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Abstract 

Compound 1, which occurs in the flavonoid fraction of mānuka honey and 

showed a statistical correlation with the non-peroxide antibacterial activity of the 

honeys, was extracted from fifteen kilograms of mānuka honey using Amberlite 

XAD-2 resin and liquid-liquid extraction, and isolated by a combination of 

Sephadex-LH20 column chromatography and HPLC. Characterization of 1 was 

achieved by one and 2D- 
1
H and 

13
C NMR spectroscopy and GC-MS and 1 was 

identified as 2-formyl-5-(2-methoxyphenyl)-pyrrole. 

 

In addition to 1, two other non-flavonoids were isolated from the flavonoid 

fraction and their identities confirmed as caffeic acid and p-coumaric acid. 

 

Synthesis of 9 (3-hydroxy-1-(2-methoxyphenyl)-3-(oxazol-4-yl) propan-1-

one), an intermediate in the route to 1, gave a yield of 67.5% as a pale yellow 

crystals after crystallization from CH2Cl2/hexane. Synthesis of 1 from 9 only 

resulted in barely traceable amount of 1. The dominant product after 

recrystallization from CH2Cl2/hexane was 10 ((E)-1-(2-methoxyphenyl)-3-

(oxazol-4-yl)prop-2-en-1-one) which was the dehydrated analogue of 9.  

 

The synthesis of 1 was repeated. The product mixture was fractionated on 

a silica gel column, followed by two cycles of preparative layer chromatography 

applied to the fractions which contained 1 and yield 0.36 mg of 1 (0.00179 mmol, 

0.2%).    
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Introduction 

1.1. Mānuka honey 

Honey is a natural substance produced by honeybees. Nectar or honeydew 

is collected by honeybees and taken back to the hive, where it is processed into 

honey, which serves as a food for larvae.
1
 The use of honey and production by 

humans can be traced back to 10,000 years ago.
2
 

 

Mānuka honey is derived from the nectar of the mānuka tree 

(Leptospermum scoparium), a native of New Zealand. The flowers of the mānuka 

tree are generally white and 10 to 12 mm in diameter. Black, sooty mould may 

grow on the bark giving it a dark colouring as mānuka is often colonised by scale 

insects which feed off the phloem of the tree and excrete honeydew.
3
 Honeybees 

have been observed harvesting this honeydew from scale insects on mānuka trees 

for the production of honey.
4
 

 

1.2. Antibacterial properties of honey 

Honey is used as a wound dressing because of its antibacterial activity 

against a large number of pathogenic bacteria and fungi.
5
 Common wound 

infecting bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), 

Pseudomonas aeruginosa and vancomycin-resistant enterococci bacterial strains 

show resistance to a range of antibiotics. However, clinical studies have found 

that honey, especially mānuka honey is very effective as an antibiotic against 

these resistant strains.
6
 

 

Honey assists wound healing by creation of a physical barrier between the 

wound and outside sources of infection. Apart from this, hydrogen peroxide is 

released by the action of the enzyme glucose oxidase, which is present in honey, 

and which transforms glucose to gluconic acid. Low levels of hydrogen peroxide 

help to stimulate the growth of blood vessels (angiogenesis), fibroblasts and 

epithelial cells, assisting the repair of tissue damage.
7
 Moreover, the osmotic 

pressure of the honey dressing helps to move lymph through tissue and provides a 
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moist healing environment with increased oxygenation and nutrient supply to 

promote healing.
8
 

 

In vitro honey can activate B-lymphocytes, T-lymphocytes, and 

phagocytes, and can stimulates the release of tumour necrosis factor α, interleukin 

1 and 6 cytokines and these cytokines convey signals in the immune system. This 

suggests honey assists in wound healing by increasing immunity and stimulating 

the immune response.
9
 

 

1.3. Factors which contribute to the antibacterial activity of 

honey 

The factors that contribute to the antibacterial activity of honey of all 

origins are osmotic pressure, acidity and hydrogen peroxide. However, mānuka 

honeys have an additional antibacterial factor, which is known as non-peroxide 

activity. 

 

1.3.1. Osmotic pressure 

Honey is predominantly sugar (>80%) and its strong interaction with 

water molecules leads to supersaturated solutions. Honey has an average of 17.2% 

water content and ranges from 13.4% - 22.9%.
10

 The percentage of free water 

molecules is measured as the water activity (aw) which in honey ranges from 0.47 

to 0.70 aw. Although inhibition is dependent on the species of bacteria, most 

species of bacteria are inhibited by conditions where aw is below 0.94.
11

 However 

Staphylococcus aureus has a high tolerance of low aw and complete inhibition is 

achieved only when the aw is less than or equal to 0.86.
5a

 

 

1.3.2. Acidity 

An equilibrium between gluconic acid and gluconolactone makes the pH of 

honey average 3.91 and range from 3.42 - 6.10.
12

 Honeybee secretions contain 

enzyme glucose oxidase that converts glucose to gluconic acid,
13

 which, via 

intramolecular esterification, forms gluconolactone. The optimum pH for the 

growth of many pathogenic bacteria is between 7.2 and 7.4 and therefore some 

honeys are likely to be sufficiently acidic to cause the inhibition of many bacteria. 



3 

 

 

1.3.3. Hydrogen peroxide 

Hydrogen peroxide has been identified as the major antibacterial agent in 

honey and accounts for all of the observed antibacterial activity in most honeys.
14

 

Hydrogen peroxide is formed when the enzyme glucose oxidase converts glucose 

to gluconic acid in honey (Fig. 1.1). Together, with acidity caused by gluconic 

acid, hydrogen peroxide acts as a preservative of the honey while it ripens.
12b

 

 

 

Fig. 1.1: Formation of hydrogen peroxide during the conversion of glucose to 

gluconic acid. 

 

Full strength honey does not give a significant therapeutic effect as the 

concentration of hydrogen peroxide is negligible due to the fact that the enzyme 

glucose oxidase is deactivated by the acidity of gluconic acid. The therapeutic 

effect only shows when honey is diluted.
5a

 

 

High levels of hydrogen peroxide are known to cause DNA damage 

leading to cell injury and death
15

 but this is not an issue when honey is used as an 

antibacterial agent because the glucose oxidase enzyme will only activate when 

honey is diluted. This allows honey to supply controlled levels of hydrogen 

peroxide continuously over time to provide effective antibacterial activity without 

the tissue damage usually caused by applying hydrogen peroxide solution directly 

as an antibiotic.
7
 

 

1.3.4. Non-peroxide antibacterial properties of mānuka honey 

It is widely accepted that some New Zealand mānuka honeys exhibit 

significant non-peroxide antibacterial activity,
16

 known as UMF
TM

 (Unique 

Mānuka Factor). This is rated as the non-hydrogen peroxide activity using phenol 

as reference point. Mānuka honey that demonstrates an antibacterial activity 
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equivalent to a 5% solution of phenol is classified as UMF
TM

 5+ and honey can 

be rated up to UMF
TM

 30+ which is the equivalent of a 30% phenol solution. 

However, not all mānuka honeys possess non-peroxide activity. A survey of 26 

different types of monofloral New Zealand honeys found that non-peroxide 

activity was only present in 38% of mānuka honeys.
17

 High UMF
TM

 activity 

honey are generally produced in Northland, Coromandel, East Cape and 

Marlborough.
18

 Common wound infecting bacteria such as Escherichia coli, 

Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhimurium, Serratia 

marcescens, Staphylococcus aureus and Streptococcus pyogenes were found to be 

inhibited by active mānuka honey.
19

 

 

The non-peroxide activity observed in mānuka honeys was a mystery 

before Adams et al.
20

 established a positive relationship between the level of 

methylglyoxal (MGO) and the antibacterial activities of the honeys by using the 

o-phenylenediamine derivatisation to form its quinoxaline derivative to determine 

the MGO levels of 49 mānuka and 34 non-mānuka honey samples which varied 

from 38 to 828 mg/kg, together with isolation and identification of the active 

fraction of mānuka honey.  

 

 A similar study by Mavricet al.
21

 identified high levels of MGO in 

mānuka honey and suggested it was responsible for the non-peroxide activity 

observed in mānuka honeys. MGO was detected as its quinoxaline derivative of 

o-phenylenediamine at levels ranging from 38 to 761 mg/kg in six mānuka 

honeys by high performance liquid chromatography. These levels were 

significantly higher than those observed in 50 samples of other honey types, 

which had an average of 3.1 mg/kg and ranged between undetectable to 5.7 mg/kg. 

Of the 6 mānuka honeys, which exhibited antibacterial activity against 

Escherichia coli and Staphylococcus aureus at minimum concentrations of 15-30% 

(v/v with water), correspond to MGO concentrations of 1.1 to 1.8 mM.  The 

minimum concentration of MGO needed to inhibit these bacteria is 1.1 mM, 

suggesting that the high levels of MGO found in mānuka honey were responsible 

for its non-peroxide activity. Moreover, an inactive forest honey with addition of 

1.9 mM MGO gave it an antibacterial activity comparable to that of a UMF
TM
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20+mānuka honey containing a natural MGO level of 1.9 mM. This indicated 

MGO was responsible for the non-peroxide activity observed in mānuka honeys. 

 

 In a subsequent study, Donarski et al.
22

 found out that the level of MGO in 

6 mānuka honeys varied from 338 to 817 mg/kg by quantitative NMR 

spectroscopy and Stephens et al.
23

 found out that the level of MGO in 19 mānuka 

honeys varied from 102 to 1490 mg/kg by using the o-phenylenediamine 

derivatisation to form its quinoxaline derivative. 

 

All the above studies indicate that MGO is primarily responsible for the 

non-peroxide activity observed in mānuka honeys 

 

1.3.5. Methylglyoxal (MGO) 

Methylglyoxal is a naturally occurring dicarbonyl compound, formed 

during the caramelisation of carbohydrates and during the Maillard reaction 

between carbohydrates and amino acids.
20

 It is present in a wide range of food 

such as wine, beer, coffee, dairy products, soy sauce and juices.
24

 The interest in 

concentration of MGO in food is due to concerns over the toxicity of MGO. 

 

1.3.5.1. Speciation of MGO 

The speciation of MGO is temperature and matrix dependant.
25

 In aqueous 

solutions an equilibrium forms between the methylglyoxal monohydrate and 

methylglyoxal dihydrate (Fig. 1.2).  

 

 

Fig. 1.2: Formation of methylglyoxal monohydrate and methylglyoxal 

dihydrate from MGO in aqueous solutions. 
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1.3.5.2. Toxicity of MGO 

The toxicity of methylglyoxal has been the subject of a large number of in 

vivo and in vitro studies.  It was found that 2 g/kg of body weight of MGO had no 

adverse effects when applied orally, subcutaneously or intravenously to mice and 

rats. Chronic doses of up to 1 g/kg body weight per day were also given orally, 

subcutaneously or intravenously to mouse, rats and dogs, which also showed no 

adverse effects after observation for 90 days.
26

 However, a review by Kalapos
27

 

identified a number of studies reporting that methylglyoxalwas toxic and lethal to 

mice within 4 hours when 800 mg/kg of body weight of MGO was given 

intraperitoneally.   

 

MGO can be mutagenic as the reaction of MGO with guanine residues in 

DNA can cause cancer and this effect is enhanced in the presence of hydrogen 

peroxide.
28

 However, its cytotoxicity can also exert an anti-cancer effect.
26-27

 

 

Apart from this, MGO can disrupt extra cellular matrix (ECM) 

interactions of endothelial cells and cause anoikis of endothelial cells and 

decreased angiogenesis.
29

 

 

The reaction of MGO with amino groups of proteins form advanced 

glycation endproducts (AGEs)
30

 and these accumulate during the process of 

wound healing. AGEs have demonstrated the ability to regulate a variety of 

inflammatory cell responses and growth-promoting events during wound healing. 

However, excessive AGEs could impair normal cellular functions and wound 

tissue remodelling through promotion of oxidative stress.
31

 

 

1.3.5.3. Source of MGO in honey 

In 2009, Adams et al.
32

 found out that the presence of MGO in mānuka 

honey was attributed to the non-enzymatic conversion of dihydroxyacetone (DHA) 

in Leptospermum scoparium nectar to MGO in maturing mānuka honey. The 

nectar washed from Leptospermum scoparium flowers contained estimated level 

of DHA up to 13,600 mg/kg, which is many times that found in fresh mānuka 

honey. The disappearance of DHA and the appearance of MGO in freshly 
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produced honeys with time of storage at 37 ºC indicated that the source of MGO 

was the non-enzymatic conversion of DHA. 

 

1.3.5.4. Detection of MGO in honey 

The reactivity of MGO, low molecular mass and lack of ultraviolet (UV) 

chromophore have made direct detection of MGO in honey not feasible by using 

conventional analytical detection systems. The detection of MGO has normally 

been performed by using o-phenylenediamine derivatisation to form its 

quinoxaline derivative.
20-21, 23

 However, the derivatisation step is subject to the 

Maillard reaction which can lead to overestimates of concentration.
33

 

 

 Two methods for the direct quantification of methylglyoxal in mānuka 

honey have been successfully demonstrated. Adams et al.
20

 used an HPLC system 

with mixed mode size exclusion/ligand exchange columns connected in series 

couple with refractive index (RI) and UV detection while quantitative NMR 

spectroscopy (qNMR) was used by Donarski et al.
22

 

 

1.4. Flavonoids 

Flavonoids are plant pigments that are ubiquitous to photosynthesising 

cells and are highly diversified.
34

 They are a large and diverse group of phenolics, 

with a basic C6-C3-C6 structure in common. The two C6 aromatic rings are 

designated ring A and ring B with the C3 unit bridging them (Fig. 1.3), and based 

on the oxidation state of the C3 bridging unit they can be subdivided into a 

number of classes.
35

 The classes of flavonoids are aurones, isoflavones, chalcones, 

flavanones, flavones, flavonols, flavanon-3-ols, anthocyanidins, flavan-3-ols, 

proanthocyanidins, flavans, flavan-3,4-diols and dihydrochalcones. The structures 

of the main classes are shown in Fig. 1.4.
36

 Individual compounds are classified 

according to the way they differ in the number and positions of substituents on the 

aromatic rings of these classes. The substituents are usually hydroxy-groups 

which may also be methylated or glycosylated.
35
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Fig. 1.3: The structure of flavone.
35

 

 

Fig. 1.4: The basic structures of the main class of flavonoids 

(proanthocyanidins occur as dimers, trimers, tetramers and pentamers; R = 

0, 1, 2 or 3 flavan-3-ol structures).
36
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1.4.1. Biosynthesis of flavonoids 

Biosynthesis of flavonoids is almost exclusively limited to the higher 

plants and uses an estimated 2% of the total carbon fixed by photosynthesis in 

plants. The biosynthetic origin of the C6-C3-C6 unit lies in both the polyketide and 

shikimate biosynthetic pathways. Ring A is the result of condensation of three 

acetate units in the polyketide pathway while ring B and the linking C3 unit are 

formed via the shikimic acid pathway.
35

 

 

1.4.2. Biological roles of flavonoids 

Flavonoids occur in all parts of plants including the roots, stems, leaves, 

flowers, pollen, fruit, seeds, wood and bark. The main role of flavonoids is to act 

as pigments and provide colour to the plant’s flowers to attract pollinators. They 

strongly absorb light in the ultra-violet region and are used as protection against 

harmful UV-B radiation.
36

 

 

Flavonoids can act as protective agents against a number of attacking 

organisms including viruses, bacteria, fungi (through production of flavonoid 

phytoalexins which are antibiotic), and encroaching plants (through production of 

allelopathic flavonoids which inhibit germination and growth). 
35-37

 

 

 Another role of flavonoids is to act as messengers. Flavonoids secreted by 

the roots of the host plant such as legumes are taken up by nitrogen fixing bacteria, 

which have a symbiotic relationship with the host plant, and trigger the secretion 

of nod factors. The host plant responds to the nod factors and nitrogen fixing 

bacteria are incorporated into the root structure. 
34, 37

 

 

1.4.3. Medicinal properties of flavonoids 

The average human is estimated to ingest 0.5 - 2 g of flavonoids per day in 

a normal diet which leads to extensive research on the effects of flavonoids on 

animal and human physiology.
34

 

 

Flavonoids have been reported to be anti-inflammatory, oestrogenic, 

enzyme inhibitory, antimicrobial, antiallergic, antioxidant, antiviral, 
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antithrombotic, anaesthetic and cytotoxic antitumour, all of which give the 

potential to prevent or treat cancers, cardiovascular disease, hypertension, 

allergies, vascular fragility, duodenal ulcers, gastric ulcers, diabetes, and bacterial 

and viral infections.
38

 

 

The antimicrobial activity of propolis (bee glue) is attributed to its high 

flavonoid content, and high concentrations of flavonoids have been found to 

possess antimicrobial activity against a variety of bacterial species including 

methicillin resistant Staphylococcus aureus.
36, 38b

 

 

 Another useful medicinal property of the flavonoids is the ability to 

scavenge free radicals. Free radicals are produced during important physiological 

processes such as respiration and the immune response and can cause extensive 

cellular damage; flavonoids, can by scavenging, reduce them to non-reactive 

species.
38b

 

 

1.4.4. Identification of flavonoids 

Traditional methods for the identification of flavonoids involved the use of 

colour reactions with reagents such as aqueous sodium hydroxide, concentrated 

sulphuric acid, magnesium-hydrochloric acid and sodium amalgam with acid and 

also involved the use of degradative studies.
39

 However, these methods have now 

been replaced by spectroscopic techniques such as ultraviolet and visible 

absorption (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy which 

require much less material for characterisation and these new methods can also 

yield structural information.
37

 

 

1.4.4.1. Ultraviolet-visible absorption spectroscopy 

Flavonoids have a large degree of conjugated unsaturation, which cause 

them to absorb strongly in the ultraviolet and visible regions of the 

electromagnetic spectrum.
35

 They typically exhibit two major absorption peaks in 

the region of 240 to 400 nm. These peaks are commonly referred to as Band I 

(usually 300-380 nm) and Band II (usually 240-285 nm). Band I is associated 
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with absorption due to the B-ring cinnamoyl system, while Band II is the result of 

absorption involving the A-ring benzoyl system (see Fig. 1.5).
37, 40

 

 

Fig. 1.5: The conjugated systems responsible for the major ultraviolet-visible 

absorption peaks of flavonoids.
40

 

 

1.4.4.2. Nuclear magnetic resonance (NMR) spectroscopy 

One and 2D-NMR spectroscopy are a useful techniques for the 

characterisation of all flavonoids. Most flavonoids are sufficiently soluble in 

hexadeuteriodimethyl sulfoxide (DMSO-d6) to allow direct NMR analysis. 

However there are down sides. The high boiling point of DMSO-d6 makes the 

recovery of flavonoids difficult. Some flavonoids are known to decompose in 

DMSO-d6, and the tendency of this solvent to absorb moisture can be 

problematic.
40a, 40c

 

 

The combination of chemical shift and multiplicity of the proton NMR of 

flavonoids can yield significant information about oxygenation and substitution 

patterns, along with other signals such as methoxyl or glucosyl protons.
37, 40a, 40c

 

 

 

1.5. Isolation of flavonoids from honey 

There has been a long development history of isolation techniques for 

flavonoids, such as thin-layer chromatography, high-performance thin-layer 

chromatography, centrifugal thin-layer chromatography, column chromatography, 

droplet counter-current chromatography, gas-liquid chromatography and HPLC. 
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Among these methods, HPLC has proved to be one of the most powerful methods 

for quantitative determinations of plant phenolics.
41

 HPLC systems are usually 

binary in which an acidified aqueous solvent gradually changes to an organic 

solvent such as methanol over the duration of the HPLC run with detection by UV 

absorbance. This coupled with electrospray mass spectrometry (ESI-MS) gives 

additional information about the structure of flavonoids from fractionation 

patterns without the need to isolate them.
38a

 

 

Direct use of HPLC for quantitative analysis of flavonoids in honey is 

hard to achieve due to the high sugar content of the honey. Firstly, it interferes 

with the direct and complete extraction of flavonoids,
42

 and secondly, it forms 

inconvenient interphases in liquid-liquid extractions, which prevents complete 

recovery of flavonoids.
42a

 

 

 The use of the non-ionic polymeric resin Amberlite XAD-2 allows the 

sugars and polar compounds to be removed, leaving a fraction containing 

flavonoids and other phenolic compounds.
42

 However, other UV-absorbing 

compounds such as phenolic acid derivatives interfere with the analysis of 

flavonoids.
42a

 This leads to the use of column chromatography through Sephadex 

LH-20 to separate flavonoids from other phenolics. Under 360nm UV light, the 

phenolic acid derivatives elute first as a blue fraction. The flavonoids elute later 

as a dark purple fraction.
42a

 

 

 Liquid-liquid extraction with diethyl ether is another method to remove 

the flavonoids (recovery >95% after three extractions) from an aqueous solution 

of the phenolic fraction, leaving the majority of the phenolic acid derivatives and 

any remaining polar compounds in the aqueous layer.
42b

 

 

1.6. Flavonoids in mānuka honey 

Weston et al.
43

 reported that the flavonoid profile of 19 mānuka honeys of 

varying UMF ratings from throughout the North Island of New Zealand was 

similar to that of most European honeys, containing pinobanksin, pinocembrin, 

chrysin and galangin at a total average level of 14.9 μg/100g of honey. There was 
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no difference in the flavonoid profile of mānuka honey from different 

geographical regions and no correlation between the flavonoid content with UMF 

rating of the honeys.  

 

Yao et al.
44

 in a later study found significantly higher levels of flavonoids 

in two New Zealand mānuka (Leptospermum scoparium) honey which had an 

average flavonoid content of 3060 μg/l00g of honey, a value considerably higher 

than the level of 14.9 μg/100g reported by Weston et al.
43a

 The difference in these 

results was attributed to insufficient XAD-2 resin for the mass of honey analysed 

by Weston et al.
43a

 Yao et al.
44

 also found a range of flavonoids, which were not 

reported by Weston et al. The flavonoids found in mānuka honey include 

myricetin, tricetin, pinobanksin, quercetin, luteolin, quercetin 3-methyl ether, 

kaempferol, 8-methoxykaempferol, pinocembrin, quercetin 3,3-dimethyl ether, 

isorhamnetin, chrysin and two unidentified flavonoids. Quercetin (13.8%), 

isorhamnetin (12.9%), chrysin (12.6%), luteolin (12.6%) and one of the unknown 

flavonoids (12.7%) together they represented 64.6% of the total flavonoid content. 

 

Deadman
45

 reported that in 31 samples of varying UMF ratings New 

Zealand mānuka (Leptospermum scoparium) honey, the total flavonoid content of 

mānuka honey was found to range between 590-2240 μg /100g of honey, with an 

average of 1160 μg/100g. The main constituents were pinobanksin (23.1%), 

pinocembrin (15.1%), luteolin (11.8%) and chrysin (11.4%), and these made up 61.4% 

of the total flavonoid content.  

 

Deadman also reported the presence of an unknown compound which 

showed a weak positive correlation (R
2
 = 0.36) with non-peroxide anti-bacterial 

activity. This compound was found to elute with the flavonoids at high levels 

(13.6% of total flavonoids by integration based on the assumption that it showed a 

similar UV response to that determined for quercetin.) in mānuka honey but the 

UV absorption spectrum indicated that it was not a flavonoid.
45

 Isolation and 

characterization of this compound, 1, was the topic of the this thesis. Compound 1 

unexpectedly proved to be a phenyl substituted pyrrole derivative rather than a 

flavonoid. 
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1.7. Pyrroles 

The planar, electron rich, five-membered heteroaromatic pyrrole ring (Fig. 

1.5) was found in coal tar by Runge and identified by Baeyer.
46

 The capacity to 

form hydrogen bonds, coordinate metals, and provide stacking interactions make 

it a key constituent of the bicyclic indole side chain of L-tryptophan residues in 

proteins and the tetrapyrroles such as heme b (Fig. 1.6), vitamin B12 (Fig. 1.7) 

and chlorophyll  (Fig. 1.8) with iron, cobalt, or magnesium atoms chelated in 

the equatorial plane of the macrocycles.
47

 In addition, it is present in a wide range 

of natural products and this has lead to extensive research on synthesis and 

chemical behaviours of pyrroles.  

 

 

Fig. 1.6: Structure of pyrrole.
48

 Fig. 1.7: Structure of heme b. 

 
 

Fig. 1.8: Structure of vitamin B12. Fig. 1.9: Structure of chlorophyll . 
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1.7.1. Pyrrole in natural products 

Pyrrole-containing natural products, include the well-known tetrapyrrolic, 

prodiginine family for example prodigiosin (Fig. 1.10), are produced by Serratia 

marcescens, where three pyrrole rings are present with two directly coupled in 

tandem array. They have been reported to have antibacterial, antifungal, 

antiprotozoal, antimalarial, immunosuppressive and anticancer properties.
49

 A 

structurally related species roseophilin (Fig. 1.11) which was isolated from 

Streptomyces griscovirides has been shown to have antitumor activity.
50

 

 

  

Fig. 1.10: Structure of prodigiosin. Fig. 1.11: Structure of roseophilin. 

 

The tambjamines family is a 2,2'-bipyrrolic class of cytotoxic alkaloids, 

isolated from bacteria and marine invertebrates with diverse aliphatic termini. 

Members of this family show wide range of bioactivity, for example, tambjamines 

D (Fig. 1.12) and E (Fig.1.13) have been correlated with antitumor properties 

through DNA intercalation and oxidative cleavage of single-strand DNA.
51

 

  

Fig. 1.12: Structure of 

tambjamines D. 

Fig. 1.13: Structure of 

tambjamines E. 
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Rebeccamycin (Fig. 1.14), isolated from Saccharotrix aerocologines
52

 and 

staurosporine (Fig. 1.15), isolated from Streptomyces,
53

 have a somewhat similar 

aglycone but differ by the sugar structure linked to the indole nitrogen(s). 

Rebeccamycin is known to inhibit topoisomerase I while staurosporine is known 

to be a non-selective kinase inhibitor without activity against topoisomerases.
54, 55

 

  

  

Fig. 1.14: Structure of 

rebeccamycin. 

Fig. 1.15: Structure of 

staurosporine. 

 

Monopyrrolic natural products are being discovered in increasing numbers 

in various sources such as insects, sponges, plants, fungi and bacteria.
56

 

Batrachotoxin (Fig. 1.13), is isolated from skin extracts from a Colombian 

poison-dart frog (family Dendrobatidae),
57

 and is one of the most toxic substances 

known to man. Clorobiocin (Fig. 1.14) is an antibiotic that acts by an inhibition of 

the DNA Gyrase enzyme involved in the cell division in bacteria and is derived 

from Streptomyces species.
58
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Fig. 1.16: Structure of 

batrachotoxin.
57b

 

Fig. 1.17: Structure of 

clorobiocin.
58

 

  

1.7.2. Pyrroles in honey 

Pyrroles can arise from Maillard reactions or from the pyrolysis of amino 

acids when heated.
59

 1H-Pyrrole was found in Robinia pseudoacacia L., Castanea 

sativa L. and Salvia officinalis L.
59-60

 1H-pyrrole-2-carboxylic acid was found in 

Paliurus spina-christi honey.
61

 2-acetylpyrrole was found in abbamelen, a honey-

based Sardinian product
62

 and 1H-pyrrole-3,4-diacetic acid was found in Pine 

honey (Pinus brutia Ten).
63

 

 

1.7.3. Phenyl substituted pyrroles 

 

1.7.3.1. Natural occurrence 

The Lamellarin family (Fig. 1.18) are 3,4-diarylated pyrroles which were 

isolated first in 1985 from a prosobranch mollusc of the genus Lamellaria.
64

 The 

family has shown cytotoxicity and antitumor activity, multidrug resistance 

reversal activity, inhibition of HIV-1 Integrase and MCV topoisomerase, 

antibiotic and antibacterial activity, inhibition of ATP-Citrate Lyase and Human 

Aldose Reductase (h-ALR2), cell division inhibition and immunomodulatory 

activity, antioxidant activity and feeding deterrence.
65
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Fig. 1.18: General structure of lamellarin where a single or a double bond is 

present between C5 and C6 depending upon the particular example. 

 

Pyrrolnitrin (Fig. 1.19) is a tryptophan-derived antifungal and antibiotic 

isolated from Pseudomonas pyrrocinia.
66

 Both pentabromopseudilin (Fig. 1.20), 

produced by P. bromoutilis, and pentachloropseudilin (Fig. 1.21), produced by an 

Actinoplanes sp. strain, are strongly active against Gram-positive bacteria. 

Pentabromopseudilin is also known to inhibit a number of different enzyme 

systems and has high in vitro activity against leukemia and melanoma cell lines.
66

 

 

 
 

Fig. 1.19: Structure of 

pyrrolnitrin. 

Fig. 1.20: Structure of 

pentabromopseudilin. 
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Fig. 1.21: Structure of 

pentachloropseudilin. 

 

 

1.7.3.2. As intermediate and synthesis targets 

2-Chloro-6-(1H-pyrrol-3-yl)aniline (Fig. 1.22) acts as an intermediate for 

synthesis of pyrrolnitrin.
67

 3-(3,5-dichloro-2-methoxyphenyl)-1H-pyrrole (Fig. 

1.23) acts as an intermediate for the synthesis of pentachloropseudilin and 3-(2-

methoxyphenyl)-1H-pyrrole (Fig. 1.24) acts as an intermediate for the synthesis 

of pentabromopseudilin.
68

 

 

 

 

 

Fig. 1.22: 2-Chloro-6-(1H-pyrrol-3-

yl)aniline. 

Fig. 1.23: 3-(3,5-Dichloro-2-

methoxyphenyl)-1H-pyrrole. 

 

 

 

Fig. 1.24: 3-(2-Methoxyphenyl)-1H-

pyrrole. 
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Phenyl substituted 2-formylpyrroles are used to prepare a pyrrolo[1,2-a] 

quinoxaline analogue,
69

 which shows biological activity. For example, 1-(5-

bromopyridin-2-yl)-3-(2-(6-fluoro-4-oxopyrrolo[1,2-a]quinoxalin-5(4H)-yl)ethyl) 

thiourea(Fig. 1.25) which is anti-HIV agent.
70

 

 

Fig. 1.25: 1-(5-Bromopyridin-2-yl)-3-(2-(6-fluoro-4-oxopyrrolo[1,2-

a]quinoxalin-5(4H)-yl)ethyl)thiourea. 

 

 2-(4-Fluorophenyl)-3-(4-pyridinyl)-5-substituted pyrrole analogues (Fig. 

1.26) have been shown to be inhibitors of Eimeria tenella cGMP-dependent 

protein kinase and active in in vivo anticoccidial assays.
71

 

 

 

Fig. 1.26: General structure of 2-(4-fluorophenyl)-3-(4-pyridinyl)-5- 

substituted pyrroles. 

 

Phenyl substituted pyrrole derivatives continue to attract the attention of 

synthetic organic chemists, due to their inherent biological activity.  
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1.8 Aim 

The aim of this thesis was the isolation, characterization and synthesis of 1 

which had been shown to be weakly correlated with non-peroxide anti-bacterial 

activity (R
2
 = 0.36).

45
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Materials and Method 

2.1. Materials 

Fifteen kilograms of mānuka honey were sourced from Natures Country 

Gold (Hamilton, New Zealand) for use in the isolation of flavonoids. Honeys 

were stored in a cold room (5 - 8 ºC) when not being used. 

 

Solvents used in this study were methanol, water, dimethyl sulfoxide, 

diethyl ether, hexanes, dichloromethane, tetrahydrofuran, concentrated 

hydrochloric acid and sodium hydroxide. Methanol used in the extraction of 

flavonoids was redistilled from drum grade while the methanol used for HPLC 

was of HPLC grade supplied by Scharlau.  

 

Water used in the extraction of flavonoids was deionised and obtained 

from a Crystal Pure Ultra Pure Water System. Higher grade Milli-Q water was 

used as a solvent in the HPLC system and was obtained from a Barnstead E-pure 

system (18.2 MΩcm). Dried and purified diethyl ether, hexanes, tetrahydrofuran 

and dichloromethane were obtained from a Pure Solvent Purification System 

(Model: PS-SD-5) as needed and used promptly. 

 

The dimethyl sulfoxide used for the cleaning of HPLC systems was of 

spectrophotometric grade supplied by Aldrich Chemical Company. Deuterated 

dimethyl sulfoxide-d6 (99.9 atom % D containing 0.03% v/v TMS or 99.5 atom % 

D) and deuterated chloroform (99.8 atom% D), both obtained from Sigma-

Aldrich, were used as the solvent for NMR analysis.   

 

Concentrated hydrochloric acid was obtained from Ajax Finechem and 

sodium hydroxide was obtained from Merck. 

 

Lithium diisopropylamide (LDA), ethyl 4-oxazolecarboxylate and 4-

formyloxazole were obtained from Sigma-Aldrich Inc. Diisobutylaluminium 

hydride (DIBALH), triethylamine (Et3N), p-coumaric acid and caffeic acid were 

obtained from Aldrich Chemical Company, Inc. Methane sulphonyl chloride 

(MsCl) was obtained from Riedel-de Haën. 
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2.2. Methods 

 

2.2.1. Evaporation 

Large volumes of liquid were reduced using rotary evaporators comprised 

of a Büchi Rotavapor R-200, Büchi Heating Bath B-490 and a Büchi Vac
®
 V-500 

vacuum pump with the water bath set to 40ºC unless specified. 

 

Once liquid volumes had been reduced enough to fit in a sample vial, 

further evaporation was achieved using a blow down block which consisted of a 

Pierce Reacti-Therm Heating Module set to heat samples to 40ºC and a Pierce 

Reacti-Vap Evaporating Unit which blew nitrogen gas over the samples. 

 

2.2.2. Melting point 

Melting points were measured on a Reichart Thermopan melting point 

apparatus and are uncorrected. 

 

2.2.3. High performance liquid chromatography (HPLC) 

 

2.2.3.1. HPLC conditions 

1 was isolated with a binary HPLC system operated using Waters 

Empower Pro software (Waters Empower 2, build number 2154). Two Waters 

515 HPLC pumps were operated remotely with their flows being combined 

through a mixer (Grace Binary Large Volume Mixer SS Housing with 350 μL 

Mixer Cartridge). This mixer setup was required to suppress noise generated by 

the mixing of eluents at high pressure. 

 

Samples were injected manually using a Rheodyne 7725i injector system 

fitted with a Rheodyne loop (50 μL). Separation of extracts was achieved using a 

Waters Symmetry Shield™ octadecylsilane HPLC column (RP18, 5 μm, 3.0 x 

250 mm). A matching guard column (Waters Universal Sentry™ Guard 
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SymmetryShield™ Column in a Waters Universal Sentry™ Guard Column 

Holder) was fitted to protect the analytical column.  

 

Binary gradients were operated on this system. Solvent A was Milli-Q 

water and methanol (5% v/v) to prevent microbial growth, acidified with acetic 

acid (0.075% v/v). Solvent A was prepared in batches (1 L) which were sonicated 

(20 minutes) to assist removal of dissolved gases prior to using in the HPLC. 

Solvent B was methanol. A degasser (Waters In-Line Degasser AF) was also 

utilised in the HPLC system to further remove dissolved gases. Detection was 

achieved using a Waters 996 Photodiode Array Detector (240.0 - 400.0 nm). 

 

Gradient system 1 shown in Table 2.1 was run at a constant combined 

flow rate (0.3 mL/minutes) and used for the isolation of flavonoid extracts. 

 

Table 2.1: Gradient system 1 used for the analytical HPLC analysis of 

flavonoid extracts 

Time (minutes) Solvent A %
1
 Solvent B %

2
 

0 70 30 

15 70 30 

20 40 60 

60 0 100 

70 0 100 

73 70 30 

78 70 30 

1
 Acetic acid (0.075% v/v) and methanol (5% v/v) in Milli-Q water 

2
Methanol 

 

Gradient method 2 shown in Table 2.2 was run at a constant combined 

flow rate (0.3 mL/minutes) and used to purify the peak obtained using gradient 

method 1 
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Table 2.2: Gradient system 2 used to purify the peak obtained from using 

gradient method 1 

Time (minutes) Solvent A %
1
 Solvent B %

2
 

0 70 30 

5 70 30 

10 55 45 

50 20 80 

52 0 100 

60 0 100 

63 70 30 

68 70 30 

1
 Acetic acid (0.075% v/v) and methanol (5% v/v) in Milli-Q water 

2
Methanol 

 

2.2.3.2. Cleaning the HPLC column 

It was found that certain components of honey persistently stayed in the 

HPLC column and could contaminate the column so that the chromatogram peaks 

became broadened and resolution was reduced. Multiple injections of dimethyl 

sulfoxide (ca. 50 μL) with a constant flow of methanol was applied to restore the 

column.  

 

2.2.4. Gas chromatography with mass spectrometry (GC-MS) 

GC-MS was carried out on a HP 6890 series GC fitted with a Phenomenex 

ZB-5 95% methyl siloxane column (30 m x .25 mm x .25 μm) interfaced to a HP 

5973 Mass selective detector. Conditions used were 120°C (0.75 minutes), 

50°C/minutes up to 200°C, and 10 °C/minutes up to 295°C (held 15 minutes). 

The mass spectrometer was set with either full ion monitoring (all compounds) or 

a selected ion monitoring m/z 201 (M
+.

), m/z 158 and m/z 130 ions (in the case of 

1). 

 

2.2.5. Nuclear magnetic resonance spectroscopy 

One and 2D- 
1
H and 

13
C NMR spectra of samples were obtained using a 

Bruker Avance DRX-400 spectrometer (upgraded to AVIII-400 status during the 
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latter stages of the investigations reported in this thesis) equipped with a 

superconducting magnet (52 mm). 
1
H and 

13
C experiments were carried out at 400 

and 100 MHz respectively using a 5 mm inverse 
13

C/
1
H probe head except for the 

determination of 
13

C spectra of 1, which was acquired using a 5 mm dual 
13

C/
1
H 

probe head. Samples were dissolved in dimethyl sulfoxide-d6 for NMR analysis. 

Operation of the NMR spectrometer and processing of spectra were performed 

using standard Bruker Topspin software 1.3 (DRX-400) or 3.0 (AVIII-400). 

Coupling constants J are reported in Hz, accurate to 0.1-0.2 Hz. 

 

2.2.6. High resolution mass spectrometry (HRMS) 

Mass spectra were recorded in positive-ion mode on a Bruker MicrOTOF 

mass spectrometer with electrospray interface and MeOH as mobile phase. 

Assignment of major peaks was confirmed by recording the high-resolution 

isotope pattern of the ions and comparing with the theoretical pattern obtained 

using the Isotope program. 

 

2.2.7. Isolation of honey flavonoids 

The method used to extract flavonoids from honey is a variation of that 

developed by Ferreres et. al.
42a

 

 

2.2.7.1. Cleaning and swelling of the Amberlite XAD-2 resin 

Dry Amberlite XAD-2 resin was left to soak overnight in a 50% solution 

of methanol and water to allow the resin to swell to its working volume. It was 

kept covered in solvent at all times (except when filtering on the Büchner funnel 

to remove excess solvent) and reused without having to swell the resin overnight. 

 

The resin was cleaned by soaking in methanol overnight. This was 

considered sufficient to absorb any contaminants which could later elute into the 

flavonoid fraction. Removal of the resin from solvents was achieved by filtering it 

on a Büchner funnel. While this would not completely dry the resin, it was 

considered sufficient to remove excess solvent.  
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2.2.7.2. Extraction of phenolics using Amberlite XAD-2 resin 

Unknown compounds were isolated from 15 kg of mānuka honey. Batches 

of honey (ca. 1 kg) were dissolved in acid water (pH 2 with HCl, ca. 3 L) and 

stirred until homogenous. Clean and swelled Amberlite XAD-2 resin (500 g) was 

added to the honey solution and stirred (1 hour) by a magnetic stirrer. The resin 

and honey solution slurry was then poured into a glass column (4 cm x 120 cm) 

and the honey solution drained out. The resin was washed with acid water (2 L) 

and deionised water (1 L) to remove the sugars and other polar compounds. All 

the aqueous washings and the honey solution were collected and later subjected to 

a second extraction on XAD-2 resin. 

 

The phenolics were eluted from the resin by washing with distilled 

methanol (600 mL) and then deionised water (1 L). The column was inverted and 

deionised water flushed through to wash the resin out of the column. The resin 

was then partially dried on a Büchner funnel and added back to the aqueous 

washings to increase the recovery of flavonoids by extracting those compounds 

not recovered during the first treatment. The phenolic extracts were combined and 

concentrated under vacuum at 40ºC until the extract reached a syrupy consistency. 

 

2.2.7.3. Liquid-liquid extraction and cleanup of the extract 

The combined phenolic extract obtained from the XAD-2 resin extraction 

was resuspended in Milli-Q water (150 mL). The extract was then filtered through 

cotton wool to remove solids which had not dissolved. The filtrate was then 

subjected to eight extractions with diethyl ether (150 mL). The ether extracts were 

combined and concentrated to dryness under vacuum at 40ºC. 

 

2.2.7.4. Sephadex LH-20 separation of the phenolic extract 

The flavonoids were separated from the phenolic acids by chromatography 

on a Sephadex LH-20 column according to the method described by Bohm.
37

 

 

The extract was dissolved in distilled methanol (40 mL) and poured into a 

column of Sephadex LH-20 (4 cm x 30 cm) which had been pre-soaked in 30% 

(v/v) distilled methanol in water. The phenolics were then eluted and collected 
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using increasing strength methanol solutions as shown in Table 2.3. The flow rate 

was increased by applying a light head pressure with N2 gas. 

 

Table 2.3 The solvents used in Sephadex LH-20 chromatography of phenolic 

extract and the fractions collected. 

Fraction 

number 

Solvent (% methanol v/v in water) Volume used 

(mL) 

1 30 250 

2 30 250 

3 60 250 

4 60 250 

5 80 250 

6 80 250 

7 100 250 

8 100 250 

9 100 250 

 

2.2.8. Synthesis of 1 

The method used to synthesise 1 is a variation of that developed by 

Reeves et al.
72

 All reactions were carried out under dry, high purity nitrogen using 

standard Schlenk techniques, unless otherwise stated. 

 

2.2.8.1. Synthesis of 6 

A solution of ethyl 4-oxazolecarboxylate (1.00 g, 7.78 mmol) in CH2Cl2 

(20 mL) was treated at -84
o
C with DIBALH (16 mL, 16 mmol) for 1 hour. The 

reaction mixture was quenched with MeOH (10 mL), warmed to room 

temperature, and poured into 2 M aq HCl (20 mL). The layers were separated and 

the aqueous phase extracted with CH2Cl2 (2 x 20 mL). The combined organic 

phases were dried (MgSO4), filtered through a short pad of SiO2 and concentrated 

on a rotary evaporator at a bath temperature of 0
o
C to give crude product. The 

product was recrystallized from CH2Cl2/hexanes. 
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2.2.8.2. Synthesis of 9 

To THF (20 mL) at -84
o
C was added LDA (2.5 ml, 5.5 mmol). The 

resultant solution of LDA was added dropwise to a solution of o-

methoxyacetophenone (0.6 mL, 4.5 mmol). The reaction mixture was stirred at     

-84
o
C for 30 minutes. A solution of 6 (0.5 g, 5.5 mmol) in a minimal amount of 

THF was added dropwise at -84
o
C. The reaction mixture was stirred for 30 

minutes at -84
o
C, quenched with saturated aqueous NH4Cl (20 mL) and allowed 

to warm to room temperature. The layers were allowed to separate, and the 

aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic 

layers were dried (MgSO4), filtered and concentrated. The product was 

recrystallized from CH2Cl2/hexanes. 

 

2.2.8.3. Synthesis of 1 

A solution of 9 (0.40 g, 1.6 mmol) in THF (7 mL) was treated at 0
o
C with 

Et3N (0.7 mL) followed by dropwise addition of MsCl (0.2 mL). The reaction 

mixture was stirred at 0
o
C for 1 hour. The reaction was then treated with aqueous 

2M NaOH (10 mL) and the reaction mixture was heated at 70
o
C for 16 hours. 

After cooling to room temperature, a GC-MS was run and showed the existence 

of a very small amount of product. The reaction mixture was heated at 70
o
C for 

another 48 hours. After cooling to room temperature, the reaction mixture was 

diluted with saturated aqueous NaHCO3 solution, extracted with EtOAc (2 x 20 

mL) and the organic layer was dried (MgSO4), filtered and concentrated. The 

product was recrystallized from CH2Cl2/hexanes. 

 

2.2.8.4. Repeated synthesis of 1 for bioassay 

A solution of 9 (0.23 g, 0.9 mmol) in THF (4 mL) was treated at 0
o
C with 

Et3N (0.4 mL) followed by dropwise addition of MsCl (0.1 mL). The reaction 

mixture was stirred at 0
o
C for 1 hour. The reaction was then treated with aqueous 

2 M NaOH (6 mL) and the reaction mixture was heated at 70
o
C for 72 hours. 

After cooling to room temperature, the reaction mixture was diluted with 

saturated aqueous NaHCO3 solution, extracted with EtOAc (2 x 20 mL) and the 

organic layer was dried (MgSO4), filtered and concentrated. 
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The product was purified by chromatography on an SiO2 column (4 cm x 

30 cm) equilibrated in hexane. The column was eluted with EtOAc – hexane 

(1:9→1:0) in a stepwise gradient using 100 mL aliquots of solvent with 10% 

increase in EtOAc and collecting fractions of 100 mL. The individual fractions 

were examined by GC-MS. The fraction containing 1 was concentrated and 

further purified via preparative layer chromatography. 

 

Preparative layer chromatography was performed using a circular plate 

(220 mm diameter, 2 mm silica layer: Merck PF245) installed on a Chromatotron 

(Harrison Research). The circular plate was reactivated at 100
o
C for 1 hour and 

cooled to room temperature for 1 hour prior to use.  

 

For initial bulk separation, the plate was eluted with successive 100 mL 

aliquots of hexane-diethyl ether (4:1, 7:3, 3:2) and collecting fractions of 15 mL 

followed by 100 mL of ethanol-diethyl ether (4:1) (purging eluent). The 

individual fractions were examined by GC-MS. 

 

For final purification for bioassay, the plate was eluted with successive 50 

mL aliquots of hexane-diethyl ether (4:1, 2:3, 4:1) and collecting fractions of 15 

mL followed by 50 mL of ethanol-diethyl ether (4:1) (purging eluent). The 

individual fractions were examined by GC-MS. 
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Results and Discussion 

3.1. Isolation and identification of caffeic acid and p-coumaric 

acid from the flavonoid fraction 

The flavonoid fraction of New Zealand mānuka honey (fraction 5) showed 

the presence of a complex series of peaks when examined by HPLC (See Fig. 3.1). 

This fraction was initially believed to be composed of only flavonoids, however, a 

systematic evaluation of the peaks present in that fraction showed the presence of 

several non-flavonoid compounds including 1 which eluted at 35.0 minutes (see 

Section 2.2.7.1)  The two predominant non-flavonoid components of fraction 5 

were identified as caffeic acid and p-coumaric acid (see Figs. 3.2 and 3.3). 

 

 

Fig. 3.1: HPLC Chromatogram of the flavonoid fraction 5 (UV wavelength 

340 nm, gradient method 1). 

 

Caffeic acid was identified as the peak eluting between 22.5 – 24.0 

minutes using the chromatographic conditions (gradient method 1) described in 

Section 2.2.3.1 (Fig. 3.2). 
1
H NMR data determined for the isolated specimen 

was identical to that determined for an authentic specimen. Sample 
1
H NMR 

(DMSO-d6):  9.63 (broad s, 1H), 7.40 (d, 1H, J = 16.0 Hz), 7.01 (d, 1H, J = 2.0 

Hz), 6.95 (dd, 1H, J = 8.0, 2.0 Hz) 6.75 (d, 1H, J = 16.0 Hz). Standard 
1
H NMR 

(DMSO-d6):  9.35 (broad s, 1H), 7.40 (d, 1H, J = 16.0 Hz), 7.01 (d, 1H, J = 2.0 

Hz), 6.95 (dd, 1H, J = 8.0, 2.0 Hz) 6.75 (d, 1H, J = 16.0 Hz). 
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Fig. 3.2: HPLC Chromatogram of the flavonoid fraction showing the non-

flavonoid peak (caffeic acid) which was collected (UV wavelength 340 nm, 

gradient method 1). 

 

p-Coumaric acid was identified as the peak eluting between 26.1 – 26.9 

minutes using the chromatographic conditions (gradient method 1) described in 

Section 2.2.3.1 (Fig. 3.3). 
1
H NMR data determined for the isolated specimen 

was identical to that determined for an authentic specimen.Sample 
1
H NMR 

(DMSO-d6):  11.70 (broad s, 1H), 9.98 (broad s, 1H), 7.50 (d, 2H, J = 8.4 Hz), 

7.48 (d, 1H, J = 16.0 Hz), 6.79 (d, 2H, J = 8.4 Hz), 6.27 (d, 1H, J = 16.0 Hz). 

Standard 
1
H NMR (DMSO-d6):  12.11 (broad s, 1H), 9.95 (broad s, 1H), 7.52 (d, 

2H, J = 8.4 Hz), 7.50 (d, 1H, J = 16.0 Hz), 6.78 (d, 2H, J = 8.4 Hz), 6.29 (d, 1H, J 

= 16.0 Hz). 
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Fig. 3.3: HPLC Chromatogram of the flavonoid fraction showing the non-

flavonoid peak (p-coumaric acid) which was collected (UV wavelength 340 

nm, gradient method 1). 

 

Although both caffeic acid and p-coumaric acid were found to be present 

in all of the 31 mānuka samples after reviewing HPLC chromatograms from 

Deadman’s results,
45

 quantification of the level of these compounds was not 

feasible. During the isolation of the flavonoid fraction from honey, one of the 

steps uses liquid-liquid extraction with diethyl ether (see Section 2.2.7.3) which 

removes the flavonoids from an aqueous solution of the phenolic fraction, leaving 

the majority of the phenolic acid derivatives and any remaining polar compounds 

in the aqueous layer. Hence the recovered diethyl ether extracts will typically 

contain less than the actual amount of caffeic acid and p-coumaric acid present in 

the honey.  

 

3.2. Isolation of 1 

1, which had a UV maximum at 340 nm (Fig. 3.4) was obtained from the 

flavonoid fraction of New Zealand mānuka honey by collecting the peak eluting 

between 35.0 - 35.5 minutes (Fig. 3.5) using the chromatographic conditions 

(gradient method 1) described in Section 2.2.3.1. 
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Fig. 3.4: UV Absorption spectrum of the peak which eluted at 35.2 minutes. 

 

Fig. 3.5: HPLC Chromatogram of the flavonoid fraction showing peak 

collected (UV wavelength 340 nm, gradient method 1). 

 

The collected fraction was further purified using gradient method 2 (see 

Section 2.2.3.1) and the peak eluting between 38 - 38.5 minutes was collected 

(Fig. 3.6). The HPLC chromatogram of purified 1 is shown in Fig. 3.7. 
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Fig. 3.6: HPLC Chromatogram of peak collected from flavonoid fraction 

(UV wavelength 340 nm, gradient method 2). 

 

Fig. 3.7: HPLC Chromatogram of purified compound 1 (UV wavelength 340 

nm, gradient method 2). 

 

3.3. Structural determination of 1 

1 was characterised using one and two-dimensional NMR spectroscopy 

and GC-MS. NMR spectral data determined for 1 was compared with the data 

determined from two reference compounds, 5-(2-nitrophenyl)-furfural (3) and 2-

formyl-5-phenyl-pyrrole (4). 
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3.3.1. Characterisation of 1 

 

3.3.1.1. 1
H NMR  spectrum of 1 

The 
1
H NMR spectrum of 1, in DMSO-d6, is presented in Fig. 3.8. The 

1
H 

NMR spectrum of 1 with presaturation of the DMSO and water (HOD) peaks and 

an expansion of the 6.7-7.9 ppm region are shown in Fig. 3.9 and Fig. 3.10 

respectively. The chemical shifts and multiplicities of 1 are summarised in Table 

3.1. 

 

The chemical shift of the 3 proton singlet at 3.96 ppm is typical of a OCH3 

or COOCH3 group, the 6 proton signals which occurred in the region 6-8 ppm are 

typical of aromatic or conjugated olefinic protons while the signal at 9.52 ppm is 

suggestive of a CHO group. The broad peak at 11.79 ppm can be attributed to an 

exchangeable proton (OH, COOH or NH) since this signal was absent 

(suppressed via exchange) in the water (HOD) presaturation experiment.  

 

Fig. 3.8: 
1
H NMR spectrum of 1 in DMSO-d6. 
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Fig. 3.9: 
1
H NMR spectrum of 1 with water (HOD) and DMSO presaturation 

in DMSO-d6. 

 

Fig. 3.10: Expansion of the 6.7-7.9 ppm region of the 
1
H NMR spectrum of 1 

in DMSO-d6. 
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Table 3.1: 
1
H NMR chemical shifts ( in DMSO-d6) and multiplicities of 1 

Multiplicity Chemical shift (ppm) 

s 3.90 

d (J = 3.9 Hz) 6.77 

~td (J = 7.5, 1.2 Hz) 7.02 

d (J = 3.9 Hz, partly concealed) 7.04 

dd (J = 8.5, 1.2 Hz) 7.14 

ddd (J = 8.5, 7.3, 1.7 Hz) 7.33 

dd (J = 7.8, 1.7 Hz) 7.77 

s 9.52 

broad s 11.79 

s: singlet; d: doublet; dd: doublet of doublets; ddd: doublet of doublets of 

doublets; td: triplet of doublets; J: coupling constant(s). 

 

3.3.1.2. 1
H-

1
H COSY spectrum of 1 

The 6-8 ppm region of the homonuclear correlated spectroscopy (COSY) 

spectrum of 1 is shown in (Fig. 3.11). This spectrum was dominated by 

correlations arising from 3 bond couplings. Two independent spin systems, one 

comprised of 2 protons and the other 4 protons, were apparent in this region of the 

COSY spectrum.  The 2 proton spin system was comprised of mutually coupled 

signals (J = 3.9 Hz) centred at 6.07 and 7.04 ppm. The coupling constant 

exhibited by these protons, while not typical of cis coupled aromatic protons, is 

typical of cis-coupled furan protons. 

 

The 4 proton system was comprised of signals centered at 7.02, 7.14, 7.33 

and 7.77 ppm. The signal at 7.77 ppm (dd, J = 7.8, 1.7 Hz) showed a correlation 

to the signal which occurred at 7.02 ppm (~td, J = 7.5, 1.2 Hz). This signal 

exhibited a correlation to the signal at 7.33 ppm (ddd, J = 8.5, 7.3, 1.7 Hz) which 

in turn showed a correlation to the signal at 7.14 ppm (dd J = 8.5, 1.2 Hz). The 

moderate 
3
J (7-8 Hz) and smaller 

4
J (1-2 Hz) couplings, combined with the 

COSY correlation pathway observed for these protons is typical of an ortho-

substituted benzene (Fig. 3.12). If it was para-subsitituted only two 
1
H peaks 

would be observed due to symmetry.  
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Fig. 3.11: 
1
H-

1
H COSY spectrum of the aromatic region of 1 in DMSO-d6. 

 

 

Fig. 3.12: An ortho-substituted benzene. 

 

The conclusion that an ortho-substituted aromatic ring was present in 1 

initially prompted the suggestion that it might be a disubstituted xanthone 

analogue (Fig. 3.13), one ring of which was 1,2- or 3,4-disubstituted and the other 

unsubstituted, rather than a flavonoid analogue. The UV maximum for most 

xanthones is >340 nm. 

 

  

Fig. 3.13: General structure of a xanthone.
73
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However it was apparent that 1 cannot be a disubstituted xanthone. Firstly, 

the H-8 resonance of all xanthones with protons at 5, 6, 7 and 8 positions occur in 

the vicinity of 8.20 ppm
73

 whereas the lowest field (highest ppm) proton 

resonance of 1 occurred at 7.77 ppm. Secondly the coupling constant (J = 3.9 Hz) 

of the signals which occurred at 6.07 and 7.04 ppm were not typical of those of 

mutually coupled aromatic protons (J = 7-9 Hz), no matter what other positions 

were substituted with OCH3, OH or CHO groups (see Section 3.2.1.1). 

 

3.3.1.3. 13
C NMR spectrum of 1 

The 
13

C NMR spectrum of compound 1, in DMSO-d6, is presented in Fig. 

3.14. Tentative signal assignments are presented in Table 3.2. The signal to noise 

of the 
13

C spectrum, after 72 hours was such that only protonated signals, namely 

OCH3 (55.6 ppm), five or six aromatic or olefinic CH groups (114-129.5 ppm) 

(possibly including two signals at ca 120.7) and a conjugated aldehyde group 

(178.8 ppm). These groups were those indicated by 
1
H NMR data (see Section 

3.2.1.1). No quaternary carbon signals were observed after 72 hours of acquisition.  

 

 

Fig. 3.14: 
13

C NMR spectrum of 1 in DMSO-d6. 
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Table 3.2: Tentative 
13

C NMR signal assignments for 1 ( ppm in DMSO-d6) 

Tentative assignment Chemical shift (ppm) 

CH3OH (solvent) 48.6 

OCH3 55.6 

Aromatic or conjugated olefinic CH's 111.4, 111.9, 120.7 (x2), 128.2, 129.5 

conjugated CHO 178.8 

 

3.3.1.4. HSQC spectrum of 1 

The gradient edited
 1

H detected Heteronuclear Single Quantum 

Coherence(HSQC) NMR spectrum (Fig. 3.15) showed correlations attributable to 

the 
1
H and 

13
C signals presented in Tables 3.1 and 3.2 respectively. Correlations 

attributable to 
1
J coupled 

1
H and 

13
C's are presented in Table 3.3. The HSQC 

spectrum verified that two carbons occurred at 120.7 ppm. These carbons showed 

correlations to protons which occurred at 7.02 and 7.04 ppm (see Section 3.2.1.1) 

 

 

Fig. 3.15: HSQC spectrum of 1 in DMSO-d6. 

 

 



42 

 

Table 3.3: HSQC correlations observed for 1 ( ppm in DMSO-d6) 

Proton 3.90 6.77 7.02 7.04 7.14 7.33 7.77 9.52 

Carbon 55.6 111.4 120.7 120.7 111.9 129.5 128.2 178.8 

 

3.3.1.5. HMBC spectrum of 1 

The Heteronuclear Multiple Bond Coherence (HMBC) spectrum of 1 

determined with a mixing time of 65 msec showed correlations arising from 
2
J, 

3
J 

and possibly 
4
J couplings (Fig. 3.16) which are summarised in Table 3.4. This 

revealed the presence of four quaternary carbons which were not visible in the 
13

C 

or HSQC spectra. 

 

The methoxyl (OCH3) proton (3.96 ppm) showed a correlation to the 

quaternary carbon at 156.6 ppm. The aldehyde proton (9.52 ppm) showed a 

correlation to a quaternary carbon at 132.5 ppm. The large coupling constant (J = 

~26 Hz at 2D resolution) is consistent with this proton exhibiting a 
2
J, rather than 

a 
3
J coupling to this carbon. The aromatic proton which occurred at 7.77 ppm 

showed a correlation to a quaternary carbon which occurred at 135.5 ppm, while 

the protons which occurred at 7.02 and 7.14 ppm showed correlations which 

occurred at 119.8 ppm. No long-range HMBC correlations were observed for the 

proton signals which occurred at 6.77 ppm and 7.04 ppm. 
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Fig. 3.16: HMBC spectrum of 1 in DMSO-d6. 

 

Table 3.4: 
n
J HMBC correlations observed for 1 ( ppm in DMSO-d6) 

Proton 3.90 7.02 7.14 7.33 7.77 9.52 

Correlated 

Carbon(s) 

156.6 119.8 119.8 

120.7 

128.2 

156.6 

129.5 

135.5 

156.6 

132.5 

  

3.3.1.6. SELNOESY spectra of 1 

A 1D-selective NOESY (SELNOESY) experiment, in which the CHO 

signal (9.52 ppm) was irradiated, enhanced the signal which occurred at 7.04 ppm 

(d, J = 3.9 Hz) (see Fig. 3.17 b). This result demonstrated that the group was 

distant from the mutually coupled set of 4 aromatic protons (Fig. 3.17 b).  

 

A SELNOESY experiment, in which the OCH3 signal (3.96 ppm) was 

irradiated, enhanced the aromatic proton which occurred at 7.77 ppm (dd, J = 7.8, 

1.7 Hz) (see Fig. 3.17 c). This observation showed that the OCH3 group was 

attached to the benzene ring of 1. 
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Fig. 3.17: SELNOESY spectra determined for 1 in DMSO-d6 a: 
1
H NMR. b: 

irradiation of the CHO signal (9.52 ppm). c: irradiation of the OCH3 (3.96 

ppm) signal. 

 

The coupling constant of the olefinic proton (7.14 ppm, d, J = 3.9 Hz) 

which was enhanced when the aldehyde proton was irradiated, while not typical 

of a cis-coupled aryl proton or olefinic proton in a 7- or 8-membered ring, was 

typical of a cis-coupled proton in a 5-membered ring such as a furan ring (J = 3.9 

Hz).
74

 

 

Hence it was concluded that the structure of 1 was likely to be comprised 

of two parts: (i) an ortho-substituted benzene with an OCH3 group (Fig. 3.18) and 

(ii) a 5-membered furan ring or one in which an X group (eg. an NH group) was 

present rather than an oxygen atom (Fig. 3.19) 
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Fig. 3.18: An ortho-substituted 

benzene with a OCH3 group. 

 

Fig. 3.19: cis-protons and a CHO 

group on a 5-membered ring where 

X can be O or N or S. 

  

The nature of the X group, or that of the linkage between the two sub-units 

could not be deduced from the available NMR data because the quantity of the 

isolated material was too limited to yield sufficient spectral information. 

 

The GC-MS characteristics of 1 were investigated in the belief that MS 

data might be able to establish the molecular weight of 1, which, when combined 

with the available NMR information, should be able to identify the X-group and 

the nature of the linkage between the two sub units. 

 

3.3.1.7. GC-MS analysis of 1 

Gas Chromatography – Mass Spectrometry (GC-MS) analysis of 1 was 

performed using the conditions described in Section 2.2.4. This afforded a peak 

with a retention time of 10.05 minutes which showed a probable M
+
 ion at m/z 

201 and a series of fragment ions, including distinctivem/z 158 and 130 ions (Fig. 

3.20). 
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Fig. 3.20: Mass spectrum of 1. 

 

Since compounds possessing an aldehyde group are frequently 

characterised by the loss of a hydrogen atom to afford a high intensity (M-H)
+
 ion, 

the conclusion that the M
+
 ion of 1 occurs at m/z 201 (the highest intensity ion 

observed in the mass spectrum) must be treated with caution since it can also 

indicate that the molecular ion of the compound which afforded the mass 

spectrum depicted in Fig. 3.20 occurs at m/z 202 and that the base peak m/z 201 

ion is a (M-H)
+
 ion derived from it. It is however more likely that the m/z 202 ion 

is the 
13

C isotope ion of the m/z 201 ion, and that only a weak (M-H)
+
 ion occurs 

at m/z 200 (see Fig. 3.20). 

 

No structural significance could be attached to the m/z 158, 130 and other 

fragment ions observed in the mass spectrum of 1. 

 

A search of the literature for compounds possessing molecular weights of 

201 or 202 Daltons and subunits of the type presented in Section 3.2.1.6 

identified 5-(2-methoxyphenyl)-2-furaldehyde (2) as a compound which had a 

mass of 202 Daltons. 
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2 

 

 NMR data reported by Hosoya el al.
75

 for 5-(2-methoxyphenyl)-2-

furaldehyde (2) is: 
1
H NMR (400MHz, CDCl3) δ 3.97 (3H, s), 6.99–7.01 (1H, m), 

7.07 (1H, dt, J = 7.6, 1.3 Hz), 7.14 (1H, d, J = 3.8 Hz), 7.34 (1H, d, J = 3.8 Hz), 

7.35– 7.39 (1H, m), 8.05 (1H, dd, J = 7.6, 1.3 Hz), 9.65 (1H, s) and 
13

C NMR 

(100MHz, CDCl3) δ 55.4, 111.1, 112.5, 118.0, 120.9, 123.9, 127.4, 130.6, 150.9, 

156.1, 156.8, 177.1. 

 

Although the solvent used to determine NMR spectral data for 1 was 

DMSO-d6 whereas for 5-(2-methoxyphenyl)-2-furaldehyde (2) it was chloroform-

d1, the absence of a proton signal at 11.79 ppm as recorded for 1 (see Table 3.1) 

indicated 1 could not be 5-(2-methoxyphenyl)-2-furaldehyde (2). The coupling 

constant observed for the two proposed furan protons (J = 3.8 Hz) was consistent 

with the suggestion that a 5 membered ring system, in which the O atom of 2 was 

replaced by an NH or S group, was present in 1. Moreover replacement of the 

furan oxygen atom by an NH group would afford a substance with a molecular 

weight of 201 Daltons which appears to be the case for 1.  

 

3.3.2. 5-(2-nitrophenyl)-2-furaldehyde (3) 

A specimen of 5-(2-methoxyphenyl)-2-furaldehyde (2) was not available 

in the Chemistry Department. However there was a specimen of 5-(2-nitrophenyl) 

-2-furaldehyde (3). One and two dimensional NMR spectral data for this 

compound was acquired in DMSO-d6 in the expectation that this data would serve 

as a useful model for substances possessing directly linked aromatic and furan or 

other aldehyde substituted 5-member ring heterocyclic compounds. It was of 

interest to establish if (for example) under the conditions used to determine the 

HMBC spectrum of 3 (and also 1) H-6 would exhibit a 
3
J correlation to C-5', or 
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H-4' exhibited a 
3
J correlation to C-1, thereby demonstrating that the aromatic and 

furan rings were directly linked.  

 

 

3 

 

3.3.2.1. 1
H NMR spectrum of 3 

The 
1
H NMR spectrum of 3, in DMSO-d6, is presented in Fig. 3.21. Signal 

assignments are presented in Table 3.5. 

 

 

Fig. 3.21: 
1
H NMR spectrum of 3 in DMSO-d6. 
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Table 3.5: 
1
H NMR assignments of 3 ( ppm in DMSO-d6) 

Assignment Multiplicity Chemical shift 

1' s 9.62 

3' d (J = 3.7 Hz) 7.65 

4' d (J = 3.7 Hz) 7.15 

3 dd (J = 8.0, 1.3 Hz) 8.01 

4 ddd (J = 8.0, 7.5, 1.4 Hz) 7.71 

5 td (J = 7.7, 1.3 Hz) 7.81 

6 dd (J = 7.7, 1.4 Hz) 7.92 

 

3.3.2.2. 13
C NMR spectrum of 3 

The 
13

C NMR spectrum of 3 in DMSO-d6, is presented in Fig. 3.22. Signal 

assignments are given in Table 3.6. 

 

Fig. 3.22: 
13

C NMR spectrum of 3 in DMSO-d6. 
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Table 3.6: 
13

C NMR assignments of 3 ( in DMSO-d6) 

Assignment Chemical shift (ppm) 

1' 178.2 

2' 152.7 

3' 124.3 

4' 112.3 

5' 153.3 

1 121.9 

2 147.4 

3 124.4 

4 131.1 

5 133.0 

6 130.2 

 

3.3.2.3. HMBC spectrum of 3 

The gradient edited HMBC spectrum of 3, in DMSO-d6, is presented in 

Fig. 3.23.  Correlations observed for 3 are listed in Table 3.7 and depicted in Fig 

3.24. 

 

Fig. 3.23: HMBC spectrum of 3 in DMSO-d6. 
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Fig. 3.24: HMBC correlations observed for 3 ( ppm in DMSO- d6). 

 

Table 3.7: 
n
J HMBC correlations observed for 3 ( ppm in DMSO- d6) 

Proton 7.15  

(H-4') 

7.62  

(H-3') 

7.71  

(H-4) 

7.81 

(H-5) 

7.92  

(H-6) 

8.01  

(H-3) 

9.62  

(H-1') 

Correlated 

carbon (s) 

124.3 

 (C-3') 

152.7 

 (C-2') 

112.3  

(C-4') 

152.7 

 (C-2') 

130.2  

(C-6) 

147.4  

(C-2) 

121.9  

(C-1) 

124.4  

(C-3) 

131.1  

(C-4) 

147.4  

(C-2) 

153.3  

(C-5') 

121.9  

(C-1) 

133.0  

(C-5) 

152.7  

(C-2') 

 

Under standard HMBC conditions, using a 65 msec mixing time 

predominantly 
3
J correlations were observed for 3. 

 

 In particular it should be noted that the H-6 proton (7.92 ppm) showed a 
3
J 

correlation to C-5'. This was the only proton, which under standard HMBC 

conditions, exhibited an inter-ring correlation. The correlations exhibited by H-6 
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of 3 can be viewed as being analogous to those which would be exhibited by the 

equivalent proton of 1, namely the proton which occurs at 7.77 ppm. 

 

In order to maximise the intensity for 
n
J HMBC correlations observable 

for 3, and by implication also for 1, a series of eight HMBC experiments were run 

for 3 using mixing times (D6 values) of 35 msec (Fig. 3.25), 50 msec (Fig. 3.26), 

65 msec (Fig. 3.27), 80 msec (Fig. 3.28), 100 msec (Fig. 3.29), 120 msec (Fig. 

3.30), 160 msec (Fig. 3.31) and 200 msec (Fig. 3.32). 

 

Fig. 3.25: HMBC spectrum of 3 in DMSO-d6 with D6 = 35 msec. 
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Fig. 3.26: HMBC spectrum of 3 in DMSO-d6 with D6 = 50 msec. 

 

Fig. 3.27: HMBC spectrum of 3 in DMSO-d6 with D6 = 65 msec. 
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Fig. 3.28: HMBC spectrum of 3 in DMSO-d6 with D6 = 80 msec. 

 

Fig. 3.29: HMBC spectrum of 3 in DMSO-d6 with D6 = 100 msec. 
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Fig. 3.30: HMBC spectrum of 3 in DMSO-d6 with D6 = 120 msec. 

 

Fig. 3.31: HMBC spectrum of 3 in DMSO-d6 with D6 = 160 msec. 
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Fig. 3.32: HMBC spectrum of 3 in DMSO-d6 with D6 = 200 msec. 

 

The intensity of the carbon correlations exhibited by H-6 (7.92 ppm) of 3 

as a function of the mixing time (D6 value) is depicted in Fig 3.33. The maximum 

intensity for the 
3
J correlations exhibited by this proton to C-4 (131.1 ppm), C-2 

(147.4 ppm) and C-5' (153.3 ppm) (the only observable inter-ring correlation) 

occurred with a mixing time of 50 msec. Weaker 
2
J or 

4
J correlations to C-1 

(121.9 ppm) and C-3 (124.4 ppm) respectively were also observed in spectra 

determined with longer mixing times (see Fig. 3.33). 
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Fig. 3.33: Plot of the intensity of 
n
J correlations exhibited by H-6 of 3 (7.92 

ppm) versus mixing time (msec) (peak 1: C-1, 121.9 ppm (
2
J); peak 2: C-3 

124.4 ppm (
4
J); peak 3: C-4- 131.1 ppm (

3
J); peak 4: C-2, 147.4 ppm (

3
J); 

peak 5: C-5', 153.3 ppm (
3
J)). 

 

3.3.2.4. HMBC spectrum of 1 with D6 = 50 msec 

Since the maximum intensity of 
3
J correlations exhibited by 3, including 

the inter-ring H-6 to C-5' correlation occurred using a 50 msec mixing time, the 

HMBC spectrum of 1 was re-run with a mixing time of 50 msec. The HMBC 

spectrum of 1 determined using D6 = 50 msec is presented in Fig. 3.34. A greater 

number of scans per increment was also used when recording the 50 msec HMBC 

spectrum of 1 in the expectation that this would improve the signal to noise of the 

spectrum. There was an additional correlation from the 7.02 ppm proton signal to 

111.4 ppm carbon signal which was not observed in the previous HMBC 

spectrum of 1 (see Fig. 3.16). 
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Fig. 3.34: HMBC spectrum of 1 with D6 = 50 msec in DMSO-d6. 

 

The three correlations observed in the 50 msec HMBC spectrum for the 

7.77 ppm proton signal of 1 (see Fig 3.34) can be attributed to 
3
J correlations 

rather than 
2
J or 

4
J correlations based on the model compound data presented in 

Fig 3.32 for 3 since only high intensity correlations would be detectable in the 

HMBC spectrum, given the small quantity of 1 available for structural analysis. 

 

Two of the observed correlations can be attributed to correlation between 

H-6 and C-2 (156.6 ppm) and C-4 (129.4 ppm) respectively. The third correlation, 

to the 
13

C signal that occurred at 135.5 ppm can be attributed to an inter-ring 

correlation to C-5'. Whereas the C-5' of 3 occurs at 153.3 ppm, it can be 

anticipated, based on an analysis of chemical shift data for furans and pyrroles,
72

 

that the C-5' resonance of the pyrrole analogue of 3 (ie the structure proposed in 

Section 3.2.1 for 1) would occur at a lesser chemical shift, in the vicinity of 130-

140 ppm. Moreover structure 1 is consistent with the detection in the 
1
H NMR of 

1 of a signal at 11.79 ppm, assignable to a pyrrole NH proton. Hence the structure 

proposed for 1 was 2-formyl-5-(2-methoxyphenyl)-pyrrole. 
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3.3.2.5. GC-MS analysis of 3 

GC-MS analysis of 3, under identical conditions used for 1, afforded a 

peak which had a retention time 11.98 minutes and showed a weak M
+
 ion at m/z 

217 together with a base peak fragment ion at m/z 188 attributable to a (M - 

CHO)
+
 ion (Fig. 3.35). The observation that the retention time of 3 was greater 

than that determined for 1 is consistent with the conclusion that 1, showing that it 

was a less polar, lower molecular weight variant of 3.  

 

Fig. 3.35: Mass spectrum of the GC-MS peak which eluted at 11.98 minutes. 

 

3.3.3. 2-formyl-5-phenyl-pyrrole (4) 

The proposal that 1 might be a 2-formyl-5-(2-methoxyphenyl)-pyrrole 

prompted a search of the literature for reports of the occurrence or synthesis of 

this compound, or close analogues of it. Reeves et al.
72

 has reported the synthesis 

of 4.  The structure of this compound only differs from that proposed for 1 in that 

it lacks the aryl ring methoxy group. 

 

A specimen of 4, generously donated by Dr J. T. Reeves, was used to 

determine the one and 2D-NMR spectral features of this compound in DMSO-d6, 

in the expectation that this data would verify the presence of 2'-formyl substituted 

pyrrole ring system in 1. 
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4 

 

3.3.3.1. 1
H NMR spectrum of 4 

The 
1
H NMR spectrum of 4, in DMSO-d6, is presented in Fig. 3.36. Signal 

assignments are presented in Table 3.8. Notably the 
1
H NMR spectrum of 4 

included an aldehyde signal at 9.50 ppm and a broad singlet signal at 12.39 ppm, 

attributable to the NH proton of 4. The chemical shift of this proton was 

reminiscent of that of the aldehyde signal at 9.52 ppm and broad singlet signal at 

11.79 ppm observed in the 
1
H NMR spectrum of 1 (see Table 3.1) . 

 

Fig. 3.36: 
1
H NMR spectrum of 4 in DMSO-d6. 
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Table 3.8: 
1
H NMR assignments of 4 ( in DMSO-d6) 

Assignment Multiplicity Chemical shift (ppm) 

1' s 9.50 

3' dd (J = 3.9, 2.3 Hz) 7.08 

4' dd (J = 3.9, 2.3 Hz) 6.79 

2 d (J = 7.6 Hz) 7.89 

3 t (J = 3.9, 2.0 Hz) 7.42 

4 t (J = 3.9, 2.0 Hz) 7.32 

NH broad s 12.39 

 

3.3.3.2. 13
C NMR spectrum of 4 

The 
13

C NMR spectrum of 4, in DMSO-d6, is presented in Fig. 3.37. 

Signal assignments are presented in Table 3.9. 

 

Fig. 3.37:
 13

C NMR spectrum of 4 in DMSO-d6. 

. 
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Table 3.9: 
13

C NMR signal assignments for 4 ( ppm in DMSO-d6) 

Atom Chemical shift 

1' 178.8 

2' 133.8 

3' 121.9 

4' 108.9 

5' 139.5 

1 130.8 

2 125.5 

3 128.8 

4 128.0 

 

3.3.3.3. HSQC spectrum of 4 

The gradient edited HSQC spectrum of 4, determined in DMSO-d6, is 

presented in Fig. 3.38. 
1
J correlations observed in the HSQC spectrum are given 

in Table 3.10. 

 

Fig. 3.38: HSQC spectrum of 4 in DMSO-d6. 
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Table 3.10: HSQC correlations determined for 4 ( ppm in DMSO-d6) 

Proton 6.79 

(H-4') 

7.08 

(H-3') 

7.32 

(H-4) 

7.42 

(H-3) 

7.89 

(H-2) 

9.50 

(H-1') 

Carbon 108.9 121.9 128.0 128.8 125.5 178.8 

 

3.3.3.4. HMBC spectrum of 4 

The gradient edited HMBC spectrum of 4, determined in DMSO-d6, is 

presented in Fig. 3.39. 
n
J correlations observed in the HMBC spectrum of 4 are 

given in Table 3.11 and depicted in Fig. 3.40. The signal to noise of this 

spectrum was much greater than that of the HMBC spectrum of 1.  Several of the 

carbon atoms of 4 also exhibited residual 
1
J coupled correlations, the intensity of 

which was proportional to the difference between the 
1
J coupling of the carbon in 

question (typically in the range 140-220 Hz) and value (160 Hz) used to define 

the D2 (= 1/2 J) delay time in the HMBC pulse sequence. 

 

 

Fig. 3.39: HMBC spectrum of 4 in DMSO-d6. 
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Fig. 3.40: HMBC correlations observed for 4 ( ppm in DMSO-d6). 

 

Table 3.11: 
n
J HMBC correlations observed for 4 ( ppm in DMSO-d6) 

Proton  6.79 

(H-4') 

7.08 

(H-3') 

7.32 

(H-4) 

7.42 

(H-3) 

7.89 

(H-2) 

9.50 

(H-1') 

Correlated 

carbon(s) 

133.8 

(C-2') 

139.5 

(C-5') 

133.8 

(C-2') 

139.8 

(C-5') 

125.5 

(C-2) 

 

125.5 

(C-2) 

128.8 

(C-3) 

130.8 

(C-1) 

125.5 

(C-2) 

128.0 

(C-4) 

139.5 

(C-5') 

133.0 

(C-2') 

 

The aldehyde proton which occurred at 9.50 ppm showed a 
2
J correlation 

to the carbon at 133.8 ppm (C-2') while the aryl H-2 proton signal (7.89 ppm) 

showed an inter-ring 
3
J correlation to C-5' (139.5 ppm). These correlations 

corresponded exactly to those observed in the HMBC spectrum of 1.   
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The resolution of the HMBC spectra (which were in all cases determined 

without 
1
H decoupling) was such that the magnitude of the 

2
J H-1 - C-2' 

couplings could be determined with reasonable precision, and were found to be ca 

26 Hz for 1 and 4, compared to 32 Hz for 3 which possessed a furan ring.  

 

3.3.3.5. GC-MS analysis of 4 

GC-MS analyses of 4, under identical conditions to those used to 

determine the GMS characteristics of 1 and 3, afforded a peak which had a 

retention time of 8.23 minutes and showed a M
+
 ion at m/z 171, together with 

strong m/z 170 (M-H)
+
 , m/z 142 [M - CHO]

+
 and m/z 115 [M - C2H2ON]

+
 

fragment ions (Fig. 3.41). 

 

The observation that 4 eluted from the GC-MS column ca 2 minutes 

before compound 1 was eluted is consistent with the view that 1 is a higher 

molecular weight, methoxylated analogue of 4. 

 

 

Fig. 3.41: Mass spectrum of the GC-MS peak which eluted at 8.20 minutes. 

 

Based on the NMR and GC-MS data reported in Sections 3.2.1, and 

model compound data reported in Sections 3.2.2 and 3.2.3, it can be concluded 
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that 1 is a 2-formyl-5-(2-methoxyphenyl)-pyrrole. A complete assignment of the 

1
H and 

13
C signals of 1 in DMSO-d6 is presented in Table 3.12. HMBC 

correlations observed for 1 are depicted in Fig 3.42. 

 

 

 

1 

 

Table 3.12: NMR signal assignments for 1 ( in ppm in DMSO-d6) 

Atom 
13

C 
1
H 

1' 178.8 9.52 (s) 

2' 132.5* - 

3' 120.7 7.04 (d, J =3.9 Hz, partly concealed) 

4' 111.9 6.77 (d, J = 3.9 Hz) 

5' 135.5* - 

1 119.8* - 

2 156.6* - 

3 111.4 7.14 (dd, J = 8.5, 1.2 Hz) 

4 129.4 7.33 (ddd, J = 8.5, 7.3, 1.7 Hz) 

5 120.7 7.02 (~td, J = 7.5, 1.2 Hz) 

6 128.2 7.77 (dd, J = 7.8, 1.7 Hz) 

OCH3 55.6 3.90 (s) 

NH - 11.79 (broad s) 

* 
13

C chemical shifts determined at 2D-resolution. 
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Fig. 3.42: HMBC correlations observed for 1 ( in ppm in DMSO-d6). 
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3.4. Synthesis of 1 

A synthesis of 1 was attempted based on the synthetic route to 4 reported 

by Reeves et al.
72

 (see Section 2.2.8). The proposed synthetic route to 1 is 

presented in Fig. 3.43. 

 

 

Fig. 3.43: The synthesis route of 1. 

 

3.4.1. Synthesis of oxazole-4-carbaldehyde (6) 

Synthesis of 6 (a white powder after crystallisation) from ethyl 4-

oxazolecarboxylate (5) proceeded with a yield of 0.0109 g (1.42%, lit 64%). Mpt : 

found: 55-58
o
C; lit. 59-61

o
C.

72
 

 

 Hodges et al.
76

 have stated that oxazole-2-carboxaldehyde (7) is prone to 

loss by vapourization during solvent evaporation. Benoit et al.
74

 has reported that 

2-methyloxazole-4-carboxaldehyde (8) is unstable to extremes of pH and is 
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rapidly decomposed by hydrolysis. It was therefore anticipated that 6 would share 

these characteristics with 7 and 8. 

 

The DIBALH is supplied commercially dissolved in hexane, the removal 

of which resulted in loss of product when the reaction mixture containing this 

reagent was concentrated on a rotary evaporator to give crude 6. 6 may have been 

over-reduced as a 60 minute reaction time was utilised in the present investigation 

while the reaction mixture was held at lower temperature, whereas 30 minute 

reaction time was applied recorded in the literature,
72

 After the removal of hexane, 

the reaction mixture was quenched with MeOH and 2 M HCl was added, possibly 

reducing the yield of 6 due to HCl promoted hydrolysis. Rather than spending 

time improving the methodology it was decided to purchase 6 for the attempted 

synthesis of 1.  

 

 

 

5 6 

  

7 8 

 

3.4.2. Synthesis of 3-hydroxy-1-(2-methoxyphenyl)-3-(oxazol-4-yl) 

propan-1-one (9) 

Synthesis of 9 according to Section 2.2.8.2, afforded pale yellow crystals 

after crystallization, 0.751 g (67.5%). Mpt: 104 – 107
o
C. 

1
H and 

13
C NMR data 

determined for this compound are reported in Table 3.14 and Table 3.15 

respectively.  
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9 

 

3.4.2.1. 1
H NMR spectrum of 9 

The 
1
H NMR spectrum of 9, in DMSO-d6, is presented in Fig. 3.44. Signal 

assignments are given in Table 3.14. 

 

 

Fig. 3.44: 
1
H NMR spectrum of 9 in DMSO-d6. 
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Table 3.13 : 
1
H NMR assignments of 9 ( in DMSO-d6) 

Assignment Multiplicity Chemical shift (ppm) 

OCH3 s 3.87 

OH d (J = 5.4 Hz) 5.36 

2' dd (J = 8.2, 16.2 Hz) 

dd (J = 4.6, 16.2 Hz, partly concealed) 

3.26, 3.37 

3' m (W1/2 =18.0 Hz) 5.06 

5' s 7.89 

6' s 8.26 

3 d (J = 8.6 Hz) 7.16 

4 t (J = 7.5 Hz, partly concealed) 7.54 

5 t (J = 7.5 Hz) 7.03 

6 d (J = 8.6 Hz, partly concealed) 7.52 

 

3.4.2.2. 13
C NMR spectrum of 9 

The 
13

C NMR spectrum of 9, in DMSO-d6, is presented in Fig. 3.45. 

Signal assignments are presented in Table 3.19. 

 

Fig. 3.45: 
13

C NMR spectrum of 9 in DMSO-d6. 
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Table 3.14: 
13

C NMR assignments for 9 ( in DMSO-d6) 

Assignment Chemical shift (ppm) 

1' 199.6 

2' 50.4 

3' 62.6 

4' 143.3 

5' 135.1 

6' 151.5 

1 128.1 

2 158.0 

3 112.3 

4 133.6 

5 120.9 

6 129.4 

 

3.4.2.3. HSQC spectrum of 9 

The gradient edited HSQC spectrum of 9, in DMSO-d6, is presented in Fig. 

3.46. Correlations observed for 9 are given in Table 3.16. 

 

Fig. 3.46: HSQC spectrum of 9 in DMSO-d6. 
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Table 3.15: HSQC correlations determined for 9 ( ppm in DMSO-d6) 

Proton(s) 

 

3.26, 3.37 

(H-2') 

3.87 

(OCH3) 

5.06 

 (H-3') 

7.03 

 (H-5) 

7.16 

 (H-3) 

7.52 

 (H-6) 

7.54 

(H-4) 

7.89 

(H-5') 

carbon 50.4 55.7 62.62 120.4 112.3 129.4 133.6 135.1 

 

HSQC correlations were not observed for the 
1
H signals that occurred at 

5.36 and 8.26 ppm. The former signal arises from an OH proton so that an HSQC 

correlation will not be observed for this proton. It was considered that the lack of 

H-6' (8.26 ppm) correlation may be a consequence of the 
1
J coupling of the proton 

being significantly different from the coupling constant (145 Hz) utilised to 

determine the HSQC spectrum. The 
1
J coupling from H-6' (8.26 ppm) to C-6' 

(151.5 ppm) was confirmed by observation of the 
13

C coupled signal in the 

HMBC. A re-run of the HSQC spectrum with 
1
J coupling value set to 200 Hz 

identified a correlation between the proton signal at 8.26 ppm and the C-6' 

resonance which occurred at 151.5 ppm (Fig 3.47). 

 

 

Fig. 3.47: HSQC spectrum of 9 in DMSO-d6 with 
1
J optimised for 200 Hz. 
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3.4.2.4. HMBC spectrum of 9 

The gradient edited HMBC spectrum of 9 in DMSO-d6 is presented in Fig. 

3.48. Correlations observed in the HMBC spectrum are presented in Table 3.17 

and depicted Fig. 3.49. 

 

Fig. 3.48: HMBC spectrum of 9 in DMSO-d6. 
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Table 3.16: 
n
J HMBC correlations observed for 9 ( ppm in DMSO-d6) 

Proton(s) 3.26, 3.37 

(H-2') 

3.87 

(OCH3) 

5.06 

(H-3') 

5.36 

(OH) 

7.03 

(H-5) 

Correlated 

carbons(s) 

62.5 

(C-3') 

143.5 

(C-5') 

199.6 

(C-1') 

 

158.0 

(C-2) 

50.4 

(C-2') 

135.4 

(C-5') 

143.5 

(C-4') 

199.6 

(C-1') 

50.4 

(C-2') 

62.6 

(C-3') 

143.5 

(C-4') 

120.4 

(C-5) 

128.1 

(C-1) 

133.6 

(C-4) 

158.0 

(C-2) 

Proton 7.16 

(H-3) 

7.52 

(H-6) 

7.54 

(H-4) 

7.89 

(H-5') 

8.26 

(H-6') 

Correlated 

carbon(s) 

120.4  

(C-5) 

128.1  

(C-1) 

158.0 

(C-2) 

199.6 

(C-1') 

128.1 

 (C-5) 

133.6 

(C-4) 

158.0 

(C-2) 

199.6 

(C-1') 

158.0 

(C-2) 

151.5 

(C-6') 

135.1 

(C-5') 

143.5 

(C-4') 
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Fig. 3.49: HMBC correlations observed for 9 ( ppm in DMSO-d6). 

 

3.4.2.5. HRMS of 9 

High Resolution Mass Spectrometry (HRMS) of 9 gave: calculated for 

C12H12NO4Na [M+Na]
+
: 270.0737 and found: 270.0735 (Fig. 3.50) 

 

Fig. 3.50: HRMS of 9. 
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3.4.3. Synthesis of 1 from 9 

GC-MS of the crude reaction product was obtained when 9 was reacted 

with MsCl and NaOH (see Section 2.2.8.3), which indicated the presence of only 

a small amount of 1 (ca 1 %). The retention time of the minor amount of 

compound in the reaction mixture (retention time of 9.85 minutes) (Fig. 3.51) was 

identical to that determined for the sample of 1 isolated from the mānuka 

flavonoid fraction 1 (retention time of 9.85 minutes) (Fig. 3.52).  

 

It was difficult to demonstrate the presence of a low level of 1 in the 

reaction mixture by inspection of the TIC profile of the mixture. Selected ion 

profiling (m/z 201, 158 and 130 ion profiles: see Section 2.2.4) verified the 

presence of a low level of 1. 



 

78 

 

 

Fig. 3.51 a: Selected ion chromatogram of the crude product mixture 

(summed m/z 130, 158 and 201 ion currents); b: Expansion of the 9.20 to 

11.80 minute region. 
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Fig. 3.52: Selected ion chromatogram of an isolated specimen of 1 (sum of m/z 

130, 158 and 201 ions). 

 

The relative ratio of the m/z 130, 158 and 201 ions observed for the 

reaction product mixture peak at retention time of 9.85 minutes was 1:1.35:3.32, 

whereas the relative ratio of that of previously isolated 1 at retention time of 9.85 

minutes was 1:1.27:3.3. The close agreement between these ratios supports the 

conclusion that a low level of 1 was present in the mixture of reaction products. 

 

The major component of the reaction was crystallized (yield of 0.222 g, 

60.6%, Mpt: 75 - 80
o
C.) and identified by detailed analyses of one and 2D-NMR 

data as (E)-1-(2-methoxyphenyl)-3-(oxazol-4-yl)prop-2-en-1-one (10). This 

compound is the dehydrated analogue of the starting material.  

 

10 
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3.4.3.1. 1
H NMR spectrum of 10 

The 
1
H NMR spectrum of 10, in DMSO-d6, is presented in Fig. 3.53. 

Signal assignments are presented in Table 3.17. 

 

 

Fig. 3.53: 
1
H NMR spectrum of 10 in DMSO-d6. 

 

Table 3.17 : 
1
H NMR assignments for 10 ( in DMSO-d6) 

Assignment Multiplicity Chemical shift (ppm) 

OCH3 s 3.86 

2' dd (J = 15.5, 0.8 Hz) 7.42 

3' d (J = 15.5 Hz) 7.35 

5' t (J = 0.8 Hz) 8.48 

6' s 8.50 

3 dd (J = 8.3, 1.0 Hz) 7.19 

4 td (J = 8.3, 1.8 Hz) 7.55 

5 td (J = 7.5, 1.0 Hz) 7.06 

6 dd (J = 7.5,1.8 Hz) 7.48 
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3.4.3.2. 13
C NMR spectrum of 10 

The 
13

C NMR spectrum of 10, in DMSO-d6, is presented in Fig. 3.54. Signal 

assignments are presented in Table 3.18. 

 

 

Fig. 3.54: 
13

C NMR spectrum of 10 in DMSO-d6. 
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Table 3.18: 
13

C NMR signal assignments for 10 ( in DMSO-d6) 

Assignment Chemical shift (ppm) 

1' 191.9 

2' 131.1 

3' 127.0 

4' 136.3 

5' 141.7 

6' 153.1 

1 128.4 

2 157.7 

3 112.3 

4 133.1 

5 120.6 

6 129.5 

OCH3 55.8 

 

3.4.3.3. HSQC spectrum of 10 

The gradient edited HSQC spectrum of 10, in DMSO-d6, is presented in 

Fig. 3.55. Correlations observed in the HSQC spectrum are listed in Table 3.19. 
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Fig. 3.55: HSQC spectrum of 10 in DMSO-d6. 

 

Table 3.19: HSQC correlations determined for 10 ( in DMSO-d6) 

Proton 

(ppm) 

3.87 

(OCH3) 

7.06 

(H-5) 

7.19 

(H-3) 

7.35 

(H-3') 

7.42 

(H-2') 

7.48 

(H-6) 

7.55 

(H-4) 

8.48 

(H-5') 

Carbon 

(ppm) 

55.8 120.6 112.4 127.6 131.1 129.5 133.1 141.7 

 

3.4.3.4. HMBC spectrum of 10 

The gradient edited HMBC spectrum of 10, in DMSO-d6, is presented in 

Fig. 3.56. HMBC correlation observed for 10 are listed in Table 3.20 and 

depicted in Fig. 3.57. 
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Fig. 3.56: HMBC spectrum of 10 in DMSO-d6 

 

Table 3.20: 
n
J HMBC correlation observed for 10 ( ppm in DMSO-d6) 

Proton 3.87 

(OCH3) 

7.06 

(H-5) 

7.19 

(H-3) 

7.35 

(H-3') 

7.42 

(H-2') 

Correlated 

carbon(s) 

157.7 

(C-2) 

112.3 

(C-3) 

128.4 

(C-1) 

120.6 

(C-5) 

128.4 

(C-1) 

157.7 

(C-2) 

136.3 

(C-4') 

191.9 

(C-1') 

127.6 

(C-3') 

136.3 

(C-4') 

191.9 

(C-1') 

Proton 7.48 

(H-6) 

7.55 

(H-4) 

8.48 

(H-5') 

8.50 

(H-6') 

 

Correlated 

carbon(s) 

133.1 

(C-4) 

157.7 

(C-2) 

191.9 

(C-1') 

129.5 

(C-6) 

153.1 

(C-6') 

136.3 

(C-4') 
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Fig. 3.57: HMBC correlations observed for 10 ( ppm in DMSO-d6). 

 

3.4.3.5. HRMS of 10 

High Resolution Mass Spectrometry (HRMS) gave: calculated for 

C13H11NO3Na [M+Na]
+
: 252.0631; found: 252.0644 (Fig. 3.58). 

 

Fig. 3.58: HRMS of 10. 
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On crystallization 10 yielded a pale orange solid covered by black oil. GC-

MS showed that the black oil was o-methoxyacetophenone (Fig. 3.59). GC-MS 

analyses of o-methoxyacetophenone under the same condition as those utilised to 

determine the GC-MS characteristic of 1 afforded a peak which had a retention of 

time 3.89 minutes and showed an M
+
 ion at m/z 150 and a [M – CH3]

+fragment 

ion at m/z 135. This compound can be viewed as a degradation product derived 

from 10. 

 

Fig. 3.59: Mass spectrum of o-methoxyacetophenone. 

 

The solution after recrystallization of 10 was collected and examined by 

GC-MS under the same condition as those utilised to determine the GC-MS 

characteristic of 1. This yielded three peaks (Fig. 3.60). 



 

87 

 

 

Fig. 3.60: Total ion chromatogram of the crude product mixture after 

recrystallization. 

 

The mass spectra of the peaks at retention times of 5.60 minutes and 6.28 

minutes were nearly identical (see Figs. 3.61 and 3.62). It is known that for 

cinnamic acid esters, cis-isomers will elute before trans-isomers in GC. For 

example, cis-cinnamic acid elutes before trans-cinnamic acid.
77

  It can reasonably 

be concluded that the 5.60 minute peak was the cis-isomer of 10 and that the 6.28 

minute peak was the trans-isomer of 10. 

 

Fig. 3.61: Mass spectrum of the cis-isomer of 10. 

cis-10 

1 

trans-10 



 

88 

 

 

 

Fig. 3.62: Mass spectrum of the trans-isomer of 10. 

 

The NMR data presented in Table 3.17 is for trans-10 since it includes a 

J3',4' coupling of 15.5 Hz. There was also evidence for the presence of a lower 

level of the cis-isomer in the NMR sample as evidenced by olefinic proton signals 

which showed couplings of 12.6 Hz (see Fig. 3.63). The coupling constants of cis- 

and  trans-olefinic protons of cinnamic acid are 12.7 Hz and 16.1 Hz 

respectively.
78

 This data verified the presence in the crude reaction mixture of the 

cis- and trans-isomers of 10 together with 1. 
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Fig. 3.63: Expansion of the 6.7-7.1 ppm region of the 
1
H NMR spectrum of 10 

in DMSO-d6. 

 

3.5. Repeat synthesis of 1 for bioassay 

Ten fractions were eluted from a SiO2 column and were examined by GC-

MS under the same condition as those utilised to determine the GC-MS 

characteristic of 1. The 5
th

 fraction was found to be composed of a mixture of cis-

10 (at a retention time of 5.30 minutes), 1 (at a retention time of 5.51 minutes), 

and trans-10 (at a retention time of 5.86 minutes) (Fig. 3.64). 

J3',4'cis 
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Fig. 3.64: Total ion chromatogram of 5
th

 fraction from SiO2 column. 

 

The 5
th

 fraction was purified by preparative layer chromatography. The 

initial bulk separation yielded eighteen fractions which were examined by GC-MS 

under the same condition as those utilised to determine the GC-MS characteristic 

of 1. The 7
th

 (Fig. 3.65), 8
th

 (Fig. 3.66), 9
th

 (Fig. 3.67) and 10
th

 fractions (Fig. 3.68) 

were found to contain 1 (at a retention time of 5.51 minutes).  

 

Fig. 3.65: Total ion chromatogram of 7
th

 fraction eluted from preparative 

layer chromatography of the initial bulk separation. 
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Fig. 3.66: Total ion chromatogram of 8
th

 fraction eluted from preparative 

layer chromatography of the initial bulk separation. 

 

 

Fig. 3.67: Total ion chromatogram of 9
th

 fraction eluted from preparative 

layer chromatography of the initial bulk separation. 



 

92 

 

 

Fig. 3.68: Total ion chromatogram of 10
th

 fraction eluted from preparative 

layer chromatography of the initial bulk separation. 

 

The 9
th

 fraction, which contained the largest amount of 1 based on the GC-

MS ion intensities, was examined by NMR in CDCl3 rather than DMSO-d6 since 

the former solvent permitted recovery of the sample for bioassay. 

 

3.5.1. 1
H NMR spectrum of 1 

The 
1
H NMR spectrum of 1, in CDCl3, is presented in Fig. 3.69 and an 

expansion of the 6.5-7.9 ppm region is shown in Fig. 3.70. Signal assignments are 

given in Table 3.21. 
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Fig. 3.69:
 1

H NMR spectrum of 1 in CDCl3. 

 

Table 3.21: 
1
H NMR assignments for 1 ( ppm in CDCl3) 

Assignment Multiplicity Chemical shift (ppm) 

1' s 9.49 

3' dd (J = 3.9, 3.9 Hz) 6.98 

4' dd (J = 3.9, 3.9 Hz) 6.71 

3 - Not observed 

4 d (J = 7.6 Hz) 7.89 

5 t (J = 3.9, 2.0 Hz) 7.03 

6 t (J = 3.9, 2.0 Hz) 7.32 

OCH3 s 4.01 

NH broad s 10.55 

 

One signal (H-3) was not initially identified in the 
1
H NMR spectrum. 

Subsequently this signal was found in the HSQC spectrum at 7.02 ppm (see 

Section 3.5.3.2).The two pyrrole protons (H-3' and H-4') which were detected as 

doublets only in DMSO-d6 (see Fig. 3.8) were found to be doublets of doublets in 
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CDCl3 (see Fig. 3.70). The homonuclear decoupling of the N-H proton signal 

reduced these to doublets with J = 3.9 Hz (see Fig. 3.71). 

 

Fig. 3.70: Expansion of the 6.5-7.9 ppm region of the 
1
H NMR spectrum of 1 

in CDCl3. 
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Fig. 3.71: Expansion of the 6.5-7.9 ppm region of the homonuclear decoupled 

spectrum of 1 irradiating the N-H proton signal in CDCl3. 

 

Similarly the H-3' and H-4' signals of compound 4 which appeared as a 

doublets of doublets in CDCl3. They collapsed to doublets when N-H was 

irradiated (see Fig. 3.73). 
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Fig. 3.72: Expansion of the 6.5-7.9 ppm region of 
1
H NMR spectrum of 4 in 

CDCl3. 

 

Fig. 3.73: Expansion of the 6.5-7.9 ppm region of the homonuclear decoupled 

spectrum of 4 irradiating the N-H proton signal in CDCl3. 
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The effect of the N atom associated quadrupolar line broadening can also 

be seen in 
13

C NMR spectrum of compound. The carbon signal at 121.9 ppm is 

broadened in DMSO-d6 (Fig, 3.74) whereas the corresponding carbon signal at 

122.6 ppm is a sharp peak in CDCl3 (Fig. 3.75). 

 

Fig. 3.74: 
13

C NMR spectrum of 4 in DMSO-d6. 
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Fig. 3.75: 
13

C NMR spectrum of 4 in CDCl3. 

 

3.5.2. HSQC spectrum of 1 

The gradient edited HSQC spectrum of 1, in CDCl3, is presented in Fig. 

3.76. Correlations observed in the HSQC spectrum are listed in Table 3.21. 
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Fig. 3.76: HSCQ spectrum of 1 in CDCl3. 

 

Table 3.22: HSQC correlations determined for 1 ( in CDCl3) 

Proton 

(ppm) 

4.01 

(OCH3) 

6.71 

(H-4') 

6.98 

(H-3') 

7.02 

(H-3) 

7.03 

(H-5) 

7.30 

(H-4) 

7.70 

(H-6) 

9.49 

(H-1') 

Carbon 

(ppm) 

55.6 108.9 121.0 111.6 121.5 129.3 128.2 178.4 

 

3.5.3. HMBC spectrum of 1 

The gradient edited HMBC spectrum of 1, in CDCl3, is presented in Fig. 

3.77. HMBC correlation observed for 10 are listed in Table 3.22 and depicted in 

Fig. 3.78. 
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Fig. 3.77: HMBC spectrum of 1 in CDCl3. 

 

Table 3.23: 
n
J HMBC correlation observed for 1 ( ppm in CDCl3) 

Proton 4.01 

 (OCH3) 

6.71 

(H-2') 

6.98 

(H-3') 

7.02 

(H-3) 

Correlated carbon(s) 155.8 

(C-2) 

131.7 

(C-2') 

138.0 

(C-5') 

131.7 

(C-2') 

 

121.5 

(C-5) 

Proton 7.03 

(H-5) 

7.30 

(H-4) 

7.70 

(H-6) 

9.49 

(H-1') 

Correlated carbon(s) 111.6 

(C-3) 

119.1 

(C-1) 

 

128.2 

(C-6) 

155.8 

(C-2) 

129.3 

(C-4)  

138.0 

(C-5') 

155.8 

(C-2) 

131.7 

(C-2') 
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Fig. 3.78: HMBC correlations observed for 1 ( in ppm in CDCl3). 

 

3.5.4. HRMS of 1 

High Resolution Mass Spectrometry (HRMS) gave: calculated for 

C12H11NO2Na [M+Na]
+
: 224.0682; found: 224.0653 (Fig. 3.79) 

 

Fig. 3.79: HRMS of 1. 
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A complete assignment of the 
1
H and 

13
C signals of 1 in CDCl3 is 

presented in Table 3.23. HMBC correlations observed for 1 are depicted in Fig 

3.80. 

 

1 

 

Table 3.24: NMR signal assignments for 1 ( in ppm in CDCl3) 

Atom 
13

C 
1
H 

1' 178.4* 9.49 (s) 

2' 131.7* - 

3' 121.0* 6.98 (dd, J = 3.9, 3.9 Hz) 

4' 108.9* 6.71 (dd, J = 3.9, 3.9 Hz) 

5' 138.0* - 

1 119.1* - 

2 155.8* - 

3 111.6* 7.02* (m) 

4 129.3* 7.30 (td, J = 7.5, 1.2 Hz) 

5 121.5* 7.03 (td, J = 7.5, 1.2 Hz) 

6 128.2* 7.70 (dd, J = 7.8, 1.7 Hz) 

OCH3 55.6* 4.01 (s) 

NH - 10.55 (broad s) 

*Chemical shifts determined from 2D spectra. 
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3.5.5. Final purification of 1 for bioassay 

The four fractions containing 1 collected from the initial bulk separation 

were combined and further purified by preparative layer chromatography which 

yielded twelve fractions. The fractions were examined by GC-MS under the same 

condition as those utilised to determine the GC-MS characteristic of 1. The 7
th

 

fraction was found to contain only 1 at a retention time of 5.41 minutes (see Fig. 

3.80). The final yield of 1, a yellow solid, was 0.36 mg (0.00179 mmol, 0.2%). 

 

Fig. 3.80: Total ion chromatogram of the 7
th

 preparative layer 

chromatography fraction. 

 

3.5.6. Bioassay of 1 

Due to the earthquake in Christchurch on February 22, 2011, which 

destroyed Canterbury Universitie’s culture collection, the bioactivity of 1 against 

Staphylococcus aureus and other organisms could not be determined in New 

Zealand. Arrangements have now been made for  bioassays to be performed by 

the Institute for the Biotechnology of Infectious Diseases (IBID) at University of 

Technology Sydney. However results will not be available until after July 2011. 

Unfortunately this date is beyond the submission date of this thesis. 
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3.6. Summary 

1, which showed a weak positive correlation (R
2
 = 0.36) with non-

peroxide anti-bacterial activity,
45

 was isolated from 15 kg of New Zealand 

mānuka honey. 1 showed a strong response in UV absorption at 340 nm. Since 

there was no standards for 1, the concentration of 1 was estimated to be 

0.064mg/100g of honey
45

 based on the assumption that it showed a similar UV 

response to that determined for quercetin. However, the isolated sample of 1 was 

extremely small. This suggests that the actual concentration of 1 in honey could 

be much lower than that estimated above. 

 

Analogues of 1, such as benzyl 4-ethyl-2-formyl-5-(2-methoxyphenyl)-

1H-pyrrole-3-carboxylate (11) and methyl 4-ethyl-2-formyl-5-(2-methoxyphenyl) 

-1H-pyrrole-3-carboxylate (12) are known to be a tyrosine kinase inhibitors
79

 

whereas 5-(3,5-dibromo-2-methoxyphenyl)-1H-pyrrole-2-carboxaldehyde (13) 

and 5-[3-bromo-5-(ethylsulfonyl)-2-methoxyphenyl]-1H-pyrrole-2-

carboxaldehyde (14) are well established dopamine D3 receptor antagonist 

antipsychotic agents.
80

 

 

It can therefore be speculated that 1 might exhibit other types of 

bioactivity, in addition to antibacterial activity. 

 

 

 

 

11 12 
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13 14 
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Conclusions 

The flavonoid fraction of New Zealand mānuka honey (fraction 5) showed 

the presence of a complex series of peaks when examined by HPLC which 

showed the presence of several non-flavonoid compounds including 1 and the two 

predominant non-flavonoid components caffeic acid and p-coumaric acid. 1 

showed a weak positive correlation (R
2
 = 0.36) with non-peroxide anti-bacterial 

activity.
45

 

 

1 was isolated from fifteen kg of New Zealand mānuka honey and showed 

a very strong response in UV absorption. Since a standard specimen of 1 was not 

available the concentration of 1 was estimated to be 0.064mg/100g of honey
45

 

based on the assumption that it showed a similar UV response to that determined 

for quercetin. However, the NMR sample of 1 shows only weak signals. This 

suggests that the actual concentration of 1 in honey was much lower than that 

estimated above. 

 

Characterization of 1, isolated from the flavanoid fraction of New Zealand 

mānuka honey, was achieved by 
1
H and 

13
C NMR spectroscopy and GC-MS with 

standards. This data identified 1 as 2-formyl-5-(2-methoxyphenyl)-pyrrole. 

 

Synthesis of 6, an intermediate in the synthesis of 1, gave only an 

extremely low yield. Consequentially the decision was made to purchase 6. 

 

Synthesis of 9, an intermediate in the route to 1, gave a yield of 67.5% as 

pale yellow crystals after crystallization from CH2Cl2/hexane. 9 was characterised 

by 
1
H and 

13
C NMR spectroscopy and ESI-MS. 

 

Synthesis of 1 from 9 only resulted in barely traceable amounts of 1. The 

dominant product after recrystallization from CH2Cl2/hexane was 10, as pale 

orange crystals. This compound was characterised by 
1
H and 

13
C NMR 

spectroscopy and ESI-MS.  
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The synthesis of 1 was repeated. The product mixture was fractionated on 

a silica gel column, followed by two cycles of preparative layer chromatography 

applied to the fractions which contained 1 and yield 0.36 mg of 1 (0.00179 mmol, 

0.2%). The identify of 1 was established by 
1
H NMR, and its molecular formula 

was confirmed by ESI-MS. The identical nature of the synthetic 1 with the 

specimen isolated from mānuka honey was confirmed by comparative GC-MS 

analysis. 

  



 

108 

 

Suggestions for further work 

Arrangements are in place for the bioassay of 1 to be performed as soon as 

possible. If 1 is found to be significantly bioactive a new synthesis route for 1 is 

required in order to define  the relationship with the non-peroxide antibacterial 

activity in mānuka honeys since the isolation of 1 from honey and its production 

via the current synthetic route is not feasible. A study to determine the 

biosynthetic origin of 1 is recommended.  

 

The process of extracting and isolating flavonoids from 15 kg of mānuka 

honey has yielded several fractions which are rich in phenolic acid and flavonoids. 

In this study, two phenolic acids were isolated and identified. Future research 

should isolate and characterise the unknown phenolic acids and flavonoids from 

these fractions. 
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Appendix 

6.1:
 1

H NMR spectrum of the peak eluting between 22.5 – 24.0 

minutes of flavonoid fraction of New Zealand mānuka 

honey (fraction 5) 
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6.2: 
1
H NMR spectrum of caffeic acid 
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6.3: 
1
H NMR spectrum of the peak eluting between 26.1 – 26.9 

minutes of flavonoid fraction of New Zealand mānuka 

honey (fraction 5) 
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6.4: 
1
H NMR spectrum of p-coumaric acid 
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6.5: Raw data of the intensity of 
n
J correlations exhibited by 

H-6 of 3 (7.92 ppm) versus mixing time (msec)  

 
35 (msec) 50 (msec) 65 (msec) 80 (msec) 

peak 1 2.2350E+27 8.6989E+27 3.7116E+27 9.7122E+26 

peak 2 2.0234E+27 1.5638E+28 8.0909E+27 3.6309E+27 

peak 3 3.8246E+27 2.9056E+28 1.3937E+28 6.7328E+27 

peak 4 8.6380E+24 3.5096E+25 2.6927E+25 2.1773E+25 

peak 5 1.4947E+22 1.3342E+25 5.1310E+25 1.5754E+25 

 
100 (msec) 120 (msec) 160 (msec) 200 (msec) 

peak 1 9.5517E+25 3.0926E+27 4.9671E+26 1.3428E+25 

peak 2 4.5803E+26 1.1265E+26 1.2285E+27 4.7439E+26 

peak 3 1.8516E+27 1.4630E+26 3.7228E+26 2.3900E+27 

peak 4 2.3254E+26 9.6718E+25 2.5525E+25 4.7116E+25 

peak 5 3.4497E+25 2.5862E+26 1.4772E+26 9.4933E+25 

(peak 1: C-1, 121.9 ppm (
2
J); peak 2: C-3 124.4 ppm (

4
J); peak 3: C-4- 131.1 ppm 

(
3
J); peak 4: C-2, 147.4 ppm (

3
J); peak 5: C-5', 153.3 ppm (

3
J).) 

 

6.6: Raw data of the selected ion chromatogram of the crude 

product mixture  

m/z Abundance Ratio 

130.00 37 1.00 

158.00 50 1.35 

201.00 123 3.32 

 

6.7: Raw data of the selected ion chromatogram of an isolated 

specimen of 1  

m/z Abundance Ratio 

130.00 569 1.00 

158.00 723 1.27 

201.00 1878 3.30 
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