

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29199699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchcommons.waikato.ac.nz/

Department of Computer Science

Hamilton, New Zealand

Anonymous Mobile Service
Collaboration

 Chao Zhao

This thesis is submitted in partial fulfilment of the
requirements for the degree of Master of Science at The

University of Waikato.

©2011 Chao Zhao

i

Abstract
Since the advent of mobile devices, a large amount of Applications (Apps)

have been released to offer compatible services to satisfy the different needs

of users all over the world, especially location-aware services, which have

become more and more popular in today’s market. Normally, these Apps

need to collaborate with other service providers, for example, the App needs

the map service to show the location to users, and the map service needs to

be supported by the location-based service to offer the coordinate data. In

some situations, an App may find more than one service offering the same

type of data; they may be located in different places and be in, or on, different

networks, so the App service needs to consider which service provider to use.

Quality is the most important factor to identify how good a service provider is.

It includes many different factors, like the response time, accuracy, reliability,

also security and privacy, because users may not want a third party to know

who uses this service and where the user is. In this way, the mobile service

collaboration has to be anonymous. In this project, an event-based, context-

aware service collaboration is implemented, and it is on a publish/subscribe

basis, also anonymity and quality are focused on as the most important

factors in the implementation.

ii

iii

Acknowledgments
First of all, I would like to thank my supervisor, Mrs. Annika Hinze. This thesis

may not exist without her valuable advice and monumental support. She has

always offered an open office door for me to discuss any ideas and questions.

I would also like to thank all the people in the Department of Computer

Science of the University of Waikato, especially the members of ISDB

research group. Thanks also to Michael Rinck for his explanation when I first

time received this topic. My deepest thanks go to my parents, for their

understanding and support.

iv

v

Table of Contents
Abstract .. i

Acknowledgments ... iii

1 Introduction...1

 1.1 Scenarios.. 2

2 Concept of the Infrastructure ..4

 2.1 Broker ..4

2.1.1 Included broker.. 5

2.1.2 Remote broker... 5

 2.1.3 Distributed broker..6

 2.2 Conceptual Architecture of Included Broker...7

 2.3 Conceptual Architecture of the Communication 8

3 Implementation Level of Infrastructure.. 12

 3.1 Basic Implementation on No Services is Available 12

 3.2 Alternative Implementation in Observer/Local Broker 15

 3.3 The Implementation on Alternative Service is Available 17

4 Communications and Data Transfer ... 20

 4.1 Data Type and Event Details ... 20

 4.1.1 GPS Data.. 20

4.1.2 Events ...21

4.1.3 Rules and Conditions .. 23

 4.1.3.1 Rules of the subscription .. 23

4.1.3.2 Conditions of the Subscription..24

4.2 Description of each Operation of the Infrastructure.............................. 24

5 Implementation ... 31

5.1 Hardware/Software Requirements ... 31

vi

 5.1.1 Mobile Device..31

 5.1.2 Android SDK for Java.. 32

 5.1.3 Radio-Frequency Identification Tag .. 32

 5.2 Database Design ... 32

 5.2.1 Entities of Database.. 33

 5.2.2 Relationship between entities..36

 5.3 Classes and Methods .. 37

 5.3.1 GPS Class .. 37

 5.3.2 Map Service Class .. 40

 5.3.3 MapServiceOverlay Class... 44

 5.3.4 Event Class ... 46

 5.3.5 Observer Class ...48

 5.3.6 Database Class...52

 5.3.7 LocalBroker Class ...54

 5.3.8 OtherService Class ... 56

 5.3.9 AndroidManifest.xml ... 58

6 Conclusion and Feature Works ... 60

6.1 Conclusion ...60

6.2 Future Work ... 60

 6.2.1 Implementation ...61

 6.2.2 Architectures ... 62

vii

List of Figures
Figure 1: Concept of the connection of the broker with different services 4

Figure 2: Included broker architecture ... 5

Figure 3: Remote broker architecture .. 6

Figure 4: Distributed broker architecture..7

Figure 5: Conceptual architecture of client side ...8

Figure 6: Client’s broker communicate with both server9

Figure 7: Client’s broker stops communicate with local server 10

Figure 8: client’s broker re-communicates local server 10

Figure 9: GPS fails and no alternative location service available in basic

implementation... 13

Figure 10: Example of the respond message ..14

Figure 11: GPS fails and no alternative location service available in alternative

implementation... 16

Figure 12: GPS fails alternative RFID location service available in alternative

implementation... 18

Figure 13: Example of the location data... 22

Figure 14: Example of switching location data... 23

Figure 15: GPS fails and alternative RFID location service available 25

Figure 16: Example of the RFID... 32

Figure 17: ER Diagram of the Database ... 33

Figure 18: Interface of the application.. 41

viii

List of Tables
Table 1: Compare the speed and quality of both implementation 17

Table 2: Example of the GPGGA sentence ... 21

1

Chapter 1

Introduction
In the last decade, mobile devices have become one of the most important

communication tools, used across all generations, in today’s society. With

technology constantly upgrading and the increasing information requirements

of people, many new applications have been released to offer a wide variety

of services to users. Therefore, the mobile device is not only a simple

communication device anymore, but is now an advanced and useful tool

which can help people to do more than just talk.

Currently, many mobile Apps need to be collaborated with other service

providers to offer the service to users, like my earlier example of the map

service needing to be supported by the location service to identify the user’s

position. The service collaboration, based on mobile devices, presents

challenges for existing service-oriented architectures (Hinze, Rinck, & David,

2010). This is because some services are only available locally (or the service

can disappear at any time due to distance/reception or other factors which

may affect it). In this way, a service may be constantly changing collaboration

partners when it offers their service to users. To avoid this problem of

constant changing, selecting the collaboration partners becomes an important

issue.

When services communicate with each other, information is shared between

them. This leads to another important issue - protecting user information.

Services (Apps) need to collaborate with other service providers without

revealing their or their user’s identity. Therefore, a middleware (local broker)

is added to solve this problem when each service transmits data to others

(Hinze, Michel, & Eschner, 2009). The purpose is that each service connects

to a trusted middleware; it will handle all requests and transmits the data back

to the requesting APP (Rinck, 2010). For example, the publishing service

(publisher) will deliver their data to the local broker (middleware), and then the

data is sent to the service who subscribed to this data. In this way, the

subscribing service (subscriber) cannot get any restricted information off the

2

publisher. On the other hand, the publisher also cannot get the information

from the subscriber due to the local broker; therefore the information about

both Apps users is protected.

This project will focus on the problems, which have been described previously,

creating an infrastructure for mobile service collaboration, and then an

application is implemented to show how it will work. The application is

developed in Java programming language, and it is running on the mobile

device in which the Android operating system is running. In this chapter, some

scenarios are described to give users a closer look at why this project is

needed and how the application runs when utilised in mobile service

collaboration. In chapter2, the concept infrastructure design of this project is

discussed, and the implement level design is described in chapter 3. In

chapter 4, the detailed information about the data transfer between each

service is described, and some examples are given to make it clearly. Chapter

5 is the documentation of the application implementation. Then the conclusion

and the future work are discussed in chapter 6.

1.1 Scenarios

In the scenarios, users are supposed to use a tourist application which is

installed on their mobile when they are travelling. This application collaborates

the map service and the location service via the local broker to not only show

the location on the map where the user currently is, but also some tourist

information around that location. Besides the local broker, observer is another

middleware, which is used to help subscribers to check the quality of the data

which is published from publisher.

Scenario 1

In this scenario, a tourist travels to Hamilton city for the first time, and he finds

out from his tourist application that the Hamilton Museum is one of the nice

places to go visit, and it is not very far from where he currently is. When he

reaches the museum and moves inside, he finds the original location service

(GPS) does not work as well as before due to the user’s mobile device finding

it hard to receive the signal from the satellite. However, the museum offers an

3

indoor location service in RFID (Radio-Frequency Identification) (Technovelgy

LLC, 2011), which is also offering the location data, and the quality of it is

growing the closer he gets to the museum. In this situation, the local broker

starts to communicate with the RFID location service, and then the local

broker subscribes the location data from it (RFID) instead of the GPS location

service.

Scenario 2

This situation is similar to scenario 1; however, there is no indoor location

service that can be used when the user moves into the museum. Due to the

quality of the GPS service dropping, the observer stops transmitting data to

the local broker. This is because the publishing data from the GPS service

cannot satisfy the rule of the map service. In this way, the condition is broken.

4

Chapter 2

Concept of the Infrastructure
In this chapter, some detailed information on the concept of the infrastructure

will be described, and the related work for the software architecture will be

discussed.

2.1 Broker

In the service collaboration, the broker is designed as the middleware to help

data transfer between the publishing services and the subscribing services.

The purpose of it’s used to help subscribers to find, with the publisher, who

offers the data, and the quality of it, and can satisfy the requirements despite

the limitations, of the subscriber. It is shown in Figure 1.

Figure 1: Concept of the connection of the broker with different services

In the broker design, three different approaches of the broker have been

described, which are: the included broker, the remote broker and the

intelligent gateway – distributed broker. Each design has its own advantages

and disadvantages when it is used to handle the data transmission between

5

each publishing service and subscribing service. The detailed information is

described below:

2.1.1 Included Broker

The concept of the included broker is that the broker locates on the user’s

mobile device. Services which are outside of the device are only accessible

through this broker to connect the services which are located in this mobile

device too (see Figure 2). Therefore, it may respond quite fast between the

local broker and the local services, also it offers the maximized security. The

disadvantage of this type of broker is that it may consume too much

computation power of the user’s mobile device; this is because the broker

always communicates with new services which are not located in the mobile

device. Also many pieces of useless information would be delivered to the

local broker, which may also cause more traffic to the user’s mobile device as

well as taking up valuable space.

Figure 2: Included broker architecture

2.1.2 Remote Broker

The concept of the remote broker works in a similar way as the included

broker, but is located on a private server instead of user’s mobile device (see

6

Figure 3). All connections and events are routed thorough this broker, and it

only sends events which are needed by subscribers. In this way, it may save

the power and traffic of the mobile device; also, the device can be better

supported by the large database. Therefore, this concept is really good for

some businesses. On the other hand, there are some disadvantages for this

type of broker. Firstly, the quality of the service may affected by the distance

between the broker and the user’s mobile device, which means the user may

not be able to get the required services whilst travelling any distance.

Secondly, the security level is lower than the included broker.

Figure 3: Remote broker architecture

2.1.3 Distributed Broker

This type of broker aims to keep the advantages of both the included and the

remote brokers, and is designed with two brokers (instead of one) (see Figure

4). The first is located on the user’s mobile device, and it consists of some

basic capabilities, for example, it can help local services collaborate with each

other. The second broker is located in the same area as the remote broker,

which is used to communicate with the services outside the user’s mobile

device. In this way, it extends all the advantages of both included and remote

brokers. But it also extends the problems which are described in the previous

concepts.

7

Figure 4: Distributed broker architecture

2.2 Conceptual Architecture of Included Broker

As the report described in 2.1, the included broker model is chosen as the

target broker, and its concept will be used in this project when creating the

broker. The reason for this is that the included broker concept seems to be

the best in terms of anonymity and usability in different scenarios.

The conceptual architecture of the client side includes following parts: the

connector, the broker and the display. The connector is used to connect with

the different services, the client broker is used to analysis the received

message and also it to protect the user’s personal information when requests

are made to and received by each server. The last part is the display, which

will display the message to the user. The architecture diagram is shown in

Figure 5.

8

Figure 5: Conceptual architecture of client side

Connector

Connector of the client side is used to connect to each different service, and it

also follows their own protocol to send and receive messages.

Display Part

In this part, the received data will be built up by the index of each message,

and then displayed in the user’s mobile device.

Broker of the Client Side

This is the main part of the client side, and it is designed to do two main jobs

for users, which are: the send/receive event and protecting user’s information.

In this part, it includes a message handler and some other functions. Message

handler is used to receive and broadcast events, when it receives a new

event, it passes the event into the observer to check the quality of it, and

observer will respond when the quality goes down. Cache is a temporary area

to save the continuous events, and it will resend it to the display when all

events are received. The publisher index is used to save the publisher

information; this may be used later when the quality of the current service

goes down. The last function is the message index, which is used to save the

event information.

2.3 Conceptual Architecture of the Communication

9

In this system, the client’s broker may communicate with many services when

the user starts the system, and then the best quality one will be selected as

the target service to request information. The rest of the services will still be

considered if the quality of the current service goes down. The communication

flow charts will be shown in Figure 6, Figure 7 and Figure 8.

Figure 6: Client’s broker communicate with both servers

Figure 6 shows the client’s broker finds two services which offer the same

data when the user turns on his mobile device. One service is offered by a

global server, and other is offered by a local server. In this point, the broker of

the client will decide which server to request the information from. Normally,

the quality of the service is the main factor for the broker to choose the server,

but it depends on different issues, like: the distance of the server, speed of the

data transfer, response time, accuracy, security, etc. After the broker selects

the server, it only responds to that server and starts to receive the information.

Figure 7 shows the process.

10

Figure 7: Client’s broker stops communicating with the local server

In Figure 7, client’s broker stops communicating with the local server when it

finds the global server can offer the better service. But it does not mean the

client’s broker will never communicate with this local server again. Like the

chart is shown in Figure 8, the client’s broker re-communicates with the local

server and stops communication with the global server when the quality of the

service from the global server goes down.

Figure 8: Client’s broker re-communicates with the local server

11

In Figure8, the broker of the client side starts to re-communicate with the local

server instead of the global server due to the quality of the data from the

global server reduces. When the user’s mobile device is running, some new

services will also be found by the client’s broker that will be saved and used at

a later point.

12

Chapter 3

Implementation Level of Infrastructure
In this chapter, more detailed information about the implementation level

infrastructures will be discussed; also some diagrams are used to make

explanations more clear.

3.1 Basic Implementation on No Services is Available

In the previous scenario (see Section 1.1), we have talked about how the

system automatically connects to an alternative service and starts to receive

data from it when the quality of the current service goes down. But, there may

not be an alternative service available in some situations. If this happens, the

application may stop working due to the publishing service not satisfying the

requirements of the rules and conditions which are defined by the subscriber.

The sequence interaction of this situation is shown in Figure 9.

13

Figure 9: GPS fails and no alternative location service available in basic

implementation

In this sequence diagram, it has been divided it into three parts, which are: (1)

registering; (2) communicating and (3) conditions broken.

In the register part, it shows the local broker sets up connections with each

service. As the mobile device is switched on, the broker, map service and the

GPS service start at the same time. Firstly, local broker sends a “Hello”

advertisement to the map service and GPS service. This advertisement

contains a list of available event data type, which means each service can

14

both subscribe and publish these types of data with local broker. In some

cases, the subscriber can also subscribe to the uncontained type of data from

the local broker, and that type of data will be forwarded to the subscriber

when local broker finds the publisher who publishes that type. After each

service receives the message and checks it, a respond event is sent back to

the local broker. For each service, it can be a subscriber, publisher or both.

Publisher means a service which publishes a type of data, and the subscriber

receives data from them. Like this diagram, the GPS service is a publisher,

because it only publishes the location data, and no data are required by it.

The respond event from publisher and subscriber is different due to the

subscriber also needing to give the rules and condition information to the local

broker, because the subscribers need to tell the local broker what kind of data

they want, and in what situation. An example of the respond message is

shown below (Figure 10).

Figure 10: Example of the respond message

15

While the local broker already connected with the map service and GPS, the

observer starts at this time, and an advertisement from the local broker is sent

to it. In this advertisement, all subscriber’s rules and conditions information

are included, this is because the observer is designed in this application to

help subscribers to check the quality of each event to satisfy those rules and

conditions or not.

The second part of this diagram shows how each service works with the local

broker. In Figure 9, the GPS service already starts to send the location data

after the first communication. Because this diagram is designed to focus on

the quality of the service, therefore, the local broker will send every event to

the observer to check the rules and conditions. If the quality of the event

satisfies requirements of the subscriber, the observer sends back the event to

the local broker, and it is then delivered to the map service.

In the last part, the observer checked the quality of the data which is

published from the GPS service and as it is lower than the requirements from

the subscriber. The observer stops to transmitting data to the local broker,

and a warning message is sent to instead to inform it of the situation. The

result of which is the map service stops working and waits for the local broker

to find new publishers.

3.2 Alternative Implementation in Observer/Local Broker

In this section, a diagram with a different design of the data transmission

between the broker and the observer is shown, and it is the same situation as

the diagram in Figure 9. In this design, the local broker also sends every

event to the observer to check the quality, but it does not wait for the

response from the observer, and every event is directly resent to subscribers

when the local broker receives it from the publisher. In this way, it reduces the

time cost on the data transmission. The diagram is shown in Figure 11 below.

16

Figure 11: GPS fails and no alternative location service available in

alternative implementation

The idea of this design is to save time in the data transmission between each

service. For example, in Figure 9, every time the local broker sends the GPS

event to the observer to check the quality, it then needs to wait the response

from the observer. Therefore, the time-lapse may be costly using this

operation. In a real situation, publishers can offer the good quality service

most of the time, and so the observer is designed in this part to only respond

to local broker when the quality of the event cannot satisfy the rules or

conditions of the subscriber. Therefore, each GPS event is directly sent to the

17

map service after the local broker receives it (in this design), but the observer

still checks the quality of that event, and it only responds to the local broker if

the quality is reduced.

To compare the diagrams of the Figure 9 and Figure 11, they are designed in

the different ways to solve each event, and each of them has their advantages,

like it shows in Table 1 (“++” means really good “+” means good, “-” means

normal).

Condition
Basic

Implementation

Alternative

Implementation

Speed + ++

Quality ++ +

Table 1: Compare the speed and quality of both implementation

Due to the quality of service is most important factor that cared in this project,

therefore, the basic implementation is selected as the architecture for this

project.

3.3 The Basic Implementation on alternative service is

Available.

In some museums, for example, they may offer their own indoor location

service (RFID service) for their visitors. Therefore the system may use the

indoor location service instead of the GPS service when the quality of it is

reduced. The Sequence diagram is shown in Figure 12.

18

Figure 12: GPS fails alternative RFID location service available in

alternative implementation

In this diagram, it also has been divided into three parts, which are the (1) set

up, (2) the subscribe RFID service and (3) the RFID service instead of the

GPS service.

19

The set up part in this diagram is similar to the previous case (see Figure 11),

which also shows how the local broker sets up each service communication

with others, and then the service of the publisher starts to send the data to

their subscribers. Comparing this part with Figure 11, it shows some changes.

Firstly, an alternative service is shown in this diagram, and it broadcasts their

advertisement at anytime to the brokers which are in the range. Because the

local broker of the user’s device is not in range in this part, there are no

communicates between the local broker and RFID services.

Then, an indoor location service is available when the user is near the

museum, and so user’s local broker starts to exchange advertisements with

the museum’s indoor service, and then it subscribes the location data from the

indoor service. At this time, the local broker has not been started to receive

the location data from RFID service because the quality of The GPS service is

still good enough, therefore, the local broker will carry on working with the

GPS service, but now has a backup service ready in case the quality reduces.

Shortly, the observer checks the quality of the service from GPS goes down,

an warning message is sent to local broker by the observer to tell it needs to

find a new publishing service instead of the GPS service.

In the last part, it shows the local broker sends a message to RFID service to

request the location data and same time it stops receive data from the GPS

service. In this way, the local broker currently only receives location data from

the RFID.

20

Chapter 4

Communications and Data Transfer
This chapter will describe the communication and data transfer between each

service in detail, then the detailed information about each communication is

discussed.

4.1 Data Type and Event Details

In this part, firstly it will explain the nature of data that may be communicated

between services in event messages, and some examples are used to make

descriptions more clear. Then it will show how the data is described in event

messages and how rules can be defined for the handling of event messages.

4.1.1 GPS Data

In this application, it will follow the NMEA 0183 communication protocol

(Scientific Coponent, 2010) to transmit the location data. Under this protocol,

there are many different types of sentences that can be used to get the

location data, like the GPRMC, GPGSV, GPGSA, GPGGA, and GPGLL

(Robosoft, 2011). After comparing them, the GPGGA sentence is selected to

use in this application, because it is the standard and most popular one.

GPGGA sentence normally includes 14 different attributes to indicate the

location. The GPGGA sentence structure and an example are shown below:

GPGGA sentence structure

 $GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12

>*xx<CR><LF>

GPGGA sentence (Example):

 $GPGGA,123519,4250.5589,S,14718.5084,E,1,04,24.4,9.7,M,,,,0000*

1F

21

Name Example Description

Sentence Identifier $GPGGA
Global Positioning System Fix

Data
UTC Time 12:35:19 Hhmmss.sss
Latitude 4250.5589 Ddmm.mmmm

N/S Indicator S N=north or S=south
Longitude 14718.5084 Dddmm.mmmm

E/W Indicator E E=east or W=west
Fix Quality:

 0=Invalid
 1=GPS fix
 2=DGPS fix

1 Data is from a GPS fix

Number of Satellites 03 3 Staellites are in view
Horizontal Dilution of

Precision (HDOP)
20.4

Relative accuracy of horizontal
position

MSL Altitude 9.7 (Meters)

Units
Units =
Meters

Geoid Separation
Units =
Meters

Units
Units =
Meters

Time since last DGPS
update

Blank
Null fields when DGPS is not

used
DGPS reference station id 0000

Checksum *1F
Used by program to check for

transmission errors

Table 2: Example of the GPGGA sentence

4.1.2 Events

Event is the ‘carrier’ of the system, which is used by each service to send the

data. For example, the event from the GPS service includes four attributes,

which are the event ID, name, service type, data type and the contents. The

example shows this below.

The event from GPS service (Example 1):

 Service ID: GPS_001
 Service Name: GPS Service
 Service Type: Publisher
 Data Type: Location data
 Event Content: (123519,4250.5589,S,14718.5084,E)

22

In this example, the service ID and service name are used to remind the local

broker who published this event. This is a quite an important attribute,

because the local broker can use this attribute to find who sent this event.

Service type for this event is used to tell the local broker the type of this

service, and the local broker can use this attribute to connect subscribers and

publishers together, also, the local broker will follow this attribute to decide if

the event from this service needs to be checked or not by the observer. The

third attribute is the data type, which is another attribute that the local broker

uses to connect publishers and subscribers, and it also shows the type of the

data that this service offers. The last attribute of the event is called the event

content, which stores the information of this event. This example is the event

from the GPS service, so some location data are stored there.

GPS events are normally sent continuously if any subscriber subscribes

location data. Figure 13, is an example of how the GPS service sends location

data to help people find the Hamilton Museum.

Figure 13: Example of the location data

In Figure 13, user’s mobile device is supposed switch on at the position A,

and he plans to go to the Hamilton museum. After he enters the location of

the museum into the application, the way is shown to him. In this time, the

local broker helps the map service to subscribe the location data from the

GPS service. As we can see, the GPS starts to send the location data, and

the map service shows the location data on the map to the user.

23

When user moves into the museum, the GPS service no longer works well,

and the system finds that an alternative location service (RFID) is available.

Therefore, the new service is subscribed by the user’s device, and then starts

to receive the location data from it. The example is shown in Figure 14.

Figure 14: Example of switching location data

In this example, we can see the first three points (A, B and C) are the location

data from the GPS service, but the point D shows that the RFID location data

is used by user’s device instead of the GPS location data, the reason is that

the quality of the GPS location data in point D is lower than the data which is

published by RFID service. Therefore, local broker starts to communicate with

the RFID location service at position D.

4.1.3 Rules and Conditions

In last chapter, we talked about the subscriber sending rules and conditions to

the local broker when it subscribes information. Like the diagram in Figure 10,

it showed the attributes that are contained in those rules and conditions. In

this section, the detailed description of each attributes will be discussed.

4.1.3.1 Rules of the Subscription

The rule of the subscription is normally used to tell the local broker what kind

of data the subscriber wants. For each rule, it usually contains three attributes,

which are the rule type, rule factor and the rule information.

24

The rule type is used to identify what kind of things are quite important to this

subscriber, like the example shows below, the response time is given to show

that the response time is the most important thing for this subscriber. Rule

factor normally have two types value, which are the (greater than”>” and

lesser than “<”), and it is normally used with the rule information together, like

this example gives the rule factor is “<” and the rule information is ten. It

means the response time between each event from publisher must be less

than ten seconds.

The rule of map service (Example 1):

 Rule Type: Respond Time
 Rule Factor: <
 Rule Information: 10

4.1.3.2 Conditions of the Subscription

The conditions are also defined by the subscriber, and are used to determine

the terms under what situation the event is accepted by the subscriber.

Condition information normally includes two parts, which are the condition

type and the condition information. The example is shown below.

The condition of map service (Example 1):

 Condition Type: Connection Number
 Condition Information: 1

In this example, the condition type is used to describe the factors that are

important to the subscriber, and the details are stored in the condition

information. Like this example, it means the subscriber only wants to connect

one publisher at any time.

4.2 Description of Each Operation of the Infrastructure

In section 3.3, we have given the diagram to show how the system switches

to an alternative service when the quality of the current service goes down

(see Figure 12), and the process of it has been described. In this section,

events of the diagram will be described in detail to show how the publisher

and subscriber transmit data, and what data they transmit to each other via

the local broker. To make descriptions more easily understood, numbers have

25

been added to each event (see Figure 15), and we will follow the number to

describe them.

Figure 15: GPS fails and an alternative RFID location service is available

1. Advertisement from local broker

As we have talked about before, the local broker sends a “Hello”

advertisement to each service when the user’s mobile device is switched on.

26

After this event, local broker connects with each different service and wait

them to subscribe or publish data. (See example 1)

Event from local broker (Example 1):

 Event ID: Event_Localbroker_001

 Service Name: Local Broker

2. Responds from each service

The response message from each service is different, which depends on if the

service is a publisher or a subscriber. Like this example, the GPS service is a

publisher, which publishes the location data and it does not require any data

from another service. Therefore, the response message from the GPS service

is like an advertisement too, which includes the data types that the GPS

service offers, and the local broker can subscribe any of those types of data

from it (See example 2)

Event from GPS service (Example 2):

 Event ID: Event_GPS_001
 Service Name: GPS Service
 Service ID: GPS001
 Service type: Publisher

Data type: Location data (Latitude, N/S direction, Longitude, W/E
direction)

If the service is a subscriber, it will respond to the local broker what type of

data that is needed by this service; also the rules and conditions are included

in this response event too. This is because the subscriber has to tell the local

broker under which situation the service wants that data. Like this example,

the rules and conditions from the map service shows that the response time

between each event from publisher needs to be less than ten seconds, and

only one location service can be connected at a time (See example 3). In

future, the local broker will follow these rules and conditions to send data to

this service.

Event from map service (Example 3):

 Event ID: Event_Map_001

27

 Service Name: Map Service
 Service ID: Map001
 Service Type: Subscriber

Data type: Location Data (Latitude, N/S direction, Longitude, W/E
direction)

 Rule Type: Respond Time
 Rule Factor: <
 Rule Information 10
 Condition Type: Connection number

 Condition Information: 1

3. Communication with the observer

Once rules and conditions are submitted to the local broker, the observer

starts. At this time, the rules and conditions from the local broker are

forwarded to it. The reason is that the observer is designed in this application

to help each subscriber check the quality of the event which is sent to them.

(See Example 4)

Event from local broker (Example 4):

 Event ID: Event_Localbroker_002
 Service Name: Local Broker
 Subscriber Name: Map Service
 Rule Type: Respond Time
 Rule Factor: <
 Rule Information: 10
 Condition Type: Connection number

 Condition Information: 1

After the observer gets all the information from the local broker, the rules and

conditions information are saved by the observer. Then a response event is

sent back to local broker (see example 5). In this event, the observer also

subscribes to the types of data which are requested by each subscriber.

Event from observer (Example 5):

 Event ID: Event_Observer_001
 Service Name: Observer
 Service Type: Subscriber
 Data Type: Location Data (Latitude, N/S direction, Longitude, W/E

direction)

28

4. Data transfer

Each services start to work after they finish first communicating with the local

broker. Like this diagram, the GPS service starts to send the location data to

the local broker (Example 6) and the map service waits for the location data

from local broker.

In this application, due to offering the best quality of service is the goal of this

application, local broker sends every event to the observer to check the

quality of it, and then send to the subscriber if the quality of this event is good

enough.

Event from GPS (Example 6):

 Event ID: Event_GPS_002
 Service Type: Publisher
 Data Type: Location Data (Latitude, N/S direction, Longitude, W/E

direction)
 Event Content: (37.422006, N, 122.084095, E)

5. Checking rules and conditions

As we have described in the previous section, every time local broker needs

to send the event to the observer to check the rules and conditions. And then

the event is resends to the subscriber. (See example 7).

Event from local broker (Example 7):

 Event ID: Event_Locatbroker_002
 Data type: Location Data (Latitude, N/S direction, Longitude, W/E

direction)
 Destination: Map service

 Event content: (37.422006, N, 122.084095, E)

In this example, we can see the destination is added to this event to show the

observer which subscriber will receive this event, because the observer will

follow this attribute to find the relative rules and conditions that have been set.

In this system, if the data of given event does not match the rules and

conditions of their subscriber, a response message will be sent back to the

local broker. (See Example 8)

29

Event from Observer (Example 8):

 Event ID: Event_Observer_002
 Service Name: Observer
 Problem Event ID: Event_Locatbroker_002

 Situation: False

In this event, the Problem Event ID is used to tell local broker what event

cannot match the rule and condition.

6. RFID service

As we have described previously, the new service may be available when the

user went to a new area, like the diagram shows in Figure 15, we can see an

RFID service is offered when the user nears the museum and its global broker

sends an advertisement to the user’s mobile device. This event is similar to

the advertisement which is sent from the GPS service to the local broker, it

also includes a list type of data which the local broker can subscribe to (See

example 9). At the same time, the user’s local broker evaluates those types of

data and then sends a subscribe event back to the museum’s global broker

(See example 10).

Event from the RFID service (Example 9):

 Event ID: Event_RFID_001
 Service Name: RFID Service
 Service type: Publisher
 Data type: Location Data (Latitude, N/S direction, Longitude, W/E

direction)

Event from the local broker (Example 10):

 Event ID: Event_Localbroker_003
 Service name: Local Broker
 Service Type: Subscriber
 Data type: Location data (Latitude, N/S direction, Longitude, W/E

direction)

7. Communicating with the GPS service

The museum’s global broker starts to send the data after the user’s local

broker subscribed to data from it. But the local broker does not receive this

30

data, this is because the observer did not send the warning event to request

the local broker to change the publisher, therefore, the local broker also

communicates with the GPS service. (See example 11).

Event from the RFID (Example11):

 Event ID: Event_GPS_003
 Service type: Publisher
 Data type: Location Data (Latitude, N/S direction, Longitude, W/E

direction)

 Event Content: (37.422007, N, 122.084195, E)

8. Connect with the RFID service

In this part, the observer checked the quality of the GPS service is not good

enough to publish the data to the Map service, therefore, an event is sent

back to the local broker to tell the situation. (See Example 12)

Event from the observer (Example 12):

 Event ID: Event_Observer_002
 Service Name: Observer
 Problem Event ID: Event_Locatbroker_003

 Situation: False

After local broker receives it, a subscribe event is sent to the RFID service to

request the location data (See example 13). And then the local broker

connects with the RFID service to request data and stops communicating with

the GPS service.

Event from the local broker (Example 13):

 Event ID: Event_Localbrker_004
 Service Name: Local Broker
 Service Type: Subscribe
 Data type: (Latitude, N/S direction, Longitude, W/E direction)

31

Chapter 5

Implementation
This chapter focuses on the implementation details of the system. The first

part is to mention the requirements when implementing the application, and

some examples are given to make descriptions more clear. Then the

database design will be described. Finally, the programmed code will be

discussed.

5.1 Hardware/Software Requirements

In this part, the hardware and software which are required when developing

the application are showed below.

5.1.1 Mobile Device

Currently, smart-phones have become a trend far surpassing the traditional

cell phones. It offers more services to people, like browsing web pages,

handling official business like emails etc, as well as some people installing

software that have developed by themselves. Therefore, this project will

implement an application based on smart phones.

For smart-phones, there are four popular systems that are mainly in used

currently, like the Symbian Operating System, Windows Mobile, Palm

Operating System and the Android Operating System (Ziff Davis Inc, 2011).

Each system has its own advantages, and each of them is used by different

brands of mobile phones.

In this project, the mobile device with the Android operating system is chosen

as the platform to run the application for this project. This is because it is a

nice operating system for mobile devices, like smart phones, PDA and some

tablet computers. Also it establishes an open platform for all developers to

build innovative mobile applications (Google Inc, 2011).

32

5.1.2 Android SDK for Java

The Android Software Development Kit (SDK) is necessary when people

develop applications on the Android platform using the Java programming

language. Normally Android SDK includes development tools, emulator,

required libraries and some sample projects (QuinStreet Inc, 2011). In SDK,

emulator is a quite useful tool to help people develop applications for the

Android system. That is because it replicates a typical interface of the Android

system to a user’s PC; therefore, people can run the Android applications on

their PC instead of the real android phone. For emulator, it still has some

limitations that people have noted, like some applications that have touch

movements may not work correctly.

5.1.3 Radio-Frequency Identification Tag (RFID)

Radio frequency identification (RFID) is a technology that uses radio waves to

communicate between a reader and an electronic tag (see Figure 16)

(Wikipedia, 2011), Because its ability to track moving objects, it has been

used by thousands of companies currently. Normally, the data transmitted by

the tag is dependent on the information that the tag has stored, it may be the

identification or location information, or specifics about some product, like the

price, color, etc (AIM, 2011). In this way, the RFID tag is used to store the

location data for this project, and it is used to offer the indoor location service.

Figure 16: Example of the RFID

5.2 Database Design

In this project, SQLite has been chosen to set up the database for this

application. It will store the information of each service; also the events that

are transmitted between the subscriber and the publisher. SQLite is a

33

compact, high efficiency, high reliability, embeddable SQL database engine,

and currently it is used in a wide range of commercial software products and

electronic devices, because it is lightweight, fast and open source. Therefore,

today, SQLite is found today in many mobile phones, MP3 players and some

PCs (SQLite, 2011).

In figure 17, it is the ER-diagram of this project’s database, which consists of

seven entities and many relationships to store the general information of each

service. The detailed information of each entity and relations will be described

below; also, some examples will be given.

Figure 17: ER Diagram of the Database

5.2.1 Entities of Database:

1. Entity of subscriber

The subscriber’s table is to store subscriber’s information. The key

attributes of this entity are the service ID number, service name,

service type, the data type, Rule ID and the Condition ID. The Service

ID is the primary key of this table, and each attribute is shown below:

34

 Service_ID Text -- Primary Key
 Service_Name Text—Not Null
 Service_Type Text -- Not Null
 Data_Type Text -- Not Null
 Rule_ID Text -- Foreign Key
 Condition_ID Text -- Foreign Key

2. Entity of rule

The rule table is designed to store the rules of the subscriber, which

will be used when observer checks the rules of an event. The key

attributes of this entity are the rule ID, rule type, rules Factor and the

Rule Information. The type of each attribute is shown below:

 Rule_ID Text -- Primary Key
 Rule_Type Text -- Not Null
 Rule_Factor Text—Not Null
 Rule_Information Integer -- Not Null

Rule factor includes two different conditions in this table, which are the

(more than ‘>’ and less than ’<’). The rule information is a numeric

value here, which is normally used with rule factor together. Like the

example is shown below, it means the transmitting time between each

event form publisher have to be less than five seconds.

Example of rule table
 Rule_ID: Rule_001
 Rule_Type: Response Time
 Rule_Factor: <
 Rule_ Information: 5

3. Entity of condition

The condition table is designed in this database to store the conditions

information of the subscriber. This table is also used by the observerer

when it checks the condition of an event. The key attributes of this

entity are the Condition ID and condition information. The type of each

attribute is shown below:

 Condition_ID Text -- Primary Key

35

 Condition_Information Integer -- Not Null

Condition information is the numerical value in this table, and it

describes that how many publishers are allowed to communicate with

this subscriber at a time. For example, the subscriber allows two

publishers to communicate with this subscriber if the value of this

attribute is 2.

4. Entity of observer

The observer table is to store the observer’s information. In this table,

subscriber’s rule and condition information are also included due to the

observer will use these attributes to find the related rule and condition

information when it checks the rule and condition information of the

latest arrive event. The key attributes of this entity are the observer ID,

subscriber’s ID, Name, data type, rule ID and the condition ID. The

type of each attribute is shown below:

 Observer_ID Text -- Primary Key
 Subscriber_ID Text -- Not Null
 Subscriber_Name Text—Not Null
 Subscriber_Data_Type Text -- Not Null
 Subscriber_Rule_ID Text -- Not Null
 Subscriber_Condition_ID Text -- Not Null

To make the explanation clearly, the example below shows how the

observer stores information of the map service.

Example of observer table

 Observer_ID: Observer_001
 Subscriber_ID: Map_001
 Subscriber_Name: Map Service
 Subscriber_Data_Type:(Latitude, N/Sdirection,

Longitude, W/E direction)
 Subscriber_Rule_ID: Rule_001
 Subscriber_Condition_ID: Condition_001

36

5. Entity of event

The event table is designed to store the information of every event, and

it can be reviewed later. The key attributes of this entity include the

event ID, event owner, and the content of the event. The type of each

attribute is shown below:

 Event_ID Text -- Primary Key
 Event_Owner Text -- Not Null
 Event_Content Text -- Not Null

6. Entity of publisher

The publisher’s table is used to store the publisher’s information The

key attributes of this entity are the publisher’s ID number, name,

service type and the data type that publisher publishes. The type of

each attribute is shown below:

 Service_ID Text -- Primary Key
 Service_Name Text -- Not Null
 Service_Type Text -- Not Null
 Data_Type Text -- Not Null

5.2.2 Relationship between entities

1. Relationship of subscriber has their rule

The relationship between the entity of the subscriber and the rule is

that every subscriber can have just one rule, but any rule could be

suited by many subscribers. Therefore, it is the relationship of one-to-

many.

2. Relationship of subscriber has their condition

The relationship between the entity of the subscriber and the condition

is also one-to-many. Every subscriber only has one condition, but any

condition can be used by many subscribers.

3. Relationship of subscriber receives event

37

The relationship between the entity of the subscriber and the event is

that the subscriber can receive different events at a time, also every

event can be sent to different subscribers. Therefore, this relationship

is many-to-many and a table is designed for it. The attributes include

the event ID and subscriber’s ID, also both attributes are the primary

key of this table.

4. Relationship of publisher publishes event

The relationship between the event and the publisher is designed to be

one-to-many, which means every event has a certain publisher, but the

publisher can publish many events.

5. Relationship of observer checks rule of each event

The relationship between the entity of the observer and the rule is

many-to-many. The reason is that every rule can be checked by

different observers, and the observer can check any rule which is

stored in the rule table. Thus, it is a many-to-many relationship.

6. Relationship of observer checks condition of each event

The relationship between the entity of the observer and the condition is

many-to-many too, because any condition can be checked by different

observers, and the observer can check any condition which is stored in

the condition table. Thus, it is a many-to-many relationship.

5.3 Classes and Methods

This part focuses on documentation of the application implementation. The

details of each class will be described, which include the declared variables

and some important methods.

5.3.1 GPS Class

The purpose of the GPS class in this application is designed as the publisher

to publish the location data to other services via the local broker. It therefore

38

contains the service name, ID, type of service, data type, latitude data,

longitude data and some variables that are required in this class.

 private String ID = GPS001;
 private String ServiceName= "GPS_Service";
 private String ServiceType = "Publisher";
 private String DataType = "Location Data ";
 private double latPoint, lngPoint;
 private Event GPSEvent;
 private LocationListener locationListener;
 public static GPSservice mGps;

The service name is declared to represent the name of the service; the local

broker will read this variable to know which service is currently publishing data.

In this application, ID is quite useful when more than one service subscribes

location data, and also observer will use this variable to find the matched rule

to check the quality of it. Type of the service shows the type of data that this

service provides, and local broker will use this variable to match the

subscribers and publishers at first time. For example, map service and GPS

service will be connected together via local broker, because map service

needs the location data that is published from GPS service.

As the report talked in Figure 14, local broker will start to broad advertisement

to each service when user starts running this application, and every service

will respond that advertisement to publish or subscribe data. In the response

event, the basic information about this service is included in it, like the data

type, service type, etc. if the service is a subscriber, the rule and condition

information are contained as well. Because the GPS service is a publishing

service, therefore, it only responds the basic information about this service.

 public Event ServiceSetUp(Event event){
 GPSEvent = new Event(ID, ServiceType,ServiceName,DataType);
 return GPSEvent;
 }

Currently, location-based service is one of the key functionality that is used by

many mobile applications. In this application, the GPS service class has used

the LocationManager to get the location information.

39

 public Event LoadCoords(){
 LocationManager myManager = (LocationManager) con.
 getSystemService(Context.LOCATION_SERVICE);

 locationListener = new LocationListener(){
 public void onLocationChanged(Location loc) {
 Log.d(TAG, "LocationListener onLocationChanged");
 if (loc != null) {
 Log.d(TAG, "LocationListener onLocationUnChanged");
 }
 }

 public void onProviderDisabled(String provider) {
 Log.d(TAG, "LocationListener
 onProviderDisabled PROVIDER:" + provider);
 return;
 }

 public void onProviderEnabled(String provider) {
 Log.d(TAG, "LocationListener
 onProviderEnabled PROVIDER:" + provider);
 return;
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras) {
 Log.d(TAG, "LocationListener onStatusChanged STATUS:"
 + status + " PROVIDER:" + provider);
 return;
 }
 };

 myManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locationListener);

 this.SetLatPoint(myManager.getLastKnownLocation(myManager.
 getProviders(true).get(0)).getLatitude());
 this.SetLngPoint(myManager.getLastKnownLocation(myManager.
 getProviders(true).get(0)).getLongitude());

 GPSEvent = new Event(this.GetLatPoint(),
 this.GetLngPoint(),this.GetServiceID(),
 this.GetServiceName(), this.GetService(),this.GetTime());
 return GPSEvent;
 }

In this segment of code, LocationManager and LocationListener are initialized

at the start. Then the LocationManager.requestLocationUpdatas is used to get

the location data, it includes four parameters, which are the provider

information, minimum time interval for notifications, minimum distance interval

for notifications, and the location listener. This application has chosen the

40

GPS provider to provide the location data, which also can use other type of

provider when get the location data, like the new work location provider. The

second and the third parameters are used to set up the minimum time interval

between notifications and the minimum change in distance between

notifications. In this application, both of them have been set to zero, which

means this application requests location notifications as frequently as possible

(Android developers, 2011). The last one is the LocationListener, which

receives call backs for location updates. After get the location data, the

LocationManager.getLastKnowLocaiton is used to get the latitude and

longitude data, and then these data are passed to the event class to publish

to local broker.

In this application, the goal is to provide the best quality of service to users,

and the response time from publisher is one of the most important factors to

determine it. Therefore a method has been written to get the system time, and

it will be sent to local broker too when GPS service every time sends location

data.

 private String GetTime(){
 Date date = new Date();
 int hour = date.getHours();
 int minute = date.getMinutes();
 int second = date.getSeconds();
 String curTime = hour + ":"+minute + ":"+ second;
 return curTime;
 }

5.3.2 Map Service Class

Map service is designed as subscriber in this application, which is used to

show the location data into map to make user view easily. Because this class

is defined as the subscriber in whole application, it has some variables about

the rule and conditions to tell local broker what kind of data are required.

 private String ServiceName= "Map_Service";
 private String ServiceType= "Subscriber";
 private String DataType = "Location Data";
 private String RuleType = "Time";
 private String RuleFactor = "<";
 private String RuleInformation = "10";
 private int Condition = 1;

41

The first two variables are the service name and service type, which are the

same as the GPS class, and they are used to tell local broker the name and

the type of this service. Data type is declared in this class to tell local broker

what kind of data that map service asks for; also local broker will use this

variable to find the publisher who publishes location data as well and then

help map service to subscribe data from it. Last of four variables are designed

for the rule and condition of this service. Because subscribers need to tell

local broker what kind of data they want, and under what situation. In this

class, rule type shows that the response time is quite important for this service.

Rule factor and rule information show the response time that has to be less

than ten seconds between each published location data. The condition

variable shows that map service only wants to connect with one publisher in

any time.

Due to the map service is designed as the subscriber in this application, so

the rules and conditions are respond to local broker at the first communicate

with the local broker.

 public Event ServiceSetUp(Event event){
 this.AdvertisementEvent = event;
 Event MapEvent = new Event(ServiceName, ServiceType,
 DataType, RuleType,RuleFactor, RuleInformation,Condition);
 return MapEvent;

 }

In this application, map service uses Google map (Google Inc, 2011) to show

location data to users, also some related functions are offered to make people

use it easily. Like the location and service information, zoom in, zoom out, etc.

(See Figure 18)

42

Figure 18: Interface of the application

As the interface design is showed in Figure 18, the related codes about the

design are showed below.

 private void SetUpInterface(){
 final Button exitButton = (Button)findViewById(R.id.ButtonExit);
 exitButton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v){
 System.exit(0);
 }});

 final MapView myMap = (MapView) findViewById(R.id.myMap);
 final MapController myMapController = myMap.getController();

 final Button zoomIn = (Button)findViewById(R.id.ButtonZoomIn);
 zoomIn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v){
 ZoomIn(myMap,myMapController);
 }});

 final Button zoomOut = (Button) findViewById(R.id.ButtonZoomOut);
 zoomOut.setOnClickListener(new Button.OnClickListener() {

43

 public void onClick(View v){
 ZoomOut(myMap,myMapController);
 }});
 }

In this part of code, MapView is used to display the map, and MapController is

used to pan and scale the map. In map controller, the zoom range is from one

(smallest size) to twenty one (largest size), therefore, both the zoom in and

zoom out method are required to determine the current scale level is out of

range or not. In this application, user can scale the map size in one level

every time if the zoom level is in the zoom level range.

 public void ZoomIn(MapView mv, MapController mc){
 if(mv.getZoomLevel()!=21){
 mc.setZoom(mv.getZoomLevel()+ 1);
 }
 }

 public void ZoomOut(MapView mv, MapController mc){
 if(mv.getZoomLevel()!=1){
 mc.setZoom(mv.getZoomLevel()- 1);
 }
 }

When map service receives the location data from local broker, it will process

those data and then display them on the map.

 MapView myMap;
 public void SetCoords(Double Lat, Double Long,String servicename){
 TextView latText = (TextView) findViewById(R.id.TextView02);
 TextView lngText = (TextView) findViewById(R.id.TextView04);
 TextView serviceText = (TextView) findViewById(R.id.TextView06);

 latText.setText(Lat.toString());
 lngText.setText(Long.toString());
 serviceText.setText(servicename);

 myMap = (MapView) findViewById(R.id.myMap);
 int latInt = (int)(Lat.intValue() *1E6);
 int lngInt = (int)(Long.intValue() *1E6);
 GeoPoint myLocation = new GeoPoint(latInt , lngInt);
 MapController myMapController = myMap.getController();

 myMapController.setCenter(myLocation);
 setOverlay(myLocation);
 myMapController.setZoom(15);
 }

44

In this application, it mainly focus on the mobile service collaboration,

therefore, some related information, such as the coordinate data and the

service information, are also displayed to users to make them clearly

understand what service is being used currently. In the interface design,

three text views are used to represent the details (see Figure 18), as we can

see the start of this method; each text view is used to set the different

information. Then the coordinate data are timed 1E6 before they are set into

the GeoPoint, this is because the GeoPoint only accepts integer. Finally the

GeoPoint is set on the centre of the map to display to users, and the initial

zoom size is set in level fifteen.

Overlay is used in this application to mark the position that people currently

locate, users can click the position balloon to see more detailed information

around this point. In this application, it displays the coordinate data to users.

 private void setOverlay(GeoPoint myPoint,
 String ServiceName, double lat, double lng){

 List<Overlay> mapOverlays = myMap.getOverlays();
 Drawable drawable = this.getResources()
 .getDrawable(R.drawable.ic_launcher);
 MapServiceOverlay itemizedoverlay =
 new MapServiceOverlay(drawable,this);
 OverlayItem overlayitem = new OverlayItem(myPoint, ServiceName,
 "Coordinate: (" + lat+","+ lng +")");
 itemizedoverlay.addOverlay(overlayitem);
 mapOverlays.add(itemizedoverlay);
 }

Firstly, an Overlay list is declared to store the overlay item objects that are

required to be put on the map, then an overlay image is loaded, because it will

be showed on the map to mark the user’s position. Then the related

information of this overlay is added. The related information can be everything,

like the tourist information around this location, traffic information etc, which is

depends on what information that designer wants to show users.

5.3.3 MapServiceOverlay Class

45

The overlay class is used to mark the coordinate on the map to make user

can view it easily. There are two variables have been declared, which is an

overlay item list which is used to hold all overlay objects, and another variable

is declared to hold the context information.

 private ArrayList<OverlayItem> myOverlays =
 new ArrayList<OverlayItem>();
 private Context myContext;

 public MapServiceOverlay(Drawable defaultMarker, Context context)
 {
 super(boundCenterBottom(defaultMarker));
 myContext = context;
 }

In this class, an addOverlay method is defined to add the overlay into the

myOverlays list, and then it performs all processing on that new overlay.

 public void addOverlay(OverlayItem overlay)
 {
 myOverlays.add(overlay);
 populate();
 }

Because this class extends the ItemizedOverLay class, some methods need

to override the method from their super class. Like the createItem method

returns corresponding overlay items when this method is called, size method

returns the size of it, and the onTap method which is used to show the related

information about the overlay, and it is displayed in a dialog box.

 @Override
 protected OverlayItem createItem(int i)
 {
 return myOverlays.get(i);
 }

 @Override
 public int size()
 {
 return myOverlays.size();
 }

 @Override
 protected boolean onTap(int index){
 OverlayItem item = myOverlays.get(index);
 AlertDialog.Builder dialog =
 New AlertDialog.Builder(myContext);

46

 dialog.setTitle(item.getTitle());
 dialog.setMessage(item.getSnippet());
 dialog.show();
 return true;
 }

5.3.4 Event Class

Event class is defined in this application to help each service communicate

with the local broker; it is like a ‘carrier’ to make the data transmission easily.

Because each service has the different number of information when they send

or receive data with local broker. Therefore, event class has many different

constructors to suit that situation.

As we described in chapter 4, when application starts running, local broker

sends an advertisement to each service to get each service’s information to

connect related publishers and subscribers. At this time, event class is used

to carry the advertisement information to every service.

 public Event(String servicename){
 this.ServiceName = servicename;
 }

In this message, it only contains the service name to show each service who

broadcast this advertisement, but the response message concludes detailed

information of each service. Like the map service is a subscriber in this

application, and it wants to subscribe the location data from local broker.

Therefore, in this message it not only respond some basic information about

the service, but also respond the rules and conditions to tell local broker what

kind of data are required, and under what situation.

 private String ServiceName;
 private String DataType;
 private String ServiceType;
 private String RuleType;
 private String RuleFactor;
 private String RuleInformation;
 private int Condition;
 public Event(String servicename, String servicetype,
 String datatype,String ruletype, String rulefactor,
 String ruleinformation,int condition){

 this.ServiceName = servicename;
 this.ServiceType = servicetype;

47

 this.DataType = datatype;
 this.RuleType = ruletype;
 this.RuleFactor = rulefactor;
 this.RuleInformation = ruleinformation;
 this.Condition = condition;
 }

The structure of responding message from publisher is simpler than

subscriber; it only contains some basic information, like the ID of the service,

the name of the service, type of the service and the type of the data.

 public Event(int serviceid,String servicename,
 String servicetype, String datatype){

 this.ServiceID = serviceid;
 this.ServiceType = servicetype;
 this.ServiceName = servicename;
 this.DataType = datatype;
 }

After the first communication, local broker connects the related services

together, and then wait for publishers to publish data.

 private double Lat;
 private double Lng;
 private String Time;

 public Event(double lat, double lng, int serviceid,
 String servicename,String servicetype, String time){
 this.Lat = lat;
 this.Lng = lng;
 this.ServiceID = serviceid;
 this.ServiceType = servicetype;
 this.Time = time;
 this.ServiceName = servicename;
 }

When GPS starts to publish the location data to local broker, the variables of

the event is different with the respond message that GPS service responds to

local broker at the first time. The data type is removed, and it is instead by the

coordinate data, also the sending time is included in this event.

After local broker receives the event, it sends the event to the observer to

check the rule and condition of this event. In this event the destination service

48

is added, which is used to let observer know who subscribed this event, and

observer will find the rules and conditions of this subscriber.

 public Event(double lat, double lng, int serviceid,
 String servicename,String servicetype, String time,
 String destination){
 this.Lat = lat;
 this.Lng = lng;
 this.ServiceID = serviceid;
 this.ServiceType = servicetype;
 this.Time = time;
 this.ServiceName = servicename;
 this.DestinationService = destination;
 }

Observer is designed to check the quality of the service in this application, so

the checked result of this event is added in the response event form the

observer to local broker.

 public Event(double lat, double lng, int serviceid,
 String servicename, String typeofservice, String time,
 boolean checkedresult){

 this.Lat = lat;
 this.Lng = lng;
 this.ServiceID = serviceid;
 this.ServiceType = typeofservice;
 this.Time = time;
 this.ServiceName = servicename;
 this.CheckedResult = checkedresult;
 }

5.3.5 Observer Class

In this application, observer is defined to help subscribers to check the quality

of the service who publishes data to this subscriber. The variables of this

class conclude some basic variables which are used to store the information

of the rule and condition when observer is checking the quality of a service;

also some variables are declared to hold the information which is used by the

methods of this class. Like the destination service holds the name of the

service who subscribes this event, LastSendingTime and LastPublisher are

used to hold the information about who published last event and the sent time

of it.

 private String ServiceName;
 private String ServiceType;
 private String DataType;

49

 private String RuleType;
 private String RuleFactor;
 private int RuleInformation;
 private int Condition;

 private String DestinationService;
 private Event RuldandConditionevent;
 private String LastSendingTime;
 private String LastPublisher;
 private MSCdb mscdb;
 int num = 0;

When local broker sends advertisement to observer at the first time,

subscriber’s rule and condition information are included in that event, and

observer will save those data into the database.

 public Observer(Event event,Context con){
 this.RuldandConditionevent = event;
 SavingRuleandCondition(this.RuldandConditionevent, con);
 }

 private void SavingRuleandCondition(Event
 ruleandconditionevent, Context con){
 mscdb = new MSCdb(con);

 mscdb.insert_rule_table(ruleandconditionevent.GetServiceName()
 , ruleandconditionevent.GetRuleType()
 , ruleandconditionevent.GetRuleFactor()
 , ruleandconditionevent.GetRuleInformation());
 mscdb.insert_condition_table(
 ruleandconditionevent.GetServiceName(),
 ruleandconditionevent.GetCondition());
 num++;
 }

After the first communicate with observer, local broker will pass the event to

observer to check the rule and condition when the new event is published

from publisher.

 public boolean RuleandConditionCheck(Event event,
 String distinationservice){
 this.DestinationService = distinationservice;
 Cursor RuleCursor = mscdb.select("rule_table");
 Cursor ConditionCursor = mscdb.select("condition_information");
 for (int i = 0;i<num; i++){
 RuleCursor.moveToPosition(i);

 if((RuleCursor.getString(1)).
 equals(this.DestinationService)){
 this.ServiceName = RuleCursor.getString(1);
 this.RuleType = RuleCursor.getString(2);
 this.RuleFactor = RuleCursor.getString(3);
 this.RuleInformation = RuleCursor.getInt(4);

50

 this.Condition = ConditionCursor.getInt(1);
 }
 }

 if((this.RuleCheck(event.GetTime())
 && this.ConditionCheck(event.GetServiceName())) == true){
 if(this.ServiceName.equals("GPS_Service")){
 return true;
 }else{
 return false;
 }
 }else{
 return false;
 }
 }

In this method, every time local broker passes the new event and the

destination service’s name to observer, the rule and condition information of

the destination service are selected out from the corresponding tables. Then

observer starts to check the event satisfy the rule and condition of the

destination service or not.

 private boolean RuleCheck(String sendingtime)
 boolean CheckedResult=true;
 if (LastSendingTime.equals("")){
 return true;
 }else{

 int TempSendingTime = this.GetHour(sendingtime) *
 3600 +this.GetMin(sendingtime)*60 +
 this.GetSecond(sendingtime);

 int TempLastSendingTime = this.GetHour(LastSendingTime)
 * 3600 +this.GetMin(LastSendingTime)*60
 + his.GetSecond(LastSendingTime);

 if(this.RuleType.equals("Time") &&
 this.RuleFactor == "<"){

 if((TempSendingTime - TempLastSendingTime)
 <= this.RuleInformation){
 CheckedResult = true;
 }else{
 CheckedResult = false;
 }
 }
 }
 return CheckedResult;
 }

 private boolean ConditionCheck(String servicename){
 if(LastPublisher.equals(""))
 return true;
 else{

51

 if(LastPublisher.equals(servicename)){
 return true;
 }else{
 return false;
 }
 }
 }

Because the rule of the subscriber focus on the respond time from the

publisher, some methods are written in this class to help observer to calculate

the time when new event is coming.

 public int GetSecond(String currenttime){
 String TempSecond;
 int length = currenttime.length();
 String TempString = currenttime.substring(length-2, length-1)
 if(TempString.equals(":")){
 TempSecond = currenttime.substring(length-1, length);
 }else{
 TempSecond = currenttime.substring(length-2, length);
 }
 return Integer.parseInt(TempSecond);
 }

 public int GetMin(String currenttime){
 String TempMin;
 int length = currenttime.length();
 String TempString = currenttime.substring(length-2, length-1);
 if(TempString.equals(":")){
 if(currenttime.substring(length-4,length-3).equals(":")){
 TempMin = currenttime.substring(length-3, length-2);
 }else{
 TempMin = currenttime.substring(length-4, length-2);

 }
 }else{
 if(currenttime.substring(length-5,
 length-4).equals(":")){
 TempMin = currenttime.substring(length-4, length-3);
 }else{
 TempMin = currenttime.substring(length-5, length-3);
 }
 }
 return Integer.parseInt(TempMin);
 }

 public int GetHour(String currenttime){
 String TempHour;
 String TempString = currenttime.substring(1,2);
 if(TempString.equals(":")){
 TempHour = currenttime.substring(0, 1);
 }else{
 TempHour = currenttime.substring(0, 2);
 }
 return Integer.parseInt(TempHour);
 }

52

5.3.6 Database Class

In this project, SQLite has been chosen to create the database for this

application. As the report motioned in data base design (see section 5.2), it

stores the information that are required when application is running. For

instance the rule and condition are saved into database by observer when a

new subscriber join in, and they will be used later when observer checks the

quality of the service of the publisher who publishes data to this subscriber.

 private final static String DATABASE_NAME = "MSC.db";
 private final static int DATABASE_VERSION = 1;

 //variables of the rule table
 private final static String Rule_Table_Name = "rule_table";
 public final static String Rule_ID = "rule_id";
 public final static String Rule_Owner = "rule_owner";
 public final static String Rule_Type = "rule_type";
 public final static String Rule_Factor = "rule_factor";
 public final static String Rule_Information = "rule_information";

 //variables of the condition table
 private final static String Condition_Table_Name = "condition_table";
 public final static String Condition_ID = "condition_id";
 public final static String Condition_Owner = "condition_owner";
 public final static String Condition_Information
 = "condition_information";

The first two variables are the name and the version of the data base, which

are used to create the database when application starts. The rest of variables

are the attributes of the rule and condition table. Rule id and the condition id is

the primary key of each table, and the owner represents who owns this rule

and condition. The rest variables are used to save the corresponding

information.

Every time when database class is called, the database will be created if the

database does not exist, and the related table will be built.

 public MSCdb(Context context) {
 // TODO Auto-generated constructor stub
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 public void onCreate(SQLiteDatabase db) {
 String sql_rule = "CREATE TABLE " + Rule_Table_Name + " ("

53

 + Rule_ID + " INTEGER primary key autoincrement, "
 + Rule_Owner + " text, "
 + Rule_Type + " text, "
 + Rule_Factor + " text, "
 + Rule_Information +" text);";

 String sql_condition = "CREATE TABLE " +
 Condition_Table_Name + " (" +
 Condition_ID + " INTEGER primary key autoincrement, " +
 Condition_Owner + " text, " +
 Condition_Information +" INTEGER);";

 db.execSQL(sql_rule);
 db.execSQL(sql_condition);
 }

In database class, a method called ‘onUpgrade’ overrides the method from its

super class, which is used to upgrade the data base when new version is

coming. In this method, it drops all tables firstly, and then rebuilds the

database.

 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {

 String sql_rule_table = "DROP TABLE IF EXISTS "
 + Rule_Table_Name;
 String sql_condition_table = "DROP TABLE IF EXISTS "
 + Condition_Table_Name;

 db.execSQL(sql_rule_table);
 db.execSQL(sql_condition_table);
 onCreate(db);
 }

Every time if any class needs the information from any table, the ‘select’

method is called. The parameter of this method only requires the table name,

then all information about that table will be returned, and the information is

saved in a cursor.

 public Cursor select(String Table_Name) {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor cursor = db
 .query(Table_Name, null, null, null, null, null, null);
 return cursor;
 }

When observer receives the event from local broker at the first time, all

subscribers’ rule and condition are included in this event. In this time,

54

observer saves those rule and condition information into the data base, and

use them later.

 public void insert_rule_table(String rule_owner,String rule_type,
 String rule_factor, String rule_information)
 {
 SQLiteDatabase db = this.getWritableDatabase();
 /* ContentValues */
 ContentValues cv = new ContentValues();

 cv.put(Rule_Owner, rule_owner);
 cv.put(Rule_Type, rule_type);
 cv.put(Rule_Factor, rule_factor);
 cv.put(Rule_Information, rule_information);
 db.insert(Rule_Table_Name, null, cv);
 }

 public void insert_condition_table(String condition_owner,
 String condition_information)
 {
 SQLiteDatabase db = this.getWritableDatabase();
 /* ContentValues */
 ContentValues cv = new ContentValues();
 cv.put(Condition_Owner, condition_owner);
 cv.put(Condition_Information, condition_information);
 db.insert(Condition_Table_Name, null, cv);
 }

The database class still provides the delete function and it will be used when

subscriber changes their rule or condition in some case.

 public void delete(String table_name, String owner)
 {
 SQLiteDatabase db = this.getWritableDatabase();
 if(table_name.equals("Rule_Table_Name")){
 String where = Rule_Owner + " = ?";
 String[] whereValue ={owner};
 db.delete(table_name, where, whereValue);
 }else{
 String where = Condition_Owner + " = ?";
 String[] whereValue ={owner};
 db.delete(table_name, where, whereValue);
 }
 }

5.3.7 Local broker Class

Local broker is like the agent of the application, which communicates with

both publishers and subscribers to help them transmit data.

55

 private GPSservice gpsservice;
 private MapService mapservice;
 private Observer observer;
 private Event event;
 OtherServices otherservice= new OtherServices();
 public boolean switchservice = true;
 Context context;
 private String destinationservice;
 private String ServiceName = "Local Broker";
 Event dataevent;
 ArrayList<Event> arraylist = new ArrayList<Event>();

When this application starts running, local broker broadcasts an

advertisement to each service to set up the communication with them. From

the response events, local broker selects the services that is subscriber, and

then pass those events to the observer class to let it save the rules and

conditions; also the communication between the local broker and observer is

set up. After local broker sets up connection with all services, it starts helping

subscriber to requests data from publisher, and observer starts to check every

event as well.

 private void Advertisement(){
 event = new Event(this.ServiceName);
 Event GPSRespondEvnet;
 gpsservice = new GPSservice(this.context);
 GPSRespondEvnet = gpsservice.ServiceSetUp(event);

 Event MapRespondEvnet;
 mapservice = new MapService();
 MapRespondEvnet = mapservice.ServiceSetUp(event);

 for(int i=0;i<arraylist.size();i++){
 if((arraylist.get(i).GetServiceType()).equals("Subscriber"))
 {
 observer.ServiceSetUp(arraylist.get(i));
 }
 }

 if(GPSRespondEvnet.GetDataType().equals
 (MapRespondEvnet.GetDataType()) &&
 MapRespondEvnet.GetServiceType() !=
 GPSRespondEvnet.GetServiceType())

 this.RequestData();
 }

In this application, GPS service is supposed as the best service to offer the

location data, and local broker communicates with it when application starts.

56

In the real situation, sometimes it may be effect by some factors, so other

services will instead it to publish the location data.

 public void RequestData(){
 while(true){
 if(this.switchservice == true){
 dataevent = gpsservice.LoadCoords();
 mapservice.SetLocationData(dataevent);
 this.switchservice = observer.RuleandConditionCheck
 (dataevent, destinationservice);
 }else{
 Event OtherServiceRespondEvnet;
 OtherServiceRespondEvnet=
 otherservice.ServiceSetUp(dataevent);
 if(OtherServiceRespondEvnet.GetServiceType()
 .equals("Publisher")){
 dataevent = otherservice.LoadCoords(dataevent);
 mapservice.SetLocationData(dataevent);
 this.switchservice = observer.RuleandConditionCheck
 (dataevent, destinationservice);
 }
 }
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

5.3.8 Other Service Class

As the thesis talked about in previous, the RFID has been supposed as an

indoor location service to offer the data. Due to the time problem, this project

does not implement this part, and an example class which is called other

service is defined to instead of it.

The variables of this class is similar as the GPS class, which includes the

service id, service name, data type and the service type, as well as some

variables which is needed for this class.

 private int ServiceID = 1;
 private String ServiceName= "Other_Service";
 private String ServiceType = "Publisher";
 private String DataType = "Location Data";
 private Event OtherServiceEvent;

 public OtherServices(){}

57

This class still has the ServicSetUp method which is used to receive the

advertisement from local broker when it first time communicates with it.

 public Event ServiceSetUp(Event event){
 OtherServiceEvent = new Event(
 ServiceID, ServiceType,ServiceName,DataType);
 return OtherServiceEvent;
 }

When local broker starts requesting location data from this service, the

LoadCoords() method is called, and it responds the same type of event as the

GPS service to local broker. Like the coordinate and some information which

describes this service.

 public Event LoadCoords(Event event){
 this.SetLatPoint(event.GetLatitude());
 this.SetLngPoint(event.GetLongitude());
 OtherServiceEvent = new
 Event(this.GetLatPoint(),this.GetLngPoint(),
 this.GetServiceID(),this.GetServiceName(),
 this.GetService(),this.GetTime());
 return OtherServiceEvent;
 }

In this application, response time from publisher is the main factor to affect the

quality of the service. To make the service collaboration effect more clearly,

the sending time of this service is increased in one second when it every time

sends the event to local broker. For instance, we suppose the time range

between the first sending time and the seconding time is three seconds, in

this service, it will increase in one second between the second sending time

and the third sending time. In this way, this service wills not satisfy the rules

and conditions of their subscriber at a point, and the local broker will switch

back to the GPS service to request location data from it.

 int tempSecond = 1;
 int second, minute,hour;

 private String GetTime(){
 Date date = new Date();
 if(date.getSeconds() != 59){
 second = date.getSeconds()+tempSecond;
 hour = date.getHours();
 minute = date.getMinutes();

58

 }else{
 second = 0;
 if (date.getMinutes()!=59){
 minute = date.getMinutes()+1;
 hour = date.getHours();
 }else{
 minute = 0;
 if(date.getHours() != 23){
 hour = date.getHours() +1;
 }else{
 hour = 0;
 }
 }
 }
 String curTime = hour + ":"+minute + ":"+ second;
 return curTime;
 }

5.3.9 AndroidManifest.xml

In this application, the set up information is stored in an xml file. Some

services that are offered by Android SDK are required to be given the

permissions when it is used in this application. The permission of this

application is showed below.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msc"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="14" />
 <uses-permission android:name=
 "android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application android:icon="@drawable/ic_launcher" android:
 label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".MapService"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

In this application, the android version code and version name are both set in

version one, the minimal SDK version of android is set in version fourteen,

which means this application only can be compiled on version fourteen or

59

higher. Then some permission are set up for this application to get the

location data when it is running, like the ACCESS_COARSE_LOCATION is

declared to give the permission that this application can access the CellID or

WiFi to get the location. Permission.INTERNET is used to allow this

application to mange the application tokens in the windows manager. The

permission.ACCESS_FINE_LOCATION is used to allow this application to

receive the high quality of the location data, like the GPS. Finally some

attributes about the application are set, like the application icon, name.

Because the Google map is used in this application, therefore the library of

the Google map is set here as well.

60

Chapter 6

Conclusion and Future Works
In the following, we present the conclusion based on what was accomplished

and point out opportunities for future work.

6.1 Conclusion

Currently, the mobile devices offer many different services to their users, but

some of them are only available locally, or the quality of the service becomes

worse when the user is out of the service’s range. Therefore, the services

need to collaborate together to offer a good service to users, and it can not

reveal the user’s privacy.

In this project, three types of architecture have been designed to satisfy the

service collaboration, which are: the included broker, remote broker and the

intelligent gateway – distributed broker. To compare them, the included broker

architecture was selected as the target architecture to implement due to it

being the best in terms of anonymity and usability in different scenarios, and it

also meets the requirements for quality of service. Quality of service normally

uses rules and conditions to ensure the quality of the service collaboration in

the selection of alternative services and to ensure liveliness of services when

dealing with changing availability of collaboration services.

The java program with the Android SDK has been used to implement this

application, and it is quite useful to represent the principle of the proposed

service collaboration infrastructure. The application includes four parts, which

are: the subscribing service, the local broker, the observer and the publishing

service. The application runs as the process that is described in Figure 15.

6.2 Future Work

The application that we have implemented in this thesis can be considered

successful to some extent. However, due to time and space constraints, there

are still some parts that can be implemented better. We would like to point this

out for future work.

61

6.2.1 Implementation

In this project, this application just implemented the basic functions. Some

parts still can be implemented further, which are:

Support more Types of the Rules and Conditions

In this application, only one type of rule and condition is designed to satisfy

the situation which is described in scenarios. In fact, the different types of

services should have their own rules and conditions, so that more service can

be a part of this application, therefore, more types of rules and conditions

should be designed, and each service can choose their own type to restrict

their data.

Full Database Implementation

In this project, the full data base has been designed in Section 5.2, but only

parts of them are implemented in the application. In future work, the rest of

the data base should be implemented. This would allow more functions to be

offered to users.

Add more services

This application does not have the delay problem due to it only implementing

two services. In real situations, there may be many services collaborating

together; therefore, the data transmission may be affected due to too many

services transferring data at the same time. In this way, more services should

be added to this application to test it and improve its function.

Implement the RFID service

The RFID location service has been chosen as the indoor location service to

offer the location data to support the map service to show users the location

data when GPS becomes worse. Due to the time constraints, this part was not

implemented in this project, in future work, this part should be implemented to

show the real situation of the scenario which was talked about.

62

6.2.2 Architectures

There are three ways to place the broker within our architecture, and each of

them has their own advantages in different situations. In this project, it only

implements the included broker architecture. Therefore, the advantages of the

other two cannot be shown in this project. In future work, implementing all of

them, and then comparing them to get the most accurate idea of which one is

best under what situation would be ideal.

Bibliography
AIM. (2011). What is RFID. Retrieved from
http://www.aimglobal.org/technologies/RFID/what_is_rfid.asp

Android developers. (2011). Obtaining User Location. Retrieved from
http://developer.android.com/guide/topics/location/obtaining-user-location.html

Google Inc. (2011). Android everywhere. Retrieved from
http://www.android.com/developers/

Google Inc. (2011). About Google Maps. Retrieved from
http://support.google.com/maps/bin/answer.py?hl=en&answer=7060

Hinze,A., Michel,Y., & Eschner,L. (2009). Event-based communication for
locationbased service collaboration. In: ADC, vol. 92, pp. 127-136

Hinze,A., Rinck,R., and David,S. (2010). Anonymous Mobile Service
Collaboration: Quality of Service. University, Hamilton. New Zealand.

QuinStreet Inc.(2011). Android SDK. Retrieved from
http://www.webopedia.com/TERM/A/Android_SDK.html

Rinck.M. (2010). Implementing an Event-driven Service-oriented Architecture
in TIP (Unpublished master’s thesis). University of Waikato, Hamilton, New
Zealand.

Robosoft. (2011). NMEA 0183 Interface Standard. Retrieved from
http://www.robosoft.info/en/technologies/knowledgebase/nmea0183

Scientific Coponent. (2010). NMEA 0183 and GPS: Decoding the NMEA 0183
standard in your GPS Software Project. Retrieved from
http://www.scientificcomponent.com/nmea0183.htm

SQLite. (2011). Distinctive Features of SQLite. Retrieved from
http://www.sqlite.org/different.html

Technovelgy LLC. (2011). What is RFID? Retrieved from
http://www.technovelgy.com/ct/Technology-Article.asp

Wikipedia. (2011). Radio-frequency identification. Retrieved form
http://en.wikipedia.org/wiki/Radio-frequency_identification

Ziff Davis Inc. (2011). Smartphone Operating System. Retrieved from
http://www.geek.com/smartphone-buyers-guide/operating-system/

