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Abstract 

Plane-strain fracture toughness ( IcK ) of random short hemp fibre reinforced polylactide 

(PLA) bio-composites was investigated along with the effect of loading rate, fibre 

treatment and PLA crystallinity. Fracture toughness testing was carried out at loading 

rates varying from 0.5  to 20 mm/min using single-edge-notched bending specimens 

with 0 to 30 wt% fibre. QK  (trial IcK ) of composites decreased as loading rate 

increased, until stabilising to give IcK  values at a loading rate of 10 mm/min and 

higher. The reduction of crazing and stress whitening, as well as a more direct crack 

path observed in PLA samples combined with reduced plastic deformation observed in 

composites provided explanation for this reduction. IcK  of composites was found to 

decrease with increased fibre content and fibre treatment with sodium hydroxide. 

Studies controlling the degree of PLA crystallinity by heat treatment or “annealing” 

showed that reduction of IcK  can be attributed to increased crystallinity.  

 

http://ees.elsevier.com/compositesa/viewRCResults.aspx?pdf=1&docID=5720&rev=1&fileID=126646&msid={23BC3432-BF0D-4A3C-9D96-669C4292F11C}
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1. Introduction 

In recent years, bio-based composite materials have been the focus of academic and 

industrial research interest from the viewpoint of reducing impact on the natural 

environment [1]. Polylactide (PLA) is considered one of the most promising renewable 

resource based biopolymer matrices. This is because the physical and mechanical 

properties of PLA make it a good alternative to currently used commodity polymers 

such as  polypropylene and poly(ethylene terepthlate) and it is readily fabricated to 

produce injection moulded parts, film, or fibres [2, 3].  

 

For structural application, there is a need to better understand and describe the fracture 

behaviour of PLA. Fracture toughness of a given material is a function of testing speed 

and temperature [4] and so assessment of rate dependent fracture mechanisms is 

important for the designer in understanding mechanical performance of composites [5]. 

Reduction of fracture toughness with increased testing rate has been observed for 

polymers including PLA [5-7] and has been associated with the reduction of crazing and 

plastic blunting at the crack tip for higher loading rates corresponding to the reduction 

of energy dissipation. Although many research works have reported the influence of 

loading rate on fracture toughness of synthetic fibre reinforced composites [6-9], the 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 3 

vast majority of these are based on continuous fibre composites, although increasingly 

brittle behaviour has been reported with short glass fibres at higher loading rates. 

Interfacial strength and mechanical properties such as tensile, flexural, impact, creep 

and fatigue of natural fibre reinforced bio-composites have been reported by other 

researchers [10-14]. However, there is no literature on the effects of loading rate on 

fracture toughness of short natural fibre reinforced bio-composites, which have high 

potential in load bearing engineering applications.  

 

When natural fibres are used as a reinforcing material in semicrystalline polymer 

matrices such as PLA, they can act as nucleating sites for crystal growth and commonly 

a transcrystalline layer grows from the crystalline cellulose surfaces [1, 15, 16] which is 

likely to influence fracture. Previous studies [17, 18] demonstrated that reinforcing 

hemp fibre increases the tensile strength, Young’s modulus, impact strength and 

flexural modulus of PLA bio-composites which is a good indication of compatibility of 

hemp fibre with PLA. The objective of this work was to investigate fracture toughness 

of random short hemp fibre reinforced PLA bio-composites over a range of loading 

rates, fibre contents, and different levels of matrix crystallinity along with the effect of 

fibre treatment to elucidate important factors influencing this parameter.  

2. Experimental 

2.1. Materials  

NatureWorks
®
 PLA (polylactide) polymer 4042D, from NatureWorks LLC, USA, was 

used as a matrix. This was provided in a pellet form with a density of 1.25 g/cc. Retted 

hemp bast fibre was supplied by Hemcore, UK. The average length and diameter of the 

fibre were 65mm and 31.5μm, respectively. 
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2.2. Fibre Treatment  

Fibres were washed with hot water (50
o
C) to remove dirt and impurities, dried and then 

soaked in 5 wt% sodium hydroxide (NaOH) solution at ambient temperature, 

maintaining a fibre:solution ratio of 20:1 (by weight). The fibres were immersed in the 

solution for 30 min. After treatment, fibres were copiously washed with water and 

subsequently neutralised with 1 wt% acetic acid solution. The treated fibres were then 

dried in an oven at 80
o
C for 48 h. The average diameter of the fibres was decreased to 

25.8μm after treatment due to the removal of external impurities (e.g. wax).  

2.3. Cellulose crystallinity index 

Approximately 15 mg of fibres were cut and pressed into a disk using a cylindrical steel 

mould with an applied pressure of 10 MPa in laboratory hydraulic press. Cellulose 

crystallinity index ( XRDI ) was calculated by means of the Segal equation as follows [19, 

20]: 

100*(%)
002

002

I

II
I

amp

XRD


  

(1) 

where 002I  is the maximum intensity of the 002 lattice diffraction plane at an angle 2θ 

of between 22
o
 and 23

o
 (22

o
 ≤ 2θ ≤ 23

o
) and ampI  is the intensity diffraction at an angle 

2θ close to 18
o
 representing amorphous materials in cellulosic fibres.  

2.4. Interfacial strength measurement 

For pull-out specimen preparation, a hole of 6 mm diameter was made in a silicone 

rubber mould (18mm x 24mm x 3 mm) positioned relatively central and near to one of 

the two longest sides using a punch (see Fig. 1). A slot was cut to a depth of 2.5 mm to 

give a channel from the outer wall of the mould to the punched hole. The mould was 

flexed to open the cut to allow the introduction of a fibre and then released to grip the 
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fibre. The desired embedded length was obtained by drawing the fibre through the cut 

under optical light microscope. Fibre diameters were measured using an optical 

microscope with a calibrated eye-piece. Then the mould was placed on a piece of 

polytetrafluoroethylene (PTFE) sheet on a glass plate, and two small pieces from a PLA 

pellet were placed into the mould cavity. This was then placed in a pre-heated oven 

(180
o
C) for 5 min and then allowed to cool in air at room temperature. Samples were 

prepared with a range of embedded lengths from 0.25 mm to 2 mm with a free-fibre 

length of approximately 5 mm. The free-fibre end was glued to a piece of cardboard. 

Pull-out testing was performed on an Instron 4204 Universal Testing machine. The 

sample was gripped at the upper cross-head and the paper cardboard was gripped by the 

stationary bottom part. The force was measured with an accuracy of ± 0.1 mN. 

Interfacial strength (τpo) was calculated using the following equation [10, 21]: 

e

po
dl

F


 max  

(2) 

where Fmax is the maximum load, d is the fibre diameter and  le is the embedded length. 

2.5. Single Fibre Testing 

Single fibre tensile strength of hemp fibres was measured according to the ASTM 

D3379-75 Standard Test Method for Tensile Strength and Young’s Modulus for High-

Modulus Single Filament Materials [22]. Specimens were prepared by separating fibre 

bundles by hand, and then attaching single fibres to cardboard mounting-cards using 

polyvinyl acetate glue with 10 mm holes punched into them to give a gauge length of 10 

mm. The mounted fibres were then placed in the grips of an Instron 4204 tensile testing 

machine, and a hot-wire cutter was used to cut the supporting sides of the mounting 

cards. 

2.6. Composite Processing  
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Hemp fibres (average length 4.9 mm) were initially washed with hot water and the fibre 

and PLA were dried in an oven at 80
o
C overnight. PLA/hemp fibre composites were 

compounded (10, 15, 20 and 30 wt% fibre) in a ThermoPrism TSE-16-TC twin screw 

extruder. The extruder barrel consisted of 5 heating zones, which were set at 110
o
C, 

130
o
C, 180

o
C, 190

o
C, and 185

o
C from feed zone to die exit. The screw diameter was 

15.6mm and the co-rotating screws were operated at 100 rpm. The extruded composite 

material was pelletised and dried at 80
o
C for 24 h and then injection moulded using a 

BOY15-S injection moulding machine. The feeding, compression and metering sections 

of the injection moulding machine were set at 155
 o
C, 180

 o
C and 190

o
C, respectively. 

The injection screw speed was set at 160 rpm. Fibre length distribution and fibre 

diameter of the composites are available elsewhere [23].  

2.7. Composite Annealing 

Alkali treated fibre composite samples were heat treated or “annealed” at 70°C and 

100°C (above glass transition temperature of PLA (i.e. 57.8
o
C)) for 3, 8 and 24 h in an 

oven.  

2.8. Differential scanning calorimetry (DSC) 

DSC scans were carried out at a scan rate of 10
o
C/min from room temperature to 200

o
C 

in the presence of air using samples of approximately 10 mg to assess the influence of 

fibre content and fibre treatment on the crystallinity of PLA. The crystallinity (XDSC) of 

PLA was calculated using the following equation [16]: 

 
wH

HH
X

o

f

ccf

DSC

100
% 






 

(3) 

where ΔH
o
f = 93 J/g for 100% crystalline PLA, ΔHf is the enthalpy of melting, ΔHcc is 

the cold crystallisation enthalpy and w is the weight fraction of PLA in the composite. 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 7 

2.9. Fracture toughness testing 

Fracture toughness testing was carried out using single-edge-notched bend (SENB) 

specimens according to the ASTM D 5045-99 Standard Test Methods for Plane-Strain 

Fracture Toughness and Strain Energy Release Rate of Plastic Materials. The length (L), 

span length (S), width (W) and thickness (B) of the specimens were 126, 56, 12.7 (± 

0.03) and 3.5 (± 0.03) mm respectively, which satisfies the condition 2B<W<4B as 

specified in the standard. The initial crack length )(a was 6.35 mm (± 0.005). The 

loading speed was varied from 0.5 mm/min to 20 mm/min and the notch root of the 

specimens was sharpened using a razor blade before testing. Four replicate specimens 

were tested. Mode I plane-strain fracture toughness ( IcK ) of single-edge-notch-bending 

(SENB) specimens was calculated with the following relationships [4]: 

)(
2/1

xf
BW

P
K

Q

Q 









  

 

(4) 

where QK , QP , B  and W  are trial IcK , maximum load, specimen thickness and width, 

respectively, 

and  
   
   2/3

2
2/1

121

7.293.315.2199.1
6

xx

xxxx
xxf




  

 

(5) 

such that x = ,/Wa  where a  is the initial crack length. In order for QK  to be considered 

the plane-strain fracture toughness, ,IcK the following size criterion must be satisfied: 

   2/5.2,, tQKaWaB   (6) 

where t  is the tensile strength obtained from tensile testing performed based on 

ASTM D 638 Test Method for Tensile Properties of Plastics [24] with loading rate and 
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temperature the same as for fracture toughness testing. Four samples were tested for 

each batch of samples. 

2.10. Light microscopy  

To allow for visual inspection of crystallinity, single fibre samples were prepared by 

embedding a hemp fibre in molten PLA between two slides and squeezing the slides 

together. Then the sample was allowed to cool down to room temperature to allow 

solidification of the PLA then inspected. Fracture surfaces were also inspected using an 

Olympus BX60F5 optical light microscope and a WILD M3B stereo microscope.  

Micrographs were obtained using a Nikon camera (Digital Sight DS-U1). 

3. Results and Discussion 

3.1 Effect of Fibre Treatment on Single Fibre Properties and Interfacial Shear Strength 

Crystallinity index of fibres was found to increase compared with untreated fibres 

(91.6% compared with 87.9%). This is likely to be due to removal of amorphous 

components allowing better alignment of cellulose chains as observed elsewhere [25]. 

This correlated with an increase in average fibre tensile strength (from 577 to 598 MPa), 

although this increase was found to not be statistically significant. Interfacial shear 

strength (IFSS) of the PLA/hemp fibre samples as a function of fibre embedded length 

is depicted in Fig. 2. The non-linear relationship between these two parameters is 

indicative of a brittle-like interface fracture as reported in the literature [26] such that 

catastrophic failure occurs once a critical crack length is achieved. Average interfacial 

shear strengths increased from 5.55 MPa for untreated fibre to 11.41 MPa for alkali 

treated fibres, which is likely to be due to the removal of non-cellulosic material 

allowing stronger bonding between PLA and cellulose at the interface.  

3.2. Effect of Fibre Content and Fibre Treatment on PLA Crystallinity 
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PLA crystallinity in composites was found to increase with fibre content, which is in 

agreement with findings in the literature [16], as well as with fibre treatment as shown 

in Fig. 3, suggesting that the fibre acts as a nucleating agent which is more effective 

when more crystalline cellulose is exposed. Fig. 4 shows a single untreated fibre 

composite sample exhibiting crystallinity including spherulites in the PLA as well as 

transcrystallinity at the fibre/matrix interface further supporting that the fibre acts as a 

nucleating agent. The amount of transcrystallinity was observed to increase with fibre 

treatment (see Fig. 5). 

3.3. Fracture Toughness Testing 

 Load-displacement behaviour 

Typical load-displacement graphs for PLA and composites under various loading rates 

are depicted in Fig. 6. It may be observed that these showed initially linear deformation, 

followed by an amount of non-linear deformation prior to the attainment of maximum 

load. Once the maximum load was attained, the recorded load diminished gradually 

which was most probably a result of cracking along with limited plastic deformation. It 

can be easily seen that the curves became steeper with increased fibre content. This 

behaviour was expected because the Young’s modulus of the hemp fibre is superior to 

that of PLA. It is also evident that the area under the curves decreased with increased 

loading rate. This observation is attributed to decreased plastic deformation at higher 

loading rates.  

 

As can be seen clearly in Fig. 7, if a line (AC) is drawn with a gradient of 5% less than 

that of the tangent (AB) to the original loading line, the recorded maximum load ( maxP ), 

lies between these two lines, which thus meets the requirement of the standard [4] for 
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allowance of maxP to be used as QP  for the calculations of QK  (see Eq. 4). This form of 

load-displacement behaviour was observed for all the samples tested. 

Effect of loading rate and fibre content 

The tensile strength of PLA and composites for two different loading rates is 

summarised in Table 1. The tensile strength was found to increase with fibre content 

and was higher at higher testing speeds which would be expected due to less time for 

thermal fluctuations within the material to assist with molecular flow. Further details of 

tensile properties including stress-strain curves and Young’s modulus are given 

elsewhere [17]. Fig. 8 illustrates QK  of PLA and composites as a function of loading 

rate. It can be seen that QK  for all fibre contents decreased with increased loading rate 

up to 10mm/min above which it stabilised at a constant value. It was found (using Eq. 

6) that at a loading rate of 5 mm/min, QK  of the matrix and composites did not satisfy 

plane strain conditions. On the other hand, QK  at a loading speed of 10 mm/min was 

found to fulfil the required criteria given in Eq. 6 and therefore be equivalent to IcK . 

Since the magnitude of QK  from 10 mm/min to higher loading rates was approximately 

constant, and given the general expectation of increased yield strength with increased 

loading rate, it is likely that the criterion of Eq. 6 was also met for the higher loading 

rates above 10 mm/min.   

 

Also from Fig. 8, it is evident that QK  of the PLA/hemp composites decreased with 

increased fibre content. One possible influence is the stress concentration due to the 

presence of fibres. However, research elsewhere on PLA [27], has shown the reduction 

of fracture toughness with increased crystallinity which could be a factor here. Fig. 9 
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presents DSC traces from which PLA crystallinity values were calculated (as well as 

depicting the glass transition point and cold crystallisation and melting peaks) and Fig. 

10 shows the relationship of composite IcK  and PLA crystallinity obtained at different 

fibre contents, which demonstrates a convincing trend of decreasing IcK  with increased 

crystallinity. 

Fractography of PLA and composites 

Light micrographs of cracks (side view) of the PLA samples tested under different 

loading rates are shown in Fig. 11. As can be seen, extensive crazing was generated in 

the crack-tip region for samples tested at lower loading rates (1 and 5 mm/min), but not 

so apparent at higher loading rates (including 10 mm/min).  

 

Typical fracture surfaces of PLA investigated for a range of loading rates are presented 

in Fig. 12. The fracture surfaces showed two distinct zones, namely a smooth zone 

suggesting brittle-like fracture next to the initial starter notch and a stress-whitened zone 

associated with crazing. A reduction in the stress-whitened region and increase in size 

of the smooth brittle-like region further supported that at higher loading rates crack 

propagation involved less crazing leading to lower QK  values.  

  

Typical crack paths of PLA/hemp composites (side view) tested at 5 mm/min and 

10mm/min are presented in Figs. 13 and 14, respectively. As can be seen, cracks were 

initiated from the tip of the pre-existing crack, but did not propagate directly across the 

sample and appear to have been influenced by the presence of fibres such that increased 

fibre volume fraction resulted in a more irregular crack path. Within the composites 

tested at 5 mm/min (Fig. 13), evidence of localised matrix tearing is present suggesting 
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limited plastic deformation. A closer examination of the crack propagation path 

indicates that the two fracture surfaces were not completely separated, but rather 

connected by the deformed matrix. This behaviour was commonly observed for all the 

samples at lower loading rates, irrespective of the amount of fibre content. There was a 

significant reduction in the plastic flow and/or matrix tearing when the samples were 

tested at 10 mm/min (Fig. 14) which could explain the reduction of QK  at higher 

loading rates. In contrast to lower loading rates, the two fracture surfaces were 

completely separated ahead of the starter crack.  

Effect of Fibre Treatment 

Fig. 15 presents a comparison of IcK  values obtained at a rate of 10mm/min for 

untreated and treated fibre composites at different fibre contents. These composites 

were made from a more recently procured batch of fibre than earlier experiments, which 

explains the slight differences for untreated fibres values compared to those in Fig. 8. 

IcK  values for treated fibre composites followed the same trend of reduction with 

increased fibre content as for untreated fibre composites, but were lower. This could 

have been due to improved interfacial bonding leading to easier crack propagation, 

although it has been seen that crystallinity increases with fibre treatment and again as 

for increased fibre content could be playing a role in reduced IcK . 

Effect of annealing on PLA Crystallinity 

Fig. 16 shows the effect of heat treating or “annealing” treated fibre composites for 

different times at different temperatures on PLA crystallinity conducted in order to 

isolate its effect on IcK . The crystallinity for the control PLA samples was around 3%. 

This increased slightly with the presence of fibre. Only limited increase in crystallinity 

was observed for 3 h at 70°C. On increased duration of annealing at 70°C, PLA only 
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samples were relatively unaffected whereas composites were seen to undergo a 

significant increase in crystallinity, supporting that hemp fibre acts as a nucleating 

agent. Further increases were seen when annealing at 100°C for 24 h (close to the cold 

crystallinity peak temperature for PLA) was carried out, where crystallinity reached up 

to approximately 35% for PLA and up to 51% for composites of 15 wt% fibre. The 

effect of crystallinity on IcK  is presented in Fig. 17. The trend lines show a reduction of 

IcK
 
for PLA and composites as crystallinity increased, although there is not a clear 

trend between the two different fibre contents.  

4. Conclusions 

In this work, QK  of random short hemp fibre reinforced PLA bio-composites was found 

to decrease with increased loading rate until plane strain conditions were met at 

10mm/min and above. IcK  was found to decrease with increased fibre content and fibre 

treatment coinciding with an increase in crystallinity. Heat treatments conducted to 

isolate the effect of crystallinity showed that IcK  is reduced by increased crystallinity, 

suggesting that transcrystallinity within the composites is having a large influence on 

the fracture behaviour of composites and may serve as an easy path for crack 

propagation. However, increased stress concentration with increased fibre content and 

increased interfacial strength with treatment may also be contributing to reduction of 

IcK  for composites. It is concluded that it is possible to improve fracture toughness of 

this type of composite by controlling crystallinity during composite production. 
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Figure Captions 

Fig. 1. Specimen preparation schematic for pull-out testing. 

Fig. 2. Interfacial shear strength (IFSS) versus embedded length for untreated and alkali 

treated fibre in PLA. 

Fig. 3. PLA crystallinity versus fibre content for untreated and alkali treated fibre 

composites at different fibre contents. 

Fig. 4. Light micrograph of PLA crystallinity in PLA/hemp single fibre composite 

(scale bar = 100 μm). 

Fig. 5. Light micrographs showing transcrystalline layer of PLA with (a) untreated and 

(b) treated hemp fibre surfaces (scale bar = 50 μm). 

Fig. 6. Typical load-displacement curves of PLA and composites (PLA/untreated fibre) 

at (a) 5 mm/min, and (b) 10 mm/min. 

Fig. 7. Measurement method of QP  from a load-displacement curve. 

Fig. 8. QK  as a function of loading rate at different fibre contents. 

Fig. 9. DSC traces for PLA and composites. 

Fig. 10. Relationship between IcK  and crystallinity for PLA and composites of different 

fibre contents. 

Fig. 11. Light micrographs (side view) of crazing formed in PLA during fracture 

toughness testing at different loading rates (scale bar = 500μm). 

Fig. 12. Light micrographs of PLA fracture surfaces tested at loading rates of: (a) 1 

mm/min, (b) 5 mm/min, and (c) 10 mm/min. 

Fig. 13. Light micrographs showing fracture behaviour of PLA/hemp composites (side 

view) tested at a loading speed of 5 mm/min at: (a) low magnification and (b) high 

magnification as  a function of fibre content. 
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Fig. 14. Light micrographs showing fracture behaviour of PLA/hemp composites (side 

view) tested at a loading speed of 10 mm/min at: (a) low magnification and (b) at high 

magnification as a function of fibre content. 

Fig. 15. IcK  versus fibre content comparing untreated and alkali treated fibre 

composites. 

Fig. 16. PLA crystallinity for different annealing treatments 

Fig. 17. IcK  versus crystallinity isolated from fibre content for alkali treated fibre 

composites 
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Table 1 

Tensile strength of PLA and composites at two different testing speeds and different fibre 

contents. 

 

Test speed 

(mm/min) 

Fibre content  

(wt%) 

Tensile strength, σt  (MPa) 

5 0 50.7 (± 1.21) 

 10 52.4 (± 1.17) 

 20 59.8 (± 1.97) 

 30 65.9 (± 1.10) 
   

10 0 53.9 (± 1.15) 

 10 55.7 (± 1.23) 

 20 60.4 (± 1.19) 

 30 67.2 (± 1.42) 

 

 




