x],a),xT)

u
⇒ (([x],a),x′T)

σ
→ (ỹ,yT). Clearly,

σ ∈ EligŨ (([x],a)) = a⊆ EligA(x) = EligU (x) by Def. 7 (iii) and (v). Ifσ = ω, it already

follows thatU ‖T
s
⇒ (x,xT)

uω
⇒, i.e.,U ‖T is nonblocking. Otherwiseσ ∈ EligA(x) means

thatx
σ
→ y for somey∈ Q. ThenÃ

P(s)
−→ [x]

σ
→ [y] by Def. 10 andŨ

P(s)σ
=⇒ [y] by Lemma 10 (i).

ThereforeŨ ‖T
suσ
=⇒ ([y],yT), and sinceŨ ‖T is nonblocking, there existsw∈ Σ∗ such that

Ũ ‖T
suσ
=⇒ ([y],yT)

wω
⇒. Then[y]

P(w)ω
=⇒ Ũ , and by Lemma 13 (i) there existsy′ ∈ [y] such that

y′
P(w)ω
=⇒ U . Thusx

σ
→ y∼inc y′, which impliesx

σ
→ y′ by Def. 9, andx

σ
→U y′ by Def. 7 (iii).

Thus,U ‖T
s
⇒ (x,xT)

uσ
⇒ (y′,yT)

wω
⇒, and since(x,xT) was chosen arbitrarily, it follows that

U ‖T is nonblocking. ⊓⊔

4.5 Bisimulation

This section contains the proof of Prop. 6 introduced in 3.5,which states that conflict equiva-
lence is preserved under bisimulation of annotated automata. This is best proved by showing
that the unannotated forms of bisimilar annotated automataare bisimilar. For this purpose,
the following standard definition of bisimulation for ordinary automata is used [13].

Definition 12 Let G1 = 〈Σ,Q1,→1,Q
◦
1〉 andG2 = 〈Σ,Q2,→2,Q

◦
2〉 be two automata. A re-

lation≈⊆ Q1×Q2 is called abisimulationbetweenG1 andG2, if the following conditions
hold for all statesx1 ∈ Q1 andx2 ∈ Q2 such thatx1 ≈ x2.

(i) For all σ ∈ Στ ,ω , if x1
σ
→ y1 then there existsy2 ∈ Q2 such thaty1 ≈ y2 andx2

σ
→ y2.
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(ii) For all σ ∈ Στ ,ω , if x2
σ
→ y2 then there existsy1 ∈ Q1 such thaty1 ≈ y2 andx1

σ
→ y1.

G1 andG2 arebisimulation equivalentor bisimilar, writtenG1 ≈ G2, if there exists a bisim-
ulation≈ betweenG1 andG2 such that, for every initial statex◦1 ∈ Q◦

1 there exists an initial
statex◦2 ∈ Q◦

2 such thatx◦1 ≈ x◦2, and vice versa.

Although unannotated forms have been shown to be unique up toconflict equivalence
in Prop. 2, two unannotated forms of the same annotated automaton are not necessarily
bisimilar. To prove the result about bisimulation, a uniqueunannotated form is needed.

Definition 13 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. Thestandard unan-
notationof A is U (A) = 〈Σ,QU ,→U ,Q◦〉 whereQU = Q∪Annand

→U = →∪{(x,τ,(x,a)) ∈ Q×{τ}×Ann}∪

{((x,a),σ ,y) ∈ Ann×Σω ×Q | σ ∈ a andx
σ
→ y} (15)

The standard unannotation resolves the ambiguity in points(iv) and (v) of Def. 7 by
simply including all possible transitions for every annotation state. This ensures uniqueness
at the expense of minimality. It is easy to confirm that, for every annotated automatonA, the
standard unannotationU (A) is indeed an unannotated form ofA.

The standard unannotations of bisimilar automata can be shown to be bisimilar, and this
is enough to complete the proof of Prop. 6.

Lemma 14 Let A1 = 〈Σ,Q1,→1,Q
◦
1,Ann1〉 andA2 = 〈Σ,Q2,→2,Q

◦
2,Ann2〉 be two anno-

tated automata such thatA1 ≈ A2. ThenU (A1) ≈ U (A2).

Proof Let U (Ai) = 〈Σ,QU,i ,→U,i ,Q◦
i 〉 whereQU,i = Qi ∪Anni for i = 1,2, and let≈ be a

bisimulation betweenA1 andA2. Consider the relation≈U ⊆QU,1×QU,2 such thatx1 ≈U x2

if and only if one of the following two conditions holds:

x1 ∈ Q1, x2 ∈ Q2, andx1 ≈ x2 or (16)

there existsa⊆ Σω such thatx1 = (x′1,a) ∈ Ann1, x2 = (x′2,a) ∈ Ann2, andx′1 ≈ x′2 . (17)

It is to be shown that≈U is a bisimulation betweenU (A1) andU (A2). To see (i) in Def. 12,
let x1 ≈U x2 andx1

σ
→U,1 y1 for someσ ∈ Στ ,ω . Then either (16) or (17) holds.

If (16) holds, thenx1 ≈ x2 with x1 ∈ Q1 andx2 ∈ Q2. Then eithery1 ∈ Q1 or y1 ∈ Ann1.
If y1 ∈ Q1, then it follows fromx1

σ
→U,1 y1 that x1

σ
→1 y1 by Def. 13. Sincex1 ≈ x2, by

Def. 11 there existsy2 ∈ Q2 such thatx2
σ
→2 y2 andy1 ≈ y2. Again by Def. 13, this implies

x2
σ
→U,2 y2, andy1 ≈U y2 according to (16). If on the other handy1 ∈ Ann1, thenσ = τ and

y1 = (x1,a) for somea ⊆ Σω by Def. 7. Sincex1 ≈ x2 and(x1,a) = y1 ∈ Ann1, it follows
from Def. 11 that(x2,a)∈Ann2. Thenx2

τ
→U,2 (x2,a) by Def. 13 andy1 = (x1,a)≈U (x2,a)

by (17).
If (17) holds, thenx1 = (x′1,a) ∈ Ann1 andx2 = (x′2,a) ∈ Ann2 for somea ⊆ Σω , and

x′1 ≈ x′2. Then it follows from(x′1,a)
σ
→U,1 y1 by Def. 13 thatσ ∈ a, y1 ∈ Q1, andx′1

σ
→1 y1.

Sincex′1 ≈ x′2, there existsy2 ∈ Q2 such thatx′2
σ
→2 y2 andy1 ≈ y2. Then(x′2,a)

σ
→U,2 y2 by

Def. 13 sinceσ ∈ a, andy1 ≈U y2 by (16) sincey1 ≈ y2.
This shows (i) in Def. 12. The proof of (ii) is symmetric, and the condition on the initial

states follows sinceA1 ≈ A2 andAi andU (Ai) have the same initial states. ⊓⊔

Proposition 6 Let A1 andA2 be annotated automata such thatA1 ≈ A2. ThenA1 ≃conf A2.

Proof LetU1 be an unannotated form ofA1, and letU2 be an unannotated form ofA2. Then
U1 ≃conf U (A1) ≈ U (A2) ≃conf U2 by Prop. 2 and Lemma 14. The claim follows from
results in [12], according to which bisimilar automata are conflict equivalent. ⊓⊔
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5 Experimental Results

A conflict checker using annotated automata has been implemented in the DES software
tool Supremica [1] and tested on the same set of industrial-scale and parametrised models
as used previously in [9]. All these problems have been solved successfully, and the results
are shown in Table 1.

After simplifying each individual component in a composed system such as (3), the al-
gorithm selects acandidateset of automata for composition using strategies describedin [9].
After synchronous composition and hiding of local events, the result is first simplified using
observation equivalence and by removing obvious certain conflicts [9]. Then the annotated
form is constructed and simplified using incoming equivalence and bisimulation. Subsump-
tion is used during each of these steps. Finally, an unannotated form is obtained and further
simplified by removing states with only silent outgoing transitions.

The Annotating Methoddescribed above has been compared to theHeuristic Method
described in [9]. The heuristic compositional conflict checker of [9] selects and composes
candidate sets of automata in the same way as the annotating method, but it uses a more
straightforward set of abstraction rules to simplify automata. In addition to theCertain Con-
flicts Ruleand observation equivalence, which are part of the preprocessing steps in the
Annotating Method, the Heuristic Method also uses theActive Events Rule, theSilent Con-
tinuation Rule, theOnly Silent Incoming Rule, and theOnly Silent Outgoing Rule[9]. All
these rules are directly applied to the transitions of an automaton, without computing an
annotated form. This makes the rules simpler to apply, but they also have somewhat weaker
abstraction potential, as it can be shown that all abstractions obtained using the above men-
tioned rules and more can in principle be achieved by simplifying an annotated automaton.

To make the Annotating and Heuristic Method comparable, they have been modified to
ensure that both implementations select and compose the same automata in the same order,
regardless of possible differences in the intermediate results. This is done to compare the
effects of the different simplification methods, as opposedto comparing different choices
of automata for composition (which often lead to dramatic changes). However, the chosen
order of composition is no longer optimal, which explains the difference between the results
in Table 1 and [9].

Table 1 shows the experimental results for nonblocking verification of 14 large models
of industrial-scale applications and 9 very large parametrised models. Please refer to [9]
for a more detailed description of the models. The table shows the number of reachable
states of the synchronous product of each model (Size), and the number of states of the
largest automaton encountered during compositional verification (Peak States), the cumula-
tive number of states constructed during verification (Total States), and the total verification
time in seconds, for both the Annotating Method and the Heuristic Method,

All experiments were run on a standard laptop computer with a2 GHz microprocessor
and 4 GB of RAM, and controlled by state limits. If during abstraction some synchronous
product has more than 10,000 states, its construction is aborted and another set of automata
is composed instead. If no suitable set of automata for composition can be identified, a
final attempt is made to construct and check the full synchronous product of all remaining
automata whether it is nonblocking. If this attempt runs outof memory, the run is aborted
and the corresponding table entries are left blank.

The annotating conflict checker performs much better than the heuristic method for the
parametrised dining philosophers and tree arbiter problems, which cannot be solved by the
heuristic method using the given state limits and candidateselection strategy. For the in-
dustrial applications, the two methods yield similar results, with the Annotating Method
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Table 1 Experimental results

Annotating Heuristic
Peak Total Time Peak Total Time

Size States States [s] States States [s]
AGV 2.6·107 10552 18054 28.1 1368 4097 4.1
AGVb 2.3·107 975 1719 0.2 781 1524 0.1
verriegel3 9.7·108 2346 12767 4.7 2856 14639 6.8
verriegel3b 1.3·109 2346 11028 4.8 2537 11976 6.3
verriegel4 4.5·1010 3703 15286 5.4 2671 15106 6.1
verriegel4b 6.3·1010 2346 11827 4.6 2537 12968 6.3
big bmw 3.1·107 63 342 0.1 63 347 0.1
FMS 812544 86 206 0.0 125 279 0.1
SMS 312 18 119 0.0 18 120 0.0
PMS 5.7·108 75 487 0.1 75 492 0.2
IPC 20592 107 195 0.0 107 195 0.1
ftechnik 1.2·108 5631 21218 5.9 2450 15524 4.8
rhone tough 1.0·1010 1584 5025 4.1 1584 5026 4.5
AIP 1.0·109 6864 82542 30.3 6868 77512 24.7
256philo 5.4·10168 628 77419 21.8
512philo 2.9·10337 628 156395 48.1
1024philo 8.5·10674 628 314347 96.1
128transfer 1.6·10231 43 11115 3.9 42 10966 10.7
256transfer 2.4·10462 43 22251 10.7 42 21974 9.3
512transfer 5.8·10924 43 44523 42.6 42 43990 34.7
128arbiter 2.8·10112 55 14669 10.4
256arbiter 5.4·10224 55 29517 31.5
512arbiter 2.1·10449 55 59213 58.1

producing a smaller peak number of states in 5 cases, and the Heuristic Method producing a
smaller peak number of states in 4 cases. The difference is particularly notable for theAGV
andftechnikmodels, where the annotating method results in larger automata. This seems to
be caused by the annotating and unannotating steps, which may change the structure of an
automaton in such a way that certain states are no longer observation equivalent. The more
regular parametrised examples do not suffer from this issue, and the Annotating Method
works better here.

Table 2 shows some information on the effectiveness of the individual steps taken by
the annotating method. First, it shows for each model the total number of annotations cre-
ated and removed by subsumption. Next, it shows the total number of states removed as
unreachable after annotation (Ann.), the number of states removed by merging incoming
equivalent (∼inc) and bisimilar (≈) states, and the number of states added back in when
constructing unannotated forms (Unann.). Note that≈ refers to simplification of annotated
automata and is in addition to observation equivalence simplification, which is performed
on all automata before annotating.

In most cases, annotating helps to remove substantially more states than need to be added
back during unannotation. The data clearly shows the importance of the subsumption step,
which is performed directly while constructing the annotated form. While merging incoming
equivalent and bisimilar states seems to have a limited effect for most industrial models, it
has a marked effect for some of the more regular models in the dining philosophers and
arbiter series.
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Table 2 Rule Usage

Annotations States
Create Subsume Ann. ∼inc ≈ Unann.

AGV +63435 −58073 −1777 −34 −513 +5
AGVb +328 −226 −0 −0 −0 +0
verriegel3 +3442 −759 −93 −7 −16 +37
verriegel3b +3478 −777 −70 −1 −16 +19
verriegel4 +3875 −927 −93 −13 −32 +29
verriegel4b +4578 −1540 −122 −1 −67 +42
big bmw +53 −27 −1 −0 −0 +1
FMS +77 −26 −24 −0 −8 +11
SMS +8 −8 −0 −0 −0 +0
PMS +161 −103 −17 −9 −9 +7
IPC +133 −58 −9 −0 −2 +4
ftechnik +4785 −856 −26 −0 −0 +1
rhone tough +899 −491 −15 −0 −6 +13
AIP +17303 −6644 −1600 −597 −216 +1054
256philo +86128 −33106 −1756 −874 −9635 +0
512philo +174192 −67133 −3548 −1770 −19491 +0
1024philo +350320 −133683 −7132 −3562 −39203 +0
128transfer +3721 −1289 −129 −0 −0 +1
256transfer +7433 −2569 −257 −0 −0 +1
512transfer +14857 −5129 −513 −0 −0 +1
128arbiter +5475 −2769 −1002 −436 −61 +61
256arbiter +11043 −5585 −2026 −884 −125 +125
512arbiter +22179 −11217 −4074 −1780 −253 +253

6 Conclusions

This paper shows howannotationscan be used for compositional nonblocking verifica-
tion. Methods to construct annotated automata and to compute abstractions are presented,
and their correctness is proved formally. Experimental results show that the performance of
nonblocking verification using annotations is comparable to existing methods of simplifying
automata with respect to conflict equivalence.

In addition, annotations lead to an improved structure and more regular nondeterministic
automata, and help to better understand the nature and possibilities of conflict-preserving ab-
stractions. So far, three simplification rules for annotated automata have been implemented,
and it is already known that the framework allows for other more powerful ways of conflict-
preserving abstraction.

In the future, the authors would like to the investigate identification of implicit transi-
tions with respect to conflict equivalence and their selective introduction to aid bisimulation
reduction of annotated automata. Another topic of future work is the investigation of al-
ternatives to the unannotation procedure, to avoid the construction of additional states by
verifying nonblocking using only annotated automata.
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