-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Research Commons@Waikato

Discrete Event Dynamic Systems manuscript No.
(will be inserted by the editor)

Conflict-Preserving Abstraction of Discrete Event Systems
Using Annotated Automata

Simon Ware - Robi Malik

the date of receipt and acceptance should be inserted later

Abstract This paper proposes to enhance compositional verificatfaiheo nonblocking
property of discrete event systems by introducamgiotated automataAnnotations store
nondeterministic branching information, which would othisse be stored in extra states
and transitions. This succinct representation makes iee#s simplify automata and en-
ables new efficient means abstraction reducing the size of automata to be composed and
thus the size of the synchronous product state space emredrin verification. The abstrac-
tions proposed are of polynomial complexity, and they hasernbsuccessfully applied for
nonblocking verification of the same set of large-scale gtidal examples as used in related
work.

1 Introduction

With the continuously increasing size and complexity otta@ systems software, the au-
tomatic verification of large reactive systems is and remairchallenging problem. This
paper focuses on the verification of thenblockingproperty, which is of great interest in
supervisory control of discrete event systems [2, 17]. Nocking is the question whether
the composed behaviour of a set of automata is under allrogtances capable of reaching
a terminal state.

The standard method to check whether a system is nonblodkiadves the explicit
composition of all the automata involved and the constamctf the complete state space.
This approach is limited by the well-knovatate-space explosigroblem.Symbolic model
checkinghas been used successfully to reduce the amount of memariyaddpy represent-
ing the state space symbolically rather than enumeratiexpiicitly [3].

As an alternativegompositionalzerification tries to avoid constructing large state spaces
by progressively composing automata and usabgtractionto simplify intermediate re-
sults. This idea has been pursued with notable successeéntrgears. Automata can be
simplified for nonblocking verification usingbserver projectiori6, 16] or weak observa-
tion equivalencg19]. These well-known general-purpose abstractions aygenestrictive
than necessary for nonblocking verification. A possibleralative is to considdrajectory

Department of Computer Science, University of Waikato, HamilNew Zealand
E-mail: {siw4,robi} @waikato.ac.nz

https://core.ac.uk/display/29200177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nonblocking11], while conflict equivalences known to be the most general method of ab-
straction that preserves the nonblocking property in afiterts [12]. Conflict equivalence
can be used to implement heuristic simplification rules, imgk possible to verify discrete
event systems models of industrial complexity [9].

This paper seeks to combine the advantages of bisimulatiged abstractions [19] with
the benefits of conflict-preserving simplification [9]. Ugiannotations certain aspects of
the branching structure of nondeterministic automata @urtified. This makes it possible
to overcome some limitations of the previous approach basdtturistics, and makes more
aspects of conflict-preserving abstraction amenable tbagleduction algorithms such as
bisimulation.

This paper is an extended version of [20], including moreitied descriptions of anno-
tated automata and full proofs of all results. Section 2flyri@troduces the needed termi-
nology of languages, automata, and conflict equivalencenBection 3 presents annotated
automata and the rules to construct and simplify them, whrehexplained using an exam-
ple. Section 4 contains formal proofs of the correctnesk®ftbstraction rules. Afterwards,
Section 5 presents experimental results, and Section 6sade concluding remarks.

2 Preliminaries
2.1 Events and Traces

Event sequences and languages are a simple means to descitete system behaviours.
Their basic building blocks areventswhich are taken from a finitelphabetz. Two special
events are used, thgdlent eventr and thetermination eventv. These are never included
in an alphabek unless mentioned explicitly. For thi&; = XU {1}, Z, = ZU{w}, and
10 =2U{1,w} are used.

>* denotes the set of all finiteacesof the formo, 0% - - - g, of events froni, including
theempty tracee. Theconcatenatiorof two tracess;t € * is written asst. A subsel C 2*
is called danguage Given two alphabets; andZ, C %4, thenatural projection P 23 — 25
is the operation that deletes from traces avgall events not irk,.

2.2 Nondeterministic Automata

System behaviours are modelled using finite-state autorgpécally, system models are
deterministic, but abstraction may result in nondetersrni

Definition 1 A (nondeterministic)finite-state automatois a 4-tupleG = (Z,Q,—,Q°)
where is a finite alphabet oévents Q is a finite set ofstates — C Q x 2; , x Q is
thestate transition relationandQ® C Q is the set ofnitial states

The transition relation is written in infix notation-% y, and is extended to traces in
3t , by letingx 5 x for all x € Q, andx 2 y if x > z-% y for somez € Q. For state sets
X,Y C Q, the expressioX > Y denotes the existence o€ X andy € Y such thak > y.
Furthermorex — y denotes the existence of a trae X, such thak =y, andx > denotes
the existence of a stages Q such thak > y. Finally, G > andG -> X stand forQ° > and
Q° > X, respectively.

The transition relation must satisfy the additional regmient that, whenever < v,
there does not exist any outgoing transition frgnThat is, the termination event marks
states (such ag as terminal states. The traditional setwdirkedor terminalstates ofs can
be defined aQ® = {x € Q| x 3 }. For the sake of graphical simplicity, statesQ¥ are
shaded in the figures of this paper instead of explicitly shgwo transitions.

To support silent transitionx,:s> y, with s€ 27, denotes the existence of a tra@Z{w
such thax -5 y andP(t) = s. That is,~> denotes a path witxactlythe events irs, while
=2 denotes a path with an arbitrary numberafhuffled with the events is Notations such
asX =Y for state setsx = y, G =2, etc., are defined analogously-te. In addition, for a
statex € Q, the set ofactiveor eligible eventss Eligg(x) = {0 € S | x 2}

When two automata are running in parallel, lock-step symisation in the style of [10]
is used.

Definition 2 Let Gy = (Z;,Q;,—4,Q}) andG, = (2,,Q,, —,,Q3) be two automata. The
synchronous compositiaf G; andG; is

G1||G2 = (Z1UZ,Q1 x Q2,—,Q7 x Q3) 1)

where
(X,Y) 9, (X,y) if o€ (Z1nZ2) U{w}, x E’l X, yizy’;
xy) 2 (X,y)if oe (Z\Z)U{t}, x Z1%;
(X,y) > (xY)if 0€ (22\Z1) U{T}, y 2.

In synchronous composition, shared events (includingnust be executed by all au-
tomata synchronously, while other events (includigre executed independently. In the
notation of this paper,

G1]|G2 =2 (xi,%) ifandonlyif GioZx fori=1,2, @)

whereR : Z — Z; denotes the natural projection.

2.3 Conflict Equivalence

The key liveness property in supervisory control theoryhis monblockingproperty. An
automaton is nonblocking if, from every reachable staterainal state can be reached;
otherwise it is calledlocking When more than one automaton is involved, it also is com-
mon to use the termsonconflictingandconflicting respectively.

Definition 3 An automatorG = (X,Q,—, Q") is nonblockingf, for every statex € Q and

every traces € * such thaQ® = x, there exists a tradec =* such that ¥ Two automata
G andG; arenonconflictingf G; || G2 is nonblocking.

To reason about conflicts in a compositional way, a notiocoofflict equivalences de-
veloped in [12]. According to process-algebraic testirgptly, two automata are considered
as equivalent if they both respond in the same way to all tefsts certain type [4]. For
conflict equivalencea testis an arbitrary automaton, and tihesponses the observation
whether the test composed with the automaton in questiooriblacking or not.

Definition 4 Two automatas; andG; are said to beonflict equivalentwritten G, ~¢onf
Gy, if, for any automatofT, G1 || T is nonblocking if and only if5, || T is nonblocking.

Conflict equivalence is the coarsest possible congruentie respect to synchronous
composition that preserves nonblocking [12]. There ar@egptial algorithms to determine
whether two given automata are conflict equivalent [18, Bibjwever, in general there is no
uniqgue minimal conflict equivalent representation of a giaeitomaton [8].

When verifying whether a composed system of automata

Gul[Gz |- [[Gn, ®)

is nonblocking, the compositional method [9] avoids buitglithe complete synchronous
product immediately. Typically, some of the componeBtshavelocal events, i.e., events
used only byG;. These local events are abstracted using hiding, i.e., dheyeplaced by
the silent eventr. The resultant automaton can then be simplified in variougsyand
G; is replaced by a typically smaller conflict equivalent auédom G;. Once no further
simplification is possible, a subsystem of autom@g) jc; is selected and replaced by its
synchronous composition, and the procedure starts over.

3 Annotated Automata

This section shows how annotations are used to bring ausoima more regular form to
make simplification with respect to conflict equivalence eneffective. Using the running
example in Fig. 1, methods to construct an annotated autonaaé described in 3.1 and 3.2,
and three abstraction rules to simplify annotated autoraagaresented in 3.3-3.5. In 3.6,
the complete abstraction procedure to simplify automataguannotations is presented.
Proofs of the propositions stated in this section can beddnrsection 4.

3.1 Annotation

The states in a nondeterministic automaton carry sevenaliginrequirements character-
ising their blocking or nonblocking behaviour in compasitiwith other automata. For il-
lustration, consider statg, in automatorG in Fig. 1. Its eligible event set is Eligdo) =
{a,B,y}; note thatB is included because of the silent transitiorgto Blocking will occur
if state qp is composed with a state that does not enable at least one @viintsa, f3,
or y. Moreover, due to the silent transitions to stajgsndqy, any state composed witly
also needs to enable at least one event from their sets dflelgyents, Elig(qs) = {a,B}
and Elig;(qs) = {a}. In order to capture these nonblocking requirements in armoncise
manner, the three eligible event sets are associated aiibptasannotations

Definition 5 An annotated automatois a 5-tupleA = (£,Q,—,Q° Ann) such thatZ, Q,
—,Q°) is an ordinary automaton withoattransitions, andAnn C Q x 2%« is theannotation
relation, which satisfies the following conditions:

(i) for everyx € Q, there exista C ¥, such thaix,a) € Ann;
(i) for every (x,a) € Ann, it holds thata C Elig(X).

An annotation is a set of eventsC X, associated with a statee Q. The intended
meaning of(x,a) € Annis that, if the automaton is in staxe at least one of the eventsén
must be enabled in the synchronous composition of the esytsem in order to avert block-
ing. The empty set of events can also serve as an annotatich v used to characterise

a7

Fig. 1 Simplification of automatoi® using annotations gives ~¢onU” .

deadlock states. Annotations are similar¢ady setd15] or the complements dailure
sets[10], but they can only be used to partially characterisdlamrequivalence.

The two requirements (i) and (ii) ensure that annotatioqdure the idea of nonblock-
ing requirements correctly. Each state must have at le@saonotation, and all annotations
must be subsets of the eligible event set of their state. Véinaotating automata in prac-
tice, every state can be associated with its own eligibleeset as an annotation, and this
“maximal” annotation does not need to be stored explicithan annotated automaton as it
can be inferred from the transitions.

The following definition shows how to transform an arbitragndeterministic automa-
ton into an annotated automaton, replacing silehtr@nsitions by annotations to represent
the associated nonblocking requirements.

Definition 6 LetG = (Z,Q,—,Q°) be an automaton. Trennotated formof G is

’Q{(G) = <ZvQ7_>A7Q07Ann>) (4)

where
—a={(X,0,¥) €QxZyxQ|x=2z%yforsomeze Q}; (5)
Ann= { (x,Eligg(y)) [xSy} . (6)

The annotated form clearly satisfies the two conditions g &i) in Def. 5, because
(x,Eligg(x)) € Annfor everyx € Q, andx = y implies Eligs(y) C Eligg(x).

The annotated form is obtained from the original automatpreplacing all silent tran-
sitions by the transitions originating from the silent seesor states: if stacan be reached
silently from statex, then all transitions originating frormnare copied to. Due to this re-
moval of silent transitions, some states may become unatéeland then can be removed.
To retain the nonblocking conditions associated with thgiwally silently reached states,
their eligible event sets are added as annotations to thesstges of the removed transitions.

Example 1 Fig. 1 shows an automatdd and its annotated form? (G). As each state can

be reached from itself after O silent transitions, it is &ssed with its own eligible event

set as an annotation. The statecollects all the outgoing transitions g andgs, because

it is connected to these two states by silent transitiond,samotations are added dg for

each of these two states. Similardy,has all the outgoing transitions and the annotafioh

of gs. The statesjs, g4, andgs have been deleted because they become unreachable after
the removal of silent transitions.

Complexity The annotated formy/ (G) of G = (Z,Q, —,Q°) has|Q| states, up t¢Q|?|Z|
transitions, and up t¢Q|? annotations. Thus, its size is bounded®§/Q|?|Z|). The time
complexity to construct? (G) is dominated by the computation of the transitive closure of
the silent transitions, i.eQ(|Q|3) [14].

Annotation removes information, and it may well happen that different automata
have equal annotated forms. The following proposition shdvat this can only happen if
the two original automata are conflict equivalent, so theosation procedure does indeed
yield a standardised form with respect to conflict equivaéen

Proposition 1 Let G andH be two automata such that(G) = ./ (H). ThenG ~¢onH.

Conversely, it is not true that two conflict equivalent autdanhave the same annotated
forms. Annotations cannot be used to characterise confiigivalence. This is due to the
fact that failures equivalence [10] does not imply confligtigalence, and the same coun-
terexample as given in [12] applies.

3.2 Unannotation

The annotation procedure can be reversed to obtain an oydim@omaton from a given
annotated automaton. The reverse operation is calteshnotatiorand is characterised by
the following definition.

Definition 7 Let A= (X,Q,—, Q% Ann) be an annotated automaton. Anannotated form
of Ais any automatob) = (Z,Qu, —u, Q°) such that the following properties hold.

() Qu=QUANN
(iy xSy (x,a) for all (x,a) € Ann, and these are the ontytransitions inJ;
(iii) If x,y € Q, thenx Zy yifand only ifx 5.
(iv) If (x,a) € Annando € a, then(x,a) Zy;
(v) If (x,a) Sy y, theno € aandx 2 y.

The state space of an unannotated form consists of abtigenal statesof the anno-
tated automaton plus an additional so-cabedotation statéor each annotation (i), which
is linked to its original state by a silent transition (ii)Jufthermore, the unannotated form
contains all the transitions of the annotated automatgnl¢iaddition, the annotation states
must have outgoing transitions for each event in their retfgeannotation (iv), and these
transitions must lead to some successor state reached Isathe event from the corre-
sponding original state (v).

Given an annotated automatén an unannotated form can be constructed by includ-
ing the states and transitions according to (i), (ii), afifl @nd by arbitrarily choosing for
each annotation staie,a) and each eventr € a a transitionx >y, and then including
the transition(x,a) > y in the unannotated form. There are several possibilitieshtmse
transitions satisfying points (iv) and (v), but the ambtgudoes not cause problems with
conflict-preserving abstraction.

Proposition 2 Let A be an annotated automaton, andUgtandU, be unannotated forms
of A. ThenU; ~¢ons U2.

This result confirms that unannotated forms are well-definetb conflict equivalence,
so the ambiguity in Def. 7 does not affect the nonblockingoprty and can be exploited to
minimise unannotated forms.

Example 2 In Fig. 1, automatoiy is an unannotated form of the annotated automatbn
The three annotations i’ have been replaced by annotation stdtes{w}) (qs,{a}),
and(do1zs {a}). Note that the transitioftp; 25, {a }) = go125is not included inJ, although
it could be inherited frongp12s.

Complexity Given G = (Z,Q,—,Q°), an unannotated form of/(G) has up to|Q| +
|Ann| < |Q| + |Q|? states and up te— |+ |Ann| 4 |Ann||Z,| < |Q|?|Z| transitions. Its space
complexity isO(|Q|?|Z|), and this is also the time complexity to construct it from ane
tated automaton. This worst-case is unusual in practicethérexperiments in Section 5,
the number of states after unannotation is almost alwagshes) it was before annotation.

The following result confirms that unannotation is a revergeration of the annotation
procedure, up to conflict equivalence. Conflict equivaleisgereserved by annotation and
subsequent unannotation.

Proposition 3 Let G be an automaton, and let be an unannotated form e#(G). Then
U ~conf G.

In the following sections, different methods are preseritedimplify annotated au-
tomata. The simplification needs to be carried out in a cadnflieserving way, and this
requires an appropriate notion of conflict equivalence oftaated automata. The following
definition is justified by Prop. 2 and 3, and by the fact thatgesnotated automaton has
an unannotated form.

Definition 8 Two annotated automakg andA; are conflict equivalent, writteA; ~cons Az,
if for every unannotated forrd; of A; and for every unannotated fordy of A; it holds that
U1 ~confUo.

3.3 Subsumption

Annotations are sets of events that must be enabled to deekihg. More precisely, when
a state is entered, at least one of the events in each of idatiuns needs to be enabled in
order to avert blocking. This leads to the observation teatain annotations are redundant.
For example, if a state has both the annotatipm$ and{a, 3}, then the latter is implied
by the former. The state already requires evento be enabled, so the fact thator 3
needs to be enabled adds no additional information. Thetatioon{a, 3}, being a super-
set of {a}, is said to be covered @ubsumedy {a}, and subsumed annotations can be
removed without affecting conflict equivalence.

This gives rise to the followingubsumption ruleif an annotated automaton contains
annotationg(x,a) and (x,b) such thata G b, then the annotatiofix,b) can be removed.
The removal of subsumed annotations from an annotated atworpreserves conditions (i)
and (i) in Def. 5, because no annotations are added and atiored can only be removed
from states that have more than one annotation.

Example 3 In stateqp of automatoneZ (G) in Fig. 1, the annotatiofia } subsumega, B}
and{a,B,y}, and the annotatiofia } in stateq; subsumega, 3, y}. The subsumed anno-
tations are struck out in the figure.

Proposition 4 Let A= (Z,Q,—,Q°,Ann) andAgyp = (Z,Q,—,Q°,Anny,,) be two anno-
tated automata such thahny,, C Ann and for all(x,a) € Ann there existsg,p C a such
that (X, asup) € Anrsyp. ThenA ~cont Asub

Complexity The annotated form7 (G) of G = (X, Q,—,Q°) has up tdQ| annotations per
state, which give®(|Q|?) subsumption tests per state, and the cost of each ©$t3$). So
the worst-case time complexity of the subsumption testf¢6) is O(|Q|3|Z|). This makes
subsumption one of the most expensive of the abstracti@septed here, but experimental
results show that it is worthwhile. The subsumption testastldone immediately while
constructing annotated automata or introducing annataficonsiderably reducing memory
requirements.

3.4 Incoming Equivalence

Incoming equivalencf] identifies two states as equivalent if they have exadtly same
incoming transitions. The concept is extended to annot@iéaimata as follows.

Definition 9 LetA= (Z,Q,—,Q%Ann) be an annotated automaton. The incoming equiva-
lence relationvi,c C Q x Q is defined such that ~j,¢ y if and only if the following condi-
tions hold.

— xeQifand only ify € Q°;
— For all statez € Q and all eventw € 5, it holds thatz-% x if and only if 22 y.

In [9], incoming equivalence is used as a restriction to nakain simplification rules
applicable. Due to the improved regularity achieved by &atians, all incoming equivalent
states in an annotated automaton can be merged. This mé&giage using the standard au-
tomaton quotient, with the addition that, when merging ssv&ates into one, the resultant
state receives the annotations of all original states.

Definition 10 LetA= (Z,Q,—,Q°Ann) be an annotated automaton, ancNet Q x Q be
an equivalence relation. Thgeiotient automatoof A modulo~ is A/~ = (Z,Q/~,—/~,
Q°,Ann), where

—/~={(x,0,ly) [x>y}; @)
Q ={X|xeQ}; (8)
Ann={([x],a) | x e Q and there existg ~ x such tha{x’,a) € Ann} . 9)

Here,[x] = {X € Q| X ~ x} denotes thequivalence classf x € Q with respect to~, and
Q/~={[x] | x € Q} is the set of equivalence classes modulo

It is easily confirmed that the quotieAY ~ of an annotated automat@nsatisfies con-
ditions (i) and (ii) in Def. 5, because every merged stateikes annotations from all its
original states, and the eligible events sets are increabed merging.

Proposition 5 LetA= (3, Q,—, Q% Ann) be an annotated automaton. THercont A/ ~inc.

The merging of incoming equivalent states can be considased generalisation of
the silent continuation rule [9]. An annotation symbolisesilent transition to an implicit
state. When incoming equivalent states are merged, theetemainistic decisions of the
predecessor states are deferred by one step, expresseslingithed annotations.

Example 4 The annotated automatd¥ in Fig. 1 is the result of using incoming equiva-
lence to simplify.<7 (G). Statesy, andgs are incoming equivalent and have been merged.
The resultant stateys receives the annotatiosr} and{a, S, y}, but only {a} remains
because of subsumption.

Complexity The complexity of partitioning an automaton based on inca@quivalence

is O(|Q|?|Z|). Two states are equivalent if they have equal sets of incgrtiansitions,
which can be determined efficiently using hash codes. Hadascoan be set up in a single
pass over all transitions of the automaton, of which theeeugr to|Q|?|Z,|, and the con-
struction of the simplified automaton is achieved by anokbep over all transitions, in the
same complexity [9]. However, the merging of some states make other states incoming
equivalent, so the abstraction should be repeated to easuirimal result. The maximum
number of iterations i$Q|, as each merge except the last reduces the number of sttes, s
the complexity to obtain a minimal abstraction by incomingigalence i€O(|Q[3|Z|).

3.5 Bisimulation

Bisimulationand observation equivalendd.3] are general tools that have been used with
considerable success to simplify automata during nonlgckerification [9, 19]. Bisimu-
lation can also be applied to annotated automata, with thdedadestriction that bisimilar
states must have the same annotations. Neverthelessnlogakeof silent transitions can
transform several conflict equivalent transition struetumto the same annotated states,
even if they are not originally observation equivalent. $rbulation on the annotated au-
tomaton can be more effective, particularly after the reaho¥ subsumed annotations.

Definition 11 LetA; = (Z,Q;,—1,Q3,Ann;) andA; = (Z,Q,, —,,Q5, Ann,) be two anno-
tated automata. A relatior C Q; x Q> is called abisimulationbetweend; andA;, if the
following conditions hold for all stateg € Q1 andx, € Q2 such thai; ~ xp.

— Forallo € 5, if x1 > y; then there existg, € Q. such that, ~ y, andx, 2 vs.
— Forallo € 2, if o 9, y> then there existg; € Q1 such thaty; =~ y» andx; 2, V1.
— ForallaC , it holds that(xq,a) € Anry if and only if (x2,a) € Anrp.

A; andA; arebisimulation equivalenor bisimilar, written Ay ~ Ay, if there exists a bisim-
ulation~ betweenA; andA; such that, for every initial statg € Qf there exists an initial
statex; € Q5 such thak] ~ x5, and vice versa.

It is easily confirmed that conditions (i) and (i) in Def. Segpreserved under bisimi-
larity of annotated automata. This is because bisimilaestalways have the same sets of
annotations and eligible events.

Example 5 AutomatonA” in Fig. 1 is bisimilar toA’. Statesqo, g1, and g5 have been

merged due to the fact that they have the same annotationecauinblent outgoing tran-
sitions. Note that this only becomes possible after animotasubsumption, and incoming
equivalence.

Proposition 6 Let A; andA; be annotated automata such thai= Ay. ThenAr ~c¢onf Ao.

Complexity Given an annotated automaton, a coarsest bisimulatiotiarelean be found
in time complexityO(|—|log|Q|) using the algorithm in [7]. The annotated form Gf=
(Z,Q,—,Q°) hasO(|Q|?|Z|) transitions, givingO(|Q|?|Z|log|Q|) time complexity for its
simplification. An initial partition based on annotatioremde established with lower time
complexity.

3.6 Abstraction Procedure

This section explains how the above results can be used imis&a given automaton with
respect to conflict equivalence. Given an automagpihe task is to compute a hopefully
smaller abstractio®’ conflict equivalent tdG.

Given the complexity of the annotation procedure, it is adbie to reduce the size of
the input automatos using some standard means before constructing an anndtated
While not necessarily optimal for conflict equivalenceiiiglation or observation equiva-
lence [13] can be computed efficiently and are known to aehéggnificant reduction, as is
the removal of blocking states [9].

10

After simplification of the input automaton, the next stegdscompute its annotated
form <7(G), which then is simplified in several steps. While constngtithe annotated
form, annotations can be checked for subsumption on theuppressing the generation
of any redundant annotations. The resulting annotated femext simplified by merging
incoming equivalent states, again checking for subsumgtial removing annotations that
become redundant. Then the result is minimised accordibgstmulation equivalence.

After simplifying the annotated automaton, it is unannedito obtain an ordinary au-
tomaton that is conflict equivalent to the input. There afledint ways to construct an unan-
notated form that satisfies the conditions of Def. 7, as tieoensiderable leeway in how
outgoing transitions from annotation states can be chasahby making clever choices,
the new annotation states can become bisimilar to origia#és or other annotation states,
making it possible to further simplify the result.

An example of the abstraction procedure is shown in Fig. TofatonG is first anno-
tated to obtainz/ (G), with subsumption being tested on the fly to suppress somaations
struck out in the figure. Next incoming equivalence lead$ieoabstraction’, with another
annotation being suppressed due to subsumption as disdnsseample 4, and the result is
further simplified using bisimulation, giving”.

Since the annotated automaton cannot be simplified furithisrreplaced by its unan-
notated formU. As explained in example 2, the transitiéty2s {a }) N Qo125 iS not in-
cluded inU. This choice makes the statgs (s, {0 }), and(do12s, {0 }) observation equiv-
alent [13], so they can be merged in addition to stateand(qgz, {w}). This results in the
observation equivalent abstractibii. Furthermore, the transitioqo125ﬂ> gs is redundant
according to observation equivalence [5] and can be remayreithg the final result”.

The abstraction steps in Fig. 1 can be justified by the proipaosi given in the previ-
ous sections. Note that, for every annotated automatorg #dsts an unannotated form
although it does not always have to be constructed expli¢i#t V andV’ be unannotated
forms of &/ (G) and A/, respectively. Theis ~consV by Prop. 3 and/ ~¢ontV/ ~cont U by
Prop. 4-6. Furthermoré) is observation equivalent td’ andU”, which implies ~¢gnsU”
according to [12]. Thus,

G ~contV 'icoan/ ~confU SconfU/ ZconfUN . (10)

Overall, the automatof® with nine states and 25 transitions is simplified to the coffli
equivalent automatod” with three states and seven transitions.

4 Formal Proofs

This section contains formal proofs of the propositiongestan the previous section. The
properties of annotated automata and unannotated aut@reatstablished in Section 4.1
and 4.2, and these results are used in Section 4.3—4.5 tarooihfe correctness of the
abstraction rules.

4.1 Annotation

The main result about annotated forms is Prop. 1 in Sectibyvdich states that automata

with equal annotated forms are conflict equivalent. Its paepends on two lemmas that
describe the relationship between paths in an automatoitsaadnotated form.

11

Lemma?7 LetG= (Z,Q,—,Q°) be an automaton, and let(G) = (X,Q, —a,Q°,Ann) be
its annotated form. For all traces * and all events € Z, the annotated form has a path

x 2 zif and only if there exists a path=> y % zin G, for somey € Q.

Proof The claim is proved by induction ds.
In the base cass= ¢, the claim follows directly from the definition (5).
For the inductive step, let=to’. Then note,

sa to'c to’ o
X>SAZ <= X—pZ <= X—opy—oaz forsomeyecQ. (112)

By inductive assumptiongﬂA y holds if and only ifx 2 y L y for somey’ € Q, and by (5)
y Za zholds if and only ify = 7 % zfor someZ € Q. Thus, (11) becomes equivalent to,

s o & o sa’ ;o
x=y —-y=7=z forsomey,ZcQ <<= x=27Z >z forsomeZcQ. O

Lemma8 LetG = (Z,Q,—,Q°) be an automaton, and let(G) = (£, Q, —a,Q°,Ann) be
its annotated form. Also let, z€ Q ands € ~*.

(i) If x= z, then there existg € Q such thak =, Z and(Z,Eligg(2)) € Ann.
(i) If x>5zand(za) € Ann, then there existg € Q such thak = Z and Elig;(Z) = a.

Proof (i) Let x= z If s= ¢ thenx = z, sox -5 X with (x,Eligg(2)) € Annby Def. 6 (6).
Otherwises= to and thusx = y% 7 £ zfor somey,Z € Q. By Lemma 7, it follows that
x2A7, and(Z, Eligg(2)) € AnnsinceZ = z.

(i) Let x >4 z and (z,a) € Ann. By Def. 6 (6), there exist € Q such thatz = 7
and Elig;(Z) = a. If s= € thenx = z= Z with Elig5(Z) = a. Otherwises = to and by
Lemma 7, there existse Q such thak = y-% z Thenx = z=5 7 with Eligg(Z) =a. O

Given these results, it is now possible to prove Prop. 1, tammesult about annotated
forms introduced in Section 3.1.

Proposition 1 Let G andH be two automata such that(G) = .7 (H). ThenG ~¢qni H.

PrOOf LetG = <ZvQG7_>G7QOG> andH = <Z7QH7HH7QI?|>7 and letT = <ZT7QT7_>TaQ9|'>
be an arbitrary automaton.
Assume thaG || T is nonblocking. It is enough to show that this implies thaf T

is nonblocking. Therefore, lete (XU ZT)* such thatH | T = (xu,xr). ThenH Fg XH
according to (2), wher®: XU Xt — X denotes the natural projection, and by Lemma 8 (i),

there exists a statg, € Qu such thatZ (G) = .« (H) il Xa and(xa, Eligy (x4)) € Anny =

Anng. By Lemma 8 (ii), there also exists a statec Qg such thaG P:Q xg and Elig;(x¢) =
Eligy (%4). Thus,G|| T = (X, %)

As G|| T is nonblocking, there exists a trace (XU Xt)* such tha{xg,xt) &3 Clearly,
tew = uov for someu € (31 \ Z)*, 0 € 54, andv € (5, U Z7)*. Thenxg ¢ Xg —a, i.e.,
0 € Eligg(xs) = Eligy (xn). If 0 = w, then clearlyH || T = (xu,x7) =, which is enough to

show thatH || T is nonblocking. Otherwise, i € Z, letyy € Qy such that P:(S; XH > YH.

By Lemma 7, this implies# (G) = «/(H) "2 v,y andG "2 yy,. Sinceu e (£7\), it

12

also follows thaG || T =2 (yy,yr) for some statgr of T. SinceG || T is nonblocking, there
exists a tracev € (ZUZt)* such thafyq, yr) % Therefore,

HIT = (xexr) 2 (ymyr) =2 (12)
Since(xq, %) was chosen arbitrarily, it follows théd || T is nonblocking. O

4.2 Unannotation

This section proves two key results about unannotationndotted forms are equal with
respect to conflict equivalence (Prop. 2), and conflict egaivce is preserved when anno-
tating and unannotating again (Prop. 3).

These results depend on the relationship between tracesanritated automaton and
its unannotated forms, which are first established. Lemmbddvs that every nonempty
path of an annotated automaton corresponds to an equiyadénof its unannotated form.
Lemma 10 lifts this result to all paths of an unannotated fazonsidering separately the
cases of original and annotation end states.

Lemma9 LetA= (Z,Q,—,Q°Ann) be an annotated automaton, andJet (¥, Qy,—u,
Q°) be an unannotated form &f For all traces € X*, all eventso € Z, and all stateg € Q,

it holds thatx 22 zif and only if x =2y y Sy zfor somey € Q.

Proof The claim is proved by induction ds|.

First consider the base case- ¢. If x > z it follows directly from Def. 7 (iii) that
x2Sy z Conversely, ik L0 ygu z, then by Def. 7 (ii) either = yorx—r>U y. If x= ygu z
thenx % zby Def. 7 (jii). If x5y vy, theny = (x,a) € Annby Def. 7 (i), and(x,a) =y Sy z
impliesx % z by Def. 7 (v).

For the inductive step, let=to’, and first assumxeti/ y % z By inductive assumption,
it follows thatx t:U>/U y, and by Def. 7 (iii) it holds thay %y z. This impliesx gu yZuz
Conversely, assume thelZy y %y 7 ie.,

X:t>u X/iu)/:iu ygu Z. (13)

Thenx'% y by inductive assumption, and by Def. 7 (ii), it either holtatty =y, and thus
y 2y z which impliesy % z by Def. 7 (iii); or there is an annotatiofy’,a) € Ann such
thaty = (y,a), i.e., (y,a) >y zand thusy > z by Def. 7 (v). In both casesgt—>d y 2z

ie.xXz O

Lemma 10 Let A= (Z,Q,—,Q°Ann) be an annotated automaton, andUet= (Z,Qyu,
—u,Q°) be an unannotated form &f

(i) Forall tracess € =* and all statex € Q, it holds thatA > x if and only ifU = x.
(i) Forall tracess € 2* and all annotationé,a) € Ann, it holds thatA > x if and only if
U= (xa).

13

Proof (i) Firstly, if s= ¢, thenA -5 x impliesx € Q° and thugJ = x, and conversely = x
with x € Q impliesx € Q° by Def. 7 (i) and thusA -5 x. Secondly, ifs = to, the claim
follows immediately from Lemma 9.

(i) Let (x,a) € Ann. Thenx Lu (x,a) by Def. 7 (ii), and this is the only way ho{x,a)
can be reached id. Then the claim follows from (i), becauge= Q and thusA > x if and
only if U = x5 (x,a). O

The result that two unannotated forms of the same annotatednaton are conflict
equivalent now becomes a consequence of Lemmas 9 and 10.

Proposition 2 Let A be an annotated automaton, andUgtandU, be unannotated forms
of A. ThenUq ~¢ontU>.

Proof Let A= (%, Q,—,Q%Ann), and letU; = (¥, QUANN,—;,Q") for i = 1,2 be unan-
notated forms of\. Furthermore, leT = (Z;, Q, —1, Q%) be an arbitrary automaton such
thatUq || T is nonblocking. It is enough to show that this implies tbat| T is nonblocking.

Therefore, les € (ZUZ7)* such that), | T = (x,x7), and consider two cases.

Case 1: x= (Xa,@) € Ann. ThenU; P:(s; (Xa,a), which impliesA Fes) Xa andUq @
(Xa,@) by Lemma 10 (ii). ThudU; || T = ((%,a),%r), and sincely || T is nonblocking,
there exists € =* such that; || T = ((Xa,a),x7) <. Write tew = uov with u € (31 \ 2)*,
0 €3y, andv e (Zo,UZT)*. ThenUy | T = ((Xa,8),%1) = ((%a,8),%) = (Y1,Y7), SO
0 € Eligy, ((Xa,a)) = a= Eligy, ((%,a)) by Def. 7 (iv) and (v), and thug,a) 2 y for
somey, € Q. ThusUz || T = ((%a,),%7) = ((%a,8), %) > (y2,¥7). If 0 = w, then clearly
U || T 2 ((Xa,a),%1) £ which is enough to show that || T is nonblocking. Otherwise,

Uz | T =2 (yo,yr) with suo € (ZUZ7)* andy, € Q, and the proof continues as @ase 2

Case 2: x¢ Q. ThenU; P:(S; x impliesA Pl x andUq P:Q x by Lemma 10 (i). Thus

U || T = (x,xr), and sincdJ; || T is nonblocking, there existy € £* such thaty | T =

(X, XT1) % (Y,y1) wherey € Q. Thereforex Pgwl y, which impliesx iy y andx Pﬂf)z y

by Lemma 9. Thetz | T = (x,x7) %, and sincex, xr) was chosen arbitrarily, it follows
thatU, || T is nonblocking. O

The second main result about unannotation is that confligvatgnce is preserved when
annotation is followed by unannotation. To prove this, hédpful to first establish a lemma
about annotations, namely that the annotated form of amaaiti is equal to the annotated
form of its unannotation. Due to the way how annotated formesdefined in this paper,
Lemma 11 only applies to annotated forms of an ordinary aatomG, not to arbitrary
annotated automata.

Lemma 11 Let G be an automaton, and let be an unannotated form a#(G). Then
dU) =(G).

Proof Let 7 (G) = (Z,Q,—,Q%Ann), letU = (Z,Qu,—u,Q°) be an unannotated form
of &7(G), and lete (U) = (Z,Qu, —.u), Q°, Anny (u)). It will be shown that the reachable
parts of</(G) and</(U) are equal, i.e., that> = — /()0 andAnn= Ann,), where

—yU)le = —wu)N(Q X Zyu x Qu) andAnn,) = Ann,) N(Q x 2%@).
First, letx > y. Thenx € Q andx % y by Def. 7 (iii), andx gﬂ(m y by Def. 6 (5),
andx /) Y asx € Q.

14

Conversely, letx 2,,u)q Y- Thenx € Q andx =y z %y y for someze Qu by
Def. 6 (5). By Def. 7 (ii), this means that either= z, which impliesx >y y andx 2y
by Def. 7 (iii), orz= (x,a) >y y, which impliesx % y by Def. 7 (v).

Second, letx,a) € Ann. Thenx € Q andx 5y (x,a) by Def. 7 (i) and Elig ((x,a)) = a
by Def. 7 (iv) and (v). By Def. 6 (6), it follows thax, a) = (x, Eligy ((x,a))) € Anny) o-

Conversely, letx,a) € Ann,,) q- Thenx € Q, and by Def. 6 (6), there existse Qu
such thak = y and Elig, (y) = a. Here,x = y means that eithet =y or x -y, y.

In the casex =y, note thay = x € Q, and Elig; (Y) = Eliga(y) UUza)cann@ = Eliga(y)
by Def. 5 (ii), and Elig,(y) = Eligg(y) by Def. 6 (5). Therefore(x,a) = (y,Eligy (y)) =
(Y, Eliga(y)) = (v,Eligg(y)) € Ann.

In the case 5y y, note thaty € Annby Def. 7 (ii). Then it follows from Elig (y)=a
by Def. 7 (iv) and (v) thatx,a) =y € Ann. O

Proposition 3 Let G be an automaton, and et be an unannotated form & (G). Then
U ~conf G.

Proof By Lemma 11, it holds that/ (U) = . (G), which impliesU ~¢n; G by Prop. 1. O

4.3 Subsumption

This section contains the proof of Prop. 4 introduced in @R8ich says that conflict equiv-

alence of annotated automata is preserved under subsumgdftiannotations. Although

lengthy, the proof can be done using the properties of thiespaft unannotated forms es-
tablished in 4.2.

Proposition 4 Let A= (£,Q,—,Q°,Ann) andAgyp = (Z,Q,—,Q°, Anny,) be two anno-
tated automata such thahny,, C Ann and for all(x,a) € Ann there existsg,p C a such
that (X, asub) € Anrsyp. ThenA ~cont Asub

Proof LetU = (X, QUANN, —y,Q°) andUsyp= (¥, QUANMNy, —u sub, Q°) be unannotated
forms of A and Agyp, respectively. It is to be shown thllt ~ont Usun Therefore, lefl =
(%7,Q7,—7,QF) be an arbitrary automaton.

First, assume that || T is nonblocking, and les € (ZU7)* such thatUgy|| T =
(X, %T). ThenUsubP:(sl x € QUANN,, Consider two cases.

Case 1: X= (¥a,a) € Afsup From Usup 22 x = (xa,a), it follows that Asub > Xa

by Lemma 10 (ii), which impliesA P, Xa becauseA and Agyp have the same transition

relations. Furthermore, sin¢&,, a) € Anrg,p C Ann, it follows by Lemma 10 (i) that) @
(Xa,a). ThisimpliesU || T = ((xa,a),xr), and sincéJ || T is nonblocking, there exists= =*
such thaty || T = ((Xa,a),x7) ¥ Write tow = uov with u € (Zr\2)*, 0 € Xy, andv €
(ZoUZ7)" ThenU | T 2 ((%a,@),x7) = ((Xa,8),%) > (¥ ¥1), 500 € Eligy ((%a,a)) =
a = Eligy_,((xa,a)) by Def. 7 (iv) and (v), andxa,a) gU,subysub for someygyp € Q. If
0 = w, then clearlyUsp|| T = ((Xa,a),xT) =, which is enough to show thats | T is

nonblocking. Otherwise)sup|| T == (Ysup Y7) With suo € (SUST)* andysu, € Q, and the
proof continues as iCase 2

15

Case 2: x€ Q. From UsubP:Q X, it follows that Agyp @ x by Lemma 10 (i), which

impliesA ﬂ x becaus@ andAg nhave the same transition relations, which implLbsP-(@Sl X
again by Lemma 10 (i). Theld || T = (x,x7), and sinc&J || T is nonblocking, there exists
we Z* such that) || T = (x,x1) % (z zr). This meanx Pgwu z, which impliesx e, by
Lemma 9, which impliex P@f"subz becausé\ andAq n have the same transition relations,

which impliesx F’ﬂ“)u_ysubzagain by Lemma 9. ThuBgyp|| T =2 (X, 1) 2 and sincéx, xt)
was chosen arbitrarily, it follows théts,p|| T is nonblocking.
Conversely, assume thdg,p|| T is nonblocking, and lete (XU X1)* suchthat) || T =2

(X,x7). ThenU P:(Sl x € QUANN. Consider two cases.

Case 1: x= (xg,@) € Ann.By assumption there existgp C a such that(xa,asup) €

Anng,, FromU P:(S; X = (Xa,a), it follows thatA LCA Xa by Lemma 10 (i), which implies

Asub @ Xa becausé\ andAg,p have the same transition relations. Therefb@bpz(sg Xa 5

(Xa,sup) by Lemma 10 (i) and by Def. 7 (ii). Thuslsyp| T 2 ((Xa,8sub),XT), and since
Usub|| T is nonblocking, there existse X* such thalgyp || T =X ((Xa, Bsub), XT) Y Write
tw=uovwithue (Z1\2)*, 0 € T, andv e (Z,UST)*. ThenUsup|| T = ((Xa, sub), XT) =
((Xa @sub), Xr) 2 (Ysub Y1), i-€., 0 € Eligy,((Xa, Bsub) = asub € @ = Eligy ((¥a,a)) by
Def. 7 (iv) and (v), andxa,a) =y y for somey € Q. If 0 = w, then clearlyU || T 2
((Xa,a),xr) %2, which is enough to show that || T is nonblocking. Otherwise) || T =2
(y,yr) with suo € (ZUZr)* andy € Q, and the proof continues as@ase 2

Case 2: xc Q. FromU @ X, it follows thatA L x by Lemma 10 (i), which implies

P . . . P
Asub ﬂ x becausé\ andAgp have the same transition relations, which |mphg§b£; X

again by Lemma 10 (i). Theldgp|| T =X (x,x1), and sincéJgyp || T is nonblocking, there

. . P .
existsw € =* such thalsyp|| T = (x,x7) = (z,zr). This means ﬂf)u,sub z, which by

Lemma 9 implies< "% 7, both inA and Ay andx %, z Thus,U T2 (xxr) %,

and sincgx, xt) was chosen arbitrarily, it follows that | T is nonblocking. O

4.4 Incoming Equivalence

To prove the correctness of abstractions based on autorgataifents, such as the incom-
ing equivalence abstraction, the relationship betweerrtiees in an automatoh and its
quotientA/~ needs to be established. It is well-known that every track afso has a cor-
responding trace i\/~. The following Lemma 12 is quoted from [9] and holds for every
equivalence relation. Conversely, not every path in a gmbt@utomaton exists in the orig-
inal automaton, but Lemma 13 shows how such a path can benebtéithe quotient is
constructed using incoming equivalence.

Lemma 12 Let A= (£,Q,—, Q% Ann) be an annotated automaton, anddet Q x Q be
an equivalence relation. Then, for all statey € Q and all traces € =* such thatx >y
in A, it holds that[x] A [y in A/~.

Proof Letx > yin Awith s= ;... 0. Then there exist states, . .., x, € Q such that

X:xoﬂxli%...@xn:y. (14)

16

By Def. 10, it holds thapy_1] X [for eachk = 1,...,n, which implies[x] = [y] in A/~.
O

Lemma 13 LetA= (Z,Q,—,Q%Ann) be an annotated automaton, andd&< Q/~inc be
two states oA/ ~inc.

(i) Forallse £* and allo € = such tha™2 7, there existx € X such that for alt € Z it
holds thaix >3 Z.
(i) Forall se =* such that\/~inc — Zand for allZ € 2, it holds thatA > Z.

Proof (i) The claim is proved by induction ofs|.

Base case: s €. AsX -3 7, there must exist € X andz € Z such thak > z LetZ € 2
Thenz ~inc Z, and it follows from Def. 9 thak 9.7

Inductive step: s=to. Assume thak = ¥-% 7 Then there are statgs § andz e Zsuch
thatyi z. By inductive assumption, there exists a state X such thatx 4 y. LetZ € Z
Thenz ~jnc g’ and it follows from Def. 9 thax - y 2.7

(i) Let Q° = {[x°] | x* € Q° } be the set of initial states @/ ~inc.

If s= ¢, thenZe Q° and thug= [x°] for somex° € Q°, which impliesx° € Z LetZ € Z
Thenx® ~inc Z, which impliesZ € Q° by Def. 9 and thus -5 Z.

Otherwises = to for somet € =* ando € %, and there exists & Q° such thax*S .
Let Z € Z It follows from (i) that there existx € X such thatx !9 7. Sincexe Q°, there

existsx® € X such tha® € Q°. Thenx® ~jnc ximpliesx € Q° and thusA % 7. O

Using the above two lemmas and the properties of the pathsasfnotated forms estab-
lished in Section 4.2, the proof of Prop. 5 proceeds usindlainteas to that of théctive
Events Rulg9].

Proposition 5 LetA=(X,Q,—, Q% Ann) be an annotated automaton. THe®cont A/ ~inc.

Proof LetU = (X, QUANN, —y,Q°) andU = (Z,Q/~inc UANN, —;,Q°) be unannotated
forms of A andA = A/~jnc, respectively. It is to be shown thelt ~on¢U. Therefore, let
T = (%1,Qr,—7,Q%) be an arbitrary automaton.

First, assume that || T is nonblocking, and les € (ZUZ7)* such thatd | T = (%, x7).
ThenU P:@ Xe Q/Nincu%nn. Consider two cases.

Case 1:X = (%Xa,a) € Ann. Then there existx, € X3 such that(xg,a) € Ann. From
U 22 g = (%a,a), it follows thatA *% %, by Lemma 10 (ii), which impliesA * x, by
Lemma 13 (i), andJ P:(sg (Xa,a) again by Lemma 10 (ii). Thus) || T = ((Xa,a),%r), and
sinceU || T is nonblocking, there existse =* such thatU || T = ((Xa,a),X7) ¥ Write
tw = uov with ue (37 \ 2)*, 0 € Iy, andv € (Z,UZT)*. ThenU || T = ((xq,a),X7) =
((Xa,2), %) 2 (y,y7), i.e., 0 € Eligy ((%a,a)) = @ = Eligg ((%a,a)) by Def. 7 (iv) and (v),
and (%a,a) 2 ¥ for someye Q/~inc. If 0 = w, then clearlyU || T = ((%,a),x7) =
((%a,a),%;) £, which is enough to show th&t || T is nonblocking. Otherwisd] || T =
((%a,8),%7) = ((%a,8),%) = (,y7) With suo € (ZUZT)* andy'e Q/~inc, and the proof
continues as iCase 2

Case 2:% € Q/~inc. ThenA P ¢ by Lemma 10 (i). Then lek € %, and it follows

from Lemma 13 (ii) thatA L X, which impliesU P:(Sg x again by Lemma 10 (i). Thus,

17

u|IT P:(S; (x,x7), and sinceJ || T is nonblocking, there exists € ¥* such thatJ | T @

(%, x7) % (z,2r). Thenx Pgwu z, with ze Q by Def. 7. This impliex iy zby Lemma 9,

and thus[x] P [Z in A/~inc by Lemma 12, which impliex = [x] Pgwg [7 again by
Lemma 9. Thusd || T 2 (%,x7) %2, and since%, x7) was chosen arbitrarily, it follows that
U || T is nonblocking.

Conversely, assume thidt|| T is nonblocking, and les € (£U Z1)* such that) | T =
(X,x7). ThenU P:(Sl x € QUANN. Consider two cases.
P(s)

Case 1: x= (xa,a) € Ann.FromU P:(Sg (Xa,a), it follows thatA — x5 by Lemma 10 (ii),
which impliesA ™. [x.] by Lemma 12. Note thaffxs],a) € Annand thusd 22 ([x].a)
again by Lemma 10 (ii). Thug] | T = (([xa],a),xT), and sinceJ || T is nonblocking,
there exists € =* such thatl | T = (([xa],a),xT) 2. Write tw = uov with u € (Er \)%,
0 €3y, andv e (T, UZr)* ThenU || T 2 (([xal,8),x7) = (([¥al,8), %) > (§,y7), i.€.,
o € Eligg (([xa],a)) = a = Eligy (%, a)) by Def. 7 (iv) and (v), andxa,a) > y for some
yeQ.ThusU || T = ((Xa,a),X7) = ((Xa,@), %) = (y,yr) withy € Q. If 0 = w, then clearly
U[IT= ((xaa),xr) =, which is enough to show that || T is nonblocking. Otherwise,

U || T =2 (y,yr) with suo € (U Z7)* andy € Q, and the proof continues as@ase 2

Case 2: x Q. ThenA ™% x by Lemma 10 (i), which implied ~ [x] by Lemma 12.

By Def. 5, there exista C Elig,(x) such thafx,a) € Ann. Then([x],a) € Ann, andU @
([x],a) by Lemma 10 (ii). ThusW || T = (([X,a),xr), and sincel || T is nonblocking,
there exists € =* such thatd | T = (([x],a),xr) 2. Write tw = uov with u € (31 \ 2)*,
0 €3y andve (Z,UZT)*. ThenU | T = (([,a),x7) = (([x],a),%) = (¥,yr). Clearly,
o € Elig; (([x],a)) = a C Eliga(x) = Eligy (x) by Def. 7 (i) and (v). Ifo = w, it already
follows thatU || T = (x,x7) £, i.e.,U || T is nonblocking. Otherwise ¢ Eliga(X) means

thatx % y for somey € Q. ThenA °%, [x] 2 [y] by Def. 10 andJ Pog ly] by Lemma 10 (j).

ThereforeJ | T =2 ([y],yr), and sincdJ || T is nonblocking, there exists € =* such that
P(w)w

U722 ([yl.yr) . Thenfy] "24°;, and by Lemma 13 (i) there exisg< [y] such that

y "8 Thusx 2 y ~ine ¥, which impliesx 2 y by Def. 9, andk %y ¥ by Def. 7 (iii).
ThusU || T2 (x,x1) 2 (v,yr) %, and sincex, x7) was chosen arbitrarily, it follows that
U || T is nonblocking. O

4.5 Bisimulation

This section contains the proof of Prop. 6 introduced in @ich states that conflict equiva-
lence is preserved under bisimulation of annotated aut@riiis is best proved by showing
that the unannotated forms of bisimilar annotated automiedisimilar. For this purpose,
the following standard definition of bisimulation for ordiry automata is used [13].

Definition 12 Let Gy = (X,Q;,—4,Q5) andG; = (%,Q,,—,,Q3) be two automata. A re-
lation~ C Q; x Q2 is called abisimulationbetweenG; andGy, if the following conditions
hold for all statesi; € Q1 andx; € Q2 such thaix; = x.

(i) Forall g € ;. if X1 > yi then there existg, € Q, such thaty; ~ y» andx, 2 ys.

18

(i) Forall o € Z; 4, if X2 - y» then there existy; € Q; such thaty; ~ y, andx; > y;.

G1 andG; arebisimulation equivalentr bisimilar, written G; ~ Gy, if there exists a bisim-
ulation~ betweenG; andG; such that, for every initial stat€ < Qj there exists an initial
statex; € Q5 such thak; ~ x5, and vice versa.

Although unannotated forms have been shown to be unique oprftict equivalence
in Prop. 2, two unannotated forms of the same annotated atitormare not necessarily
bisimilar. To prove the result about bisimulation, a unigunnotated form is needed.

Definition 13 Let A= (Z,Q,—,Q%Ann) be an annotated automaton. T¢tandard unan-
notationof Ais % (A) = (Z,Qu, —u,Q°) whereQy = QUAnnand

—y =—-U{(XT1,(x,a) € Qx {1} xAnn}U
{((x,a),0,y) e Annx 5, x Q| o caandx >y} (15)

The standard unannotation resolves the ambiguity in pdintsand (v) of Def. 7 by
simply including all possible transitions for every anrtiia state. This ensures uniqueness
at the expense of minimality. It is easy to confirm that, faemannotated automatdy) the
standard unannotatio#r (A) is indeed an unannotated form Af

The standard unannotations of bisimilar automata can be&rstmbe bisimilar, and this
is enough to complete the proof of Prop. 6.
Lemma 14 Let Ay = (X,Q;,—4,Qf,Anny) and Ay = (Z,Q,, —,,Q5,Ann,) be two anno-
tated automata such thdt ~ Ay. ThenZ (A1) =~ % (Az).
Proof Let 7 (A) = (Z,Qu.i,—u.i, Q) whereQu; = Q UAnNN fori = 1,2, and letx~ be a
bisimulation betweeA; andA,. Consider the relatiorry C Qu 1 % Qu 2 such thaky ~y X2
if and only if one of the following two conditions holds:

X1 € Q1, X2 € Q2, andxy = X2 or (16)
there exista C 3, such tha, = (xj,a) € Anny, X2 = (X5, a@) € Anrp, andx; =X, . (17)

It is to be shown that:y is a bisimulation betweew (A;) and% (A2). To see (i) in Def. 12,
let X1 ~y X2 andxy £>U71 y1 for someo € Z; (. Then either (16) or (17) holds.

If (16) holds, therx; = xp with x; € Q1 andx, € Q. Then either;, € Q1 ory; € Anm.
If y1 € Qq, then it follows fromx; %y 1 y; thatx; 21 y; by Def. 13. Sinceq ~ xp, by
Def. 11 there existg, € Q, such that, >, y» andys ~ y,. Again by Def. 13, this implies
X2 iug Y2, andy; ~y y» according to (16). If on the other hagg € Anny, theno = 1 and
y1 = (x1,a) for somea C Z,, by Def. 7. Sincex; = x and(x1,a) = y1 € Anny, it follows
from Def. 11 tha{xp,a) € Anrp. Thenx; —T>U72 (x2,a) by Def. 13 and/; = (xg,a) ~y (X2,a)
by (17).

Y (If ()17) holds, thenx; = (X},a) € Ann andx; = (X,,a) € Ann, for somea C %, and
X, ~ %,. Then it follows from(x},a) %y 1 y1 by Def. 13 thawo € a, y1 € Q1, andx; %1 y1.
Sincex; ~ x,, there existy;, € Q, such thatd, %5y, andy; ~ y,. Then(x,,a) >y 2 y2 by
Def. 13 sinceo € a, andy; =y Y2 by (16) sincey; ~ y».

This shows (i) in Def. 12. The proof of (ii) is symmetric, afiietcondition on the initial
states follows sincéy ~ A, andA; and% (A;) have the same initial states. O
Proposition 6 Let A; andA; be annotated automata such thate Ay. ThenA; ~cont A2.

Proof LetU; be an unannotated form 8§, and letU, be an unannotated form é8f. Then
U1 ~cont Z (A1) = % (A2) ~cont U2 by Prop. 2 and Lemma 14. The claim follows from
results in [12], according to which bisimilar automata apeftict equivalent. ad

19

5 Experimental Results

A conflict checker using annotated automata has been impleaén the DES software
tool Supremica [1] and tested on the same set of industtelesand parametrised models
as used previously in [9]. All these problems have been sibuecessfully, and the results
are shown in Table 1.

After simplifying each individual component in a composgdtem such as (3), the al-
gorithm selects aandidateset of automata for composition using strategies desciibfd.
After synchronous composition and hiding of local everits,result is first simplified using
observation equivalence and by removing obvious certaiflicts [9]. Then the annotated
form is constructed and simplified using incoming equivaéeand bisimulation. Subsump-
tion is used during each of these steps. Finally, an unatetbfarm is obtained and further
simplified by removing states with only silent outgoing s#ions.

The Annotating Methoddescribed above has been compared toHbaristic Method
described in [9]. The heuristic compositional conflict dkercof [9] selects and composes
candidate sets of automata in the same way as the annotagitigpan but it uses a more
straightforward set of abstraction rules to simplify autden In addition to th€ertain Con-
flicts Ruleand observation equivalence, which are part of the preggicg steps in the
Annotating Method, the Heuristic Method also usesAltive Events Rujeghe Silent Con-
tinuation Rule the Only Silent Incoming Rujeand theOnly Silent Outgoing Rulf9]. All
these rules are directly applied to the transitions of amraaton, without computing an
annotated form. This makes the rules simpler to apply, kit #iso have somewhat weaker
abstraction potential, as it can be shown that all abstmastobtained using the above men-
tioned rules and more can in principle be achieved by siyiplif an annotated automaton.

To make the Annotating and Heuristic Method comparabley, tiee been modified to
ensure that both implementations select and compose the @atomata in the same order,
regardless of possible differences in the intermediatalt®sThis is done to compare the
effects of the different simplification methods, as opposedomparing different choices
of automata for composition (which often lead to dramatiarges). However, the chosen
order of composition is no longer optimal, which explains tifference between the results
in Table 1 and [9].

Table 1 shows the experimental results for nonblockingfieation of 14 large models
of industrial-scale applications and 9 very large paraimetr models. Please refer to [9]
for a more detailed description of the models. The table shthe number of reachable
states of the synchronous product of each model (Size), lmmeshimber of states of the
largest automaton encountered during compositional eatitin (Peak States), the cumula-
tive number of states constructed during verification (ITBtates), and the total verification
time in seconds, for both the Annotating Method and the HgiarMethod,

All experiments were run on a standard laptop computer wigiGadz microprocessor
and 4 GB of RAM, and controlled by state limits. If during alstion some synchronous
product has more than 10,000 states, its construction idexband another set of automata
is composed instead. If no suitable set of automata for caitipp can be identified, a
final attempt is made to construct and check the full synabusrproduct of all remaining
automata whether it is nonblocking. If this attempt runs @uthemory, the run is aborted
and the corresponding table entries are left blank.

The annotating conflict checker performs much better tharhtturistic method for the
parametrised dining philosophers and tree arbiter probjevhich cannot be solved by the
heuristic method using the given state limits and candidetection strategy. For the in-
dustrial applications, the two methods yield similar résulith the Annotating Method

20

Table 1 Experimental results

Annotating Heuristic

Peak| Total [Time| Peak| Total | Time
Size |States States| [s] |Stateg Stateg [s]

AGV 2.610" |10552 18054 28.1| 1368 4097 4.1
AGVb 2.310° 975 1719 0.2| 781 1524/ 0.1
verriegel3 [9.7.10° | 2346| 12767 4.7| 2856/14639 6.8
verriegel3b [1.310° | 2346 11028 4.8| 2537/11976 6.3
verriegel4 |4.510° | 3703 15286 5.4| 2671/15106 6.1
verriegeldb |6.31010 | 2346| 11827 4.6| 2537|12968 6.3

big.bmw |3.1.10° 63 342| 0.1 63| 347, 0.1
FMS 812544 86 206] 0.0 125 279/ 0.1
SMS 312 18 119/ 0.0 18| 120 0.0
PMS 5.7.10° 75 487| 0.1 75| 492| 0.2
IPC 20592 107 195 0.0 107 195| 0.1

ftechnik |1.210°® | 5631 21218 5.9| 2450/15524 4.8
rhonetough|1.010'° | 1584 5025/ 4.1| 1584| 5026/ 4.5
AIP 1.010° | 6864 82542 30.3| 686877512 24.7
256philo |5.410'%8| 628 77419 21.8
512philo |2.910%%7| 628|156395 48.1
1024philo |8.510°74| 628314347 96.1
128transfer|1.610%31| 43| 11115 3.9| 4210966 10.7
256transfer|2.410%62 43| 22251 10.7| 42|21974 9.3
512transfer|5.810%24 43| 44523 42.6| 42(43990 34.7
128arbiter |2.81012 55| 14669 10.4
256arbiter |5.410724 55| 29517 31.5
512arbiter |2.1:10%° 55| 59213 58.1

producing a smaller peak number of states in 5 cases, andainéstic Method producing a
smaller peak number of states in 4 cases. The differencetisyarly notable for theAGV
andftechnikmodels, where the annotating method results in larger aatfmrthis seems to
be caused by the annotating and unannotating steps, whigltimaa&ge the structure of an
automaton in such a way that certain states are no longenatiga equivalent. The more
regular parametrised examples do not suffer from this isand the Annotating Method
works better here.

Table 2 shows some information on the effectiveness of thitlual steps taken by
the annotating method. First, it shows for each model thed tmimber of annotations cre-
ated and removed by subsumption. Next, it shows the totalbeurof states removed as
unreachable after annotation (Ann.), the number of stas®ved by merging incoming
equivalent £jc) and bisimilar &) states, and the number of states added back in when
constructing unannotated forms (Unann.). Note thaefers to simplification of annotated
automata and is in addition to observation equivalence Iffiocgiion, which is performed
on all automata before annotating.

In most cases, annotating helps to remove substantiallg states than need to be added
back during unannotation. The data clearly shows the irapog of the subsumption step,
which is performed directly while constructing the annethform. While merging incoming
equivalent and bisimilar states seems to have a limited®fte most industrial models, it
has a marked effect for some of the more regular models in itniegi philosophers and
arbiter series.

21

Table 2 Rule Usage

Annotations States

Create | Subsume Ann. | ~inc ~ Unann.
AGV +63435 —58073—1777] —34| -513 +5
AGVb +328 —226 -0 -0 -0 +0
verriegel3 +3442 —759| -93 -7 -16| +37
verriegel3b | +3478 —777| —70 -1 -16| +19
verriegel4 +3875] —-927| —-93] -13 —-32| +29
verriegeldb | +4578 —1540 —122 -1 —67| +42
big_bmw +53 —-27 -1 -0 -0 +1
FMS +77 —26| -24 -0 -8 +11
SMS +8 -8 -0 -0 -0 +0
PMS +161 —103| -17 -9 -9 +7
IPC +133 —58 -9 -0 -2 +4
ftechnik +4785 —856| —26 -0 -0 +1
rhonetough +899 —491| -15 -0 —6| +13
AIP +17303] —6644|—-1600 —597| -216|+1054
256philo +86128 —33106|—1756| —874| —9635 +0
512philo | +174192 —67133 —3548| —1770] —19491 +0
1024philo | +350320 —133683 —7132| —3562 —39203 +0
128transfer| +3721] —1289| —129 -0 -0 +1
256transfer| +7433| —2569| —257 -0 -0 +1
512transfer| +14857] —5129 —513 -0 -0 +1
128arbiter +5475 —2769|—1002| —436 —61| +61
256arbiter | +11043] —5585(—2026| —884| —125| +125
512arbiter | +22179 —11217|—4074|—-1780 —253| +253

6 Conclusions

This paper shows hownnotationscan be used for compositional nonblocking verifica-
tion. Methods to construct annotated automata and to carghgtractions are presented,
and their correctness is proved formally. Experimentalitsshow that the performance of
nonblocking verification using annotations is comparablexisting methods of simplifying
automata with respect to conflict equivalence.

In addition, annotations lead to an improved structure aaterregular nondeterministic
automata, and help to better understand the nature andpitissi of conflict-preserving ab-
stractions. So far, three simplification rules for annalaatomata have been implemented,
and it is already known that the framework allows for otherenpowerful ways of conflict-
preserving abstraction.

In the future, the authors would like to the investigate idferation of implicit transi-
tions with respect to conflict equivalence and their seledtitroduction to aid bisimulation
reduction of annotated automata. Another topic of futurekwe the investigation of al-
ternatives to the unannotation procedure, to avoid thetoaston of additional states by
verifying nonblocking using only annotated automata.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremicar-ategrated environment for verifica-
tion, synthesis and simulation of discrete event systemsProc. 8th Int. Workshop on Discrete Event

22

AwWN

15.

16.

17.
18.

19.

20.

21.

Systems, WODES '06, pp. 384-385. Ann Arbor, MI, USA (2006)

. Cassandras, C.G., Lafortune, S.: Introduction to Diediwvent Systems. Kluwer (1999)
. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model ChegkiMIT Press (1999)
. De Nicola, R., Hennessy, M.C.B.: Testing equivalencepriocesses. Theoretical Comput. SK1-2),

83-133 (1984). DOI 10.1016/0304-3975(84)90113-0

. Eloranta, J.: Minimizing the number of transitions withpest to observation equivalence. BBI(4),

397-419 (1991)

. Feng, L., Wonham, W.M.: Supervisory control architectfoe discrete-event systems. |EEE Trans.

Autom. Control53(6), 1449-1461 (2008)

. Fernandez, J.C.: An implementation of an efficient algorifor bisimulation equivalence. Science of

Computer Programming3, 219-236 (1990)

. Flordal, H., Malik, R.: Modular nonblocking verificatiarsing conflict equivalence. In: Proc. 8th Int.

Workshop on Discrete Event Systems, WODES '06, pp. 100-166.4bor, Ml, USA (2006)

. Flordal, H., Malik, R.: Compositional verification in supisory control. SIAM J. Control and Opti-

mization48(3), 1914-1938 (2009). DOI 10.1137/070695526

. Hoare, C.A.R.: Communicating Sequential Processesti€ddall (1985)
. Kumar, R., Shayman, M.A.: Non-blocking supervisory cohtf nondeterministic discrete event sys-

tems. In: Proc. American Control Conf., pp. 1089-1093. BaltanMD, USA (1994)

. Malik, R., Streader, D., Reeves, S.: Conflicts and fatirg. Int. J. Found. Comput. Sdi7(4), 797-813

(2006)

. Milner, R.: Communication and concurrency. Series in CaemBcience. Prentice-Hall (1989)
. Nuutila, E.: Efficient transitive closure compuationande digraphs. Ph.D. thesis, Laboratory of Infor-

mation Processing Science, Helsinki University of Techggléinland (1995)

Olderog, E.R., Hoare, C.A.R.: Specification-orientexhantics for communicating processes. Acta Inf.
23(1), 9-66 (1986)

Pena, P.N., Cury, J.E.R., Lafortune, S.: Verificatiomofconflict of supervisors using abstractions.
IEEE Trans. Autom. Contrd4(12), 2803—-2815 (2009)

Ramadge, P.J.G., Wonham, W.M.: The control of discretetesystems. Proc. IEEE/(1), 81-98 (1989)
Rensink, A., Vogler, W.: Fair testing. Information andn@mutation2052), 125-198 (2007). DOI
10.1016/j.ic.2006.06.002

Su, R., van Schuppen, J.H., Rooda, J.E., Hofkamp, A. hcbluflict check by using sequential automa-
ton abstractions based on weak observation equivalenceonfatica46(6), 968—978 (2010). DOI
10.1016/j.automatica.2010.02.025

Ware, S., Malik, R.: Compositional nonblocking verifioatusing annotated automata. In: Proc. 10th
Int. Workshop on Discrete Event Systems, WODES 10, pp. 378-—Berlin, Germany (2010)

Ware, S., Malik, R.: A state-based characterisatiohefonflict preorder. In: Proc. 10th Int. Workshop
on the Foundations of Coordination Languages and Softwerkitectures, FOCLASA 2011, pp. 34-48.
Aachen, Germany (2011). DOI 10.4204/EPTCS.58.3

23

