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ABSTRACT

The Fokker–Planck equation for cosmic-ray particles in a spatially varying guide magnetic field in a turbulent
plasma is analyzed. An expression is derived for the mean rate of change of particle momentum, caused by
the effect of adiabatic focusing in a non-uniform guide field. Results of an earlier diffusion-limit analysis are
confirmed, and the physical picture is clarified by working directly with the Fokker–Planck equation. A distributed
first-order Fermi acceleration mechanism is identified, which can be termed focused acceleration. If the forward-
and backward-propagating waves have equal polarizations, focused acceleration operates when the net cross helicity
of an Alfvénic slab turbulence is either negative in a diverging guide field or positive in a converging guide field. It
is suggested that focused acceleration can contribute to the formation of the anomalous cosmic-ray spectrum at the
heliospheric termination shock.
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1. INTRODUCTION

One of the most important problems of modern astrophysics is
to explain how cosmic-ray particles are accelerated to relativistic
energies in powerful sources of nonthermal radiation. For a long
time, diffusive first-order Fermi acceleration at shock fronts has
been regarded as a prime candidate for particle acceleration
in astrophysics (for reviews see Drury 1983; Blandford &
Eichler 1987). Modern TeV air-Cherenkov telescopes have
indeed resolved the shock regions in supernova remnants and
identified the shocks as strong emission regions of TeV photons
generated by the accelerated particles (Hinton & Hofmann
2009). Yet the recent observations of energetic anomalous
cosmic-ray ions in the vicinity of the solar wind termination
shock by the Voyager spacecraft indicated unexpectedly that the
intensity of the anomalous cosmic rays did not peak at the shock
(Stone et al. 2005, 2008; Decker et al. 2008), in sharp contrast
to the prediction of diffusive shock acceleration theory. This
disagreement motivates revisiting the problem of cosmic-ray
acceleration in partially turbulent cosmic magnetic fields.

An important aspect, left out in the earlier work on cosmic-
ray particle acceleration, is the presence of large-scale spatial
gradients in the guide magnetic field. The gradients modify
the mirror force that acts on the energetic particles, adding
to the Lorentz force exerted by the guide magnetic field and
the superimposed turbulent magnetic and electric fields from
magnetohydrodynamic plasma fluctuations. Roelof (1969), Earl
(1976), Kunstmann (1979), and Spangler & Basart (1981)
identified an effect of adiabatic focusing due to particle pitch-
angle scattering by the turbulent magnetic field in the presence of
the mirror force. Adiabatic focusing has been shown to modify
particle transport along the guide magnetic field and to give an
additional spatial convective term in the equation for an evolving
particle distribution.

Schlickeiser & Shalchi (2008) and Schlickeiser (2009) re-
cently argued that, similarly, the joint action of the mirror force
and particle scattering by the turbulent electric field compo-
nent also leads to an additional convective term in momentum
space. The new convective term represents either first-order
Fermi acceleration of particles, referred to as focused acceler-
ation, or deceleration of particles, referred to as focused de-

celeration, depending on the sign of the product LHc. Here,
L−1 = −d ln B0(z)/dz denotes the focusing length of the guide
magnetic field B0(z) and Hc = (I + − I−)/(I + + I−) ∈ [−1, 1]
is the cross helicity of magnetohydrodynamic plasma waves,
defined by the relative intensities of forward (I +) and back-
ward (I−) propagating waves. It should be emphasized from
the outset that degenerate (Hc → ±1) cross helicity values are
expected in the upstream region of shock waves in space, be-
cause the upstream precursor cosmic-ray distribution function
amplifies (damps) the forward (backward) propagating waves
(Schlickeiser & Shalchi 2008).

The purpose of this paper is twofold. First, we present
an alternative derivation for the rate of focused acceleration/
deceleration, based on the Fokker–Planck cosmic-ray transport
equation, clarifying the physical picture by a simple and direct
method. Second, we suggest that the additional effect of fo-
cused acceleration/deceleration can contribute to the formation
of anomalous cosmic-ray distributions observed near the helio-
spheric termination shock. Our analysis strongly suggests that
the plasma microphysics of plasma wave generation, amplifica-
tion, and damping is decisive for the efficient diffusive shock
acceleration of cosmic-ray particles.

2. COSMIC-RAY TRANSPORT IN NON-UNIFORM
MAGNETIC FIELDS

Transport of cosmic-ray particles in turbulent interstellar and
interplanetary electromagnetic fields, superimposed on a large-
scale guide magnetic field, is typically described using the
Fokker–Planck equation for the particle phase-space distribution
function. Often the diffusion approximation is adopted, which
is justified when the particle distribution is kept almost isotropic
by a strong pitch-angle diffusion (Jokipii 1966; Hasselmann &
Wibberenz 1968; Kulsrud & Pearce 1969; Earl 1974; Skilling
1975; Schlickeiser 1989).

The guide magnetic field is often non-uniform. The solar
magnetic field in interplanetary space, for instance, can be
described by the Parker (1958) spiral. Radio continuum surveys
imply that large-scale spatial variations of the magnetic field
perpendicular to the galactic plane are present in disk galaxies
(e.g., Sofue et al. 1986). Spatially varying magnetic fields are
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believed to play a significant part in particle acceleration by
shocks in the solar corona (e.g., Sandroos & Vainio 2007). A
feature of interest is the effect of adiabatic focusing in a spatially
varying guide magnetic field, which leads to an additional
convective term describing particle transport along the field.
The resulting focused particle transport in interplanetary space
has been repeatedly investigated (e.g., Kocharov et al. 1998;
Bieber et al. 2002; Dröge et al. 2006; Sáiz et al. 2008).

Recently the diffusion approximation has been used system-
atically to describe the effects of a spatially varying guide mag-
netic field on the isotropic part of the cosmic-ray particle distri-
bution in the weak focusing limit, when the focusing length |L|
is much greater than the scattering length λ‖ of cosmic-ray par-
ticles (Schlickeiser & Shalchi 2008). As mentioned above, the
combination of particle scattering by the turbulent electric field
and the magnetic mirror force was shown to give rise to a new
Fermi-type mechanism of particle acceleration when HcL <
0. This new mechanism of focused acceleration has poten-
tially important applications in several astrophysical situations
(Schlickeiser & Shalchi 2008; Schlickeiser 2009; Schlickeiser &
Jenko 2010), and so an independent calculation of the accelera-
tion rate would be useful in verifying the original diffusion-limit
analysis. Below we use the Fokker–Planck equation and derive
an expression for the mean rate of change of particle momen-
tum, caused by the adiabatic focusing term in a non-uniform
magnetic guide field present in a turbulent plasma.

3. FIRST-ORDER FERMI ACCELERATION IN A
NON-UNIFORM GUIDE MAGNETIC FIELD

We consider the Fokker–Planck equation that takes into
account the effect of adiabatic focusing in a non-uniform
magnetic guide field (Schlickeiser & Jenko 2010):

∂f0

∂t
+ μv

∂f0

∂z
+

v

2L
(1 − μ2)

∂f0

∂μ
= ∂

∂μ

(
Dμμ

∂f0

∂μ
+ Dμp

∂f0

∂p

)

+
1

p2

∂

∂p

(
p2Dμp

∂f0

∂μ
+ p2Dpp

∂f0

∂p

)
. (1)

Here, f0(z, p, μ, t) is the gyrotropic particle phase-space den-
sity per unit of magnetic line length, which depends on the
spatial coordinate z along the guide magnetic field B0(z), the
particle momentum p, the pitch-angle cosine μ, and time t;
v is the particle speed. The focusing length L is defined by
L−1(z) = −d ln B0(z)/dz.

In order not to obscure the essential points of our analysis
of focused acceleration, we do not consider a particle source
term, continuous and catastrophic momentum loss processes,
or the dependence of f0 on x and y, so that particle drift
effects are neglected on the left-hand side of Equation (1).
Schlickeiser & Jenko (2010) specifically addressed the effects of
the curvature and gradient drifts in the kinetic equation (see their
Equation (2.19)). Our approach should be valid as long as the
spatial scales of the x- and y-components of the magnetic field
are large compared with that of the z-component of the field. For
simplicity, we also assume L = const on scales much larger than
the cosmic-ray parallel scattering length (weak focusing limit)
and adopt the partition scaling for the background gas density
n(z) ∝ B2

0 (z), so that the Alfvén speed vA is constant. The
transport equation (1) with gyrophase-averaged Fokker–Planck
coefficients for the gyrotropic distribution function of energetic
particles is an approximation that requires the particle Larmor
radius, gyroperiod, and the ratio vA/v to be small expansion

parameters (see Schlickeiser 2011 for a recent systematic
derivation). In this limit, the drift terms that we neglect and
the focusing term in Equation (1) are connected with the
conservation of the particle magnetic moment in the guide
field B0 that is much stronger than the turbulent magnetic field
component δB (e.g., Roelof 1969; Fahr et al. 1977).

We begin our analysis of Equation (1) by rewriting it in terms
of a gyrotropic differential particle number density f (z, p, μ, t).
The functions f0 and f are related by

f0(z, p, μ, t) = exp(−z/L)

2πp2
f (z, p, μ, t), (2)

and the particle density n(z, t) is expressed as
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∫ ∞
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On substituting Equation (2) into Equation (1) and rearranging
terms, we get
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We now use this form of the Fokker–Planck equation to derive
equations for the mean values of the pitch-angle cosine

〈μ〉 =
(∫ ∞

−∞
n dz

)−1 ∫ ∞

−∞

∫ ∞

0

∫ 1

−1
μf dμdp dz (5)

and the particle momentum

〈p〉 =
(∫ ∞

−∞
n dz

)−1 ∫ ∞

−∞

∫ ∞

0

∫ 1

−1
pf dμdp dz. (6)

On multiplying Equation (4) by either μ or p and integrating
with respect to μ, p, and z, we obtain
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To give a concrete example of practical interest, we now
specialize to the case of isospectral undamped Alfvénic slab
turbulence with constant magnetic and cross helicities that
are independent of the wavenumber. The magnetic helicities
σ + and σ− indicate the polarization states of the forward-
and backward-propagating Alfvén waves. The cross helicity
Hc = (I + − I−)/(I + + I−) specifies the relative intensities
I + and I− of the forward- and backward-propagating waves.
Schlickeiser (2002) summarized the corresponding transport
parameters. The coefficients appearing in the Fokker–Planck
equation (1) are as follows:

Dμμ = D0N (μ), (9)
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Dμp = εpD0M(μ), (10)

Dpp = ε2p2D0R(μ), (11)
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)2
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Here, ε = vA/v where vA is the Alfvén speed, so that ε is
typically a small parameter; s is a power-law spectral index
of the magnetic field correlation tensor above the minimum
wavenumber kmin, Rg is the particle gyroradius, and δB is the
fluctuating magnetic field amplitude. The functions N (μ) and
M(μ) are defined by

N (μ) = (1 + Hc)(1 − εμ)2|μ − ε|s−1{(1 + σ +)H [Z(ε − μ)]

+ (1 − σ +)H [Z(μ − ε)]} + (1 − Hc)(1 + εμ)2|μ + ε|s−1

× {(1 + σ−)H [−Z(ε + μ)] + (1 − σ−)H [Z(ε + μ)]},
(13)

M(μ) = (1 + Hc)(1 − εμ)|μ − ε|s−1{(1 + σ +)H [Z(ε − μ)]

+ (1 − σ +)H [Z(μ − ε)]} − (1 − Hc)(1 + εμ)|μ + ε|s−1

× {(1 + σ−)H [−Z(ε + μ)] + (1 − σ−)H [Z(ε + μ)]}.
(14)

Here, H is the Heaviside step function and Z = q/|q| where q
is the particle charge. An explicit expression for R(μ) will not
be necessary since Dpp is a higher-order term with respect to the
small parameter ε.

Next we make the key assumption that the scattering rate D0
is large enough to ensure that the rate of change of the mean
pitch-angle cosine 〈μ〉 is at most a quantity of order ε. Balancing
the leading-order terms in Equations (7) and (8), we have
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To complete the derivation, we need to express Dμp in terms
of Dμμ. The relationship is particularly simple if σ + = σ−.
Then it follows from Equations (13) and (14) that

Dμp = εpHcDμμ + o(ε). (17)

On eliminating Dμp from Equation (16), we have
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In the weak focusing limit of a large L, say in the parameter
range

ε 
 (1 − μ2)v

D0L

 1, (19)

the particle distribution is almost isotropic. To a leading order
in L−1, we can use 〈μ2〉 = 1/3 and replace the mean of a
product by the product of the means. Therefore, substituting
Equation (15) into Equation (18) and remembering that εv =
vA, we obtain

1
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3L
. (20)

As long as L < ∞, the particles are losing momentum if
HcL > 0 and gaining momentum if HcL < 0. The latter case
corresponds to particle acceleration caused by the adiabatic
focusing term in the Fokker–Planck equation—an effect first
identified by Schlickeiser & Shalchi (2008).

It is straightforward to generalize the argument to describe
the case of unequal wave polarizations, σ + �= σ−. When Z = 1,
for instance, Equations (13) and (14) give
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for μ < 0. Following the same steps as above, we get
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which is a generalization of Equation (18), and
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which is a generalization of Equation (20). The integral is easily
evaluated by splitting the integration interval into the intervals
−1 < μ < 0 and 0 < μ < 1 and using Equations (21) and (22).
After some algebra we finally arrive at
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where the function H (Hc, σ
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The expression is identical to Equation (22) in Schlickeiser &
Shalchi (2008).

4. FOCUSED ACCELERATION/DECELERATION NEAR
THE TERMINATION SHOCK

Schlickeiser (2009) argued that focused acceleration can
operate in the interstellar medium, overcoming the Coulomb
and ionization losses and accelerating cosmic-ray hadrons over
10 orders of magnitude in momentum. We suggest here that
the mechanism of focused acceleration/deceleration may also
contribute to the acceleration/deceleration of the anomalous
cosmic rays at the heliospheric termination shock, because the
upstream Parker field is condensed on the downstream side of
the termination shock so that an inhomogeneous magnetic field
structure is seen by galactic and anomalous cosmic rays.

Observations of energetic ions in the vicinity of the termina-
tion shock by the Voyager spacecraft have been analyzed using
a focused transport model for shock acceleration (Le Roux et al.
2007; Le Roux & Webb 2009). A puzzle remains, however,
that the intensity of anomalous cosmic rays did not peak at the
shock (Stone et al. 2005, 2008). One possible explanation is
that stochastic acceleration of particles by Alfvén waves in the
heliosheath contributes to the observed anomalous cosmic-ray
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spectrum (e.g., Ferreira et al. 2007). We propose that focused
acceleration can be the specific acceleration mechanism. For
HcL < 0, say due to an excess of the backward-propagating
Alfvén waves in a diverging upstream guide magnetic field, the
efficiency of focused acceleration should exceed that of the stan-
dard diffusive shock acceleration for sufficiently small Alfvén
Mach numbers of the shock (Schlickeiser & Shalchi 2008).
Moreover, focused acceleration operates in the whole upstream
region, explaining why the intensity of anomalous cosmic rays
did not peak at the shock position.

Non-zero values of the upstream cross helicity should be
expected because the upstream precursor cosmic-ray distribu-
tion function amplifies (damps) the forward- (backward-) prop-
agating waves (Schlickeiser & Shalchi 2008). Depending on
the adopted spatial boundary conditions on the intensities of
the waves, this effect leads to either Hc → 1 or Hc → −1.
Schlickeiser & Shalchi (2008) assumed that the forward- and
backward-propagating waves have equal intensities far away
from the shock at x = 0, that is Hc(x = ∞) = 0. This bound-
ary condition gives rise to Hc < 0 in the whole upstream region,
which in a diverging guide magnetic field leads to focused ac-
celeration in the upstream region. Alternatively, if we assume
that the forward- and backward-propagating waves have equal
intensities at the location of the shock, Hc(x = 0) = 0, we find
that this boundary condition gives rise to Hc > 0 in the whole
upstream region. In a diverging guide magnetic field this leads
to focused deceleration of cosmic-ray particles in the upstream
region, with a loss rate overcoming the standard diffusive shock
acceleration for sufficiently small Alfvén Mach numbers of the
shock. In this case, cosmic-ray particles are not accelerated in
the shock region. In a converging upstream guide magnetic field
(negative focusing length L < 0), focusing has the opposite
effect: Hc > 0 upstream then implies additional effective fo-
cused acceleration upstream, whereas Hc < 0 upstream leads
to significant focused deceleration of particles upstream.

Our analysis indicates that the plasma microphysics of plasma
wave generation, amplification, and damping near shocks is de-
cisive for the efficient first-order Fermi acceleration of cosmic-
ray particles in diverging or converging guide magnetic fields.
We suggest that the validity of the new acceleration mechanism
could be tested by searching for a correlation between the ac-
celerated particle flux, the cross helicity of the plasma wave
fields, and the sign of the focusing length of the guide magnetic
field. Of course, the field inhomogeneities in the heliosphere
can be more complicated than the simple case of isospectral
undamped Alfvénic slab turbulence with constant magnetic and
cross helicities adopted here for illustrating the appearance and
properties of the new focused acceleration/deceleration effect.
Although various complications are likely to arise in a more
detailed quantitative analysis, we expect that the basic focus-
ing effect also occurs in more complex geometries, since the
magnetic and electric field inhomogeneities in the solar wind
rest frame, which scatter cosmic-ray particles in pitch angle and
momentum, should generally result in a non-zero cross helicity
and thus lead to directional anisotropy.

5. DISCUSSION

Our analysis shows that the mechanism of focused accelera-
tion can accelerate charged particles in a turbulent plasma with
a large-scale spatially varying magnetic field. For instance, if
the forward- and backward-propagating waves have equal po-
larizations, σ + = σ−, the particles are accelerated when the net
cross helicity of Alfvénic turbulence Hc and the focusing length

L of the guide magnetic field B0(z) ∼ exp(−z/L) satisfy the
requirement HcL < 0, or in other words when the cross helicity
Hc is either negative in a diverging guide field or positive in a
converging guide field.

To derive a formula for the acceleration rate, we assumed
that pitch-angle scattering is strong enough to balance adiabatic
focusing in Equation (15), resulting in a small mean pitch-
angle cosine. Although the diffusion approximation is based
on a similar idea, our approach here is more general and has
the advantage that we work with the original Fokker–Planck
equation. In contrast to the diffusion approximation, a formula
for the anisotropic part of the particle distribution function
is not used in our calculation. Our method leads directly to
an expression for the rate of change of the mean particle
momentum and identifies the physical conditions under which
particle acceleration can occur. On the other hand, the diffusion
approximation leads to a general diffusion-convection transport
equation that can be used systematically to investigate various
transport effects in phase space. To sum up, the more general
analysis of this paper provides an independent confirmation of
the diffusion-limit calculation by Schlickeiser & Shalchi (2008)
and puts the new acceleration mechanism on a firmer footing.

We also suggest here that focused acceleration/deceleration
may significantly contribute to the acceleration/deceleration
of the anomalous cosmic rays at the heliospheric termination
shock. The validity of the new acceleration/deceleration mech-
anism could be assessed by searching for a correlation between
the accelerated particle flux, the cross helicity of the plasma
wave fields, and the sign of the focusing length of the guide
magnetic field. Hence, our analysis suggests a testable explana-
tion of the current observational puzzle (Stone et al. 2005, 2008;
Decker et al. 2008).
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