

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Vocal Detection: An evaluation between

general versus focused models

Yi-Na Tsai

This thesis is submitted in partial fulfillment of the requirements for the

Degree of Master of Science at the University of Waikato.

April 2011

© 2011 Yi-Na Tsai

II

III

Abstract

This thesis focuses on presenting a technique on improving current vocal

detection methods. One of the most popular methods employs some type of

statistical approach where vocal signals can be distinguished automatically by first

training a model on both vocal and non-vocal example data, then using this model

to classify audio signals into vocals or non-vocals. There is one problem with this

method which is that the model that has been trained is typically very general and

does its best at classifying various different types of data. Since the audio signals

containing vocals that we care about are songs, we propose to improve vocal

detection accuracies by creating focused models targeted at predicting vocal

segments according to song artist and artist gender. Such useful information like

artist name are often overlooked, this restricts opportunities in processing songs

more specific to its type and hinders its potential success. Experiment results with

several models built according to artist and artist gender reveal improvements of

up to 17% when compared to using the general approach. With such

improvements, applications such as automatic lyric synchronization to vocal

segments in real-time may become more achievable with greater accuracy.

IV

V

Acknowledgements

I would like to thank several people who helped me with my thesis. These people

include my supervisor Associate Professor Steve Jones who was always

enthusiastic and guided me through my research. I would also like to thank

Rodney Macfarlane and Gabriel Engel for the sponsorship of the project and Rob

Scovell who was an invaluable mentor.

Apart from people who constructively contributed to my thesis I would also like

to thank my friends who shall remain anonymous for providing a healthy dose of

distraction when needed.

Finally of course I want to thank my parents for supporting me, especially my

caring mother for always preparing delicious meals to keep me energised

throughout the day.

http://www.cs.waikato.ac.nz/genquery.php?linklevel=4&linklist=CS&linkname=J_to_P&linktype=report&listby=Name&lwhere=unique_record_id=10&children=

VI

VII

Table of Contents

1 Introduction .. 11

Structure of this thesis ... 12

2 Related Work ... 15

2.1 Background ... 15

2.2 Concepts of vocal detection techniques .. 17

Accompaniment Sound Reduction.. 17

Audio feature Classification via Statistical Model.. 18

3 Technical Background ... 21

3.1 Android platform synopsis .. 21

3.2 Existing Mobile Application Overview .. 22

3.3 Mobile Application Functional Requirements .. 22

Port existing iPhone application to Android ... 23

Implement vocal effects for sound input via microphone ... 23

Investigate and implement synchronization of audio playback and lyric tracking 24

4 Vocal Detection .. 27

4.1 Vocal Detection via Statistical Model .. 27

4.2 Calculating LFPC Values .. 29

4.3 Training data preparation .. 34

4.4 Training ... 35

4.5 Classification ... 35

4.6 LFPC Parameters .. 38

Frequency range .. 38

Frame size ... 40

Window hop size... 43

4.7 Audio Corpus .. 46

4.8 Issues ... 46

Lack of Song coverage .. 46

Human error .. 47

Not enough non-vocal instances ... 47

5 Our Approach ... 49

5.1 The baseline Corpus .. 49

VIII

5.2 Manual Annotation .. 51

5.3 Generating Training Data .. 53

5.4 Training ... 54

5.5 Classification ... 58

5.6 Moving Average .. 63

6 Evaluations ... 67

6.1 Experimental Setup ... 67

Compile a general corpus containing various types of songs.. 68

Additional corpuses ... 68

Prepare training data ... 71

Build models for all corpuses .. 71

Cross-validate instances from all corpuses against each other‟s models 75

Visualize predictions.. 76

Analysis .. 77

7 Conclusions .. 81

7.1 Summary .. 81

7.2 Conclusion ... 82

8 Future Work .. 85

8.1 Model genre ... 85

8.2 Combine different techniques for lyric alignment ... 85

Extract chroma features for song structure analysis .. 85

Analyze plain text lyric files to detect lyric structure .. 86

9 REFERENCES ... 87

10 Appendix .. 89

IX

Figures

Figure 1 Chroma vector with repeated pattern ... 16

Figure 2 Picture taken from [2] illustrates the process of fundamental frequency estimation,

harmonic structure extraction and re-synthesis .. 18

Figure 3 Image taken from [3] shows frequency ranges spaced logarithmically where the number

of sub-bands is 12.. 28

Figure 4 An illustration of small segments of audio each having 12 LFPC values 28

Figure 5 Reading 20 ms of audio with some overlap versus reading without overlap 29

Figure 6 Original samples transformed with a Hamming Window-function which results in values

towards zero being raised up while maintaining trend ... 31

Figure 7 Amplitude versus Time ... 32

Figure 8 Magnitude versus Frequency ... 32

Figure 9 Band-pass filter ranging from 5000 Hz to 10000 Hz.. 32

Figure 10 classification output in order versus not in order .. 36

Figure 11 Flow from feature extraction through to classification .. 37

Figure 12 Frequency analysis of non-vocals .. 39

Figure 13 Frequency analysis of vocals .. 39

Figure 14 Distribution of LFPC values across 12 sub-bands ... 40

Figure 15 Actual vocal/non-vocal versus manually annotated vocal/non-vocal............................. 41

Figure 16 Actual song segments versus Predicted song segments with 2s frame size 42

Figure 17 Excessive window hop resulting skipped samples .. 43

Figure 18 Un-windowed sample reading .. 44

Figure 19 Capturing interesting points with window hops ... 45

Figure 20 Manual song annotator .. 51

Figure 21 LFPC/training data generator ... 53

Figure 22 WEKA, data mining application ... 55

Figure 23 WEKA, classification tab .. 56
Figure 24 Classification via supplied test set.. 59

Figure 25 Visualisation of predicted classes (histogram) ... 62

Figure 26 Corrected class values using a simple moving average ... 64

Figure 27 Corrected class values using a weighted moving average ... 66

Figure 28 Plot of actual vocal segments of a song with different frame sizes 72

Figure 29 Actual vocal segments versus predicted vocal segments .. 76

Figure 30 General model versus specific model ... 78

Figure 31 Difference in LFPC values for vocals .. 80

X

Tables

Table 1 Manually annotated data ... 34

Table 2 LFPC vocal/non-vocal tag association .. 34

Table 3 Theoretical classification output in chronological order with possible

misclassifications spread apart ... 38

Table 4 Possible misclassifications clustered together ... 38

Table 5 Results of predicting the first 10 instances ... 60

Table 6 Predicted class values transformed into numerical values 61

Table 7 Predicted class values with moving average .. 63
Table 8 Moving average with weighted values ... 65

Table 9 LFPC Distribution of every model ... 74

Table 10 Cross-validation accuracy and distribution of each model 75

Table 11 Cross-validation among all models ... 76

Table 12 General model versus specific model ... 77

11

1 Introduction

Nowadays mobile technology is advancing at an unprecedented rate and as the

market has grown, demand for mobile applications has dramatically increased in

the past few years. Since such a high percentage of the population now use mid to

high end devices capable of performing many tasks that a desktop computer can

perform, more people now rely on their mobile devices over their desktop

computer than ever before. Approximately 70% of the world‟s population now

carries a mobile phone and multimedia content sites such as YouTube have had

reports in 2010 of approximately 200 million hits via mobile devices each day.

Since mobile devices are on such high demand, mobile applications such as

games, entertainment and multimedia have become highly sought after.

Multimedia content such as music have become almost an essential part of the

daily lives of a large majority of people hence many new audio processing

techniques for various different applications such as music information retrieval

have become increasing important.

The research component of this thesis is based on one of the functional

requirements proposed for a commercial grade mobile application specifically

targeted at mobile devices running the Android operating system. The application

falls into the multimedia and entertainment category, more specifically audio

entertainment. There are three main components to this project where each

component corresponds to a functional requirement proposed for the mobile

application. The third component is the research component and develops into the

bulk of this thesis.

The system being developed requires the automatic synchronization of textual

lyrics to its corresponding vocal segments within a song. Achieving the highest

possible accuracy in synchronization is crucial due to the application being

commercially focused and quality user experience is essential. In order for lyrics

to be aligned to vocals, first vocal segments are required to be located. Existing

vocal detection solutions are limited in their accuracy as they do not make use of

information about the song being analyzed such as artist name or gender of artist.

12

In addition the end product is projected to run on mobile devices, therefore the

solution must be balanced between complexity and precision.

Our approach focuses on taking advantage of available information about the song

being analyzed as we believe knowing what type of data is being processed

provides opportunity to process data in a different and more specific way. Since

the typical approach is to build general purpose statistical models for classifying

various types of segments of audio into vocal or non-vocal, our approach attempts

to improve on this technique by building statistical models that classify segments

of audio specific to artist and gender. We believe that there are certain vocal

attributes that are unique to certain types of songs. Therefore, we aim to

investigate the potential improvements of using specific statistical models over

general purpose models. Since statistical models are also relatively lightweight,

improving on current techniques using this method satisfies the complexity issue

for mobile devices in some regard.

Test results reveal that using more focused statistical models improved

classification accuracies significantly.

Structure of this thesis

This thesis is organized into eight main parts. The first part being the introduction,

the second part introduces related work and useful concepts in the field of audio

processing. The third part discusses the mobile platform used and the functional

requirements of the mobile application which was developed in parallel as part of

the research project. The fourth part describes a well proven technique for

detecting vocals within audio tracks and the fifth part describes our approach to

improving on that technique. The sixth part presents evaluations of our system

and its practicability while the remaining two parts discuss conclusions and future

work.

Parts one, two, six, seven and eight are rather self-explanatory; Parts three, four

and five are described with slightly further detail in the following.

Part three, the functional requirements of the mobile application, provides some

technical background which describes the nature of the mobile application and its

13

requirements. There are three major functional requirements, one is known to be a

difficult problem and is the research component.

Part four, describing a well proven technique for detecting vocals within audio

tracks, provides background knowledge on a widely accepted technique for vocal

detection. This background information helps create a starting point for the

research problem described in part three and will remain the main focus

throughout this thesis.

Part five, describes our approach on improving on the technique mentioned in part

four and also discusses the reasons for requiring improvement and why this

technique is suitable for our application.

Note that due to the nature of project and the mobile application being developed,

parts seven and eight discuss the feasibility of our approach and ideas of how the

application‟s requirements can be fully fulfilled through the use of techniques

learned.

14

15

2 Related Work

2.1 Background

There have been various studies in the field of audio processing, many of which

are of much interest to us especially research in the fields of speech recognition,

vocal detection within audio signals, song structure identification as well as

automatic alignment between lyrics and songs. These techniques combined can be

invaluable to our ultimate goal.

Vocal detection techniques in short, identify sections of an audio track containing

singing voice. Knowing where vocals occur in a song can be especially helpful

when attempting to align lyrics to vocals of a song.

Speech recognition techniques deal with transcribing sections of speech into text.

Having prior knowledge of vocal detection, one would be quick to conclude that

putting the two together would be helpful in automatically transcribing songs,

however it is generally not reliable enough to transcribe human singing voice into

text via conventional speech recognition, simply due to the fact that regular

speech and singing have obvious different properties such as harmonics,

frequency ranges, pronunciation and duration of syllables. In addition to such

differences, singing voice in most cases are accompanied by background

instrumental noise which conventional speech recognition does not account for,

therefore while the basic idea may be to combine the two techniques it is not a

very clever idea to attempt to obtain a transcription of a song simply by applying

speech recognition directly on a song containing vocals. There are also complex

techniques which do almost the opposite of vocal transcription; that is it takes a

transcription and attempts to match it to its corresponding audio equivalent. This

can be achieved by adapting a phone model for regular speech to a singing model

[1]. This would be useful to us for obvious reasons; however it is not a very

lightweight solution and can easily extend beyond our scope.

Forgetting about speech recognition (as it cannot be easily applied to singing

voice) and lyric-to-song alignment, identifying sections of vocals within an audio

16

track (song) has its own difficulties. Most existing songs with vocals are

accompanied by various background instrumentals. Fujihara et al. [2] propose a

complex technique that reduce background accompaniments while others propose

building classification models that learn the differences between vocals (with

accompaniment) and accompaniment [3] [4].

Once we have obtained information regarding start and end points of vocal

sections of a song, it could be useful for us to know the structure of the song i.e.

which sections correspond to the verse and which sections correspond to the

chorus. There have been several studies regarding song structure detection; the

technique that stood out most to us was the use of chroma feature vectors to

identify chorus sections of a song [5] [6] [7]. Chroma vectors are features of audio

that can represent the intensity of the 12 most dominant pitches of a tiny segment

of audio all arranged in chronological order, then a brief structure of the whole

song can be visualized by plotting the intensity of each of the 12 pitches on its

respective row of pitches in the time scale and then using self similarity

techniques a high level structure of a song can be produced. Goto maintains that

the most repeated section of a song is most likely to be the chorus [5]; therefore

the use of self similarity to detect repeated patterns on the chroma vectors can

give indications on where chorus sections are likely located within a song. Figure 1

illustrates a visualization of a chroma vector of a song where the dominant pitch

classes are darker and the less dominant pitches are lighter in colour.

Figure 1 Chroma vector with repeated pattern

17

All these works established a good foundation for our own research goal,

however, we found that previous work in the area of vocal detection only detect

vocals in a broad sense where one general model is built for detecting vocals for

songs of many different types e.g. pop, rap, classical, acoustic and different artists.

Statistical vocal detection models to this day do not specifically take into account

the vast amount of different types of songs. The basic idea is to have a model built

using a wide enough range of songs so that for any given song it hopes to classify

it accurately. However, in order for a model to be really general enough it can

very quickly become a model too enormous to classify songs efficiently. This type

of approach does not make use of information (song name, artist name etc) about

songs being classified and most studies use relatively small corpuses for building

statistical models. In addition we have never come across any studies that focus

on applying low complexity vocal detection techniques onto mobile devices with

limited resources.

2.2 Concepts of vocal detection techniques

In this section we will look at a few vocal detection techniques reviewed in

slightly more detail. The first is Accompaniment sound reduction which

summarizes how it can be helpful in vocal detection applications, the remaining

are several variants of vocal detection by means of statistical models.

Accompaniment Sound Reduction

Since songs with singing voice are often accompanied by background music, it

seems quite logical to attempt to reduce the accompaniment background music of

a song to leave only the singing voice behind before attempting to locate sections

of voice and transcribe or align lyrics to those sections of vocals. However,

reducing background accompaniment is a complex problem. In the perfect case, a

song‟s background accompaniment can be completely cancelled out if somehow

we can obtain an audio sample of Vocal plus background accompaniment and an

audio sample of the exact same background accompaniment without vocals by

subtracting the raw audio signal of the latter from the former. The perfect case is

almost impossible to come by as music production studios almost never produce

18

songs in a way that can be easily manipulated in this manner. The method in [2]

describes a technique of sound reduction by extracting harmonic structure of the

melody from the raw audio signals, and then, using a sinusoidal model re-

synthesizes it. This technique in summary uses Goto‟s PreFEst [8] method to

estimate the most predominant fundamental frequency ranges of an audio track

and extracts it, then using an audio re-synthesis technique the melody is then re-

synthesized resulting in a noise-reduced audio track [9]. The main issue with this

technique though is that accompaniment noise cannot be completely removed

easily, while this may be helpful for certain applications, using this to accurately

identify start and end points of vocals of a song may require further steps.

Figure 2 Picture taken from [2] illustrates the process of fundamental frequency estimation, harmonic

structure extraction and re-synthesis

Audio feature Classification via Statistical Model

There are a number of variations of this technique, some vary in extraction of

audio features and some vary in audio pre-processing techniques. The general

concept behind audio feature classification is to build a statistical model that

learns the difference between audio features that correspond to vocals and audio

features that correspond to non-vocals. Such a statistical model can be powerful

enough to classify any song‟s audio features into vocals and non-vocals and

consequently allows for detection of vocal segments. An audio feature is a piece

of information that can be derived from some amount of audio; it could be basic

features such as the amplitude, frequency or any value that can be derived using

those basic features. Since audio features are most commonly some numerical

19

value, they can represent some amount of audio of X length, therefore, intuitively

one can deduct that audio features extracted for every sample in an audio stream

in succession can represent the entire track of audio in some numerical form. The

following are some existing approaches to vocal detection via statistical models

that employ slightly different feature extraction techniques:

Fujihara et al. [1] proposed the extraction of LPC-derived mel cepstral

coefficients (LPMCCs) for statistical model training as they claim that in the

context of singing, LPMCCs are a better representation of vocal characteristics

compared to MFCCs, an audio feature commonly used for music modelling.

Berenzweig et al. [4] proposed the use of several different audio features for

classification, they then analysed the effectiveness of each. The main audio

feature they extracted was the Posterior Probability Features (PPF) acquired from

the acoustic classifier of speech recognizer. They claim that from that, they were

able to derive a series of statistical models that could detect vocals with

approximately 80% accuracy.

Nwe et al. [3] proposed the use of LFPC (Log Frequency Power Coefficients) as

the bases for audio feature extraction. The claim is that LFPC audio features

represent the energy distribution among sub-bands, and since vocal signals tend to

contain higher energy levels than instrumentals their idea is to measure energy

level of an entire song using LFPC values and mark where energy levels make a

significant increase or decrease and conclude those changes in energy are the

beginning and end points of vocals.

All the above have similar concepts in that some audio feature is extracted, that

audio feature is then associated with vocals or non-vocals and then used in some

statistical model for training and subsequently the model is used to classify some

newly unseen audio into vocal or non-vocal segments.

20

21

3 Technical Background

This research on vocal detection and textual alignment to vocals is based on the

functional requirements of an application targeted for mobile devices running the

Android platform owned by Google Inc. The Android mobile platform was first

founded in 2003 and was later acquired by Google Inc in 2005 and has become

increasingly popular in recent times and is said to be one of the main competitors

against another major mobile platform, the iOS, which stands for iPhone OS

(operating system) and of course is run on the iPhone hardware developed by

Apple Computer Inc.

Note that there is no favoritism toward a particular platform; the sole purpose of

this introduction is to provide some idea of the scale in which the target platform

operates and provide some brief history about the platform.

3.1 Android platform synopsis

According to the Android developer website [10] “Android is a software stack for

mobile devices that includes an operating system, middleware and key

applications. The Android SDK provides the tools and APIs necessary to begin

developing applications on the Android platform using the Java programming

language”. Simply put, the Android platform is a combination of tools that can be

incorporated into certain IDEs (Integrated Development Environment) which

allows developers to write, compile and deploy applications all within the set of

provided tools. The platform is based on the Java programming language, a

popular and relatively easy to learn language. Applications are written in Java and

the platform itself provides an extensive set of libraries for the developer. The

platform is not completely limited to Java, if required it also provides ways of

running C or C++ code through the use of native library calls. The Android

platform is dubbed as an open development platform as many features used by the

Android operating system itself such as accessing device hardware and setting

system alarms is also available for developers to take advantage of.

22

3.2 Existing Mobile Application Overview

The mobile application that was developed in parallel with this research project

originated from an application that was developed for the iPhone platform.

Effectively, the application was ported from the iPhone platform to the Android

platform with the intention of improving the application further. The nature of the

application is based on the basic idea of a karaoke machine where songs stored on

the mobile device can be played back with or without vocals along with some

textual display of the lyrics to the song being played.

The main feature of the application is vocal removal from songs, this allows for

simulation of a karaoke machine where songs can be played back with only

instrumentals and users can sing along to the song minus the original artist‟s

voice. The universal algorithm for vocal removal is to simply take the audio signal

from the left channel and deduct it from the right channel (or the right from the

left), the result is an audio signal with vocals reduced or completely removed in

the perfect case. The requirement for this algorithm to work as desired is that the

vocal signal in the left channel should be same as the vocal signal in the right

channel and all other audio signals such as instrumentals can be different between

both channels, this then allows the direct subtraction of one vocal signal from the

other leaving only the instrumentals.

Other features included in the mobile application are vocal effects. These vocals

effects are real-time transformations of audio signals captured through the

device‟s microphone, once the audio signal is transformed it is output to the

device‟s speakers with as little latency as possible giving the end user a sense of

time-time vocal transformation. Effects such as echo, reverb and even auto-tune

can be chosen by the user, this gives a somewhat simulated karaoke experience.

3.3 Mobile Application Functional Requirements

The nature of the application as mentioned is similar to that of a karaoke machine,

therefore the functional requirements that follows are in accordance to the nature

of the application. The following are the brief goals set out for the application:

 Port existing iPhone application to Android

23

 Implement vocal effects for sound input via microphone

 Investigate and implement synchronization of audio playback and lyric

tracking

Port existing iPhone application to Android

An existing iPhone application was ported to the Android platform; it performs

vocal removal from audio files and plays back the audio file with vocals removed.

The application also displays lyrics (if it exists) for the particular song that is

being played back and allows users to use the microphone to amplify their vocals

through the device‟s speakers. The most basic goal was to port these

functionalities to Android first. There were restrictions on the iPhone where

developers had very limited access to audio files stored on the device and the only

form of access to audio files was to use the API for audio playback. For this

reason, audio manipulation such as vocal removal could not be easily applied

directly to audio files on the device; some form of third party file transferring

application was required. With the Android platform such restriction does not

exist and audio files are accessible without issues, the only requirement is that the

application should declare in some metadata that it requires access to manipulate

files stored on disk. Porting the application to Android was relatively

straightforward, the only major issue at the time of development was that low

latency audio buffers for real-time audio processing were not available and vocals

captured by the microphone could not be played back within a tolerable amount of

delay.

Implement vocal effects for sound input via microphone

This function of real-time vocal effects was not implemented in the original

iPhone version of the application; this feature is one of the improvements made on

top of the iPhone version. Vocal effects provide a richer experience for the user as

it allows users to transform their voice in real-time and can prove to be

exceptionally entertaining. The level of difficulty to implement this feature on the

iPhone is unknown since this feature was never part of the iPhone version,

24

however, on the Android platform this feature also proved to be rather

straightforward to implement. Algorithms and libraries for vocal transformation

are readily available. The most difficult component to implementing this feature

was converting audio samples in such a way that make it usable for certain

libraries, and in some cases modification of library code was required. The other

challenging aspect to implementing this feature was dealing with latency issues

since the Java programming language typically is not as lightweight as other

native programming languages such as C or C++ and computing transformations

of real-time vocal input and output required more than simply applying algorithms

to audio samples, therefore the JNI (Java Native Interface) was used to make

native library calls from the Java layer which consequently allowed faster audio

transformation to take place. Vocal effects implemented included but not limited

to echo, chorus, reverb and pitch-shift.

Investigate and implement synchronization of audio playback and

lyric tracking

From a functionality stand point, the goal was to develop a method for taking a

song containing vocals and its corresponding lyric file (in plain text without any

timing data) and display the lyrics in synchronization with the vocals from the

song. In other words the perfect end result would be to be able to display lyrics

along with some form if indicator pointing to the current word of a song that is

supposed to be sung similar to that of karaoke machines.

From a research stand point, the goal was to find effective ways of locating vocal

segments within a song. Combined with audio structure and lyrical structure

analysis, it may be feasible to utilise such techniques to align lyrics with detected

vocal segments. Few ideas contributing to this goal during the early stages of the

project included voice recognition techniques for detecting words in the song and

aligning the words from the lyrics word by word, however, after some

consideration it was clear that voice recognition would not serve our purposes.

Bear in mind that techniques considered in this project must be sufficiently

lightweight since the platform it is to be run on is targeted at mobile devices

therefore the solution must be well balanced between complexity and speed.

25

The approach we took focuses on detecting the location of vocal segments given

that knowing where vocals occur during a song provides opportunities for

anchoring lines of text to start points of vocals and an initial high level alignment

can possibly be achieved. The more accurately vocal locations can be detected the

more accurate lyric alignment can become. Using other techniques such as song

structure detection with chroma vector analysis and lyric structure detection using

self similarity analysis, the possibility of aligning lyrics with vocals more

accurately may increase.

26

27

4 Vocal Detection

4.1 Vocal Detection via Statistical Model

Classification of a song with statistical models is a relatively inexpensive way of

detecting segments containing vocals or non-vocals. The catch is that in order for

classification to be effective enough across a wide range of different types of

songs, a relatively large corpus containing many different types of songs is

required, each of which is manually annotated where segments of a song are

marked „vocal‟ or „non-vocal‟ (from here on we will refer to „vocal‟ as human

singing voice which may be accompanied by background instrumentals or not,

and „non-vocals‟ shall be referred as only instrumentals or silence) for a statistical

model to be trained on. This means that for any given song to be segmented, the

statistical model should have a wide enough range of data to be able to predict

whether any given segment of a song is vocal or non-vocal. To get quality results

the model is really dependent on the amount and precision of manually annotated

data, therefore the more quality data available the better. However, it should be

noted that due to time constraints manually annotating large sets of songs in real

time does not always produce precise training data because of many factors

including human reaction time, ignoring slight pauses or breaths between words

being sung and the simple fact that one human alone cannot know the start and

end times of vocal sections of every song which means mistakes are bound to be

made.

In order to train a model, audio features for each frame of a song from the corpus

needs to be calculated. Audio features are properties of a song that can be

extracted or formulated, for example a 10 millisecond frame of audio can have

basic audio features such as frequency range or amplitude.

In our case we used LFPC (Log Frequency Power Coefficients) audio features,

which in basic terms give indication of energy distribution among sub-bands. It

splits a frame of audio into a specified amount of sub-bands with ranges spaced

logarithmically (Figure 3) between the lowest and highest frequency limits where

the average human singing vocal frequencies fall. In other words, some audio data

28

(perhaps 0.21 seconds to 0.41 seconds) between the frequency ranges of say 4

kHz to 6 kHz is isolated (by using a technique known as band-pass filtering or

sub-band filtering) and its energy level is analyzed, then the same piece of audio

(0.21 seconds to 0.41 seconds) is isolated between frequencies of say 6 kHz and 8

kHz and is analyzed the same way until all sub-bands have been analyzed. We end

up with a set of 12 (although this number can be adjusted we shall use 12 as an

example) LFPC values for each small frame of audio (Figure 4) which can be

imagined as something structurally similar to a 2-dimentional array.

Figure 3 Image taken from [3] shows frequency ranges spaced logarithmically where the number of sub-

bands is 12

Figure 4 An illustration of small segments of audio each having 12 LFPC values

29

4.2 Calculating LFPC Values

To begin with, the audio data can be processed with various frame and window

hop sizes. A frame of audio is the piece of audio data that is to be analysed, it

could be for example 20 ms or 200 ms, however once the frame size and window

hop size has been decided on it shall remain fixed throughout the entire analysis

process of a song. The window hop size can be thought of as the amount of

milliseconds we slide along the long queue of audio data before capturing the next

frame of audio data for analysis. The process for calculating LFPC feature values

does not read audio data one frame at a time where each frame contains

completely unseen audio data, but rather it reads audio data with some overlap

where each frame of audio read contains some audio already seen from the

previous frame. Figure 5 illustrates the difference between reading audio data with

a windowed hop versus reading completely new unseen audio data.

Figure 5 Reading 20 ms of audio with some overlap versus reading without overlap

Let us take for example, for a frame size of 20 ms and a window hop size of 13

ms we would read the first three frames at the specified time positions like so:

30

Frame 1: 1-20 ms

Frame 2: 8-27 ms

Frame 3: 21-40ms

..

Each frame of audio that is read is then multiplied by a Hamming Window

function, which in simple terms transforms a frame of audio slightly so that values

that are close to zero are raised up slight but maintains its overall trend. This helps

minimise discontinuities at the end of each frame (see Figure 6Error! Reference

source not found.). The formula of a Hamming Window function is as follows:

Window(k) = 0.54 – 0.46 cos (2 PI k / (n – 1)) Equation 1

Where n = number of input values and k = 0...n-1

For a 20 ms frame example, n would be 20 and k would go from 0 to 19. In other

words, for a 20 ms frame each n
th

 millisecond is multiplied by the above function

with variable k depending on which millisecond out of the 20 it is looking at.

31

Figure 6 Original samples transformed with a Hamming Window-function which results in values towards

zero being raised up while maintaining trend

For each frame of audio that has been multiplied by the Hamming Window

function, a FFT (Fast Fourier Transform) is then applied. FFTs are commonly

used in audio signal processing for analysing the frequencies contained in a

sampled signal. The original signal can be thought of as amplitude on the y-axis

and time on the x-axis (Figure 7) and FFT output is simply a transformation to

magnitude on the y-axis and signal frequencies (Hz/kHz) on the x-axis (Figure 8).

There are many implementations of FFT and each has its own advantages and

disadvantages; in our case we used the org.apache.commons.math.transform java

library.

http://commons.apache.org/math/apidocs/org/apache/commons/math/transform/package-frame.html

32

Figure 7 Amplitude versus Time

Figure 8 Magnitude versus Frequency

Figure 9 Band-pass filter ranging from 5000 Hz to

10000 Hz

Now we have a representation of each frame with a Hamming Window function

then a FFT applied resulting in magnitude (dB) versus frequency (Hz). Each of

these resulting frames are then passed into a set of 12 band-pass filters where the

first filter begins at approximately 300 Hz and the last filter ends at 16 kHz with

the width (frequency range) of each filter not constant but rather spaced

logarithmically (Figure 3). Let us pretend that one band-pass filter has the

frequency range from 5000 Hz to 10000 Hz, imagine taking out an individual

slice (Figure 9) between those boundaries out of the „Frequency Analysis‟ diagram

(Figure 8), that would be one band-pass output value. We will end up with 12

output values for each frame of audio where each output effectively represents a

magnitude value for its corresponding frequency range according to the 12

logarithmically spaced frequency ranges. The formula for calculating LFPC

values are presented by the following two equations [3]:

33

Where X t (k) is the k
th

spectral component of the hamming

windowed signal, t is the frame number, S t (m) is the output of the

m
th

 sub-band, and fm and bm are the centre frequency and bandwidth

of the m
th

sub-band, respectively.

Equation

2

Where Nm is the number of spectral components in the m
th

 sub-band.

For each frame, 12 LPFCs are obtained

Equation

3

Equation 2 results in 12 output values for each frame as is expected, 1 from each

band-pass filter which are the sub-bands represented by m. Therefore, for instance

for frame number 1 we shall compute St(m) where t = 1, resulting in a series

represented by:

S1(1), S1(2), ... , S1(12)

And for frame number 2 where t = 2

S2(1), S2(2), ... , S2(12)

And so on...

For each St(m) we shall compute the sum of (X t (k))
2
 for the values of k in the

given range. X t (k) is the magnitude for frequency k of frame t.

The minimum and maximum values of k are respectively given by:

fm – (bm/2) and fm + (bm/2)

34

Where fm is the centre of sub-band m and bm is the width of sub-band m. Therefore,

if the sub-band were 4000 Hz to 6000 Hz then fm would be 5000 Hz and bm/2

would be 1000 Hz. Hence values of k ranges from 4000 to 6000 in this case.

Now in order to obtain the 12 LFPC values for each frame t we use the 12 output

values from Equation 2 to substitute the variable St(m) in Equation 3. Here, m =

1, 2, ..., 12 as in Equation 2.

4.3 Training data preparation

For each frame of LFPC values in the time scale (ordered in chronological order)

a „vocal‟ or „non-vocal‟ tag can be associated with it by using the manually

annotated data already prepared earlier. Since the manually annotated data should

contain information which describes when vocals begin and end accurate to

milliseconds, it is then possible to associate for example the first 5000

milliseconds of LFPC values of a song with multiple vocal or non-vocal tags by

automatically searching the manually annotated data of that song and checking

whether the first 5000 milliseconds of that song contains vocals or non-vocals or a

mixture of both and at what times. Lets imagine that each set of 12 LFPC values

below represent a 500 millisecond frame and the manually annotated data (Table 1)

states that for some given song from 0 milliseconds to 1000 milliseconds there

were non-vocals and from 1001 milliseconds to 1500 milliseconds there were

vocals, then the associated values would look similar to Table 2. In reality the

tables would be far larger in size for an average song length.

0 – 1000 Non-vocals

1001 – 1500 Vocals

Table 1 Manually annotated data

0ms – 500 ms LFPC1(1), LFPC1(2), LFPC1(3), LFPC1(4), LFPC1(5), LFPC1(6), LFPC1(7), LFPC1(8), LFPC1(9),

LFPC1(10), LFPC1(11), LFPC1(12)

Non-

vocals

501ms – 1000

ms

LFPC2(1), LFPC2(2), LFPC2(3), LFPC2(4), LFPC2(5), LFPC2(6), LFPC2(7), LFPC2(8), LFPC2(9),

LFPC2(10), LFPC2(11), LFPC2(12)

Non-

vocals

1001ms – 1500

ms

LFPC3(1), LFPC3(2), LFPC3(3), LFPC3(4), LFPC3(5), LFPC3(6), LFPC3(7), LFPC3(8), LFPC3(9),

LFPC3(10), LFPC3(11), LFPC3(12)

Vocals

Table 2 LFPC vocal/non-vocal tag association

35

According to Zhang [11] the idea is that if only instrumentals (accompaniment)

was happening and some amount of time later vocals was heard, one would see a

sudden increase in energy levels across the LFPC values [3]. Therefore, sections

that were marked as vocals should have higher associated LFPC values whereas

sections marked as non-vocals have should lower associated LFPC values. All the

LFPC values and their associated tags are then bundled together to create one file

(which can contain LFPC values for multiple songs) which will be used for

training the statistical model.

4.4 Training

Once all necessary training data has been prepared the next step is to train a model

using this data. To train or build a model a statistical model builder is required, we

will not discuss how one can be obtained, however in a later chapter will describe

our approach and the exact tool that we used to train models. The basic idea

behind training statistical models is that a set of pre-classified examples/instances

are passed to a statistical model builder, then the statistical model builder attempts

to learn which values correspond to which class. In terms of the vocal detection

technique we are employing, one example/instance of training data would contain

a set of feature values (LFPCs) and along with that set of values a class is

associated with it, in this case it would be either vocals or non-vocals. Typically

statistical models are trained with relatively large amounts of examples/instances,

it begins to differentiate classes with higher accuracy since it has seen so many

example values that correspond to vocals and so many that correspond to non-

vocals. Typically the more it trains the more accurate it becomes at differentiating

classes.

4.5 Classification

Once a model has been built, segments of a randomly selected song can be

automatically classified into vocals or non-vocals, first by calculating LFPC

values for each window of the song and then running those values through a

classifier using the model already built to determine whether segments of the

selected song are possible vocals or non-vocals (with varying degrees of

accuracy). Typically the classification process can classify segments that already

36

contain actual class values (also known as training data) or segments that have

never been seen before. The advantage of classifying training data is that accuracy

of classification can be measured by comparing predicted classes against actual

classes. The classifier classifies instances in no particular order, once it has

classified all the instances it has been given it can produce an accuracy result.

Note that although obtaining an indication of accuracy of a particular model‟s

classifier is helpful for evaluating its quality, it does not however give indication

of the location of vocals. The accuracy of a model‟s classifier will remain the

same if the same series of instances it performs accuracy tests on is completely

shuffled and tested again. Figure 10 illustrates how accuracy can be the same when

instances are classified in chronological order compared to instances classified in

random order.

Figure 10 classification output in order versus not in order

What we really are concerned about are the class predictions of unseen instances

in the chronological order in which they were calculated. Let us look at Figure 11

for instance, frames are read from the audio stream in sequential order and for

each frame of audio LFPC values are extracted while maintaining the same

sequential order, once all LFPC values have been calculated for each frame they

are then classified while still maintaining the order in which the frames were read.

Since all classes were classified in chronological order, each class value can

represent the exact same time segment as its corresponding frame of audio. In

other words, if the fifth frame (f5) in the audio stream represents a piece of audio

that goes from 200 milliseconds to 250 milliseconds then the fifth class (c5) value

37

represents the predicted class (vocals/non-vocals) that goes from 200 milliseconds

to 250 milliseconds.

Figure 11 Flow from feature extraction through to classification

If we can get a result of perhaps 80% correct classification of vocals for a 2

second segment of a song we can conclude that those 2 seconds is indeed overall

„vocals‟. There will be misclassifications among the 2 second segment, thus the

80% classification accuracy. Any incorrectly classified frames are likely to be

spread throughout the 2 second segment as in Table 3 instead of all being clustered

together as in Table 4. Since the frames that were classified as N (non-vocals) are

spread throughout the 2 second segment as illustrated in Table 3 it is most likely

that they are misclassifications, and can be tolerated as long as the overall trend

point towards a clear trend. Table 3 illustrates that for a 2 second segment of audio

the overall trend is 80% V (vocals).

However, if the classification process produces a result as illustrated by Table 4

where the classifier predicts classes with a cluster of N (non-vocals) in between

38

other clusters of vocals it may require further analysis to determine whether they

are misclassifications or a legitimate segment of non-vocals even though the

entire 2 second segment retains a vocal trend of 80%.

Although the overall trend can provide indication of vocals or non-vocals it can be

difficult to justify how large the overall trend space should be. If we analyzed the

trend for 2 second audio segments where each frame is 1 second long, every now

and then it would be impossible to find the trend if 1 frame is classified as vocals

and the other frame is classified as non-vocals. It would require some balancing

between the size of the trend space and the size of frames. Perhaps increasing the

trend space and lose precision or decreasing the frame size and possibly produce

more misclassifications.

In a later chapter we will discuss a simple approach for resolving possible

misclassifications.

V V V V V V N V V N V V V N V V V N V V

Table 3 Theoretical classification output in chronological order with possible misclassifications spread

apart

V V V V V V N N N N V V V V V V V V V V

Table 4 Possible misclassifications clustered together

4.6 LFPC Parameters

There are several variables involved when calculating LFPC values, they are:

 Frequency range

 Frame size

 Window hop size

Frequency range

Typically the frequency ranges are set to include the majority of the human

singing frequency range since the majority of observed energy changes are a

39

result of human sing voice being present. We can set the highest and lowest

frequency bounds of the logarithmically spaced sub-bands to any value, however,

the impact of different sets of frequency bands will depend upon how different the

magnitude values for the audio are across the frequency range. If we load a track

into an advanced audio application and plot the spectrum displaying with it a log

frequency axis we can observe slight differences between the different frequency

bands, however the differences are not extreme. Take for example the following

figures where Figure 12 represents a snippet of audio containing only music and

Figure 13 contains vocals and music, in both figures the difference in magnitude

between different sub-bands are subtle across all sub-bands, thus frequency range

has almost minimal impact. There is however a noticeable difference between the

two figures where the overall magnitude levels across all the bands of vocals is

higher than non-vocals; this is some indication of vocal presence.

Figure 12 Frequency analysis of non-vocals

Figure 13 Frequency analysis of vocals

What is of interest to us is the difference in energy distribution between vocals

and non-vocals across sub-bands. Figure 14 illustrates the differences in energy

distribution between vocals and non-vocals across 12 sub-bands where blue

samples represent non-vocals and red samples represent vocals. By nature there

are significantly less non-vocal samples due to the fact that songs usually contain

more segments with vocals present, however in any case there are obvious

differences in energy distribution between vocals and non-vocals where vocal

40

samples have visibly higher energy distribution. The larger the difference between

the two classes the higher the chances of the statistical model learning the

difference, thus classifying samples of any given song into vocals or non-vocals

with higher accuracy.

Figure 14 Distribution of LFPC values across 12 sub-bands

Frame size

The frame size of an audio sample can in fact be any size. It could be 5

milliseconds or 5 seconds, however the size does have affect on the accuracy of

classification. This is true due to the fact that manual annotation is not 100%

accurate and can be inaccurate up to 500 milliseconds. Take for example a manual

annotation situation, the user attempts to annotate a 1500 millisecond song

containing 500 milliseconds of vocals at the beginning of the song as illustrated

by Figure 15 A. Figure 15 B shows the user committing an error annotating the

vocals segment resulting in tagging the first 600 ms as vocals instead of 500 ms

and tagging the remaining 900 ms as non-vocals instead of 1000 ms.

41

Figure 15 Actual vocal/non-vocal versus manually annotated vocal/non-vocal

As mentioned earlier, mistakes are bound to be made due to imperfect human

reaction times; ignoring slight pauses or breaths between words being sung and

the simple fact that one human alone cannot know the start and end times of vocal

sections of every song. Now let us take for example a frame size of 10 ms

(forgetting about window hops for a moment) for analyzing LFPC values of the

1500 ms of audio, we would end up with 150 audio frames each being 10 ms long.

Due to the 100 ms of error committed while manually annotating we end up with

10 frames of audio being incorrectly annotated, this could potentially give

undesirable results. The classifier now “thinks” that it has seen 60 examples of

vocals and 90 examples of non-vocals instead of 50 examples of vocals and 100

examples of non-vocals; this means 16.7% (10/60) of the examples seen for

vocals are false and classification errors will be inevitable.

Now let us suppose the frame size for LFPC values is 250 ms, we would obtain 6

frames of LFPC values to cover the 1500 ms. The first 2 frames (500 ms) shall be

correctly tagged as vocals, the third frame (which is in fact non-vocals from 501

ms to 750 ms) is said to contain 100 ms of “apparent” vocals and 150 ms of non-

vocals and the remaining 3 frames will all contain non-vocals. The third frame is

made up of 100 ms vocals and 150 ms non-vocals, however due to the fact that a

frame of 250 ms can only have one tag between vocal or non-vocal, the dominant

42

annotation prevails resulting in the third frame being tagged as non-vocals. This

time the classifier “thinks” that is has seen 2 examples of vocals from the first 500

ms and 4 examples of non-vocals from the remaining 1000 ms, which is in fact

exactly how the 1500 ms song is composed. This demonstrates how different

sized frames can affect the accurateness of training data generation.

However, although in that example having a larger frame size appears to generate

more accurate training data it is only advantageous to a certain point. Take for

example a frame size of 2000 ms, we may very well generate reliable training data

with this frame size, however we can lose a great deal of precision when it finally

comes time to segment songs into vocals and non-vocals. Precision is lost due to

such a large frame size, anything that was manually annotated ends up being

rounded to the nearest 2000 ms during the training data preparation stage. This

especially undesirable when for example a section of vocals goes from 0 ms to

1600 ms, however due to a 2000 ms frame size results in the predicted vocal

segment to begin at 0 ms and end at 2000 ms. Figure 16 illustrates the actual begin

and end intervals for various segments of a song, along with its predicted begin

and end intervals. We can see that it is obviously lacking precision as it only

predicts segments to the nearest 2000 ms, therefore when choosing a frame size

for LFPC analysis the desired degree of precision of begin and end points should

be taken into consideration. The model could be 100% accurate at predicting,

however having songs segmented into 2 second chunks is almost of no use.

Figure 16 Actual song segments versus Predicted song segments with 2s frame size

43

Window hop size

In actual fact the window hop size can be of any size, however in order to achieve

sensible audio analysis, a window hop size should be smaller than the frame size.

The window hop size is the amount to “hop” across the stream of audio before

capturing the next frame of audio (refer to section 4.2 Calculating LFPC Values). If

the window hop size is equal to the frame size we would effectively be reading

through audio samples one after the other each being newly unseen audio samples

(see Figure 5), if the window hop size is larger than the frame size we would end up

omitting audio samples at fixed intervals (see Figure 17).

Figure 17 Excessive window hop resulting skipped samples

Take for example a 20 ms frame and 13 ms window hop, we would read 20 ms

frames at 13 ms intervals and in effect creating a 7 ms overlap (where overlap is

equal to frame size minus window hop size) between frames. The first 3 frames

would be read at the following times:

1 ms – 20 ms

13 ms – 33ms

26 ms – 46 ms

44

Analyzing audio using a windowed approach has a couple of advantages, the first

being that we obtain more samples per song hence obtaining more training data,

the second and perhaps the most important advantage is so that “interesting”

changes in the audio that would otherwise be split by frame boundaries are

captured. For instance, if something interesting happens at 17 ms – 24 ms, having

no overlap would mean that part of the interesting frame was in frame 1 ms – 20

ms and part of it was in frame 21 ms – 41 ms. However, by reading frames with

some sensible window hop or overlap means that the interesting frame at 17 ms –

24 ms is fully captured in frame 13 ms – 33 ms.

Figure 18 Un-windowed sample reading

Let us first look at an example of a un-windowed approach to reading audio

samples. Figure 18 illustrates a stream of audio being captured one by one (un-

windowed) where each square represents one frame of audio captured. As the

arrows suggest, there are several interesting peaks in the audio that fall between

the boundaries of frames being read. Each separate square on the bottom of the

diagram illustrate how each frame is seen by the audio analyzer, it does not have

any intuition about the peaks between those frame boundaries or the fact that they

are even supposedly joined. This can be troublesome especially when those

interesting peaks actually represent some energy spike, perhaps some indication

45

of vocals being sung, however due to the peak being split in half it loses its impact

and potentially becomes merely a slight curve in another frame and is perhaps

overshadowed by some other interesting peak or plunge.

Figure 19 Capturing interesting points with window hops

Now here is an example of a windowed approach to reading audio samples. In

Figure 19 the top row of squares illustrate how the original frame would have been

read without any windowing, no different from Figure 18. The second row of

squares is also no different from the squares in Figure 18, as it illustrates how

frames appear when they are split as before. The third row of squares however

represents frames that overlap; the numbers under each square indicate the order

in which frames are read implying that even numbered frames indicate overlapped

frames. Let us look closely at the first 3 frames of the audio in Figure 19, frame

number 1 and frame number 3 are supposedly related to each other in that frame

number 3 follows from frame number 1 in terms of chronological order in the

audio stream. However, since we are now reading frames with an overlap we

capture an extra frame in between frame number 1 and frame number 3, and that

is frame number 2. Frame number 2 contains some overlapped samples since half

of it is captured in frame number 1 and half of is captured in frame number 3.

Originally the audio analyzer would not have known anything of interest might

46

have been happening right in between frame 1 and frame 3, however now that we

have obtained frame 2 which overlaps frame 1 and frame 3 it becomes clear that

there was in fact some interesting peak right in between frame 1 and frame 3

which would have never been uncovered without employing this windowed

approach.

4.7 Audio Corpus

An audio corpus is a collection of audio files that can be used for tasks such as

audio analysis. In our case we use an audio corpus to extract audio features from

every song in the collection and use the extracted feature values to build statistical

models. The audio corpus/corpuses required for vocal detection should contain

audio files of both vocals and non-vocals so that a statistical model can be built to

recognize both; the ideal would be to include songs of various types for a greater

coverage as this will increase the likelihood of a randomly chosen song to be

segmented correctly.

4.8 Issues

This method of segmenting songs is relatively lightweight in that most of the hard

work is already manually pre-prepared offline, while for the end user the only

work required on their device is the one-off calculation of LFPC values and

classification of those values. However, as with most solutions there are always

some downfalls or areas that prevent it from being a perfect solution. The

following are several known issues for detecting vocal segments using statistical

models.

Lack of Song coverage

The main issue with detecting vocal segments of songs containing accompaniment

noise through the use of statistical models is that different songs can have

different background accompaniment (perhaps different energy distribution).

Therefore, if in the extreme case where a classification model trains mainly on

songs with heavy background drum instruments and attempts to classify a song

with only violin background instruments it is likely to classify with lower

47

accuracy. Also the same can be said about vocals where songs are trained on

strong screaming vocals and attempts to classify a song with weak whispering

vocals. The ideal situation would be to have coverage for all songs that ever

existed, however that would be impractical to achieve and can also hinder

classification efficiency as the model grows beyond proportion.

Human error

As previously discussed human error is almost unpreventable when it comes to

manual annotation of audio segments. The manual annotation stage of the whole

vocal detection process is perhaps one of the most important steps as without this

type of data model training cannot take place, however, due to human‟s being

error prone for several reasons this step is also the one with the most critical

drawbacks. Providing erroneous training data to the classifier inevitably produces

erroneous results. However, it is impossible for humans to be perfect especially

when reacting to degrees of precision in milliseconds, therefore providing

imperfect training data via manual annotations of audio remain a critical

disadvantage factor.

Not enough non-vocal instances

Similar to the issue of the lack of song coverage, it is sometimes overlooked as an

issue. Typically there are higher proportions of vocals compared to proportions of

non-vocals due to the nature of song composition; this means that naturally there

are significantly less non-vocal examples for a classifier to train on. Less training

data typically translates to less accurate classification and less accurate

classification is obviously undesired. One approach to solving this problem is to

include songs composed of only instrumentals; however, obtaining these types of

audio files are not always as straightforward.

48

49

5 Our Approach

There have been various studies in the field of vocal detection in songs using

statistical models. However none have specifically taken advantage of information

available about the song being analyzed such as the artist name and the gender of

the artist. Most adopt the “one-model-predicts-all” approach and do not consider

refining the prediction model to more specialized models. Knowing the artist

name of a song provides possibilities of predicting segments of a song into vocals

or non-vocal using a model specifically built to predict songs by that particular

artist. Similarly, if the gender of the artist is known through knowing the name of

the artist a model built to predict a specific gender can be used in the case that an

artist specific model is not available. Obviously if a specialized model is not

available or the information provided by the song name is not clear about the artist

or gender we can always fall back onto a general model that has been trained on

various types of songs, effectively performing vocal detection the conventional

“one-model-predicts-all” way. The aim however is to investigate the advantages

of using several specialized statistical models for prediction rather than using

simply one general model. If we can get special built models to classify segments

of songs according its artist or artist gender more accurately than with a general

built model, we will have higher probabilities of aligning textual lyrics of a song

to its vocal segments with more accurate timing.

In this chapter we will discuss the process of vocal detection through firsthand

experiences including the corpus that was used for baseline evaluation, training

data preparation, model training, classification of song segments, and the

interpretation of classification results.

5.1 The baseline Corpus

For our statistical model training purposes a fairly large corpus was compiled, this

corpus included many songs used in a study done by Ewald Peiszer on the topic of

50

“Automatic Audio Segmentation”. This was one of the larger publically published

corpuses we have seen and we also made many additions to the list making it an

even larger corpus. It consists of

 17 songs by The Beatles

 4 songs by Belle and Sebastian

 4 songs by Bettie Serveert

 4 songs by Teenage Fanclub

 2 songs by ABBA

 2 songs by Anthony and the Johnsons

 2 songs by Arctic Monkeys

 2 songs by Boyz II Men

 2 songs by Badly Drawn Boy

 2 songs by Baby Face

 2 songs by The Jesus and Mary Chain

 2 songs by The Roots

 2 songs by The Stone Roses

 57 songs by various different artists

(Refer to the Appendix for a complete list of song names)

However the corpus being large has no value to us unless they contain

information regarding the whereabouts of vocals and non-vocals for every song.

Each song in the corpus was manually annotated to indicate where vocals/non-

vocals occurs. This corpus will be used as the baseline corpus, in other words it is

the corpus that will be used to train a general model for predicting a wide range of

songs. In a later chapter we will introduce several specially compiled corpuses

that will be used for evaluations against our propositions.

51

5.2 Manual Annotation

This process of is one of the most important steps to vocal detection via statistical

models. It provides example audio feature values of segments of audio that are

definitely vocals and segments that are definitely non-vocals. Having many such

examples allows a model to train and consequently predict with higher accuracy.

There is no automatic way to provide examples other than to prepare them

manually. Below is a snapshot (Figure 20) of an application which demonstrates

how any given song can be manually annotated to give indicators of where vocals

and non-vocals occur.

Figure 20 Manual song annotator

The application was specially developed to help ourselves with manual

annotation. It contains a File menu which allows users to browse and open wav

files. Once a wav file has been opened successfully it will immediately begin

playback. The user then has several options; either, click the „tag voice on‟ button

if the beginning of vocals has been heard or click the „restart‟ button which will

52

replay the song from the beginning and clear any output seen on screen. The

„restart‟ button is especially useful when the first vocal segment had been missed

and a quick restart is required. Assuming the „tag voice on‟ button had been

clicked, the label on the button will change to display „tag voice off‟ which for

obviously reason allows the user to click the button to end tagging of a segment of

vocals if in fact that segment of vocals had ended. There are other less important

options such as dragging the playback bar for fast-forwarding or rewinding. Figure

20 illustrates that:

 The song “01 Billie Jean.wav” has been opened

 From 0 seconds non-vocals was tagged (denoted by „mus‟) which lasts for

9.369 seconds

 From 9.369 seconds vocals was tagged (denoted by „vox‟) which lasts for

4.087 seconds

 The current playback position is at 48.565 seconds

 Currently vocals are happening (application is waiting for a „tag voice off‟

button press)

If the „tag voice on‟ button is clicked, it will output some values to the text

window regarding the amount of non-vocals it had just annotated. For example,

from the absolute beginning of the song the user waited for 9.369 seconds before

clicking the „tag voice on‟ button, this resulted in the output of “0.0 9.369 mus”

which in simple terms means from 0.0 seconds some non-vocals lasted for 9.369

seconds. At this point the user waited another 4.087 seconds before clicking on

the „tag voice off‟ button which then outputs the values “9.369 4.087 vox”. If for

some reason the user does not react by clicking anything during a vocal/non-vocal

transition, they can simply use the playback bar to rewind. If the user makes a

mistake by either clicking the „tag voice on‟ or „tag voice off‟ button too early or

too late they have the option to delete the incorrect output and use the „set

previous time‟ button coupled with the text box to the left of it to set the time of

the last correct annotation, then use the playback bar to rewind and do over. Once

53

a song has been fully annotated the File menu allows for saving to a *.lab file

which contains the exact information displayed in the output text area.

5.3 Generating Training Data

In order to generate training data for a statistical model to begin training, LFPC

values are required to be calculated. With all the LFPC values calculated the next

step is to associate each LFPC value with a vocal (vox) or non-vocal (mus) tag.

To accomplish this task, a separate
1
application was developed

which first

calculates LFPC values for each song in the corpus then searches for its

corresponding manually annotated data (*.lab) file to create another file which

contains LFPC values and its corresponding mus/vox tag.

Figure 21 LFPC/training data generator

Figure 21 illustrates the application calculating LFPC values for the song named

“Lazy Days”. What the user does not see happening though is that after

calculating the LFPC values of a song it also searches for the corresponding *.lab

file and associates the LFPC values with mus/vox tags. The result of calculating

LFPC values of the songs in the entire chosen folder is one *.arff file containing

1
 Assoc Prof Steve Jones was the developer of the entire application

http://www.cs.waikato.ac.nz/genquery.php?linklevel=4&linklist=CS&linkname=J_to_P&linktype=report&listby=Name&lwhere=unique_record_id=10&children=

54

all the LFPC values and their mus/vox associations. Below is a sample of the

contents that can be found within the automatically generated *.arff file.

127.706,118.030,118.474,110.820,128.848,110.864,112.030,135.242,109.386,126.381,107.864,129.477,vox

% /home/user/Corpus/training/audio/Desmond Dekker – Lazy Days

This would have been derived from first calculating the first frame (assuming a

100 ms frame size) of 12 LFPC values and then looking into the *.lab file to find

for example that from 0 seconds to 7.639 seconds (see below for sample

annotation) there were vocals, therefore resulting in the first frame (0 seconds to

0.1 seconds) of audio analysed being associated with vocals (vox).The above

training data sample is one of hundreds or even thousands of lines contained in an

*.arff file, it is simply constructed by 12 LFPC values and followed by either a

vox or mus tag followed by the song‟s full path (which is commented out by the

preceding %). This is sufficient information for statistical models to use for

training.

Sample annotation:

0.0 7.639 vox

7.639 16.417 mus

24.056 0.650 vox

24.706 3.030 mus

27.736 1.428 vox

29.164 1.765 mus

30.929 2.368 vox

33.297 17.763 mus

51.061 1.022 vox

5.4 Training

Once relevant data has been generated, the next step is to use that data to begin

training a statistical model. This trained model will be used to predict and classify

any LFPC values that it is given, in other words if a whole series of LFPC values

calculated for a song were given to the model it shall be responsible for sorting

each of those values into either vocals or non-vocals in chronological order. For

this training process we relied heavily on “WEKA”, an application developed by

several senior professors at the University Of Waikato in New Zealand [12]. This

55

application is a compilation of algorithms developed for machine learning and

data mining tasks and can be used for both training models and classifying raw

data . Figure 22 is a snapshot of the interface of WEKA, the „Pre-process‟ and the

„Classify‟ tabs contain all functions that is required for our purposes.

Figure 22 WEKA, data mining application

The „Pre-process‟ tab allows users to load training data (*.arff file) similar to the

ones discussed in the previous section 5.3 Generating Training Data, once a file is

loaded on the same tab several types of basic information is displayed including

basic statistics regarding the data‟s distribution and the number of instances the

training data contains. As a word of advice, even though generally the more

instances there are the higher the chances a wider range of values is covered it is

not always a smarter idea to increase that number is much as possible due to the

fact that more data implies more processing power required which implies less

efficiency as well will see later. Assuming we have loaded some training data into

WEKA, the next step is to train a model using that data. To do this, we use the

„Classify‟ tab. Figure 23 illustrates the end result of a model being built/trained.

56

The percentages 74.4867% and 25.5133% represent the correctly and incorrectly

classified instances respectively; these numbers are derived by using a 10 fold

cross-validation technique where the training data is divided into 10 equal parts, 9

out of the 10 equal parts are used for training and the remaining 1 out of 10 equal

parts is used for testing, this is then alternated and repeated until each of the 10

parts has had the chance to be part of the training data as well as being the testing

data set and the overall accuracy is recorded.

Figure 23 WEKA, classification tab

How accurate a model is at classifying instances can be known by verifying with

the “answers” in the test data. In other words, think of the LFPC values in the

training data as questions for a test and the two classes „mus‟ and „vox‟ are the

possible answers to those questions and the test itself is the classification process,

when we give the model a test to answer it can temporarily cover up the answers

and attempt to answer the questions without looking at the answers, once it has

finished answering it will verify its results with the correct answers and obtain a

accuracy figure. Take the following example for instance:

57

15:mus

18:mus

22:vox

25:vox

15:mus

20:vox

The numbers here shall represent LFPC values, next to them are their associated

classes or tags. The first four numbers shall be the training data. The first two

numbers have „mus‟ associated with them, the following pair of numbers have

„vox‟ associated with them. The remaining two numbers shall become the test set,

it covers up the “answers” as described previously and they become:

15:?

20:?

Now testing begins. Since the model has already seen that the number 15 is

associated with „mus‟ it gives the following correct prediction for the first test

instance:

15:mus

Now it looks at the number 20 and attempts to give it an answer, however because

it has never seen examples of 20 anywhere in the training data so it takes a guess

and predicts its class incorrectly as:

20:mus

Once all predictions have been completed the system verifies its predictions by

uncovering answers to give an accuracy score. There were two instances tested,

since the prediction of the first instance was correct and the prediction of the

second instance was incorrect it concludes that this model is approximately 50%

accurate. In reality it is more complicated, however this example provides the

basic idea of what happens when the training data is divided for testing. The

accuracy of a model can be increased (or decreased) by using different classifiers,

each classifier has a different algorithm for classifying instances, and

58

consequently this means that some algorithms are better than others in different

situations depending on the type of data it is presented with.

5.5 Classification

The ultimate goal is to classify instances into vocals or non-vocals; therefore the

classification stage is perhaps one of or if not the most important stage. With

instances classified, it is possible to begin observing its accuracy on various types

of unseen data and ultimately allows for segments of vocals of a song to be

located (with varying degrees of accuracy and precision).

WEKA has the capability of allowing users to load a trained model and provide to

it an external source of instances (LFPC values of some given song) for

classification. This external source of instances can either have classes already

defined or undefined. The advantage of using instances with classes already

defined for classification is that it provides immediate feedback of its accurateness

by comparing between predicted classes and actual defined classes and this can be

helpful for understanding which types of models classify more accurately with

which types of songs (LFPC values), the downfall is that only gives indication of

how accurate the model is at predicting classes of a particular song which already

has known classes (segments of vocals already known) and does not provide any

further assistance toward vocal detection of unknown songs. Figure 24 illustrates

the classification process in Weka where an externally supplied test set is used for

classification instead of cross-validating among the original data supplied for

training.

59

Figure 24 Classification via supplied test set

What is more interesting to know however, is how accurate a model can classify

instances of a song that has had no manual annotations (defined classes) attached,

in other words how accurate can the model segment a given song that it has never

been seen before into vocals and non-vocals. How accurate a model can classify

raw instances that do not have classes defined is however somewhat up to human

perception as there exists no “answers” to compare to and the only means of

knowing is to visualise the predictions on a chronological time scale while playing

back the song and verifying that the cues of start and end points of vocals

segments are in fact in sync with the playback.

The steps required to obtain a visualisation of the predicted instances are as

follows:

1. Build a model with some training data

2. Classify new instances into vocals or non-vocals

3. Transform the classification output to replace all occurrences of vocals by

the number 1 and all occurrences of non-vocals by -1

4. Plot a histogram of all the values of 1s and -1s

60

By replacing all occurrences of vocals by 1 and non-vocals by -1 we are able to

gain a numerical representation of the two different classes in their extremities,

these numerical values will then be used to visualise the boundaries between

vocals and non-vocals. The following is a sample output (in table format) of the

first 10 instances classified obtained from classifying instances of a song through

WEKA:

=== Predictions on test data ===

inst# actual predicted error prediction

1 1:mus 1:mus 1

2 1:mus 1:mus 1

3 1:mus 1:mus 1

4 2:vox 2:vox 1

5 2:vox 2:vox 1

6 1:mus 2:vox + 1

7 2:vox 2:vox 1

8 2:vox 2:vox 1

9 2:vox 2:vox 1

10 1:mus 2:vox + 1

Table 5 Results of predicting the first 10 instances

Table 5 shows that the first 3 instances were predicted as mus (non-vocals)

followed by 2 instances predicted as vox (vocals) followed by 1 mus 3 vox then

finally 1 mus. Table 6 illustrates how each of the class values are transformed into

numerical values where - 1 represents non-vocals and 1 represents vocals.

61

instance#

actual

class

predicted

class

actual

class

value

predicted

class

value

1 mus mus -1 -1

2 mus mus -1 -1

3 mus mus -1 -1

4 musvox musvox 1 1

5 musvox musvox 1 1

6 musvox mus 1 -1

7 musvox musvox 1 1

8 musvox musvox 1 1

9 musvox musvox 1 1

 10 musvox mus 1 -1

Table 6 Predicted class values transformed into numerical values

Figure 25 is a histogram of instance classes plotted in the song‟s chronological

order. Note this example only represents the first 10 instances (first few seconds)

of a song and already we can see some sections of vocals present. Assuming that

each bar represents 1 second of audio, we can conclude that this diagram tells us

that the model has predicted the first 3 seconds of the song as being non-vocals

followed by 2 seconds of vocals and so on. We can see that vocals began at the 4

second mark and ends at the 6 second mark, in addition to that section of vocals

another can be observed that begins at the 7 second mark and ends at the 10

second mark. With this visual, we are gain a rough sense of where vocals occur

within a song.

62

Figure 25 Visualisation of predicted classes (histogram)

Vocal start and end points can be defined as the change from one extreme to the

other or more specifically the change in value from 1 to -1 or vice versa. Figure 25

shows that the first 3 values remained the same until the fourth where the value

changed from -1 to 1, this indicates the beginning of a vocal section, the change

from 1 to -1 at the sixth value indicates the end of a vocal section. Therefore the

first section of vocals begins at 4 seconds and ends at 6 seconds as expected.

Although this technique can be useful for locating vocals, it must be noted that not

all changes in values indicate presence of vocals or non-vocals. Bear in mind that

the classification process is almost never 100% accurate, therefore it is highly

likely that there are incorrectly predicted values among some section of vocals or

non-vocals. Take Figure 25 for example, at first sight it may seem as if vocals begin

at 4 seconds and end at 6 seconds, however looking at the bigger picture it can

appear as if the section of vocals actually begin at 4 seconds and end at 10

seconds with one misclassification in between at 6 seconds. The likelihood of one

instance with a different class among a series of instances of the opposite class

being correctly classified is rather low. Note that each bar in Figure 25 could just as

easily represent 100 milliseconds of audio in which case it would mean that the

figure is suggesting that some vocals lasted for 200 milliseconds followed by 100

milliseconds of non-vocals followed by 300 milliseconds of vocals, intuitively

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

63

this does not give the impression that it predicted the one non-vocal segment

correctly as it would appear more likely that it was actually a 600 millisecond

segment of vocals without a minuscule pause.

5.6 Moving Average

To reduce the issue of misclassifications, we can simply adopt a moving average

technique where values between a certain range is averaged to give an overall

trend and eliminate short term fluctuations, this then gives us a overview of a

longer term trend of the data set. The basic idea behind the moving average

technique is to select a window size, average all the values within that window

and move to the next window and average those values until it has iterated

through the whole data set. Take Figure 25 once again as an example; if we chose a

window size of 3, we would look 1 value behind and 1 value ahead along with the

current value and average the total to replace the current value by the average. The

following is a table similar to that of Table 6 with the addition of moving average

values (window value):

instance#

actual

class

predicted

class

actual

class

value

predicted

class

value

window

value

1 mus mus -1 -1

2 mus mus -1 -1 -1.00

3 mus mus -1 -1 -0.33

4 musvox musvox 1 1 0.33

5 musvox musvox 1 1 0.33

6 musvox mus 1 -1 0.33

7 musvox musvox 1 1 0.33

8 musvox musvox 1 1 1.00

9 musvox musvox 1 1 0.33

 10 musvox mus 1 -1

Table 7 Predicted class values with moving average

If the chosen window size is 3, we would begin calculating from the second value

since this is first value that has values before and after it and this allows it to be

64

averaged by the 3 combined values (including the current value). Let us take the

predicted class values from Table 7 for example, the predicted class values of the

first 3 instances are all -1, therefore we begin with the second -1 and sum it with

both values before and after it resulting in -3. We then average this value to give a

value of -1; this value then replaces the current value which happens to be -1

anyway. We then move onto the next predicted class value in the series, this time

the current value is -1 with a -1 value before it and a +1 value after which results

in an average of -0.33. The process continues until no more values remain.

Immediately we can see (Figure 26) that the sixth value that seemed to be

incorrectly classified has been smoothed out and became a positive value instead

of being a negative.

Figure 26 Corrected class values using a simple moving average

Bear in mind that the above examples demonstrate basic idea behind the simple

moving average technique, in reality there are several variations in calculating a

moving average. The formula for a simple moving average is as follows:

65

Where are the observed values, i.e. the positive and

negative values that were transformed from mus and vox. The number 10

represents the window size and can be substituted by any number. M is the

window size

There are also moving averages that take into account the current value‟s

importance, in other words giving more weight to the current value. Typically

some form of normal distribution or linear decay is applied to all included values

in the window where the current value is the middle value and the further away

the neighboring values are the less they weigh against the average. Table 8 is an

example of a weighted moving average where the window size is 3 and both

values before and after the current value are multiplied by some ratio while the

current value is simply multiplied by 1.

instance#

actual

class

predicted

class

actual

class value

predicted

class value

window

value

1 mus mus -1 -1

2 mus mus -1 -1 -0.50536

3 mus mus -1 -1 -0.50536

4 musvox musvox 1 1 0.49364

5 musvox musvox 1 1 0.50536

6 musvox mus 1 -1 -0.49364

7 musvox musvox 1 1 0.49364

8 musvox musvox 1 1 0.50536

9 musvox musvox 1 1 0.50536

Table 8 Moving average with weighted values

66

Figure 27 Corrected class values using a weighted moving average

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8

67

6 Evaluations

As discussed at the beginning of the previous chapter the aim is to investigate the

advantages of using several specialized statistical models for prediction rather

than simply using one general model. If we can get special built models to classify

segments of songs according its artist or artist gender more accurately than with a

general built model, we will have higher probabilities of aligning textual lyrics of

a song to its vocal segments correctly. The proposition is that similar audio feature

values can be found between songs that are similar, perhaps songs with the same

artist or songs that contain dominant vocals of the same gender. Since different

artists have relatively different energy levels in their vocals and certainly vocals

between males and females generally have noticeable differences we expect that

prediction will be more accurate with the use of models specifically built for

vocals of a particular gender or artist. This approach allows the field to be

narrowed down significantly meaning potentially redundant data is not considered

in the classification process, in other words predicting a song containing only

female vocals with a model built for predicting songs of both male and female

means that half the data (males) in that model is potentially useless. The

remaining of this chapter will cover the experimental process through which we

investigate whether vocal detection using special built models depending on the

song type provide supported evidence of improved classification accuracy

6.1 Experimental Setup

In order to investigate the validity of the proposition, a series of tests was devised

to help support this. This series of tests included compiling several corpuses in

addition to the large corpus already introduced in chapter 5.1 The baseline Corpus)

for feature extraction, model training and data classification. The following is an

outline of the experimental process:

1. Compile a general corpus containing various types of songs (as seen in

chapter 5.1 The baseline Corpus)

2. Compile additional corpuses for:

68

I. male only songs

II. female only songs

III. two different male artists

IV. two different female artist

V. one group or band

3. Prepare training data

4. Build models for all corpuses

5. Cross-validate instances from all corpuses against each other‟s models

6. Visualize predictions

7. Analyze results

Compile a general corpus containing various types of songs

This corpus will serve as a baseline for testing. The general corpus contains many

different types of songs across several genres, artists and genders. Results that are

obtained for tests obtained from other models should be compared to results from

testing with the model of the general corpus. For example, if a Mariah Carey song

is tested on a Mariah Carey model the result should be compared to testing the

same Mariah Carey song on the general model. This shall then provide some

indication of any advantages of using specialized built models. The entire list of

songs compiled for the general corpus can be found in the appendix section.

Additional corpuses

These additional corpuses will be used for verifying the validity of the proposition

that special built statistical models should outperform a general model. Models

will be built out of each of these corpuses for examination. The addition corpuses

consist the following:

Male corpus, Female corpus, Mariah Carey corpus, Britney Spears, Michael

Jackson corpus, Robbie Williams and Beatles corpus

69

Male Corpus

Artist Song name

Bow-wow (feat Omarion) Let me hold you

Boyz II Men I‟ll make love to you

Aerosmith I don‟t want to miss a thing

Beatles You really got a hold on me

Blink 182 What‟s my age again

Coolio The devil is dope

David Bowie Kooks

Eminem (feat Dido) Stan

Immortal Technique Dance with the devil

K-Ci and JoJo Crazy

Kc & The Sunshine Band That‟s the way I like it

Michael Jackson Billie Jean

Oasis Songbird

Prince Kiss

Red Hot Chili Peppers Parallel Universe

Female Corpus

Artist Song name

Leona Lewis Bleeding love

Alicia Keys No one

Alanis Morissette Head over feet

Alanis Morissette Thank you

Bjork It‟s oh so quite

Britney Spears Hit me baby one more time

Britney Spears Oops I did it again

Cassie Me and you

Gloria Gayner I will survive

Madonna Into the groove

Madonna Like a virgin

Mariah Carey One sweet day

Monica Angel of mine

Norah Jones Lonestar

Salt-N-Pepa Whatta Man

Mariah Carey Corpus (female artist)

Song name

Sweetheart

When you believe

Whenever you call

My all

Always be my baby

70

One sweet day

Fantasy

Hero

Deamlover

I‟ll be there

Someday

Love takes time

I still believe

Without you

Do you know where you‟re going to

Michael Jackson Corpus (male artist)

Song name

Billie Jean

Scream

The way you make me feel

They don‟t care about us

Black or white

Stranger in Moscow

Rock with you

This time around

Bad

D.S

Man in the mirror

You are not alone

Beat it

Bad

Heal the world

Beatles Corpus (group)

Song name

A day in the life

All I‟ve got to do

All my loving

Anna

Don‟t bother me

I saw her standing there

It won‟t be long

I wanna be your man

Lucy in the sky with diamonds

Misery

Money

Please Mr. Postman

Please please me

Till there was you

71

You really got a hold on me

Prepare training data

To begin with we must manually annotate each song in each corpus. This process

of manual annotation is tedious yet rewarding. The entire training and

classification stages of vocal detection rely on it, therefore producing quality

annotations is important. In this section we will not be discussing this process

further; every single song listed in the previous section was manually annotated

using the method discussed in a previous chapter on manual annotation.

Using data from the manual annotations, we then generate training data by

calculating LFPC feature values for all songs and associate class values

(vocals/non-vocals) to every feature value. This will result in a *.arff file

containing training data.

Build models for all corpuses

We will build statistical models for each of the listed corpuses for evaluation.

Each corpus contains approximately 10 to 15 songs and one *.arff file is created

for each corpus containing the necessary training data. This *.arff file is then

loaded into WEKA for training and its overall accuracy is evaluated using

automatic cross-validation. There are two classifiers that we consider the best for

our aim and they are as follows:

 IBk

 RandomForest

Both classifiers produce very similar results, the IBk classifier was selected for

our evaluation. The IBk classifier is based on the nearest neighbor approach

where the test instance is classified by considering the classes of the nearest k

training instances. This is especially suitable since high or low LFPC values

determine the class of an instance; if the class value of a certain LFPC value is

unknown then it looks to see what the classes are of the nearest k LFPC values, if

72

the nearest k LFPC values are high and mostly vocal classes then it is most

sensible to classify the unknown instance as vocals.

To begin with, a random song was taken from the general corpus and its actual

vocal sections were plotted using frame sizes and window hop of 20-13, 200-130,

400-260, 600-390, and 1200-780 milliseconds. The reason for this is to first settle

on a frame size that can provide a balance between accuracy, precision and

efficiency and to use this frame size for the remaining evaluations. As discussed

earlier, the frame size can affect the accuracy and precision of vocal segments,

here we will demonstrate this visually in the following diagram:

Figure 28 Plot of actual vocal segments of a song with different frame sizes

We first extracted LFPC values of the chosen song using the mentioned frame

sizes and eventually producing an *.arff training data file for each frame size, then

models were built using each of those *.arff files. The method for obtaining the

actual (not predicted) plots is by simply “predicting” the song‟s LFPC values

73

contained in the *.arff training data file using the model built with the same *.arff

training data file. This way the model will theoretically predict every instance

100% correct since every instance it attempts to predict is are also the training

instances. We then transform each predicted class into positive or negative

numerical values to obtain the plot of vocal segments in the time scale as seen in

Figure 28. Now examining the diagram, we shall take the 1
st
 plot which has frame

sizes of 20 milliseconds as a baseline since it will be the most precise plot out of

them all due to its small frame size. Here the 2
nd

 plot compared to the 1
st
 is very

similar where all sections of vocals and non-vocals practically match exactly

except that a few of the smaller non-vocal segments appear to be slightly different

as if it is almost disappearing. If we look at the 3
rd

 plot we can actually see that

very small sections of non-vocals have disappeared, this is the affect that frame

sizes have on precision as discussed in a previous chapter. It becomes obvious that

precision is lost as frame sizes increase as illustrated by the 4
th

 and 5
th

 plots. From

this analysis the conclusion is to use frame sizes of 200 milliseconds since it will

be more efficient compared to 20 millisecond frames and it does not appear to

lose a great deal precision, therefore the remaining evaluations will use frame

sizes of 200 milliseconds.

Since all models that we build using WEKA will have information about its

distribution of each of the two classes between vocals or non-vocals we shall

represent each model with the visualization along with its cross-validation results.

The following are snap shots of each model‟s LFPC value distribution followed

by cross-validation results and basic statistics taken from WEKA representing

each model:

General model Beatles model

74

Female model Male model

Britney Spears model Mariah Carey model

Michael Jackson model Robbie Williams model

Table 9 LFPC Distribution of every model

The percentage values in the following table represent the accuracy of cross-

validating models against itself giving indication of how accurate the model is at

classifying data that are similar. For example, the Britney Spears model is

approximately 83.9015% accurate at classifying songs by Britney Spears. The

remaining columns are self explanatory as they provide additional information

regarding each model‟s LFPC value distribution.

Cross-validation

accuracy

Minimum LFCP

value

Maximum LFPC

value

Mean LFPC

value

Standard

deviation

General 73.8818% 2 141 119.781 11.508

Beatles 76.2083% 18 138 117.228 12.534

Britney

Spears
83.9015% 8 138 119.457 11.129

Female 83.3127% 8 139 114.579 13.847

Male 84.2806% 2 141 119.742 12.683

75

Mariah

Carey
91.612% 7 144 116.563 12.354

Michael

Jackson
74.1698% 27 140 116.786 12.46

Robbie

Williams
76.126% 17 140 122.465 10.91

Table 10 Cross-validation accuracy and distribution of each model

Cross-validate instances from all corpuses against each other’s

models

Every LFPC value from each corpus (except the general corpus) on the horizontal

axis is tested against each model on the y axis and the accuracy is recorded. This

will ensure that each corpus is tested against the general model in addition to

testing each corpus against other focused models. Corpuses are not tested against

their own corresponding models since theoretically it will always give 100%.

The percentage values represent how good a particular model is at classifying

instances produced by some artist or by some artist of a certain gender. For

example the General model is approximately 73.5705% accurate at classifying

songs by Britney Spears or is approximately 67.1741% accurate at classifying

songs by females.

 Beatles
Britney

Spears
Female Male

Mariah

Carey

Michael

Jackson

Robbie

Williams

General 62.1313 % 73.5705 % 67.1741 % 67.4924 % 77.9397 % 63.2638 % 65.7742 %

Beatles 68.8231 % 65.2345 % 67.4386 % 69.0601 % 61.8875 63.7058 %

Britney

Spears
58.4167 % 73.5762 67.9696 % 81.7949 % 66.4772 % 67.5188 %

Female 59.7656 % 78.9699 % 69.2939 % 81.0786 % 66.4588 % 67.5575 %

Male 69.0842 % 73.3516 % 71.1073 % 75.4608 % 66.8182 % 66.3541 %

Mariah

Carey
63.7638 % 80.2588 % 76.1919 % 74.9908 % 70.4494 % 67.5575 %

Michael

Jackson
57.5978 % 74.0781 % 67.7652 % 66.8403 % 78.0029 % 65.1218 %

76

Robbie

Williams
56.4417 % 64.633 % 61.7418 % 61.0997 % 65.3313 % 59.5711 %

Table 11 Cross-validation among all models

Visualize predictions

To visualize predicted vocal segments, one song from one corpus is used for

illustration. First the song‟s actual vocal segments are visualized, then vocal

segments are predicted using the general model in addition to using the song‟s

own specialized model to illustrate any differences between actual vocal segments

and predicted vocal segments. By doing so, we can observe the differences

between using general models and specific models.

Figure 29 Actual vocal segments versus predicted vocal segments

Here in Figure 29 we can see obvious differences between actual vocal segments

and predicted vocal segments. The plot toward the top of the diagram corresponds

to predictions using a specific model while the plot toward the bottom

corresponds to predictions using a general model. The plot in the centre is the

baseline (actual vocal segments). Both predictions were processed using a

weighted moving average size of 5 instances. The vocal detection precision and

77

accuracy of the specific model is significantly much better compared to the

general model. The specific model used for this test was the Mariah Carey model

and the song being tested was “Without you” by Mariah Carey. The general

model classified 78.1875% of instances correctly where as the specific model

classified 91.5625% of instances correctly. A difference of 13.375% does not

seem to have much impact however when the predictions are visualised the

impact is tremendous.

Analysis

Let us begin analysis by combining some crucial results from Table 10 with results

from Table 11. The combined table allows us to compare the differences in

accuracy between classifying songs with a general model and classifying songs

with a specific model.

 Cross-validation accuracy Accuracy against General model

General 73.8818% 100%

Beatles 76.2083% 62.1313%

Britney Spears 83.9015% 73.5705%

Female 83.3127% 67.1741%

Male 84.2806% 67.4924%

Mariah Carey 91.612% 77.9397%

Michael Jackson 74.1698% 63.2638%

Robbie Williams 76.126% 65.7742%

Table 12 General model versus specific model

Here we can see that the General model is on average 73.8818% accurate at

classifying songs chosen by random since the general corpus mainly contains

songs of many different types. Now comparing the Beatles model to the General

model we can see that the Beatles model is on average 76.2083% accurate at

classifying songs by the Beatles, however when using the General model to

classify Beatles songs only a 62.131% accuracy was obtained. The Beatles model

is significantly more accurate at classifying Beatles songs compared to a General

78

model attempting to classify Beatles songs, the difference is

approximately14.077%.

If we compare how accurate a Britney Spears model is at classifying Britney

Spears songs against how accurate a General model can classify the same Britney

Spears songs, the General model again falls short this time by approximately

10.331%.

Iterating down the table we begin to see a trend, which is, every special built

model is at least 10% more accurate at classifying songs of its own type compared

to using a General model where the highest difference in advantage peaks at

approximately 17%.

The following graph shows the accuracy between testing specific songs against

the General model and testing specific songs against its own specific model.

Figure 30 General model versus specific model

Note that the general model classifies 100% correctly since it is classifying the

same songs that it used to build its model, therefore accuracy values should be

considered from the Beatles model onward. All specific song types tested against

the general model give convincingly lower accuracies when compared to testing

the same songs against its own specific model. This seems highly promising, since

the proposal was that specialised models should classify instances with higher

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

General Beatles Britney
Spears

Female Male Mariah
Carey

Michael
Jackson

Robbie
Williams

Cross-validation accuracy Accuracy against General model

79

accuracy than using a general purpose model, this finding undoubtedly supports

our assumptions.

From the percentage figures contained in Table 12 it is also interesting to note that

the models that gained the largest advantages were the gender specific models.

The male model gained an advantage of 16.79% closely followed by the female

model with 16.14%. Perhaps this is some indication that separating models into

male and female is on average the most effective.

One may naturally wonder why some models cross-validate better than others, the

reason is that some models were built with instances that have larger LFPC

(energy) differences between vocal and non-vocal segments and some models

were simply built with vocal and non-vocal LFPC values closer together. This

means that some songs have much higher LFPC values during vocals and much

lower LFPC values during non-vocals where as some songs have lower LFPC

values during vocals and some have higher LFPC values during non-vocals. In

order for classification to be more accurate the larger the difference between

LFPC values of vocals and non-vocals the better. Take Table 9 for example, if we

examine the LFPC distribution of the General model we see that the energy levels

of non-vocals (blue samples) are not significantly different from the energy levels

of vocals (red samples). During training, the model attempts to learn the

difference between energy levels of vocals and non-vocals, if the differences are

not large it may be more difficult for the model to learn the difference in energy

levels between the two classes. Now if we examine the LFPC distribution of the

Mariah Carey model we can see clearly that the difference in energy levels

between vocals and non-vocals are quite significant, hence the higher cross-

validation accuracy of 91.612% compared to the General model‟s of 73.8818%.

Since General models typically contain many different types of songs, the energy

levels between vocals and non-vocals become less consistent, this means that

there are higher numbers of vocal instances having dissimilar LFPC values which

makes it more difficult for the classifier to distinguish what a vocal segment‟s

LFPC value should be.

80

Figure 31 Difference in LFPC values for vocals

For example, a model is built using song A and song B (Figure 31) where song A

contains higher LFPC values during vocals and song B contains relatively lower

LFPC values during vocals. If an instance of unknown class was to be classified

using this model it would be difficult to do it accurately, what would happen if the

instance to be classified had a LFPC value of 80 is completely unpredictable. As

far as the model knows the LFPC value of 80 is highly like to be non-vocals

(according to song A) and is also highly likely to be vocals (according to song B).

The more variation in songs within a corpus the less likely it is to classify

instances accurately, this may explain why some models apart from the General

model cross-validate much less accurately compared to other models as some

artists may have many different song styles throughout their career whereas some

maintain a certain style for example.

Subsequently, models that have been trained using a more specific set of songs

can benefit due to a larger amount of similarities of LFPC values between the test

song and the model, hence the improved classification accuracies compared to

general models

81

7 Conclusions

7.1 Summary

Current vocal detection techniques typically make use of general purpose

solutions where one algorithm or one model is used for all audio samples

requiring vocal detection. Techniques such as statistical classification of audio

segments do not take advantage of available information about the audio when

performing classification. Basic information of a typical song such as artist name

or artist gender is freely available, usually in the form of plain text appended to

the audio file itself. Due to lack of use of such easily obtainable information,

general techniques such as statistical classification fall short of its potential.

The use of statistical models for vocal detection remain one of the most popular

methods in this field as they are relatively lightweight and usually produce

acceptable results. User experience for the mobile application being developed is

crucial. Therefore, our goal was to improve accuracy in detecting vocal segments

within songs so that attempting to synchronize lyrics to a song can be as accurate

as possible. We saw a flaw in current statistical classification techniques in that

they only use general purpose built models for classification. In order to improve

on reliability and accuracy of vocal detection, our proposed solution was to use

focus based statistical models for classifying audio segments instead of the

conventional one-model-fits-all approach.

A series of specific corpuses were compiled where each corpus contained songs of

a certain type such as all female songs or all Michael Jackson songs. Several

specific models were then built using those focused corpuses and their

improvements over a general model were investigated.

82

7.2 Conclusion

After evaluations were completed we were able to gain confidence in saying that

classifying song segments using more specific models improved accuracy in

locating vocal segments within songs.

The test results reveal that models that were trained on songs that have larger

differences in energy levels between vocals and non-vocals typically classify

songs of similar types with higher accuracies. For this reason general purpose

models typically classify song segments less accurately compared to special built

models since general models contain a larger variety of songs thus having a larger

range of LFPC values defined as vocals.

The issues that were concerning during research were the lack of non-vocal

instances available for training. Due to the nature of songs, a significantly lower

percentage of the non-vocals were found during model training stages, this is

feared to have caused models to sacrifice accuracies. Since there were so many

more vocal instances available for training it could be possible that an instance of

unknown class is classified as vocals even though it is actually non-vocals due to

the fact that instances for non-vocals are less refined, leaving higher opportunity

of a non-vocal instance to be classified as vocals.

Another major concerning issue during research was the process of manually

annotating song segments into vocals and non-vocals. As it turns out humans

make mistakes, especially when dealing with reaction times down to fractions of a

second. What is concerning is that manually annotating songs is arguably the most

crucial step in the vocal detection process as well as being the most error prone, if

done incorrectly the outcome is bound to have consequences. The tediousness of

this process makes it very unpleasant and consequently can cause more errors than

expected.

Overall, test results suggest that using specific built models for classifying

specific songs produces promising improvements over using general models.

Detecting vocals accurate to two hundredth of a second seem to be the most

balanced between efficiency, accuracy and precision. This balance is especially

83

beneficial for applying this technique to mobile devices that have certain

processing limitations.

84

85

8 Future Work

This thesis presented known effective techniques in the field of vocal detection

and improved on it with our approach of using focused models. These

improvements provide a better opportunity for the application being developed in

parallel to synchronize lyrics with vocals. Areas in which research could progress

further are as follows.

8.1 Model genre

During the research, there was one alternative path that we did not take even

though we thought it was a good idea to pursue it. The idea was to build specific

models according to genre, the reason this was not pursued at the time was

because genre classification is very subject to debate. The genre of any one song

could be pop or rock or it could even be both or perhaps more, this creates a lot of

controversy as to whether a genre specific model built is the genre it claims to be.

A song such as “Where is the love” by Black Eyed Peas could be classified as rap

or it could also be pop, therefore it can be difficult to completely isolate one

genre. However, if possible, improvements could be groundbreaking.

8.2 Combine different techniques for lyric alignment

In order fully satisfy functional requirements of the mobile application being

developed in parallel, further research is required. The aim of the application is to

have the ability to automatically align lyrics of a song to their corresponding vocal

segments. The entry point to solving this problem has been to sufficiently detect

vocals segments more accurately. The remaining possible paths to take to fulfill

the functional requirement are as follows:

Extract chroma features for song structure analysis

As we have found during research, chroma feature vectors are effective for

describing song structure. Each chroma vector describe the twelve dominant pitch

values of a segment of a song, when coupled with similarity detection of the

86

whole song a high level structure can be achieved where sections of the audio that

repeat the most is most likely to be the chorus. Knowing where the choruses occur

can be particularly useful since it contains timing information of vocal segments,

this type of information is scarce and if known is very beneficial.

Analyze plain text lyric files to detect lyric structure

The idea behind textual structure is very similar to chorus detection using chroma

vectors. The text is analyzed to detect sections of the most repeated textual

sequences; the most repeated section of text is most likely to be the chorus.

Knowing which word the first chorus begins with implies that we can align the

text of the beginning of the chorus to the time stamp obtained from detecting the

first chorus start point in the audio using chroma features.

Combining vocal detection, chorus detection and textual chorus detection we

begin to gain alignment possibilities where choruses are aligned and using the

time stamps obtained through vocal detection proper alignment can be adjusted.

Sections containing verses can possibly be aligned to text by the assumption that

most songs begin with the verse, what better way to obtain a time stamp for the

beginning of a verse than by using vocal detection.

87

9 REFERENCES

1. AUTOMATIC SYNCHRONIZATION BETWEEN LYRICS AND MUSIC CD RECORDINGS

BASED ON VITERBI ALIGNMENT OF SEGREGATED VOCAL SIGNALS . Hiromasa Fujihara,

Masataka Goto, Jun Ogata, Kazunori Komatani, Tetsuya Ogata, Hiroshi G. Okuno.

2006. Proceedings of the Eighth IEEE International Symposium on Multimedia. pp. 257-

264.

2. SINGER IDENTIFICATION BASED ON ACCOMPANIMENT SOUND REDUCTION AND

RELIABLE FRAME SELECTION. Hiromasa Fujihara, Tetsuro Kitahara, Masataka Goto,

Kazunori Komatani, Tetsuya Ogata, and Hiroshi G. Okuno. 2005. In Proceedings of the

6th International Conference on Music Information Retrieval.

3. AUTOMATIC DETECTION OF VOCAL SEGMENTS IN POPULAR SONGS. Tin Lay Nwe, Ye

Wang. s.l. : Proceedings of the International Conference on Music Information Retrieval,

2004.

4. LOCATING SINGING VOICE SEGMENTS WITHIN MUSIC SIGNALS. Adam L. Berenzweig ,

and Daniel P. W. Ellis. 2001. IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics.

5. A CHORUS SECTION DETECTION METHOD FOR MUSICAL AUDIO SIGNALS AND ITS

APPLICATION TO A MUSIC LISTENING STATION. Goto, Masataka. 2006. IEEE Transactions

on audio, speech, and language processing.

6. A NOVEL CHROMA REPRESENTATION OF POLYPHONIC MUSIC BASED ON MULTIPLE

PITCH TRACKING TECHNIQUES. Matthias Varewyck, Johan Pauwels, and Jean-Pierre

Martens. Vancouver, British Columbia, Canada : s.n., 2008. Proceeding of the 16th ACM

international conference on Multimedia. pp. 667-670.

7. DYNAMIC CHROMA FEATURE VECTORS WITH APPLICATIONS TO COVER SONG

IDENTIFICATION. Samuel Kim, and Shrikanth Narayanan. Cairns, Qld : s.n., 2008 .

Multimedia Signal Processing, 2008 IEEE 10th Workshop on . pp. 984 - 987 . 978-1-4244-

2294-4 .

88

8. A REAL-TIME MUSIC-SCENE-DESCRIPTION SYSTEM: PREDOMINANT-F0 ESTIMATION

FOR DETECTING MELODY AND BASS LINES IN REAL-WORLD AUDIO-SIGNALS. Goto,

Masataka. 2004. Speech Communications. pp. 43(4):311-329.

9. SIGNAL PROCESSING ASPECTS OF COMPUTER MUSIC: A SURVEY. Moorer, James

Anderson. 1977. Proceedings of the IEEE. pp. 65(8):1108-1137.

10. Android. [Online] Google Inc. [Cited: April 7, 2011.]

http://developer.android.com/guide/basics/what-is-android.html.

11. SYSTEM AND METHOD FOR AUTOMATIC SINGER IDENTIFICATION. Zhang, Tong.

Baltimore : s.n., 2003. IEEE International Conference on Multimedia and Expo.

12. The WEKA Data Mining Software: An Update. Mark Hall, Eibe Frank, Geoffrey

Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten. 1, s.l. : SIGKDD

Explorations, 2009, Vol. 11.

89

10 Appendix

The following is a complete list of songs in the corpus we used which includes

various artists and genres.

Artist and song names

ABBA - SOS

ABBA - Waterloo

A-Ha - Take On Me

All 4 One - I Swear

Anthony and the Johnsons - For Today I Am A Boy

Anthony and the Johnsons - What Can I Do

Arctic Monkeys - Red Light Indicates Doors Are Secured

Arctic Monkeys - Riot Van

Artful Dodger feat Craig David - Re-Rewind

Baby Face - Sorry For The Stupid Things

Badly Drawn Boy - Fall In A River

Badly Drawn Boy - Walking Out Of Stride

Beastie Boys - Intergalactic

BEDTIME - BABY FACE & USHER

Belle and Sebastian - A Summer Wasting

Belle and Sebastian - She's Losing It

Belle and Sebastian - Simple Things

Belle and Sebastian - Winter Wooskie

Benny Profane - Devil Laughing

Bettie Serveert - Dust Bunny

Bettie Serveert - Palomine

Bettie Serveert - Rudder

Bettie Serveert - Story in a Nutshell

Black Eyed Peas - Cali to New York

Boyz II Men - On Bended Knee

Boyz 2 Men - The Color Of Love

Brian Mcknight - You're The Only One For Me

90

Cast - Sandstorm

Chicago - Old Days

Chris Brown - With You

Chumbawumba - Tubthumping

Coolio - See You When Get There

Creedence Clearwater Revival - Have you ever seen the rain

Depeche Mode - It's No Good

Desmond Dekker - You Can Get It If You Really Want

dEUS - Suds and Soda

Dire Straits - Money For Nothing

Dodgy - Whole Lot Easier

Eggman - Out Of My Window

Faith No More - Epic

Jackson 5 - Can You Feel It

K-CI & JO-J0 - All My Life

Kirk Franklin RKelly - Lean On Me

Korn - Got the Life

Lucy Pearl - Don't Mess With My Man

Marilyn Manson - Sweet Dreams

Monaco - Blue

Nick Drake - Northern Sky

Nirvana - Smells Like Teen Spirit

Oasis - Wonderwall

Pet Shop Boys - Always On My Mind

Portishead - Wandering Star

Queen Yahna - Ain't It Time

Radiohead - Creep

Rain - Lemonstone Desired

REM - Drive

R Kelly - I Believe I Can Fly

Saxon - The Great White Buffalo

Scooter - How Much Is The Fish

Simon and Garfunkel - The Sound Of Silence

Simply red - stars

Sinead O'connor - nothing compares to you

Suede - Trash

Supergrass - Alright

91

Teenage Fanclub - Free Again

Teenage Fanclub - If I Never See You Again

Teenage Fanclub - Radio

Teenage Fanclub - What You Do To Me

The Beatles - Fixing A Hole

The Beatles - Getting Better

The Beatles - Good Morning Good Morning

The Beatles - Help

The Beatles - Hold Me Tight

The Beatles - I'm Happy Just to Dance With You

The Beatles - I Should Have Known Better

The Beatles - Little Child

The Beatles - Lovely Rita

The Beatles - Not a Second Time

The Beatles - Roll Over Beethoven

The Beatles - Sgt Pepper's Lonely Hearts Club Band (Reprise)

The Beatles - Sgt Pepper's Lonely Hearts Club Band

The Beatles - Shes Leaving home

The Beatles - When I'm Sixty-Four

The Beatles - With a Little Help from My Friends

The Beatles - within you without you

The Boo Radleys - Heaven's at the Bottom of this Glass

The Breeders - Do You Love Me Now

The Fratellis - For the Girl

The House of Love - Destroy The Heart

The Jesus and Mary Chain - Come On

The Jesus and Mary Chain - Hole

The Lemonheads - Different Drum

The Libertines - Up the Bracket

The Man From Del Monte - Ascension Day

The Monkees - Words

The Pixies - e Of Mutilation

The Police - Message in a bottle

The Proclaimers - Make My Heart Fly

The Roots & Erica Badu - You Got Me

The Roots - The Next Movement

The Stone Roses - Going Down (Remastered)

92

The Stone Roses - The Hardest Thing (Remastered)

The Strokes - 1251

The Sundays - I Can't Wait

