

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the
Degree of Master of Science at the University of Waikato.

July 2011

© 2011 Beverley Laundry

Sheet Music Unbound

A fluid approach to sheet music display

and annotation on
a multi-touch screen

Beverley Alice Laundry

i

Abstract

In this thesis we present the design and prototype implementation of a Digital

Music Stand that focuses on fluid music layout management and free-form

digital ink annotation. An analysis of user constraints and available technology

lead us to select a 21.5‖ multi-touch monitor as the preferred input and display

device. This comfortably displays two A4 pages of music side by side with

space for a control panel. The analysis also identified single handed input as a

viable choice for musicians. Finger input was chosen to avoid the need for any

additional input equipment.

To support layout reflow and zooming we develop a vector based music

representation, based around the bar structure. This representation supports

animation of transitions, in such a way as to give responsive dynamic

interaction with multi-touch gesture input. In developing the prototype,

particular attention was paid to the problem of drawing small, intricate

annotation accurately located on the music using a fingertip. The zoomable

nature of the music structure was leveraged to accomplish this, and an

evaluation carried out to establish the best level of magnification.

The thesis demonstrates, in the context of music, that annotation and layout

management (typically treated as two distinct tasks) can be integrated into a

single task yielding fluid and natural interaction.

ii

iii

Dedication

To my friends and family who convinced me that this was possible, and to

Oscar who stayed put long enough to prove them right.

iv

v

Table of Contents

Abstract ... i

Dedication ... iii

Table of Contents ... v

List of Figures ... ix

Chapter 1 - Introduction .. 1

Chapter 2 - Related Work .. 3

2.1 Digital Music Stand Development ... 3

What is a Digital Music Stand?... 3

Muse ... 3

Page Turning .. 4

Commercial Products ... 6

Research Systems .. 10

2.2 Annotation systems ... 13

Digital Ink ... 13

Sketching Music ... 17

Annotating Sheet Music .. 18

2.3 Summary .. 21

Chapter 3 - Design Considerations.. 23

3.1 Physical restraints on Musicians ... 23

Introduction .. 23

Physical Restraints by Instrument .. 23

Table 1 – Physical restraints on musicians (Part 1 of 2) 26

Table 1 – Physical restraints on musicians (Part 2 of 2) 28

vi

Observations .. 30

3.2 Hardware Considerations .. 33

3.3 Device Options ... 39

3.4 Software Environment – WPF with .NET ... 42

Chapter 4 - Sheet Music Unbound .. 45

4.1 Breaking the boundary of the page ... 45

4.2 How to store/represent a bar... 47

PDF .. 48

XAML .. 49

4.3 Breaking music into bars ... 52

Where does a bar begin? ... 52

Where does a bar end? ... 54

Aligning bars vertically ... 57

Handling multiple parts ... 61

The XAML bar creation process .. 68

Automation of the XAML bar creation process .. 79

4.4 Fluid Layout ... 80

4.5 Score Personalization ... 86

Choosing display size ... 86

Moving and hiding sections of music .. 90

Adding cues or display complete score .. 92

4.6 Some ideas on page turning .. 94

Visualisation options ... 94

Initiating a page turn .. 99

vii

Animation speed ... 99

Chapter 5 - Supporting Annotation ..101

5.1 Digital Ink ...101

5.2 Storing annotations across bars...101

WPF Ink Canvas ...103

Custom Ink Control ...107

5.3 Creating space for annotations ..110

Corner Drag ..113

Tab Style ..115

Roller Blinds ..117

5.4 Annotation Input Scale ...121

Zoom to Annotate ..122

Zoom in Place ..122

Zoom Overlay ..128

Stamps ..131

5.5 Finger Annotation User Test ...132

Experiment Goals...132

Experimental Setup ...132

Background Questionnaire ...136

Tested Annotations ...138

5.6 Finger Annotation User Test Results ...142

Participant Demographic ..142

Software Issues Uncovered ...142

Annotation Test Results ...143

viii

Observations on hardware ... 152

Summary of user test results .. 155

Chapter 6 - Conclusions ... 157

Appendix A - Device Comparison ... 161

Table 2 – Device Comparison (Part 1 of 3) ... 161

Table 2 – Device Comparison (Part 2 of 3) ... 162

Table 2 – Device Comparison (Part 3 of 3) ... 163

Appendix B - Finger Annotation Test, Post-test Questionnaire 165

Appendix C - Finger Annotation Test, Participant Information Form 167

Appendix D - Finger Annotation Test, Consent Form 171

Bibliography .. 173

ix

List of Figures

Figure 1 Annotations made with the MusicReader software. From 2008 UI

evaluation (Leoné, van Dijk and van Beijnum 2008) ... 9

Figure 2 Annotations drawn by finger with MusicReader 4.0 (2011) on Dell

21.5" multi-touch monitor (Actual Size) ... 9

Figure 3 Preset annotations in MusicReader 4.0 .. 10

Figure 4 Drawing preset annotation in MusicReader 4.0 by defining bounding

box .. 10

Figure 5 Musical alphabet for MusicMan, pen-based musical score editor. 17

Figure 6 Physical restraints on musicians, observation 8. .. 30

Figure 7 Physical restraints on musicians, observations 1 and 4 combined. In

answer to 1 is Never or answer two 4 is Never, then Yes. 31

Figure 8 Physical restraints on musicians, observation 7. .. 32

Figure 9 A bar of music at native resolution ... 47

Figure 10 A bar of music at 2 x native resolution .. 47

Figure 11 A XAML DrawingBrush at native size ... 51

Figure 12 A XAML DrawingBrush at 8 x native size .. 51

Figure 13 Excerpt from String Quartet KV.458 (nr. 17) "Hunt" for 2 violins, viola

and cello - W. A. Mozart. Source: Mutopia -

http://www.mutopiaproject.org/cgibin/piece-info.cgi?id=277 53

Figure 14 Bar clipping boundaries ... 55

Figure 15 Bar 1 - stored components ... 55

Figure 16 Bar 8 - stored components ... 56

Figure 17 Bars 13 and 14 musical content bounds ... 57

Figure 18 Bars 13 and 14 with extended ViewBoxes .. 60

Figure 19 Sample full score layout ... 62

Figure 20 Structure of a score block with three parts... 66

file:///C:/Users/Admin/Desktop/MastersResearch/Files/Thesis/ThesisFiles/Sheet%20Music%20Unbound.docx%23_Toc299113251
file:///C:/Users/Admin/Desktop/MastersResearch/Files/Thesis/ThesisFiles/Sheet%20Music%20Unbound.docx%23_Toc299113252

x

Figure 21 Two lines of full score. Final bar block bounds (ViewBoxes) for each

part are indicated in orange ... 67

Figure 22 One page of a score imported into Microsoft Expression Design 69

Figure 23 Copy the content of each bar into its own separate document 70

Figure 24 Violin 1 layer content selected... 71

Figure 25 Exporting bar as a XAML WPF Resource Dictionary grouped by

Layers .. 72

Figure 26 Music reflows to fill page width ... 80

Figure 27 Original score PDF justified by LilyPond ... 81

Figure 28 Violin 1 part displayed in experimental software system with

application window width set to approx A4 size ... 82

Figure 29 Music reflowed to fit page with each line scaled to fill all remaining

space ... 84

Figure 30 Section of music magnified .. 87

Figure 31 Start Pinch Gesture - Touch bar with two fingers 88

Figure 32 Pinch out gesture - Move fingers apart .. 88

Figure 33 When pinch distance reaches threshold, bar is scaled up 88

Figure 34 Consecutive bars at slightly different magnifications 89

Figure 35 Section of Violin 2 part with Violin 1 part displayed over three bars 93

Figure 36 Page turning, Booklet visualisation ... 95

Figure 37 Page turning, Paper Stack visualisation ... 96

Figure 38 Page turning, Paper Strip visualisation .. 98

Figure 39 Annotations created on InkCanvas overlays .. 103

Figure 40 Annotation Clipping 1 .. 104

Figure 41 Annotation on an InkCanvas with ClipToBounds off 104

Figure 42 Reflowed annotation on an InkCanvas .. 105

Figure 43 Annotations created across tileable custom ink control 110

Figure 44 Test application for line spacing techniques .. 111

xi

Figure 45 Line spacing demonstration application with Corner Drag controls

 ...113

Figure 46 Touch and drag action controls the margin size114

Figure 47 Line spacing demonstration application with Tab Style controls115

Figure 48 Tab Style controls close up ...115

Figure 49 Sample application with Roller Blinds controls for line spacing117

Figure 50 Expanding the top margin with Roller Blind controls118

Figure 51 Expanding the bottom margin with Roller Blind controls...................118

Figure 52 Annotatable space created by expanding margins119

Figure 53 Annotation created on bar zoomed in place ..123

Figure 54 Annotation created on zoomed bar, scaled back into place123

Figure 55 Auto zoom of neighbouring bars when annotation reaches boundary

 ...125

Figure 56 Auto zoom of left hand neighbour pushes entire line to the left126

Figure 57 Magnified last bar of a line is clipped at the boundary of the

application window ..126

Figure 58 Zoomed music clipped off bottom right corner of page127

Figure 59 Zoomed overlay ready for annotation ..128

Figure 60 Annotations created on the overlaid view ..129

Figure 61 Annotations copied to the underlying music after the overlay is

dismissed ..129

Figure 62 Annotations drawn over a page break ..130

Figure 63 Stamp creation overlay ..131

Figure 64 Inserting a stamp by touch and drag from the list of available stamps

 ...131

Figure 65 Finger annotation user test application screenshot133

Figure 66 Finger annotation user test - result rating ..135

Figure 67 Typeset bowing mark annotations sample ...139

Figure 68 Typeset hairpin crescendo and decrescendo annotations sample ..139

file:///C:/Users/Admin/Desktop/MastersResearch/Files/Thesis/ThesisFiles/Sheet%20Music%20Unbound.docx%23_Toc299113284

xii

Figure 69 Typeset slur and tie annotations sample .. 139

Figure 70 Typeset textual annotations sample ... 140

Figure 71 Rendered glasses annotation sample .. 140

Figure 72 Typeset musical notes annotation sample ... 141

Figure 73 Annotation sample with visible scroll bar error. A users‘ attempt at

‗Text and Dynamics‘ annotation at zoom level 8. ... 143

Figure 74 Users' satisfaction with their final annotations at each zoom level .. 145

Figure 75 Users' rating of ease of drawing at each zoom level 147

Figure 76 Average number of attempts made at annotation copying for each

zoom level .. 148

Figure 77 Percentage of satisfactory annotations for each zoom level. Grouped

by users' finger width .. 149

Figure 78 Percentage of final annotations rated as satisfactory, grouped by

sheet music experience for each zoom level. ... 150

Figure 79 Percentage of final annotations rated as satisfactory, grouped by

previous experience annotating physical sheet music. .. 151

Figure 80 Percentage of final annotations rated as satisfactory, grouped by

previous experience annotating on a tablet or touch screen. 151

Figure 81 Phantom touch detected when hand gets close to the screen. A

users‘ attempt at ‗Text and Dynamics‘ annotation at zoom level 1 (actual size).

 .. 152

Figure 82 'Serif' like irregularities on annotation strokes. A users' attempt at

'Bowing Marks' at zoom level 1 (Actual Size) ... 153

1

Chapter 1 - Introduction

In many practice and performance situations physical sheet music can be

difficult to use. Imagine a musician standing on an open air stage with wind

blowing. How do they cope?

It is not uncommon to see musicians struggling with loose pages, maybe using

clothes pegs to keep pieces of music on their stand or using tape to combine

pages together into elaborate structures with flaps and fold-outs carefully

arranged to reduce the number of page turns they have to make.

Printed music is also expensive. Orchestras must purchase and store their

music, or rent it at significant expense. In either case great care must be taken

to keep track of all the separate instrumental parts. Musicians‘ annotations and

notes must be drawn in pencil and all trace erased before returning their

music.

Just as in other domains of document management, digital technology has the

potential to alleviate much of the difficulty experienced using sheet music.

Researchers have coined the phrase Digital Music Stand for a device that

provides this enriched digital capability to musicians. Commercial systems are

now also available. In this project we develop a Digital Music Stand with a focus

on fluid display of music layout and annotation support.

We start this thesis with a survey of commercial and research systems. The

survey identifies annotation support as an area that is underdeveloped. In

contrast, annotation of electronic text documents has received significant

attention but resulting advances have not been applied to annotation of

musical documents. This is because music annotations present specific

challenges of their own—such as the need to flow the music to make space for

2

an annotation, and the dependence of musical annotations on fine detail and

placement. These are issues we seek to address in this work.

Technology options are rapidly changing. In Chapter 3 we look at the physical

constraints imposed on musicians by their instruments, and explore available

technology options with respect to their appropriateness to a musician‘s

working environment. From this, touch screens that are medium to large in size

and high resolution are identified as a technology that is well aligned for use as

a Digital Music Stand that supports annotations. Touch screens are now

available at reasonable cost. Many people are already familiar with the use of

touch technology in the form of smart phones, so there is good reason to be

optimistic that musicians would be willing to try it in new contexts.

Chapter 4 details our work on reflowing music. It presents the development of

a flexible software architecture for representing music, such that it can be

scaled and reflowed smoothly. This provides a platform on which we can

experiment with annotation, the details of which are given in Chapter 5. This

chapter presents the design and implementation of a touch based annotation

system tailored to musicians‘ needs, grounded by the data reported in the

literature on musicians‘ annotation behaviour when working with physical sheet

music.

While there are many advantages to using touch screen technology, the low

precision of touch input and the difficulty of precise placement could

significantly impact a musician‘s ability to annotate through this medium. We

use a zoomed annotation input mechanism to compensate for this issue, which

we evaluate through user testing, also presented in Chapter 5.

The thesis concludes in Chapter 6 with a summary of our findings and details

of future work.

3

Chapter 2 - Related Work

Digital sheet music display and creation is a wide and varied area of research.

This chapter provides some background in two key areas that form the

foundation for this research project: digital music stand development, and

annotation systems.

2.1 Digital Music Stand Development

What is a Digital Music Stand?

At its most basic, a Digital Music Stand is a system which displays digital sheet

music files. It is a tool for musicians to manage and access their music

collection without the need for bulky paper manuscripts. Features of the Digital

Music Stand can include: repertoire management (through an underlying

database or digital library), composition and editing tools, automatic score

following, hands free page turning, networking for group playing, audio

recording and playback, annotation facilities, and automatic accompaniment.

Though the individual features may vary, the core idea remains the same – a

digital music stand is a tool to help musicians view and interact with their music

collection. It should provide all the affordances traditionally provided by

physical printed scores and enhance the musician‘s experience in ways that

only digital media can.

Muse

The first exploration of the concept of the Digital Music Stand came in 1996

with Muse (Graefe, et al. 1996). This design project, though never actually

implemented in hardware, resulted in a detailed description of a digital music

stand to support musicians rehearsing and performing as part of a symphony

orchestra. The design and feature set was created in collaboration with

4

members of the Pittsburgh Symphony Orchestra through an iterative process

of research, observation and interviews.

The Muse work investigated the sort of features that orchestral musicians‘

desire in a digital music stand, and resulted in some key interface guidelines

that would make moving to a digital system acceptable and natural for them.

The final Muse design was a battery powered, wireless device with two 9‖ x 12‖

high resolution LCD touch screens and a support stand. The software features

were:

- A music library

- Manual or automatic page turning with indexing

- Inter-symphony communication capabilities

- Stylus-based onscreen annotation

- Ability to view any other instruments‘ part in a given score

- A pitch generating tuner

- A Metronome with audio and visual feedback

- Notes space (for personal notes, rehearsal announcements etc.)

As the Muse was never fully implemented, the practicality and usability of the

interface was never fully tested. The Muse design does however provide an

overall picture of what musicians think that they would like out of a digital

music stand and has inspired further research and development in the area.

Page Turning

Some of the ideas in Muse are common to a variety of digital document

management problems (library management and onscreen annotation for

example) although specialist editing and display software is required for music

content. A task that is specific to the music stand, however, is page turning.

This has been addressed by a number of researchers.

5

Working with digital sheet music, the phrase page turning is often used in a

wide scope. Digital sheet music comes in many different formats. These digital

representations of sheet music need not be restricted to the page-based

structure of a printed score. On the digital music stand, the amount of music

displayed at any given time is limited by screen size. In most cases, there is

more sheet music in a full score than will fit on the display. For the purposes of

this report, page turning is used to describe any method of navigating through

a piece to reveal off-screen music.

Page turning is one area where digital sheet music has a clear advantage over

traditional paper scores. Orchestral musicians in particular note that page turns

with printed scores are a nuisance. They are noisy and force musicians to stop

playing momentarily, sometimes causing audible gaps in the music (Graefe, et

al. 1996). Digital page turns can be silent and rapid. With digital sheet music

there is potential for automation of page turns (Bellini, Nesi and Spinu 2002) or

at least simplifying the physical action required by a musician to consistently

and clearly navigate from page to page. This could be as simple as adding a

foot pedal to give musicians hands free control of page turns.

A feature of the digital music stand requested by orchestral musicians –

particularly conductors – is some form of networked page turning where, for

example, the conductor could indicate a place in the score and draw the

orchestral players‘ attention to that point by forcing each players‘ music to turn

to that place (Graefe, et al. 1996), (MacLeod, et al. 2010). It is important for the

musicians to understand the context of the pages of music currently displayed

on their stand in relation to the whole piece. Instantaneous jumps from page to

page may break this understanding and so careful animations or visualisations

are a necessary addition to page turns of this nature (Bell, et al. 2005)

(McPherson 1999).

6

Commercial Products

As computer and screen technology has improved, several commercial digital

music stands, similar in features to those outlined in the Muse design, have

appeared. These include complete systems, with custom hardware preinstalled

with sheet music management software, as well as software only systems

designed to run on existing tablet PCs or other touch capable computers.

eStand

The eStandi offers software only, or complete packages for musicians and

educators. The eStand software can be purchased in four different

configurations. The simplest option is a sheet music reader that displays one

page of music at a time, with manual page turning operated via foot pedal,

keyboard or on-screen touch controls. The software maintains a library of ESF

files (eStand format files – this is a custom format developed for use with

eStand).

The most complete eStand software will display up to three pages of music

side-by-side. It has added network support and an annotation system, allowing

groups of musicians to collaborate on annotations and synchronise page turns.

The music library has enhanced browsing and management features and

supports music imported in different formats, including PDF, BMP, TIFF and

JPEG files. It also has a software metronome and tuning system.

The eStand software can be purchased alone (for use on Tablet PCs or with

other existing touch screens) or preinstalled on a choice of touch screen all-in-

one computers ranging in size from 15‖ to 20‖. The all-in-one computers listed

all have resistive touch screens allowing users to interact with the eStand

system with either finger or stylus.

7

MusicPad Pro

MusicPad Pro is a complete hardware and software system created by

FreeHand Systems.ii The MusicPad Pro is a 12.1‖, 1024 x 768, TFT LCD backlit

display capable of displaying one page of sheet music at a time. The battery

powered display comes with a support stand, and an external foot pedal is

available for hands free page turns.

Like the eStand, the MusicPad Pro stores and manages the user‘s sheet music

collection. Users can scan and import their existing sheet music or purchase

digital sheet music from the FreeHandMusic store. Music bought from the

FreeHandMusic store has embedded MIDI information that gives users

additional features: score transposition and play-back with highlighted score

following. It also has an annotation system and notes system.

SamePage Performance Station

The SamePage performance station,iii developed by Corevalus Systems, is part

of a three stage event planning system for worship services, events and other

performances. The complete system starts with an online planning system with

calendar and music library management. During an event, each musician has

their own SamePage performance station which displays their music and keeps

them informed of programme order and progression. When used in

conjunction with SamePage audio mixing equipment, the performance station

also gives selected users a full audio mixing interface.

Each SamePage performance station maintains a sheet music library locally as

well as accessing an online music database (this database is usually maintained

by the overall event organisers). The performance station has a 19‖ NEC touch-

screen LCD monitor mounted on a heavy duty, collapsible stand. The large

screen allows up to two pages of sheet music to be displayed side-by-side

while still leaving space for an event programme and onscreen controls to be

displayed at the side.

8

Features of the sheet music display function of the performance station are

similar to those of the eStand and MusicPad Pro. The performance station

supports annotation and note taking. Users can annotate by finger, draw

standard shapes or type text. Theses annotations can be shared with other

musicians through the networked performance stations. Page turns are

facilitated via the touch screen or using an external three button foot pedal.

MusicReader

MusicReaderiv is a software package developed by Leoné MusicReader in The

Netherlands. The MusicReader system has similar features to the eStand and

MusicPad Pro. The software is available for both Windows and Mac computers.

It is designed for use with pen or touch screens and has recently been released

as an iPad application.v

First released in 2008, MusicReader is the result of ongoing research and

development. A user evaluation of the MusicReader interface was published in

2008(Leoné, van Dijk and van Beijnum 2008), giving some insight into the

design decisions, benefits and limitations of the software.

One limitation uncovered during the evaluation, that is particularly relevant to

this research project, was that musicians found it difficult to produce readable

annotations on some of the screens used in the test. The problem was not as

prevalent on screens that accepted both finger touch and stylus input (those

with a digitizer pen).

Since the 2008 publication, some improvements have been made to the

annotation system. Figure 1 is taken from the 2008 publication and shows

annotations made with the MusicReader software on touch screen hardware

available at that time. Running the most recent version of MusicReader (4.0)

with a modern Dell 21.5‖ multi-touch monitor yields a slightly better result, as

shown in Figure 2. With the improvement of screen technology, the ease of

9

drawing freehand annotations by finger has increased, but annotations are still

harder to draw consistently on screen than with pencil on paper.

Figure 1 Annotations made with the MusicReader software. From 2008 UI evaluation (Leoné,
van Dijk and van Beijnum 2008)

Figure 2 Annotations drawn by finger with MusicReader 4.0 (2011) on Dell 21.5" multi-touch
monitor (Actual Size)

A solution suggested by Leoné et al. was to use predefined symbols in place of

freehand annotations and as of MusicReader 4.0, a collection of predefined

annotations is also available (The set of available predefined annotations is

shown in Figure 3). These are positioned on the displayed sheet music by

touching and dragging to create a bounding rectangle, as shown in Figure 4.

10

Figure 3 Preset annotations in MusicReader 4.0

Figure 4 Drawing preset annotation in MusicReader 4.0 by defining bounding box

Research Systems

Espresso Digital Music Stand

Espresso Digital Music Standvi is the result of the collaborative research of a

group of musician/programmers from the US, UK, France and New Zealand.

Several research projects out of the University of Canterbury have focused on

developing and testing elements of the user interface.

11

Two honours projects from the University of Canterbury, Blinov (2007) and

Pagwiwoko (2008) focus on page turning systems for Espresso, following on

from an earlier study by McPherson (1999). These projects look specifically at

animation systems for single-page and multi-page transitions. Introduction of

some animation or visualisation into the digital page turn is necessary to make

it clear to the musician when the action has taken place. This is particularly

important if a page turn is triggered by an external source rather than the

musician themselves.

A common choice for navigation though a document in traditional GUI editing

systems and document readers is scrolling. Bell et al. (2005) and McPherson

(1999) trialled both horizontal and vertical scrolling systems to display sheet

music to musicians during a short sight-reading exercise and found that

automatic scrolling of music during playing was not favoured. This seemed to

be because the constant movement of the music made it difficult for the

musician to keep track of their current position in the score. This problem

would be intensified in an orchestra as musicians are required to glance back

and forth between their music and the conductor. In this situation, it is

important that they can consistently and quickly return to their place in the

music. Constant movement of their music, by a source outside their control,

would make that very difficult.

The more usable systems in the trial had the distinction that once each line of

music was displayed on screen, it stayed in the same place. As the musician

progressed through the music, rather than scrolling the old music out of the

way, the next portion of music is rendered over the top of the old. Some

visualisation techniques were necessary to make it clear to the player what was

old and what was new music, but the consistency of music position made it

easier to use the system.

12

Hitachi Engineering Co., Ltd.

Hitachi Engineering Co., Ltd. began to research and develop a performer-

friendly electronic music stand in 2000 (Kosakaya, et al. 2005). Their system is

built using a 14‖ tablet PC mounted on a support stand, with an attached foot

pedal for page turning.

Seven feature concepts were identified for their music stand that warranted

further development and evaluation.

1. Page-turning schemes using foot switch, hand switch or touch switch

2. Support for writing, storage and reading of sheet music

3. Using a backlit display to allow performances to be made in the dark

4. A Page-turning scheme based on time delays and variable page refresh

ratios

5. Easier management of sheet music content

6. The ability to send page turning commands and conductor‘s comments

to multiple performers simultaneously

7. A scheme for splitting sheet music content. i.e. starting with a score and

producing parts for individual performers

Their 2005 publication (Kosakaya, et al. 2005) covers development and

evaluation of Concepts 1-5.

Due to the limited screen size of the tablet PC used in the Hitachi Engineering

System (14‖), it was decided to limit sheet music display to one page at a time.

To allow the performer to move smoothly from reading the bottom of one

page to the top of the next (as would be the case in a two page display),

Kosakaya et al. implemented a split page turn scheme. It their system, when a

page turn is triggered, the top portion of the screen updates to show the first

portion of the next page, while the bottom portion remains unchanged. After a

time delay, the bottom portion of the screen updates to show the rest of the

13

new page. This allows the performer to trigger a page turn slightly before they

reach the end of a page.

The Hitachi system was evaluated and tuned with help of the Hitachi Group

Symphony Orchestra and specialist musicians. The system gives the user

control of two parameters: the portion of the page initially updated (between

50-100%), and time for which the system should delay before updating the

remaining portion (between 0-5 seconds). It was found that more professional

musicians preferred a large initial turn ratio and a short delay time, where as

more amateur musicians favoured the opposite. This was interpreted to

indicate that the more professional musicians tend to read further ahead in the

music.

The Hitachi Engineering System has also been tested in live performances.

Musicians used the electronic music stand successfully for a classical concert

(Kosakaya, et al. 2005). Due to the backlit displays, they were able to complete

the concert in the dark, allowing for dramatic lighting effects to be used during

the performance without affecting the musicians‘ ability to read their music.

2.2 Annotation systems

Annotation is simply defined as ―a critical or explanatory note or body of notes

added to a text‖,vii or more generally, ―extra information associated with a

particular point in a document.‖ Musicians typically enhance their printed music

with pencil annotations. This section covers two aspects of annotation systems

relevant to this research: the technology for drawing free-form annotations on

digital documents; and the nature, form and purpose of annotations made by

musicians.

Digital Ink

Digital annotations can take different forms, including typed notes, highlighting

and more relevant to this research, digital ink. Digital ink refers to free-form

14

sketches or handwritten text generally input through a pen-based interface. In

fact, published research around systems using digital ink covers almost

exclusively pen-based systems. Pen-based systems are those that accept input

via stylus on tablet or touch screen (as opposed to those that are touch

operated).

Benefits of free-form digital ink

Schilit et al. (1998) explored the use of free-form digital ink input as a tool for

active reading of text documents. In this context, digital ink annotations

commonly include highlighting, underlining and hand written notes. The

benefits of pen/stylus input free-form digital ink over typed annotations and

mouse based actions for this type of interaction were reported as:

- Picking up a pen/stylus to make an annotation is a natural action that

requires less forethought than selecting text with a mouse and issuing a

command.

- Writing with a stylus on a tablet or screen is natural to those used to

writing with pen on paper.

- Ink annotations are visually separate from the underlying document,

where as typed annotations tend to blend in.

- ―An essential aspect of ink on paper is its lack of modality: you can write

anything you want, anywhere on a page in any order.‖

(Schilit, Golovchinsky and Price 1998)

Digital documents with digital annotations have advantages over physical

documents with pen annotations. One key advantage of digital annotations, in

general, is that they can be logged, categorised and indexed making them

searchable, where physical annotations tend to get lost in piles of paper. Many

research projects explore ways of tagging and storing digital annotations. This

process is difficult for free-form digital ink annotations specifically for two

reasons: firstly, each ink annotation is created as a set of one or more pen

15

strokes, requiring a system to recognise which strokes belong together

(Shilman and Wei 2004); secondly, due to the freedom of placement attained

through this medium, the point in a document with which an ink annotation is

associated with is not always clear. This can become a problem—particularly if

a document is reflowed—as annotations can become disconnected from their

intended target (Bargeron and Moscovich 2003).

Cattelan et al. (2008) make the observation that a digital ink annotation

contains more data than just its stroke shapes. Attributes such as colour, line

thickness, stroke ordering, position, creation time and author can be logged

and stored with each annotation. In their work Cattelan et al. developed a

system to store this extra information and a variety of display mechanisms to

allow review and playback of sets of annotations based on their recorded

characteristics.

Limitations of digital ink annotation systems

The goal of digital ink input systems is to mimic the action of writing with pen

on paper. However, current pen and touch input hardware is not yet capable

of making this a reality. Argawala and Shilman (2005) identify five features of

current touch hardware that contribute to this:

- Digital screens are smooth and slippery compared with paper.

- The visual resolution of screens is less than that of paper and the input

resolution of pen and touch is usually smaller again.

- Digital touch devices often have screens that are smaller than an A4

page.

- Protective layers of glass or plastic on touch screens create a parallax

between the tip of the pen/stylus and the ink created.

- Pen/Touch computing devices are often too large and heavy to be

positioned in the same way a piece of paper can be.

16

These factors combined make it difficult to interact with a pen-based system

with the same accuracy and finesse that is achieved with physical pen and

paper.

―Digital ink annotations are usually larger and sloppier than real ink

annotations on paper‖ (Agrawala and Shilman 2005)

Agrawala and Shilman developed a software system to combat the problem of

input resolution for pen-based ink annotation on documents. With their

system, users select the area of a document that they wish to annotate, and an

overlaid input box containing a magnified version of that region is displayed.

The user draws their annotation in the magnified overlay which is subsequently

shrunk back into the underlying document. Agrawala and Shilman found that

magnifying the input region to twice normal size was sufficient for users to

successfully create tidier annotations in a text document using a stylus.

Informal trials of their system found this interface most useful when writing text

or edit marks on a document. Annotations that involved larger strokes, such as

underlining and circling portions of text, were just as easy to create at actual

size.

The problem of input resolution is compounded when using finger instead of

stylus or pen input. Fingers are blunt instruments when compared to styli. They

occlude more of the screens surface, making accurate placement difficult. This

is referred to by Voida et al. as the ―fat fingers‖ problem (Voida, et al. 2009).

Special care must be taken when designing interfaces that are to be operated

by finger to create controls that are large enough for users to see and interact

with. Annotation and digital ink creation by finger tends to be even ‗larger and

sloppier‘ than that input by stylus as the natural control gained by the

familiarity of a pen-like input device is lost.

17

As remarked by Isenberg et al. (2006), even on large, high resolution displays

annotations made by finger look clumsy and out of place if displayed at their

input resolution. To increase the appearance quality of finger written

annotation in their tabletop display software, annotations are created on sticky

notes which are then shrunk dramatically for final display.

Sketching Music

Sketched input has also been used in music creation software. Drawing musical

symbols is particularly difficult at the low resolutions afforded by pen-based

input hardware, as musical symbols by nature are small and depend heavily on

accurate placement. Two systems addressed the problem of low resolution

input by creating their own collections of simplified symbols and gestures for

users to sketch in place of the standard Western notation symbols.

In the Music Notepad system developed by Forsberg et al. (1998), notes are

input as one stroke gestures. This removes the need to connect multiple

strokes or draw small closed shapes.

The MusicMan system of Poláček et al. (2009) which was developed for use on

a PDA develops this idea further. Their system has its own alphabet of easily

drawn symbols, shown in Figure 5.

Figure 5 Musical alphabet for MusicMan, pen-based musical score editor.

18

Whilst these systems show a viable mechanism for coping with the clumsiness

of the available input devices, they have the disadvantage of requiring users to

learn their symbol sets and of limiting input to notation for which symbols have

been defined. This approach is therefore not suitable for entering freeform

annotations.

Annotating Sheet Music

The annotations commonly created on sheet music are different to those for

text documents. In order to build a system to support annotation of sheet

music specifically, it is important to understand the characteristics of these

annotations.

In 2006, Winget carried out a qualitative research study into annotation

behaviours of musicians (Winget 2006). As part of this study, Winget collected,

analysed and categorised annotations drawn on musical scores by classical

musicians across different skill levels, in several different groups and orchestras.

Interviews with musicians from the groups involved were also carried out to

gain insight into the reasoning behind the annotations created. Three key

questions answered by her study were:

Why do musicians annotate?

A musical score defines the notes and timing of a piece of music as well as

some of the composer‘s intentions as to the dynamics and flow of the piece.

When a group plays, they introduce nuances in the time, dynamics and feeling

of the music, which they must all understand and remember. Annotating their

music records some of these elements, or at least provides reminders, to

ensure that the group as a whole can consistently reproduce their

performance.

As the semi-professional concertmaster put it, ―the whole point of making

annotations is to ensure consistency. You want everyone to know what

19

everyone else is doing during performance, so you have to do the same

thing every time you perform. Annotations help ensure that consistency.‖

(Winget 2006)

When do musicians annotate?

Winget‘s study explored annotation behaviour over the entire process of

preparing a piece of music for performance, from when the sheet music is first

received, through to just before it is performed. This process was divided, and

annotation behaviour assessed, across three phases:

- Early rehearsal

This is the time that individual musicians spend learning the

technicalities of a piece and become familiar with its mechanics. It

generally occurs in private, before the group comes together to

practice. Musicians reported in interviews that they did not annotate

heavily during this phase, and that any annotation that did occur was

generally limited to basic technical notes such as breathing marks or

fingering instructions. Some amateur musicians skip this phase all

together.

- Mid rehearsal

In this phase, musicians meet as a group and begin to bring the piece

together. This was observed as the phase in which the most annotations

occurred. This is likely because it was the time where musicians first

collaborate with other group members. During this phase, annotations

are made to remind musicians of decisions that the group has made as

to how the piece will be played. Rehearsals at this stage stop and start

as things are tried out and decisions are made. This leaves time to make

annotations.

- Pre performance

20

This is the last phase of preparation, where the group is comfortable

with the technicalities of the piece and has generally learned to work

together consistently. Rehearsals during this phase mainly involve

playing the piece all the way through. During this phase, little or no

annotation was reported to take place.

What annotations do musicians create?

In her study, Winget categorises annotations in two ways: by purpose and by

mode.

- Purpose

An annotation‘s purpose is said to be technical, technical-conceptual or

conceptual. This categorisation roughly corresponds to the ambiguity of

the annotation or how dependent it is on personal interpretation by the

musician. A technical annotation is one whose meaning is certain, such

as a bowing or articulation mark, whereas a conceptual annotation is a

more personal representation of a concept, such as phrasing or

emotive marks. Technical-conceptual annotations lie somewhere in

between. Annotations in this category include dynamic markings and

similar annotations that convey information as to how the music should

be played, without giving the specific technical instructions on how to

do so. Winget found that the vast majority (70-81%) of annotations

created could be classed as technical and that the majority of those

technical annotations were related to bowing (this is partly due to the

large number of string players included in the research).

- Mode

An annotation‘s mode is its physical representation, classed as textual,

symbolic or numeric. Winget found here that 72% of annotations were

symbolic, 16% numeric, and the remaining 12% textual.

21

Annotations are then further classified by type or specific purpose. Some

examples of type classification are: bowing, articulation, attentive and

navigation.

Winget‘s study gives a good overall picture of how and why classical musicians

interact with their music through annotation. The insights gained lead well into

the development of a digital annotation system specifically targeted to musical

annotations.

2.3 Summary

Since its first appearance as a design concept in the Muse project, research

and development of the Digital Music Stand concept has lead to a number of

experimental and commercial systems tailored to the needs of musicians.

Features identified as useful in these systems include:

- Music library management and part distribution.

- Page turning both manual and networked.

- Score personalisation through display size and layout management.

- Annotation creation and sharing.

Some features apply to digital document management in general. Two that are

highly specific to music are page turning and layout management. Studies of

page turning identify the importance of speed, musician control and

maintaining the spatial location of music elements.

Research into annotation of text documents has identified the appropriateness

of free-form sketch input. But this form of input has not been studied in the

digital music stand context. Annotation of music has much in common with

annotation of other types of documents but also has special features. Winget‘s

analysis of the annotation behaviour of musicians gives us a picture of the

range and nature of annotation used. In particular, it shows that the majority of

musical annotations are symbolic, small and need to be placed accurately on

22

music scores. These kinds of annotations are not well supported by current

digital music stand systems.

23

Chapter 3 - Design Considerations

The physical circumstances in which musicians work impose strong constraints

on the screen displays and input mechanisms they can use. In this chapter,

physical constraints on musicians imposed by their instruments are analysed;

requirements for a music display hardware system are developed and options

for a hardware and software development environment are explored.

3.1 Physical restraints on Musicians

Introduction

Musicians‘ movements are physically restricted by their instruments. In most

situations where they would be interacting with sheet music (when practicing,

performing or annotating their scores) they are also holding or balancing their

instrument. In an orchestral setting musicians may be sitting close together

with little spare space around them in which they might safely place their

instrument. Musical instruments are fragile, expensive items and may have

sentimental value as well. Just bumping an instrument may cause it to go out

of tune even if it is not damaged. Taking care of them is important.

When developing an interactive digital music stand for musicians, it is

important to consider the physical limitations caused by their instruments. It is

no use developing a system that requires users to perform complex multi-

handed touch gestures if that endangers the safety of their musical instrument.

Physical Restraints by Instrument

The following table outlines key physical constraints placed on musicians by

their instruments. The table covers 37 orchestral instrumentsviii as well as six

other common musical instruments (the conductor has been included as an

‗instrument‘ because their movements are restricted by the need to use their

hands or baton to conduct). The instruments are sorted by orchestral section.

24

For each instrument, eight observations are made as follows:

1. Needs two hands to be played (Never/Sometimes/Always)

Does the instrument require both of the musician‘s hands to be on the

instrument to play?

2. Possibility of a spare hand while playing (Yes/No)

Restatement of 1. If answer is Never or Sometimes, then there is a

possibility that the player could play their instrument with only one

hand (perhaps only for a portion of a piece of music), leaving a spare

hand.

3. Instrument Self-supporting (Yes/No/Balanceable)

Is the instrument free standing, or does it have a stand such that it

partially balances on the ground, or on the players lap while being

played.

Some examples of balanceable instruments are: Cello (Has a spike

resting on the ground and leans against the player‘s legs), Guitar (Can

sit on the players lap, or be supported by a neck strap when the player

is standing). An example of a fully self supporting instrument is the

Piano.

4. Player’s feet are in use (Yes/No/Sometimes)

Does the player use his/her feet to play the instrument? If the

instrument has optional accessories that players use with their feet, then

Sometimes is used. An example of this is a whammy pedal for an

electric guitar.

5. Played Standing (Yes/No)

Can the instrument be played from a standing position?

6. Played Sitting (Yes/No)

Can the instrument be played from a sitting position?

7. How many hands available while not playing (1/2/1 or 2)

How many spare hands does the player have when they are not playing

25

music? If the player requires one hand to hold the inactive instrument,

then they have one hand available. If the instrument is classed as

‗balanceable‘ (from 3) then it is possible for the player to support their

instrument without using either hand, but they may prefer to keep one

hand on their instrument for safety. In this case the answer to 7 is

‗1 or 2‘.

8. Must stop playing to turn a page (Yes/No/Maybe)

Assuming that the player is using a standard music stand with a physical

printed score, and is playing alone (does not have another person

available to turn pages for them), does the player have to stop playing

their instrument in order to physically turn the page of their music?

The answer is Maybe if it is possible that the page turn in the music is

placed such that at that point in the score the player needs only one

hand on their instrument to play all their required notes. (This does not

include instances where the player has rests over the page turn and so

isn‘t playing at all).

26

Table 1 – Physical restraints on musicians (Part 1 of 2)

Instrument

1.

Needs

two hands

to be

played

2.

Possibility

of a spare

hand while

playing

3.

Instrument

self-

supporting

4.

Player’s

feet are in

use

 (Never,

Sometimes,

Always)

(Yes , No) (Yes, No,

Balanceable)

(Yes, No,

Sometimes)

Conductor Sometimes Yes Yes No

Vocalist Never Yes Yes No

Woodwind

Piccolo Always No No No

Flute Always No No No

Oboe Always No No No

English Horn Always No No No

Clarinet Always No No No

Bass Clarinet Always No Balanceable No

Bassoon Always No No No

Contrabassoon Always No Balanceable No

Brass

Horn Sometimes Yes No No

Trumpet Sometimes Yes No No

Cornet Sometimes Yes No No

Trombone Always No No No

Tuba Sometimes Yes No No

Euphonium Sometimes Yes No No

Percussion

Timpani Sometimes Yes Yes No

Snare Drum Sometimes Yes Yes No

Base Drum Sometimes Yes Yes No

Cymbals Always No No No

Triangle Always No No No

Tambourine Always No No No

Glockenspiel Sometimes Yes Yes No

Tam-tam Sometimes Yes Yes No

Xylophone Sometimes Yes Yes No

27

Chimes Sometimes Yes Yes No

Instrument

1.

Needs

two hands

to be

played

2.

Possibility

of a spare

hand while

playing

3.

Instrument

self-

supporting

4.

Player’s

feet are in

use

 (Never,

Sometimes,

Always)

(Yes , No) (Yes, No,

Balanceable)

(Yes, No,

Sometimes)

Vibraphone Sometimes Yes Yes No

Tubular bells Sometimes Yes Yes No

Drum Kit Sometimes Yes Yes Yes

Keyboards

Celesta Sometimes Yes Yes Sometimes

Organ Sometimes Yes Yes Yes

Piano Sometimes Yes Yes Yes

Strings

Harp Sometimes Yes Yes No

Violin Always No No No

Viola Always No No No

Cello Always No Balanceable No

Double bass Always No Balanceable No

Other

Guitar Always No Balanceable No

Mandolin Always No Balanceable No

Ukulele Always No Balanceable No

Recorder Always No No No

Electric Guitar Always No Balanceable Sometimes

Keyboard Sometimes Yes Yes Sometimes

28

Table 1 – Physical restraints on musicians (Part 2 of 2)

Instrument

5.

Played

Standin

g

6.

Played

Sitting

7.

How many

hands

available while

not playing

8.

Must stop

playing to

page turn

 (Yes, No) (Yes, No) (1, 2, 1 or 2) (Yes, No, Maybe)

Conductor Yes No 2 No

Vocalist Yes Yes 2 No

Woodwind

Piccolo Yes Yes 1 Yes

Flute Yes Yes 1 Yes

Oboe Yes Yes 1 Yes

English Horn Yes Yes 1 Yes

Clarinet Yes Yes 1 Yes

Bass Clarinet Yes Yes 1 Yes

Bassoon Yes Yes 1 Yes

Contrabassoon Yes Yes 1 Yes

Brass

Horn Yes Yes 1 Maybe

Trumpet Yes Yes 1 Maybe

Cornet Yes Yes 1 Maybe

Trombone Yes Yes 1 Yes

Tuba Yes Yes 1 Maybe

Euphonium Yes Yes 1 Maybe

Percussion

Timpani Yes Yes 2 Maybe

Snare Drum Yes Yes 2 Maybe

Base Drum Yes Yes 2 Maybe

Cymbals Yes Yes 2 Yes

Triangle Yes Yes 2 Yes

Tambourine Yes Yes 2 Yes

Glockenspiel Yes Yes 2 Maybe

Tam-tam Yes Yes 2 Maybe

Xylophone Yes Yes 2 Maybe

Chimes Yes Yes 2 Maybe

Vibraphone Yes Yes 2 Maybe

29

Instrument

5.

Played

Standin

g

6.

Played

Sitting

7.

How many

hands

available while

not playing

8.

Must stop

playing to

page turn

 (Yes, No) (Yes, No) (1, 2, 1 or 2) (Yes, No,

Maybe)

Tubular bells Yes Yes 2 Maybe

Drum Kit No Yes 2 Maybe

Keyboards

Celesta No Yes 2 Maybe

Organ No Yes 2 Maybe

Piano No Yes 2 Maybe

Strings

Harp Yes Yes 1 or 2 Maybe

Violin Yes Yes 1 Yes

Viola Yes Yes 1 Yes

Cello No Yes 1 Yes

Double bass Yes Yes 1 Yes

Other

Guitar Yes Yes 1 or 2 Yes

Mandolin Yes Yes 1 or 2 Yes

Ukulele Yes Yes 1 or 2 Yes

Recorder Yes Yes 1 Yes

Electric Guitar Yes Yes 1 or 2 Yes

Keyboard Yes Yes 2 Maybe

30

Observations

- The only musicians (of those listed) who can reliably perform a standard

page turn without stopping playing are conductors and vocalists. For all

other instruments, being able to turn a page without disruption to the

music, requires the page turn to be placed somewhere in the score

where they have either rests, or notes that require only one hand to

play.

Figure 6 Physical restraints on musicians, observation 8.

Yes

49%

No

5%

Maybe

46%

(8) Must stop playing to turn a page

31

- If musicians were given the option of triggering page turns by foot

pedal, the percentage of players able to consistently perform the action

increases from 5% to 86%. The instruments that still restrict users‘ hands

and feet are: Drum Kit, Celesta, Organ, Piano, Electric guitar (when used

with pedal), Keyboard (when used with pedal).

Figure 7 Physical restraints on musicians, observations 1 and 4 combined. In answer
to 1 is Never or answer two 4 is Never, then Yes.

Yes

86%

No

14%

(1 & 4) Instrument leaves one foot or hand

available while playing

32

- Only 44% of the instruments surveyed leave players with two spare

hands while they are holding their instrument but not playing (e.g.

when an orchestral player is sitting with their instrument, waiting to

begin a performance or rehearsal). This is often the state a musician is

in when they are annotating their music. It is therefore not advisable to

develop an annotation system that requires the player to interact with

two hands as most musicians will not be able to do so. However, all

instruments allow the musician free use of one hand. So it would

appear that an annotation system that can be operated with a single

hand would be usable.

Figure 8 Physical restraints on musicians, observation 7.

1

44%

2

44%

1 or 2

12%

(7) How many hands available while not playing

33

3.2 Hardware Considerations

Screen size and resolution

For viewing and interacting with sheet music, screen size and resolution is key.

Traditional sheet music is generally printed at A4 size or bigger. The more

music that is displayed on one page, the fewer page turns are required for the

whole piece. Musicians also sit quite far back from their music, compared to

someone reading a novel for example. This is because their instrument

generally sits between them and their music stand. To ensure that their music

is easily readable from this distance (between 0.5 and 1.0 metre), it must be

displayed at a reasonable size. Printed sheet music gives us a good guideline

as to the appropriate display size, achieving an acceptable balance between

quantity of music per page and legibility.

Tests conducted by Bell et al. determined that though musicians can cope with

reading small music quite well, they prefer ―normal‖ size or larger (Bell, et al.

2005). For the test, musicians were asked to find errors in unfamiliar music

presented at three different sizes. With this task, much concentration was

required, as it was necessary to study the music in great detail. Bell et al.

suggest that as musicians become more familiar with a piece of music, they

may prefer to display it at a smaller size so that more music can fit on their

display at a time, therefore reducing the number of page turns. Having a

display with a large screen size and high resolution would make this practical,

as well as facilitating music display at ―normal‖ or large size when required.

McPherson, when testing page turning techniques with a small group of

musicians (McPherson 1999), observed that a 17‖ monitor was too small for

evaluating a page turning system that displayed two pages of music side by

side. Several of the musicians taking part in the trial commented that the size

of the music made it difficult to read with this method and that their rating of

the page turning method was influenced by this.

34

From this we conclude that a digital sheet music display should ideally have a

large enough physical screen size to display each page of music at full A4 size

or bigger. The screen resolution should also be as high as possible to ensure

that music rendered on screen at full size is crisp and legible and also to allow

for more music to be displayed at a smaller size if required.

Viewing angle

In an orchestral situation particularly, musicians often share music stands with

other players. The music stand is then placed even further away from the

musician, both to make room for their instrument, and to assure that it is in

view of all players that need to read from it. It can also be placed quite low in

relation to the musicians‘ eye-line so that it does not block their view of the

conductor (or other players in the group). It is therefore important for any

digital music stand to be viewable from a distance and from a moderate angle

(up to 40° from the normal) to the left, right or above.

Input mechanism (stylus/finger)

Touch screen technology exists in several different forms. The three most

common technologies used in commercial touch screens are:

- Resistive touch: Touch is detected through physical pressure on the

screen‘s surface. Devices with resistive touch screens can be operated

by fingertip or using any hard pointing device, like a plastic stylus. A

significant amount of pressure is required when using a fingertip.

- Capacitive touch: the surface is composed of an insulator layer, e.g.

glass, and coated with a transparent conductor. Touching the surface

with an electrical conductor, creates a distortion in the surface‘s

electrostatic field. This distortion is tracked and a touch is detected in

that place. The human body is an electrical conductor, so touching the

surface with a naked fingertip will trigger a touch action to be detected.

A plastic stylus will not work on a capacitive touch screen. Capacitive

35

styli are available, though they tend to have a wider surface area than a

standard stylus. (A typical device has a blunt tip approximately 5-8mm

across.)

- Optical Touch: These screens have cameras embedded in their frames.

An infrared back light is placed in the field of view of each camera.

When the screen is touched, a shadow is created in the view of each

camera as the touch device blocks the infrared backlight. These

shadows are tracked and the size and location of the touch is

calculated. Depending on the screen, touches may be detected using

this method without the user physically coming into contact with the

screen‘s surface. Hovering a finger just above the surface (1-2mm away)

will have the same effect as a touch. Strictly speaking, therefore, these

optical ‗touch screens‘ are not really touch devices as contact with the

screen surface is not measured. However, they are normally marketed

as touch screens as they provide similar affordances. Seeing as physical

contact is not even necessary, these devices can be operated with a

very light ‗touch‘. Optical touch screens can be used with any pointing

device. The camera resolution is sufficient to pick up a fine pen tip.

Using a stylus gives greater accuracy than using a fingertip. This is due the size

of the tip of the stylus being generally much smaller than a fingertip. This

smaller touch surface can be tracked more accurately on the screen. Using a

fingertip to interact also has the disadvantage over a stylus of bringing the

user‘s hand closer to the screen. The user‘s hand can then easily block

important pieces of an interface from view, making it difficult to accurately

interact. On a capacitive or optical touch screen, the hand can also trigger

unintended touch events; without even a warning from the sensation of touch,

in the case of the optical touch screen. When it comes to writing on a touch

screen, the stylus has the clear advantage that it feels and acts like a pen or

pencil. We are much more used to writing with a pen than with the tip of a

36

finger and this familiarity leads to greater accuracy. Again though, on a

capacitive or optical touch screen, the user must hold their hand clear of the

surface. This loses some of the familiar experience of using a pen on paper,

where accuracy is easily achieved because the hand can be braced against the

paper.

Fingertip interaction has the major advantage that no extra equipment is

needed. A user can instantly interact with the screen without searching for a

stylus. Finger touches are also silent, where a hard stylus can make a disruptive

clicking noise on each contact.

Given that both fingertip and stylus interaction have advantages and

disadvantages, for the purposes of experimenting with annotation on sheet

music, a screen that accepts both fingertip and stylus interaction seems

appropriate.

Single vs Multi-Touch

Screens that handle multiple simultaneous touch points are becoming more

common. Many smart phones for example now have multi-touch screens that

allow users to interact with applications through multi-finger gestures. Using a

two-finger pinch gesture to zoom is a common UI control in applications

designed for these and other touch screen devices, for example.

A system relying solely on single touch interaction is limiting in the number of

distinct actions that can be detected. A multi-touch screen would increase the

number of simple gestures available for experimentation.

As discussed, musicians are limited in their ability to free their hands to interact

with their music display. Big gestures, requiring two handed operation would

not be easy for a musician to perform. Simple multi-finger gestures like pinch

however, may be possible, assuming the musician was able to free one hand

for interaction. It is reasonable to assume that this is the case when making

37

annotations at least, as when annotating a traditional paper score, they need

one hand to hold and use a pencil. This is something that orchestral musicians

in particular do regularly during rehearsal (Winget 2006).

Power supply and battery life

When using a digital music display during a performance particularly, a reliable

power source is important. Running out of battery power half way through a

performance and losing access to one‘s music is not an option. A performance

may last several hours, and a rehearsal may last all day. Even with the advances

in battery technology, it may be necessary to use a device connected to an

external power source for safety‘s sake. This need for external power will

impact on the portability of the device. In cases where an external power

source is not available, e.g. playing an outdoor gig, a reliable battery would be

required.

Connectivity

In a group situation, communication between players‘ music display systems

may be a desired feature. Such communication could allow a group to share

notes/annotations or network page turns.

Communication from each music stand back to a server would be useful for

the distribution and management of large collections of music. The benefits of

a networked system such as this are described in some detail by Bellini et al., as

part of the design considerations for their system: the Music Object-Oriented

Distributed System or MOODS (Bellini, Fioravanti and Nesi 1999).

Hardware with Wi-Fi or Bluetooth capability would make building a connected

system feasible. A wired network would also do the job, but the cabling

required to network an entire orchestra would be cumbersome and possibly

impractical in most cases. In groups or orchestras that are regularly wired with

microphones and lighting (such as bands or recording orchestras), the addition

of networking cables may not be so much of a hindrance.

38

Noise

A digital music stand must be as quiet as possible, particularly in a

performance situation, so as not to disrupt or detract from the music being

played. Excessive fan or hard drive noise would be a nuisance.

Portability

The ideal digital music display would be as portable as a traditional music

stand with paper sheet music; for practicing at home, a display unit need not

be portable.

If the unit is to be taken from venue to venue for rehearsals and performances

however, a light system that does not require external cabling or attachments

would be preferred. Systems should be designed so that they are not a safety

hazard on stage, or in a rehearsal space.

Screen Refresh Rate

A system used for displaying sheet music must be capable of performing page

turns quickly (certainly no greater than 0.5 seconds) to avoid disrupting a

musical performance. But, beyond purely the speed of displaying a page of

music, developing a highly interactive user interface requires a screen refresh

rate of at least 24 frames per second to ensure that any transition animations

appear fluid to the human eye.

Also, drawing on a screen requires high input sampling rates (about 100

samples per second are recommended for pen input) to produce smooth lines,

and again, a refresh rate of at least 24 frames per second to interactively

display the result.

39

3.3 Device Options

In choosing a development environment for the experimental software, four

categories of devices were considered. To give the best freedom of

development, we wanted a device with as many of the features described

previously as well as a useful programming environment. For a full table of

devices considered and comparison criteria, see Appendix A.

Tablet PC

Touch screen laptop computers or Tablet PCs offer portability and computing

power. Available running a range of operating systems, Tablet PCs are a

practical option when it comes to freedom of development environment. The

devices considered for this research project run Windows 7. This gives a full

Windows programming environment.

There are Tablet PCs available that support multi-touch through both stylus

and fingertip interaction. This is an ideal situation as it gives the most freedom

in terms of experimenting with touch gesture controls for the software system

interface.

Being designed for portability however, screen size is limited. Of the tablet PC

devices considered for this project, most common screen size was 12.1‖ with

resolution 1280 x 800. A 12.1‖ screen is just capable of displaying the contents

of one A4 page of music, if white space and margins are reduced.

iPad / Slate Device

With the introduction of the iPadix in April 2010 came the arrival of a new sub-

category of tablet computers, the slate. These devices generally run specialised

cut down operating systems, often focused around providing web browsing

tools and music or photo library management. They are built without hardware

keyboards and are designed for use with touch controls.

40

Slate devices again have the benefit of extreme portability, making them ideal

for perching on a stand in front of a musician without the need for extensive

cabling and support hardware. They also boast good battery life compared to

traditional Tablet PCs.

Again though, screen size is an issue. Current slate devices range from 7‖ to

12.1‖, with the Apple iPad coming in at 9.7‖ and a comparatively high

resolution for its size of 1024 x 768. This is significantly smaller than an A4

page of music, however.

Several slate devices were considered for this project, the forerunner being the

Apple iPad as it was the most readily available. There are several sheet music

display applications available on the iPad and their popularity indicates that

some musicians do not mind working with the small display, at least for

personal use. This may not be the case in an orchestral situation however,

where musical scores are often very large.

The iPad has a capacitive touch screen, responding to finger touch. Though it

is possible to purchase specialised styli to work on the iPad, they have a large

surface area compared to a traditional pen style stylus. This makes drawing fine

annotations difficult.

After talking with some iPad users and experimenting with drawing annotations

on the device it was decided that the iPad an impractical choice for

development. This was mainly due to the screen size restricting user interface

layout and design options. Only being able to display one small page of music,

with even that being of questionable usefulness to a musician, would

excessively limit experimentation from the outset.

eInk Display

Devices with eInk displays in the form of personal e-book readers are

becoming widespread. These displays are based on electronic paper

41

technology, that is, displays that are designed to emulate the appearance of

ink on paper. In contrast to traditional back lit displays, eInk is reportedly easy

on the eyes for extended periods of reading and can be read in direct sunlight.

The primary benefit of an eInk Display is battery life. Once an image is

displayed on an eInk screen, very little power is required to keep it there. The

main disadvantage of this technology is the slow refresh rate compared to an

LCD screen (between 0.7 and 1.0 seconds as observed on an Amazon Kindlex

device). They are not well suited for the development of interactive

applications, especially those with fluid animated menu systems or controls.

Another limiting factor with the eInk devices currently available is screen size.

Of the consumer eInk devices available at start of this research project, the

largest screen was 10.2‖ with a resolution of 1024 x 1280. This is approximately

A5 size. As a sheet music is traditionally printed in A4 size or larger, this is too

small to be practical.

The current eInk devices are also limited in touch input capability. The devices

considered did not support multi touch and were limited to stylus input only. It

was concluded that the consumer eInk devices available today are not well

suited to development of interactive, touch based user interfaces.

Multi-Touch Monitor

Setting aside the issue of portability, a multi-touch monitor connected to

desktop PC offers the best capability in terms of screen real-estate.

Commercially available touch screen monitors now come at 21.5‖ providing

HD resolution of 1920 x 1080. A 21.5‖ screen is wide enough to display the

contents of two A4 pages of sheet music side by side, with about 2‖ to spare

for user interface controls. The screen height is insufficient for a full A4 page

but will fit the musical content if the top and bottom margins are trimmed.

42

For slightly better portability, all-in-one touch screen computers are also

available. Though, not as light and portable as a tablet or slate, these devices

at least require less cabling and support hardware than a traditional desktop

with monitor. Unfortunately, the all-in-one computers available at the

beginning of this research project had surprisingly low resolution screens

compared to the stand alone touch screen monitors and so were not

considered further.

As with the tablet PCs considered, the desktop PC powering the multi-touch

monitor would be running Windows 7, providing access to a rich set of

development tools and a convenient development environment.

The decision as to which device to use for development came down to either a

Tablet PC, or a desktop computer with multi-touch monitor. The development

options for both are the same, so any application written for one would only

require minimal modification to work on the other. It was therefore decided to

work with a desktop and multi-touch monitor as the larger screen size

increases options for user interface design and development.

3.4 Software Environment – WPF with .NET

Choosing to work with a multi-touch monitor and desktop computer running

Windows 7 directed us towards utilising Microsoft‘s .Net framework with

Windows Presentation Foundation for developing the experimental software.

Windows Presentation Foundation (WPF) is a system for building sophisticated

user interfaces for Windows client applications, built into the Microsoft .Net

framework. WPF takes advantage of modern graphics hardware through

Microsoft‘s DirectX graphics library, providing a high speed, resolution

independent, vector-based rendering engine.

43

Developing for Windows 7 through .NET with WPF provides several benefits

that make it a good choice for the type of software application developed as

part of this research.

- Development tools for applications supporting pen interaction and ink

rendering, originally released in 2002 with Windows XP Tablet Edition,

are now included in the WPF framework. This provides high quality ‗ink‘

rendering, showing ink strokes as variable thickness, smoothed Bézier

curves, rendered with a variety of brushes. Quality of line rendering is

important in sketch applications to mimic the fluidity of real ink on

paper. This helps to create a distinction between the underlying typeset

music and the annotations, without making the annotations look to

have ‗poor quality.‘

- With Windows 7 comes multi-touch support at three levels.

1) Legacy Support – Some existing applications will automatically

respond to some basic touch gestures (panning, zooming and flick

gestures), in place of mouse interaction, when run with a multi-

touch screen.

2) Basic Multi-Touch Support – Applications can add gesture

support by responding to predefined gesture events provided by

the system. The available gestures are: zoom, single finger and two

finger pan, rotation, two finger tap and press and tap. The

developer has full control over how an application responds to each

of these gesture events.

3) Optimised Multi-Touch – Applications access raw touch events.

Every time the screen is touched or a touch point is moved, the

application receives a notification. Notifications are sent for as many

simultaneous touch points as the touch screen hardware supports.

44

These touch notifications, at all levels, can be accessed through WPF.

Combining touch support with ink rendering gives all the necessary

support to build an interactive multi-touch application with an

annotation system.

- WPF provides separation between user interface development and the

underlying program logic. User interfaces are defined using Extensible

Application Markup Language (XAML – pronounced ‗zammel‘) which is

a derivative of XML. XAML is used to define and position user interface

controls, create animations and styles, define 2D and 3D graphics and

connect data to display with WPF‘s data binding system. Underlying

program logic is created in C# or VB.NET (Visual Basic).

This is an ideal situation for development of our digital sheet music

display. Once the underlying music data structure is defined,

experimenting with user interface and specifically touch controls can be

done efficiently and iteratively over the top.

45

Chapter 4 - Sheet Music Unbound

Digital sheet music display (as opposed to digital music stand development) is

an area of work that has seen much research activity of the last five decades.

Research into the computerisation of the musical score creation process began

as early as 1961 with ―The DARMS project‖ (Erickson 1975). Commercial

software has been available for over two decades for typesetting and

composition of music and this has been embraced by the musical community

and sheet music publishing industry. The advantages of digitally produced and

printed sheet music are obvious over traditional handwritten manuscripts.

The destination of music produced through these packages has remained

generally unchanged however. Music is created and laid out in pages as it

would be in a printed manuscript. Music typesetting software decides on

optimal note spacing to lay bars in such a way that they make musical sense

and fill the width of each page tidily (Blostein and Haken 1991). Once the

music reaches the consumer (in digital, or hard copy) this page structure is

fixed. Bars x – y are on page 1, (y + 1) – z on page 2 and so on.

Storing sheet music in a digital format gives us an opportunity to change the

way sheet music is presented to the consumer.

4.1 Breaking the boundary of the page

A piece of sheet music is an ordered list of symbolic instructions describing

what rhythms and pitches to play to replicate a piece of music. In modern

notation, this takes the form of notes and symbols placed on a five-line staff

system, read from left to right. A piece is divided into groups of beats,

determined by the time signature. These groups of beats are called measures,

or bars. The ordering of these bars is (with the exception of some modern

46

compositions) fixed. So, a piece of music is an ordered list of bars. Changing

the order of the bars would change the piece of music.

Compare this to the structure of an English text document. A text document at

its most basic is an ordered list of words. Changing the order of the words in a

text document would alter its meaning.

What if we treat the bars of a piece of music like the words of a text

document?

With word processing software, we can control the formatting of a text

document without changing its underlying structure or meaning. By changing

the font size and colour and inserting (or removing) line or page breaks, we

can personalise the appearance of a document making it easier to read.

If digital sheet music is stored as an ordered list of bars, rather than a series of

static pages, we could give musicians similar control of how their music is

formatted. By allowing them to choose display size or zoom at the bar level

and to control where line breaks and page breaks occur, individual musicians

could optimise their music‘s layout to suit their personal performance style.

For example, musicians could scale down portions of a piece that they were

very familiar with and felt that they did not need to read the music very closely

for anymore. This would allow more music to fit onto each page, reducing the

number of page turns in the piece.

Alternatively, a musician may break a page of music by inserting a page turn

where they have a natural rest in the music. Though this may increase the total

number of page turns in the piece, the page turns are easier to perform and so

minimise disruption to the flow of the music. Traditionally this level of control is

only available to the music publisher.

47

4.2 How to store/represent a bar

For the purposes of experimenting with sheet music layout and formatting at

the bar level, it was decided in this project that the simplest way of storing each

bar would be each as a static image. As the music is not to be manipulated at

the note level, the software system need not necessarily understand the

musical content of each bar. All the software needs to know is the native size

of a bar and its placement within the piece overall piece. The layout system is

then dealing with an ordered list of blocks which can be reflowed and

formatted like the words of a sentence in word processer.

The down side of using standard image formats like PNG or JPG to represent

each bar is that if a bar is scaled up from its native size, it not only becomes

highly pixellated, it is also hard to read. Figure 9 and Figure 10 demonstrate

the loss of image quality when a bar is zoomed to 2x native size.

Figure 9 A bar of music at native resolution

Figure 10 A bar of music at 2 x native resolution

If we instead store each bar in a vector format then the music becomes

scalable without this quality loss.

48

PDF

The nice thing about a vast majority of modern digitally produced sheet music

is that it is available in PDF form. Within a digital sheet music PDF file

(excluding manuscripts scanned in as full page images, and then saved in PDF

format) the musical symbols and notation are stored as vector graphics. This

means that each note or symbol is stored as a collection of paths which are

usually defined as lines and cubic Bézier curves. These paths can be scaled

smoothly which means the music can be scaled smoothly without the image

quality loss of non-vector graphics.

A solution to the bar scaling within a sheet music display system, therefore

would be to store each bar as a small PDF file. The system could then render a

piece of music from this series of PDF blocks.

This is not really the way that PDFs are designed to be handled, however. A

PDF file is usually considered to be a complete document in its own right.

Though it is possible to render a PDF document with Windows Presentation

Foundation (WPF), this involves passing control of an application frame to to a

3rd party UI control. Such controls handle the parsing and rendering of the PDF

content as well as providing their own UI functionality. It was not immediately

apparent whether it would be possible to tile a display with these types of

controls. It is also likely that attempting to tile many of these components into

a display window would have not only caused considerable performance

issues, but may have taken over crucial touch and interaction events, making it

difficult to experiment with the user interface of the experimental software

developed in this project.

 It seemed impractical to continue trying to find a way to force PDF renderers

into behaving as required given that there was viable alternative vector format

built in to WPF.

49

XAML

Windows Presentation Foundation (WPF – the chosen environment for this

experimental development) comes with built in support for Microsoft‘s own

vector graphics format, XAML (pronounced ‗zammel‘).

XAML is in fact the user interface markup language used in WPF. In WPF,

XAML can be used to define UI elements, data binding and events as well as

2D and 3D objects, style definitions, animations and transformations for use in

visually rich user interfaces. XAML files can be created and edited though text

editors or code editors or through visual design tools provided in Microsoft

Expression Blend and Microsoft Visual Studio.

XAML can also be used to define resources for WPF applications. Resources

are small pieces of XAML that define things like styles, brushes, images and 2D

and 3D objects that are then utilised from within the application.

Microsoft Expression Designxi is a vector and raster design tool created by

Microsoft as part of the Microsoft Expression Suite.xii It is principally designed

for creating and editing XAML assets and resources for use in WPF and

Silverlight applications, with a heavy focus on vector drawing. Once assets are

created, using the extensive vector illustration tools, they can be exported in

standard formats (JPG, PNG, TIFF, PDF etc.) as or as XAML resources. We

concentrate on the latter. The exported XAML can be copied directly into an

application‘s UI definition code or stored in separate resource dictionary files

that can be loaded and parsed by a WPF application at runtime.

The following sample XAML resource file contains a definition for a

DrawingBrush object.

50

Sample XAML Resource File

<?xml version="1.0" encoding="utf-8"?>
<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<DrawingBrush x:Key="Violin" Stretch="Uniform">

 <DrawingBrush.Drawing>
 <DrawingGroup>
 <DrawingGroup.Children>
 <GeometryDrawing Geometry="F1 M 2.14019e-005,38.293L 38.0002,38.293">
 <GeometryDrawing.Pen>
 <Pen Thickness="0.664176" LineJoin="Round" Brush="#FF000000"/>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 <GeometryDrawing Geometry="F1 M 2.14019e-005,31.645L 38.0002,31.645">
 <GeometryDrawing.Pen>
 <Pen Thickness="0.664176" LineJoin="Round" Brush="#FF000000"/>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 <GeometryDrawing Geometry="F1 M 2.14019e-005,25.005L 38.0002,25.005">
 <GeometryDrawing.Pen>
 <Pen Thickness="0.664176" LineJoin="Round" Brush="#FF000000"/>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 <GeometryDrawing Geometry="F1 M 2.14019e-005,18.3651L
38.0002,18.3651">
 <GeometryDrawing.Pen>
 <Pen Thickness="0.664176" LineJoin="Round" Brush="#FF000000"/>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 <GeometryDrawing Geometry="F1 M 2.14019e-005,11.7251L
38.0002,11.7251">
 <GeometryDrawing.Pen>
 <Pen Thickness="0.664176" LineJoin="Round" Brush="#FF000000"/>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 <GeometryDrawing Brush="#FF000000" Geometry="F1 M 21.1487,31.7292C

... [Code excluded here – Further Geometry]

12.1071,5.22917 14.5237,3.6875 Z "/>

 <GeometryDrawing Brush="#FF000000" Geometry="F1 M 33.7073,19.6167L

... [Code excluded here – Further Geometry]

30.6656,10.075L 32.7698,9.3042 Z "/>

 </DrawingGroup.Children>
 </DrawingGroup>
 </DrawingBrush.Drawing>
 </DrawingBrush>

</ResourceDictionary>

51

In WPF Brush objects are used to fill or paint areas of an interface. Brushes

can be solid colours, gradients, images, drawings or visuals. In this case, our

desired Brush content is a drawing (a collection of geometrically defined 2D

paths and content) so we use a DrawingBrush. Once the DrawingBrush is

defined, it can be used by the application to paint or fill any area by either

tiling or stretching the Brush‘s content to cover that area. In our case, each

bar of music is rendered by stretching it over a defined rectangular space. As

the drawing is defined in vector form, stretching is done smoothly. This gives

an image block representation of each bar that can be laid out, scaled and

manipulated as desired by the WPF application without image quality loss. As

long as the aspect ratio of the bar is kept the same, it will look good at any

size, as Figure 11 and Figure 12 demonstrate.

Figure 11 A XAML DrawingBrush at native size

Figure 12 A XAML DrawingBrush at 8 x native size

52

4.3 Breaking music into bars

For the purposes of this study, the creation of the XAML representations of

each bar of music is done manually using Microsoft Expression Design. The

process for doing so is outlined in this section. This process is prohibitively long

and labour intensive and would not be suitable as the only method of

importing music into a commercial piece of software, but was sufficient for this

investigation. Automation of this process would be necessary for a complete

system but lay outside the scope of this project. Converting music manually in

this way, though cumbersome, allowed the focus of the project to remain

around experimentation with the user interface and feature development.

There is a brief discussion of a possible path toward automation at the end of

this section.

Sample music was sourced from The Mutopia Project.xiii The Mutopia Project

offers a freely downloadable collection of classical music that has been typeset

by volunteers using the LilyPondxiv software. The music available is based on

editions that are in the public domain so copyright is not an issue. Most sheet

music in The Mutopia Project is downloadable in PDF format as well as in

LilyPond format. For this study, music was downloaded in PDF format and

broken into bars manually using vector image processing software, in this case

Microsoft Expression Design.

Where does a bar begin?

Each bar of music has an associated clef, key signature and time signature.

When music is laid out on a page, the clef and key signature are drawn at the

beginning of each horizontal line of music. A key signature will also be drawn

in place in the music if/where a key change occurs. The time signature for a

piece is drawn at the beginning of the piece, or where a change in time

signature occurs. The time signature at the beginning of the piece is placed

after the clef and key signature at the beginning of the first line.

53

Figure 13 Excerpt from String Quartet KV.458 (nr. 17) "Hunt" for 2 violins, viola and cello -
W. A. Mozart. Source: Mutopia - http://www.mutopiaproject.org/cgibin/piece-
info.cgi?id=277

As mentioned previously, a feature of the software designed as part of this

research was to give the musician control of the scaling of bars. As bars are

scaled up or down, the number of bars that will fit across a page/screen will

change. This causes line breaks to occur in different places in the music than

when originally typeset. The technique is akin to word wrapping in word

processing software as the font size is changed. As line breaks change, the bars

rendered at the beginning of each line will change. The requirement that the

clef and key signature are rendered at the beginning of each line means that

as line wrapping changes, so to do the bars in which the clef and key signature

are drawn. The exception for this is when there is a key change in a piece of

music. The key change always happens in the same place musically and so the

new key signature is always rendered as part of the same bar.

The developed software handled these cases thusly: each stored bar contains

two separate DrawingBrush objects, one for the clef and key signature and

one for the musical content of the bar. When the music is laid out, the system

decides for each bar whether the clef and key signature should be rendered. If

the bar being rendered is placed at the beginning of a line, or is the first bar in

the piece using the attached key signature, then the key signature is drawn as

well as the musical content.

http://www.mutopiaproject.org/cgibin/piece-info.cgi?id=277
http://www.mutopiaproject.org/cgibin/piece-info.cgi?id=277

54

As the time signature is rendered only once, at the beginning of the first bar

for which it applies, it will always be drawn in the same bar regardless of

whether the music is reflowed. Even with line reflowing, it is safe to include the

time signature as part of the musical content DrawingBrush for the first bar it is

associated with. The preceding and proceeding bars of the piece need not

store this piece of information.

Where does a bar end?

In a piece of sheet music written in modern notation, bars are divided by

vertical lines called bar lines. There are three different types of bar line:

Bar line

Separates bars (or

measures)

Double bar line

Separates two sections

of music. Used where a

key signature or time

signature changes

Bold Double bar line

Used at the end of a

movement or entire

piece.

The end of each bar of music is marked by one of the above bar lines. To split

the music into individual bars, these lines determine the right hand edge (or

end) of each bar.

55

Where bars are separated - Illustrative example

Figure 14, Figure 15 and Figure 16 illustrate how the boundaries of bars are

chosen for two bars from the excerpt of music shown previously. The example

bars shown are bar 1 and bar 8. The selections highlighted in dotted boxes

(orange) represent the musical content portion of the stored bar. This musical

content is stored along with the key signature, highlighted in a solid box

(green), as the representation on one full bar.

Figure 14 Bar clipping boundaries

Bar 1

Bar 1 is the first bar of this movement. As it is

the first bar, the time signature for the start of

the movement is indicated at the beginning

of this bar. The time signature must then be

stored as part of the musical content of the bar for use in the developmental

display system. The musical content of the bar is therefore created beginning

from just before the time signature, and ending after the following bar line.

Figure 15 Bar 1 - stored components

56

The key signature for the bar is stored as a separate DrawingBrush object

within the bar object. The system can then decide whether or not to render the

key signature before the bar. In this case, as the bar is at the beginning of a

line, the key signature will be rendered.

Bar 8

Bar 8 shares the same time signature as

all the previous bars in the piece. It is not

necessary to render the time signature

again at the beginning of bar 8 as the

time signature in bar 1 is automatically applied to all following bars unless a

time signature change occurs and is drawn. The musical content of bar 8 has

no special information to include at the start, so the left hand boundary is

taken as just following the end bar line of the previous bar (bar 7).

The right hand boundary illustrates another possible variation in bar line. In this

case, the bar ends with a repeat sign. This tells the musician that at the end of

this bar, they should jump back to an earlier point in the music and play to this

point again. The end of the musical content of bar 8 is directly after the repeat

sign.

Again, the key signature is stored as a separate DrawingBrush within the bar

object. If the system was to display the piece of music laid out as in the excerpt

shown previously, it would not be necessary to render the key signature as part

of bar 8. If the music was reflowed though, to a point where bar 8 was at the

beginning of a line, the key signature would be drawn.

Figure 16 Bar 8 - stored components

57

Vertical Boundaries

The heights of bars within a piece of music can vary significantly. Though the

height of the staff system is fixed, the vertical space required for a bar depends

on what notes it includes and where any phrasing marks, dynamics or other

symbols are placed. These may extend both above and below the staff lines

(See Figure 17)Figure 17.

Figure 17 Bars 13 and 14 musical content bounds

When breaking the music into bars, the vertical boundaries are defined so as

to make the shortest possible block that contains all the symbols associated

with that bar.

Aligning bars vertically

Breaking the music into bars as described, creates bar blocks of all different

heights. These blocks need to be aligned by the display system so that the staff

lines match up. This is important for the readability of the final sheet music

displayed. With modern sheet music notation, the vertical position of notes in

relation to the staff line defines the pitch that the note represents. If the staff

lines themselves change vertical position between bars, then it becomes very

difficult to read the music, as the height difference between notes in different

bars across a page is no longer a consistent indicator of pitch change.

One solution to this alignment problem would be to force each bar block in

the music to be the same fixed height, and to centre the staff lines within the

created space. But how do you choose the height to use?

58

To ensure that the symbolic content of each bar will fit in the chosen bounds,

the chosen height must fit the bar with the greatest extension above the staff

lines and the bar with the greatest extension below the staff lines. The height of

bars within a line of music dictates how much space must be left between

consecutive lines on a page. If the bar height of every bar is maximized as

described, the space between lines is also maximized. This may cause

excessive white space between lines, reducing the number of lines of music

that fit on screen at a time and increasing the number of page turns required

when playing the piece.

The software developed as part of this research instead ensures that each line

of music displayed uses the minimum amount of vertical space required to fit

the bars of music that it contains. Rather than fixing the height of each bar to a

predefined value calculated over the whole piece, each bar is created with the

minimum possible bounding box that it can have with the staff lines centred

vertically.

To do this some additional information is stored in the XAML representation of

the bar. Recall that the XAML DrawingBrush representation is a scalable block

representation of the bar content. It is just a series of paths defining the

symbols (including the staff lines) that define a visual representation of the bar.

To alter this block representation to centre the staff lines, we need to know

what height within the block the staff lines actually are. This is done by locating

and tagging the path within the XAML DrawingBrush that represents the

centre line of the staff system. When each bar is loaded by the software (by

opening and parsing the associated XAML file), this centre line path is located

by searching the XAML for its assigned name. The y-position of this centre line

gives the necessary information to create the right sized bounding box for the

bar and centring the content.

59

To centre the bar content within the DrawingBrush object, we change the

ViewBox for the DrawingBrush. The ViewBox property of the

DrawingBrush defines what portion of the brush‘s content is used.

Original ViewBox

The ViewBox is defined as a Rectangle and its default size is the full size of

the drawing.

Bar Information

Using the information stored with each bar, we change the ViewBox to centre

the middle staff line.

topY = 0

midY = midLineHeight (Height of the middle staff line that was manually

tagged in the XAML)

bottomY = brush.Drawing.Bounds.Height

60

Extended ViewBox

In this case, as the topHalfHeight of the bar was larger than the

bottomHalfHeight, the ViewBox is simply extended by increasing its height

to double the topHalfHeight. This centres the middle staff line within the bar

block.

(If bottomHalfHeight was larger, the ViewBox would be extended upwards

by setting y = topHalfHeight – bottomHalfHeight, and increasing the

overall height of the view box to twice the bottomHalfHeight)

Bar blocks can then simply be centred vertically within each line of music and

the staff lines for each bar will be aligned.

Figure 18 Bars 13 and 14 with extended ViewBoxes

61

Handling multiple parts

The vertical alignment technique described above is only suitable when the

sheet music requires only one set of 5 staff lines. This is not always the case.

Piano sheet music, for example, uses two five line staffs connected together.

Another special case is the sheet music for a full score. A full score has one or

more five line staves for each instrument or part in the piece. These parts are

arranged vertically in a fixed order and are connected together through

extended bar lines. The staff lines for each part need to line up across the page

and simultaneous bars across different parts are stacked vertically. (See Figure

19)

We must therefore extend our concept of a bar to enable the storage and

display of multiple parts on multiple sets of staff lines. Within the bar block,

parts should be spaced so that each part aligns vertically across neighbouring

bar blocks. Each neighbouring block as a whole should also line up with its

neighbours. Spacing between lines of a full score should still be minimised so

that the maximum amount of music can be displayed on screen at a time.

62

Figure 19 Sample full score layout

63

Existing bar information

- One DrawingBrush for each part

with default ViewBox (Shown in

blue)

- MidLineHeight for each part is

known

- Order of parts is known

Desired result

64

In order to achieve the desired spacing between parts, the experimental

software system uses a fixed value for spacing. This spacing is hard coded to

60 pixels for the piece of music below. This spacing may not be suitable for

every piece of music, but works well for the sample chosen. Future

development of this software should include creating a test to determine the

best spacing between parts in any given score.

Once the desired spacing is determined, the current system works through the

part DrawingBrushes from the top down, setting their ViewBoxes to fill the

required space. Between parts, the part above is allocated as much space

below its staff system as it requires. The part below is the allocated any

remaining space to ensure that the total space from mid-staff line to mid-staff

line is equal to the chosen spacing. This again is not an ideal solution as the

topHalfHeight of the part below may require more space than it is

allocated.

Spacing set between parts

Below, the original ViewBoxes for the DrawingBrushes for each part are

shown in blue. The new ViewBox boundaries are indicated by the dotted

orange boxes.

65

Centre the complete score bar block

The entire score bar block is then centred within the line by extending either

the top margin of the top part‘s ViewBox, or the bottom margin of the bottom

part‘s ViewBox. This is similar to the centring of a single part bar described

earlier except that instead of centring the mid-staff line, we centre all the

content between the mid-line of the first part and the mid-line of the last part.

In this case, the bottom margin of the last part in the score is extended to

match the larger top margin of the first part.

The score bar can then be rendered by the software centred vertically as part

of a horizontal line of music and each part within it will align nicely with its

neighbours. The spacing between lines of music is again minimised. Figure 21

shows two complete lines of a four part score. The final ViewBox bounds for

each bar are shown in orange.

66

Even if the lines of music were to be reflowed, the careful centring of each

score bars‘ content ensures that the staff lines of each part would still align

correctly.

Key signatures

Each bar of each part has an associated key signature. As previously

mentioned, this key signature is stored as a separate DrawingBrush

alongside the musical content DrawingBrush for the bar. Each time the music

is reflowed, each bar block decides whether or not it needs to render its key

signature.

When multiple parts are being displayed simultaneously and a key signature

needs to be displayed, for each part, the Key DrawingBrush and Musical

Content DrawingBrush are first aligned with each other to become a

singlePartBlock. Then the blocks for each part are stacked together as

described previously into the complete score block.

The result of this is that where key signatures are rendered, they are included

in the score block of the following bar of musical content. They are not created

as a separate vertical score block. (See the first bar of each line in Figure 21 for

examples of score blocks containing key signatures.

The structure of a score bar block

Figure 20 Structure of a score block with three parts

Score Bar

Block

Single

Part Block

Key

Signature

Musical

Content

Single

Part Block

Key

Signature

Musical

Content

Single

Part Block

Key

Signature

Musical

Content

67

Score blocks laid out in lines

Figure 21 Two lines of full score. Final bar block bounds (ViewBoxes) for each part are
indicated in orange

68

The XAML bar creation process

The XAML bar creation process can be summarized in the following 10 steps:

1. Original musical score is taken in PDF format

The sheet music is loaded from the score rather than individual parts to

ensure that if multiple parts are to be displayed simultaneously by the

system, simultaneous bars are the same width for each part. In

individual printed parts (as opposed to full score representation), note

spacing within bars is optimised to fit the maximum amount of music

across a page for that part. This means that the width of any one bar in

a piece of music varies from part to part.

2. Each page of the musical score is converted to AI format.

AI is the format used by Adobe Illustrator,xv a vector drawing

application created by Adobe. It is a variation of the PDF format.

Microsoft Expression Design is able to import AI files but not PDF,

though the actual data representation is very similar, and converting a

PDF file to an AI file can, in most cases, be done by simply renaming a

PDF file with the .ai extension.

3. AI file is imported into Microsoft Expression Design.

69

Figure 22 One page of a score imported into Microsoft Expression Design

70

1. The individual bar‘s image content clipped from the score.

Bar content is decided on (as described previously) and cut and pasted

into its own Expression Design File (.design extension). The image size

at this point is the minimum possible to fit the content of the bar.

Figure 23 Copy the content of each bar into its own separate document

71

1. Parts are separated.

Each part within the score is cut and pasted into its own layer within the

document. Each layer is named with its associated part name from

within Expression Design.

Figure 24 Violin 1 layer content selected

72

1. Bar is Exported as XAML.

Document is exported as a XAML WPF Resource Dictionary, grouped

by Layers. This means that each layer in the document is exported as a

separate DrawingBrush. As each layer within the document contains

the musical content for a different part, the resulting XAML file contains

a separate DrawingBrush definition for each part. Each

DrawingBrush within the ResourceDictionary is named in the

XAML with the name of the layer that it represents (which should be the

name of the part it represents). Each part has its own DrawingBrush to

allow the software the flexibility to render any subset of the parts in the

piece. The resulting collection of DrawingBrushes are exported inside

a ResourceDictionary object.

Figure 25 Exporting bar as a XAML WPF Resource Dictionary grouped by Layers

73

The resulting XAML file:

<?xml version="1.0" encoding="utf-8"?>
<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <DrawingBrush x:Key="Cello" Stretch="Uniform">
 <DrawingBrush.Drawing>

... [Code excluded here – Geometry of the Cello part for the bar]

 </DrawingBrush.Drawing>
 </DrawingBrush>
 <DrawingBrush x:Key="Viola" Stretch="Uniform">
 <DrawingBrush.Drawing>

... [Code excluded here – Geometry of the Viola part for the bar]

 </DrawingBrush.Drawing>
 </DrawingBrush>
 <DrawingBrush x:Key="Violin2" Stretch="Uniform">
 <DrawingBrush.Drawing>

... [Code excluded here – Geometry of the Violin 2 part for the bar]

 </DrawingBrush.Drawing>
 </DrawingBrush>
 <DrawingBrush x:Key="Violin1" Stretch="Uniform">
 <DrawingBrush.Drawing>

... [Code excluded here – Geometry of the Violin 1 part for the bar]

 </DrawingBrush.Drawing>
 </DrawingBrush>
</ResourceDictionary>

74

1. Mid-staff line is identified and labelled.

The XAML file is edited to identify the middle staff line in each

DrawingBrush. This involves manually searching through the

geometry of each drawing and finding the GeometryDrawing

component for the middle line. The staff lines are usually easy to spot

within the XAML as their geometrical information is very simple

compared to the note heads and other pieces of the music in the bar.

Once the correct GeometryDrawing component is located, it is given a

name so that it can be searched for and found by the application when

the XAML file is parsed. The following is the portion of the previous

XAML file representing the Cello part layer alone. The middle staff line is

labelled by adding the property x:Name="CellomidLine" to the

GeometryDrawing object.

75

4. Final adjustments made to XAML file so that is can be loaded and

parsed at runtime within the WPF application.

It turns out that loading a ResourceDictionary from a file at runtime

within a WPF application does not work as nicely as expected. In order

to make loading and parsing work, this ResourceDictionary needs

to be contained within a WPF Window object.

Loading and parsing XAML in a WPF application uses the built in

XamlReader object. The XamlReader takes a XAML file, reads it,

parses it and builds the appropriate object graph. When the root object

of the XAML file is a Window object , the XamlReader returns a

<DrawingBrush x:Key="Cello" Stretch="Uniform">
 <DrawingBrush.Drawing>
 <DrawingGroup>
 <DrawingGroup.Children>
 <GeometryDrawing Brush="#FF000000"

Geometry="F1 M 2.55963e-005,244.037L
113,244.037L 113,243.497L 2.55963e-005,243.497L 2.55963e-005,244.037 Z "/>

 <GeometryDrawing Brush="#FF000000"
 Geometry="F1 M 2.55963e-005,238.704L
113,238.704L 113,238.164L 2.55963e-005,238.164L 2.55963e-005,238.704 Z "/>

 <GeometryDrawing x:Name="CellomidLine"
 Brush="#FF000000"
 Geometry="F1 M 2.55963e-005,233.37L 113,233.37L 113,232.83L

 2.55963e-005,232.83L 2.55963e-005,233.37 Z "/>

 <GeometryDrawing Brush="#FF000000"
 Geometry="F1 M 2.55963e-005,228.17L
113,228.17L 113,227.63L 2.55963e-005,227.63L 2.55963e-005,228.17 Z "/>

 <GeometryDrawing Brush="#FF000000"
 Geometry="F1 M 2.55963e-005,222.837L
113,222.837L 113,222.297L 2.55963e-005,222.297L 2.55963e-005,222.837 Z "/>

... [Code excluded here – Geometry for the remaining music content]

 <GeometryDrawing.Pen>
 <Pen Thickness="0.63761" LineJoin="Round" Brush="#FF000000"/>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 </DrawingGroup.Children>
 </DrawingGroup>
 </DrawingBrush.Drawing>
 </DrawingBrush>

76

Window object. In WPF, each Window has a local

ResourceDictionary called Resources. Wrapping our exported

ResourceDictionary in a Window object means we can access it

easily and search for items within it using two helpful methods:

 object FindResource(string key);

This method searches for a resource with a given key. This is used to

find the individual DrawingBrushes within the XAML file. The

DrawingBrush objects are labelled using the property:

x:Key="[_PartName_]"

In this case, the method will return a DrawingBrush object

 object FindName(string name);

This method searches through an object‘s XAML definition to find

any sub-element with the passed name. This is used in to find the

GeometryDrawing (or path) within each DrawingBrush that

represents the middle line of the staff for that bar. The middle line of

each staff is labelled using the property:

x:Name="[_PartName_]midLine"

In this case, the method will return a GeometryDrawing object,

from which the line‘s height within the bar block can be determined.

77

The completed XAML file for one bar of music (... represents excluded

geometry content):

<?xml version="1.0" encoding="utf-8"?>
<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Window.Resources>

 <DrawingBrush x:Key="Cello" Stretch="Uniform">
 <DrawingBrush.Drawing>
 ...

<GeometryDrawing x:Name="CellomidLine"
Brush="#FF000000"
Geometry="F1 M 2.55963e-005,233.37L
113,233.37L 113,232.83L 2.55963e-
005,232.83L 2.55963e-005,233.37 Z "/>

...
 </DrawingBrush.Drawing>
 </DrawingBrush>
 <DrawingBrush x:Key="Viola" Stretch="Uniform">
 <DrawingBrush.Drawing>

...
<GeometryDrawing x:Name="ViolamidLine"

Brush="#FF000000"
Geometry="F1 M 2.55963e-005,164.97L
113,164.97L 113,164.43L 2.55963e-
005,164.43L 2.55963e-005,164.97 Z "/>

 ...

 </DrawingBrush.Drawing>
 </DrawingBrush>
 <DrawingBrush x:Key="Violin2" Stretch="Uniform">
 <DrawingBrush.Drawing>

...
<GeometryDrawing x:Name="Violin2midLine"

Brush="#FF000000"
Geometry="F1 M 2.55963e-005,98.9704L
113,98.9704L 113,98.4304L 2.55963e-
005,98.4304L 2.55963e-005,98.9704 Z "/>

 ...
 </DrawingBrush.Drawing>
 </DrawingBrush>
 <DrawingBrush x:Key="Violin1" Stretch="Uniform">
 <DrawingBrush.Drawing>

...
<GeometryDrawing x:Name="Violin1midLine"

Brush="#FF000000"
Geometry="F1 M 2.55963e-005,30.5704L
113,30.5704L 113,30.0304L 2.55963e-
005,30.0304L 2.55963e-005,30.5704 Z "/>

 ...
 </DrawingBrush.Drawing>

 </DrawingBrush>

</Window.Resources>

</Window>

78

5. Final XAML file named and saved.

The complete XAML file is then named barx.XAML where x is its bar

number (position within the piece) and is ready to be loaded by the

software.

6. Software system loads the finished XAML bars.

Each bar is loaded, ordered by bar number, into the software and the

vertical spacing is performed as described previously to ensure that

each bar lines up properly.

Key signatures

Every key signature in the piece of music must also be created and

saved to a XAML file. The process for clipping out and saving a key

signature is the same as that for the musical content of the bar.

As with the bars‘ musical content XAML files, the file for each key will

contain a separate DrawingBrush definition for each part within the

score.

To attach each key signature to each bar that it applies to, the key

should store two additional pieces of information: the bar numbers of the first

and last bars that it applies to. This information should be added to the XAML

file for the key, however the current experimental system has this information

hard coded for the chosen sample of music.

79

Automation of the XAML bar creation process

Taking a preformatted piece of music and breaking it into bars with image

processing software is a labour intensive way of getting XAML bars. It would be

much better if there was a way of exporting music from a composition or

typesetting application like Sibeliusxvi, Finalexvii or LilyPond (Nienhuys and

Nieuwenhuizen 2003). This would greatly reduce the overhead in importing

music into the system.

Applications like these already know where individual bars begin and end as

they have full understanding of the musical content as it is entered.

Perhaps the most interesting option here, for experimental and development

purposes, is to investigate creating a XAML exporter for LilyPond. LilyPond is

free, open source music engraving program that creates high quality,

aesthetically pleasing sheet music (LilyPond Development Team 2011).

LilyPond is primarily a text based sheet music creator, but since its conception

development of several visual and more user friendly score editing tools has

taken place.xviii

LilyPond creates music in PDF format. The PDFs created contain a vector based

representation of the typeset music. It should be possible to programmatically

extract the geometric path information that defines the final music and mould

it into XAML for use with a WPF sheet music display as developed here. The

existing LilyPond system would do all the hard work of laying out the music, a

XAML exporter would just need to reformat the final exported paths into

DrawingBrush objects for use with WPF.

An added benefit to linking in with LilyPond is that LilyPond is the format used

to typeset all the sheet music contributed to the The Mutopia Project. Since

there is already a wide collection of public domain sheet music that is already

in LilyPond format, this could be instantly converted for use in a WPF system.

80

4.4 Fluid Layout

Once all the bars of music are loaded by the software, they are laid out in

order onto the screen. The system creates lines of music, fitting as many bars

across the page as possible and then stacking these lines in order down the

screen. As the display window is resized, lines reflow to fit the available space.

Figure 26 Music reflows to fill page width

As shown in Figure 26, each line fits as many bars as music as possible based

on the width of the application window. The music is tidily aligned along the

left hand edge but not at the right hand edge. The uneven lengths of the lines

of music is due to the fact that the bars are all different sizes.

81

The original piece of music, from which the individual bars above were cut and

exported, was typeset by LilyPond to fit cleanly on an A4 page. The LilyPond

system decided on the size of each bar and spacing of the notes within to

justify the music perfectly on the page. Figure 27 shows the tidy justification of

the original score PDF.

Figure 27 Original score PDF justified by LilyPond

Figure 28 demonstrates the best alignment possible in the experimental

software system. In this example, only the Violin 1 part is displayed rather than

the complete score. By showing only one part, more lines of music fit vertically

on the page, demonstrating the line justification more clearly.

82

Figure 28 Violin 1 part displayed in experimental software system with application window
width set to approx A4 size

As shown, by resizing the application window to fit the same number of bars

per line as the original score, the lines of music align more evenly. There is still

some variation in line width due to inaccuracies of the bar importing

procedure. The part names down the left hand side of the original score are

also missing from this representation, meaning that the indentation of the first

line of music is different.

This untidy justification of the sheet music may be distracting to musicians as it

is differs from what they are used to:

―Sheet music is performance material: everything is done to aid the musician

in letting her perform better, and anything that is unclear or unpleasant to

read is a hindrance.‖ (LilyPond Development Team 2011)

The prime novelty in the display system developed as part of this research is

the idea that music displayed at any scale could be reflowed to make use of

the available screen size. Ideally the system should be capable of aligning the

music nicely no matter what the width of the application window is, or the

magnification of the music. It was therefore necessary to investigate some

83

possible ways of improving the line justification in the developed software

system.

Force each bar to be the same width

If each bar was always a fixed width then line alignment would work

automatically. There are several problems with this approach; firstly, the music

created would have a regular, mechanical feel that is not necessarily desirable.

If the spacing of the music is so regular, the lines of music may begin to look

very similar. This can make it difficult for the musician to keep track of their

place when glancing to and from the music.(LilyPond Development Team

2011)

Secondly, in order to control the widths of bars of music, the system would

need to understand the musical content of each bar. Deciding on the

horizontal positioning of notes and symbols within bars of music is a

complicated process (Blostein and Haken 1991), and lies outside the scope of

this research project.

The LilyPond software has already done the hard work of typesetting and

aligning the notes and symbols within each bar of music. A large amount of

research and development has gone into the LilyPond system to ensure that

the music output is aesthetically pleasing, and mimics the finest hand-engraved

scores. Re-structuring this carefully laid out music would, we argue, be a step

backwards.

84

Magnify complete lines of music to fill any leftover space

Another approach to removing the jagged line alignment at the right hand

edge of the page is to force each line to fill the entire width of the page by

scaling. Figure 29 below shows the result of scaling up each line to fit the width

of the application window.

As shown again, some window sizes produce tidier results than others. With

this particular music sample the difference in magnification levels between lines

in the wide window is almost unnoticeable. In the narrow window example,

however, there is a clear difference between lines 1 and 2. Line 2 is heavily

magnified compared to line 1 and the resulting page of music looks unusual

and ―bulgy‖.

Figure 29 Music reflowed to fit page with each line scaled to fill all remaining space

85

This variation in zoom levels between lines may or may not be an issue to

musicians trying to read the sheet music displayed. Some user testing is

necessary to determine whether musicians could cope with the magnification

changes present here or would prefer to read un-justified music.

The visibility of line magnification differences is widely variable between

different window sizes. It may turn out that when the window width is set to

that preferred by the musician for reading purposes; the differences are barely

noticeable at all.

It is interesting to note that during development of the software system, during

demonstrations of other features of the software to colleagues in the lab

environment, the magnification levels of the lines was not often commented

on. People did not seem to notice the variation until it was pointed out.

86

4.5 Score Personalization

An important goal of this research was to experiment with a touch screen

interface to determine whether the implementation of the desired features of a

digital music stand were practical in that technology.

Once the underlying data structure and music loading procedure was in place,

it was possible to experiment with a number of interesting controls and

features that would not be possible with a printed score. Using some or all of

these tools, musicians should be able to personalize their view of a piece of

music in a whole new way.

This section describes the features and controls that become possible due to

the way that the musical data is divided and stored. Some of these features

were fully implemented in the sample application, while others were only

discussed or partially implemented.

Choosing display size

Storing sheet music in vector format gives the freedom to play with display

scale. Musicians could not only set the overall display size of their music, but

also change the magnification on a bar by bar basis. For example, a musician

could enlarge a section of music with which they have particular trouble, to

make it easier to read, or simply draw their attention to the fact that they need

to practice that part.

87

Figure 30 Section of music magnified

Scale gesture

In the sample application shown in Figure 30, individual bars were scaled up

using a two fingered pinch gesture as illustrated below in Figures 31, 32 and

33. To shrink a bar back to normal size, this pinch gesture is reversed.

The implementation illustrated in these figures scales the manipulated bar to a

preset magnification level. The user could be given more control of this final

magnification level by changing the way the application responds to the pinch

gesture as follows:

In the pictured example, the distance the user drags their fingers apart is tested

until it reaches a certain threshold. Once it passes that threshold the system

scales the bar to a fixed magnification. Alternatively, the distance between the

users fingers could be used to determine the magnification level; i.e. the

further apart the user drags their fingers, the more the bar is zoomed.

88

Figure 31 Start Pinch Gesture - Touch bar with two fingers

Figure 32 Pinch out gesture - Move fingers apart

Figure 33 When pinch distance reaches threshold, bar is scaled up

The problem with this approach is that when it comes to zooming multiple

bars, it is difficult to zoom each by the same amount. If zoomed bars are next

to each other, small differences in magnification level cause the staff lines to

look misaligned. Figure 34 illustrates the problem; though the middle staff line

still lines up between bars, the other staff lines do not.

89

Figure 34 Consecutive bars at slightly different magnifications

This problem could be solved in part, by allowing multiple bars to be

magnified at the same time with the same pinch gesture. Users would have to

first select all the bars that they wanted to manipulate and then change the

magnification of all of these bars with a pinch gesture or something similar.

That way, all the magnified bars would be zoomed to exactly the extent and

their staff lies would align.

Another option would be to have a discrete set of magnification levels that the

bar snapped between, rather than smoothly scaling up. This would make it

easier to manually match each bar with its neighbours.

Reflowing around scaled bars

As bars are scaled up and down, the number of bars that fit across the page

changes. This makes it necessary to reflow the music to ensure that no music is

lost off the edge of the page, or that any extra space gained at the end of each

line is filled.

There are two options to use when this reflow occurs: music can be reflowed

live, while the user is still interacting with the screen and changing the

magnification level, or it can be done after the zoom action is completed.

If the music is reflowed live, the user gains instant feedback on how their

modification affects the layout of the entire page. Though this ties in nicely with

the intended ―fluidity‖ of the interface, in practice it is distracting. As the user

changes the magnification of one bar, all the music that follows it is constantly

in motion as bars jump from line to line and complete lines scale slightly to

90

justify themselves on the page. In the worst case, the bar being manipulated

may even move under the users fingers.

With the second option, the user still receives instant feedback on their

manipulation: the bar they are manipulating zooms live beneath their fingers

and the rest of the bars in the same line are pushed sideways to make room.

They just do not get to see the affect that their changes have on the remaining

lines of the music until they finish their zoom action. It is at this point, when

they have finished zooming and removed their fingers from the screen, that

the music reflows around the newly scaled bar.

After experimenting with both options, it was decided that reflowing after the

user had finished their zoom gesture was preferable. Restricting movement to

the line of the bar being manipulated makes the interface feel responsive,

without distracting the users‘ with too much movement far away from the

active manipulation area.

Moving and hiding sections of music

Changing where page turns occur

As described, music in the developed system is stored as an ordered list of

bars. This structure is analogous to that of a text document, which can be

thought of as an ordered list of words. Word processor software provides tools

to change the layout of a text document without changing the ordering of the

words, and therefore not changing the overall meaning, by allowing

adjustment of white space (indenting and spacing), line breaks and page

breaks. Adding similar tools to the developed sheet music display software

would give musicians control of how many bars are displayed on each page

and therefore control of where page turns occur in a piece of music. This was

not implemented.

91

Marking cuts and compiling arrangements

Sometimes individual musicians or groups of musicians cut or rearrange

sections of pieces to better suit performance constraints. In an orchestral

situation, if the conductor decides to restructure a piece, for example by

cutting a section, this information must be then passed on to each individual

musician. Small changes can be written in by the musicians themselves, but

more complex restructuring is often completed in advance by an orchestras‘

music archivist team before the individual parts are distributed to the orchestral

players. Such complex tasks often involve copying, cutting and pasting

together of portions of sheet music and even handwriting long passages. This

can take many hours or even weeks to complete (Bellini, Fioravanti and Nesi

1999).

In the developed system music is stored bar by bar for every part. Tools could

be developed to allow construction or arrangement of a piece of music by

reordering or removing bars or combining portions of different parts. This

could help to speed up the music archivist teams‘ processes, cutting down

delays in getting parts to musicians to begin practicing.

Physical scores that have been cut and pasted together by hand, as described

above, may lose some of the formatting niceties that were present in the

original sheet music. Music typesetters make effort, when laying out music for

printing, to position page turns in appropriate places and to justify music

pleasingly on the page. When bits and pieces of parts are moved around, this

careful formatting is altered. The music layout and reflow systems in the

software developed here could produce a tidier final product than manually

manipulating pieces of printed music. With the addition of the other score

personalisation features described in this section, the musician that received

the final arranged part to play also has control over the final layout and so can

manipulate it to best suit them.

92

One limitation of the current system in this area is that it cannot support

transposition of portions of music, as the system has no musical understanding.

Rearrangement would be limited to that which could be done with the bars of

each part in their original keys.

Adding cues or display complete score

When playing music in a group or ensemble, it is often helpful to know when

and what the other members of the group are playing. This information can be

found by looking at the complete score of a piece, rather than the individual

parts. Reading from a full score is not always practical, however. As the score

contains all the music for all the parts in the ensemble, less music fits on each

page and hence the music is spread over more pages, requiring more page

turns.

The full score may hold a lot more information than the musician wishes to see.

They may only be interested in how one specific part interacts with their own.

Or it may be that for the majority of a piece, the musician is mainly interested

in their own part and only wants the additional information from others part

over a short section of the music. For example, orchestral musicians often

handwrite cues onto their music (Winget 2006) reminding them what another

part is playing leading into, or alongside some section of their music.

Using the software system developed as part of this research, choosing to

display any subset of the parts in a piece is simple. As described in the previous

chapter, each bar of music is cut and exported from a copy of the full score.

The DrawingBrush data for each part for that bar of music is exported as a

layer inside the same XAML file. This means that each XAML bar file contains all

the information required to display the music for any or all parts. The system

need just be told which parts to display. This can be done on piece wide or

individual bar level.

93

In the current system the subset of parts displayed is chosen for the entire

piece when the application starts up. This could be modified to be set bar by

bar, though some more work around vertical alignment of the bars would

need to be done to ensure that staff alignment worked between bars showing

different collections of parts.

Figure 35 is a mock up screenshot of the system displaying an extra part above

only three consecutive bars rather than the whole piece. In this case, The Violin

2 part is shown for the whole section and the Violin 1 part is added over bars

9, 10 and 11. It is important that the staff lines for the main part (in this case

Violin 2) remain aligned through the whole piece so the musician knows which

music to play for any given bar. It may also help to display the extra part in a

lighter colour to indicate that it is a cue.

Figure 35 Section of Violin 2 part with Violin 1 part displayed over three bars

Adding this feature to the system would remove the need for musicians to add

handwritten cues to their music. Using the data already stored in the system

ensures that cues are created in the correct place and the horizontal alignment

of the cued notes against the main part is accurate. This could make the digital,

printed cues more helpful in understanding the relationship between the parts

than handwritten ones.

94

4.6 Some ideas on page turning

Any digital music stand system needs to support page turning in some way. As

previous research has shown, simply providing musicians with a scrolling

interface is not satisfactory (Bell, et al. 2005).

In this research, no attempt was made to experiment with automatic page

turning triggers or systems. Instead, it was decided to take advantage of the

graphics and animation features available in WPF to create visualisations of

page turning actions. Visualisations and animations are important in letting the

musician know when and how they have moved through their musical score,

particularly if page turns are to be triggered remotely.

Visualisation options

In the developed system all page turn visualisations are triggered manually by

touching and dragging on screen. An external source, such as a foot pedal or

networked command, could be setup to trigger the page turn action, but the

focus of this research was on creating the visualisations themselves.

The visualisations created take advantage of the large, 21.5‖ monitor used in

the experimental setup. The monitor used was roughly the same size as an

orchestral music stand. This meant that it was possible to comfortably display

two, approximately A4 sized, digital pages of music side by side. The sheet

music displayed was structured as a digital representation of a physical score.

Music is flowed across digital pages which are arranged on screen to mimic the

way that printed pages of music would sit on a physical music stand.

Three visualisations were created. The underlying WPF controls for these

visualisations are based on the open source WPF Book Control by Furuta

(Furuta 2008). For each, the digital pages of music were arranged in a way that

a printed score could be set up on a physical music stand.

95

Booklet

This technique handles the musical score as though it were printed and bound

into a booklet. Each digital page has music printed on both sides. Two pages

of music are displayed at a time. Turning a page causes both old pages to be

covered with the next two pages in the booklet. (See Figure 36)

Figure 36 Page turning, Booklet visualisation

96

Paper Stack

In the Paper Stack scenario the pages of the score are arranged in two side by

side stacks on the screen. To start with, all the digital pages are on the right

hand stack. Each page has music on one side only. When the user wants to

reveal more music, they drag the top page off the right hand stack and slide it

across on top of the left hand stack.

Figure 37 Page turning, Paper Stack visualisation

97

Each time a page is turned (shifted between stacks), the old left hand page of

music is covered by the old right hand page of music, and one new page is

revealed from underneath the old right hand page. (See Figure 37)

With this system, while playing a piece, users could perform a page turn before

they have reached the end of the right hand page, as the old right hand page

is still visible on the left stack after the page turn has occurred. This may make

it possible to choose a point to turn the page that is less disruptive to playing

the music.

98

Paper Strip

The Paper Strip page turn is very similar to the Paper Stack. The only difference

is that instead of the new page being revealed from beneath the old right

hand page, it is instead animated in from the right hand side. It is as if the left

edge of the new page is connected to the right edge of the page being

dragged. (See Figure 38)

Figure 38 Page turning, Paper Strip visualisation

99

The benefit of animating the new page in like this is that if the user was

performing a quick page turn as they reached the end of the right hand page,

while the page turn is taking place, the beginning of the new page is at no

stage partially covered by the page being dragged out of the way. This means

that the musician can see the next bar of music to play next as quickly as

possible.

Initiating a page turn

For all three visualisations, page turns are triggered by touching and dragging

on a portion of the page to be turned (or slid aside). Once the moving page is

dragged across the screen by more than 30% of the width of a page, the user

can remove their finger from the screen and the page turn animation will

complete automatically.

If the user removes their finger before reaching the 15% threshold then the

page turn is cancelled and the turning page will animate back into its original

place.

Turning back pages works similarly but in reverse. Users touch the left hand

page and drag it back across to the right.

Animation speed

The speed of the page turn animation is controlled by the speed of the drag

motion made by the user. This enables the user to flick a page over quickly or

slowly drag it into place depending on how time sensitive the page turn is in

the music.

If the page turns were to be triggered by an external source, such as foot pedal

or networked command, a suitable default speed would be used.

100

101

Chapter 5 - Supporting Annotation

A major part of this research project was to develop and integrate an

annotation system with which musicians can satisfactorily create all of the

annotations that they do on standard paper scores. This chapter discusses the

underlying tools used to support annotation in the software as well as interface

features developed to make it easier for the user to create quality musical

annotations.

5.1 Digital Ink

Supporting touch input in the form of freeform sketches or handwritten text is

the underlying functionality of an annotation system. Input of this form is

known as Digital Ink. Digital Ink can be run through handwriting recognition

algorithms and converted to text, or can be stored as sets of strokes which are

in turn stored as collections of points.

Microsoft has offered .NET development tools for applications using pen input

in the form of digital ink since the 2002 release of Windows XP Tablet Edition

the associated Software Development Kit.xix The tools for creating, storing and

manipulating digital ink now come built in to WPF. These, combined with touch

support, give WPF all the necessary tools for creating a touch-based

annotation system over our experimental sheet music display software system.

5.2 Storing annotations across bars

As explained in the previous chapter, sheet music displayed in the experimental

software system is broken up into bar sized blocks. These bar blocks are

designed to be resized and reflowed on screen at the whim of the user.

Annotations made on music in this format must also be free to resize and

reflow so that it remains attached to the content that it was initially drawn on. It

102

is therefore necessary to store annotations on a bar by bar basis, the same as

the underlying music.

To do this with WPF a control layer was added on top of each bar object, this

became the annotation layer. This annotation layer is responsible for accepting

touch input, and creating and storing digital ink.

Annotatable Music Structure

With the addition of annotatable overlays on each score block, the final music

has this underlying structure:

Score

Line Line Line

Annotatable

Block

Annotatable

Block

Annotatable

Block

Score Block
Annotation

Overlay

Annotatable

Block

Score Block

Single Part

Block

Single Part

Block

Single Part

Block

Key

Signature

Musical

Content

Annotation

Overlay

103

WPF Ink Canvas

The simplest way to add digital ink support to a WPF application is to use the

built in InkCanvas control. An InkCanvas is a user interface control that

creates a space that can be drawn on using mouse, stylus or touch input. From

this input, ink Strokes are created and stored. Creating an InkCanvas on top

of each score bar in the music then allows users to draw on each bar as shown

in Error! Reference source not found.

Figure 39 Annotations created on InkCanvas overlays

The blue annotations have been sketched on top of the music using the touch

screen. The highlighted bars are those that have registered touch events. Each

annotation is stored within the InkCanvas overlay associated with the bar that

it was sketched on top of.

There is one issue with this approach: the InkCanvas control does not allow

annotations to be drawn continuously across multiple bars. Figure 40 shows

two examples where annotations are prevented from running between bars. In

both cases the InkCanvas layer on bar 11 registers the user‘s touch and

creates annotation strokes appropriately. Once the user crosses the boundary

into bar 12, however, bar 11 remains in control of all touch events, preventing

bar 12 from receiving notification that the user it now trying to draw on its

InkCanvas.

104

Figure 40 Annotation Clipping 1

This clipping is not appropriate for a music annotation system. Annotations like

slurs, crescendos and phrasing marks often cover multiple bars. With the above

system, musicians would have to draw such annotations in multiple pieces.

One option to remedy this situation is to set the ClipToBounds property of

each InkCanvas object to false. The InkCanvas will then allow sketched

strokes to continue past its boundaries. This means musicians could start an

annotation in one bar and sketch continuous strokes into neighbouring bars.

The complete annotation would be stored entirely in the InkCanvas of the

bar in which the touch event was initiated.

Figure 41 Annotation on an InkCanvas with ClipToBounds off

Figure 41 shows a crescendo annotation drawn starting in bar 19, moving over

the left hand boundary into bar 18 and back into bar 19 again. As the green

highlighting shows, only bar 19 registered any touch events during the drawing

of the annotation. The final appearance of the annotation is what was desired,

and the action required to draw it is the same as if it were drawn with pencil on

paper. The issue here comes when the window is resized and the music is

reflowed.

105

Figure 42 Reflowed annotation on an InkCanvas

When the music is reflowed, bar 19 moves onto a new line. The entire

crescendo annotation moves with bar 19 as it is stored on the InkCanvas

belonging to bar 19. The crescendo hairpin annotation was originally placed to

indicate a crescendo beginning in bar 18. That information is now lost. In this

particular example, the result is not too bad, but if the hairpin crescendo

annotation had covered three or more bars for example, having the entire

annotation attached to bar 19 would be even more destructive when the music

reflowed. Ideally, when the music is reflowed, any annotation that spans a line

break should break into pieces along the bar boundaries and each piece

should stay attached to the bar that it was drawn over.

What is needed here is a tileable InkCanvas control. Once an area is covered

with such tiles, users should be able to sketch over the entire area creating

continuous curves, without clipping occurring between tiles. The sketched

curves should then be stored broken into pieces across the underlying

boundaries. This could, in principle, be achieved by modifying the way the

InkCanvas control responds to touch events. Forcing the InkCanvas to

release touch focus when the user‘s finger leaves its boundaries, and grab

focus again when the user‘s finger re-enters its boundaries should allow touch

events to pass between neighbouring InkCanvas controls, creating and

breaking stokes as desired.

106

The InkCanvas object itself if complex, however, with multiple layers

responsible for different things. The InkCanvas supports drawing strokes and

erasing complete or partial strokes as well as applying styling and formatting

the strokes themselves. The components of the InkCanvas object that are

responsible for ink rendering are:

The underlying layers of the InkCanvas object manipulate and respond to

touch events and focus. Simply forcing changes to touch focus on the

InkCanvas control on touch enter and touch exit events did not generate the

expected behaviour. Touch focus seems to be handled too deeply within the

InkCanvas control to make it easily customisable to the desired use. It was

therefore necessary to develop a completely custom ink control layer to use in

the experimental software system.

InkCanvas

-WPF control that sits in the application UI

- Maintains a list of input strokes recieved from the DynamicRenderer

- Passes stroke information to the InkPresenter

- Responds to initial touch events

DynamicRenderer

-Handles live rendering of current input strokes

(before it is sent to the InkPresenter)

InkPresenter

- Displays complete strokes

- Applies appropriate styles to each stroke

107

Custom Ink Control

The custom Ink Control created for the developed software system is a much

cut down version of the built in InkControl. The custom ink control created

maintains a list of Stroke objects which are rendered using an

InkPresenter object. The complication of the DynamicRender is removed

as well as most of the Stroke erasing and styling functionality of the original

InkControl.

Each control maintains a list of complete Stroke objects as well as a collection

of TouchPoints representing the stroke that is currently being drawn. A

TouchPoint object stores the 2D location within the current control at which a

touch occurred, as well as information about the TouchDevice involved. The

TouchDevice information makes it possible to track multiple touches on the

screen simultaneously.

The custom tileable ink control works by responding to four of the WPF touch

events as follows:

TouchEnter

This is when a new Stroke should be created. It is triggered when the current

touch point is moved into the control, i.e. a touch started outside the control is

dragged across a boundary into the control. This event is also triggered when

the user initiates a touch within the boundaries of the control.

- Start collecting touch points for a new stroke

- Get the latest TouchPoint and store it in the current Stroke‘s

TouchPointCollection

- Create a new stroke in the InkPresenter using this

TouchPointCollection

- Grab Control of all events associated with this TouchDevice.

108

TouchMove

This is where the current Stroke is updated with any new TouchPoints that

have been registered. This event is triggered when a touch point within the

control is moved.

At this point it is also necessary to test if the current Stroke has hit the

boundary of the control. This is because the order in which touch events are

called between consecutive controls is not reliable. If the TouchEntered event

of the neighbouring control is triggered before the TouchLeave event of this

control, capture of the TouchDevice will not yet have been released, meaning

the passing of touch capture between these neighbouring controls will not

occur as expected. By testing on each TouchMove event for a touch nearing or

crossing the boundary of the control, we can pre-emptively release touch

capture, preventing the above situation from occurring.

- Check that there is a current Stroke being created

- Add any new TouchPoints to the current Stroke by adding them to

the current TouchPointCollection

- Remove the old version of this Stroke from the InkPresenter.

- Tell the InkPresenter to store the new version of the Stroke. This

creates a new Stroke in the InkPresenter from the current

TouchPointCollection.

- Check if the latest TouchPoint has reached the controls‘ boundaries.

If it has:

o Finish off and store the current Stroke in the InkPresenter

o Release control of all touch events associated with this

TouchDevice

109

TouchUp

This represents the completion of a Stroke object. It is triggered when the

user removes their finger from the screen within the boundaries of the control.

- Check that there is a current Stroke being created

- Add any new TouchPoints to the current Stroke by adding them to

the TouchPointCollection

- Remove the old version of this Stroke from the InkPresenter.

- Tell the InkPresenter to store the complete Stroke. This creates a

new Stroke from the current TouchPointCollection.

- Release control of all touch events associated with this TouchDevice

to let surrounding controls take over.

TouchLeave

This also represents the completion of a Stroke. Triggered when a current

touch point is moved outside the boundaries of the control.

- Check that there is a current Stroke being created

- Add any new TouchPoints to the current Stroke by adding them to

the TouchPointCollection

- Remove the old version of this Stroke from the InkPresenter.

- Tell the InkPresenter to store the complete Stroke. This creates a

new Stroke from the current TouchPointCollection.

- Release control of all touch events associated with this TouchDevice

to let surrounding controls take over.

110

Replacing the InkCanvas layer on each bar of music with this custom Ink

control gives the desired result as shown in Figure 43.

For the purpose of elucidation, each new Stroke is created in a different

colour to show how they are broken across bar boundaries.

Figure 43 Annotations created across tileable custom ink control

With this custom control, annotations can created smoothly across bar

boundaries yet are broken up on a bar by bar basis meaning that when the

lines of music are reflowed, any annotations will remain in the correct place in

relation to the music.

5.3 Creating space for annotations

On a printed piece of sheet music, there is a fixed amount of empty space

around the music in which annotations can be drawn. Musicians must fit all

their annotations into the existing margins and spaces between lines on the

page.

Moving to a digital sheet music display, we now have the freedom to change

the spacing of the musical lines on the page to make more room when it is

required. In the experimental system developed as part of this research,

annotation space around lines is controlled by changing the size of the

margins above and below each line of music.

111

Figure 44 demonstrates the structure of annotatable lines of music displayed in

the experimental software. This sample application displays simple boxes in

place of the musical content.

Figure 44 Test application for line spacing techniques

- Purple boxes represent bars of music

- Grey areas are the annotatable areas of the display.

The annotatable areas cover the musical content of each bar and

extend to fill the height of the line.

- The total annotatable area on the screen is broken vertically between

lines and horizontally between bars. The grey dotted lines show the

boundaries between the annotation areas.

- For demonstrative purposes, the annotations for each bar are rendered

in different colours showing how they are broken up horizontally across

the line.

112

- Annotations drawn in the space outlined in orange belong to the bars

in line 2.

- The top margin of line 2 has been extended to create more annotation

space.

- The bottom margin of line 1 has also been extended.

Once an annotation is created in the margin space of a bar, that bar‘s margins

cannot be collapsed back over the annotation. If the line structure of the music

is reflowed at any stage, annotations move with their associated bar. Each new

line of music sets its initial margins to the minimum required size to fit all the

annotated bars of music that it contains.

Creating more space for annotations will reduce the amount of music that fits

on the screen, possibly affecting the number of page turns required. It is up to

the musician to decide on the balance between annotation space and number

of page turns.

Three experimental control systems for creating annotation space were tried

out during development: Corner Drag, Tab Style and Roller blinds. The first two

systems work on the concept of moving the boundaries of a line of music to

stretch the surrounding white space. The third option, Roller Blinds, works

differently in that the user creates white space by grabbing the musical content

of a line and pushing or pulling it out of the way, leaving clear space behind.

These three controls were created as a proof of concept and were not subject

to full usability testing. This section explains how each control works and some

observations on the usability of each as became apparent during development.

113

Corner Drag

Figure 45 Line spacing demonstration application with Corner Drag controls

The Corner Drag control was designed to act in a similar way to the controls in

Microsoft Windows for expanding or shrinking an application window. Clicking

and dragging the bottom corner of a window allows that window to be

resized.

In this test implementation (shown in Figure 45), large touchable controls were

placed in each corner of the space assigned for each line of music. Touching

and dragging any one of these controls stretches the allocated space for that

line by expanding its top or bottom margin. This creates more space around

the musical content of the line in which the user can draw annotations.

The musical content for the line remains in the same place on screen and the

surrounding lines are pushed out of the way as the margin expands. The

margins of the previous and following lines remain the same.

114

Figure 46 Touch and drag action controls the margin size

Touching the top left corner control (as shown in Figure 46) and dragging up

or down expands or contracts the top margin of the musical line.

This control turned out to be confusing to use. The problem being that the top

controls of one line appear to control the same space as the bottom controls

of the line above. Both controls do control the overall space between the two

lines, but the distinction between expanding the bottom margin of the top line

or expanding the top margin of the bottom line is difficult to grasp. The

boundary between the two lines defines which bar any drawn annotations will

belong to.

Even after gaining some experience with the use of this control, accidentally

grabbing and manipulating the control for the previous or following line was a

regular occurrence. This meant that it was easy to expand the margins of the

neighbouring line of music. Creating annotations in this new space would

cause them to be stored with the wrong bars of music and become misplaced

if reflow was to occur.

115

Tab Style

Figure 47 Line spacing demonstration application with Tab Style controls

In an effort to make it more clear which white space is controlled by which

touch control, corner controls are replaced here with overlapping tab-like

controls. Dragging the left tab controls the top margin of the line below, while

dragging the right tab controls the bottom margin of the line above. The idea

is that the positioning of the tag controls shows more clearly which space each

will act upon.

The tabs are positioned such that they extend

from the line they control onto the neighbouring

line in the direction that the lines‘ space would be

extended if the tab were dragged. The Tabs

themselves cast a slight shadow on the

neighbouring line to show that they are

overlapping (see Figure 48).

Figure 48 Tab Style controls close
up

116

The functionality of the tabs was the same as the previously described corner

controls. Users drag up and down to expand and contract the associated line

margins. Again, the musical content of the affected line remains in the same

place on screen and the surrounding lines are pushed and pulled to make

space for the expanding/contracting margins.

Using the tabs turned out to be slightly more intuitive than the corner drag

method. There was less of a tendency to accidentally change the neighbouring

lines‘ margins by initially grabbing the wrong control.

The feeling was however, that perhaps creating space by stretching existing

space didn‘t feel too natural. This forced the user to see the ―white space‖ of

the page as a tangible object that could be manipulated. Perhaps it would be

more natural to, if you needed more space, grab the actual page content, and

shift it out of the way. The third control works on this idea.

117

Roller Blinds

With the Roller Blinds contol, to create annotation space around a line of

music, users grab the musical content of the line and drag it out of the way,

leaving clear white space in its wake. To avoid confusion with annotation

gestures, rather than touching and dragging on the musical content of the line

to move it, a control is created in the left hand margin of the page, as shown in

Figure 49).

Figure 49 Sample application with Roller Blinds controls for line spacing

Unlike the corner and tag controls, in this implementation there is only one

control attached to each line. This control is responsible for all four actions

associated with its line:

- Expanding the top margin

- Shrinking the top margin

- Expanding the bottom margin

- Shrinking the bottom margin

The system works on the assumption that the most common task would be to

expand the margins around a line to create space for annotations. This is

therefore the simplest task to achieve.

118

Expanding the top margin

To expand the top margin, the user touches and drags the line control down.

This action is shown in Figure 50. The selected line moves with the control

under the user‘s finger. The preceding lines of music stay in place and the

following lines are pushed further down the page. The purple highlighting

shows the complete annotatable area surrounding the manipulated line.

Figure 50 Expanding the top margin with Roller Blind controls

Expanding the bottom margin

To expand the bottom margin, the user touches and drags the line control

upward, as shown in Figure 51. The preceding lines of music are pushed up

out of the way. The following lines stay in place as the bottom margin of the

line extends, creating more annotation space.

Figure 51 Expanding the bottom margin with Roller Blind controls

119

As the preceding lines are pushed upward, some of the music will disappear

off the top of the page. This is necessary to ensure that the line being dragged

by the user remains under their finger on the screen. After the user releases

the control by taking their finger off the screen, the whole page of music will

scroll back down onto the page, assuring that there is no musical content lost

off the top of the page.

Figure 52 Annotatable space created by expanding margins

The final page of music now has plenty of annotatable space surrounding the

second line, as shown in Figure 52 above .

Shrinking a margin

Shrinking the margins of a line requires a two motion gesture. The user must

first tell the system which margin to change by beginning to expand that

margin. This is done by touching and dragging up or down. Dragging up will

‗activate‘ the bottom margin, while dragging down will ‗activate‘ the top

margin. Once a margin is ‗active‘, moving the selected line of music up and

down will affect only that margin. As soon as the user releases the control, by

taking their finger off the screen, the activation is lost.

120

This motion mimics the behaviour of roller blinds on a window, which lead to

the control being named Roller Blinds. Blinds are unrolled over a window by

pulling them downward. To roll them back up, a short downward motion is

required to release the catch, then, as the blinds are released, they roll back

up.

To shrink the top margin

- First drag down to expand the

top margin slightly

- Then drag the line of music

back upward to collapse the

white space above

The gesture to shrink the bottom margin is the same but starting with an

upward drag motion.

121

5.4 Annotation Input Scale

Drawing annotations by hand on a touch screen is quite different to drawing

them with a pencil onto paper. Touch interfaces, where finger input is involved,

do not provide high enough input resolution for direct drawing of all

annotations onto a digital document. Large sweeping annotations such as

circling a paragraph or crossing out a portion of text are possible, but smaller

handwritten notes cannot be sketched legibly by finger at the same size as

printed text.

The sorts of annotations that are drawn on sheet music are often small and

need to be carefully aligned with the music that they correspond to, so this

problem with touch input is particularly apparent.

There are several issues that arise when writing or drawing on a touch screen

with a finger:

- Finger tips can occlude areas of the screen, making it difficult to know

exactly what part of the screen is being touched.

- The contact area between finger tip and screen is large (compared to

that of a pen on paper). This makes it difficult to make or detect fine

movements.

- Fingertips can be sticky. When fingers stick to the screen, smooth

sketching motions are difficult.

- Conversely, fingertips can sometimes slip too easily over a screens‘

surface. This again can make fine movements and drawing difficult.

The situation can be helped slightly by allowing users the use of a pointing

device or stylus in place of a finger. Drawing with a stylus more closely mimics

the physical action of drawing with a pen on paper. This familiarity leads to

slightly better fine control. Some of the fine control that is attained using a pen

on paper is dependent on the ability to brace ones‘ hand against the papers

122

surface while writing. This is not possible on optical or capacitive touch screens

as extra contact points would be detected where the hand touched (or neared

in the case of optical touch) the screens surface.

The disadvantage of relying on a stylus to interact with a system is that it

introduces an extra piece of hardware that must be managed by the user.

Fingers are always there when needed, whereas a stylus is easily lost. For this

reason it was decided to try to build a finger operated annotation system that

alleviated the main complaints against finger based interaction, and made it

possible to draw fine musical annotations simply and comfortably.

The software solution posed was to increase the size at which annotations are

drawn, a system similar to that explored by Agrawala and Shilman (2005). The

premise being that drawing complex annotations requiring multiple precise

strokes is easier when they are drawn on a large scale, as each individual stroke

then involves a bigger movement on the touch screen. The main complaints

against finger based interaction are most prevalent when making small

movements.

Zoom to Annotate

To increase the input size for annotations while maintaining the display size of

standard sheet music, the zoomable nature of the bars of music in the sample

system is leveraged. Users‘ can zoom in on a bar they wish to annotate, draw

the desired annotation in place on the music, then resize the bar back into

place. The zoom action is triggered using the pinch gesture described in

Chapter 4 (Section 4.6 Score Personalisation, Scale Gesture).

Zoom in Place

Initial implementations of the Zoom to Annotate feature aimed to keep the

zoomed bar in place in the overall piece of music while it was being annotated.

123

Figures 53 and 54 illustrate annotating on a zoomed bar then shrinking it back

into place.

Figure 53 Annotation created on bar zoomed in place

Figure 54 Annotation created on zoomed bar, scaled back into place

The advantage of zooming in place is that the position of the zoomed bar in

relation to the rest of the piece is always clear. This is important when dealing

with sheet music as there are often multiple bars and sections within a piece

that look similar or are in fact identical. Understanding the context of each bar

is therefore important to make sure that annotations are not mistakenly

created in the wrong place in the music. Bar numbers are also helpful in this

regard.

There were two major complications in the implementation of the Zoom in

Place feature: how to handle annotations across multiple bars; and fitting

124

zoomed content on the screen. Descriptions of the problems encountered and

possible solutions follow.

Annotating over bar boundaries

Musical annotations often cover multiple bars. To draw a multi-bar annotation

with the system, users could use the pinch gesture to first zoom each bar that

the annotation will cross, then draw the annotation, then shrink each bar back

down to size.

This is cumbersome and requires planning before drawing can take place. For

some annotations it is more suitable than for others. If the user were drawing a

hairpin crescendo across a couple of bars, this approach works well, since users

know in advance how long the crescendo mark needs to be and so can

prepare the appropriate bars. If however, the user is writing a long textual

annotation, they may not know how much horizontal space will be required. If

they begin drawing their annotation across zoomed bars and run out of space,

they must stop mid annotation, scale the next bar, and then continue drawing.

As an alternative to the above, in the developed software, automatic bar

zooming was implemented. As the user approaches the edge of a zoomed bar

while drawing, the neighbouring bar is pre-emptively zoomed ready to take

over annotation collection.

The images in Figure 55 show the process of creating a multi-bar annotation

aided by the automatic zooming of the neighbouring bar. The annotation is

started in a pre-magnified bar then, as the user draws into the bar on the right,

the next bar is zoomed and takes over the annotation capture. As indicated by

the different colouring of the annotation strokes in each bar, the annotation is

broken at the boundary and each half is stored with the bar that it was drawn

over (this is to enable reflow of the music as described previously).

125

Figure 55 Auto zoom of neighbouring bars when annotation reaches boundary

When annotations are drawn from left to right (as in the example in Figure 55),

as the neighbouring bar to the right is scaled, any more music on the same line

is pushed further to the right hand side of the screen. This causes some

musical content to be clipped off the edge of the screen. This is only

temporary however, and once the annotation is complete and the zoomed

bars are returned to normal size, the clipped music slides back onto the page.

If annotations are drawn from right to left, when the user reaches the left hand

boundary of a bar, the preceding bar in the line is automatically zoomed. If this

is left to happen naturally, as the left hand bar gets bigger, it will push the bar

the user is currently annotating to the right, along with the rest of the line of

music. This means that the bar being annotated moves beneath the users

finger, changing their finger placement in relation to the current annotation

stroke. This will ruin the annotation, by creating an extra horizontal line as the

bar slides beneath their finger.

126

To stop this from happening, as the left hand neighbouring bar scales up, the

whole line of music is offset to the left hand side of the screen. This process is

illustrated in Figure 56. Note in the second image, the content of the line

before the first zoomed bar has been pushed to the left. When the annotated

bars are scaled back to normal size, the line of music slides back in from the

left.

Figure 56 Auto zoom of left hand neighbour pushes entire line to the left

Fitting zoomed content on the screen

Issues arise when the bars are zoomed near to the edges of the application

frame. Zoomed content is forced off the screen and clipped. This makes it

impossible to draw on a large portion of the bar. (See Figure 57)

Figure 57 Magnified last bar of a line is clipped at the boundary of the application window

127

Zoomed bars can be clipped both horizontally and vertically. In the sample

shown in Figure 58, zooming any bar of the second line of music leaves the

bottom part clipped off the bottom of the page, making it impossible to draw

annotations relating to that part.

Figure 58 Zoomed music clipped off bottom right corner of page

One possible way to prevent this clipping from occurring is to force the music

to reflow after each zoom (as described in Chapter 4). Zooming to annotate

however, is different from the zooming mentioned in Chapter 4 in that it is

designed to be temporary. Bars are only magnified to allow annotation to

occur, and reflowing the whole piece of music for this short period of time

seemed unnecessary. Also, the act of reflowing could separate bars that the

user was intending to annotate between.

128

What is needed here is a way of panning the zoomed content to bring it back

into view. This would involve making each line of music scrollable both

vertically and horizontally once any of its bars were magnified. This could be

done either with the addition of scroll bars, or by defining a multi-finger

gesture to indicate scrolling.

It was decided to avoid scroll bars to prevent the interface from becoming

cluttered. Introducing a new touch gesture to be performed over the musical

content of a line of music was also not a good option as it may interfere with

the annotation controls on the music. It was instead decided to come up with

an alternative to zooming in place.

Zoom Overlay

The chosen alternative to zooming bars in place was to create an overlay in the

centre of the screen in which selected bars are displayed at a magnified level,

ready to be annotated. With this approach, when a user wants to annotate a

bar, they use the pinch gesture as before to trigger the zoomed overlay

(shown in Figure 59. The bar that they ‗pinched‘ appears in the overlay along

with the bar before and the bar after. The ‗pinched‘ bar is highlighted in the

music behind.

Figure 59 Zoomed overlay ready for annotation

129

The overlaid zoom view is partially transparent so that the user can still see the

context of the bars they are annotating. The music displayed in the overlay can

be moved forward and backward through the piece using the arrow buttons in

the top corners. The bar displayed in the centre of the overlaid view is always

highlighted in grey in the music behind.

Annotations are created by drawing them on the music in the overlaid view.

These annotations do not appear on the music behind until the overlay is

dismissed by pressing the ‗shrink‘ button (See Figures 60 and 61).

Figure 60 Annotations created on the overlaid view

Figure 61 Annotations copied to the underlying music after the overlay is dismissed

130

The sample annotations drawn in Figure 60 appear to be clipped down the

right hand edge when they are copied onto the real sized sheet music shown

in Figure 61. This is because the sample annotations are created between bars

that are separated by a page turn. As shown in Figure 62, the remainder of the

annotations are displayed on the next page of music. This demonstrates a

benefit that the overlay system has over the ‗zoom in place‘ alternative,

annotations can be created smoothly between bars that are separated by a

line or page break.

Figure 62 Annotations drawn over a page break

The overlay view is limited to displaying three bars at a time. This means that

annotations that cover more than three bars would have to be drawn in pieces

if using the overlay view. Users can however, draw annotations without using

the zoomed overlay by simply drawing them directly onto the music at actual

size. This makes it possible to draw large annotations that cross more than

three bars. These types of annotations generally involve larger strokes and so

should be able to be drawn readily by finger on the actual size music.

131

Stamps

For the drawing of complicated annotations that are likely to be used multiple

times, a stamp system was also implemented. Users are able to create (Figure

63) and store a collection of ‗stamps‘ that can be used and reused by touching

and dragging them from a menu at the right of the screen (Figure 64). Once

the stamp is placed, it is treated the same as annotation strokes drawn directly

onto the music. It is saved with the bar it is placed on so that it will reflow with

the music. Stamps are drawn at 8 times actual size.

Figure 63 Stamp creation overlay

Figure 64 Inserting a stamp by touch and drag from the list of available stamps

132

5.5 Finger Annotation User Test

Experimenting with the developed software system in the lab environment it

became apparent that some musical annotations are easier to create than

others. Larger annotations, e.g. large slurs or hairpin crescendos could

sometimes be drawn without zooming first, where writing text or complex

small symbols was found to be difficult at real size.

Some structured testing was required at this stage to determine whether

allowing users to input annotations at a large scale, and then shrink them back

to size, was sufficient to make drawing real world musical annotations by finger

on a touch-screen viable. A formal user test was carried out to try to determine

whether the idea was valid and to try to find a magnification level for the input

area that allowed for the majority of real world sheet music annotations to be

drawn consistently and to a satisfactory quality.

Experiment Goals

The user test was designed to determine what level of zoom is required to

make the drawing of common musical annotations comfortable and accurate

using finger input on a touch-screen.

In addition, optical touch screen technology has some issues around what

triggers ‗contact‘ with the screen surface. Hovering one‘s finger too close to

the screen without actually ‗touching‘ it is sometimes detected as a touch. A

second goal of the experiment is to see if drawing bigger, on a zoomed input

area, causes people to lift their fingers further off the screens surface between

strokes, avoiding this hardware flaw.

Experimental Setup

Subjects were presented with a test application running on a multi-touch

screen (shown in Figure 65) and asked to complete a set of tasks involving

copying musical annotations onto a short section of digital sheet music. For

133

each task, they were presented with an excerpt of sheet music with some

typeset annotations overlaid. They were asked to copy the typeset annotations

in ‗sketched form‘, onto the same place on an un-annotated copy of the same

excerpt of music by drawing them on the screen using their finger.

The experiment was designed so that the user need not understand the

meaning of the presented music or annotations; they were simply asked to

copy the symbols. The finished annotations were not expected to look perfect;

they should be a ‗sketched‘ version of the printed sample.

Figure 65 Finger annotation user test application screenshot

There were six different annotations to copy. They range in complexity from

three curves (slurs) to a collection of seven English characters. Users were

asked to copy each annotation five times, each time the annotation input area

was presented at a different scale, starting very large and getting smaller each

time. (The scale of the sample was not changed – only the un-annotated input

area was scaled.) The magnification levels tested were: 8 x, 6 x, 4 x, 2 x and 1 x

134

actual size. At actual size, the staff system was 8 mm or 33 pixels high. This size

was chosen to be approximately the same size as the staff system of a printed

PDF created with LilyPond, using the default staff size setting of 20 points.xx

Concerned about the sample size, a statistician‘s expert advice sought in

relation to randomising the order in which experimental conditions were

applied. The opinion given was that randomisation would complicate the

experiment excessively. The order in which the sample annotations were

presented to the users was therefore fixed, starting with a simple annotation

and moving through to the more complex annotations requiring finer drawing

control. It was noted that there would be some learning effect, but that this

was most likely to affect the time taken to complete each task, rather than the

quality of the final result. Users were not timed. It was known from informal

experimentation that drawing on a large scale was easier than at a small scale.

By asking the users to draw at large scale first, any bias caused by learning

would favour the small scale. If users still could not draw quality annotations at

the small scale, then the experiment would provide good evidence that the

small scale was impractical.

Users could take multiple attempts at each drawing by pressing the ―clear‖

button and starting the current annotation again at any time. Once a user

finished copying an annotation at the given scale, they were presented with

their annotation at actual size and asked to say whether they were satisfied

with the final result. The reason for asking the user to rate their own

annotations, rather than have the experimenter or a music expert do the

rating, was to avoid bias resulting from a user‘s music knowledge. So long as

the user produced an annotation that satisfied them, it seemed reasonable to

assume that the system had worked satisfactorily. For the same reason,

participants were not timed at each task. Musicians familiar with the

annotations could be expected to copy them more rapidly. This may have the

135

disadvantage that users might be satisfied with very inaccurate annotation,

particularly missing the nuances in positioning that a musician would notice. A

check by the experimenter was therefore included to assure that this was not

the case, once the results were available.

Users were also asked to rate the ease at which they were able to draw the

annotation at the given scale (Rated on a five point scale ranging from ‗very

easy‘ to ‗very difficult‘). Figure 66 shows the rating screen presented to the user

after each annotation copying task.

Figure 66 Finger annotation user test - result rating

All drawn annotations and satisfaction ratings were recorded. A record was

also taken of the number of attempts the user took at each task. This was

stored by saving a copy of the input drawing‘s state, before clearing it, each

time the user pressed the ‗clear‘ button to start again. This gave a record of

any mistakes made in the drawing process to give a better understanding of

136

any problems users had using the touch-screen hardware or the software

interface.

In total, users were asked to copy 30 annotations. The software was designed

to allow them to move quickly from task to task, with the complete experiment

estimated to take around 10 minutes.

After the experiment, users were asked to complete a brief (one page)

questionnaire.

Background Questionnaire

The questionnaire given to users after the finger annotation test gathered

information about their existing experience with music and annotations, some

physical information, and asked for some feedback on the system tested. (The

questionnaire presented to participants is included as 0.)

Experience questions

- How much experience do you have with sheet music?

(none/a little/a lot)

- Have you ever written annotations on a printed piece of sheet music?

(Yes/No)

- Before this test, had you ever annotated a digital document using a

tablet or touch interface? (Yes/No)

These questions aimed to identify participants that had experience with sheet

music and/or touch screens. Users with an understanding of the annotations

that they are asked to copy and the underlying sheet music may very well have

different expectations of the final quality of the annotations produced

compared with those that are simply duplicating curves over an image without

understanding the context. The third question sought to find out if participants

that had used a touch-screen or tablet device for annotation before, had

137

developed skills that make the creation of these specialised musical

annotations easier.

Physical characteristics

- Please circle the option that best describes you:

Left Handed, Right Handed, Ambidextrous

- Which of the following outlines best fits the fingertip you used to draw

during the experiment?

Choose the smallest outline that your fingertip fits inside. You should

just be able to see the outline around your finger.

In designing this experiment, it was conjectured that the above two physical

characteristics may have interesting consequences when interacting on a touch

screen. Finger size may have an impact on the user‘s ability to draw fine

annotations, or even their ability to interact with a touch screen interface at all

as larger fingers block more of the screen from view. There is surprisingly little

published literature about how these attributes affect annotation specifically,

though finger size is often mentioned as an issue for general interaction with

touch interfaces. Voida et al. refer to this as the ―fat fingers‖ problem (Voida, et

al. 2009). We also wish to establish whether the touch-screen hardware and

software interface are easier to use with the right or left hand.

Feedback on the system

- During the test, did you have an issue with:

Stickiness (Never/Sometimes/Usually/Always)

Slipperiness (Never/Sometimes/Usually/Always)

138

- Do you have any other comments about your experience with the

software used today?

These questions covered basic feedback on the use of the touch-screen

hardware system itself and gave the user a chance to make note of any issues

that they had with the test software.

Tested Annotations

Six varieties of annotation were chosen for the user test. These annotations

were selected to cover the physical characteristics of the annotations identified

as most commonly used in Winget‘s study into the annotation behaviours of

performing musicians. As more fully described in Chapter 2, Winget

categorises annotations in two ways: by purpose and by mode. (Winget 2006).

An annotation‘s ‗purpose‘ is classified as technical, technical-conceptual or

conceptual. In Winget‘s sample, between 70% and 81% of annotations were

classed as technical and that the majority of those technical annotations were

related to bowing.

An annotation‘s ‗mode‘ is its physical representation, classed as textual,

symbolic or numeric. In Winget‘s sample 72% of annotations were symbolic,

16% numeric, and the remaining 12% textual. This categorisation was used to

decide which annotations to include in our user test as it describes the physical

form of the annotations. The user test is focused on whether it is physically

possible to draw real musical annotations using a finger on a touch screen.

The six annotations used to test the practicality of musical annotation via finger

input were the following (Annotations are listed in the order that they were

presented to participants):

139

Bowing Marks

Figure 67 Typeset bowing mark annotations sample

Bowing marks are classed as technical and symbolic. They were the most

common technical annotation uncovered in Winget‘s study. Each symbol

corresponds directly to one note, so placement of each symbol is very

important. This annotation provides a good test for accurate placement of

small symbols with the software.

Crescendo and Decrescendo

Figure 68 Typeset hairpin crescendo and decrescendo annotations sample

Crescendo and Decrescendo are classed as technical-conceptual annotations.

They are another example of the most common mode of annotation, the

symbolic annotation. These hairpin crescendo and decrescendo marks are

again carefully aligned with the notes in the music. This annotation again tests

accuracy of placement, but this time of a larger symbol that corresponds to

multiple notes in the music.

Slurs and Ties

Figure 69 Typeset slur and tie annotations sample

These slurs are again technical and symbolic. They represent articulation

instructions. Though articulation instructions made up only 2% of the technical

annotations uncovered in Winget‘s study, slurs are interesting in this test as

140

they are smooth directed curves that again require careful placement against

the note heads of the underlying music. They are a good test of accuracy as

well as fluidity of drawing.

Text and Dynamics

Figure 70 Typeset textual annotations sample

In this particular example, the text annotations shown relate to dynamics and

would be classed as technical-conceptual, textual annotations. Textual

annotations account for only 12% of the total annotations. We argue that the

physical act of writing text like that above, and writing numerical values (which

represented a further 16% of annotations in Winget‘s study) is so similar that

by testing this annotation we can essentially test the practicality of both

numeric and textual annotation. We test here the ability to create legible and

properly placed alpha-numeric annotations.

Glasses

Figure 71 Rendered glasses annotation sample

The glasses symbol, though not a true musical symbol, is widely used by

musicians to remind themselves to be attentive at some point in the music.

Winget classes the glasses symbol as a technical, symbolic annotation (again

the most common categorization). In testing the software, the glasses drawing

is a good example of a single annotation symbol that is made up of multiple

sketched lines. In order to draw a satisfactory set of glasses, users must have

enough control and accuracy to properly align each sketched curve with those

141

that preceded it. It is also quite a small annotation, and so is a good test of fine

drawing with the finger tip.

Musical Notes

Figure 72 Typeset musical notes annotation sample

Drawing notes is another example of a symbolic annotation. The specific

example above is technical and slightly contrived, as it is not likely that a piece

of music will require the musician to hand write notes that have been excluded

from an existing bar. It is more common, as in an example mentioned (and

classed as technical-conceptual) in Winget‘s report, that a musician may copy

some notes from a previous page, to alleviate a difficult page turn, or that they

may write in cues from another part to help with coordinating a musical entry.

This example tests whether it is possible in the developed, finger operated,

software to draw finely and accurately enough to position notes on a staff

system correctly. The physical action is similar to the real world examples in

found Winget‘s study. This information could also be interesting for any future

development where composition or sheet music creation via sketched input

directly onto a staff system was required.

The six annotations selected follow roughly the same distribution over Winget‘s

defined categories as the actual annotations made by musicians (being mainly

examples of symbolic, technical annotations). They are also chosen as a set of

annotations that cover a range of the specific features of musical annotations,

such as dependence on specific placement in relation to notes, and necessity

of fine drawing control. Testing the practicality of creating these six annotations

gives a good overall picture of the practicality of real musicians using the

developed annotation software in a real situation.

142

5.6 Finger Annotation User Test Results

Participant Demographic

The user test was run with 23 year 11 students (aged 15 – 16) from a local co-

ed high school. The group was visiting the university to tour the usability

laboratory and learn about Human Computer Interaction. As part of their high

school computing curriculum, they were required to take part in a formal user

test and so were willing participants for this experiment. Their performance in

the user test had no bearing on their school grade. They were, however,

required to document their experiences of the process after the event.

As noted in the experiment design, participants were not required to have any

existing knowledge of sheet music or annotation in order to complete the test.

This did leave the concern that there might be a marked difference in the

quality of annotations made by those with and without musical knowledge.

Thirteen of the participants (approximately half) reported having a little (6) or a

lot (7) of experience with sheet music. The experimenter checked the

annotations created by all participants and concluded that there was no

notable difference in quality between these participant and those that reported

no experience.

All participants reported being right handed except for one who said they were

ambidextrous. This means, unfortunately, that no conclusions can be drawn

about whether dominant hand plays a role in interaction with the touch screen.

Software Issues Uncovered

When the zoom level of the input area is 8x or 6x actual size, the input area

itself no longer fits within the application window. It was therefore necessary to

add scroll bars to allow users to pan around the input area. This affected 276

of the 690 trials being reported.

143

Unfortunately, the scrollbar implementation in WPF had a flaw in that it did not

capture touch focus. If the user was scrolling the input area and happened to

move their finger slightly off the scroll bar itself, the system registered this as a

drawing action and added lines to their annotation. This resulted in a

noticeable horizontal line across the music (see Figure 73). This was observed

to happen 16 times in the captured data. On each occasion the participant

decided to clear their annotation and make another attempt to draw it

accurately.

Figure 73 Annotation sample with visible scroll bar error. A users’ attempt at ‘Text and
Dynamics’ annotation at zoom level 8.

No special action was taken to remove these data points. In no case did they

affect a participant‘s ability to achieve a final successful result. This could lead

to an overstatement of the number of attempts required to get annotations

correct for input at 8x and 6x zoom, however, this bias in the results is small,

and removing erroneous data seemed to be an inappropriate procedure when

looking for evidence in favour of the annotation scheme.

Annotation Test Results

The main objective of the user test was to determine the level of zoom

required to make drawing of musical annotations accurate and easy. The way

chosen to assess accuracy was to allow participants to report their perceived

144

success by rating each of their final annotations as either satisfactory or not.

The results of this assessment are shown in the graphs of Figure 74.

 It is clear that users were more successful at copying annotations when the

input area was magnified. In fact, there was a near 100% success rate when the

input area was zoomed to 6 or 8 times actual size. As magnifying the input

area reduces the amount that can be displayed on screen, it is desirable to

choose the smallest zoom level that gives a good success rate. On that basis, it

appears that a magnification level of 6 is most appropriate for the complete

range of annotations tested.

There is some variation in success rate at different zoom levels between the

annotations tested. For annotations requiring larger curves — Crescendos,

Slurs and Ties — most users were successful at zoom level 2. Bowing Marks

required zoom level 4. Users had some difficulty with Text and Dynamics at all

zoom levels. Glasses and Notes required zoom level 6. All three of the difficult

cases are characterised by having to draw small closed shapes. One user

commented on the difficulty of this task, ―glasses/circles difficult to draw.‖

In the sheet music display and annotation software (as opposed to the finger

annotation test program) developed in this project, users have the option of

creating a ‗stamp‘ for a commonly used annotation. This may be the better

mechanism for them to use for the Glasses annotation, or any other small

icons.

The Notes annotation is not likely to be commonly drawn and was included in

this user test for completeness. It is more of interest if composition or music

editing was to be a feature of the software.

It is concluded that for the majority of common musical annotations, an input

zoom level of 4 is sufficient.

145

User Satisfaction with Final Annotation vs. Zoom Level

Figure 74 Users' satisfaction with their final annotations at each zoom level

0

50

100

150

8 6 4 2 1

P
a
rt

ic
p

a
n

ts

Zoom Level

All Annotations

Unsatisfactory

Satisfactory

0

5

10

15

20

25

8 6 4 2 1

Bowing Marks

0

5

10

15

20

25

8 6 4 2 1

Crescendo

0

5

10

15

20

25

8 6 4 2 1

Slurs and Ties

0

5

10

15

20

25

8 6 4 2 1

Text and Dynamics

0

5

10

15

20

25

8 6 4 2 1

Glasses

0

5

10

15

20

25

8 6 4 2 1

Notes

146

Participants were also asked to rate their ease of drawing for each annotation

copying task. Their ratings (Figure 75) show that though success rates were

similar on the three simpler annotations between zoom levels 4, 6, and 8,

perceived difficulty levels were not. Most users rated annotation at zoom levels

6 and 8 Easy or Very Easy. However, a significant number rated ease of

drawing at zoom level 4 as only Moderate. This shows that users would be

more comfortable annotating at a zoom level of 6.

The three more difficult annotations are rated Moderate by a significant

number of users even at zoom level 6. They were not rated as Difficult,

however, and the success rates were acceptable.

The graphs in Figure 76 show the average number of attempts participants

made at each annotation. These results are consistent with the previous

measures of success and ease of use, in that more attempts were required at

the smaller zoom levels. It is interesting to note though, that even at the large

zoom levels, where high success levels were achieved, some participants took

more than one attempt before submitting their final annotation.

Figure 77 shows the percentage of users able to produce satisfactory

annotations at each zoom level, grouped by their finger width. These results

give some substance to the claim that users with larger fingers had more

difficulty in producing a satisfactory result at the lower zoom levels, particularly

with the more intricate annotations. It might be expected that creating the

closed curves necessary for these annotations would be more difficult with a

wider finger covering up more of the screen. The small number of users with

wider fingers, however, (only 2 at 18mm) means that no strong conclusions

can be drawn.

147

Ease of Drawing vs. Zoom Rating

Figure 75 Users' rating of ease of drawing at each zoom level

0

50

100

150

8 6 4 2 1

P
a
rt

ic
ip

a
n

ts

Zoom Level

All Annotations

Very Difficult

Difficult

Moderate

Easy

Very Easy

0

5

10

15

20

25

8 6 4 2 1

Bowing Marks

0

5

10

15

20

25

8 6 4 2 1

Crescendo

0

5

10

15

20

25

8 6 4 2 1

Slurs and Ties

0

5

10

15

20

25

8 6 4 2 1

Text and Dynamics

0

5

10

15

20

25

8 6 4 2 1

Glasses

0

5

10

15

20

25

8 6 4 2 1

Notes

148

Average Number of Attempts vs. Zoom Level

Figure 76 Average number of attempts made at annotation copying for each zoom level

0

1

2

3

8 6 4 2 1A
v
e
ra

g
e
 #

 o
f

a
tt

e
m

p
ts

Zoom Level

All Annotations

0

1

2

3

8 6 4 2 1

Bowing Marks

0

1

2

3

8 6 4 2 1

Crescendo

0

1

2

3

8 6 4 2 1

Slurs and Ties

0

1

2

3

8 6 4 2 1

Text and Dynamics

0

1

2

3

8 6 4 2 1

Glasses

0

1

2

3

8 6 4 2 1

Notes

149

Percentage of satisfactory annotations vs. Zoom level, sorted by finger

width

Figure 77 Percentage of satisfactory annotations for each zoom level. Grouped by users'
finger width

0

20

40

60

80

100

8 6 4 2 1

%
 S

a
ti

sf
a
c
to

ry
 R

e
su

lt
s

Zoom Level

All Annotations

14mm

16mm

18mm

Finger Width

0

20

40

60

80

100

8 6 4 2 1

Bowing Marks

0

20

40

60

80

100

8 6 4 2 1

Crescendo

0

20

40

60

80

100

8 6 4 2 1

Slurs and Ties

0

20

40

60

80

100

8 6 4 2 1

Text and Dynamics

0

20

40

60

80

100

8 6 4 2 1

Glasses

0

20

40

60

80

100

8 6 4 2 1

Notes

150

Although the experiment was designed so as not to require participants to

understand the sheet music or annotations presented for copying, participants

were asked to state their level of experience with sheet music. 7 reported A Lot

of experience, 6 A Little and 13 None. Figure 78 shows percentage satisfaction

with annotation drawing against zoom level, grouped by sheet music

experience. Figure 79 shows the same but divided into those who have had

experience writing annotations on physical sheet music and those that have

not.

These two graphs show that experience with sheet music did help participants

to cope with drawing at the lower zoom levels, but only to a small extent in

situations where the overall satisfaction rate was very low anyway. At the higher

zoom levels, sheet music experience made no difference at all. Overall, it

appears that the experimental design worked as expected.

Figure 78 Percentage of final annotations rated as satisfactory, grouped by sheet music
experience for each zoom level.

0

20

40

60

80

100

120

8 6 4 2 1

%
 S

a
ti

sf
a
c
to

ry
 R

e
su

lt
s

Zoom Level

Satisfaction grouped by sheet music experience

None

A Little

A Lot

151

Figure 79 Percentage of final annotations rated as satisfactory, grouped by previous
experience annotating physical sheet music.

Participants were also asked if they had previously used a tablet or touch

screen to draw annotations on any kind of document. 8 reported such prior

experience and the remaining 16 reported none. Figure 80 shows satisfaction

rates grouped on this basis. Differences are small. Those with prior experience

seem less easily satisfied. This may be because they had been experienced

better results annotating with other technology (e.g. stylus on tablet).

Figure 80 Percentage of final annotations rated as satisfactory, grouped by previous
experience annotating on a tablet or touch screen.

0

20

40

60

80

100

120

8 6 4 2 1

%
 S

a
ti

sf
a
c
to

ry
 R

e
su

lt
s

Zoom Level

Satisfaction grouped by musical annotation

experience (on paper)

No

Yes

0

20

40

60

80

100

120

8 6 4 2 1

%
 S

a
ti

sf
a
c
to

ry
 R

e
su

lt
s

Zoom Level

Satisfaction grouped by prior experience of digital

annotation with a tablet or touch screen

No

Yes

152

Observations on hardware

Drawing Anomalies

Due to the way the optical touch screen hardware works, users must be careful

to keep all but their active finger away from the screen. Coming within 2mm of

the screen with another part of their hand or arm will often result in a phantom

touch being registered. These phantom touch points are added to the current

stroke, resulting in jagged lines similar to that in Figure 81. Similarly, users must

be careful to pull their active finger far enough away from the screen between

strokes to break ‗contact‘, to prevent their strokes being unintentionally

connected.

Figure 81 Phantom touch detected when hand gets close to the screen. A users’ attempt at
‘Text and Dynamics’ annotation at zoom level 1 (actual size).

During informal testing of the system in the lab environment, it was noted that

phantom touches such as these occurred most frequently when drawing

annotations at smaller magnification levels. It was hypothesised that this was a

consequence of the fact that, when trying to draw annotations on a finer scale,

users tend to keep more of their hand closer to the screen. This might occur

for two reasons: firstly, as when drawing on paper, fine movements are most

easily achieved with the hand braced on the paper‘s surface. Secondly, when

making a small movement on the screen‘s surface, it seems unnatural to move

153

a finger higher off the surface than it is moving across the surface. When

moving a greater distance between strokes, as is required when the input is

heavily magnified, raising the finger a good distance above the screen could

happen without the user having to be consciously careful to do so.

The results from the user test support this hypothesis. Screen anomalies as

described above (pictured in Figure 81), did occur, but only when the input

was zoom level 1, actual size. The number of obvious anomalies, like that in

Figure 81 was only four, but many annotations created at zoom level 1 have

small ‗serif‘ like irregularities that look to be caused by strokes starting early or

ending late (See Figure 82).

Figure 82 'Serif' like irregularities on annotation strokes. A users' attempt
at 'Bowing Marks' at zoom level 1 (Actual Size)

Users that encountered this issue with the screen commented on it in the

follow up questionnaire:

- ―Heat sensor makes random drawings without you actually touching the

surface first‖

- ―On occasion I noticed that the screen was quite touch sensitive, which

resulted in me mistakenly entering a command.‖

- ―I think that the screen was too sensitive―

154

- ―The only other problem was that it was sensing my fingers when they

were not touching it‖

- ―Sometimes my hand hit the screen making what I put go all funny with

lines I didn't want to put in. ―

- ―The program detects your finger if it is suspended above the screen

and has no contact‖

We conclude that increasing the input scale overcomes this issue with the

screen hardware. Not a great deal of magnification is needed.

Screen Stickiness

A noted issue with operating touch screens by finger is that finger tips can

sometimes be sticky, making it difficult to make fine movements while drawing

an annotation. During the user test, 96% of participants noted that they

experienced some trouble with their fingers sticking to the touch-screen.

Screen Slipperiness

Another expected problem with finger input on a touch-screen was that users‘

fingers might slip unexpectedly over the screen‘s surface. This turned out to be

35%

57%

4%
4%

Had Trouble with Screen Stickiness

Never

Sometimes

Usually

Always

155

an uncommon complaint. 95% of participants in the user test mentioned little

or no issue with screen slipperiness.

Summary of user test results

User tests show that, using a finger to draw on an optical touch screen,

annotating on magnified sheet music is significantly easier than annotating at

actual print size. Specifically, 6 times real size is identified as being a sufficient

and appropriate zoom level to allow users to consistently draw common

musical annotations on sheet music. This zoom level also succeeds in

minimising issues with close proximity to the screen‘s surface being detected as

touch, probably by encouraging the user to lift their finger higher off the

surface when drawing multiple strokes.

Collated data showed that users had a broad level of satisfaction annotating at

4 times actual size also. This may be a suitable input magnification for systems

with limited screen size, as even in our test setup where only three bars of

music were displayed on a 21.5‖ screen, magnifying beyond 6 times real size

introduced a need for scroll bars to explore the annotatable area.

61%

35%

4%

0%

Had Trouble with Screen Slipperiness

Never

Sometimes

Usually

Always

156

157

Chapter 6 - Conclusions

The Digital Music Stand is intended to do for musicians what electronic

document management does in other domains. The music stand, however, is

special in that it must be possible to use it in constrained situations, both in

terms of its input and physical surroundings.

This work presented in this thesis explored the potential of the touch screen to

satisfy the requirements that musicians have of Digital Music Stands. In

particular it sought to achieve, in this context, the kind of fluid and natural

interaction that has been pioneered by touch screen phone technology.

Building upon the analysis of musicians‘ annotation behaviour with printed

scores from Winget‘s study, we identified the specific challenges that must be

addressed by a digital annotation system tailored toward sheet music. This was

combined with our study on the physical constraints placed on musicians by

their instruments and their working environments. It was observed that only

44% of instruments surveyed allow their players the use of both hands to

interact with their music, even when they are not playing. This lead to the

conclusion that developing a Digital Music Stand and annotation system that

required two handed interaction would be impractical for most musicians to

use. Fortunately the analysis also showed that all instruments leave at least one

hand free for interaction while not being played.

A survey of current hardware options and features was carried out with focus

on their appropriateness for use under the physical constraints uncovered, and

their potential for supporting musical annotation. This led us to choose finger

operated, medium to large multi-touch display technology as the interaction

mechanism for our experimental sheet music display and annotation system.

158

Software design for our system explored two main concepts: sheet music flow

and layout, and musical annotation support. A XAML based data structure for

storing and displaying music was developed which provides fluid reflowing and

layout management for score personalisation through zooming and

manipulation at the bar level.

Using this data structure, a system for annotation was developed. The

annotation system takes advantage of the strong dependency of musical

annotation on placement within the music. Individual bars of music take

ownership of the annotations drawn on them which can then reflow with the

music, maintaining the overall fluidity of layout without information loss. The

nature of the layout system also made it possible to experiment with tools to

give more space for annotation by moving lines of music out of the way.

Careful attention was given to overcoming the known issues of finger based

annotation caused by touch systems‘ limited resolution and accuracy. The

approach taken was to support annotation input on a magnified view of the

music. Two different zooming systems were implemented: one zoomed

individual bars of music in place in the musical score, the other presented an

overlaid modal window containing a magnified version of a portion of music. It

was found by informal testing that the overlay was easier to use as it eliminated

problems with zoomed content being clipped off the edge of the screen

To determine the ideal magnification level of the zoomed input panel, a formal

user test was carried out. Results of this test found that 6 times actual size was

ideal for drawing common musical annotations by finger. 4 times actual size

gave broadly satisfactory results, but some more complex musical annotations

were difficult to draw at this scale. As magnifying the input region by 6 times or

more introduces a need for scrollbars to navigate the annotatable area, it may

be more appropriate to zoom to just 4 times size for regular annotation input

159

and rely on a reusable stamp system (as was implemented in the sample

application) for common complex annotations that difficult to draw at this level.

Time constraints meant that the combination stamp library and modal

zooming was not formally tested. In fact, at this stage, the software developed

is largely a demonstration of principle. All the ideas have been implemented

and informally trialled, but the system as a whole needs more complete

integration and testing.

As described, the method for preparing sheet music for this system is currently

mainly manual. Automation of this process would be a necessity in any final

system. This could be done by modifying the output system of LilyPond to

directly export XAML. The XAML format is well documented in this work and

the task should be straightforward.

Finally, through the developed software we have demonstrated that a multi-

touch, gesture based application can be used to both support layout and

annotation of music. The software developed demonstrates, in the context of

music, annotation need not be thought of as a separate process merely drawn

over the top of static content (as it often is in text based systems). Rather,

careful integration between layout and annotation gives a feasible system with

fluid and natural interaction.

160

161

Appendix A - Device Comparison

Table 2 – Device Comparison (Part 1 of 3)
Device OS Price Screen Size Resolution View Angle

Tablet PC

HP EliteBook

2740p Tablet

PC

Win 7 $3,819 12.1‖ 1280 x 800 Ultra Wide

Lenovo

ThinkPad X201

Tablet

Win 7 $2,999 12.1‖

Widescreen

1280 x 800 Wide

Dell Latitude

XT2

Tablet PC

Touch

Win 7 $4,614 12.1‖

Widescreen

1280 x 800 Wide

Eee

PCT101MT

Win 7 10.1‖ 1024 x 600 Poor

Slate Device

Apple iPad iOS 9.7‖ 1024 x 768

Scribbler 4100 Win 7 12.1‖ 1024 x 768

Motion J3500

Tablet PC

Win 7 12.1‖ 1280 x 800 Ultra Wide

Archos 9 PC

tablet

Win 7 8.9‖ 1024 x 600

Sahara Slate

PC i440D

Win 7 12.1‖ 1024 x 768 Wide

Camangi Web

Station

Android 7‖ 800 x 480

Fujitsu Stylistic

ST6012

Win

Vista

 12.1‖ 1280 x 800 Wide (178°)

Fusion Garage

joojoo

N/A Just

a

Browser

$499

(USD)

12.1‖

Widescreen

1366 x 768

eInk

Irex Digital

Reader 1000

series

 10.2‖ 1024 x 1280

Irex iLiad 8.1‖ 768 x 1024

Multi-touch monitors

HP Compaq

L2105TM

 $399 21.5‖ 1920 x 1080 170° Horizontal

160° Vertical

Dell SX2210T $399 21.5‖ 1920 x 1080 160° Horizontal

160° Vertical

162

Table 2 – Device Comparison (Part 2 of 3)
Device Weight

(KG)

Battery

Life

Multi

Touch

Finger

Input
Stylus Input

Tablet PC

HP EliteBook

2740p Tablet

PC

1.72
Poor Yes Yes Yes

Lenovo

ThinkPad X201

Tablet

1.6
Good Yes Yes Yes

Dell Latitude

XT2

Tablet PC

Touch

1.6

Poor Yes Yes Yes

Eee

PCT101MT

1.6
Good Yes Yes Yes

Slate Device

Apple iPad 0.68 Good
10 hours

Yes Yes No

Scribbler 4100 1.56 Poor No Yes Yes

Motion J3500

Tablet PC

1.9
Good Yes Yes Yes

Archos 9 PC

tablet

0.8 OK
5 hours

No Yes Yes

Sahara Slate

PC i440D

1.62
Poor No Yes Yes

Camangi Web

Station

0.39 OK
5 hours

No Yes Yes

Fujitsu Stylistic

ST6012

1.6 OK
5 hours

No No Yes

Fusion Garage

joojoo

1.1 OK
5 hours

Yes Yes No

eInk

Irex Digital

Reader 1000

series

OK

5 hours
No No Yes

Irex iLiad Poor
3 hours

No No Yes

Multi-touch monitors

HP Compaq

L2105TM

6.4 -
Yes Yes Yes

Dell SX2210T 7.68 - Yes Yes Yes

163

Table 2 – Device Comparison (Part 3 of 3)
Device Speakers Mic Webcam Bluetooth Wifi

Tablet PC

HP EliteBook

2740p Tablet

PC

Yes
N (port

avail)
2.0MP No Yes

Lenovo

ThinkPad X201

Tablet

Yes
Dual array

digital

microphones
Optional No Yes

Dell Latitude

XT2

Tablet PC

Touch

Yes No No No Yes

Eee

PCT101MT
Yes

High

Quality Mic 0.3MP Optional Yes

Slate Device

Apple iPad Yes Yes N Yes Yes

Scribbler 4100 Yes
Integrated

Array Mic 1.3MP Yes Yes

Motion J3500

Tablet PC
N (port

avail)
N (port

avail)
3.0MP Yes Yes

Archos 9 PC

tablet
Yes Yes No Yes Yes

Sahara Slate

PC i440D
Yes

Dual

Digital Mic

Array
No Yes Yes

Camangi Web

Station
Yes Yes No No Yes

Fujitsu Stylistic

ST6012
Yes Yes 1.3MP Yes Yes

Fusion Garage

joojoo
Yes Yes Yes Yes Yes

eInk

Irex Digital

Reader 1000

series

No No No No No

Irex iLiad Yes No No No Yes

Multi-touch monitors

HP Compaq

L2105TM
- - N - -

Dell SX2210T - - 2.0MP - -

164

165

Appendix B - Finger Annotation

Test, Post-test Questionnaire

166

167

Appendix C - Finger Annotation

Test, Participant Information Form

168

169

170

171

Appendix D - Finger Annotation

Test, Consent Form

172

173

Bibliography

Agrawala, Maneesh, and Micheal Shilman. ―DIZI: A Digital Ink Zooming

Interface for Document Annotation.‖ Human-Computer Interaction - Interact

2005, 2005: 69-79.

Bargeron, David, and Tomer Moscovich. ―Reflowing digital ink annotations.‖

CHI '03 Proceedings of the SIGCHI conference on Human Factors in computing

systems. 2003.

Bell, Tim, Annabel Church, John McPherson, and David Bainbridge. ―Page

turning and image size in a digital music stand.‖ PROC. INTERNATIONAL

COMPUTER MUSIC CONFERENCE. 2005.

Bellini, P., P. Nesi, and M. B. Spinu. ―Cooperative visual manipulation of music

notation.‖ ACM Transactions on Computer-Human Interaction, 2002.

Bellini, Pierfrancesco, Fabrizio Fioravanti, and Paolo Nesi. ―Managing Music in

Orchestras.‖ Computer, September 1999: 26-34.

Blinov, Alexey. An interaction study of a digital music stand. Honours Report,

University of Canterbury, 2007.

Blostein, Dorothea, and Lippold Haken. ―Justification of printed music.‖

Communications of the ACM, March 1991.

Cattelan, Renan G., Cesar Teixeira, Hélder Ribas, Ethan Munson, and Maria

Pimentel. ―Inkteractors: interacting with digital ink.‖ SAC '08 Proceedings of the

2008 ACM symposium on Applied computing. 2008.

Erickson, Raymond F. ―"The Darms Project": A status report.‖ Computers and

the Humanities, 1975: 291-298.

174

Forsberg, Andrew, Mark Dieterich, and Robert Zeleznik. ―The music notepad.‖

UIST '98 Proceedings of the 11th annual ACM symposium on User interface

software and technology. 1998.

Furuta, Mitsu. WPF and Silverlight BookControls. 2008.

http://wpfbookcontrol.codeplex.com/.

Graefe, Christopher, Derek Wahila, Justin Maguire, and Orya Dasna. ―Designing

the muse: a digital music stand for the symphony musician.‖ CHI '96. 1996.

Isenberg, Tobias, Petra Neumann, Sheelagh Carpendale, Simon Nix, and Saul

Greenberg. ―Interactive annotation on large, high resolution information

displays.‖ In Conference Compendium of IEEE Vis, InfoVis, and VAST, 124-125.

2006.

Kosakaya, Juichi, Yumiko Takii, Masumi Kizaki, Atsushi Esashi, and Takahisa

Kiryu. ―Research and evaluation of a performer-friendly electronic music stand.‖

Proceedings of the 2005 International Conference on Active Media

Technology. 2005. 11-15.

Leoné, Marco, Betsy van Dijk, and Bert-Jan van Beijnum. ―Design and trial

evaluation of the user interface for MusicReader.‖ MindTrek '08. 2008.

LilyPond Development Team, The. ―LilyPond - Essay on automated music

engraving.‖ LilyPond.org. 2011.

http://lilypond.org/doc/v2.14/Documentation/essay.pdf.

MacLeod, Gareth, Joe Metzger, Brendon Robinson, and Andrew Song. Stand

For Change. University of Waterloo, 2010.

McPherson, John R. Page Turning - Score Automation for Musicians. Honours

Report, University of Canterbury, 1999.

175

Nienhuys, Han-Wen, and Jan Nieuwenhuizen. ―LilyPond, A System for

Automated Music Engraving.‖ Proceedings of the XIV Colloquium on Musical

Informatics (XIV CIM). Firenze, 2003.

Pagwiwoko, Johannes. Improvements To A Digital Music Stand. Honours

Report, University of Canterbury, 2008.

Poláček, Ondřej, Adam J. Sporka, and Pavel Salvik. ―Music alphabet for low-

resolution touch displays.‖ ACE '09 Proceedings of the International

Conference on Advances in Computer Entertainment Technology. New York,

2009.

Schilit, Bill N., Gene Golovchinsky, and Morgan N. Price. ―Beyond paper:

supporting active reading with free form digital ink annotations.‖ CHI '98

Proceedings of the SIGCHI conference on Human factors in computing

systems. 1998.

Shilman, Micheal, and Zile Wei. ―Recognizing Freeform Digital Ink Annotation.‖

Document Analysis Systems VI, 2004: 107-110.

Voida, Stephen, Matthew Tobiasz, Julie Stromer, Petra Isenberg, and Sheelagh

Carpendale. ―Getting practical with interactive tabletop displays: designing for

dense data, "fat fingers", diverse interaction, and face-to-face collaboration.‖

ITS '09 Proceedings of the ACM International Conference on Interactive

Tabletops and Surfaces. 2009.

Winget, Megan Alicia. Annotation of Musical Scores: Interaction and Use

Behaviours of Performing Musicians. PhD Thesis, University of North Carolina

at Chapel Hill, 2006.

176

End Notes

i
 http://www.estandmusic.com/
ii
 http://www.freehandmusic.com/

iii
 http://www.samepagemusic.com/Play/

iv
 http://www.musicreader.net/

v
 http://itunes.apple.com/us/app/musicreader-pdf/id409101273?mt=8&ls=1

vi
 http://www.cosc.canterbury.ac.nz/tim.bell/espresso/about.html

vii
 http://dictionary.reference.com/browse/annotation

viii http://en.wikipedia.org/wiki/Orchestra#Instrumentation
ix
 http://www.apple.com/ipad/

x
 https://kindle.amazon.com/

xi
 http://www.microsoft.com/expression/products/Design_Overview.aspx

xii
 http://www.microsoft.com/expression/

xiii
 http://www.mutopiaproject.org/

xiv
 http://lilypond.org/

xv
 http://www.adobe.com/products/illustrator.html

xvi
 http://www.sibelius.com/home/index_flash.html

xvii
 http://www.finalemusic.com/default.aspx

xviii
 http://lilypond.org/easier-editing.html

xix
 http://www.microsoft.com/download/en/details.aspx?id=20039

xx
 http://lilypond.org/doc/v2.12/Documentation/user/lilypond/Setting-the-staff-size

http://www.estandmusic.com/
http://www.freehandmusic.com/
http://www.samepagemusic.com/Play/
http://www.musicreader.net/
http://itunes.apple.com/us/app/musicreader-pdf/id409101273?mt=8&ls=1
http://www.cosc.canterbury.ac.nz/tim.bell/espresso/about.html
http://dictionary.reference.com/browse/annotation
http://en.wikipedia.org/wiki/Orchestra#Instrumentation
http://www.apple.com/ipad/
https://kindle.amazon.com/
http://www.microsoft.com/expression/products/Design_Overview.aspx
http://www.microsoft.com/expression/
http://www.mutopiaproject.org/
http://lilypond.org/
http://www.adobe.com/products/illustrator.html
http://www.sibelius.com/home/index_flash.html
http://www.finalemusic.com/default.aspx
http://lilypond.org/easier-editing.html
http://www.microsoft.com/download/en/details.aspx?id=20039
http://lilypond.org/doc/v2.12/Documentation/user/lilypond/Setting-the-staff-size

