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Embedding negative structures to model holes and cut-outs
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It has now been established that geometric boundary conditions and continuity conditions can
be modelled by using either positive or negative stiffness or inertia type penalty term [1-5].
The experience of working with negative stiffness and inertial parameters has led to the
question: what if both stiffness and mass were to be taken as negative? Changing the sign of
all stiffness and inertial terms of a structure is simply equivalent to multiplying both sides of
an eigenvalue equation by minus one, which does not change its frequencies or modes.
Basically, a negative structure in such a sense has the same vibratory properties as that of its
positive counterpart, although the structure itself may not have a physical meaning.

However, an interesting question emerges about the behaviour of a structure formed by
attaching such a negative structure to a larger positive structure: would it be possible to effect
a hole or a cut-out in a plate by embedding a “negative plate” to a plate without the hole? The
idea is that the negative plate to be attached must have the same shape as that of the hole and
the same magnitude of stiffness and mass distribution but with opposite sign (see Figure 1).
The negative plate unit would be bonded to the larger (uncut) plate by using distributed
penalty stiffness over the area of bonding to prevent any relative motion between the negative
part and the positive part.

To see if this concept works, a cantilever beam of length L, flexural rigidity EI, and mass per
unit length m was made into a free-free beam of length L/2, by attaching another cantilever
beam of length L/2, flexural rigidity –EI and mass per unit length –m. The two beams were
connected by means of a uniform distribution of elastic springs of high stiffness k per unit

Figure 1
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length along the entire length of the negative beam, and a Rayleigh-Ritz analysis was carried
out to determine the natural frequencies and modes (see Figure 2). Positive and negative
values were used for k, and the average of the two results was taken to minimise any error
due to violation of the constraint condition along the bonded length.

The result was interesting. Using a series of 7 terms each for the two cantilever beams and a
non-dimensional stiffness coefficient α  = 1011, which may be regarded as a penalty
parameter, the first three non-zero natural frequencies of the free-free beam were determined.
These are given in Table 1 together with those calculated using a straight-forward Rayleigh-
Ritz approach with simple polynomials. Interestingly, while the first natural frequency is
slightly worse than that obtained using simple polynomials for a free-free beam, the second
one is slightly better and the third is worse. It is not clear why the trend changes but, unlike in
typical penalty applications where the penalty terms are used to enforce geometric boundary
conditions, in this case, they are indirectly being used to relax the conditions at the centre of a
clamped beam to make to the free end of a smaller beam. However, the results show that
embedding a negative structure to model a cut-out may be possible. While this may seem
encouraging, it has to be stated that the use of more terms for the displacement or the use of a
negative beam of very short or very long length causes numerical problems. In addition, the
first two natural frequencies are not exactly zero but are either small values or complex
numbers. This may be due to the fact that the set of functions used are not from a complete
set that would allow perfectly free conditions to be modelled. For the final free-free beam, all
admissible functions used, when extended to the original clamped support point, have a zero
displacement and a zero slope. Another potential contributing factor is that with penalty terms
it is not possible to obtain a complete cancellation of the positive structure by the negative
structure in practical applications because the penalty values must be finite. Further
investigations are being conducted to identify the source(s) of the problem and to see if these
could be addressed by using other types of admissible functions.

Figure 2
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7 terms per beam
with α = ± 1011

Simple polynomial 7
terms

Exact

ω1 4.732 4.730 4.730

ω2 7.874 7.971 7.853

ω3 11.665 11.367 10.996

Table 1 First three non-zero natural frequencies of a free-free beam
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