A Monte Carlo study of two Compton camera first-plane detectors

Chibueze Zimuzo Uche Howell Round Michael Cree

School of Engineering University of Waikato

Introduction

Anger camera

Compton camera

Image construction

Aim

 To investigate the suitability of two possible detectors, silicon and germanium as the Compton camera's first plane detector.

Major criteria for the investigation:

- Doppler broadening
- Compton efficiency

Simulation and materials for study

The GEANT4 Monte Carlo simulation toolkit

→ it offers the flexibility to model the steps of the imaging process and identify the changes that have impact on Compton camera performance.

property	Si	Ge
effective atomic number	14	32
density (g cm ⁻³)	2.3	5.3

Compton scattering (what you were taught)

Compton scattering (what really happens)

Doppler Broadening

So incident photon can be scattered over a range of angles, not a specific angle!

How Doppler broadening affects the electron energy spectrum (first plane) E = 140.5 keV

How Doppler broadening affects the electron energy spectrum (first plane) E = 140.5 keV

Validation of simulated Doppler uncertainty with theoretical prediction

Variation of Doppler broadening at different incident energies

Variation of Doppler broadening in the selected materials (140.5 keV)

Image degradation (FWHM) due to Doppler broadening for the selected materials

Theoretical efficiencies with respect to Compton scattering for selected materials

Efficiency evaluation of the two detectors across experimental thickness at 140.5 keV

Efficiency evaluation of the two detectors across experimental thickness at 511 keV

Analysis to determine the optimal detector with respect to efficiency

Material	Optimal thickness (mm)	Single efficiency ratio at 140.5 keV	Single efficiency ratio at 511 keV	Multiple efficiency ratio at 140.5 keV	Multiple efficiency ratio at 511 keV
Si	10	1.64	1.00	1.50	0.67
Ge	5	1.00	1.00	1.00	1.00

Conclusion

Si is a better scatterer material than Ge

• less Doppler broadening degradation

 better single interaction scattering efficiency ratio at lower energies → same at higher energies.

Other considerations are that silicon operates better at room temperature and also has lower cost.