
Working Paper Series
ISSN 1177-777X

FIVE ABSTRACTION RULES
TO REMOVE TRANSITIONS

WHILE PRESERVING
COMPOSITIONAL SYNTHESIS RESULTS

Sahar Mohajerani, Robi Malik, Martin Fabian

Working Paper: 01/2012
March 13, 2012

c©Sahar Mohajerani, Robi Malik, Martin Fabian

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton, 3240
New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29200041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FIVE ABSTRACTION RULES
TO REMOVE TRANSITIONS

WHILE PRESERVING
COMPOSITIONAL SYNTHESIS RESULTS

Sahar Mohajerani
Department of Signals and Systems
Chalmers University of Technology

Göteborg, Sweden
mohajera@chalmers.se

Robi Malik
Department of Computer Science

The University of Waikato
Hamilton, New Zealand
robi@waikato.ac.nz

Martin Fabian
Department of Signals and Systems
Chalmers University of Technology

Göteborg, Sweden
fabian@chalmers.se

March 13, 2012

Abstract

This working paper investigates under which conditionstransitionscan
be removed from an automaton while preserving important synthesis proper-
ties. The work is part of a framework forcompositional synthesisof least re-
strictive controllable and nonblocking supervisors for modular discrete event
systems. The method for transition removal complements previous results,
which are largely focused on state merging. Issues concerning transition
removal in synthesis are discussed, andredirection mapsare introduced to
enable a supervisor to process an event, even though the corresponding tran-
sition is no longer present in the model. Based on the results, different tech-

1

niques are proposed to remove controllable and uncontrollable transitions,
and an example shows the potential of the method for practical problems.

1 Introduction

Supervisory control theory[16] provides a general framework to compute least re-
strictive strategies to control a givenplant such that its behaviour satisfies a given
specification. Synthesis for systems with a large number of components is impeded
by an inherent complexity problem known asstate-space explosion. A lot of re-
search has been devoted to overcome the state-space explosion problem,and also
to find more comprehensible supervisors [7,9,16,19].

Compositionalmethods seek to avoid large state spaces usingabstractionand
have been used in verification [1, 3, 6] and synthesis [7, 14, 15]. In asystem with
a large number of components, it is often possible to simplify individual compo-
nents before composing them with the rest of the system, achieving significant
performance improvements. Several ways to simplify components have been in-
vestigated in recent years.

Natural projectionis a standard and effective way to compute abstractions,
although strong restrictions need to be imposed to ensure the preservation of syn-
thesis results [5, 17].Observation equivalence[13] andconflict equivalence[12]
are well-known abstraction methods for nonblocking verification [6], butfor syn-
thesis these abstractions can only be applied in combination with unobservable
events [10,18], which limits their applicability.

Recently, frameworks for compositional synthesis based on abstractionsof
nondeterministic automata have been proposed [7, 14, 15], in some cases show-
ing substantial reduction of the number of states encountered during synthesis.
This working paper seeks to enhance these methods by providing means to remove
transitions. This is important, because for large systems, the number of transitions
may exceed the number of states by several orders of magnitude.

Compositional verification typically includes observation equivalence abstrac-
tion, which allows for transition removal using the transitive reduction [4], but
observation equivalence does not necessarily preserve synthesis results [15]. Su-
pervision equivalence[7] allows for transition removal, but relies on additional
state labels that make some desirable abstractions impossible. The methods [14,15]
avoidevent hidingthat may cause problems in synthesis abstraction, but these ap-
proaches make it difficult to remove transitions.

This working paper proposes some concrete means to identify transitions that
are redundant for the purpose of synthesis. These methods are based on obser-
vation equivalence [13], but are more restrictive because of the needto preserve

2

synthesis results. It is also shown how to restore the removed transitions to enable
a synthesised supervisor to make control decisions based on a model with removed
transitions.

This working paper is organised as follows. After the preliminaries in section 2,
a framework to support transition removal in compositional synthesis is presented
in section 3. In section 4, a sufficient condition for transition-removing abstraction
is described, and in section 5, concrete methods to remove transitions are given
and proven to be sound. Finally, section 6 demonstrates transition removal using a
practical example, and section 7 adds some concluding remarks.

2 Preliminaries

2.1 Events and Languages

The behaviour of discrete event systems is described using events and languages.
Eventsrepresent incidents that cause transitions from one state to another and are
taken from a finite alphabetΣ. For the purpose of supervisory control, this alphabet
is partitioned into the setΣc of controllableevents and the setΣu of uncontrollable
events. Controllable events can be disabled by a supervisor, while uncontrollable
events occur spontaneously. The specialtermination eventω ∈ Σc denotes com-
pletion of a task.

Σ∗ is the set of all finite traces of events fromΣ, including theempty traceε.
A subsetL ⊆ Σ∗ is called alanguage. The concatenation of two tracess, t ∈ Σ∗

is written asst. A traces ∈ Σ∗ is aprefixof t ∈ Σ∗, written s ⊑ t, if t = su for
someu ∈ Σ∗. ForΩ ⊆ Σ, thenatural projectionPΩ : Σ∗ → Ω∗ is the operation
that removes from tracess ∈ Σ∗ all events not inΩ.

2.2 Finite-State Automata

Discrete event systems are typically modelled as deterministic automata, but non-
deterministic automata may be obtained as intermediate results from abstraction.

Definition 1 A (nondeterministic) finite-state automaton is a tupleG = 〈Σ, Q,→,
Q◦〉, whereΣ is a finite set of events,Q is a finite set of states,→ ⊆ Q × Σ × Q
is thestate transition relation, andQ◦ ∈ Q is the set ofinitial states.

The transition relation is written in infix notationx
σ
→ y, and is extended to

traces inΣ∗ by lettingx
ε
→ x for all x ∈ Q, andx

sσ
→ z if x

s
→ y andy

σ
→ z for

somey ∈ Q. Furthermore,x
s
→ meansx

s
→ y for somey ∈ Q, andx → y means

x
s
→ y for somes ∈ Σ∗. For an alphabetΩ ⊆ Σ, the notationx

Ω
→ y meansx

σ
→ y

3

for someσ ∈ Ω, andG
s
→ x meansq◦

s
→ x for someq◦ ∈ Q◦. The language

of automatonG is L(G) = { s ∈ Σ∗ | G
s
→}. Finally, G is deterministic, if

|Q◦| ≤ 1, andx
σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

A special requirement is that states reached by the termination eventω do not
have any outgoing transitions, i.e., ifx

ω
→ y then there does not existσ ∈ Σ such

thaty
σ
→. This ensures that the termination event, if it occurs, is always the final

event of any trace. The traditional set of marked states isQω = {x ∈ Q | x
ω
→} in

this notation. For graphical simplicity, states inQω are shown shaded in the figures
of this paper instead of explicitly showingω-transitions.

When multiple automata are brought together to interact, lock-step synchroni-
sation in the style of [8] is used.

Definition 2 Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 andG2 = 〈Σ2, Q2,→2, Q

◦
2〉 be two

automata. Thesynchronous compositionof G1 andG2 is

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (1)

where
(x, y)

σ
→ (x′, y′) if σ ∈ Σ1 ∩ Σ2, x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ Σ1 \ Σ2, x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ Σ2 \ Σ1, y

σ
→2 y′ .

2.3 Supervisory Control Theory

Given plant andspecificationautomata, thesupervisory control theory[16] pro-
vides a method tosynthesisea supervisorthat restricts the behaviour of the plant
such that the specification is always fulfilled. Two common requirements for this
supervisor arecontrollability andnonblocking.

Definition 3 SpecificationK = 〈Σ, QK ,→K , Q◦
K〉 is controllablewith respect

to plantG = 〈Σ, QG,→G, Q◦
G〉 if, for every traces ∈ Σ∗, every statex ∈ QK ,

and every uncontrollable eventυ ∈ Σu such thatK
s
→ x andG

sυ
→, it holds that

x
υ
→K .

Definition 4 Let G = 〈Σ, Q,→, Q◦〉. A statex ∈ Q is calledreachablein G if
G → x, andcoreachableif x

sω
→ for somes ∈ Σ∗. G is callednonblockingif every

reachable state is coreachable.

For a plantG and specificationK, it is shown in [16] that there exists aleast
restrictivecontrollable sublanguage

supCG(K) ⊆ L(K) (2)

4

such thatsupCG(K) is controllable with respect toG and nonblocking, and this
language can be computed using a fix-point iteration. This result can be reformu-
lated in automata form, using an iteration on the state set. The synthesis result for
an automatonG is obtained by restrictingG to a maximal set of controllable and
nonblocking states.

Definition 5 [11] Let G = 〈Σ, Q,→, Q◦〉 be an automaton. Thesynthesis step
operatorΘG : 2Q → 2Q for G is defined byΘG(X) = Θcont

G (X) ∩ Θnonb
G (X),

where

Θcont
G (X) = {x ∈ X | x

Σu→ y impliesy ∈ X } ; (3)

Θnonb
G (X) = {x ∈ X | x

tω
→|X for somet ∈ Σ∗ } . (4)

Theorem 1 [11] Let G = 〈Σ, Q,→, Q◦〉. The synthesis step operatorΘG has a
greatest fix-pointgfpΘG = Θ̂G ⊆ Q. If the state setQ is finite, then the sequence
X0 = Q, Xi+1 = ΘG(Xi) reaches this fix-point in a finite number of steps, i.e.,
Θ̂G = Xn for somen ≥ 0.

Definition 6 Thesynthesis resultfor G = 〈Σ, Q,→, Q◦〉 is supCN (G) = G|Θ̂G
,

whereG|X = 〈Σ, Q,→|X , Q◦ ∩ X〉 with →|X = { (x, σ, y) ∈ → | x, y ∈ X }
denotes therestrictionof G to X ⊆ Q.

Theorem 2 Let G = 〈Σ, Q,→, Q◦〉 be a deterministic automaton.supCN (G) is
the least restrictive subautomaton ofG that is controllable with respect toG and
nonblocking.

The synthesis operatorsupCN performs synthesis for a plant automatonG. A
simple transformation [7] exists to transform problems that also involve specifica-
tions into the plant-only control problems considered in this working paper.

The result of the synthesis operator is an automatonsupCN (G) or a language
L(supCN (G)), which describes the behaviour of a controlled system. In practice
this is implemented as asupervisorthat decides which controllable events are to
be enabled or disabled in a given state. In this paper, a supervisor is a map

S : Σ∗ → {0, 1} . (5)

If S(sσ) = 0 for somes ∈ Σ∗ and σ ∈ Σc then the supervisor disables the
controllable eventσ after observing traces, otherwise it enablesσ. This results in
the followingclosed-loop behaviourL(S/G) of the plantG under the control of
supervisorS:

L(S/G) = { s ∈ L(G) | S(s) = 1 } . (6)

5

G q0

q2

α

α

(!γ)

H

α

(!γ)

T

α

SG

α

α

!γ

SH

α

!γ

Figure 1: Example of transition removal.

A supervisor can be constructed naturally from a languageL ⊆ Σ∗, by letting
SL(s) = 1 if and only if s ∈ L. For such a supervisor to be feasible,L must be
controllable [16].

3 Compositional Synthesis

Many supervisory control problems can be presented as a set of interacting com-
ponents. Then the synthesis problem consists of finding the least restrictive con-
trollable and nonblocking supervisor for a set of plants,

G = {G1, G2, . . . , Gn} . (7)

Compositional synthesisexploits the modularity of such systems and avoids build-
ing the complete synchronous product. Individual componentsGi are simplified
and replaced by smaller abstractionsHi. Synchronous composition is computed
step by step, abstracting again the intermediate results. Eventually the abstractions
result in a single automatonH, the abstract description of the system (7). Once
found,H is used instead of the original system to calculate a synthesis result that
leads to a solution for the original synthesis problem (7).

Individual componentsGi typically contain events that do not appear in any
other componentGj with j 6= i. These events are calledlocal events. In the
following, local events are denoted by the setΥ, andΩ = Σ \ Υ denotes the
non-local orsharedevents. Local events are helpful to find abstractions and are
parenthesised in the figures.

This paper focuses on abstractions that remove transitions from an automaton.
This leads to a problem, because it is no longer obvious how to construct a super-
visor from such an abstraction. After removal of transitions it is not clearhow a
supervisor can enact control over the events labelling the removed transitions.

Example 1 Consider the modular systemG = {G, T} in figure 1 withΣu = {!γ}
where!γ is the only local event. AutomatonH is obtained by removingq0

α
→ q2.

6

AlthoughH is an appropriate abstraction ofG, as explained below in example 2,
the supervisorSH = supCN (H ‖ T) disables eventα in the initial state, and
therefore is not a least restrictive supervisor forG ‖ T .

To solve this problem, the models (7) are augmented by aredirection mapthat
contains the information needed to finally implement a supervisor.

Definition 7 A synthesis pairis a pair(G;D), where

• G = {G1, G2, . . . , Gn} is a set of uncontrolled plant automata;

• D : Σ∗ → Σ∗ is a prefix-preservingredirection map, i.e., a map such that
s ⊑ t impliesD(s) ⊑ D(t).

Synthesis pairs are a variant ofsynthesis triples[14] that collect all the informa-
tion needed for the transition-based abstractions considered in this working paper.
The compositional synthesis algorithm manipulates synthesis pairs. Each pairrep-
resents a partially solved synthesis problem, consisting of the plant modelG to be
controlled and the redirection mapD, which maps each input traces accepted
by the original plant before all abstractions, to a trace accepted by the current
abstracted plantG. A solution to the abstracted synthesis problemG can be in-
terpreted as a supervisor for the original plant by taking the redirection map into
account.

Definition 8 For every synthesis pair(G;D), define the represented supervisor
mapS(G;D) : Σ∗ → {0, 1} as follows:

S(G;D)(s) =

{

1, if D(s) ∈ L(supCN (G));

0, otherwise.
(8)

Compositional synthesis starts by converting a control problem such as (7) into
the synthesis pair(G0; id) whereG0 = {G1, G2, . . . , Gn} and id: Σ∗ → Σ∗ is the
identity map, i.e, id(s) = s. This initial synthesis pair is repeatedly abstracted in
such a way that the supervisor obtained from the abstraction remains a solution for
the original synthesis problem. To ensure this property, each new synthesis pair
needs to besynthesis equivalentto the previous pair.

Definition 9 Two synthesis pairs(G1;D1) and(G2;D2) aresynthesis equivalent
with respect to plantG, written (G2;D2) ≃synth,G (G1;D1), if L(S(G1;D1)/G) =
L(S(G2;D2)/G). Furthermore,(G1;D1) and(G2;D2) are synthesis equivalent, writ-
ten (G2;D2) ≃synth (G1;D1), if (G2;D2) ≃synth,G (G1;D1) for every automa-
tonG.

7

Compositional synthesis terminates onceG = {H} consists of a single au-
tomaton representing the abstracted system description. The following result con-
firms that the closed-loop behaviour obtained in the end is equal to a solution for
the original synthesis problem.

Proposition 3 Let G0 = {G1, . . . , Gn} be a set of automata. Let(Gk;Dk) be a
synthesis pair such that(G0; id) ≃synth,G0

(Gk;Dk). Then

L(S(Gk;Dk)/G0) = L(supCN (G0)) . (9)

Proof. For (G0; id) it follows from definition 8 that

S(G0;id)(s) =

{

1, if s ∈ L(supCN (G0))

0, otherwise.
(10)

By (6), it follows thatL(S(G0;id)/G0) = { s ∈ G0 | s ∈ L(supCN (G0)) }, which
impliesL(S(G0;id)/G0) = L(supCN (G0)). Then it follows from definition 9 that
L(S(Gk;Dk)/G0) = L(S(G0;id)/G0)) = L(supCN (G0)). �

4 Transition-Wise Synthesis Equivalence

Several methods are known to abstract synthesis pairs such that the number of
states is reduced [7,15]. The abstractions are performed by manipulating the states
and transitions of individual automata, such that synthesis equivalence ispreserved.
To allow for transition removal, state-wise synthesis abstraction, which is a special
case of a definition from [15], is augmented by a transition-based concept in defi-
nition 11.

Definition 10 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two au-
tomata.H is astate-wise synthesis abstractionof G with respect toΥ ⊆ Σ, if it
holds for all automataT such thatΣT ∩ Υ = ∅ thatΘ̂G‖T ⊆ Θ̂H‖T .

Definition 11 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata.H is a transition-wise synthesis abstractionof G with respect toΥ ⊆ Σ if
for every transitionx

σ
→G y there existt, u ∈ Υ∗ such that:

(i) x
tPΩ(σ)u
−→H y;

(ii) for all automataT such thatΣT ∩Υ = ∅ and all transitions(x, xT)
σ
→|Θ̂G‖T

(y, yT) of supCN (G ‖ T) it holds that(x, xT)
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT).

8

Definition 12 Two automataG andH are state-wise (or transition-wise)synthesis
equivalentwith respect toΥ, if G is a state-wise (or transition-wise) synthesis ab-
straction ofH with respect toΥ andH is a state-wise (or transition-wise) synthesis
abstraction ofG with respect toΥ.

Although closely related, state-wise and transition-wise synthesis equivalence
are independent concepts. If an abstraction is obtained by transition removal, as
considered in this working paper, then transition-wise synthesis abstraction implies
state-wise synthesis abstraction in only one direction.

Lemma 4 Let H = 〈Σ, Q,→H , Q◦〉 be a transition-wise synthesis abstraction of
G = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ such that→H ⊆ →G. ThenH is a
state-wise synthesis abstraction ofG.

Proof. Let Σ = Ω ∪̇ Υ, and letT = 〈ΣT , QT ,→T , Q◦
T 〉 be an automaton such

thatΣT ∩Υ = ∅. To prove that̂ΘG‖T ⊆ Θ̂H‖T , it is shown by induction onn ≥ 0

thatΘ̂G‖T ⊆ Xn
H‖T = Θn

H‖T (Q × QT).

Base case.n = 0. ClearlyΘ̂G‖T ⊆ Q × QT = Θ0
H‖T (Q × QT) = X0

H‖T .

Inductive step.Let (x, xT) ∈ Θ̂G‖T for somen ≥ 0. It is to be shown that
(x, xT) ∈ Xn+1

H‖T = ΘH‖T (Xn
H‖T) = Θcont

H‖T (Xn
H‖T) ∩ Θnonb

H‖T (Xn
H‖T).

To see that(x, xT) ∈ Θcont
H‖T (Xn

H‖T), let υ ∈ Σu such that(x, xT)
υ
→H‖T

(y, yT). From→H ⊆ →G, it follows that(x, xT)
υ
→G‖T (y, yT). Since(x, xT) ∈

Θ̂G‖T andυ ∈ Σu, it follows that (x, xT)
υ
→|Θ̂G‖T

(y, yT). By definition 12,

there existt, u ∈ Υ∗ such that(x, xT)
tPΩ(υ)u
−→|Θ̂H‖T

(y, yT). This implies(y, yT) ∈

Θ̂H‖T ⊆ Θn
H‖T (Q × QT) = Xn

H‖T . As υ and(y, yT) were chosen arbitrarily, it

follows that(x, xT) ∈ Θcont
H‖T (Xn

H‖T).

Furthermore, to see that(x, xT) ∈ Θnonb
H‖T (Xn

H‖T), note that(x, xT) ∈ Θ̂G‖T

means(x, xT)
tω
→|Θ̂G‖T

for somet ∈ Σ∗. By inductive assumption, it follows that

(x, xT)
tω
→|Xn

H‖T
, which by definition implies(x, xT) ∈ Θnonb

H‖T (Xn
H‖T). �

To preserve transition-wise synthesis equivalence after removal of a transition,
definition 11 requires the existence of a so-calledredirection paththat links the
source and target states of the removed transition. A redirection path for transition

x
σ
→ y with respect toΥ is a pathx

tPΩ(σ)u
−→ y such thatt, u ∈ Υ∗. Using these

paths, the redirection map is constructed to replace the removed transitions bythe
matching redirection paths. This enables the supervisor to make control decisions
about the removed transitions.

9

Example 2 Consider again the automata in figure 1. Transitionq0
α
→ q2 can be

removed fromG, producing the state-wise and transition-wise synthesis equivalent
automatonH. From this abstraction, a redirection mapD : Σ∗ → Σ∗ is constructed
whereD(αs) = !γαs for all s ∈ Σ∗ andD(s) = s for all s such thatα is not a
prefix of s.

If G in figure 1 is placed in a larger system, sayG = {G, T}, then the syn-
thesis pair(G; id) is synthesis equivalent to(H;D) whereH = {H, T}. Although
the supervisorSH = supCN (H ‖ T) obtained forH cannot directly be used to
control the original plantG, this becomes possible in combination with the redi-
rection mapD. As D(α) = !γα ∈ L(supCN (H ‖ T)), the supervisor computed
for (H,D) will enable the controllable eventα in the initial state, in the same way
as a supervisor computed for the original systemG.

It is shown in the following that a redirection map as shown in example 2 can
be constructed in all cases where transition removal applied to a componentresults
in a state-wise and transition-wise synthesis equivalent abstraction. First,for a
redirection map constructed for individual automata to be used in the contextof a
synthesis pair, it must be extended to the complete alphabet.

Definition 13 Let Σ1 ⊆ Σ2. Theextensionof a prefix-preserving mapD1 : Σ∗
1 →

Σ∗
1 isD2 : Σ∗

2 → Σ∗
2, defined by

D2(ε) = D1(ε) (11)

D2(sσ) =











D2(s)t
′ if σ ∈ Σ1, D1(PΣ1

(s)) = s′,

andD1(PΣ1
(sσ)) = s′t′;

D2(s)σ if σ /∈ Σ1.

(12)

A redirection mapD1 is extended by copying the additional events without
change at the appropriate position into the output stream. The extensionD2 is
well-defined ifD1 is a prefix-preserving map. In the following, if the alphabets are
clear from the context, a prefix-preserving map is identified with its extension, and
D1 andD2 are both denoted byD.

For a redirection map to form a synthesis equivalent pair, it must satisfy the
following property of being synthesis-preserving, which is closely related to state-
wise and transition-wise synthesis equivalence. A map satisfying this requirement
can be constructed in all cases where a component is replaced by a state-wise and
transition-wise synthesis equivalent abstraction resulting from transition removal.

Definition 14 Let G andH be two automata. A mapD : Σ∗ → Σ∗ is called a
synthesis-preserving redirection mapfrom G to H with respect toΥ ⊆ Σ if for all

10

automataT such thatΣT ∩ Υ = ∅ and for alls ∈ (Σ ∪ ΣT)∗, it holds that

supCN (G ‖ T)
s
→ (x, xT) if and only if supCN (H ‖ T)

D(s)
−→ (x, xT) . (13)

Proposition 5 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be state-wise
and transition-wise synthesis equivalent with respect toΥ ⊆ Σ, and let→H ⊆
→G. Then there exists a synthesis-preserving redirection map fromG to H with
respect toΥ.

Proof. Let Σ = Ω ∪̇ Υ. SinceG andH are transition-wise synthesis equivalent,
for every transitionx

σ
→ y there exists a traced(x, σ) = tPΩ(σ)u wheret, u ∈

Υ∗ satisfy the conditions (i) and (ii) in Definition 11. Then construct the prefix-
preserving mapD : Σ∗ → Σ∗ as follows:

D(ε) = ε (14)

D(tσ) =

{

D(t)d(x, σ), if G
t
→ x

σ
→ ;

D(t)σ, otherwise .
(15)

Now letT = 〈ΣT , QT ,→T , Q◦
T 〉 be an automaton such thatΣT ∩ Υ = ∅. Thend

is extended toΣ∪ΣT by lettingd(x, σ) = σ for all σ ∈ ΣT \Σ, and the extension
of D to (Σ ∪ ΣT)∗ is given by:

D(ε) = ε (16)

D(tσ) =

{

D(t)d(x, σ), if G
PΣ(t)
−→ x

PΣ(σ)
−→ ;

D(t)σ, otherwise .
(17)

Note that condition (i) in definition 11 ensures thatD(PΣ(s)) ∈ L(G) implies
PΣ(s) ∈ L(G). Furthermore, for alls = σ1 · · ·σn such thatPΣ(s) ∈ L(G),

D(s) = d(x0, σ1)d(x1, σ2) · · · d(xn−1, σn) (18)

whereG
PΣ(σ1···σk)

−→ xk. It remains to be confirmed thatD satisfies definition 14.
Therefore, lets = σ1 · · ·σn ∈ (Σ ∪ ΣT)∗.

First assume thatsupCN (G ‖ T)
s
→ (x, xT). Then there exists a pathG ‖

T
ε
→ (x0, x

T
0)

σ1→|Θ̂G‖T
(x1, x

T
1)

σ2→|Θ̂G‖T
· · ·

σn→|Θ̂G‖T
(xn, xT

n) = (x, xT).

Consider somek = 1, . . . , n. If σk ∈ Σ, then since(xk−1, x
T
k−1)

σk→|Θ̂G‖T

(xk, x
T
k) it follows by definition 11 that(xk−1, x

T
k−1)

d(xk−1,σk)
−→|Θ̂H‖T

(xk, x
T
k). If

σk ∈ ΣT \ Σ, thend(xk−1, σk) = σk and (xk−1, x
T
k−1)

σk→|Θ̂H‖T
(xk, x

T
k) as

11

(xk−1, x
T
k−1), (xk, x

T
k) ∈ Θ̂G‖T = Θ̂H‖T sinceG and H are state-wise syn-

thesis equivalent. Combining these paths fork = 1, . . . , n gives H ‖ T
ε
→

(x0, x
T
0)

d(x0,σ1)
−→|Θ̂H‖T

(x1, x
T
1)

d(x1,σ2)
−→|Θ̂H‖T

· · ·
d(xn−1,σn)

−→|Θ̂H‖T
(xn, xT

n), and this im-

plies by (18) thatsupCN (H ‖ T)
D(s)
−→ (xn, xT

n) = (x, xT).

Conversely assume thatsupCN (H ‖ T)
D(s)
−→ (x, xT). Note thatD(PΣ(s)) =

PΣ(D(s)) ∈ L(H) ⊆ L(G), which impliesPΣ(s) ∈ L(G). By (18), there ex-

ists a pathH ‖ T
ε
→ (x0, x

T
0)

d(x0,σ1)
−→|Θ̂H‖T

(x1, x
T
1)

d(x1,σ2)
−→|Θ̂H‖T

· · ·
d(xn−1,σn)

−→|Θ̂H‖T

(xn, xT
n) = (x, xT) such thatD(s) = d(x0, σ1) · · · d(xn−1, σn). Considerk =

1, . . . , n. If σk ∈ Σ, thenxk−1
σk→G xk, and sinceT does not synchronise on the

events introduced byd, this implies(xk−1, x
T
k−1)

σk→G‖T (xk, x
T
k). Then, given

(xk−1, x
T
k−1), (xk, x

T
k) ∈ Θ̂H‖T = Θ̂G‖T , it follows that (xk−1, x

T
k−1)

σk→|Θ̂G‖T

(xk, x
T
k). Otherwise, ifσk ∈ ΣT \ Σ, thend(xk−1, σk) = σk and it follows from

Θ̂H‖T = Θ̂G‖T that(xk−1, x
T
k−1)

σk→|Θ̂G‖T
(xk, x

T
k). Combining these transitions

for k = 1, . . . , n givesG ‖ T
ε
→ (x0, x

T
0)

σ1→|Θ̂G‖T
· · ·

σn→|Θ̂G‖T
(xn, xT

n), i.e.,

supCN (G ‖ T)
s
→ (xn, xT

n) = (x, xT). �

The following proposition confirms that a synthesis-preserving redirection map
can be used to construct a synthesis equivalent pair.

Proposition 6 Let G = {G1, . . . , Gn} and letH = {H1, G2, . . . , Gn} where
Gi = 〈Σi, Qi,→i, Q

◦
i 〉, and letD1 : Σ∗

1 → Σ∗
1 be a synthesis-preserving redirec-

tion map fromG1 to H1 with respect toΥ ⊆ Σ1 such thatΥ ∩ Σ2 = · · · =
Υ∩Σn = ∅. Then(G;D) ≃synth (H;D1 ◦ D) for every prefix-preserving mapD.

Proof. Let S1 = S(G1;D) andS2 = S(G2;D1◦D), let T = G2 ‖ · · · ‖ Gn, and let
G be an automaton. It is to be shown that(G;D) ≃synth,G (H;D1 ◦ D) based on
definition 9.

First, lets ∈ L(S1/G). This meanss ∈ L(G) andD(s) ∈ L(supCN (G1‖T)).

SinceD(s) ∈ L(supCN (G1 ‖ T)), it follows thatG1 ‖ T
D(s)
−→|Θ̂G1‖T

. SinceD1

is a synthesis-preserving redirection map, it follows by definition 14 thatH1 ‖

T
D1(D(s))
−→|Θ̂H1‖T

, which impliesD1(D(s)) ∈ L(supCN (H1 ‖ T)). Since alsos ∈

L(G), it follows thats ∈ L(S2/G).
Conversely, lets ∈ L(S2/G). This meansD1(D(s)) ∈ L(supCN (H1 ‖ T))

ands ∈ L(G). SinceD1(D(s)) ∈ L(supCN (H1‖T)), it follows thatsupCN (H1‖

T)
D1(D(s))
−→ . SinceD1 is a synthesis-preserving redirection map, it follows by

12

definition 14 thatsupCN (G1‖T)
D(s)
−→, which impliesD(s) ∈ L(supCN (G1‖T)).

Since alsos ∈ L(G), it follows thats ∈ L(S1/G). �

After removing some transition from a componentGi ∈ G, by proposition 5
it is possible to construct a synthesis-preserving redirection map, provided that
state-wise and transition-wise synthesis equivalence are satisfied. By proposition 6
this results in a synthesis equivalent pair. The following theorem combines these
results and shows that synthesis results can always be preserved when replacing
a component by a state-wise and transition-wise synthesis equivalent abstraction
resulting from transition removal.

Theorem 7 Let G = {G1, . . . , Gn} andH = {H1, G2, . . . , Gn} such thatG1

andH1 are state-wise and transition-wise synthesis equivalent with respect toΥ ⊆
Σ1 such thatΥ ∩ Σ2 = · · · = Υ ∩ Σn = ∅ and→H1

⊆ →G1
. Then there exists

a synthesis-preserving redirection mapD1 from G1 to H1 with respect toΥ such
that(G;D) ≃synth (H;D1 ◦ D).

Proof. This follows directly from proposition 5 and proposition 6. �

5 Transition Removal Abstraction

According to theorem 7, synthesis results are preserved if transition removal in a
component results in a state-wise and transition-wise synthesis equivalentabstrac-
tion. This section proposes some concrete methods to construct such abstractions,
based on the idea of observation equivalence.

5.1 Observation Equivalence

Observation equivalenceor weak bisimilarityis a well-known general abstraction
method for nondeterministic automata [13]. It can be implemented by simple al-
gorithms, and its application in compositional verification can substantially reduce
the state space [6]. The idea of observation equivalence is to identify andmerge
states with the same future behaviour.

Definition 15 Let G = 〈Σ, QG,→G, Q◦
G〉 andH = 〈Σ, QH ,→H , Q◦

H〉 be two
automata withΣ = Ω ∪̇Υ. ThenG andH areobservation equivalentwith respect
to Υ, written G ≈ H, if there exists an observation equivalence relation≈ ⊆
QG × QH , i.e., a relation such that

• if xG ≈ xH andxG
σ
→G yG, then there existt, u ∈ Υ∗ such thatxH

tPΩ(σ)u
−→H

yH ;

13

G
q1

q3

!υ

!υ
(β)

H
q1

q3

!υ

(β)

T

!υ

Figure 2:H is observation equivalent toG, but not a synthesis abstraction.

• if xG ≈ xH andxH
σ
→H yH , then there existt, u ∈ Υ∗ such thatxG

tPΩ(σ)u
−→G

yG;

• for eachq◦G ∈ Q◦
G there existsq◦H ∈ Q◦

H such thatq◦G ≈ q◦H , and vice versa.

Observation equivalence is tested based on the transitive closure of the local event
transitions [2]. The number of transitions can be substantially reduced by consider-
ing only the transitive reduction. More precisely, a transitionx

σ
→ y is observation

equivalence redundantand can be removed [4] if the automaton contains a match-
ing redirection path.

Definition 16 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata withΣ = Ω ∪̇ Υ and→H ⊆ →G. AutomatonH is a result ofobservation
equivalence redundant transition removalfrom G with respect toΥ, if for all tran-

sitionsx
σ
→G y there existt, u ∈ Υ∗ such thatx

tPΩ(σ)u
−→H y.

Proposition 8 Let G = 〈Σ, Q,→G, Q◦〉, and letH = 〈Σ, Q,→H , Q◦〉 be a
result of observation equivalence redundant transition removal fromG with respect
to Υ ⊆ Σ. Then it holds thatG ≈ H.

Observation equivalence redundant transitions can be removed while preserving
observation equivalence, which in turn ensures preservation of most temporal logic
properties [4,13]. Unfortunately, this does not include synthesis equivalence [15].

Example 3 Consider automataG, H, andT in figure 2. The uncontrollable tran-

sition q1
!υ
→ q3 is observation equivalence redundant with respect toΥ = {β}.

Removing it producesH. In G andH, the uncontrollable event!υ leads to the
blocking stateq3. With H, blocking can be prevented by disablingβ, leaving only

the initial state. But withG, the uncontrollable transitionq1
!υ
→ q3 produces an

empty synthesis result. The testT demonstrates thatG andH are not state-wise
synthesis equivalent sinceG is not a state-wise synthesis abstraction ofH.

14

This counterexample shows that in general synthesis equivalence is notpre-
served by removing observation equivalence redundant transitions, so extra restric-
tions need to be imposed.

5.2 Uncontrollable Redundant Transitions

In example 3, if the local eventβ was uncontrollable, then the resultant abstrac-
tion H would be a transition-wise synthesis abstraction ofG. This suggests to
interpret an uncontrollable transition as redundant if the local transitions used in
the redirection path are also uncontrollable.

Definition 17 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata withΣ = Ω ∪̇Υ and→H ⊆ →G. AutomatonH is a result ofuncontrollable
redundant transition removalfrom G with respect toΥ, if the following conditions
hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σc thenx
σ
→H y.

(ii) If σ ∈ Σu then there existt, u ∈ (Υ ∩ Σu)∗ such thatx
tPΩ(σ)u
−→H y.

The transitions present in→G but not in→H in definition 17 are calleduncon-
trollable redundanttransitions. These transitions can be removed while producing
a synthesis equivalent abstraction.

To prove the viability of uncontrollable redundant transition removal, it is
shown in the following two lemmas that the method always yields a state-wise
and transition-wise synthesis abstraction. Then it follows by theorem 7 thata redi-
rection map can be constructed to give a synthesis equivalent pair.

Lemma 9 Let H = 〈Σ, Q,→H , Q◦〉 be a result of uncontrollable redundant tran-
sition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG andH
are state-wise synthesis equivalent with respect toΥ.

Proof. Let Σ = Ω ∪̇ Υ, and letT = 〈ΣT , Q,→, Q◦〉 be an automaton such that
ΣT ∩ Υ = ∅. It is to be shown that̂ΘG‖T = Θ̂H‖T .

(i) Firstly, to see that̂ΘG‖T ⊆ Θ̂H‖T , it is shown by induction onn ≥ 0 that

Θ̂G‖T ⊆ Xn
H = Θn

H‖T (Q × QT).

Base case. ClearlyΘ̂G‖T ⊆ Q × QT = Θ0
H‖T (Q × QT) = X0

H .

Inductive step. AssumeΘ̂G‖T ⊆ Xn
H for somen ≥ 0, and let(x, xT) ∈

Θ̂G‖T . It remains to be shown that(x, xT) ∈ Xn+1
H = ΘH‖T (Xn

H) =

Θcont
H‖T (Xn

H) ∩ Θnonb
H‖T (Xn

H).

15

To see that(x, xT) ∈ Θcont
H‖T (Xn

H), let υ ∈ Σu and(x, xT)
υ
→H‖T (y, yT).

Since→H ⊆ →G, it follows that(x, xT)
υ
→G‖T (y, yT). Since(x, xT) ∈

Θ̂G‖T andυ ∈ Σu, it follows by controllability and by inductive assumption

that (y, yT) ∈ Θ̂G‖T ⊆ Xn
H , and sinceυ ∈ Σu was chosen arbitrarily, it

follows that(x, xT) ∈ Θcont
H‖T (Xn

H).

Next it is shown that(x, xT) ∈ Θnonb
H‖T (Xn

H). Since(x, xT) ∈ Θ̂G‖T , there
exists a path

(x, xT) = (x0, x
T
0)

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k)

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

(19)
Consider a transition(xl−1, x

T
l−1)

σl→|Θ̂G‖T
(xl, x

T
l) in (19). If σl /∈ Σ

or xl−1
σl→H xl, then clearly(xl−1, x

T
l−1)

σl→H‖T (xl, x
T
l), and by induc-

tive assumption it follows that(xl−1, x
T
l−1), (xl, x

T
l) ∈ Θ̂G‖T ⊆ Xn

H , i.e.,

(xl−1, x
T
l−1)

σl→H‖T |Xn
H

(xl, x
T
l). Otherwisexl−1

σl→G xl is an uncontrol-
lable redundant transition, and by definition 17 there exist tracestl, ul ∈

(Σu ∩ Υ)∗ such thatxl−1
tlPΩ(σl)ul
−→G xl. SinceΣT ∩ Υ = ∅, it follows

that (xl−1, x
T
l−1)

tlPΩ(σl)ul
−→G‖T (xl, x

T
l), and since(xl−1, x

T
l−1) ∈ Θ̂G‖T and

tlPΩ(σl)ul ∈ Σ∗
u, it follows by controllability that(xl−1, x

T
l−1)

tlPΩ(σl)ul
−→|Θ̂G‖T

(xl, x
T
l). Then by inductive assumption(xl−1, x

T
l−1)

tlPΩ(σl)ul
−→|Xn

H
(xl, x

T
l).

Combining these paths for all transitions in (19) gives tracest1, u1, . . . ,
tk, uk, tk+1 ∈ (Σu ∩ Υ)∗ such that

(x, xT) = (x0, x
T
0)

t1PΩ(σ1)u1
−→H‖T |Xn

H
· · ·

tkPΩ(σk)uk
−→H‖T |Xn

H

(xk, x
T
k)

tk+1ω
−→H‖T |Xn

H
(xk+1, x

T
k+1) ,

which implies(x, xT) ∈ Θnonb
H‖T (Xn

H).

It has been shown that(x, xT) ∈ Θcont
H‖T (Xn

H) ∩ Θnonb
H‖T (Xn

H) = Xn+1
H .

(ii) Conversely, to see that̂ΘH‖T ⊆ Θ̂G‖T , it is shown by induction onn ≥ 0

thatΘ̂H‖T ⊆ Xn
G = Θn

G‖T (Q × QT).

Base case. ClearlyΘ̂H‖T ⊆ Q × QT = Θ0
G‖T (Q × QT) = X0

G.

Inductive step. AssumeΘ̂H‖T ⊆ Xn
G for somen ≥ 0, and let(x, xT) ∈

Θ̂H‖T . It remains to be shown that(x, xT) ∈ Xn+1
G = ΘG‖T (Xn

G) =

Θcont
G‖T (Xn

G) ∩ Θnonb
G‖T (Xn

G).

16

To see that(x, xT) ∈ Θcont
G‖T (Xn

G), let υ ∈ Σu and(x, xT)
υ
→G‖T (y, yT). If

υ /∈ Σ or x
υ
→H y, then clearly(x, xT)

υ
→H‖T (y, yT), and since(x, xT) ∈

Θ̂H‖T andυ ∈ Σu, it follows by controllability that(y, yT) ∈ Θ̂H‖T . Other-

wisex
υ
→G y is an uncontrollable redundant transition, and by definition 17

there existt, u ∈ (Σu ∩ Υ)∗ such thatx
tPΩ(υ)u
−→H y. SinceΣT ∩ Υ = ∅,

it follows that (x, xT)
tPΩ(υ)u
−→H‖T (y, yT), and sincetPΩ(υ)u ∈ Σ∗

u and

(x, xT) ∈ Θ̂H‖T it follows by controllability that(y, yT) ∈ Θ̂H‖T . In both

cases by inductive assumption(y, yT) ∈ Θ̂H‖T ⊆ Xn
G, and sinceυ ∈ Σu

was chosen arbitrarily, it follows that(x, xT) ∈ Θcont
G‖T (Xn

G).

Next it is shown that(x, xT) ∈ Θnonb
G‖T (Xn

G). Since(x, xT) ∈ Θ̂H‖T , there

exists a path(x, xT)
tω
→|Θ̂H‖T

. Since→H ⊆ →G, it follows by inductive

assumption that(x, xT)
tω
→|Xn

G
. Hence,(x, xT) ∈ Θnonb

G‖T (Xn
G).

It has been shown that(x, xT) ∈ Θcont
G‖T (Xn

G) ∩ Θnonb
G‖T (Xn

G) = Xn+1
G . �

Lemma 10 Let H = 〈Σ, Q,→H , Q◦〉 be a result of uncontrollable redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are transition-wise synthesis equivalent with respect toΥ.

Proof. It must be shown thatG is a transition-wise synthesis abstraction ofH
and vice versa. Condition (i) in definition 12 follows immediately from defini-
tion 17. To show condition (ii), letΣ = Ω ∪̇Υ, and letT = 〈ΣT , Q,→, Q◦〉 be an
automaton such thatΣT ∩ Υ = ∅.

First, let(x, xT)
σ
→|Θ̂G‖T

(y, yT). By lemma 9 it holds that(x, xT), (y, yT) ∈

Θ̂H‖T . If σ /∈ Σ or x
σ
→H y, then clearly(x, xT)

σ
→H‖T (y, yT), which implies

(x, xT)
σ
→|Θ̂H‖T

(y, yT) and(x, xT)
PΥ(σ)PΩ(σ)

−→|Θ̂H‖T
(y, yT). Otherwisex

σ
→G y is

an uncontrollable redundant transition, and by definition 17 there existt, u ∈ (Σu∩

Υ)∗ such thatx
tPΩ(υ)u
−→H y. SinceΣT ∩ Υ = ∅, it follows that(x, xT)

tPΩ(σ)u
−→H‖T

(y, yT), and since(x, xT) ∈ Θ̂H‖T andtPΩ(σ)u ∈ Σ∗
u, it follows by controllabil-

ity that (x, xT)
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT). Thus, in both cases, there existt, u ∈ Υ∗ such

that(x, xT)
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT).

Conversely, let(x, xT)
σ
→|Θ̂H‖T

(y, yT). Since→H ⊆ →G, it follows that

(x, xT)
σ
→G‖T (y, yT). Also (x, xT), (y, yT) ∈ Θ̂H‖T = Θ̂G‖T by lemma 9,

17

G
q0

q1

q2

α

α

(γ)

(!υ)

H
q0

q1

q2

α

(γ)

(!υ)

T

α

Figure 3:H is observation equivalent toG, but not a synthesis abstraction.

which implies(x, xT)
σ
→|Θ̂G‖T

(y, yT). Then lett = ε andu = PΥ(σ), and it

follows that(x, xT)
tPΩ(σ)u
−→|Θ̂G‖T

(y, yT).

Thus,G andH are transition-wise synthesis equivalent. �

Theorem 11 Let H = 〈Σ, Q,→H , Q◦〉 be a result of uncontrollable redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are state-wise and transition-wise synthesis equivalent with respect toΥ.

Proof. Follows directly from lemma 9 and lemma 10. �

5.3 Controllable Redundant Transitions

For uncontrollable events, an uncontrollable redirection path guaranteestransition-
wise synthesis equivalence. Unfortunately this idea does not work for controllable
events.

Example 4 Consider automatonG in figure 3 whereΥ = {γ, !υ} and !υ is the
only uncontrollable event. Transitionq0

α
→ q2 is observation equivalence redun-

dant because ofq0
γα
→ q2. Its removal results inH. In bothG andH, the con-

trollable eventγ must be disabled in the initial state to prevent blocking via the
uncontrollable event!υ. However, after disablingγ, termination is no longer pos-
sible inH, yet it remains possible inG via q0

α
→ q2. The testT demonstrates that

H is not a state-wise synthesis abstraction ofG.

In example 4, the redirection pathq0
γα
→ q2 contains the stateq1, which is

unsafe due to its outgoing uncontrollable!υ-transition. This suggests to disallow
redirection paths with uncontrollable events enabled along them. However, the
following example shows that this is not enough.

18

G
q0

q2

(γ)

α

α

H
q0

q2

(γ)

α

T

α, !υ

qT
0

qT
1

H ‖ T

(γ) (γ)

α

!υ

!υ

(q2, q
T
1)

Figure 4:H is observation equivalent toG, but not a synthesis abstraction.

G1
q0

q1

q2

q3

α
α

(!υ)

(!µ)

(!µ)

G2
q0

q2

α

α

(!υ)

(!µ)

G3
q0

q3

αα

(!υ, !µ)

(!µ)

T

α

Figure 5: Different redirection paths after the event of a removed transition. The
transitions to be removed are marked by double-line strike-through.

Example 5 Consider automataG andT in figure 4 whereΥ = {γ} and!υ is the
only uncontrollable event. Transitionq0

α
→ q2 is observation equivalence redun-

dant because ofq0
γα
→ q2, and its removal results inH. In H ‖ T , the controllable

eventγ must be disabled to prevent blocking via the uncontrollable event!υ. By
disablingγ, state(q2, q

T
1) becomes unreachable insupCN (H ‖ T), but it remains

reachable insupCN (G ‖ T). The testT demonstrates thatG andH are not tran-
sition-wise synthesis equivalent asG is not a transition-wise synthesis abstraction
of H.

The situation in examples 4 and 5 can be avoided by not allowing any control-
lable events on a redirection path except for the event of the removed transition.
However, the following counterexample reveals that one more condition is needed
to guarantee a correct abstraction.

Example 6 Consider automatonG1 in figure 5 whereΣu = Υ = {!µ, !υ}. Tran-

sition q0
α
→ q3 is observation equivalence redundant becauseq0

!µα!µ
−→ q3. Let H1

be the result of removing the transitionq0
α
→ q3. In bothG1 andH1, the control-

19

lable transitionq1
α
→ q2 must be disabled to avert blocking via the uncontrollable

event!υ. Removing this transition makesq3 unreachable insupCN (H ‖ T), but
it remains reachable insupCN (G ‖ T). The testT demonstrates thatG andH
are not transition-wise synthesis equivalent asG is not a transition-wise synthesis
abstraction ofH.

Example 6 shows that there is a problem with uncontrollable local eventsafter
the event of a removed transition on a redirection path. The problem disappears if
there are no further events after the removed event, as in automatonG2 in figure 5.
This leads to the idea ofcontrollable prefix-redundanttransition removal.

Definition 18 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata withΣ = Ω ∪̇ Υ and→H ⊆ →G. AutomatonH is a result ofcontrollable
prefix-redundant transition removalfrom G with respect toΥ, if the following
conditions hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σu thenx
σ
→H y.

(ii) If σ ∈ Σc then there existst ∈ (Υ ∩ Σu)∗ such thatx
tPΩ(σ)
−→H y.

To prove the viability of controllable prefix-redundant transition removal, itis
again shown that the method always yields a state-wise and transition-wise synthe-
sis abstraction.

Lemma 12 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable prefix-redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are state-wise synthesis equivalent with respect toΥ.

Proof. Let Σ = Ω ∪̇ Υ, and letT = 〈ΣT , Q,→, Q◦〉 be an automaton such that
ΣT ∩ Υ = ∅. It is to be shown that̂ΘG‖T = Θ̂H‖T .

(i) Firstly, to see that̂ΘG‖T ⊆ Θ̂H‖T , it is shown by induction onn ≥ 0 that

Θ̂G‖T ⊆ Xn
H = Θn

H‖T (Q × QT).

Base case. ClearlyΘ̂G‖T ⊆ Q × QT = Θ0
H‖T (Q × QT) = X0

H .

Inductive step. AssumeΘ̂G‖T ⊆ Xn
H for somen ≥ 0, and let(x, xT) ∈

Θ̂G‖T . It remains to be shown that(x, xT) ∈ Xn+1
H = ΘH‖T (Xn

H) =

Θcont
H‖T (Xn

H) ∩ Θnonb
H‖T (Xn

H).

To see that(x, xT) ∈ Θcont
H‖T (Xn

H), let υ ∈ Σu and(x, xT)
υ
→H‖T (y, yT).

Since→H ⊆ →G, it follows that(x, xT)
υ
→G‖T (y, yT). Since(x, xT) ∈

20

Θ̂G‖T andυ ∈ Σu, it follows by controllability and by inductive assumption

that (y, yT) ∈ Θ̂G‖T ⊆ Xn
H , and sinceυ ∈ Σu was chosen arbitrarily, it

follows that(x, xT) ∈ Θcont
H‖T (Xn

H).

Next it is shown that(x, xT) ∈ Θnonb
H‖T (Xn

H). Since(x, xT) ∈ Θ̂G‖T , there
exists a path

(x, xT) = (x0, x
T
0)

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k)

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

(20)
Consider a transition(xl−1, x

T
l−1)

σl→|Θ̂G‖T
(xl, x

T
l) in (20). If σl /∈ Σ

or xl−1
σl→H xl, then clearly(xl−1, x

T
l−1)

σl→H‖T (xl, x
T
l), and by induc-

tive assumption it follows that(xl−1, x
T
l−1), (xl, x

T
l) ∈ Θ̂G‖T ⊆ Xn

H , i.e.,

(xl−1, x
T
l−1)

σl→H‖T |Xn
H

(xl, x
T
l). Otherwisexl−1

σl→G xl is a controllable
prefix-redundant transition, and by definition 18 there existstl ∈ (Υ ∩ Σu)∗

such thatxl−1
tl→H yl−1

PΩ(σl)
−→H xl. SinceΣT ∩ Υ = ∅, it follows that

(xl−1, x
T
l−1)

tl→H‖T (yl−1, x
T
l−1)

PΩ(σl)
−→H‖T (xl, x

T
l). Since(xl−1, x

T
l−1) ∈

Θ̂G‖T and tl ∈ Σ∗
u and→H ⊆ →G, it follows that (xl−1, x

T
l−1)

tl→|Θ̂G‖T

(yl−1, x
T
l−1). Since also(xl−1, x

T
l−1) ∈ Θ̂G‖T ⊆ Xn

H by inductive as-

sumption, it follows that(xl−1, x
T
l−1)

tl→H‖T |Xn
H

(yl−1, x
T
l−1)

PΩ(σl)
−→H‖T |Xn

H

(xl, x
T
l). Combining these paths for all the transitions in (20) gives traces

t1, . . . , tk, tk+1 ∈ (Σu ∩ Υ)∗ such that

(x, xT) = (x0, x
T
0)

t1PΩ(σ1)
−→H‖T |Xn

H
· · ·

tkPΩ(σk)
−→H‖T |Xn

H
(xk, x

T
k)

tk+1ω
−→H‖T |Xn

H
(xk+1, x

T
k+1) , (21)

which implies(x, xT) ∈ Θnonb
H‖T (Xn

H).

It has been shown that(x, xT) ∈ Θcont
H‖T (Xn

H) ∩ Θnonb
H‖T (Xn

H) = Xn+1
H .

(ii) Conversely, to see that̂ΘH‖T ⊆ Θ̂G‖T , it is shown by induction onn ≥ 0

thatΘ̂H‖T ⊆ Xn
G = Θn

G‖T (Q × QT).

Base case. ClearlyΘ̂H‖T ⊆ Q × QT = Θ0
G‖T (Q × QT) = X0

G.

Inductive step. AssumeΘ̂H‖T ⊆ Xn
G for somen ≥ 0, and let(x, xT) ∈

Θ̂H‖T . It remains to be shown that(x, xT) ∈ Xn+1
G = ΘG‖T (Xn

G) =

Θcont
G‖T (Xn

G) ∩ Θnonb
G‖T (Xn

G).

21

To see that(x, xT) ∈ Θcont
G‖T (Xn

G), let υ ∈ Σu and(x, xT)
υ
→G‖T (y, yT).

If υ /∈ Σ, then clearly(x, xT)
υ
→H‖T (y, yT). Otherwise, sinceυ ∈ Σu,

the transitionx
υ
→G y cannot be controllable prefix-redundant, which also

implies (x, xT)
υ
→H‖T (y, yT). Since(x, xT) ∈ Θ̂H‖T andυ ∈ Σu, it

follows that (y, yT) ∈ Θ̂H‖T ⊆ Xn
G by inductive assumption, and thus

(x, xT) ∈ Θcont
G‖T (Xn

G).

Next it is shown that(x, xT) ∈ Θnonb
G‖T (Xn

G). Since(x, xT) ∈ Θ̂H‖T , there

exists a path(x, xT)
tω
→|Θ̂H‖T

. Since→H ⊆ →G, it follows by inductive

assumption that(x, xT)
tω
→|Xn

G
. Hence,(x, xT) ∈ Θnonb

G‖T (Xn
G).

It has been shown that(x, xT) ∈ Θcont
G‖T (Xn

G) ∩ Θnonb
G‖T (Xn

G) = Xn+1
G . �

Lemma 13 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable prefix-redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are transition-wise synthesis equivalent with respect toΥ.

Proof. It must be shown thatG is a transition-wise synthesis abstraction ofH
and vice versa. Condition (i) in definition 12 follows immediately from defini-
tion 18. To show condition (ii), letΣ = Ω ∪̇Υ, and letT = 〈ΣT , Q,→, Q◦〉 be an
automaton such thatΣT ∩ Υ = ∅.

First, let(x, xT)
σ
→|Θ̂G‖T

(y, yT). By lemma 12 it holds that(x, xT), (y, yT) ∈

Θ̂H‖T . If σ /∈ Σ or x
σ
→H y, then clearly(x, xT)

σ
→H‖T (y, yT), which implies

(x, xT)
σ
→|Θ̂H‖T

(y, yT) and(x, xT)
PΥ(σ)PΩ(σ)

−→|Θ̂H‖T
(y, yT). Otherwisex

σ
→G y

is a controllable prefix-redundant transition, and by definition 18 there exists t ∈

(Σu ∩ Υ)∗ such thatx
t
→H z

PΩ(υ)
−→H y. SinceΣT ∩ Υ = ∅, it follows that

(x, xT)
t
→H‖T (z, xT)

PΩ(σ)
−→H‖T (y, yT), and since(x, xT) ∈ Θ̂H‖T andt ∈ Σ∗

u,

it follows by controllability that(x, xT)
tPΩ(σ)
−→|Θ̂H‖T

(y, yT). Then letu = ε, and

in both cases there existt, u ∈ Υ∗ such that(x, xT)
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT).

Conversely, let(x, xT)
σ
→|Θ̂H‖T

(y, yT). Since→H ⊆ →G, it follows that

(x, xT)
σ
→G‖T (y, yT). Also (x, xT), (y, yT) ∈ Θ̂H‖T = Θ̂G‖T by lemma 12,

which implies(x, xT)
σ
→|Θ̂G‖T

(y, yT). Then lett = ε andu = PΥ(σ), and it

follows that(x, xT)
tPΩ(σ)u
−→|Θ̂G‖T

(y, yT).

Thus,G andH are transition-wise synthesis equivalent. �

22

Theorem 14 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable prefix-redun-
dant transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. Then
G andH are state-wise and transition-wise synthesis equivalent with respect toΥ.

Proof. Follows directly from lemma 12 and lemma 13. �

Controllable prefix-redundant transition removal only allows for local events
beforethe event of a removed transition. Local events after this event can also be
considered by adding additional requirements.

Example 7 As shown in example 6, removal of the transitionq0
α
→ q3 in G1

in figure 5 does not ensure synthesis abstraction because of the uncontrollable !υ-
transition in stateq2. AutomatonG3 also has the observation equivalence redun-
dant transitionq0

α
→ q3 and an!υ-transition enabled afterα on the redirection path

q0
!µα!µ
−→ q3. Yet, in this case, the!υ-transition does not lead to a blocking state,

and the removal ofq0
α
→ q3 results in a state-wise and transition-wise synthesis

equivalent automaton.

AutomataG1 andG3 in figure 5 differ in the target state ofq2
!υ
→. This suggests

to allow uncontrollable events in the second part of a redirection provided that they
are local and lead to a target state on the redirection path.

Definition 19 Let G = 〈Σ, Q,→, Q◦〉 be an automaton andΥ ⊆ Σ. A path

x0
σ1→ x1

σ2→ · · ·
σk→ xk (22)

is aweakly controllableΥ-path if σ1, . . . , σk ∈ Υ and for all uncontrollable tran-
sitionsxl

υ
→ y with 0 ≤ l < k andυ ∈ Σu it holds thatυ ∈ Υ andy = xj for

some0 ≤ j ≤ k.

A weakly controllable path consists of only local transitions, and furthermore
all uncontrollable transitions enabled along this path must use local events and
lead to states along the path. Imposing this condition on the redirection path gives
the condition for acontrollable suffix-redundant transition, which is sufficient for
synthesis equivalence.

Definition 20 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata withΣ = Ω ∪̇ Υ and→H ⊆ →G. AutomatonH is a result ofcontrollable
suffix-redundant transition removalfrom G with respect toΥ, if the following con-
ditions hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σu thenx
σ
→H y.

23

(ii) If σ ∈ Σc then there existsu ∈ Υ∗ such thatx
PΩ(σ)
−→ H z

u
→H y, andz

u
→G y

is a weakly controllableΥ-path.

In controllable prefix-redundant transition removal, there may be uncontrol-
lable events in all states along the redirection path, but there may be no local events
after the event of the removed transition. In suffix-redundant transitionremoval,
all uncontrollable events enabled along the redirection path must be local and lead
to a state along the redirection path.

It is again shown that controllable suffix-redundant transition removal always
yields a state-wise and transition-wise synthesis abstraction. Before that, lemma 15
establishes a key property of weakly controllableΥ-paths.

Lemma 15 Let G = 〈Σ, QG,→G, Q◦
G〉 and T = 〈ΣT , QT ,→T , Q◦

T 〉 be au-
tomata, and letΥ ⊆ Σ \ ΣT . Furthermore, letx

s
→G y be a weakly control-

lable Υ-path. Then for allxT ∈ QT such that(y, xT) ∈ Θ̂G‖T it holds that

(x, xT)
s
→|Θ̂G‖T

(y, xT).

Proof. Let s = σ1 · · ·σk. As s ∈ Υ∗ and ΣT ∩ Υ = ∅, there exist states
x0, . . . , xk ∈ Q such that

(x, xT) = (x0, x
T)

σ1→G‖T (x1, x
T)

σ2→G‖T · · ·
σk→G‖T (xk, x

T) = (y, xT) . (23)

It remains to be shown that this path is inΘ̂G‖T . Let ΥT
u = Σu ∩ (ΣT \ Σ) and

YT = { yT ∈ QT | xT u
→T yT for someu ∈ (ΥT

u)∗ } . (24)

It is shown by induction onn ≥ 0 that for all 0 ≤ j ≤ k and for allyT ∈ YT

it holds that(xj , y
T) ∈ Xn = Θn

G‖T (Q × QT). As xT ∈ YT , this will imply

(x, xT)
s
→|Θ̂G‖T

(y, xT).

Base case.n = 0. Clearly(xj , y
T) ∈ Q × QT = Θ0

G‖T (Q × QT) = X0.

Inductive step.Let 0 ≤ j ≤ k andyT ∈ YT . It must be shown that(xj , y
T) ∈

Xn+1 = ΘG‖T (Xn) = Θcont
G‖T (Xn) ∩ Θnonb

G‖T (Xn).

To see that(xj , y
T) ∈ Θcont

G‖T (Xn), let υ ∈ Σu and(xj , y
T)

υ
→G‖T (z, zT). If

υ ∈ Σ, then sincex0
s
→G xk is a weakly controllableΥ-path, it must hold that

υ ∈ Υ andxj
υ
→G z = xl for some0 ≤ l ≤ k. This impliesyT = zT and

(xj , y
T)

υ
→G‖T (z, zT) = (xl, y

T) ∈ Xn by inductive assumption. Ifυ /∈ Σ,

then υ ∈ ΣT \ Σ and z = xj and yT
υ
→T zT . Then clearlyzT ∈ YT and

(z, zT) = (xj , z
T) ∈ Xn by inductive assumption. As this can be shown for all

υ ∈ Σu, it follows that(xj , y
T) ∈ Θcont

G‖T (Xn).

24

Next, it is shown that(xj , y
T) ∈ Θnonb

G‖T (Xn). As σj+1, . . . , σk ∈ Υ and
ΣT ∩ Υ = ∅, it holds by inductive assumption that,

(xj , y
T)

σj+1

−→|Xn · · ·
σk→|Xn (xk, y

T) = (y, yT) . (25)

SinceyT ∈ YT , there existsu ∈ (ΥT
u)∗ such thatxT u

→T yT , and this implies
(y, xT)

u
→G‖T (y, yT). Since(y, xT) ∈ Θ̂G‖T by assumption andu ∈ Σ∗

u, it

follows that(y, yT) ∈ Θ̂G‖T . Then there existst ∈ Σ∗ such that(y, yT)
tω
→|Θ̂G‖T

,

and asΘ̂G‖T ⊆ Xn it follows that

(xj , y
T)

σj+1

−→|Xn · · ·
σk→|Xn (xk, y

T) = (y, yT)
tω
→|Xn . (26)

This implies(xj , y
T) ∈ Θnonb

G‖T (Xn). �

Lemma 16 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable suffix-redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are state-wise synthesis equivalent with respect toΥ.

Proof. Let Σ = Ω ∪̇ Υ, and letT = 〈ΣT , Q,→, Q◦〉 be an automaton such that
ΣT ∩ Υ = ∅. It is to be shown that̂ΘG‖T = Θ̂H‖T .

(i) Firstly, to see that̂ΘG‖T ⊆ Θ̂H‖T , it is shown by induction onn ≥ 0 that

Θ̂G‖T ⊆ Xn
H = Θn

H‖T (Q × QT).

Base case. ClearlyΘ̂G‖T ⊆ Q × QT = Θ0
H‖T (Q × QT) = X0

H .

Inductive step. AssumeΘ̂G‖T ⊆ Xn
H for somen ≥ 0, and let(x, xT) ∈

Θ̂G‖T . It remains to be shown that(x, xT) ∈ Xn+1
H = ΘH‖T (Xn

H) =

Θcont
H‖T (Xn

H) ∩ Θnonb
H‖T (Xn

H).

To see that(x, xT) ∈ Θcont
H‖T (Xn

H), let υ ∈ Σu and(x, xT)
υ
→H‖T (y, yT).

Since→H ⊆ →G, it follows that(x, xT)
υ
→G‖T (y, yT). Since(x, xT) ∈

Θ̂G‖T andυ ∈ Σu, it follows by controllability and by inductive assumption

that (y, yT) ∈ Θ̂G‖T ⊆ Xn
H , and sinceυ ∈ Σu was chosen arbitrarily, it

follows that(x, xT) ∈ Θcont
H‖T (Xn

H).

Next, it is shown that(x, xT) ∈ Θnonb
H‖T (Xn

H). Since(x, xT) ∈ Θ̂G‖T , there
exists a path

(x, xT) = (x0, x
T
0)

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k)

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

(27)

25

Consider a transition(xl−1, x
T
l−1)

σl→|Θ̂G‖T
(xl, x

T
l) in (27). If σl /∈ Σ or

xl−1
σl→H xl, then clearly(xl−1, x

T
l−1)

σl→H‖T (xl, x
T
l), and by inductive

assumption(xl, x
T
l) ∈ Θ̂G‖T ⊆ Xn

H , i.e., (xl−1, x
T
l−1)

σl→|Xn
H

(xl, x
T
l) and

(xl−1, x
T
l−1)

PΩ(σl)PΥ(σl)
−→|Xn

H
(xl, x

T
l). Otherwisexl−1

σl→G xl is a control-
lable suffix-redundant transition, and by definition 20 there existsu ∈ Υ∗

such thatxl−1
PΩ(σl)
−→H zl

u
→H xl wherezl

u
→G xl is a weakly control-

lable Υ-path. SinceΣT ∩ Υ = ∅, it follows that (xl−1, x
T
l−1)

PΩ(σl)
−→H‖T

(zl, x
T
l)

u
→H‖T (xl, x

T
l). Since(xl, x

T
l) ∈ Θ̂G‖T it follows by lemma 15 that

(zl, x
T
l)

u
→|Θ̂G‖T

(xl, x
T
l). Since also(xl−1, x

T
l−1) ∈ Θ̂G‖T it follows that

(xl−1, x
T
l−1)

PΩ(σl)u
−→ |Θ̂G‖T

(xl, x
T
l), and thus(xl−1, x

T
l−1)

PΩ(σl)u
−→ |Xn

H
(xl, x

T
l)

by inductive assumption. Combining these paths for all transitions in (27)
gives tracesu1, . . . , uk ∈ Υ∗ such that

(x, xT) = (x0, x
T
0)

PΩ(σ1)u1
−→|Xn

H
· · ·

PΩ(σk)uk
−→ |Xn

H
(xk, x

T
k)

ω
→|Xn

H
(xk+1, x

T
k+1) ,

(28)
which implies(x, xT) ∈ Θnonb

H‖T (Xn
H).

It has been shown that(x, xT) ∈ Θcont
H‖T (Xn

H) ∩ Θnonb
H‖T (Xn

H) = Xn+1
H .

(ii) Conversely, to see that̂ΘH‖T ⊆ Θ̂G‖T , it is shown by induction onn ≥ 0

thatΘ̂H‖T ⊆ Xn
G = Θn

G‖T (Q × QT).

Base case. ClearlyΘ̂H‖T ⊆ Q × QT = Θ0
G‖T (Q × QT) = X0

G.

Inductive step. AssumeΘ̂H‖T ⊆ Xn
G for somen ≥ 0, and let(x, xT) ∈

Θ̂H‖T . It remains to be shown that(x, xT) ∈ Xn+1
G = ΘG‖T (Xn

G) =

Θcont
G‖T (Xn

G) ∩ Θnonb
G‖T (Xn

G).

To see that(x, xT) ∈ Θcont
G‖T (Xn

G), let υ ∈ Σu and(x, xT)
υ
→G‖T (y, yT).

If υ /∈ Σ, then clearly(x, xT)
υ
→H‖T (y, yT). Otherwise, sinceυ ∈ Σu,

the transitionx
υ
→G y cannot be controllable suffix-redundant, which also

implies (x, xT)
υ
→H‖T (y, yT). Since(x, xT) ∈ Θ̂H‖T andυ ∈ Σu, it

follows that (y, yT) ∈ Θ̂H‖T ⊆ Xn
G by inductive assumption, and thus

(x, xT) ∈ Θcont
G‖T (Xn

G).

Next it is shown that(x, xT) ∈ Θnonb
G‖T (Xn

G). Since(x, xT) ∈ Θ̂H‖T , there

exists a path(x, xT)
tω
→|Θ̂H‖T

. Since→H ⊆ →G, it follows by inductive

assumption that(x, xT)
tω
→|Xn

G
. Hence,(x, xT) ∈ Θnonb

G‖T (Xn
G).

26

It has been shown that(x, xT) ∈ Θcont
G‖T (Xn

G) ∩ Θnonb
G‖T (Xn

G) = Xn+1
G . �

Lemma 17 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable suffix-redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are transition-wise synthesis equivalent with respect toΥ.

Proof. It must be shown thatG is a transition-wise synthesis abstraction ofH
and vice versa. Condition (i) in definition 12 follows immediately from defini-
tion 20. To show condition (ii), letΣ = Ω ∪̇Υ, and letT = 〈ΣT , Q,→, Q◦〉 be an
automaton such thatΣT ∩ Υ = ∅.

First, let(x, xT)
σ
→|Θ̂G‖T

(y, yT). By lemma 16 it holds that(x, xT), (y, yT) ∈

Θ̂H‖T . If σ /∈ Σ or x
σ
→H y, then clearly(x, xT)

σ
→H‖T (y, yT), which implies

(x, xT)
σ
→|Θ̂H‖T

(y, yT) and(x, xT)
PΩ(σ)PΥ(σ)

−→|Θ̂H‖T
(y, yT). Otherwisex

σ
→G y is

a controllable suffix-redundant transition, and by definition 20, there existsu ∈ Υ∗

such thatx
PΩ(σ)
−→ H z

u
→H y wherez

u
→G y is a weakly controllableΥ-path.

SinceΣT ∩ Υ = ∅, it follows that (x, xT)
PΩ(σ)
−→ H‖T (z, yT)

u
→H‖T (y, yT).

Since (y, yT) ∈ Θ̂G‖T it follows by lemma 15 that(z, yT)
u
→|Θ̂G‖T

(y, yT).

Since also(x, xT) ∈ Θ̂G‖T it follows that (x, xT)
PΩ(σ)u
−→|Θ̂G‖T

(y, yT) and thus

(x, xT)
PΩ(σ)u
−→|Θ̂H‖T

(y, yT). Thus, in both cases, there existt = ε andu ∈ Υ∗ such

that(x, xT)
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT).

Conversely, let(x, xT)
σ
→|Θ̂H‖T

(y, yT). Since→H ⊆ →G, it follows that

(x, xT)
σ
→G‖T (y, yT). Also (x, xT), (y, yT) ∈ Θ̂H‖T = Θ̂G‖T by lemma 16,

which implies(x, xT)
σ
→Θ̂G‖T

(y, yT). Then lett = ε andu = PΥ(σ), and it

follows that(x, xT)
tPΩ(σ)u
−→|Θ̂G‖T

(y, yT).

Thus,G andH are transition-wise synthesis equivalent. �

Theorem 18 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable suffix-redun-
dant transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. Then
G andH are state-wise and transition-wise synthesis equivalent with respect toΥ.

Proof. Follows directly from lemma 16 and lemma 17. �

Both controllable prefix-redundant and controllable suffix-redundant transition
removal preserve synthesis equivalence. These conditions can be combined to al-
low sequences of local events beforeandafter a removed transition.

27

Definition 21 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata withΣ = Ω ∪̇ Υ and→H ⊆ →G. AutomatonH is a result ofcontrollable
redundant transition removalfrom G with respect toΥ, if the following conditions
hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σu thenx
σ
→H y.

(ii) If σ ∈ Σc then there existt ∈ (Υ ∩ Σu)∗ andu ∈ Υ∗ such thatx
tPΩ(σ)
−→H

z
u
→H y, andz

u
→G y is a weakly controllableΥ-path.

Theorem 19 Let H = 〈Σ, Q,→H , Q◦〉 be a result of controllable redundant
transition removal fromG = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG
andH are state-wise and transition-wise synthesis equivalent with respect toΥ.

Proof. It is enough to show that the removal of a single controllable redundant
transition results in a state-wise and transition-wise synthesis equivalent automa-
ton. The rest of the claim follows by induction. Therefore let→G = →H ∪̇(x, σ, y)
wherex

σ
→G y is a controllable redundant transition.

As x
σ
→G y is a controllable redundant transition, there exists a redirection

path x
t
→H z1

PΩ(σ)
−→ H z2

t
→H y where t ∈ (Σu ∩ Υ)∗ and z2

t
→G y is

a weakly controllableΥ-path. Consider automataG′ = 〈Σ, Q,→G′ , Q◦〉 with
→G′ = →G∪(x, σ, z2) andH ′ = 〈Σ, Q,→H′ , Q◦〉 with →H′ = →H ∪(x, σ, z2).

Sincex
t
→G z1

PΩ(σ)
−→ G z2, the transitionx

σ
→ z2 is controllable prefix-redundant

in G′. Therefore,G is a result of controllable prefix-redundant transition removal
from G′, and likewiseH is a result of controllable prefix-redundant transition re-

moval fromH ′. Furthermore, asx
σ
→G′ z2

t
→G′ y, it holds thatx

σ
→G′ y is a

controllable suffix-redundant transition, andH ′ is a result of controllable suffix-re-
dundant transition removal fromG′. Then the claim follows from theorem 14 and
theorem 18. �

5.4 Local Selfloop Removal

Selfloop removal[14] is a synthesis-preserving abstraction that removes events
from a system as soon as they only appear in selfloops inall components. Tran-
sition-wise synthesis equivalence leads to a modified version of this abstraction,
which allows the removal oflocal selfloops, i.e., the removal of transitionsx

σ
→ x

whereσ ∈ Υ is a local event.

Definition 22 Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,→H , Q◦〉 be two auto-
mata withΣ = Ω ∪̇ Υ and→H ⊆ →G. AutomatonH is a result oflocal selfloop

28

removalfrom G with respect toΥ, if for all transitionsx
σ
→G y such thatσ ∈ Ω or

x 6= y it holds thatx
σ
→H y.

Local selfloop removal can be considered as a special case of controllable or
uncontrollable redundant transition removal, by considering empty sequences of
local events in the redirection path.

Theorem 20 Let H = 〈Σ, Q,→H , Q◦〉 be a result of local selfloop removal
from G = 〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG andH are state-wise
and transition-wise synthesis equivalent with respect toΥ.

Proof. It is enough to show that the removal of a single local selfloop results in
a state-wise and transition-wise synthesis equivalent automaton. The restof the
claim follows by induction. Therefore let→G = →H ∪̇ (x, σ, x) wherex

σ
→G x

is a local selfloop.
If σ ∈ Σu then lett = u = ε ∈ Σ∗

u. Givenσ ∈ Υ, it follows thattPΩ(σ)u = ε
andx

ε
→G x, sox

σ
→G x is an uncontrollable redundant transition. The claim

follows from theorem 11.
If σ ∈ Σc then lett = ε ∈ Σ∗

u. Givenσ ∈ Υ, it follows that tPΩ(σ) = ε
andx

ε
→G x, sox

σ
→G x is a controllable prefix-redundant transition. The claim

follows from theorem 14. �

6 Example

In this section, the proposed synthesis procedure is applied to a manufacturing
system. The model consists of four machinesM1, M2, M3, andM4, linked by
two buffersB1 andB2. Workpieces are first processed byM1 (s1) and then placed
into B1 (!f1), then they go toM2 (s2) and are placed intoB2 (!f2). FromB2, the
workpieces either go toM3 for final processing (s3) or to M4 (s4) for additional
processing. However,M4 has a fault that occasionally sends a workpiece back
to B1 (!re). At any time,M1 andB1 can be reset by the controllable eventrs.
Figure 6 shows the system layout and the automata model. Events!f1, !f2, !f3, !f4

and!re are uncontrollable, all other events are controllable.
Compositional synthesis starts with the pair(G0; id) whereG0 = {M1, M2,

M3, M4, B1, B2}. The first step is to calculate the compositionB1 ‖ M1 shown
in figure 7. Now!f1, rs, ands1 are local events, which makesq0

rs
→ q0 a local

selfloop andq2
rs
→ q0 a controllable prefix-redundant transition with redirection

pathq2
!f1
→ q3

rs
→ q0. Removal of these transitions results inH1. The modified syn-

thesis pair is(G1;D1) whereG1 = {H1, M2, M3, M4, B2} andD1 is a synthesis

29

M1 M2 M3

M4

B1 B2

s1 f1

s4
f4

!re

s2 f2 s3 f3

M1 B1 M2 B2 M3 M4

I1

W1

s1
!f1
rs

rs

⊥

E1

F1

!f1

!f1
s2!re
rs

rs I2

W2

s2 !f2

⊥

F2

E2

!f2

!f2

s3
s4

I3

W3

s3

!f3!f4

I4

W4

!f4s4 !re

Figure 6: Manufacturing system example.

preserving redirection map that redirectsq2
rs
→ q0 andq0

rs
→ q0 via q2

!f1
→ q3

rs
→ q0

andq0
ε
→ q0, respectively.

Next, B2 ‖ M3 is computed, shown in figure 7. This makes!f3 ands3 local

events, andq3
!f2
→ ⊥ becomes an uncontrollable redundant transition with redi-

rection pathq3
!f3
→ q1

!f2
→ ⊥. The new synthesis pair is(G2;D2 ◦ D1) where

G2 = {H1, M2, M4, H2} andD2 is a synthesis preserving redirection map which

redirectsq3
!f2
→ ⊥ via q3

!f3
→ q1

!f2
→ ⊥.

The final synthesis step to computesupCN (G2) explores the state space ofG2

B1 ‖ M1

⊥

(rs)

(rs)

(rs) (rs)

(s1)

(s1)

(!f1)
(!f1)

s2

s2

!re

!re

q0

q1

q2

q3

B2 ‖ M3

⊥

!f2

!f2

!f2

!f2

(s3)

(!f3)

(!f3)

!f4

!f4

s4

s4

q0

q1

q2

q3

Figure 7: Some subsystems of the manufacturing example. The transitions to be
removed are marked by double-line strike-through.

30

which has 100 states and 290 transitions. This is in contrast to standard mono-
lithic synthesis, which explores the same state space using 340 transitions. Both
the final monolithic and compositional supervisor have 26 states. However,the
compositional supervisor has 63 transitions, while the monolithic supervisor has
81 transitions.

These improvements have been achieved by removing just three transitions
from the model. More savings are likely in larger contexts, particularly in combi-
nation with state-removing abstraction rules.

7 Conclusions

It has been shown under which conditions transitions can be removed from an
automaton while preserving compositional synthesis results. Different techniques
to remove controllable and uncontrollable transitions have been presented,and a
practical example has demonstrated how the number of transitions is reduced.The
methods proposed in this paper are not intended to be used in isolation, but they will
be combined with other synthesis-preserving abstraction methods. In the future,
the authors plan to develop a framework for compositional synthesis that combines
abstractions that remove states [7, 15] and transitions, as well as renaming[14] to
remove nondeterminism.

References

[1] A. Aziz, V. Singhal, G. M. Swamy, and R. K. Brayton. Minimizing interacting
finite state machines: A compositional approach to language containment. In
Proceedings of International Conference on Computer Design, 1994.

[2] Tommaso Bolognesi and Scott A. Smolka. Fundamental results for the veri-
fication of observational equivalence: a survey. In Harry Rudin andColin H.
West, editors,Protocol Specification, Testing and Verification VII: Proceed-
ings of IFIP WG6.1 7th International Conference on Protocol Specification,
Testing and Verification, pages 165–179, Amsterdam, The Netherlands, 1987.
North Holland.

[3] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model check-
ing. In Proceedings of 5th IEEE Symposium on Logic in Computer Science,
pages 353–362, 1989.

[4] Jaana Eloranta. Minimizing the number of transitions with respect to obser-
vation equivalence.BIT, 31(4):397–419, 1991.

31

[5] Lei Feng and W. M. Wonham. Computationally efficient supervisor design:
Abstraction and modularity. InProceedings of the 8th International Work-
shop on Discrete Event Systems, WODES’06, pages 3–8, Ann Arbor, MI,
USA, July 2006.

[6] Hugo Flordal and Robi Malik. Compositional verification in supervisory con-
trol. SIAM Journal of Control and Optimization, 48(3):1914–1938, 2009.

[7] Hugo Flordal, Robi Malik, Martin Fabian, and KnutÅkesson. Compositional
synthesis of maximally permissive supervisors using supervision equivalence.
Discrete Event Dynamic Systems: Theory and Applications, 17(4):475–504,
2007.

[8] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[9] Ryan J. Leduc, Bertil A. Brandin, Mark Lawford, and W. M. Wonham. Hier-
archical interface-based supervisory control—part I: Serial case. IEEE Trans-
actions on Automatic Control, 50(9):1322–1335, September 2005.

[10] Petra Malik, Robi Malik, David Streader, and Steve Reeves. Modular synthe-
sis of discrete controllers. InProceedings of 12th IEEE International Con-
ference on Engineering of Complex Computer Systems, ICECCS ’07, pages
25–34, Auckland, New Zealand, 2007.

[11] Robi Malik and Hugo Flordal. Yet another approach to compositionalsyn-
thesis of discrete event systems. InProceedings of the 9th International
Workshop on Discrete Event Systems, WODES’08, pages 16–21, G̈oteborg,
Sweden, May 2008.

[12] Robi Malik, David Streader, and Steve Reeves. Fair testing revisited: A
process-algebraic characterisation of conflicts. In Farn Wang, editor, Pro-
ceedings of 2nd International Symposium on Automated Technology for Ver-
ification and Analysis, ATVA 2004, volume 3299 ofLNCS, pages 120–134,
Taipei, Taiwan, October–November 2004. Springer-Verlag.

[13] Robin Milner.Communication and concurrency. Series in Computer Science.
Prentice-Hall, 1989.

[14] Sahar Mohajerani, Robi Malik, and Martin Fabian. Nondeterminism avoid-
ance in compositional synthesis of discrete event systems. InProceedings
of the 7th International Conference on Automation Science and Engineering,
CASE 2011, pages 19–24, Trieste, Italy, 2011.

32

[15] Sahar Mohajerani, Robi Malik, Simon Ware, and Martin Fabian. On theuse
of observation equivalence in synthesis abstraction. InProceedings of the 3rd
IFAC Workshop on Dependable Control of Discrete Systems, DCDS 2011,
pages 84–89, Saarbrücken, Germany, 2011.

[16] Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event
systems.Proceedings of the IEEE, 77(1):81–98, January 1989.

[17] Klaus Schmidt and Christian Breindl. On maximal permissiveness of hierar-
chical and modular supervisory control approaches for discrete event systems.
In Proceedings of the 9th International Workshop on Discrete Event Systems,
WODES’08, pages 462–467, G̈oteborg, Sweden, May 2008.

[18] Rong Su, Jan H. van Schuppen, and Jacobus E. Rooda. Modelabstraction of
nondeterministic finite-state automata in supervisor synthesis.IEEE Trans-
actions on Automatic Control, 55(11):2527–2541, November 2010.

[19] K. C. Wong and W. M. Wonham. Modular control and coordination of
discrete-event systems.Discrete Event Dynamic Systems: Theory and Ap-
plications, 8(3):247–297, October 1998.

33

