
Choosing the right microcontroller: A comparison
of 8-bit Atmel, Microchip and Freescale MCUs

Mel Slade, Mark H. Jones and Jonathan Scott
Faculty of Engineering, The University of Waikato

November, 2011

Abstract—When choosing a microcontroller there are many
options, so which platform should you choose? There is little
independent information available to help engineers decide which
platform might best suit their needs and most designers tend
to stick with the brand with which they are familiar. This
is a difficult question to answer without bias if the people
conducting the evaluations have had previous experience with
MCU programming predominantly on one platform. This article
draws on a case study. We built three “Smart” Sprinkler Taps,
small, self-contained irrigation controllers, differing only in the
microcontroller unit (MCU) on the inside. We compare cost,
development software quality and hardware performance from
the perspective of a new user to each of the platforms.

I. INTRODUCTION

This article sets out to test three popular families of 8-bit
microcontrollers, Microchip, Freescale and Atmel, by compar-
ing MCUs each having similar specifications (as illustrated in
table I). The selection criteria was based on needing a low
power MCU with a minimum of 24 general purpose pins, an
ADC and timers for only a few dollars.

The task chosen to serve as the case study is the devel-
opment of a “smart” sprinkler. This was done for each of
the platforms in parallel by three final-year undergraduate
electronic engineering students. The task involved taking an
existing product (a Garden Mate R© two dial automatic tap
timer) and adding various extra facilities. The units were to
synchronise themselves with dawn, spread waterings through-
out the daylight hours, log activity to non-volatile memory for
later analysis, and most importantly alter watering patterns,
after a calibration period, based on changes in environmental
stimuli measured by the processors. These stimuli included
temperature and ambient light via the addition of a temperature
sensor and photo-transistor. Provision for future incorporation
of rain sensing was also included.

Unified Modelling Language (UML) activity diagrams were
used to design the code in order to keep the programs
consistent across platforms. The use of a common set of
documentation diagrams ensured that the software will behave
the same across each of the platforms while providing a
convenient way to document the software operation. The
diagrams used for this project are included as an appendix
of this document, as are the operating instructions that might
accompany the tap timers.

The modified tap-timer allows the operator to select the
frequency and period of watering cycles desired throughout

Microchip Freescale Atmel
PIC16LF1938 MC9S08QB8 ATtiny88-AU

Cost (NZD) $4.39 $1.98 $4.37
Pin Count (I/0) 25 24 24

Frequency (MHz) 32 20 12
Frequency (MIPS) 8 20 12

Flash (Kb) 28 8 8
EEPROM (bytes) 256 N/A 64

Ram (bytes) 1024 512 512
ADC Channels/ 11 8 6
Max Resolution 10-bit 12-bit 10-bit

Timers 5 3 2
PWM Yes Yes Yes

Communication SPI/I2C SPI SPI/I2C
Internal Temp No Yes Yes

Sensor
Comparator 2 1 1

Supply voltage (V) 1.8 - 3.6 1.8 - 3.6 1.8 - 5.5
Standby Current 60 250 100

(nA)
Operating Current 150 750 243

(µA) @ 1MIPS, 1.8V @ 1MIPS, 3V @ 1MIPS, 1.8V

TABLE I: Specification comparison of the microcontrollers

the day. For the first week, the system will adhere to the user’s
input, by opening and closing as often and for as long as set,
whilst gathering baseline temperature and ambient light data.
Once this calibration stage is complete the tap-timer engages
its “smart” mode where it adjusts the duration of each watering
window to match the previous day’s conditions.

II. HARDWARE

The original tap-timers were disassembled and retrofitted
with circuit boards designed around each of the new micro-
processor footprints. Figure 1 shows both top and bottom
views of each of the replacement boards. Apart from the
microcontroller, programming header and connection for an
external temperature sensor (on the Microchip board), the
circuits are laid out similarly. Figure 2 illustrates that from the
outside, the three sprinklers appear identical. The tap-timers
are fitted with a pair of 1.5V alkaline batteries which are also
used as the power supply for the new designs. The same input
switch locations and mechanisms, LED position and push
button are employed to enable minimal modification to the
case. An aperture is added to admit light for measurement of
insolation and detection of dawn, for solar synchronisation of
the watering cycle.

The Atmel and Microchip microprocessors are similar in

(a) Microchip PCB (Top) (b) Microchip PCB (Bottom)

(c) Freescale PCB (Top) (d) Freescale PCB (Bottom)

(e) Atmel PCB (Top) (f) Atmel PCB (Bottom)

Fig. 1: Top and Bottom Views of the Three “Smart” Sprinkler
Platforms Illustrating How Similar They Are.

Fig. 2: The three sprinkler prototypes which are outwardly
identical, with a different micro-controller in each.

cost although the Microchip MCU boasts much larger an
amount of program space, four times the amount of EEPROM
and lower power consumption figures. The Atmel has a higher
instruction frequency and wider operating range but for the
battery operated smart-tap-timer, low power, extra code space
and increased non-volatile memory are considered more im-
portant. It should be noted that the Microchip range of MCUs
have an instruction clock that is fixed at 1/4 of the oscillator
frequency. This means that a Microchip MCU with a clock
frequency of 32 MHz (such as the PIC16LF1938) equates to
an instruction frequency of 8 MHz or 8 Mips.

The Freescale chip is less than half the price of both the
Atmel and Microchip MCUs, however a major shortcoming
is its lack of EEPROM. Its flash memory can be written

in software but as the MCU is based on Von Neumann
architecture there is no distinction between program memory
storage and user storage space, so it is a case of user beware.

III. DEVELOPMENT

Despite the fact that the three micro-controllers seem fairly
equal, the experience with each platform and accompanying
IDE was anything but equal.

A. IDE and Development Kit

Microchip and Atmel sell their programmers and supply
their respective development environments (IDEs) free of
charge. The Microchip PICkit 3 programmer retails for $68.00
where the equivalent Atmel AVRISP2 retails for $73.50.
Freescale bundle their IDE and programmer (USB MULTI-
LINK BDME) together which retails for $217.76.

1) Microchip: MPLAB v8 was used with the lite version
(free) of the HI-TECH C compiler. MPLAB has a simple
interface with easy access to most of the features required
for compiling and downloading projects. MPLAB consumes
very little system resources and had no noticeable bugs. On
compilation of a project the compiler shows how much mem-
ory has been used as a percentage of total space available on
the specific MCU. This was helpful throughout development
as it allows the programmer to develop a feel for the memory
cost of new code additions.

2) Freescale: The Freescale development kit included
CodeWarrior, which is the Freescale IDE. CodeWarrior was
crowded with a bloated feel and didn’t always run smoothly.
This meant taking extra time to get familiar with what was and
wasn’t needed. One redeeming factor for CodeWarrior was the
highlighting of register names and global variables, allowing
the programmer to spot syntax errors quickly. CodeWarrior
supplies a graphical user interface (GUI) for generating ini-
tialisation code, which was found to be useful as this meant
less time was spent referring to the datasheet. The IDE
also featured a one-click compile and download button that,
provided no errors were detected, could compile the code and
program the MCU.

The freescale was the easiest to setup for programming as
the datasheets for both the MCU and the programmer itself had
the pin connections for in-circuit programming documented.

3) Atmel: AVR Studio 4 was used to develop code for the
Atmel MCU, which uses the GNU C compiler (GCC) that is
open source and widely available but had to be downloaded
separately. Much like CodeWarrior, AVR studio had a heavy
bloated feel. It should be noted that Atmel has a more recent
version of AVR Studio (AVR Studio 5) which is based on
the open source IDE Eclipse. This version doesn’t require
the compiler to be downloaded separately, supports code
completion and other advanced editing features not present
in either MPLAB or CodeWarrior. The Atmel situation is
changing, probably for the better.

B. Hardware configuration

The hardware configuration was largely dictated by the
board layout and the UML diagrams so there was little
freedom when deciding how to configure each of the MCUs.

The GUI provided with CodeWarrior lets the user generate
an initialisation routine without knowledge of register defini-
tions and peripheral interdependencies, which proved useful.
Configuring the MCU without the GUI can be challenging as
the datasheet can be unclear at times, i.e. the datasheet doesn’t
state clearly how to configure the internal clock to achieve a
given instruction frequency, although this was easily done with
the GUI, and the code it produced was commented. On the
whole the Freescale MCU provided more control than both
the Atmel and Microchip MCUs, i.e. more low power modes
allowing different peripherals to be run while other parts of
the MCU are shut off as well as offering much finer control
of clock frequency.

Configuration of both the Atmel and Microchips MCUs was
similar in that it involves following through the guidelines set-
out in the respective datasheets. The Atmel datasheet provides
code examples in both C and Assembler, while the Microchip
datasheet provides code examples only in C. However, the
Microchip datasheet was considered to be the easiest to read.

C. Programming

1) Microchip: Register definitions as defined in the HI-
TECH compiler’s include-files were the same as used in
the datasheet. This simple expedient reduced confusion when
writing code. The ability to address single bits in each register
made it easier to deal with flags, control external hardware
attached to a port, and configure peripherals such as the ADC
without dealing with the whole register.

Real time clocking was required in this application but
wasn’t available on the Microchip MCU. While interrupts
could be generated to emulate a real-time clock, they couldn’t
be generated in ideal fractions of seconds. One solution to this
was to trim the reference clock frequency but this then affects
other peripherals running from the clock.

Unexpected behaviour can occur when reading from, then
writing to, adjacent bits on a GPIO port in quick succession.
When you perform an instruction such as a bit-set on a register
the PIC first reads the entire byte of the register, then it
performs the operation on the number it has just read, and
finally it writes the number back to the register. This is fine,
except on ports. If you perform such a read-modify-write
operation on a port register the MCU reads the actual state
of the pins, rather than the output latch. If the port’s output
pins have yet to slew to their final levels from a previous,
recently-executed write, the read gets the previous, not the
“current” value. This period can be quite long if there is
significant capacitive loading on the pin. In fact, with sub-
microsecond instruction times, normal capacitive loading can
result in unexpected operation, as shown in figure 3.

Using the EEPROM was straightforward as routines were

Fig. 3: Measured output signals on a PIC MCU with sequential
bit operations acting on different bits applied to an output port
register. Note that GPIO4 is reset to a previous value when
the second instruction tries to modify only GPIO5.

provided by the HI-TECH compiler to handle both the reading
and writing of data.

With a set stack size of 16 words, the Microchip had limited
ability to move through several sub-routines. Subsequently,
recursion would quickly result in stack overflow, and is not
supported by the compiler. This limitation was not present in
either of the other MCUs.

2) Freescale: CodeWarrior provided soft definitions for ac-
cessing individual bits within registers, however these weren’t
as easy to follow as the Microchip MCU as the definitions
were included in a separate file (as opposed to being directly
in the datasheet).

The Freescale had real-time clocking, which was easily set-
up by the GUI with a count value that could be modified if
the clock was found to be to fast or slow.

Since the Freescale MCU doesn’t have EEPROM, flash
memory had to be used for all non-volatile storage. For those
unfamiliar with the differences between flash and EEPROM,
flash must be erased in blocks (called pages) but can be written
byte-by-byte. The restriction is that when writing a byte to
flash, the destination byte must have previously been erased
which means erasing an entire 512 byte page of memory.
Basically, the Freescale lets you use some of your leftover
code space to store your own variables (provided your code
doesn’t need to use that space while operating). Configuring
both the compiler and MCU to allow writing to flash from
within the code was not adequately documented and required
a lot of trial and error to get working. To achieve flash writes a
function that copies the data from one location into flash must
be loaded into RAM, which is done with another function.
The compiler required directives to keep track of where the
functions were to be written when the MCU was programmed
and then where it would end up at execution time.

3) Atmel: Unlike the Freescale and Microchip, the Atmel
did not offer the ability to access individual bits within a

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Vdd (V)

10−10

10−9

10−8

En
er

gy
(J

)

PIC16F1827 @ 4 MIPS
PIC16F688 @ 2 MIPS
PIC12F675 @ 1 MIPS

ATtiny25V @ 6.4 MIPS
ATtiny13V @ 4.8 MIPS
M9S08QG8 @ 8 MIPS

Fig. 4: Energy consumed per instruction cycle for six low
power 8-bit MCUs

register. This meant that it was up to the user to implement
their own macros for setting and clearing bits, which can be
daunting for those not used to defining their own macros. This
isn’t necessarily a negative: Not relying on inbuilt macros leads
to greater code portability and a slight performance increase
when setting or clearing multiple bits in succession.

While the Atmel did not have a real time clock, it had a
comparator that could be configured to work with a timer. This
meant the timer would count to a value set in the appropriate
register before resetting and generating an interrupt. This count
value could be modified if the clock was found to be too fast
or too slow.

D. Efficiency

In a separate investigation, the energy efficiency of three
MCUs from the same three manufacturers was investigated.
The MCUs used in that investigation where lower pin count
versions similar to the ones compared in this case study.
Figure 4 shows the amount of energy each investigated
MCU consumed per instruction while operating at their most
power efficient (in terms of instructional efficiency) point.
This graph shows so much overlap between not only models
but manufacturers that one could conclude that these results
are representative more of the limitations of microprocessor
fabrication technology than processor design. This indicates
there are no clear winners in terms of energy per instruction
when each chip is operating in its highest efficiency state.

However, figure 5 shows that the number of instruction
cycles each chip takes to complete the exact same function can
vary significantly between MCUs. This graph is independent
of clock frequency and has already taken into account that
the Microchip MCUs only complete one instruction cycle for
every four clock cycles. These results suggest that the Atmel
ATtiny88-AU running at 12 MHz can execute code more than
twice as fast as the Freescale MC9S08QB8 running at 20 MHz
and over four times faster than the Microchip PIC16LF1938
running at 32 MHz.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
st

ru
ct

io
n

cy
cl

es

×106

PIC16F1827
PIC16F688
PIC12F675
ATtiny25V
ATtiny13V
M9S08QG8

Fig. 5: Number of instruction cycles required to complete the
exact same function

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Vdd (V)

10−7

10−6

10−5

10−4

10−3

En
er

gy
(J

)

PIC16F1827
PIC16F688
PIC12F675

ATtiny25V
ATtiny13V

MC9S08QG8 E+W
MC9S08QG8 W

Fig. 6: Energy cost of writing to non-volatile memory.

The amount of energy required to erase and write to non-
volatile memory was also measured and compared. The results
of these measurements are shown in 6. This shows that the
Atmel MCUs consumed, at times, over ten times more energy
when writing to non-volatile memory than the Freescale and
Microchip MCUs. In the case of the Freescale MC9S08QG8,
which has flash instead of EEPROM, there are two traces
shown. Since flash memory must be erased in blocks (pages),
the trace labelled ‘MC9S08QG8 E+W’ has been calculated
by taking the total energy cost of erasing a page (512 bytes),
dividing that by 512 and adding it to the amount of energy
required to write one byte. The trace labelled MC9S08QG8
W represents the amount of energy used to write one byte
assuming the destination byte has already been erased

IV. CONCLUSION

Apart from the high cost of the development kit the
Freescale MCUs offer fantastic value for money and is a
clear winner for low cost applications not requiring EEPROM.
The Freescale MCUs tend to offer greater control for the
programmer, such as the different levels of sleep, highly
configurable clock frequency, a choice of using pages of flash

for code space or program variable storage. This flexibility
and different architecture mean the Freescale is more suited
to professionals although the GUI configuration interface helps
alleviate issues for new users.

For applications requiring non-volatile memory storage, or
where program size is more important and execution speed
less so, the Microchip range is a sensible choice. The doc-
umentation is clear, the IDE is simple and when used in
combination with the PICKIT programmer offers a quick and
easy way to compile and download code. The bundled version
of the compiler is adequate for almost all situations and the
Microchip tended to be more power efficient when writing to
non-volatile memory and whilst in standby mode.

The Atmel MCUs offered very high processing efficiency
and documentation comparable to that of the Microchip. It
is less suited to the tap-timer project than the Microchip
MCU as the extended supply voltage range and high code
execution performance aren’t necessary for this application.
The documentation included useful code examples in both C
and Assembler and there is a large online community based
around Atmel MCU development.

The verdict is that the Microchip MCU was the most
suited to this particular project due to its ease of use, clear
documentation and non-volatile memory. For medium-high
volume manufacturing the Freescale would be the first choice
simply due to cost. However, this would require redesigning
the software to accommodate the lack of EEPROM or use the
flash effectively. For projects requiring more computational
power the Atmel would become more favourable. Microchip
offer a very large range of MCUs, each suited to different
applications. This can mean it would be possible to select
a Microchip MCU that is better suited to specific project
requirements than the more one-size-fits-all approach taken
by Atmel.

V. ACKNOWLEDGEMENTS

The authors are indebted to a number of contributors. Punit
Solanki was observed tackling Atmel microcontrollers for the
first time. Shabir Azizi provided some circuit designs and
sprinkler control theory. Michael Cosgrove, Pawan Srestha
and Weiqian Zhou provided hardware and software support.
One of the authors was supported by a Waikato University
scholarship.

REFERENCES

[1] T. Honold, “Seventeen steps to safer c code,” Embedded Sysems Design,
vol. 24, no. 4, p. 16.

[2] M. Jackson, “Representing structure in a software system design,”
Design Studies, vol. 31, no. 6, pp. 545–566, 2010.

[3] J. Jacky, The Way Of Z: Practical programming with formal methods.
Cambridge, New York: Cambridge University Press, 1997.

[4] D. Doron, “Creation and validation of embedded assertion statecharts,”
S. Man-Tak and D. Kadir Alpaslan, Eds., vol. 0, pp. 17–23.

[5] H. Warnars, “Object-oriented modelling with unified modelling language
2.0 for simple software application based on agile methodology,” Be-
haviour & Information Technology, vol. 30, no. 3, pp. 293–307, 2011, iSI
Document Delivery No.: 762IT Times Cited: 0 Cited Reference Count:
18 Warnars, H. L. H. S. Taylor & francis ltd Abingdon.

[6] G. Stefania, “Formal test-case generation for uml statecharts,” L. Diego
and M. Mieke, Eds., vol. 0, pp. 75–84.

[7] S. Tim, “Transformation of uml state machines for direct execution,”
M. Wolfgang, Ed., vol. 0, pp. 117–124.

[8] G. Pint, “Impact of statechart implementation techniques on the effec-
tiveness of fault detection mechanisms,” I. Majzik, Ed., vol. 0, pp. 136–
143.

[9] J. K. Peckol, Embedded systems : a contemporary design tool. Hobo-
ken, NJ: John Wiley & Sons, Inc, 2008.

[10] T. Wilmshurst, An introduction to the design of small-scale embedded
systems. Basingstoke: Palgrave, 2001.

[11] “Software documentation - http://en.wikipedia.org/wiki/software
documentation,” 29/06/2011.

VI. APPENDIX—UML DIAGRAMS

Documentation ensures that the pre-determined specifications of the project are met, which is important as this is often
cited as one of the primary reasons why software projects fail [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. To document
this project UML (unified modelling language) was chosen. Figure 7 shows the overview page of the UML documentation.
Figure 8 summarises the entire set of diagrams required for the “smart” sprinkler. While UML is not yet easily capable of
generating code from a diagram, it offers an easy to comprehend, a visual representation of the work-flow of a piece of
software, including the inter-dependencies of tasks. It should be noted that while the UML documentation for the project is
very complete in outlining the functions, it does not give clues in how to implement them in software.

Figure 7 shows the outline of the code with main and interrupt routines in two swim lanes. Figure 8 presents the entire set
of UML activity diagrams defining the smart sprinkler code.

Main ISR

Increment nChrons

minOver = TRUE
minutes++

onMinutes++
nChrons = 0

minutes = 0
hours++

hours = 0 days++
DOW++

WHILE(1) (Continuous Loop)

Read push button

PBFLAG = TRUE

DOW = 1

Sleep

A

B

C

D

F

G

E

H

J

I

DOW > 7

nChrons >
nChrons/minute

hours > 23

minutes > 59

No

No

Yes

No

No

Yes

Yes

Yes

Fig. 7: An example of a UML activity diagram for the “smart” sprinkler project, the right-hand swim lane illustrating the Main
line, the left-hand swim lane illustrating the interrupt service routines, handling time keeping and push button events.

Main ISR

Increment nChrons

minOver = TRUE
minutes++

onMinutes++
nChrons = 0

minutes = 0
hours++

hours = 0 days++
DOW++

WHILE(1) (Continuous Loop)

Read push button

PBFLAG = TRUE

DOW = 1

Sleep

A

B

C

D

F

G

E

H

J

I

DOW > 7

nChrons >
nChrons/minute

hours > 23

minutes > 59

No

No

Yes

No

No

Yes

Yes

Yes

(a) Main & ISR Routines

Variables (suggested based on one implementation)

unsigned char powCount = 0;
unsigned char DOWbyte = 0;
unsigned char cTemp = 0;
unsigned char deBounce = 0;
unsigned char ERRORFLAG = 0;
unsigned char FLATFLAG = 0;
unsigned char RAINFLAG = 0;
unsigned char SWITCHCHANGED = 0;
unsigned char read1 = 0;
unsigned char read2 = 0;
unsigned char read3 = 0;
unsigned char read4 = 0;
unsigned char oldRead1 = 0;
unsigned char oldRead2 = 0;
unsigned char oldRead3 = 0;
unsigned char oldRead4 = 0;
unsigned char SW1mode = 0;
unsigned char SW2mode = 0;
unsigned char SWITCH1 = 0;
unsigned char SWITCH2 = 0;
unsigned char pbDelay = 0;
unsigned char TAPFLAG = 0;
unsigned char nWatersPerDay = 0;
unsigned char lengthOfDay = 0;
unsigned char nDays = 0;
unsigned char tOn = 0;
unsigned char tDef = 0;
unsigned char nCalDays = 0;
unsigned char CAL = 0;
unsigned char TRUEDAWNFLAG = 0;
unsigned char FIRSTDAWNFLAG = 0;
unsigned char FIRSTDUSKFLAG = 0;
unsigned char phase = 0;
unsigned char oldPhase = 0;
unsigned char NORMOPFLAG = 0;
unsigned char RECORDFLAG = 0;

unsigned short int i = 0, j = 0;
unsigned short int insol = 0;
unsigned short int sumMinutes = 0;
unsigned short int tPHIhat = 0;
unsigned short int sPHIbar = 0;
unsigned short int TAsum = 0;
unsigned short int SAsum = 0;
unsigned short int timeBetweenWatering = 0;
unsigned short int vBattLoad = 0;
unsigned short int vBattLoadTemp = 0;
unsigned short int phaseChangeHour = 0;
unsigned short int DAWNLEVEL = 0;

unsigned long int sumInsol = 0;
unsigned long int sumTemp = 0;
unsigned long int TAhat = 0;
unsigned long int SAbar = 0;
unsigned long int tOnSum = 0;
unsigned long int normTOnSum = 0;
unsigned long int maxTOnCounter = 0;
unsigned long int maxTOnSum = 0;
unsigned long int maxTOn = 0;
unsigned long int avLight = 0;
unsigned long int sumLight = 0;
unsigned long int readCount = 0;
unsigned long int daySecs = 0;
unsigned long int nightSecs = 0;
unsigned long int Data = 0;
unsigned long int NVonMinutes1 = 0;
unsigned long int NVonMinutes2 = 0;
unsigned long int NVtOn1 = 0;
unsigned long int NVtOn2 = 0;
unsigned long int NVnormOn1 = 0;
unsigned long int NVnormOn2 = 0;
unsigned long int NVmaxOn1 = 0;
unsigned long int NVmaxOn2 = 0;

extern unsigned char pbFLAG;
extern unsigned char flashCount;
extern unsigned char nChrons;
extern unsigned char seconds;
extern unsigned char minutes;
extern unsigned char hours;
extern unsigned char DOW;
extern unsigned char CHECKPBFLAG;
extern unsigned char LEDFLAG;
extern unsigned char DAWNDETECTFLAG;
extern unsigned char READSWITCHFLAG;
extern unsigned char TAPDRIVEFLAG;
extern unsigned char WATERINGFLAG;
extern unsigned char LOGTIME;
extern unsigned char READTIME;
extern unsigned char TWILIGHTADJUSTFLAG;
extern unsigned char MIDNIGHT;
extern unsigned char timeOut;
extern unsigned char pbCounter;
extern unsigned short int days;
extern unsigned short int delay;
extern unsigned long int onMinutes;

(b) Suggested Variable Names

Update switch variables
(if required)

Store temp values

Read switches changed it

Time to read
switches (every

second)

A

Have values
changed

No

Yes

Yes

No

(c) Switch Reading Routine

Power up sensors

Wait until sensors electronics
stabilise

Read insol and temp

Sensors off

Accumulate insol, temp (if positive)
and minutes

RAINFLAG = TRUEDoes sensor
detect rain

Time to read
sensors (every

minute)

B

No

Yes

Yes

No

(d) Data Collection Routine

CAL = TRUE
nCalDays = 0

sumMinutes = 0
sumInsol = 0
sumtemp = 0

TAhat = sumTemp/sumMinutes

SAbar = sumInsol/sumMinutes

nCalDays
++

TAsum += TAhat
SAsum += SAbar

CAL = FALSE

tPHIhat =
TAsum/nCalDays

sPHIbar =
SAsum/nCalDays

TRUEDAWNFLAG ==
TRUE

Switches touched

nCalDays >=
NCALDAYS

TAhat > 5
degrees c

Time to sum
sensor data
(midnight)

In CAL period

C

No

Yes

Yes

No

Yes

Yes

Yes

No

(e) Data Interpretation Routine

Look up tDef

tOn = tDef

TAPFLAG = OFF

tDef = (tDef*3)/4

Calculate watering
window based on
frequency and run

time

tOnSum += ton

normTOnSum += tdef

TAPFLAG = ON TAPFLAG = ONTAPFLAG = ON

deltaS = SAbar/S(phi)bar

tOn = tDef*deltaT*deltaS

deltaT =
TAhat/T(phi)hat

maxNormTOnSum = maxNormTOnCounter * maxNormTOn

maxNormTOnCounter++

maxNormTOn = tOn

delay = 0

Accumulates both

minute afterwards is

tDef > period
between watering

is tOn >
maxNormTOn

Is it time to water
(within tOn of
DAWN+delay)

Is it time to water
(within tOn of
DAWN+delay)

Within one of
the calculated

watering
windows

is current DOW
stored within

DOWbyte

Is it time to trigger
watering (every

minute)

is days % ndays
== 0

What mode of
operation

In CAL period

D

Reset

Yes

No

Yes

Yes
Yes

NoNo

YesYes

Yes

No

Daily nDays

NoNo

Certain days

Yes

No

No

(f) Water Triggering Routine

Clear vBatt

Set timeout

While CAMSWITCH == OPEN TAPFLAG == ON RAINFLAG == FALSE FLATFLAG == FALSE and not timed out

While CAMSWITCH == CLOSED TAPFLAG == OFF

ERRORFLAG ==
ON

Calculate battery
averages

Read vBatt

Drive = OFF

Drive = OFF

FLATFLAG = FALSE

TAPFLAG = OPEN

TAPFLAG = CLOSED

DRIVE = ON
Measure vBattLoad

DRIVE = ON

FLATFLAG = TRUE

Opens tap when required

Is it in 'OFF' mode

Is it in 'ON' mode

Is vBattLoad <
FLATTBATT

Is it time to check
tap drive (every

second)

Has it Timed Out

Is TAPFLAG ==
CAMSWITCH

E

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

Yes

(g) Tap Drive Routine

Turn LED on
briefly every
few seconds

Turn LED
off

Turn LED
on for 1 s

Turn LED off
for 1s

Turn LED
on

sprinkler is still

Reason for LED
(every second)

F

Flat Battery

Failure

Normal Operation

(h) LED Flash Routine

dusk = current time

lengthOfDay = dusk - dawn(6AM)

Adjust clock scaler

FIRSTDAWNFLAG = FALSE

Write 6 AM into clock

oldPhase = phase

oldPhase = phase

FIRSTDUSKFLAG = FALSE

dow++
days++

FIRSTDAWNFLAG = TRUE

onMinutes = 0 sumInsol = 0 sumtemp = 0
TRUEDAWNFLAG = TRUE

sumLight += insol

nightSecs++

daySecs = 0

phase = NIGHT

daySecs++

nightSecs = 0

phase = DAY

readCount++

Store recent phase change hourStore recent phase change hour

days < 1

first dusk after
boot

FIRSTDAWN
FLAG ==

TRUE

Is current time
6am +- LSB of

clock scaler

phase == DAY

oldPhase ==
phase

daySecs > 1800nightSecs > 1800

Is it light enough
to be day

Is it time to
check light level
(every second)

G

No No

Yes

No

No No

Yes

No

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

No

Yes

No

(i) Solar Synchronisation Routine

Calculate mean light level

Move the 'twilight' level to half
way between the previous

level and the average

Has a phase
change occurred

in the last 20
hours

Is it time to adjust
"twilight" level
(every hour)

H

Yes

Yes

No

(j) Twilight Adjustment Routine

Store current clock scalar

Store "Twilight" light level

NVnoPowerUps++

NVtapOn += tOnSum

NVminutes += onMinutes

NVmaxNormOn +=
maxNormTOnSum

NVnormOn += normTOnSum

Is it time to Log
(every hour)

I

Yes

No

(k) Non-volatile Data Logging Routine

delay++

Wait 5 s while the push button is still pressed

Master Reset

delay = 0

PBFLAG = FALSE

Time to check push
button state (every

second)

delay > 12

No
Is button still pressed

down

Is button still pressed
down

No
PBFLAG == TRUE

J

Yes

No

Yes

Yes

No

Yes

Yes

No

(l) Push Button Handler Routine

Fig. 8: The complete set of UML diagrams documenting the “smart” sprinkler firmware. When reading an electronic copy of
this manuscript full detail can be seen by zooming in as required.

VII. APPENDIX—SMART SPRINKLER OPERATING INSTRUCTIONS

Smart Sprinkler Operating Manual

The Smart Sprinkler Tap is a self-contained garden sprinkler that requires no complicated installation and
features a simple user interface. It will typically run for a year on two AA batteries. It automatically spreads
waterings throughout the day, always starting at dawn. Once set up to water your plants you can forget
about wasting water or plants getting insufficient water if the weather gets hotter. The Smart Sprinkler Tap
automatically adjusts the duration of watering to suit the growing conditions!

LED Indicator

In normal operation the LED will flash a “heartbeat” like a smoke alarm to assure you that it is working.
If a delay has been set (see below), the LED flash count corresponds to the time delay set by the user. If
the battery begins to go flat, the LED will remain on. Rapid flashing indicates a hardware failure.

Installation

Set up your irrigation pipe and sprinkler heads as desired. Connect the Smart Sprinkler Timer to the
tap, and the irrigation pipe to the outlet of the Smart Sprinkler Timer. Turn on the water. Install the
batteries. The Smart Sprinkler Timer will open and immediately close to confirm correct operation of the
valve mechanism.

Setup

Programming Frequency

To set the frequency of watering adjust the first dial accordingly. Choose either watering several times a
day (12,8,6,5,3,2,1), or watering every several days (1,2,3,7).

In some markets the Frequency dial will be labelled with certain days on which it is permitted to water.
In this case, before installing the batteries adjust the day dial to the current day of the week so the Smart
Sprinkler knows what day of the week it starts on. Then adjust the dial to set the appropriate days to
water.

Programming Duration

To set the duration adjust the second dial accordingly — choosing the duration in minutes. (“OFF”, 1, 3, 5,
10, 15, 20, 30, 60, 90, 120, “ON”). In the first few days of operation, you should adjust the duration to suit
conditions, so that plants get enough water, but not too much. Once this adjustment process is complete,
do not touch the controls. The Smart Sprinkler will make those adjustments for you. If you change the
settings, the timer will assume you have made changes to your irrigation system, and will water as you ask
until a few more days go by. When left alone, it starts to make its own changes.

If you wish to prevent all watering select the “OFF” position.
If you need to turn on the water supply to maintain or adjust the irrigation system, selct the “ON” position.

Adjusting Delay After Dawn

If you have several Smart Sprinklers in the one garden, you may want to delay the start of watering on some
of them so that they do not all go off at the same time. A one-hour delay may be requested by pressing the
recessed push button. To adjust the delay after dawn at which the sprinkler is to begin watering press the
push button once per hour of delay1. The heartbeat flash counts out the delay of each individual timer. If
for any reason the sprinkler needs to be reset simply hold the push button down for 5 or more seconds or
alternately remove and replace the batteries.

1The maximum delay after dawn is 12 hours, if the push button is pressed more than 12 times the delay will be reset to zero.

