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Abstract

Classification learning is a type of supervised machine learning technique that uses a

classification model (e.g. decision tree) to predict unknown class labels for previously

unseen instances. In many applications it canbe very useful to additionally obtain class

probabilities for the different class labels. Decision trees that yield these probabilities

are also called probability estimation trees(PETs). Smoothing is a technique used to

improve the probability estimates. There are several existing smoothing methods, such

as the Laplace correction (Provost & Domingos, 2003), M-Estimate smoothing (Dzeroski,

Cestnik & Petrovski, 1993) and M-Branch smoothing (Ferri, Flach & Hernández-Orallo,

2003). Smoothing does not just apply to PETs. In the field of text compression, PPM

(Cleary & Witten, 1984) in particular, smoothing methods play a important role. This

thesis migrates smoothing methods from text compression to PETs. The newly migrated

methods in PETs are compared with the best of the existing smoothing methods considered

in this thesis under different experiment setups. Unpruned, pruned and bagged tree are

considered in the experiments. The main finding is that the PPM-based methods yield the

best probability estimates when used with bagged trees, but not when used with individual

(pruned or unpruned) trees.
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Chapter 1

Introduction

Consider the following definition of machine learning, as given by Arthur Samuel (Samuel,

1959):

Machine learning is the field of study that gives computers the ability to learn

without being explicitly programmed.

In machine learning, there are many ways to achieve the goal, such as regression,

classification and clustering. This thesis investigates a learning technique called prob-

ability estimation tree learning. It evaluates how well smoothing methods used in text

compression work in probability estimation trees. Can smoothing methods from text

compression be used to improve the accuracy of the probability estimates provided by

probability estimation trees?

Probability estimation is important in cost-sensitive classification. In practical

classification tasks, there are errors in predictions made by the learner. Some errors have

a higher cost than others, and it is best to minimize the cost of errors when making

predictions. Information on miss-classification costs can be used to build cost-sensitive

models or make cost sensitive predictions by minimizing the expected cost (Witten &

Frank, 2005). Class probabilities can be used to perform cost-sensitive predictions, but

accurate probability estimates are needed to yield good performance.

The remainder of this chapter is structured as follows. Section 1.1 outlines the ba-

sic concepts. Section 1.2 discusses the ideas necessary for understanding probability

estimation trees. Section 1.2.1 covers the basics about smoothing. Section 1.3 introduces

the motivation and objectives of this thesis. Section 1.4 lists the structure of the rest of

this thesis.

1



1.1 Basic machine learning concepts

As discussed above, machine learning is a set of techniques that discovers and extracts

patterns from data. The process will involve the input data, and the output. The input

involves datasets, attributes and instances. Tables 1.1 and 1.2 each show a small part of

a dataset. The rows of the table are instances, and each row represents a single instance

in the dataset. The columns are attributes: sepal length, sepal width, petal length, petal

width and flower type are the attributes in the iris dataset.

The learning process, is a potentially complex process that can involves various

techniques such as classification, regression, clustering and association. Classification

learning takes a dataset, which has instances with class labels, to build a model based on

this data. Then it applies the model to data that does not have any class label to predict

the class value. In contrast, clustering divides the data into several natural groups instead

of labeling each instance with a class value based on labeled training data. Regression is

similar to classification, but it uses numeric values as class labels. Association learning is

the technique that finds all kinds of relationships between instances, and does not just

predicting the class values.

1.2 Probability estimation trees

A probability estimation tree (PET) is a model used in classification learning. It is built

using a dataset with class values, and used to predict class probabilities for previously

unseen data without class values.

PETs are usually constructed using a top-down fashion. One of the attributes will

be selected to define the split at the root node. The way to choose which attribute to split

on is to measure the purity of the child nodes after the split. The most common measure-

ment of impurity is called information (Quinlan, 1986) or entropy (Witten & Frank, 2005).

Figure 1.1 shows a PET induced for the iris data. As mentioned above, table 1.2

shows an excerpt of this data. The last column is the class attribute. The 5 attributes

in total: sepal length, sepal width, petal length, petal width and class values. The tree

predicts probabilities for the class values given the other attributes. In this case only two

of the attributes are used in the tree.

2



Sepal length Sepal width Petal length Petal width Flower type

6.0 2.9 4.5 1.5 Unknown

Table 1.1: The iris data

1: petallength

2 : Iris-setosa (1,0,0)

 < 2.5

3: petalwidth

 >= 2.5

4 : Iris-versicolor (0,0.907,0.093)

 < 1.75

5 : Iris-virginica (0,0.022,0.978)

 >= 1.75

Figure 1.1: A PET built with Iris data

The tree can be used to read off probability estimates for new test cases. For ex-

ample assume we are predicting an iris flower with attribute values shown in Table 1.1:

Prediction starts at the root of tree, where the splitting attribute is petal length. The

petal length of the iris is greater than 2.5, so we go to the right branch. The second split

attribute is petal width, and petal width of the iris is less than 1.75, so we follow the

left branch. Then we do not have any further splits, so we can conclude this iris is of

type versicolor, and the predicted probability is 0.907. The estimated probabilities for

the other classes are: Iris-setosa 0, Iris-virginica 0.093.

1.2.1 Smoothing

Smoothing is a technique widely used in the field of machine learning to compensate for

data sparseness. Lack of data can lead to highly variable estimates. Smoothing provides

a way to make estimates more robust. Smoothing is used in other fields too, such as

text compression. The text compression method PPM (Prediction by Partial Matching)

and its variants (PPMD, PPMP and etc.) are widely used in everyday application. In

(Bell, Cleary & Witten, 1990), three smoothing methods that are generally used in PPM

are introduced. This thesis empirically investigates the performance of these smoothing

methods when used in PETs. Without smoothing, probability estimates at the leaf

3



Sepal length Sepal width Petal length Petal width Flower type

1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
. . .
51 7.0 3.2 4.7 1.4 Iris-versicolor
52 6.4 3.2 4.5 1.5 Iris-versicolor
53 6.9 3.1 4.9 1.5 Iris-versicolor
54 5.5 2.3 4.0 1.3 Iris-versicolor
55 6.5 2.8 4.6 1.5 Iris-versicolor
. . .
101 6.3 3.3 6.0 2.5 Iris-virginica
102 5.8 2.7 5.1 1.9 Iris-virginica
103 7.1 3.0 5.9 2.1 Iris-virginica
104 6.3 2.9 5.6 1.8 Iris-virginica
105 6.5 3.0 5.8 2.2 Iris-virginica
. . .

Table 1.2: The iris data

nodes are based simply on observed relative frequencies of class values at the leaf nodes.

Smoothing adjusts these estimates to make them more robust.

Let us consider the effect of smoothing using a so-called ROC curve (Green &

Swets, 1966). Probability estimation methods are often evaluated using ROC curves,

which will be discussed in more detail in the next chapter. The larger the area under the

ROC curve, which plots true positive predictions against false positive ones, the better

the probability estimation method being evaluated. ROC curves are only defined for

2-class problems, where one class is considered negative and the other positive. The area

under curve gives the probability that a randomly chosen positive instance receives a

higher positive class probability than a randomly chosen negative one.

The plots in Figures 1.2 were generated using the same dataset and the same clas-

sifier. The only difference between them is that the red curve is based on no smoothing

at all, and the blue curve is based on a technique called M-Branch smoothing discussed

later in this thesis. As we can see, the area under the ROC curves is different. Ideally

the area in one, which means all positive instances are ranked above all negative ones.

Smoothing increases the area under the curve, which is the desired results.

4



Figure 1.2: ROC curve with and without smoothing

1.2.2 Cost sensitive classification

Cost sensitive classification is a technique used to minimize the cost of the errors made by

classifiers. For example the Weka machine learning workbench (Witten & Frank, 2005)

assumes that the errors have the same cost by default, but if a cost matrix is given, it can

use this information to pick predictions that minimize the expected cost. In that case,

the probability estimates of the classifier are used to calculated the expected cost for each

prediction, and the one that minimizes the expected cost is chosen as the final prediction.

Cost-sensitive prediction, as opposed to coast-sensitive learning, has the advantage that

costs can be varied at prediction time without changing the classifier. However, accurate

probability estimates are required for this.

For example, we are trying to classify a patient as having meningitis or not having

meningitis, where the estimated probability from the classifier is 0.9 that the patient does

not have meningitis. Without any cost on the estimated outcomes, we would classify the

patient as “no meningitis” case. However, this is different if the outcomes have costs. If

the cost of misclassifying a true meningitis case (false negative) is 100 times higher than

the cost of a false positive. The predicted outcome should have the minimum expected

cost rather than just the most likely value, which means in this particular case, we classify
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the patient as potentially having meningitis and keep him/her under observation, perhaps

performing further medical tests.

1.3 Motivation and Objectives

It is well-known that smoothing techniques can improve the accuracy of class probability

estimation. The most basic smoothing method is the so-called Laplace correction (Provost

& Domingos, 2003) and it is also implemented in the well-known Weka software. However,

there are other more advanced smoothing methods that are not implemented in Weka,

such as M-Branch smoothing (Ferri, Flach & Hernández-Orallo, 2003). In the field of text

compression, there are also some smoothing techniques, and it has not been investigated

how well these text compression smoothing methods perform in tree learners. In order

to compare smoothing techniques for PETs in Weka, the objectives of this thesis are as

follows:

1. Implement the smoothing methods introduced in (Ferri, Flach & Hernández-Orallo,

2003) as a state-of-the-art baseline to compare against.

2. Implement the PPM smoothing methods introduced in (Bell, Cleary &Witten, 1990)

3. Run experiments on the different smoothing method implemented

4. Summarize the experiment results and draw conclusions regarding relative perfor-

mance.

1.4 Thesis Structure

Chapter 2 will present some background on important concept used in this thesis, such

as class probability estimation trees, how to evaluate class probability estimates, and

how to blend and adjust probability estimates. In this chapter, the datasets used in the

experiments are also introduced and discussed. The data-mining tool Weka will be briefly

introduced in this chapter too.

Chapter 3 will describe the different smoothing methods considered in this thesis

in depth. Eight kinds of smoothing method will be considered in this chapter: Laplace

correction, M-Branch smoothing (Ferri, Flach & Hernández-Orallo, 2003) and M-Estimate

smoothing (Dzeroski, Cestnik & Petrovski, 1993), and 5 PPM methods: PPMA, PPMB,

PPMC, PPMD and PPMP. Note that there are more PPM-related smoothing methods,
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but they are beyond the scope of this thesis. Chapter 3 will discuss the code implemented

into one of the tree learners in Weka. The effect on probability estimates will be discussed

along with the pseudo code.

The experimental results will be presented in Chapter 4 in tabular and graphical

form.

Chapter 5 will summarize the previous chapters, draw conclusions and describe

potential future work.
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Chapter 2

Background and Related work

This chapter discusses background knowledge relevant for this thesis: the basic method

for building a class probability estimation tree using information gain and the Laplace

correction, building ensemble of trees using bagging, the PPM text compression method,

and the datasets and evaluation measures used to evaluate probability estimations in this

thesis.

This chapter has the following structure. Section 2.1 introduce the tree learner

used in this thesis. Section 2.2 explains the bagging method for ensemble learning.

Section 2.3 describes smoothing in PPM text compression. Section 2.4 discusses the

datasets used. 2.5 lists and explains different analysis and evaluation techniques.

2.1 Learning Tree Classifiers

The coding done for this thesis was based on Weka (Witten & Frank, 2005). Weka is a

collection of state-of-the-art machine learning algorithms and data preprocessing tools.

The tree learner used to test and experiment with in this thesis is called REPTree. It

is a fast tree learner that uses information gain to find split points and attributes. It is

fast because it sorts values for numeric attributes only once. Another reason REPTree

is used in this thesis is that it is similar to the tree learner described in the paper by

Ferri, C., Flach, P., and Hernández-Orallo, J. (2003), which describes the state-of-the-art

M-Branch smoothing technique that we will compare to. In this way our results are more

comparable with those in the original paper.

There is a simple top-down method for building trees. Information gain is used to

decide which attribute is used to split nodes in this process. Higher information gain

represents higher purity of child nodes. An impure node has a very mixed distribution

of class values. The reason to have a pure child node is that, the more pure the child is,

the smaller the subtree is likely to be. The basic algorithm to construct a fully-expanded
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Start on the root of the tree.

If node is not pure or no further splitting is possible:

Find which attribute is the best to split on using information gain

Split the node into subsets on possible values

Go to each child node and recurse.

Figure 2.1: Pseudo code for constructing a PET

Start on the root of the tree.

If current node is not a leaf node:

Find the split attribute and find the correct path to the child node.

Else

return class proabbility distribution

Figure 2.2: Pseudo code for making a prediction using a PET

PET is given in Figure 2.1.

For making a prediction using a PET, we start off at the root node of the tree

and check if the node is a leaf node. If it is, then the prediction is over. If it is not, we

check the split attribute and find the correction path to go to the child node, then we do

the same process recursively until the instance reaches a leaf node. The basic prediction

pseudo code for a PET is given in Figure 2.2.

2.1.1 Pruning

Sometimes, a fully-grown tree does not perform as well as a smaller tree. To reduce the

vulnerability to noise and variability in the fully grown tree, a process is needed to make

the tree smaller and more straight-forward to use. Pruning is a technique that is widely

used to reduce a tree to the right size. A pruned tree may not represent a dataset exactly,

but a precisely constructed tree does not imply better probability estimates because it

may overfit the training data.

For example, Figure 2.3 shows an unpruned probability estimation tree for the iris

data. In contrast to Figure 1.1, the unpruned version of the PET has 11 nodes instead

of 5 in Figure 1.1. The right branch from node number 3 (labelled petal width) has been

pruned to approximate the unpruned tree. In the unpruned tree, as we can see, after

splitting by petal length in node 4 there is a further split on petal width again, which is

the same splitting attribute as in node 3.
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1: petallength

2 : Iris-setosa (50/0) [0/0]

 < 2.45

3: petalwidth

 >= 2.45

4: petallength

 < 1.75

9: petallength

 >= 1.75

5 : Iris-versicolor (48/1) [0/0]

 < 4.95

6: petalwidth

 >= 4.95

7 : Iris-virginica (3/0) [0/0]

 < 1.55

8 : Iris-versicolor (3/1) [0/0]

 >= 1.55

10 : Iris-virginica (3/1) [0/0]

 < 4.85

11 : Iris-virginica (43/0) [0/0]

 >= 4.85

Figure 2.3: Unpruned PET for iris data

Observing the leaf nodes 7 and 8, the instance counts in these two nodes are rela-

tively small. If we look at node number 9, we can see that the child nodes under it

have the same class: Iris-virginica, which means the split is not necessary to minimize

classification error. After pruning, the subtree from node 4 and below becomes a leaf

node with class label Iris-versicolor and the instance counts of all the nodes below it are

combined. The same process has been done with the subtree attached to node 9 and its

child nodes.

Pruning PETs sometimes makes the tree perform better than the original tree.

Two general kinds of pruning exist (Witten & Frank, 2005): pre-pruning and post-

pruning, where pre-pruning tries to stop unnecessary splits while growing the tree; on the

other hand post-pruning grows the entire tree first then tries to prune the tree based on

pruning criteria.

Reduced-error pruning (Quinlan, 1987) is a kind of pruning method where we split

the data up. Normally two thirds of the data is used to construct the tree and the rest of

the data is used to prune the tree by minimizing an error criterion on the pruning data.

This method is implemented in the REPTree classifier that is used in this thesis.

2.1.2 Adjusting probability estimates

When the PET is grown, the training dataset used to grow the tree can potentially have

zero appearance for an outcome (i.e. class value) at a particular leaf node. Without any
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smoothing methods, this outcome will be assigned a probability of zero, but assigning

a zero probability outcome is problematic for probability estimations in real-world

problems. This problem is called the zero-frequency problem (Roberts, 1982).

The zero-frequency problem can occur frequently in practice. This is bad because

before predictions are made one or more of the outcomes have already been completely

eliminated: Even though the event has never happened before, it does not imply it

will never happen in the future. To prevent this problem, an adjustment process is

necessary, to adjust the probability estimates of the outcomes, so that we do not have

the zero-frequency problem. There are many different ways to adjust the probability

estimates. For example, the Laplace correction is a simple smoothing method used to

solve this problem. It adds 1 to each class count in the leaf nodes, and it thus effectively

solves the zero-frequency problem. However, in practice adding one to each class count

may cause some other problems, such as over-smoothing the probability estimates,

especially when the dataset is small, perhaps becuase the tree has many branches and

each leaf node contains a very small number of instances. To solve this problem a smarter

way of smoothing probability estimates should be carried out, and several methods will

be discussed in the next chapter.

2.2 Bagging trees

In practice, scientific experiments are usually being repeated using the same or a similar

set up several times. Scientists then calculate the averaged outcome for a more accurate

result. To improve predictive performance in machine learning there are some similar

techniques, such as bagging (Breiman, 1996) and boosting (Freund & Schapire, 1996).

Bagging is the technique used in this thesis. As it resamples instances with re-

placement to construct trees, it throws some of the old instances out and replaces them

with duplicate instances, so that the trees are built based on variants of the same dataset.

The algorithm for bagging is given in Figure 2.4

For example, in bagging with 10 iterations, in each iteration a tree is generated,

and the data used are generated by sampling with replacement from the full dataset.

Each resampled dataset contains the same number of instances as the full dataset.
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Let n be the number of instances in the training data.

For each of iterations:

Sample n instance with replacement from training data.

Build classifier from subsample.

Figure 2.4: Pseudo code for bagging

For each of the models generated

Calculate the class probability estimates using current model

Return the average of all probability estimates

Figure 2.5: Pseudo code for prediction with bagging

At prediction time, for a test case with an unknown class value, the instance actu-

ally go traverses all the 10 PETs made from the previous step to get probability estimates

from each tree. Then the class probabilities predicted by the 10 trees are averaged to

form an overall class probability estimate. This is the standard process when probability

estimates are calculated using bagging. The pseudo code for prediction in bagged trees is

in Figure 2.5.

2.3 Text compression and PPM

Text compression is another field of study in computer science, but it shares many char-

acteristics with machine learning. Its performance is usually measured in terms of com-

pression ratio, memory and time used in the process.

2.3.1 PPM

PPM (Cleary & Witten, 1984) stands for Prediction by Partial Matching. It is an adaptive

data compression technique based on context modeling and prediction. A technique

called blending is used in PPM for solving the zero-frequency problem. As discussed

above the zero-frequency problem occurs when an event has not been encountered before:

an estimate of probability based on relative frequency will then be zero. This makes

predictive compression impossible. PPM combines several predictions into a single over

all probability to solve the zero-frequency problem.

In PPM, blending is the name of the type technique known in tree learners as

smoothing. The Laplace correction is a simple way of blending an estimated distribution

with the uniform distribution. Several different blending methods are used in PPM (for
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# Dataset Size

1 Monks1 556
2 Monks2 601
3 Monks3 554
4 Tic Tac Toe 958
5 Mushroom 8124
6 Wisconsin Breast Cancer 669
7 Kr vs Kp 3196
8 Sonar 208
9 Pima Diabetes 768
10 Vote 435
11 Yeast 1484
12 Hepatitis 155
13 Liver disorders 345
14 Spambase 4601
15 Ionosphere 351
16 Sick 3772
17 Spect 267

Table 2.1: Datasets used in experiments

example, PPMA, PPMB). The only difference between these methods is the way of

calculating escape probabilities. In PPM, the blended (i.e. smoothed) probabilities are

calculated as follows:

p(φ) =
m
∑

o=−1

wopo(φ) (2.1)

where o denotes the order of the context (the analogue of the depth of a node in a PET),

po(φ) is the probability before blending and wo is the weight, calculated using the following

equation:

wo = (1− eo)
l
∏

i=o+1

ei − 1 ≤ o < l (2.2)

Where e is called escape probability and calculated differently in different meth-

ods. These methods will be discussed further later in the thesis. The probability eo gives

the probability of escaping from the order-o context to the order-(o − 1) context. In a

tree, em would be the escape probability associated with a leaf node.

2.4 Datasets

The datasets used in this thesis to test the newly implemented methods are most of

the datasets from the paper that introduced M-Branch smoothing (Ferri, Flach &

Hernández-Orallo, 2003). They are shown in Table 2.1.
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The first three datasets are the monk’s problems. They all have the same attributes, but

one of them has noise added in. They have 8 attributes including the class value.

Tic tac toe is a datasets that contains a number of different tic tac toe game boards and

the outcome of the game as the class value. It has 10 attributes. The first 9 represent the

9 game board spaces and the tenth is the game result.

The mushroom dataset is a relatively bigger dataset considering both the number

of instances and attributes. It has 23 attributes including the class value. The first 22

attributes describe the different appearances of the mushrooms and the class value defines

whether it is edible or poisonous.

The Wisconsin breast cancer dataset contains 10 attributes including the class value. It is

a purely numeric dataset. The first 9 attributes are the symptoms and the class attribute

tells us whether the cancer is benign or malignant.

Kr vs Kp is a chess game dataset. It contains 36 attributes including the class at-

tribute. Each instance contains the setup of a chessboard, where white has a king and a

rook and black has a king and a pawn. The class attribute shows if white can win at the

end of the game.

Sonar has 61 attributes including the class value. The first 60 attributes are read-

ings from the sonar, and the class value determines whether the signal the instance

corresponds to is a mine or a rock.

Pima diabetes has 9 attributes including the class value. The first 8 attributes are

different properties of a patient and the class value is positive or negative.

Vote is the 1984 United Sates Congressional voting record. It has 17 attributes in-

cluding a class value, for democrat or republican respectively.

Yeast has 9 attributes. It is a dataset about proteins. The first 8 attributes are different

characteristics of the protein, and the class value shows the sequence name of that protein.
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Hepatitis has 20 attributes including the class value, indicating whether the pa-

tient is still alive. Other attributes are symptoms and characteristics of the patient.

Liver disorder has 7 attributes. The first 5 attributes are aspects of blood tests

that are related to liver disorders. The 6th attribute is the amount of alcohol consumed

by the patient per day. The last attribute is the class value, which separates the data

into two sets.

Spambase is a spam e-mail database. It has 58 attributes and the class value indi-

cates whether the corresponding message is spam or not.

The ionosphere dataset has 35 attributes including a class value of good or bad.

This is a radar dataset collected by the system in Goose Bay, Labrador. The first 34

attributes, they represent 17 pulse numbers, with two attributes per pulse.

The sick dataset contains 30 attributes. The first 29 represent different character-

istics, symptoms and the medical history of the patient, such as age, sex and pregnancy.

The last one is the class value which shows if the patient is sick or not.

The spect dataset contains 23 attributes. The first 22 attributes are diagnostic

features of cardiac SPECT images. The class value shows the patient is normal or

abnormal.

All of the above datasets have two classes. They were chosen because the tree

learner used in this thesis behaves very similarly with binary-class datasets to the one

used in (Ferri, Flach & Hernández-Orallo, 2003). The aim was to make the end result

more comparable.

2.5 Evaluation methods

To measure the performance of the smoothing methods, several different evaluation meth-

ods are considered to make sure all aspects of the methods are evaluated. The following

evaluation measures are used:

• Root mean squared error

• Area under ROC curve
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• Entropy gain

2.5.1 Root mean squared error

Mean squared error or MSE is the average squared error between the predicted value and

the actual value. Root mean squared error or RMSE is the squareroot of MSE. Root mean

squared error is used often to measure precision of estimates. The squared error is also

called the quadratic loss (Witten & Frank, 2005).

MSE =
1

n

n
∑

j=1

1

k

k
∑

i=1

(pji − aji)
2 Mean squared error (2.3)

Here, there are n test instances and k class values. The pji are the predicted class proba-

bilities and the aji are the observed values (either 0 or 1). Taking the square root yields

the root mean squared error.

RMSE =
√
MSE Root mean squared error (2.4)

2.5.2 Area under ROC curve

ROC stands for receiver operating characteristic. It represents the performance of a

classifier without explicit error costs (Witten & Frank, 2005). The horizontal axis is

the false positives rate and the vertical axis is the true positives rate, assuming binary

classification. The area under the curve (AUC) (Ling, Huang & Zhang, 2003) is the

performance measure used in this thesis. For multi-class probability estimation, the AUC

value is first calculated for each class in turn, by considering all other classes as the

“negative” class, and then the different AUC values are averaged, using weights based on

the relative popularity of each class.

To generate an ROC curve from probability estimates for the positive class, the

actual class values in the test data are needed. First, the probability estimates for the test

instances are sorted in descending order, thus the highest probability comes first. In other

words, the earlier the prediction is in the list, the more likely for it to be positive according

to the classifier. Then we use the actual class value to find if the predicted probability is

accurate. We start from the origin in the plot, and the top of our ranked list, and go up if

the predicted value is true, and go right if the predicted value is false. After all the predic-

tions are drawn on the coordinate system, a jagged line is formed. That is the ROC curve.

17



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

True positive rate

Figure 2.6: Example ROC curves

Figure 2.5.2 shows three ROC curves, which correspond to three different hypo-

thetical classifiers. The red curve has the largest area under the curve. The blue curve

has a larger area under it than the black line, but the area under it is smaller than

the area under the red curve. The black line has a perfect 50% area under it, which is

equivalent to a random prediction in a two class dataset.

2.5.3 Entropy gain

Entropy gain is a measure closely related to compression performance. The so-called

informational loss for an event with estimated probability p is -log2 p (Witten & Frank,

2005). If p is 1 for every predicted value, the model makes perfect predictions and no bits

are needed to correct its mistakes. The number of bits needed is given by the informational

loss. In Weka, entropy gain is calculated as

ENTROPY GAIN =
n
∑

j=1

− logPi −
n
∑

j=1

− log pi (2.5)

Where Pi is the “default” prediction for the class value of test instance i and pi is the

model’s prediction. The default prediction is an estimate of the prior probability of each

class (e.g. 1/3 in the case of the iris data where each type of iris flower is equally likely).

2.6 Summary

This chapter discussed the background knowledge relevant for this thesis. The tree clas-

sifier that is used was introduced first, then the algorithm for constructing a PET was

presented and explained with pseudo code. Then some further algorithmic techniques
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used in this thesis were discussed, such as pruning and bagging. Thirdly, smoothing

was introduced, followed by the Laplace correction as a simple existing PET smoothing

method. Then the PPM text compression method was introduced, followed by the differ-

ent smoothing methods used by PPM, its equations, and the escape probability calculation

method. The dataset used in the experiments in the thesis were listed and described in

detail next. Finally, the evaluation criteria where discussed: area under ROC curve, root

mean squared error and entropy gain.
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Chapter 3

Smoothing methods

In this chapter, the different smoothing methods evaluated using PETs are discussed in

detail. The first two smoothing methods are the Laplace correction and the M-Estimate

smoothing (Dzeroski, Cestnik & Petrovski, 1993). They are very simple methods that

are included for completeness. From the third method on, the methods are discussed in

more detail. All these methods will be experimented on and analysed in detail in the next

chapter.

3.1 Existing smoothing methods in probability estimation

trees

There are many smoothing techniques available nowadays. To choose a method that will

fit tree learning well therefore requires detailed experiments and analysis. We now discuss

the basic methods that will be evaluated later.

3.1.1 Laplace Correction and M-Estimate

The Laplace correction, the strategy of adding one to each count, will eliminate a 0

count for a predicted outcome. It is the most basic technique for smoothing probability

estimates and widely used in practice.

The M-Estimate (Ferri, Flach & Hernández-Orallo, 2003) is another commonly

used smoothing technique, where M is a constant defined by the user. The Laplace

correction and the M-Estimate are defined as follows:

pi =
ni + 1

(

∑

i∈C

ni

)

+ c

Laplace Correction (3.1)

pi =
ni + p ·m
(

∑

i∈C

ni

)

+ c

M − Estimate (3.2)
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Here ni is the count of instances for class i from the leaf node concerned, c is the number of

classes. The M-Estimate, if p = 1/m, becomes the formula shown in Equation 3.1, which

is Laplace correction. In the experiments with PETs in (Ferri, Flach & Hernández-Orallo,

2003), M = 4 is used, because it is the best experimental value.

3.1.2 M-Branch Smoothing

M-Branch smoothing is introduced as a new method in (Ferri, Flach & Hernández-Orallo,

2003). It is more complicated than the Laplace correction and the M-Estimate because it

combines multiple probability estimates. It is defined as follows:

pji =
nj
i +m · pj−1

i
(

∑

i∈C

nj
i

)

+m

M − Branch Smoothing (3.3)

Here m is not just a constant. It varies according to the formula below:

m = M · (1 + (1− 1/h) ·
√
N) (3.4)

where M here is a again a user-specified constant as in the M-Estimate, and N is the

global cardinality of the dataset. The value h is the height of the node in the tree.

According to Equation 3.3, the smoothing method is no longer applied to just the

leaf nodes as in the Laplace correction and in M-Estimate smoothing. It smoothes the

probability along the path of prediction in a PET based on the probability estimates pji for

each node j. According to Equation 3.4, m is calculated based on h, the height of the cur-

rent node. By observing the equation, it is not hard to find out that if the node is higher

up in the tree, it is smoothed more heavily, where the normalised height of a node is 1−1/h.

The probability of each outcome is fixed at 1/c above the root node, c being the

number of possible prediction outcomes. Then we pass that probability to the root node

of the PET, calculating the smoothed probability estimate until we reach the leaf node,

where the normalized height of the node is 0, thus m = M .

For example in Figure 1.1, we can take the path from the root node to the versi-

color node The relevant calculations are shown in Table 3.1.
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Height Node Counts Unsmoothed probability estimates Normalized Height

N Setosa Versicolor Virginica ∆ m

-1 - - 1
3
- 1

3
- 1

3
- - -

3 1 150 50
150

50 50
150

54 50
150

50 2
3

36.66

2 3 150 0 0 54
100

54 50
100

50 1
2

28.50

1 4 150 0 0 49
54

54 5
54

5 0 4.00

Smoothed probabilities 0.00510 0.87676 0.11814

Table 3.1: M-Branch smoothing effects along a path of prediction

3.2 PPM and escape probabilities

In PPM, blended probabilities are calculated using the equation mentioned in the previous

chapter in Equation 2.1. In this equation, there is the variable wo, which is the weight

of each context In PETs, the context is provided by the path to the current node. The

weight is calculated using Equation 2.2, where e is the escape probability.

The escape probability can be viewed as the probability of “escaping” from the

current node to the parent node to determine the prediction for a new test instance,

based on the probability that a previously unseen class value is encountered. There are

a variety of ways of calculating the escape probability. They are named by combining

PPM with the probability method code. PPMA is the PPM method using the escape

probability calculation method A.

It is very hard to say which escape probability calculation method is the best of

all, or to even make this statement about just two of them, but in practice there is one

that is the most suitable one for the problem at hand. The more escape calculation

methods there are, the more options we have when we have a problem. In this thesis, 5

of the most popular PPM escape methods are implemented and experimented on.

3.2.1 PPMA

The first escape probability calculation method is method A (Cleary & Witten, 1984). It

is a simple calculation:

eo =
1

Co + 1
(3.5)

In the text compression case, the number of characters we have seen before in the

current context o is given by Co. In PETs this will be the total count of instances
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Height Node Counts Unsmoothed probability estimates Weight Escape

Co Setosa Versicolor Virginica wo eo

-1 - - 1
3

- 1
3

- 1
3

- 1.1× 10−6 0

3 1 150 50
150

50 50
150

50 50
150

50 0.00018 0.0066

2 3 100 0 0 50
100

50 50
100

50 0.0180 0.0099

1 4 54 0 0 49
54

49 5
54

5 0.9818 0.0182

Smoothed probabilities 0.00006 0.89995 0.09997

Table 3.2: PPMA smoothing effects along a path of prediction

at the node concerned. The probability of seeing a new type of character or a new

class value respectively is 1 over the “new” total number of characters or instance

count respectively. As Co grows bigger, the escape probability becomes smaller and

smaller. In text compression, after a number of characters have appeared in a con-

text, the probability of an entirely new character showing up in upcoming text is

very low. Similarly, in PETs, after the model has been built with a fair number of in-

stances, the probability of seeing an entirely new class value of a particular node decreases.

If the same path used in Table 3.1 is smoothed with PPMA the result is as it is

shown in Table 3.2

3.2.2 PPMB

The second escape probability calculation method is method B (Cleary & Witten, 1984).

It uses a different approach to calculates the escape probability:

eo =
qo
Co

(3.6)

Here, qo is the number of different characters that have occurred in the corresponding

context context of order o.

In this approach, the number of different characters that have been seen is taken

into account in the calculation of the escape probability and it is proportional to the

escape probability. That means if fewer different character have been seen before, it is

less likely to see a new character in the future.

This technique effectively only takes an observation into account after it has oc-
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Height Node Counts Unsmoothed probability estimates Weight Escape

Co Setosa Versicolor Virginica wo eo

-1 - - 1
3

- 1
3

- 1
3

- 1.48 × 10−5 0

3 1 150 50
150

50 50
150

50 50
150

50 0.00073 0.02

2 3 100 0 0 50
100

50 50
100

50 0.0363 0.02

1 4 54 0 0 49
54

49 5
54

5 0.9630 0.037

Smoothed probabilities 0.00025 0.89223 0.10756

Table 3.3: PPMB smoothing effects along a path of prediction

curred twice. It is inspired by the consideration that a one-off event may be an error.

In PETs, if fewer classes values have been seen in a node, that means the proba-

bility of a new class occurring at this node is low. Vice versa, if a node is relatively less

pure, it is more likely that we will see more different classes occurring at this node.

The same path used in Table 3.1 is smoothed with PPMB and the result is shown

in Table 3.3

3.2.3 PPMC

The third method is method C (Moffat, 1988). It is similar to method B:

eo =
qo

Co + qo
(3.7)

This approach is based on the observation that PPMB effectively only takes an

observation into account when it has already occurred twice, which seems wasteful. On

the other hand, escape probability method A can be problematic, if a context occurs

frequently, but with different characters. As a compromise between PPMA and PPMB,

PPMC, a hybrid, was introduced. It gets the advantages of both method A and B.

Looking at the equation, the only difference is that the denominator has an added value

qo. This will lower the escape probability of the entire context.

In PETs, PPMB has a similar disadvantage: if a node has a small number of in-

stances, adding one to the class count will affect the probability estimates dramatically.
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Height Node Counts Unsmoothed probability estimates Weight Escape

Co Setosa Versicolor Virginica wo eo

-1 - - 1
3

- 1
3

- 1
3

- 1.37 × 10−5 0

3 1 150 50
150

50 50
150

50 50
150

50 0.00069 0.0196

2 3 100 0 0 50
100

50 50
100

50 0.035 0.0196

1 4 54 0 0 49
54

49 5
54

5 0.9643 0.0357

Smoothed probabilities 0.00023 0.89275 0.10702

Table 3.4: PPMC smoothing effects along a path of prediction

By using PPMC, we lower the estimated probability of a new a class occurring at the

current node.

The same path used in Table 3.1 is smoothed with PPMC and the result is shown

in Table 3.4

3.2.4 PPMD

The fourth method is method D (Howard, 1993). It is similar to method B too:

eo =
qo/2

Co

(3.8)

As in PPMB, if a new symbol occurs for the first time, 1 will be added to qo, as

the number of different characters that have occurred. However, in PPMD, when a

new character occurs for the first time, 1/2 is added instead of 1 to the numerator of

the escape probability. Thus, as in PPMC, a context will be used even if all observed

characters are different.

The same path used in Table 3.1 is smoothed with PPMD and the result is shown

in Table 3.5
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Height Node Counts Unsmoothed probability estimates Weight Escape

Co Setosa Versicolor Virginica wo eo

-1 - - 1
3

- 1
3

- 1
3

- 1.85 × 10−6 0

3 1 150 50
150

50 50
150

50 50
150

50 1.83 × 10−4 0.01

2 3 100 0 0 50
100

50 50
100

50 0.01831 0.01

1 4 54 0 0 49
54

49 5
54

5 0.9815 0.0185

Smoothed probabilities 0.00006 0.89984 0.10010

Table 3.5: PPMD smoothing effects along a path of prediction

3.2.5 PPMP

The fifth method is method P (Witten & Bell, 1991). It is pretty unique compared to the

other escape probability calculation methods. The formula for PPMP is as follows:

eo =
n1

Co

− n2

C2
o

+ · · · (3.9)

As the equation shows, there are different fractions connect by a plus sign or a minus

sign, and the plus or minus sign take turns. The numerator of each fraction is the number

of classes that has occurred a certain number of times: for example, n1 is the number of

classes that occurred has 1 time in the current node.

Note that here n1 can be 0, but a probability cannot be a negative number. This

problem will be discussed in Section 3.4. When n = Co, and it is the only fraction in the

equation, the probability is 1, which should be avoided. However this problem does not

happen in this thesis, because it does not occur in the datasets considered.

Differently from all the escape probability calculation methods above, the method

is based on an open equation. The number of fractions of the equation is not fixed.

However, as the denominater grows exponentially, the later fractions reduce exponentially,

and their combination will become insignificant after the 9th or 10th fraction, depending

on the number of instances in the dataset. In this thesis, 5 was chosen to be the number

of fractions used in the equation because even the smallest dataset, hepatitis, has 155

instances. The denominator will be 89466096875 for the 5th fraction, the result of that

fraction is a very small number.
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Setosa Versicolor Virginica

PPMA 0.00006 0.89995 0.09997

PPMB 0.00025 0.89223 0.10756

PPMC 0.00023 0.89275 0.10702

PPMD 0.00006 0.89984 0.10010

Table 3.6: Smoothing effects compared

For each item d in the array of class counts

d = d+ 1

Figure 3.1: Pseudo code for Laplace correction in REPTree

3.3 Smoothing effects

Several PPM-based smoothing methods and smoothed probability estimates are have

been discussed above. All the smoothed probability estimates are shown in Table 3.6 for

comparison. By observing the table, notice that the probability estimates of different the

methods are very similar. That is because of the characteristics of the iris data, which

yields a large and almost pure leaf node..

From the little difference of the probability estimates, we can see that PPMA and

PPMD has smaller smoothing effects, which correctly reflects the smoothing effect of

Equation 3.8.

3.4 Implementing the smoothing methods

In order to test all the methods described above, the methods have to be implemented

into a suitable tree learner. Firstly we have to find a tree learner that is similar to the

one used in the literature (Ferri, Flach & Hernández-Orallo, 2003). The most suitable

tree learner in Weka has been picked out, namely REPTree, a fast decision tree learner

that uses information gain.

The simple Laplace correction smoothing has been implemented into REPTree first. The

pseudo code is shown in Figure 3.1

Similar to the Laplace correction, the M-Estimate has been implemented in REP-
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For each item d in the array of class counts

d = d + (m · 1
Number of classes

)

Figure 3.2: Pseudo code for M-Estimate in REPTree

1 if leafNode

2 return 1

3 else

4 if the attribute is missing

5 Loop through each branch and calculate the height;

6 then combine based on split proportions

7 height = combind height

8 else if nominal attribute

9 height = height of the appropriate child node

10 height++

11 else if attribute is greater than split point

12 //For numeric attributes

13 height = height of the first child node

14 height++

15 else

16 height = height of the second child node

17 height++

18

19 return height

Figure 3.3: Pseudo code for height calculation in REPTree

Tree. The code is very similar. The only difference is the different addition made to

the original class counts. In both cases estimated probabilities are then calculated by

normalizing the array of class counts. The pseudo code for M-Estimate smoothing is

shown in Figure 3.2.

3.4.1 M-Branch Smoothing

Implementing M-Branch smoothing is different from implementing the Laplace correction

and the M-Estimate. As it uses the height of the node, the code has to be in the prediction

portion of the code instead of the PET building portion of the code. For calculating the

height of the node, a simple method has been implemented to do it recursively along the

prediction path. This code is shown in Figure 3.4. The “expected” height is used when

the instance has a missing value for the node concerned.

The actual code for smoothing the probabilities is in the distributionForInstance()

method, which is called at prediction time. As mentioned above, it is quite different
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1 Get height for current node

2 Let N be total number of instances for current node

3 p = smoothed probabilities from parent node

4 calculate normalized height ∆ = 1 - ( 1 / height )

5 m = M · (1 + ∆ ·
√
numInstances)

6 foreach raw count ci at node

7 smoothed probability = (ci + m · pi) / (N + m)

Figure 3.4: Pseudo code for M-Branch smoothing in REPTree

1 Let weight = 0

2 Let N be total number of instances for current node

3 get escape probability e for current node

4 weight = (1 - e) · product of escape probabilities from path below

5 foreach raw count ci at node

6 smoothed probability += (ci / N) * weight

Figure 3.5: Pseudo code for PPM in REPTree

from the two methods above, because in M-Branch smoothing, the height of the current

node is needed, and multiple probability estimates are combined. The pseudo code for

M-Branch smoothing is in Figure 3.4

3.4.2 PPM Methods

The PPM methods are placed in the same location as M-Branch smoothing as they need

similar information, and are also applied recursively. The difference between different

PPM methods is in the escape probability calculations, thus there is only one piece of

code applying the smoothing to the probability estimates. The pseudo code for this is in

Figure 3.5.

The method for returning the product of escape probabilities in Figure 3.5, needed

for the calculation in Equation 2.2, is a similar procedure as the get height method for

M-Branch smoothing. The pseudo code is in Figure 3.6. Note that it need to be called

on the appropriate child node in line 4 of the algorithms in Figure 3.5.

For different escape probability calculation methods, a separate function has been

created to detect which escape probability method has been chosen by the user and

calculate the escape probability required. The pseudo code for getting the escape

probability is in Figure 3.7
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1 Let product = 0

2 if leafNode

3 return 1

4 else

5 if the attribute is missing

6 Loop through each branch and calculate the product;

7 combine products based on split proportions

8 product = combined product

9 else if nominal attribute

10 product = calculate product for child node

11 e = escape probability for current node

12 product = product * e

13 else if attribute is greater than split point

14 //For numeric attributes

15 product = calculate product for the first child node

16 e = escape probability for current node

17 product = product * e

18 else

19 product = calculate product for the second child node

20 e = escape probability for current node

21 product = product * e

22

23 return product

Figure 3.6: Pseudo code for getProduct in REPTree

3.5 Summary

This chapter discussed two simple smoothing methods of PETs first, the Laplace

correction and M-Estimate smoothing. These methods are used as baseline methods to

test the behaviour of the PET we used. Then the smoothing method from the paper

by Ferri, Flach & Hernández-orallo (2003) was introduced and explained with the aid of

its probability estimate calculation equation. A simple smoothing example with the iris

dataset was presented in a tabular form.

Then, each of the PPM smoothing methods were introduced. The difference be-

tween the PPM methods is the escape probability calculation method. With the help of

equations for the escape probability, the motivation for each escape probability calculation

method was discussed. PPMA simply gives the newly occurred character, in the case

of PETs, a new instance, one increment on the total count, which is simple enough to

understand: after quite a few number characters have been encountered, the probability

that a new character shows up is quite low. PPMB takes a different approach, the

character probability calculation is inspired by the rule that observations are counted only
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1 Let Escape Probability e = 0

2 Let N be the total count of instances occuring at current node

3 Let q be the number of classes occuring at current node

4 if method A

5 e = 1 / (1 + N)

6 else if method B

7 if (N = 0 or q = 0)

8 return 1

9 e = q / N

10 else if method C

11 if (N = 0)

12 return 1

13 e = q / (N + q)

14 else if method D

15 if (N = 0 or q = 0)

16 return 1

17 e = (q / 2) / N

18 else if method P

19 if (N = 0 or q = 0)

20 return 1

21 if no class occured 1 time in the current node

22 Calculate e as method C

23 for i from 1 to 5

24 get number of classes occured i times n

25 e -= n / N i · −1i

26

27 return e

Figure 3.7: Pseudo code for getEscProb method in REPTree

if they have happened twice. Thus the escape probability also uses the number of different

characters seen so far. PPMC is a compromise between PPMA and PPMB, which gets

the advantage of both methods. PPMD has the least smoothing effect on probability

estimates, as it only adds half a count to the number of seen characters of the escape

probability, classes in the case of PETs, when a new character occurs. PPMP has the

most special approach amongst all the PPM methods considered. The number of classes

that have occurred exactly n times are involved in the calculation of escape probabilities,

n being a natural number which increments by 1 each time. As the denominator of the

fractions involved, if the number of classes is 0 for the first fraction, the end result of the

calculation will be negative. As probabilities cannot be negative, the escape probability

calculation falls back to method C in this case.

Lastly, the pseudo code of all the smoothing methods discussed in this chapter

was presented and explained, including the helper methods: getHeight for M-Branch
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smoothing, getProduct for calculating the escape probabilities, and getEscProb to get

the correct escape probability calculation method based on user input.
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Chapter 4

Experiments

This chapter evaluates the different smoothing methods on the datasets discussed in Chap-

ter 2. The methodology and experiment setups are discussed in Section 4.1. Section 4.2

evaluates results from the first two setups, using unpruned REPTree without modifica-

tions and with the Laplace correction and M-Estimate smoothing. It compares the un-

smoothed probability estimates with those smoothed by the Laplace correction and the

M-Estimate respectively. Section 4.3 evaluates M-Branch smoothing with comparison to

the M-Estimate. Section 4.4 discusses the newly implemented PPM methods with M-

Branch smoothing. Bagging unsmoothed trees is discussed in Section 4.5 The effects of

bagging trees with the basic smoothing methods are discussed in Section 4.6. Section

4.7 compares the effect of smoothing bagged trees with M-Branch smoothing to bagged

unpruned trees. Section 4.8 considers bagged trees with PPM smoothing. Sections 4.9 to

4.12 consider pruned trees. Section 4.13 presents results for a specific case study based on

an e-commerce dataset.

4.1 Methodology and Experiment Setups

For ease of comparing the performance of all the smoothing methods implemented in

REPTree in Weka (Witten & Frank, 2005), 17 datasets were selected to be used in the

experiments. They were listed in Table 2.1. Some of these dataset contain solely numeric

attributes or nominal attributes, some contain both nominal attributes and numeric ones,

and some contain missing values.

In practice, one dataset will be divided into two subsets, one subset is used to

build the PET, and the other one is used to test the PET built from the training

subset. The split percentage can be chosen by the experimenter. For example, we can

divide the dataset into disjoint 3 parts, where the dataset is divided randomly. Each of

the 3 subsets take turns to test the PET built based on the other two subsets. Then

the 3 error estimates are averaged to yield an overall error estimate. This is called a
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3-fold cross-validation. The number of subsets we used to divide the datasets up is the

number of folds. Sometimes a single cross-validation might not be reliable. Different

cross-validations can be performed using the same algorithm, and we can calculate the

average of the error estimates. Usually the number of folds in a cross-validation is set to

10, which is found to be the best number to generate an accurate error estimate (Kohavi,

1995). However, in this thesis, a 20 times 5-fold cross-validation is used, because it is

the setup used in the paper by Ferri, Flach & Hernández-orallo (2003). This way the

experimental results are more comparable. The experiments use the paired corrected

t-tester (Nadeau & Bengio, 2001) for significance testing with a significance level of 0.05.

4.2 Smoothing effect of M-Estimate smoothing and the

Laplace correction

We first compare unpruned trees to those smoothed with the Laplace correction and the

M-Estimate respectively.

4.2.1 Area under ROC curve

Table 4.1 shows the AUC value from the experiments for REPTree probability estimates

with no smoothing versus M-Estimates and Laplace correction. The second column is

used as the test base, thus both the third and the fourth columns are compared with

the second column. • in the third column indicates that M-Estimate has significantly

improved AUC over the same classifier with no smoothing at all.

In this table, the numbers after the ± are standard deviations. By observing the

table, we can see that 10 out of 17 datasets have significant improvements after smoothing

with M-Estimate. In face, all the datasets have some improvement with M-Estimate

smoothing. In contrast, the Laplace correction has no significant differences compared to

M-Estimate smoothing. However, comparing M-Estimate with Laplace correction more

closely, it has larger AUC estimates for 6 out of 17 datasets.

4.2.2 Root mean squared error

Table 4.2 shows the root mean squared error value from the same experiments as in

Table 4.1. Again, the second column is used as the test base, both the third and the

fourth columns are compared with the second column. The ◦ symbol in the third column

indicates M-Estimate smoothing has a significantly smaller root mean squared error
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Dataset M-Estimate No Smoothing Laplace Correction

monks-1 0.979± 0.03 0.974±0.03 0.980±0.03

monks-2 0.604± 0.06 0.568±0.06 • 0.602±0.06

monks-3 0.991± 0.01 0.990±0.01 0.991±0.01

tic-tac-toe 0.930± 0.02 0.879±0.03 • 0.930±0.02

mushroom 1.000± 0.00 1.000±0.00 1.000±0.00

breast-cancer 0.977± 0.01 0.952±0.03 • 0.977±0.01

kr-vs-kp 0.999± 0.00 0.997±0.00 0.999±0.00

sonar 0.803± 0.07 0.751±0.08 • 0.801±0.07

pima-diabetes 0.770± 0.04 0.684±0.05 • 0.766±0.04

vote 0.985± 0.01 0.984±0.01 0.986±0.01

yeast 0.725± 0.03 0.690±0.03 • 0.727±0.03

hepatitis 0.748± 0.09 0.717±0.11 0.747±0.10

liver-disorders 0.681± 0.07 0.655±0.07 0.680±0.07

spambase 0.968± 0.01 0.932±0.01 • 0.967±0.01

ionosphere 0.934± 0.03 0.892±0.04 • 0.934±0.03

sick 0.990± 0.01 0.965±0.02 • 0.990±0.01

spect 0.718± 0.06 0.678±0.07 • 0.711±0.06

◦, • statistically significant difference

Table 4.1: Area under ROC curve

compared to the same classifier with no smoothing. The • symbol in the third column

indicates a significantly bigger root mean squared error. Similarly, the fourth column

has the same indicators. In Table 4.2, the Laplace correction improves the probability

estimates from no smoothing, and M-Estimate has further improvements from Laplace

correction. The raw results in the table also show improvements in most datasets. 11

out of 17 datasets have significant improvements for M-Estimate smoothing over no

smoothing and 9 out of 17 datasets have significant improvements for M-Estimates over

Laplace correction.

By observing both Table 4.1 and Table 4.2, it is not hard to notice that datasets

which do not yield any improvements are similar. These datasets are monks problems

1, monks problems 3, mushroom, kr vs kp and vote. In these 5 datasets, mushroom and

kr vs kp have perfect ROC curves, 100% for mushroom and 99.7% for kr vs kp, which

leaves very little potential for improvements. In Table 4.2 the root mean squared error

for mushroom has increased from 0 to 0.018. This is a typical case of over smoothing.

4.2.3 Entropy gain

Table 4.3 lists the entropy gain for M-Estimate smoothing compared with no smoothing

and the Laplace correction, with M-Estimates as the test base. The • symbol in the
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Dataset M-Estimate No Smoothing Laplace correction

monks-1 0.224± 0.07 0.141±0.12 • 0.188±0.08 •

monks-2 0.482± 0.02 0.586±0.04 ◦ 0.500±0.02 ◦

monks-3 0.163± 0.02 0.122±0.04 • 0.141±0.02 •

tic-tac-toe 0.323± 0.02 0.351±0.03 ◦ 0.319±0.02

mushroom 0.018± 0.00 0.000±0.00 • 0.010±0.00 •

breast-cancer 0.211± 0.03 0.227±0.04 ◦ 0.214±0.04

kr-vs-kp 0.084± 0.01 0.073±0.02 • 0.077±0.02 •

sonar 0.441± 0.06 0.490±0.07 ◦ 0.456±0.06 ◦

pima-diabetes 0.452± 0.03 0.518±0.03 ◦ 0.471±0.03 ◦

vote 0.220± 0.02 0.191±0.03 • 0.203±0.03 •

yeast 0.254± 0.01 0.280±0.01 ◦ 0.256±0.00 ◦

hepatitis 0.389± 0.05 0.419±0.06 ◦ 0.396±0.05 ◦

liver-disorders 0.491± 0.04 0.559±0.05 ◦ 0.510±0.04 ◦

spambase 0.244± 0.01 0.263±0.01 ◦ 0.248±0.01 ◦

ionosphere 0.288± 0.04 0.311±0.05 ◦ 0.294±0.04 ◦

sick 0.096± 0.01 0.096±0.02 0.095±0.01

spect 0.463± 0.03 0.516±0.04 ◦ 0.475±0.03 ◦

◦, • statistically significant difference

Table 4.2: Root mean squared error

third column indicates M-Estimate smoothing has a significantly larger entropy gain over

no smoothing. On the other hand, ◦ indicates significantly smaller entropy gain for M-

Estimate smoothing. The fourth column has the same indicators for Laplace correction.

Table 4.3 also confirms the fact that M-Estimate has the best performance among the three

methods: except for mushroom all the datasets exhibit improvements with M-Estimate

smoothing. Moreover, 14 out of 17 datasets have significant improvements for M-Estimate

smoothing compared to no smoothing. Laplace correction has better performance com-

pared to no smoothing at all: 16 out of 17 datasets have improvements with Laplace

correction compared to unsmoothed probability estimates, but for 9 out of 17 datasets we

prefer M-Estimate smoothing over Laplace correction.

Discussion

In the tables of experimental results, a larger AUC and a smaller root mean squared error

and a larger entropy gain are indicators of a better smoothing method. Although there

are some significantly degraded experimental results in Tables 4.2 and 4.3, but the over-all

results for M-Estimate are better than those for the Laplace correction and the probability

estimates before smoothing. The results are quite similar to the results in (Ferri, Flach

& Hernández-Orallo, 2003), which indicates that the implementation of M-Estimates is

correct and that REPTree is similar in behaviour to the classifier used in (Ferri, Flach &
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Dataset M-Estimate No smoothing Laplace correction

monks-1 0.68± 0.12 -21.55±27.38 0.75±0.13 ◦

monks-2 -0.01± 0.06 -266.96±50.83 • -0.08±0.08 •

monks-3 0.80± 0.02 -9.50± 9.92 • 0.85±0.03 ◦

tic-tac-toe 0.44± 0.05 -88.80±26.04 • 0.47±0.06 ◦

mushroom 0.99± 0.00 1.00± 0.00 ◦ 0.99±0.00 ◦

wisconsin-breast-cancer 0.69± 0.07 -35.92±18.79 • 0.68±0.09

kr-vs-kp 0.95± 0.01 -1.55± 2.47 • 0.96±0.01 ◦

sonar 0.10± 0.22 -196.77±73.39 • -0.02±0.28 •

pima-diabetes 0.06± 0.09 -216.49±41.15 • -0.06±0.12 •

vote 0.69± 0.05 -6.49± 9.13 0.72±0.05 ◦

yeast 0.25± 0.11 -338.23±33.63 • 0.20±0.09 •

hepatitis 0.05± 0.14 -49.84±48.98 • 0.00±0.18 •

liver-disorders -0.03± 0.14 -253.37±68.16 • -0.16±0.18 •

spambase 0.65± 0.03 -43.93± 7.82 • 0.63±0.04 •

ionosphere 0.51± 0.10 -68.86±34.71 • 0.48±0.12 •

sick 0.28± 0.01 -4.14± 2.75 • 0.28±0.02

spect 0.08± 0.10 -170.25±58.98 • 0.01±0.13 •

◦, • statistically significant difference

Table 4.3: Entropy gain

Hernández-Orallo, 2003). This is important for the analysis of the results that follow.

4.3 M-Estimate versus M-Branch

We now compare the best smoothing method so far, M-Estimate smoothing, to the new

smoothing method proposed in (Ferri, Flach & Hernández-Orallo, 2003).

4.3.1 Area under ROC curve

As discussed in previous chapters, the M-Branch smoothing technique is more complicated

and sophisticated than both the Laplace correction and M-Estimate smoothing. Table

4.4 lists the AUC values for M-Estimate smoothing and M-Branch smoothing with

M-Estimate as the test base. The ◦ symbol in the third column indicates that M-Branch

smoothing has a significantly larger area under the ROC curve. On the other hand •

indicates a significantly smaller AUC for M-Branch smoothing.

Table 4.4 shows that for most datasets, there is no signification difference: only

one dataset has a significantly improved AUC. However, if we look at the values more

closely, by comparing the values in the second and the third column, there are some

difference that can be noticed. Wisconsin breast cancer, pima diabetes, vote, liver disorder
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Dataset M-Estimate M-Branch

monks-1 0.979± 0.03 0.974±0.04

monks-2 0.604± 0.06 0.592±0.06 •

monks-3 0.991± 0.01 0.990±0.01

tic-tac-toe 0.930± 0.02 0.924±0.02

mushroom 1.000± 0.00 1.000±0.00

breast-cancer 0.977± 0.01 0.978±0.01

kr-vs-kp 0.999± 0.00 0.999±0.00

sonar 0.803± 0.07 0.802±0.07

pima-diabetes 0.770± 0.04 0.779±0.04

vote 0.985± 0.01 0.989±0.01

yeast 0.725± 0.03 0.762±0.03 ◦

hepatitis 0.748± 0.09 0.748±0.09

liver-disorders 0.681± 0.07 0.687±0.07

spambase 0.968± 0.01 0.967±0.01

ionosphere 0.934± 0.03 0.931±0.03

sick 0.990± 0.01 0.988±0.01

spect 0.718± 0.06 0.738±0.06

◦, • statistically significant difference

Table 4.4: Area under ROC curve (M-Estimate vs M-Branch)

and spect also show some improvement in terms of the estimated AUC, other than the

significantly improved dataset yeast, which is consistent with the results in (Ferri, Flach

& Hernández-Orallo, 2003).

4.3.2 Root mean squared error

Table 4.5 lists the root mean squared error for M-Estimate smoothing and M-Branch

smoothing using REPTree, with M-Estimate as the test base. The • symbol in the third

column indicates M-Branch smoothing has a significantly smaller root mean squared

error over M-Estimate smoothing.

In Table 4.5, there are three significant improvements that can be observed from

the third column, but by looking at the values more closely, almost all the datasets have

a small improvement, except for monks problem 2, sonar and liver disorder. Note that in

Table 4.4 monk’s problem 2 and sonar do not have any improvements in area under the

ROC curve for M-Branch smoothing over M-Estimate, so M-Branch smoothing does not

seem appropriate for these datasets.
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Dataset M-Estimate M-Branch

monks-1 0.224± 0.07 0.223±0.07

monks-2 0.482± 0.02 0.486±0.02

monks-3 0.163± 0.02 0.124±0.03 •

tic-tac-toe 0.323± 0.02 0.323±0.02

mushroom 0.018± 0.00 0.020±0.01

breast-cancer 0.211± 0.03 0.206±0.04

kr-vs-kp 0.084± 0.01 0.083±0.01

sonar 0.441± 0.06 0.443±0.06

pima-diabetes 0.452± 0.03 0.451±0.03

vote 0.220± 0.02 0.177±0.04 •

yeast 0.254± 0.01 0.247±0.01 •

hepatitis 0.389± 0.05 0.388±0.05

liver-disorders 0.491± 0.04 0.496±0.04

spambase 0.244± 0.01 0.242±0.01

ionosphere 0.288± 0.04 0.288±0.04

sick 0.096± 0.01 0.096±0.01

spect 0.463± 0.03 0.461±0.03

◦, • statistically significant difference

Table 4.5: Root mean squared error (M-Estimate vs M-Branch)

Dataset M-Estimate M-Branch

monks-1 0.68± 0.12 0.69±0.12

monks-2 -0.01± 0.06 -0.02±0.07

monks-3 0.80± 0.02 0.86±0.04 ◦

tic-tac-toe 0.44± 0.05 0.45±0.05

mushroom 0.99± 0.00 0.99±0.00 ◦

breast-cancer 0.69± 0.07 0.67±0.11

kr-vs-kp 0.95± 0.01 0.95±0.01 ◦

sonar 0.10± 0.22 0.00±0.29 •

pima-diabetes 0.06± 0.09 -0.02±0.13 •

vote 0.69± 0.05 0.78±0.08 ◦

yeast 0.25± 0.11 0.57±0.12 ◦

hepatitis 0.05± 0.14 -0.01±0.21

liver-disorders -0.03± 0.14 -0.11±0.17 •

spambase 0.65± 0.03 0.62±0.04 •

ionosphere 0.51± 0.10 0.45±0.15

sick 0.28± 0.01 0.27±0.02

spect 0.08± 0.10 0.04±0.15

◦, • statistically significant difference

Table 4.6: Entropy gain (M-Estimate vs M-Branch)
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4.3.3 Entropy gain

Table 4.6 lists the entropy gain for M-Estimate smoothing and M-Branch smoothing,

with M-Estimates as the test base. The ◦ symbol in the third column indicates M-Branch

smoothing has a significantly larger entropy gain than M-Estimate smoothing. On the

other hand, the • symbols indicate significantly smaller entropy gain for M-Branch

smoothing.

In Table 4.6, there are 5 significantly improved datasets for M-Branch smoothing

and 4 significant degradations for. Note that the three datasets discussed for root mean

squared error, monk’s problem 2, sonar and liver disorder, also have degradation in

entropy gain.

Discussion

The improvement of M-Branch smoothing over M-Estimate smoothing is not as significant

as the improvement of M-Estimate smoothing over probability estimates without any

smoothing. According to the results in the paper by Ferri, Flach & Hernández-orallo

(2003), M-Branch smoothing performs better in multi-class datasets, but in this thesis

we focus on binary-class datasets. Nevertheless, M-Branch smoothing has improved the

probability estimates for many datasets. It is a better smoothing method compared to

M-Estimate smoothing.

4.4 M-Branch smoothing versus PPM smoothing methods

We now consider the new PPM-based smoothing methods for PETs introduced in this

thesis and compare them to M-Branch smoothing.

4.4.1 Area under ROC curve

Table 4.7 shows the AUC for M-Branch smoothing compared against all the PPM

methods implemented for the thesis. As results in previous chapters have indicated, it is

less useful to compare individual PPM methods against each other because of the small

differences observed. In this table, all the values are compared with the left-most column,

which is M-Branch smoothing. In all the columns except the first column, the ◦ symbols

indicate a significant improvement for the area under the ROC curve.

By observing Table 4.7, it is clear to see that almost all PPM methods are worse
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Dataset M-Branch PPMA PPMB PPMC PPMD PPMP

monks-1 0.974±0.04 0.972±0.04 0.968±0.04 0.972±0.04 0.974±0.03 0.968±0.04

monks-2 0.592±0.06 0.593±0.06 0.595±0.05 0.590±0.06 0.565±0.06 • 0.602±0.06

monks-3 0.990±0.01 0.989±0.01 0.989±0.01 0.989±0.01 0.990±0.01 0.989±0.01

tic-tac-toe 0.924±0.02 0.925±0.02 0.923±0.02 0.925±0.02 0.878±0.03 • 0.924±0.02

mushroom 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00

breast-cancer 0.978±0.01 0.976±0.01 0.977±0.01 0.977±0.01 0.953±0.03 • 0.977±0.01

kr-vs-kp 0.999±0.00 0.999±0.00 0.999±0.00 0.999±0.00 0.997±0.00 0.999±0.00

sonar 0.802±0.07 0.793±0.08 0.795±0.08 0.795±0.08 0.751±0.08 • 0.794±0.08

pima-diabetes 0.779±0.04 0.753±0.04 • 0.758±0.04 • 0.754±0.04 • 0.685±0.05 • 0.754±0.04 •

vote 0.989±0.01 0.987±0.01 0.988±0.01 0.987±0.01 0.987±0.01 0.987±0.01

yeast 0.762±0.03 0.741±0.03 • 0.749±0.03 • 0.744±0.03 • 0.694±0.04 • 0.743±0.03 •

hepatitis 0.748±0.09 0.738±0.10 0.740±0.10 0.740±0.10 0.724±0.11 0.740±0.10

liver-disorders 0.687±0.07 0.678±0.07 0.681±0.07 0.678±0.07 0.656±0.07 0.679±0.07

spambase 0.967±0.01 0.961±0.01 • 0.962±0.01 • 0.962±0.01 • 0.932±0.01 • 0.962±0.01 •

ionosphere 0.931±0.03 0.925±0.03 0.926±0.03 0.925±0.03 0.892±0.04 • 0.925±0.03

sick 0.988±0.01 0.987±0.01 0.987±0.01 0.987±0.01 0.963±0.02 • 0.987±0.01

spect 0.738±0.06 0.707±0.06 • 0.715±0.06 0.709±0.06 • 0.683±0.07 • 0.707±0.06 •

◦, • statistically significant difference

Table 4.7: Area under ROC curve (M-Branch vs PPM methods)

than M-Branch smoothing for all datasets except for monk’s problem 2. For pima

diabetes, yeast, spambase and spect, all PPM methods are significantly worse than

M-Branch smoothing. PPMD is particularly poor. As mentioned in previous chapters, it

has the least smoothing effects among all the PPM methods.

4.4.2 Root mean squared error

Similar to Table 4.7, Table 4.8 lists the root mean squared error for M-Branch smoothing

and all the PPM methods with M-Branch as the test base. The • symbol indicates

improvements of PPM methods over M-Branch smoothing. The ◦ symbol indicates a

larger root mean squared error produced by the PPM methods, which corresponds to a

degradation.

In Table 4.8, we can see that for some of the datasets PPM methods are better

than M-Branch smoothing. For monk’s problem 1, monk’s problem 3, mushroom and kr

vs kp, almost all the PPM methods exhibit significantly improved smoothing probability

estimates. By looking at the raw values, we can also see that for sick, all the PPM

methods are better than M-Branch smoothing.
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Dataset M-Branch PPMA PPMB PPMC PPMD PPMP

monks-1 0.223±0.07 0.172±0.10 • 0.196±0.10 0.170±0.10 • 0.138±0.12 • 0.189±0.10

monks-2 0.486±0.02 0.537±0.03 ◦ 0.517±0.03 ◦ 0.537±0.03 ◦ 0.587±0.04 ◦ 0.529±0.03 ◦

monks-3 0.124±0.03 0.114±0.03 • 0.103±0.04 • 0.110±0.04 • 0.111±0.04 0.107±0.04 •

tic-tac-toe 0.323±0.02 0.329±0.03 0.330±0.03 0.329±0.03 0.351±0.03 ◦ 0.332±0.03

mushroom 0.020±0.01 0.007±0.00 • 0.008±0.00 • 0.007±0.00 • 0.000±0.00 • 0.007±0.00 •

breast-cancer 0.206±0.04 0.216±0.04 0.212±0.04 0.215±0.04 0.223±0.04 ◦ 0.215±0.04

kr-vs-kp 0.083±0.01 0.074±0.02 • 0.076±0.02 • 0.074±0.02 • 0.072±0.02 • 0.074±0.02 •

sonar 0.443±0.06 0.469±0.06 ◦ 0.463±0.06 ◦ 0.467±0.06 ◦ 0.487±0.07 ◦ 0.469±0.06 ◦

pima-diabetes 0.451±0.03 0.491±0.03 ◦ 0.480±0.03 ◦ 0.488±0.03 ◦ 0.513±0.03 ◦ 0.490±0.03 ◦

vote 0.177±0.04 0.186±0.03 0.181±0.03 0.183±0.03 0.185±0.03 0.183±0.03

yeast 0.247±0.01 0.267±0.01 ◦ 0.259±0.01 ◦ 0.264±0.01 ◦ 0.275±0.01 ◦ 0.266±0.01 ◦

hepatitis 0.388±0.05 0.406±0.06 ◦ 0.396±0.05 0.401±0.05 ◦ 0.407±0.06 ◦ 0.401±0.05 ◦

liver-disorders 0.496±0.04 0.533±0.05 ◦ 0.525±0.05 ◦ 0.531±0.05 ◦ 0.556±0.05 ◦ 0.533±0.05 ◦

spambase 0.242±0.01 0.253±0.01 ◦ 0.250±0.01 ◦ 0.252±0.01 ◦ 0.261±0.01 ◦ 0.252±0.01 ◦

ionosphere 0.288±0.04 0.300±0.04 0.296±0.04 0.298±0.04 0.308±0.04 0.299±0.04

sick 0.096±0.01 0.094±0.02 0.095±0.01 0.094±0.02 0.095±0.02 0.095±0.02

spect 0.461±0.03 0.493±0.04 ◦ 0.484±0.04 ◦ 0.491±0.04 ◦ 0.512±0.04 ◦ 0.493±0.04 ◦

◦, • statistically significant difference

Table 4.8: Root mean squared error (M-Branch vs PPM methods)

4.4.3 Entropy gain

Table 4.9 lists the entropy gain of M-Branch smoothing and all the PPM methods

mentioned in previous chapters, with M-Branch as the test base. The ◦ symbol in the

second to the sixth column indicates improvements for PPM methods correspondingly. •

indicates degradation of PPM methods compared to M-Branch smoothing.

By looking at Table 4.9, we can see that four datasets have significantly improved

entropy gain for PPMA, two for PPMB, four for PPMC, one for PPMD and three for

PPMP. On the other hand, most of the datasets prefer M-Branch smoothing. The results

confirm that for the datasets mentioned in the last subsection, PPM methods performs

better than M-Branch smoothing. However for most of the datasets, M-Branch smoothing

performs better than all PPM methods.

Discussion

To sum up, M-Branch smoothing has a better effect on smoothing probability estimates for

unpruned PETs, although for some datasets, PPM methods are better. Considering these

datasets, monk’s problem 1 and monk’s problem 3 are medium sized datasets, mushroom,

kr vs kp and sick are large datasets. Further experiments would need to be conducted to
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Dataset M-Branch PPMA PPMB PPMC PPMD PPMP

monks-1 0.69±0.12 0.77±0.17 ◦ 0.74±0.18 0.78±0.17 ◦ -21.55±27.38 0.75±0.18

monks-2 -0.02±0.07 -0.31±0.15 • -0.20±0.12 • -0.30±0.14 • -266.96±50.83 • -0.27±0.14 •

monks-3 0.86±0.04 0.89±0.06 ◦ 0.90±0.06 ◦ 0.89±0.06 ◦ -9.50± 9.92 • 0.90±0.06 ◦

tic-tac-toe 0.45±0.05 0.42±0.09 0.43±0.08 0.43±0.09 -88.80±26.04 • 0.42±0.09

mushroom 0.99±0.00 1.00±0.00 ◦ 1.00±0.00 ◦ 1.00±0.00 ◦ 1.00± 0.00 ◦ 1.00±0.00 ◦

breast-cancer 0.67±0.11 0.59±0.14 • 0.61±0.14 • 0.60±0.14 • -34.35±18.67 • 0.60±0.14 •

kr-vs-kp 0.95±0.01 0.96±0.02 ◦ 0.96±0.02 0.96±0.02 ◦ -1.55± 2.47 • 0.96±0.02 ◦

sonar 0.00±0.29 -0.38±0.44 • -0.33±0.43 • -0.36±0.43 • -196.75±73.39 • -0.37±0.44 •

pima-diabetes -0.02±0.13 -0.41±0.20 • -0.35±0.20 • -0.40±0.20 • -216.47±41.15 • -0.41±0.20 •

vote 0.78±0.08 0.74±0.10 • 0.74±0.10 0.74±0.10 • -6.46± 9.13 0.74±0.10 •

yeast 0.57±0.12 -1.30±0.42 • -0.47±0.31 • -0.67±0.32 • -200.11±32.57 • -0.92±0.36 •

hepatitis -0.01±0.21 -0.17±0.31 • -0.12±0.29 • -0.14±0.30 • -47.98±45.84 • -0.14±0.30 •

liver-disorders -0.11±0.17 -0.56±0.30 • -0.49±0.29 • -0.54±0.30 • -253.35±68.16 • -0.56±0.30 •

spambase 0.62±0.04 0.54±0.06 • 0.55±0.06 • 0.54±0.06 • -43.92± 7.82 • 0.54±0.06 •

ionosphere 0.45±0.15 0.33±0.21 • 0.35±0.21 • 0.34±0.21 • -68.85±34.71 • 0.34±0.21 •

sick 0.27±0.02 0.26±0.03 0.27±0.03 0.27±0.03 -3.61± 2.66 • 0.27±0.03

spect 0.04±0.15 -0.25±0.26 • -0.19±0.25 • -0.23±0.26 • -170.24±58.98 • -0.25±0.26 •

◦, • statistically significant difference

Table 4.9: Entropy gain (M-Branch vs PPM methods)

verify whether PPM methods work better with larger datasets in general.

4.5 Effect of Bagging Trees

As discussed in Chapter 2, bagging is a technique that resamples instances based on the

same dataset. It then calculates the probability estimates individually first based on each

tree in the ensemble, and an average is calculated to form a final predicted class probability.

Experiments with bagging trees are also a part of this thesis. The default bagging setup

in Weka is used, thus 10 trees are created with each algorithm on the training data in the

experiments. To demonstrate the effect of bagging along, Table 4.10 shows the area under

the ROC curve for bagged REPTree without any smoothing compared against normal

unpruned REPTree. By observing the table, we can see that all the datasets work better

with bagging trees except for mushroom, which has a perfect ROC curve (i.e. 100% area

under the ROC curve). This table shows that bagging definitely has a positive effect on

probability estimates for all datasets considered in this thesis. Similar improvements can

be obtained for root mean squared error and entropy gain (see Appendix A).
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Dataset No smoothing No smoothing

with bagging

monks-1 0.974± 0.03 1.000±0.00

monks-2 0.568± 0.06 0.609±0.05

monks-3 0.990± 0.01 0.992±0.01

tic-tac-toe 0.879± 0.03 0.980±0.01 ◦

mushroom 1.000± 0.00 1.000±0.00

breast-cancer 0.952± 0.03 0.989±0.01 ◦

kr-vs-kp 0.997± 0.00 0.999±0.00

sonar 0.751± 0.08 0.878±0.06 ◦

pima-diabetes 0.684± 0.05 0.802±0.03 ◦

vote 0.984± 0.01 0.989±0.01

yeast 0.690± 0.03 0.784±0.03 ◦

hepatitis 0.717± 0.11 0.827±0.08 ◦

liver-disorders 0.655± 0.07 0.740±0.06 ◦

spambase 0.932± 0.01 0.981±0.00 ◦

ionosphere 0.892± 0.04 0.955±0.03 ◦

sick 0.965± 0.02 0.987±0.01 ◦

spect 0.678± 0.07 0.739±0.06

◦, • statistically significant difference

Table 4.10: Area under ROC curve

4.6 Bagging with simple smoothing methods

We now consider the effect of Laplace smoothing and M-Estimate smoothing when using

bagging.

4.6.1 Area under ROC curve

Table 4.11 contains the same comparison as Table 4.1, but with bagging. We can observe

that there are fewer significantly improved AUC values in Table 4.1. This is because

bagged trees with no smoothing already yield a dramatic improvement as was shown in

Table 4.10. However, M-Estimate and Laplace correction do yield some improvements

over the non-smoothed results. Laplace correction has very similar effects as M-Estimate

in this table, but M-Estimate is still preferable for 6 of the 17 datasets, and on 3 datasets

it performs significantly better.

4.6.2 Root mean squared error

Table 4.12 shows the root mean squared error value of M-Estimate versus no smoothing

and the Laplace correction. The second column is used as the test base, the third and the

fourth column are compared to the second column. The ◦ in the third and fourth column

indicates M-Estimate smoothing has a significantly smaller root mean squared error.
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Dataset M-Estimate No Smoothing Laplace

correction

monks-1 1.000± 0.00 1.000±0.00 1.000±0.00

monks-2 0.644± 0.05 0.609±0.05 • 0.633±0.05 •

monks-3 0.991± 0.01 0.992±0.01 0.991±0.01

tic-tac-toe 0.986± 0.01 0.980±0.01 • 0.985±0.01 •

mushroom 1.000± 0.00 1.000±0.00 1.000±0.00

breast-cancer 0.989± 0.01 0.989±0.01 0.989±0.01

kr-vs-kp 1.000± 0.00 0.999±0.00 1.000±0.00

sonar 0.877± 0.06 0.878±0.06 0.878±0.06

pima-diabetes 0.813± 0.03 0.802±0.03 • 0.810±0.03 •

vote 0.990± 0.01 0.989±0.01 0.990±0.01

yeast 0.788± 0.03 0.784±0.03 0.788±0.03

hepatitis 0.833± 0.08 0.827±0.08 0.832±0.07

liver-disorders 0.744± 0.06 0.740±0.06 0.743±0.07

spambase 0.981± 0.00 0.981±0.00 0.981±0.00

ionosphere 0.956± 0.03 0.955±0.03 0.956±0.03

sick 0.991± 0.01 0.987±0.01 0.991±0.01

spect 0.754± 0.06 0.739±0.06 0.750±0.06

◦, • statistically significant difference

Table 4.11: Area under ROC curve with Bagging

From Table 4.12, we can see that M-Estimate smoothing does not have an advan-

tage compared with the other two algorithms. Laplace correction has 10 out of 17

datasets where it is better than M-Estimate, and no smoothing has 8 of 17 datasets where

it is better than M-Estimate. Comparing the Laplace correction with no smoothing,

there are 12 out of 17 datasets that have better root mean squared error values with no

smoothing. To sum up, with bagged trees, no smoothing has the best performance in

terms of root mean squared error.

4.6.3 Entropy gain

Table 4.13 shows the entropy gain of M-Estimate smoothing versus no smoothing and the

Laplace correction, with M-Estimate as the test base.

From the table we can see that M-Estimate smoothing has only 2 significant im-

provement over no smoothing, but the Laplace correction has 9 out 17 datasets with

significantly better results than M-Estimate. The Laplace correction also wins against

unsmoothed trees on 12 datasets. This makes the Laplace correction the best method

when considering entropy gain.
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Dataset M-Estimate No Smoothing Laplace

correction

monks-1 0.208± 0.03 0.092±0.03 • 0.163±0.03 •

monks-2 0.465± 0.01 0.502±0.02 ◦ 0.471±0.02 ◦

monks-3 0.146± 0.02 0.112±0.03 • 0.127±0.03 •

tic-tac-toe 0.289± 0.01 0.251±0.02 • 0.270±0.01 •

mushroom 0.019± 0.00 0.002±0.00 • 0.011±0.00 •

breast-cancer 0.183± 0.03 0.180±0.03 0.181±0.03 •

kr-vs-kp 0.085± 0.01 0.071±0.02 • 0.078±0.01 •

sonar 0.380± 0.04 0.376±0.04 0.378±0.04

pima-diabetes 0.408± 0.02 0.419±0.02 ◦ 0.411±0.02 ◦

vote 0.200± 0.02 0.178±0.03 • 0.188±0.03 •

yeast 0.238± 0.00 0.237±0.01 0.247±0.00 ◦

hepatitis 0.353± 0.03 0.356±0.04 0.353±0.04

liver-disorders 0.447± 0.03 0.454±0.03 0.448±0.03

spambase 0.214± 0.01 0.211±0.01 • 0.212±0.01 •

ionosphere 0.260± 0.03 0.254±0.04 0.257±0.03 •

sick 0.093± 0.01 0.088±0.01 • 0.090±0.01 •

spect 0.444± 0.02 0.458±0.03 ◦ 0.447±0.03

◦, • statistically significant differences

Table 4.12: Root mean squared error with bagging

Discussion

From the three tables, Table 4.11, Table 4.12 and Table 4.13, it is difficult to tell which

smoothing method is the best of all by just looking at the significant differences. However,

they confirm that bagging improves the probability estimates of unsmoothed trees, to a

level such that smoothing does not bring much additional benefit. M-Estimate smoothing

has a lead in area under ROC curve, no smoothing has a significant lead in root mean

squared error, and the Laplace correction leads in the entropy gain. Because of the poor

performance in entropy gain for unsmoothed trees, M-Branch smoothing will be compared

with the Laplace correction in the next section: it is the second best in both AUCs and

root mean squared error, and it leads in entropy gain. In what follows we use Lapalace

smoothing as the baseline because it seems to exhibit the most robust behaviour overall.

4.7 M-Branch smoothing with Bagging

In this section, M-Branch smoothing and Laplace smoothing, both with bagging, are

compared, to find out the best smoothing method before the PPM methods with bagging

are considered. The methods are compared according to the three standard criteria.
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Dataset M-Estimate No Smoothing Laplace

correction

monks-1 0.70± 0.05 0.92± 0.04 ◦ 0.78±0.04 ◦

monks-2 0.04± 0.04 -4.28± 7.02 0.02±0.05

monks-3 0.82± 0.02 -6.69± 8.41 0.86±0.03 ◦

tic-tac-toe 0.48± 0.02 0.28± 1.92 0.54±0.03 ◦

mushroom 0.99± 0.00 1.00± 0.00 ◦ 0.99±0.00 ◦

breast-cancer 0.75± 0.04 -1.70± 5.09 0.76±0.04 ◦

kr-vs-kp 0.94± 0.01 0.25± 1.17 0.96±0.01 ◦

sonar 0.35± 0.10 -0.42± 4.45 0.36±0.11

pima-diabetes 0.21± 0.06 -3.63± 5.89 0.19±0.07 •

vote 0.72± 0.04 -0.69± 4.03 0.75±0.04 ◦

yeast 0.65± 0.07 -47.91±13.70 • 0.45±0.05 •

hepatitis 0.17± 0.08 -0.89± 5.93 0.17±0.10

liver-disorders 0.13± 0.08 -3.81± 9.48 0.12±0.10

spambase 0.72± 0.02 0.50± 0.59 0.73±0.02 ◦

ionosphere 0.59± 0.08 -2.62±10.94 0.59±0.09

sick 0.28± 0.01 -0.36± 1.20 0.28±0.01 ◦

spect 0.14± 0.07 -7.34±13.57 0.12±0.09

◦, • statistically significant differences

Table 4.13: Entropy gain with bagging

4.7.1 Area under ROC curve

Table 4.14 shows the area under the ROC curve for Laplace correction versus M-Branch

smoothing. ◦ in the second column shows the datasets that have a significantly increased

AUC with M-Branch smoothing.

From the ◦ symbols, we can see there are two significant improvements for M-

Branch smoothing over the Laplace correction and 3 significant degradations. It is hard

to tell which one is better from these results. By comparing the values more closely, there

are 6 wins, 4 ties, and 7 losses in AUC, so the Laplace correction wins by 1, hence it is

very hard to tell which one is better.

4.7.2 Root mean squared error

Table 4.15 shows the root mean squared error for the Laplace correction and M-Branch

smoothing, with the Laplace correction as the test base. ◦ indicates significantly increased

error for M-Branch smoothing, • indicates significantly decreased root mean squared

error, which is what we are looking for.

There are 7 significant degradations for M-Branch smoothing over Laplace smooth-
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Dataset Laplace M-Branch

correction

monks-1 1.000±0.00 1.000±0.00

monks-2 0.633±0.05 0.616±0.06 •

monks-3 0.991±0.01 0.990±0.01

tic-tac-toe 0.985±0.01 0.978±0.01 •

mushroom 1.000±0.00 1.000±0.00

breast-cancer 0.989±0.01 0.989±0.01

kr-vs-kp 1.000±0.00 0.999±0.00

sonar 0.878±0.06 0.873±0.06

pima-diabetes 0.810±0.03 0.818±0.03 ◦

vote 0.990±0.01 0.991±0.01

yeast 0.788±0.03 0.796±0.03 ◦

hepatitis 0.832±0.07 0.834±0.08

liver-disorders 0.743±0.07 0.746±0.06

spambase 0.981±0.00 0.980±0.00 •

ionosphere 0.956±0.03 0.955±0.03

sick 0.991±0.01 0.991±0.01

spect 0.750±0.06 0.763±0.06

◦, • statistically significant differences

Table 4.14: Area under ROC curve with bagging (Laplace correction vs M-Branch)

ing. There are 2 significant improvement for M-Branch smoothing. The datasets are vote

and yeast. The Laplace correction is clearly the better algorithm for root mean squared

error by looking at the indicators for significant differences. Also, if we look at the table

more closely, there are 9 datasets where we are better off with Laplace smoothing based

on raw estimates.

4.7.3 Entropy gain

Table 4.16 shows the entropy gain of the Laplace correction compared against M-Branch

smoothing with Laplace correction as the test base. ◦ in the second column shows signifi-

cant improvements of entropy gain for Laplace smoothing, • shows significant degradation.

From the table, we can observe that there are 6 significant degradations and two

significant improvement for M-Branch smoothing over the Laplace correction. The

improved datasets are identical to those in the case of root mean squared error: vote and

yeast. By comparing the entropy gain values directly, there 10 datasets where we are

better off with the Laplace correction.

50



Dataset Laplace M-Branch

correction

monks-1 0.163±0.03 0.207 ± 0.03 ◦

monks-2 0.471±0.02 0.469 ± 0.01

monks-3 0.127±0.03 0.119 ± 0.03

tic-tac-toe 0.270±0.01 0.289 ± 0.01 ◦

mushroom 0.011±0.00 0.021 ± 0.01 ◦

breast-cancer 0.181±0.03 0.182 ± 0.03

kr-vs-kp 0.078±0.01 0.084 ± 0.01 ◦

sonar 0.378±0.04 0.381 ± 0.04

pima-diabetes 0.411±0.02 0.408 ± 0.02

vote 0.188±0.03 0.174 ± 0.03 •

yeast 0.247±0.00 0.232 ± 0.01 •

hepatitis 0.353±0.04 0.352 ± 0.03

liver-disorders 0.448±0.03 0.446 ± 0.03

spambase 0.212±0.01 0.216 ± 0.01 ◦

ionosphere 0.257±0.03 0.264 ± 0.03 ◦

sick 0.090±0.01 0.094 ± 0.01 ◦

spect 0.447±0.03 0.442 ± 0.03

◦, • statistically significant differences

Table 4.15: Root mean squared error with bagging (Laplace correction vs M-Branch)

Discussion

To sum up, after comparing the Laplace correction with M-Branch smoothing when used

in bagged trees, there is no clear conclusion regarding which one is better from the area

under the ROC curve table. However, observing the other two measures of smoothing

effects, the Laplace correction is the better one, considering the differences in root mean

squared error and entropy gain are more significant and easier to observe. The Laplace

correction with bagging will be compared with PPM methods in the next section to see

which smoothing algorithm has the best effect on probability estimates in bagged trees.

4.8 PPM with Bagging

In this section, the best performing smoothing method for bagged trees from previous

sections, the Laplace correction is compared with PPM methods. As before, the methods

are going to be evaluated in three different aspects: AUC, root mean squared error and

entropy gain.
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Dataset Laplace M-Branch

correction

monks-1 0.782±0.04 0.714±0.05 •

monks-2 0.024±0.05 0.028±0.04

monks-3 0.864±0.03 0.864±0.03

tic-tac-toe 0.538±0.03 0.508±0.03 •

mushroom 0.994±0.00 0.992±0.00 •

breast-cancer 0.756±0.04 0.754±0.05

kr-vs-kp 0.956±0.01 0.951±0.01 •

sonar 0.355±0.11 0.346±0.12

pima-diabetes 0.191±0.07 0.194±0.08

vote 0.754±0.04 0.791±0.07 ◦

yeast 0.453±0.05 0.870±0.09 ◦

hepatitis 0.168±0.10 0.167±0.10

liver-disorders 0.122±0.10 0.126±0.10

spambase 0.727±0.02 0.720±0.02 •

ionosphere 0.593±0.09 0.561±0.11 •

sick 0.283±0.01 0.278±0.02

spect 0.123±0.09 0.131±0.11

◦, • statistically significant differences

Table 4.16: Entropy gain with bagging(Laplace correction vs M-Branch)

4.8.1 Area under ROC curve

Table 4.17 shows the AUC for Laplace correction and the PPM methods with Laplace

correction as the test base. The • symbols in the columns other than the left-most column

show significant degradation in AUCs for PPM methods.

From the table all we can see are significant degradations, no PPM method has

significant improvements over the Laplace correction. monk’s problem 2 and tic tac toe

are the two datasets for which all PPM methods are significantly worse than the Laplace

correction. Therefore the Laplace correction is the best of all methods in this table.

However, the differences in AUC are very small in almost all cases.

4.8.2 Root mean squared error

Table 4.18 shows the root mean squared error of the Laplace correction versus the

PPM methods with Laplace correction as the test base. • symbols indicate significantly

improved performance of PPM methods. ◦ symbols shows a significantly increased root

mean squared error.

By looking at the table, we can see that there are many significant differences,
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Dataset Laplace PPMA PPMB PPMC PPMD PPMP

correction

monks-1 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00

monks-2 0.633±0.05 0.612±0.05 • 0.609±0.05 • 0.609±0.05 • 0.604±0.05 • 0.613±0.05 •

monks-3 0.991±0.01 0.989±0.01 0.989±0.01 0.989±0.01 0.992±0.01 0.989±0.01

tic-tac-toe 0.985±0.01 0.981±0.01 • 0.978±0.01 • 0.980±0.01 • 0.979±0.01 • 0.979±0.01 •

mushroom 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00

breast-cancer 0.989±0.01 0.990±0.01 0.990±0.01 0.990±0.01 0.989±0.01 0.990±0.01

kr-vs-kp 1.000±0.00 0.999±0.00 0.999±0.00 0.999±0.00 0.999±0.00 0.999±0.00

sonar 0.878±0.06 0.879±0.06 0.878±0.06 0.879±0.06 0.878±0.06 0.878±0.06

pima-diabetes 0.810±0.03 0.809±0.03 0.812±0.03 0.810±0.03 0.803±0.03 • 0.809±0.03

vote 0.990±0.01 0.990±0.01 0.991±0.01 0.991±0.01 0.990±0.01 0.991±0.01

yeast 0.788±0.03 0.789±0.03 0.792±0.03 0.790±0.03 0.786±0.03 0.789±0.03

hepatitis 0.832±0.07 0.831±0.08 0.832±0.07 0.831±0.08 0.829±0.08 0.831±0.08

liver-disorders 0.743±0.07 0.743±0.06 0.745±0.06 0.744±0.06 0.741±0.06 0.744±0.06

spambase 0.981±0.00 0.981±0.00 0.981±0.00 0.981±0.00 0.981±0.00 0.981±0.00

ionosphere 0.956±0.03 0.956±0.03 0.956±0.03 0.956±0.03 0.955±0.03 0.956±0.03

sick 0.991±0.01 0.990±0.01 0.990±0.01 0.990±0.01 0.986±0.02 0.990±0.01

spect 0.750±0.06 0.748±0.06 0.752±0.06 0.749±0.06 0.741±0.06 0.748±0.06

◦, • statistically significant differences

Table 4.17: Area under ROC curve (Laplace correction vs PPM methods

more than in Table 4.17. There are 8 out of 17 significantly improved root mean squared

error values for PPMA, 3 for PPMB, 7 for PPMC, 8 for PPMD and 7 for PPMP. On the

other hand, there are 2 significantly degraded root mean squared error values for PPMA,

1 for PPMB, 2 for PPMC, 3 for PPMD and 2 for PPMP. These results show that PPM

methods are better than the Laplace correction for root mean squared error. monk’s

problem 2 and pima diabetes are the two odd datasets for which the Laplace correction

is preferred.

4.8.3 Entropy gain

Table 4.19 has the comparison for the Laplace correction and PPM methods for entropy

gain. ◦ symbols indicate significant improvement in entropy gain for PPM methods.

From the table we can see there are only 2 degradations for PPM methods, monk’s

problem 2 and pima diabetes, which is identical to root mean squared error. There are no

significant degradations for PPMD, but fewer improvements too. There are 5 out of 17

significant improvements for PPMA, 5 for PPMB, 6 for PPMC, 2 for PPMD and 5 for

PPMP.
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Dataset Laplace PPMA PPMB PPMC PPMD PPMP

Dataset correction

monks-1 0.163±0.03 0.138±0.03 • 0.162±0.04 0.137±0.03 • 0.091±0.03 • 0.152±0.04 •

monks-2 0.471±0.02 0.486±0.02 ◦ 0.481±0.02 ◦ 0.487±0.02 ◦ 0.504±0.02 ◦ 0.484±0.02 ◦

monks-3 0.127±0.03 0.108±0.03 • 0.101±0.04 • 0.106±0.04 • 0.107±0.04 • 0.104±0.04 •

tic-tac-toe 0.270±0.01 0.260±0.02 • 0.268±0.02 0.261±0.02 • 0.252±0.02 • 0.264±0.02 •

mushroom 0.011±0.00 0.009±0.00 • 0.010±0.01 0.009±0.00 • 0.002±0.00 • 0.009±0.00 •

breast-cancer 0.181±0.03 0.179±0.03 0.180±0.03 0.179±0.03 0.180±0.03 0.179±0.03

kr-vs-kp 0.078±0.01 0.076±0.01 • 0.078±0.01 0.076±0.01 • 0.071±0.02 • 0.076±0.01 •

sonar 0.378±0.04 0.376±0.04 0.377±0.04 0.377±0.04 0.376±0.04 0.376±0.04

pima-diabetes 0.411±0.02 0.415±0.02 ◦ 0.413±0.02 0.414±0.02 ◦ 0.418±0.02 ◦ 0.415±0.02 ◦

vote 0.188±0.03 0.176±0.03 • 0.175±0.03 • 0.175±0.03 • 0.176±0.03 • 0.175±0.03 •

yeast 0.247±0.00 0.235±0.01 • 0.234±0.01 • 0.235±0.01 • 0.237±0.01 • 0.235±0.01 •

hepatitis 0.353±0.04 0.354±0.04 0.353±0.04 0.353±0.04 0.354±0.04 0.353±0.04

liver-disorders 0.448±0.03 0.450±0.03 0.449±0.03 0.449±0.03 0.453±0.03 0.450±0.03

spambase 0.212±0.01 0.212±0.01 • 0.212±0.01 0.212±0.01 0.211±0.01 • 0.212±0.01

ionosphere 0.257±0.03 0.256±0.03 0.257±0.03 0.256±0.03 0.254±0.04 0.256±0.03

sick 0.090±0.01 0.089±0.01 0.092±0.01 0.090±0.01 0.089±0.01 0.090±0.01

spect 0.447±0.03 0.452±0.03 0.450±0.03 0.451±0.03 0.457±0.03 ◦ 0.452±0.03

◦, • statistically significant differences

Table 4.18: Root mean squared error (Laplace correction vs PPM methods)

Discussion

From the three tables in this section, we can see that PPM smoothing methods have

improved the probability estimates from the Laplace correction considering that they

perform better in both root mean squared error and entropy gain. As the best tested

method in previous sections, Laplace correction is a very good smoothing method with

bagged trees, but the experiments in this section show that PPM methods are better than

the Laplace correction with bagged trees. PPM methods are the best of all smoothing

methods considered when using in bagged trees.

4.9 Smoothing pruned trees

In this section, pruned trees are used to test the performance of the smoothing methods

considered in previous sections. Reduced-error pruning is used for this. As discussed in

Chapter 2, it is a technique that uses a part of the dataset that is not the same as the

part used for building the tree to make the tree smaller. Note that class counts from the

pruning data are backfitted into the tree once it has been pruned. This way we aim to have

more accurate PETs, increasing the probability estimate performance. To demonstrate

the effect of pruning, Table 4.20 shows the area under the ROC curve for default REPTree
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Dataset Laplace PPMA PPMB PPMC PPMD PPMP

correction

monks-1 0.782±0.04 0.835±0.04 ◦ 0.802±0.05 ◦ 0.837±0.04 ◦ 0.920± 0.03 ◦ 0.819±0.05 ◦

monks-2 0.024±0.05 -0.028±0.07 • -0.009±0.06 • -0.030±0.07 • -4.289± 7.02 -0.018±0.07 •

monks-3 0.864±0.03 0.898±0.05 ◦ 0.902±0.06 ◦ 0.900±0.05 ◦ -6.690± 8.41 0.900±0.06 ◦

tic-tac-toe 0.538±0.03 0.580±0.03 ◦ 0.564±0.03 ◦ 0.578±0.03 ◦ 0.275± 1.92 0.574±0.03 ◦

mushroom 0.994±0.00 0.997±0.00 ◦ 0.997±0.00 ◦ 0.997±0.00 ◦ 0.999± 0.00 ◦ 0.997±0.00 ◦

breast-cancer 0.756±0.04 0.754±0.06 0.754±0.06 0.755±0.06 -0.926± 4.02 0.754±0.06

kr-vs-kp 0.956±0.01 0.962±0.01 ◦ 0.961±0.01 0.962±0.01 ◦ 0.253± 1.17 0.962±0.01 ◦

sonar 0.355±0.11 0.355±0.13 0.354±0.13 0.354±0.13 -0.422± 4.44 0.355±0.13

pima-diabetes 0.191±0.07 0.151±0.09 • 0.156±0.09 • 0.153±0.09 • -3.623± 5.89 0.150±0.09 •

vote 0.754±0.04 0.778±0.08 0.783±0.08 0.781±0.08 -0.686± 4.03 0.781±0.08

yeast 0.453±0.05 0.515±0.18 0.669±0.14 ◦ 0.629±0.15 ◦ -0.425± 2.27 0.580±0.16

hepatitis 0.168±0.10 0.155±0.13 0.160±0.12 0.158±0.12 -0.538± 4.88 0.158±0.12

liver-disorders 0.122±0.10 0.093±0.12 0.099±0.12 0.095±0.12 -3.803± 9.48 0.093±0.12

spambase 0.727±0.02 0.725±0.03 0.724±0.03 0.725±0.03 0.505± 0.59 0.725±0.03

ionosphere 0.593±0.09 0.578±0.12 0.575±0.12 0.578±0.12 -2.615±10.94 0.578±0.12

sick 0.283±0.01 0.280±0.02 0.278±0.02 0.279±0.02 -0.019± 0.82 0.279±0.02

spect 0.123±0.09 0.077±0.14 0.084±0.14 0.079±0.14 -7.338±13.57 0.076±0.14

◦, • statistically significant differences

Table 4.19: Entropy gain (Laplace correction vs PPM methods)

and a pruned REPTree. By observing the table, we can see three ◦ in the third column.

That means there are three significant improvements of pruned REPTree over the default

REPTree. There are no significant degradations for pruned trees. The pruning process

thus has a positive effects on the probability estimates. Similar effects can be observed for

root mean squared error and entropy gain (see Appendix A).

4.10 Pruning with simple smoothing methods

In this section, the simple smoothing methods are applied to pruned trees instead of un-

pruned trees. As before this section involves 2 smoothing methods, the Laplace correction

and M-Estimate smoothing.

4.10.1 Area under ROC curve

Table 4.21 shows the AUC values for M-Estimate smoothing versus no smoothing and

Laplace correction, with M-Estimate as the test base. The • symbol shows significantly

smaller AUC value compared to M-Estimate.

From the table, we can see there is only one significant difference. spambase has a
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Dataset No No Smoothing

smoothing with pruning

monks-1 0.974±0.03 0.969 ± 0.04

monks-2 0.568±0.06 0.527 ± 0.06

monks-3 0.990±0.01 0.992 ± 0.01

tic-tac-toe 0.879±0.03 0.867 ± 0.04

mushroom 1.000±0.00 1.000 ± 0.00

breast-cancer 0.952±0.03 0.958 ± 0.02

kr-vs-kp 0.997±0.00 0.998 ± 0.00

sonar 0.751±0.08 0.725 ± 0.08

pima-diabetes 0.684±0.05 0.757 ± 0.05 ◦

vote 0.984±0.01 0.974 ± 0.02

yeast 0.690±0.03 0.744 ± 0.03 ◦

hepatitis 0.717±0.11 0.650 ± 0.13

liver-disorders 0.655±0.07 0.642 ± 0.07

spambase 0.932±0.01 0.954 ± 0.01 ◦

ionosphere 0.892±0.04 0.905 ± 0.04

sick 0.965±0.02 0.964 ± 0.03

spect 0.678±0.07 0.705 ± 0.06

◦, • statistically significant differences

Table 4.20: Area under ROC curve (No smoothing vs No smoothing pruned)

significantly smaller AUC value for no smoothing, which means there is an improvement

for M-Estimate smoothing over no smoothing. There is no significant difference between

M-Estimate smoothing and the Laplace correction. By comparing the numbers more

closely, M-Estimate smoothing has 13 wins over no smoothing, but only 9 wins and 8

losses over Laplace correction. It is easily observed that the M-Estimate is better than no

smoothing in terms of AUC, but it is difficult to draw a conclusion between M-Estimate

smoothing and the Laplace correction.

4.10.2 Root mean squared error

Table 4.22 shows the root mean squared error for M-Estimate smoothing versus no

smoothing and the Laplace correction, with M-Estimate as the test base. The ◦ symbols

show a significantly larger root mean squared error for M-Estimate smoothing. • symbols

indicates significantly smaller error value.

From Table 4.22, there are many significant differences compared to Table 4.21.

In the second column, we can see 4 significant improvements of no smoothing over

M-Estimate, but there are more datasets that yield significantly larger root mean squared

error. Comparing the values more closely, it is easier to see the better smoothing
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Dataset M-Estimate No smoothing Laplace

correction

monks-1 0.964± 0.04 0.969±0.04 0.968±0.04

monks-2 0.534± 0.06 0.527±0.06 0.531±0.06

monks-3 0.991± 0.01 0.992±0.01 0.991±0.01

tic-tac-toe 0.871± 0.04 0.867±0.04 0.874±0.04

mushroom 1.000± 0.00 1.000±0.00 1.000±0.00

breast-cancer 0.965± 0.02 0.958±0.02 0.964±0.02

kr-vs-kp 0.998± 0.00 0.998±0.00 0.998±0.00

sonar 0.734± 0.07 0.725±0.08 0.730±0.07

pima-diabetes 0.771± 0.05 0.757±0.05 0.766±0.05

vote 0.977± 0.02 0.974±0.02 0.977±0.02

yeast 0.750± 0.03 0.744±0.03 0.751±0.03

hepatitis 0.660± 0.13 0.650±0.13 0.660±0.13

liver-disorders 0.649± 0.07 0.642±0.07 0.647±0.07

spambase 0.960± 0.01 0.954±0.01 • 0.959±0.01

ionosphere 0.909± 0.03 0.905±0.04 0.909±0.03

sick 0.972± 0.02 0.964±0.03 0.972±0.02

spect 0.713± 0.05 0.705±0.06 0.708±0.05

◦, • statistically significant differences

Table 4.21: Area under ROC curve with pruning

method: the M-Estimate wins in 12 datasets. In the third column, there are 4 significant

improvements and 4 significant degradations, which makes M-Estimate smoothing and

Laplace correction yield a draw in root mean squared error as well.

4.10.3 Entropy gain

Table 4.23 shows the entropy gain values of M-Estimate smoothing versus no smoothing

and the Laplace correction, with M-Estimate as the test base. • and ◦ shows significantly

improved or degraded entropy gain respectively.

By observing the table, we can see 3 significant improvements for M-Estimate smoothing

over no smoothing. After comparing the values, it is easy to see that mushroom is

the only dataset where no smoothing shows an advantage. This is because the default

tree built from mushroom is almost perfect in every aspect and thus does not need any

smoothing. The improvements observed make M-Estimate smoothing the better method.

In the third column, 5 improvements and 5 degradations are observed with respect to the

Laplace correction, making it a tie again. Comparing the values more closely, there are

10 out of 17 datasets where we would prefer M-Estimate smoothing.
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Dataset M-Estimate No Smoothing Laplace

correction

monks-1 0.246± 0.07 0.196±0.10 • 0.221±0.08 •

monks-2 0.482± 0.01 0.495±0.02 ◦ 0.486±0.02 ◦

monks-3 0.116± 0.03 0.094±0.05 • 0.103±0.04 •

tic-tac-toe 0.360± 0.02 0.363±0.03 0.358±0.03

mushroom 0.022± 0.01 0.008±0.02 • 0.016±0.01 •

breast-cancer 0.214± 0.03 0.217±0.03 0.215±0.03

kr-vs-kp 0.103± 0.02 0.099±0.02 • 0.100±0.02 •

sonar 0.454± 0.04 0.465±0.05 ◦ 0.458±0.05

pima-diabetes 0.426± 0.02 0.434±0.03 ◦ 0.429±0.02 ◦

vote 0.187± 0.04 0.188±0.04 0.187±0.04

yeast 0.242± 0.01 0.245±0.01 ◦ 0.243±0.00

hepatitis 0.389± 0.03 0.394±0.04 0.390±0.03

liver-disorders 0.481± 0.03 0.495±0.03 ◦ 0.485±0.03 ◦

spambase 0.257± 0.01 0.261±0.01 ◦ 0.258±0.01 ◦

ionosphere 0.293± 0.04 0.295±0.04 0.293±0.04

sick 0.109± 0.01 0.109±0.01 0.109±0.01

spect 0.449± 0.03 0.454±0.03 0.450±0.03

◦, • statistically significant differences

Table 4.22: Root mean squared error with pruning

Discussion

In this section, two simple smoothing methods are applied to pruned REPTree classifiers.

The two methods, M-Estimate smoothing and Laplace correction, are better than no

smoothing at all, which is a different result from bagged trees. Furthermore, M-Estimate

smoothing and the Laplace correction have a very similar effect on smoothing pruned trees.

In two of the three tables, it is very hard to tell which one is better than the other, but

in the entropy gain table, M-Estimate has a small advantage over the Laplace correction.

Thus, it will be used to compare to M-Branch smoothing in the next section.

4.11 M-Branch smoothing on pruned trees

In this section, the best smoothing method on pruned trees so far, M-Estimate smoothing,

and M-Branch smoothing are compared based on the standard three criteria.

4.11.1 Area under ROC curve

Table 4.24 shows the AUC values of M-Estimate smoothing and M-Branch smoothing.

From the table, we cannot see any significant difference. However, by comparing
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Dataset M-Estimate No Smoothing Laplace

correction

monks-1 0.653±0.12 -0.932± 6.22 0.713±0.13 ◦

monks-2 -0.640±3.40 -18.857±19.62 -0.653±3.40 •

monks-3 0.863±0.03 -4.858± 6.75 0.891±0.04 ◦

tic-tac-toe -0.213±2.03 -17.553±11.41 • -0.196±2.03 ◦

mushroom 0.988±0.00 0.998± 0.00 ◦ 0.993±0.00 ◦

breast-cancer 0.669±0.07 -3.637± 7.33 0.665±0.08

kr-vs-kp 0.926±0.02 0.256± 1.09 0.934±0.02 ◦

sonar 0.108±0.14 -17.730±29.55 0.081±0.16

pima-diabetes 0.149±0.07 -12.979±13.81 0.134±0.08 •

vote 0.753±0.07 0.382± 2.10 0.756±0.07

yeast 0.704±0.08 -62.601±19.92 • 0.667±0.08 •

hepatitis 0.049±0.09 -4.462±16.75 0.042±0.10

liver-disorders 0.026±0.09 -25.159±28.87 0.002±0.10 •

spambase 0.628±0.03 -4.914± 3.55 • 0.624±0.03 •

ionosphere 0.498±0.09 -5.153±10.59 0.496±0.10

sick 0.256±0.02 -0.608± 1.24 0.258±0.02

spect 0.119±0.08 -7.319±16.79 0.110±0.09

◦, • statistically significant differences

Table 4.23: Entropy gain with pruning

the values, we can find out that there are 7 small improvements for M-Branch smoothing

over M-Estimate smoothing, and there are 2 degradations and 8 ties. It is too early to tell

which one is better based on area under the ROC curve alone, but M-Branch smoothing

has a small advantage.

4.11.2 Root mean squared error

Table 4.25 shows the root mean squared error values for M-Estimate smoothing versus

M-Branch smoothing, with M-Estimate as the test base. The • symbol in the second

column indicates significantly smaller root mean squared error.

From the table, we can see that there is only one significant difference: yeast has

a better probability estimate with M-Branch smoothing. Comparing the values, we find

that there are 6 datasets that have a smaller root mean squared error with M-Branch

smoothing. There are 8 ties in this table too, which makes 3 of the 17 datasets favour

M-Estimate smoothing. Considering the small differences, M-Branch smoothing has a

very small advantage in root mean squared error again, just like in area under ROC

curves.
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Dataset M-Estimate M-Branch

monks-1 0.964± 0.04 0.966±0.04

monks-2 0.534± 0.06 0.525±0.06

monks-3 0.991± 0.01 0.991±0.01

tic-tac-toe 0.871± 0.04 0.873±0.04

mushroom 1.000± 0.00 1.000±0.00

breast-cancer 0.965± 0.02 0.965±0.02

kr-vs-kp 0.998± 0.00 0.998±0.00

sonar 0.734± 0.07 0.735±0.07

pima-diabetes 0.771± 0.05 0.770±0.05

vote 0.977± 0.02 0.977±0.02

yeast 0.750± 0.03 0.756±0.03

hepatitis 0.660± 0.13 0.661±0.13

liver-disorders 0.649± 0.07 0.651±0.07

spambase 0.960± 0.01 0.960±0.01

ionosphere 0.909± 0.03 0.909±0.03

sick 0.972± 0.02 0.972±0.02

spect 0.713± 0.05 0.715±0.05

◦, • statistically significant differences

Table 4.24: Area under AUC curve with pruning (M-Estimate vs M-Branch)

4.11.3 Entropy gain

Table 4.26 shows the entropy gain of M-Estimate smoothing and M-Branch smoothing,

with M-Estimate as the test base. The ◦ symbols in the second column indicate a

significantly improved entropy gain with M-Branch smoothing.

From the table, we observe 3 significant improvements with M-Branch smoothing.

Monk’s problem 3, mushroom and kr vs kp have a better entropy gain with this technique.

There are no significant degradations in the table. Thus M-Branch smoothing performs

better considering entropy gain.

Discussion

In this section, M-Estimate smoothing and M-Branch smoothing on pruned REPTree are

compared in detail. M-Branch smoothing has a small advantage in area under ROC curve,

a small advantage in root mean squared error, and a relatively bigger advantage in entropy

gain. To sum up, M-Branch smoothing has better effects over M-Estimate smoothing on

the probability estimates of pruned REPTree.
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Dataset M-Estiamte M-Branch

monks-1 0.246± 0.07 0.244±0.07

monks-2 0.482± 0.01 0.482±0.01

monks-3 0.116± 0.03 0.113±0.03

tic-tac-toe 0.360± 0.02 0.359±0.02

mushroom 0.022± 0.01 0.024±0.01

breast-cancer 0.214± 0.03 0.214±0.03

kr-vs-kp 0.103± 0.02 0.103±0.02

sonar 0.454± 0.04 0.454±0.04

pima-diabetes 0.426± 0.02 0.426±0.02

vote 0.187± 0.04 0.186±0.04

yeast 0.242± 0.01 0.241±0.01 •

hepatitis 0.389± 0.03 0.388±0.03

liver-disorders 0.481± 0.03 0.481±0.03

spambase 0.257± 0.01 0.257±0.01

ionosphere 0.293± 0.04 0.294±0.04

sick 0.109± 0.01 0.110±0.01

spect 0.449± 0.03 0.449±0.03

◦, • statistically significant differences

Table 4.25: Root mean squared error with pruning (M-Estimate vs M-Branch)

4.12 PPM with pruning

In this section, M-Branch smoothing, the best smoothing method on pruned REPTree

classifiers so far, is compared with the new PPM-based smoothing methods.

4.12.1 Area under ROC curve

Table 4.27 shows the area under ROC curve for M-Branch smoothing and the PPM meth-

ods, with M-Estimate as the test base, which means all the PPM methods are compared

to M-Branch smoothing, the left most column. • indicates significant degradation in area

under ROC curve for PPM methods.

We can see only two significant degradations, both of them are for the PPMD

method. yeast and spambase are the two datasets where M-Branch smoothing has a

significant advantage. As the table shows, it is very hard to tell which smoothing method

is better just by the significant differences. If we look at the raw values more closely,

M-Branch smoothing has 10 wins, 3 losses and 4 ties over PPMA, 8 wins, 3 losses and

6 ties over PPMB, 9 wins, 3 losses and 5 ties over PPMC, 11 wins, 3 losses and 3 ties

over PPMD, and finally, it has 9 wins, 3 losses and 5 ties over PPMP. In the table, we

can observe that mushroom, kr vs kp and vote have the same AUC values across the
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Dataset M-Estimate M-Branch

monks-1 0.653±0.12 0.660±0.12

monks-2 -0.640±3.40 -0.018±0.05

monks-3 0.863±0.03 0.871±0.04 ◦

tic-tac-toe -0.213±2.03 0.354±0.07

mushroom 0.988±0.00 0.991±0.00 ◦

breast-cancer 0.669±0.07 0.665±0.08

kr-vs-kp 0.926±0.02 0.930±0.02 ◦

sonar 0.108±0.14 0.098±0.15

pima-diabetes 0.149±0.07 0.144±0.07

vote 0.753±0.07 0.756±0.07

yeast 0.704±0.08 0.691±0.10

hepatitis 0.049±0.09 0.047±0.10

liver-disorders 0.026±0.09 0.019±0.10

spambase 0.628±0.03 0.626±0.03

ionosphere 0.498±0.09 0.492±0.10

sick 0.256±0.02 0.256±0.02

spect 0.119±0.08 0.116±0.09

◦, • statistically significant differences

Table 4.26: Entropy gain with pruning (M-Estimate vs M-Branch)

whole table. monk’s problem 1 and monk’s problem 2 are the two datasets that have

better results with PPM methods across the table. Overall, M-Branch smoothing has a

small advantage over the PPM methods with no significant differences except compared

to PPMD.

4.12.2 Root mean squared error

Table 4.28 shows the root mean squared error for M-Branch smoothing and PPM

smoothing methods, with M-Branch as the test base. ◦ indicates significant degradation

in root mean squared error for PPM methods over M-Branch smoothing, • indicates

significantly improved root mean squared error.

In contrast to the area under ROC curve table, this table has many significant dif-

ferences. Just by looking at them it is hard to tell which method is the better one.

M-Branch smoothing seems to be tieing with all the PPM methods. It has 5 wins, 4

losses and eight ties over PPMA, 3 wins, 4 loses and 10 ties over PPMB, 4 wins, 4 losses

and 9 ties over PPMC, 5 wins, 4 losses and 8 ties over PPMD, and at last, it has 5 wins,

4 losses and 8 ties with PPMP.
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Dataset M-Branch PPMA PPMB PPMC PPMD PPMP

monks-1 0.966±0.04 0.968±0.04 0.967±0.04 0.969±0.04 0.969±0.04 0.968±0.04

monks-2 0.525±0.06 0.528±0.06 0.528±0.06 0.527±0.06 0.528±0.06 0.527±0.06

monks-3 0.991±0.01 0.990±0.01 0.991±0.01 0.991±0.01 0.992±0.01 0.991±0.01

tic-tac-toe 0.873±0.04 0.874±0.04 0.873±0.04 0.874±0.04 0.867±0.04 0.874±0.04

mushroom 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00

breast-cancer 0.965±0.02 0.964±0.02 0.964±0.02 0.964±0.02 0.959±0.02 0.964±0.02

kr-vs-kp 0.998±0.00 0.998±0.00 0.998±0.00 0.998±0.00 0.998±0.00 0.998±0.00

sonar 0.735±0.07 0.727±0.07 0.730±0.07 0.729±0.07 0.724±0.08 0.729±0.07

pima-diabetes 0.770±0.05 0.763±0.05 0.765±0.05 0.764±0.05 0.760±0.05 0.763±0.05

vote 0.977±0.02 0.977±0.02 0.977±0.02 0.977±0.02 0.977±0.02 0.977±0.02

yeast 0.756±0.03 0.750±0.03 0.754±0.03 0.753±0.03 0.747±0.03 • 0.751±0.03

hepatitis 0.661±0.13 0.659±0.13 0.659±0.13 0.660±0.13 0.654±0.13 0.660±0.13

liver-disorders 0.651±0.07 0.646±0.07 0.647±0.07 0.646±0.07 0.646±0.07 0.646±0.07

spambase 0.960±0.01 0.958±0.01 0.958±0.01 0.958±0.01 0.954±0.01 • 0.958±0.01

ionosphere 0.909±0.03 0.908±0.04 0.908±0.04 0.908±0.04 0.907±0.04 0.908±0.04

sick 0.972±0.02 0.972±0.02 0.972±0.02 0.972±0.02 0.964±0.03 0.972±0.02

spect 0.715±0.05 0.708±0.05 0.711±0.05 0.709±0.05 0.708±0.05 0.709±0.05

◦, • statistically significant differences

Table 4.27: Area under ROC curve with pruning(M-Branch vs PPM methods

4.12.3 Entropy gain

Table 4.29 show the entropy gain values of M-Branch smoothing and PPM-based

smoothing methods, with M-Branch as the test base. As before, ◦ shows significant

improvement of PPM methods over M-Branch smoothing. The • symbols indicates

significant degradations.

By observing the table, there are many significant difference in this table too, but

again, M-Branch smoothing and PPM methods seems to be a tieing in terms of entropy

gain. M-Branch smoothing has 5 wins, 4 losses and 8 ties over PPMA, 3 wins, 4 losses

and 10 ties over PPMB, 4 wins, 4 losses over PPMC, 3 wins, 1 loss and 13 ties over

PPMD, and finally it has 4 wins, 4 losses and 9 ties over PPMP. The score is almost

identical to root mean squared error. At this stage, it is still hard to tell which method is

better. Further experiments would need to be done.

Discussion

From the experimental results presented in the tables in this section, it is hard to tell if

the PPM methods are better or M-Branch smoothing is better for pruned trees. Further

experiments would need to be done, with a larger collection of datasets.
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Dataset M-Branch PPMA PPMB PPMC PPMD PPMP

monks-1 0.244±0.07 0.208±0.09 • 0.213±0.09 • 0.208±0.09 • 0.196±0.10 • 0.209±0.09 •

monks-2 0.482±0.01 0.489±0.02 ◦ 0.486±0.02 ◦ 0.488±0.02 ◦ 0.493±0.02 ◦ 0.488±0.02 ◦

monks-3 0.113±0.03 0.097±0.04 • 0.098±0.04 • 0.097±0.04 • 0.095±0.05 • 0.097±0.04 •

tic-tac-toe 0.359±0.02 0.359±0.03 0.358±0.03 0.358±0.03 0.362±0.03 0.359±0.03

mushroom 0.024±0.01 0.013±0.01 • 0.014±0.01 • 0.013±0.01 • 0.008±0.01 • 0.013±0.01 •

breast-cancer 0.214±0.03 0.215±0.03 0.215±0.03 0.215±0.03 0.216±0.03 0.215±0.03

kr-vs-kp 0.103±0.02 0.099±0.02 • 0.099±0.02 • 0.099±0.02 • 0.098±0.02 • 0.099±0.02 •

sonar 0.454±0.04 0.461±0.05 0.459±0.05 0.460±0.05 0.463±0.05 0.460±0.05

pima-diabetes 0.426±0.02 0.431±0.02 ◦ 0.429±0.02 ◦ 0.430±0.02 ◦ 0.433±0.03 ◦ 0.430±0.02 ◦

vote 0.186±0.04 0.187±0.04 0.187±0.04 0.187±0.04 0.187±0.04 0.186±0.04

yeast 0.241±0.01 0.244±0.01 ◦ 0.242±0.01 0.243±0.01 ◦ 0.244±0.01 ◦ 0.243±0.01 ◦

hepatitis 0.388±0.03 0.391±0.04 0.390±0.03 0.390±0.04 0.392±0.04 0.390±0.04

liver-disorders 0.481±0.03 0.490±0.03 ◦ 0.486±0.03 ◦ 0.488±0.03 ◦ 0.492±0.03 ◦ 0.488±0.03 ◦

spambase 0.257±0.01 0.259±0.01 ◦ 0.258±0.01 0.258±0.01 0.260±0.01 ◦ 0.258±0.01 ◦

ionosphere 0.294±0.04 0.294±0.04 0.293±0.04 0.293±0.04 0.294±0.04 0.294±0.04

sick 0.110±0.01 0.108±0.01 0.109±0.01 0.109±0.01 0.109±0.01 0.109±0.01

spect 0.449±0.03 0.452±0.03 0.451±0.03 0.451±0.03 0.453±0.03 0.451±0.03

◦, • statistically significant differences

Table 4.28: Root mean squared error with pruning (M-Branch vs PPM methods)

4.13 Case study: UCSD machine learning competition

In this section, we consider the dataset from the 2010 UCSD machine learning competition.

The different smoothing methods are applied to this dataset to measure the performance

based on smoothing effects, based on unpruned REPTree classifier.

4.13.1 Dataset and Experiment setup

There were two different dataset in the 2010 UCSD machine learning competition, but

our case study focuses on the first dataset, the E-commerce Customer Identification

(Raw) dataset. There are three files provided for this dataset, a training dataset file,

a class label file for the training dataset and a test dataset file. The training dataset

has 130475 instances, 334 attributes, with a class label of 0 or 1. The test dataset has

86691 instances with the same format as the training file. The first 334 attributes are

identification and characteristics of people, the class label indicates if the corresponding

instance is a customer or not. The task of this competition was to build a model on

the training dataset, and output the probability estimates on the test dataset instances

indicate weather the test instance is going to be a potential new customer. Thus the task

was to generate a label file like the second file mentioned above, but for the test dataset

and with probability attached. The output results for the test dataset were measured by
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Dataset M-Branch PPMA PPMB PPMC PPMD PPMP

monks-1 0.660±0.12 0.751±0.14 ◦ 0.741±0.14 ◦ 0.752±0.14 ◦ -0.930± 6.22 0.750±0.14 ◦

monks-2 -0.018±0.05 -0.051±0.07 • -0.036±0.06 -0.045±0.07 • -18.848±19.62 -0.047±0.07 •

monks-3 0.871±0.04 0.904±0.05 ◦ 0.902±0.05 ◦ 0.902±0.05 ◦ -4.860± 6.75 0.904±0.05 ◦

tic-tac-toe 0.354±0.07 0.365±0.08 0.368±0.07 0.368±0.08 -17.547±11.41 • 0.366±0.08

mushroom 0.991±0.00 0.996±0.00 ◦ 0.996±0.00 ◦ 0.996±0.00 ◦ 0.998± 0.00 ◦ 0.996±0.00 ◦

breast-cancer 0.665±0.08 0.654±0.09 0.657±0.09 0.656±0.09 -3.619± 7.33 0.656±0.09

kr-vs-kp 0.930±0.02 0.938±0.02 ◦ 0.938±0.02 ◦ 0.938±0.02 ◦ 0.257± 1.09 0.938±0.02 ◦

sonar 0.098±0.15 0.048±0.18 0.062±0.17 0.058±0.18 -17.717±29.55 0.055±0.18

pima-diabetes 0.144±0.07 0.114±0.09 • 0.123±0.09 • 0.119±0.09 • -12.972±13.81 0.117±0.09 •

vote 0.756±0.07 0.756±0.08 0.756±0.08 0.756±0.08 0.388± 2.10 0.756±0.08

yeast 0.691±0.10 0.308±0.24 • 0.528±0.17 • 0.505±0.17 • -8.909± 8.10 • 0.407±0.21 •

hepatitis 0.047±0.10 0.029±0.12 0.037±0.11 0.034±0.12 -4.451±16.75 0.034±0.12

liver-disorders 0.019±0.10 -0.034±0.13 • -0.017±0.12 -0.025±0.12 -25.145±28.86 -0.028±0.13

spambase 0.626±0.03 0.617±0.04 • 0.619±0.04 • 0.618±0.04 • -4.912± 3.55 • 0.618±0.04 •

ionosphere 0.492±0.10 0.489±0.11 0.492±0.11 0.491±0.11 -5.149±10.59 0.490±0.11

sick 0.256±0.02 0.256±0.02 0.256±0.02 0.256±0.02 -0.563± 1.23 0.256±0.02

spect 0.116±0.09 0.099±0.10 0.104±0.10 0.102±0.10 -7.314±16.79 0.101±0.10

◦, • statistically significant differences

Table 4.29: Entropy gain with pruning (M-Branch vs PPM methods)

area under ROC curve in the competition.

The experiments presented here are based on the training dataset. The experi-

ment are based on a percentage split instead of cross validations considering the memory

usage and the time used for the experiment. The dataset was split on 66% which means

66% of the dataset was used as training data and the rest (34%) was used as testing data.

4.13.2 Simple smoothing methods

In this subsection, we consider the smoothing effect of the Laplace correction and M-

Estimate smoothing on the E-commerce Customer Identification (Raw) dataset. Figure

4.1 shows the different ROC curves for the simple smoothing methods and unsmoothed

trees. The green straight line shows the 50% AUC curve, which is a random classifier.

By observing the curves, we can see that no smoothing has a slightly larger AUC

than the green line, but the curve becomes a straight line for the portion from x = 0.2

onwards. The curves of M-Estimate smoothing and the Laplace correction are almost on

top of each other, we can only differentiate them for the portion 0.1 < x < 0.4. In the

figure, M-Estimate smoothing has the largest area under the ROC curve.
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Figure 4.1: ROC curves of simple smoothing methods

4.13.3 M-Branch smoothing

Figure 4.2 shows the ROC curve of M-Branch smoothing and M-Estimate smoothing on

the E-commerce Customer Identification (Raw) dataset.

From the figure, we can observe that the AUC for M-Branch smoothing is clearly

larger than for M-Estimate smoothing: the curve of M-Branch smoothing is above the

one for M-Estimate smoothing through at the whole figure.

4.13.4 PPM smoothing methods

Figure 4.3 shows the ROC curves of M-Branch smoothing and PPM smoothing methods.

From the figure, we can see that all the PPM smoothing methods have almost ex-

actly the same curve apart from PPMD. Compared to M-Branch smoothing, the PPMD

method does not have advantage for this particular dataset, in fact all the PPM method

curves are under the M-Branch smoothing curve. The curve for PPMD, it is almost

identical to the one for no smoothing in Figure 4.1.
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Figure 4.2: ROC curves of M-Estimate vs M-Branch smoothing

Discussion

From the figures in this section, we can see that in a single unpruned PET, M-Branch

smoothing has an advantage in area under ROC curve, which is consistent with the results

presented earlier in thie chapter. Compared to other datasets used in the experiments,

this dataset is very large, both in terms of the number of instances and the number of

attributes.
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Figure 4.3: ROC curves of M-Branch smoothing vs PPM methods



Chapter 5

Conclusions

Smoothing is a useful technique that improves probability estimates. The results in

this thesis shows that different smoothing method can have different effects on differ-

ent datasets, some perform better for pruned PETs, others perform better for pruned

PETs. It is not possible to find out a smoothing methods that smoothes probability esti-

mates the best on all datasets, for all tree-based classifiers compared. This thesis presents

a smoothing method used in data compression and applies it to PETs. The experimental

results generated using the new method are compared with those of a state-of-art smooth-

ing method: M-Branch smoothing (Ferri, Flach & Hernández-Orallo, 2003). Two other

simple smoothing methods, the Laplace correction and M-Estimate smoothing, are also

compared against. This chapter summarizes the work presented in the previous chapters,

draws conclusions and indicates future work.

5.1 Summary and conclusion

At the beginning of this thesis, relevant background knowledge was introduced in Chapter

2. It covered several different concepts and learning techniques used in this thesis, such as

PETs, pruning and bagging. Pruning and bagging were discussed in detail, with pseudo

code for both learning and applying PETs and bagged classifiers. An example pruned

PET was compared to an unpruned PET in graphical form. Secondly, the PPM data

compression concepts were introduced with a brief description of the smoothing method

involved in it. The simple Laplace smoothing method was also discussed briefly. Then

the datasets used in this thesis were listed and described in detail. Finally, the evaluation

methods were introduced and discussed.

The third chapter discussed the smoothing methods in detail. First, the simple

smoothing methods were discussed, the Laplace correction and M-Estimate smoothing.

Secondly, M-Branch smoothing was discussed, and an example was giving to calculate the

probability estimates in a PET using M-Branch smoothing. Then, the PPM smoothing
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method and the differences between its escape probability calculations were introduced

and discussed. The motivation for each escape probability calculation was discussed as

well. Each of the PPM smoothing methods were applied to the same dataset and the

same PET prediction path used in the M-Branch smoothing example. The smoothed

probability estimates of the PPM methods were compared in a table and relatively small

differences were observed. At last, the pseudo code used for implementing each smoothing

method discussed above was listed and explained.

At the very beginning of Chapter 4, the experiment set ups were introduced. The

experiments were divided into three sections. The first part consisted experiments on a

single unpruned REPTree with the 17 datasets selected for this thesis. We first discussed

the experiment comparing no smoothing with the Laplace correction and M-Estimate

smoothing. The experimental results were evaluated base on three critreia discussed:

AUC values first, followed by root mean squared error and entropy gain. M-Estimate

smoothing had an advantage over no smoothing and the Laplace correction in the

experimental results, especially in root mean squared error. M-Estimate smoothing won

over the Laplace correction for large majority majority of the datasets. Then, M-Estimate

smoothing was compared with M-Branch smoothing with the same experiment set up

and comparisons. M-Branch smoothing was the better smoothing method of the two.

Lastly, M-Branch smoothing was compared with the PPM smoothing methods. In all

comparisons, M-Branch was the best smoothing method among the smoothing methods

in this experiment, especially in terms of root mean squared error and entropy gain.

The second set of experiments applied the smoothing methods to bagged trees and

compared the smoothing effects on them. As in the previous experiments, the simple

smoothing methods were compared first: no smoothing, the Laplace correction and

M-Estimate smoothing. Differently from the last experimental results, the smoothing

effects on the bagged trees were more difficult to summarize. With the help of bagging,

even the unsmoothed REPTree has much better probability estimates, but with the poor

performance in entropy gain, no smoothing is not the best method. On the other hand,

the Laplace correction shows robustness in all three tests. It was thus used to compare

with M-Branch smoothing. After the comparison with M-Branch smoothing, the Laplace

correction was still the best smoothing method on the dataset selected. Finally, the

Laplace correction was compared with the PPM methods, and the PPM methods showed

an advantage in all three test categories. To sum up, according to the experiments, the
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PPM methods were the best smoothing methods for bagged trees.

The third set of experiments applied the smoothing methods to a single pruned

REPTree. The simple smoothing methods were compared first. It was very difficult

to tell which method is better because the test outcome showed a tie (or a result close

to a tie) in all three tables. Nevertheless, M-Estimate smoothing was identified as the

best smoothing methods because of its overall robustness. M-Estimate smoothing was

then compared with M-Branch smoothing. With very little difference between these

two smoothing methods, M-Branch smoothing still had a small advantage, although the

improvement was not comparable with the situation in the case of unpruned REPTree

classifier. Finally, M-Branch smoothing, the best smoothing method up to this point on

pruned trees, was compared to the PPM smoothing methods. According to the results,

it was even more difficult to tell which method is the best of all, with all three test

exhibiting ties. A further experiment would need to be done with a more extensive

collection of datasets to distinguish the performance difference between the two methods.

In a last experiment, a case study, the smoothing methods were compared on e-commerce

data based on unpruned trees and ROC curves. The M-Branch method performed best

in this experiment. This was consistent with previous results.

5.2 Future work

This thesis only concerns binary datasets. As described in the paper by Ferri, Flach &

Hernández-Orallo (2003), M-Branch smoothing has better smoothing effects on multi-class

datasets. It would be useful to identify a classifier that behaves similarly to the classifier

in (Ferri, Flach & Hernández-Orallo, 2003) for multi-class data and compare the PPM

smoothing methods with M-Branch smoothing on multi-class datasets. It would also be

useful if an experiment with the MetaCost (Domingos, 1999) classifier were carried out,

to compare the smoothing performance with cost-sensitive classification.
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Appendix A

More experimental results for

bagged trees and pruned trees vs

unpruned trees

Dataset No No smoothing

smoothing with bagging

monks-1 0.141±0.12 0.092 ± 0.03

monks-2 0.586±0.04 0.502 ± 0.02 •

monks-3 0.122±0.04 0.112 ± 0.03

tic-tac-toe 0.351±0.03 0.251 ± 0.02 •

mushroom 0.000±0.00 0.002 ± 0.00

breast-cancer 0.227±0.04 0.180 ± 0.03 •

kr-vs-kp 0.073±0.02 0.071 ± 0.02

sonar 0.490±0.07 0.376 ± 0.04 •

pima-diabetes 0.518±0.03 0.419 ± 0.02 •

vote 0.191±0.03 0.178 ± 0.03

yeast 0.280±0.01 0.237 ± 0.01 •

hepatitis 0.419±0.06 0.356 ± 0.04 •

liver-disorders 0.559±0.05 0.454 ± 0.03 •

spambase 0.263±0.01 0.211 ± 0.01 •

ionosphere 0.311±0.05 0.254 ± 0.04 •

sick 0.096±0.02 0.088 ± 0.01

spect 0.516±0.04 0.458 ± 0.03 •

◦, • statistically significant differences

Table A.1: Root mean squared error with bagging
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Dataset No No smoothing

smoothing with bagging

monks-1 -21.551±27.38 0.918± 0.04

monks-2 -266.961±50.83 -4.281± 7.02 ◦

monks-3 -9.504± 9.92 -6.694± 8.41

tic-tac-toe -88.803±26.04 0.278± 1.92 ◦

mushroom 0.999± 0.00 0.999± 0.00

breast-cancer -35.925±18.79 -1.701± 5.09 ◦

kr-vs-kp -1.554± 2.47 0.252± 1.17

sonar -196.767±73.39 -0.423± 4.45 ◦

pima-diabetes -216.485±41.15 -3.627± 5.89 ◦

vote -6.486± 9.13 -0.693± 4.03

yeast -338.235±33.63 -47.908±13.70 ◦

hepatitis -49.837±48.98 -0.888± 5.93 ◦

liver-disorders -253.373±68.16 -3.808± 9.48 ◦

spambase -43.928± 7.82 0.504± 0.59 ◦

ionosphere -68.855±34.71 -2.616±10.94 ◦

sick -4.138± 2.75 -0.357± 1.20 ◦

spect -170.254±58.98 -7.341±13.57 ◦

◦, • statistically significant differences

Table A.2: Entropy gain with bagging

Dataset No No smoothing

smoothing with pruning

monks-1 0.141±0.12 0.196 ± 0.10

monks-2 0.586±0.04 0.495 ± 0.02 •

monks-3 0.122±0.04 0.094 ± 0.05

tic-tac-toe 0.351±0.03 0.363 ± 0.03

mushroom 0.000±0.00 0.008 ± 0.02

breast-cancer 0.227±0.04 0.217 ± 0.03

kr-vs-kp 0.073±0.02 0.099 ± 0.02 ◦

sonar 0.490±0.07 0.465 ± 0.05

pima-diabetes 0.518±0.03 0.434 ± 0.03 •

vote 0.191±0.03 0.188 ± 0.04

yeast 0.280±0.01 0.245 ± 0.01 •

hepatitis 0.419±0.06 0.394 ± 0.04

liver-disorders 0.559±0.05 0.495 ± 0.03 •

spambase 0.263±0.01 0.261 ± 0.01

ionosphere 0.311±0.05 0.295 ± 0.04

sick 0.096±0.02 0.109 ± 0.01

spect 0.516±0.04 0.454 ± 0.03 •

◦, • statistically significant differences

Table A.3: Root mean squared error with pruning



Dataset No No smoothing

smoothing with pruning

monks-1 -21.551±27.38 -0.932± 6.22

monks-2 -266.961±50.83 -18.857±19.62 ◦

monks-3 -9.504± 9.92 -4.858± 6.75

tic-tac-toe -88.803±26.04 -17.553±11.41 ◦

mushroom 0.999± 0.00 0.998± 0.00

breast-cancer -35.925±18.79 -3.637± 7.33 ◦

kr-vs-kp -1.554± 2.47 0.256± 1.09

sonar -196.767±73.39 -17.730±29.55 ◦

pima-diabetes -216.485±41.15 -12.979±13.81 ◦

vote -6.486± 9.13 0.382± 2.10

yeast -338.235±33.63 -62.601±19.92 ◦

hepatitis -49.837±48.98 -4.462±16.75

liver-disorders -253.373±68.16 -25.159±28.87 ◦

spambase -43.928± 7.82 -4.914± 3.55 ◦

ionosphere -68.855±34.71 -5.153±10.59 ◦

sick -4.138± 2.75 -0.608± 1.24 ◦

spect -170.254±58.98 -7.319±16.79 ◦

◦, • statistically significant differences

Table A.4: Entropy gain with pruning
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