
New Zealand Journal ofGeology and Geophysics, 1985, Vol. 28 : 675-699
0028-8306/85/2804-0675$2.50J0 © Crown copyright 1985

Stratigraphy and development of c. 1 7 000 year od

Lake Maratoto, North sIand, New Zealand, with some

inferences about postglacial climatic change
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Abstract The stratigraphy and geomorphology
of Lake Maratoto and its surrounds were investi
gated as part of a programme of paleolimnological
studies based on sediment cores from lakes in
northern North Island. Changes in the lake and
catchment were inferred from variations in sedi
ment character, the correlation and timing being

determined from distinctive tephra layers in the

sediments and by radiocarbon dating. Nineteen new

C-l4 dates, on gyttja or peat, are reported old T'/2,

years B.P,: 1 1 on tephras Mamaku Ash 6830 ±
90. Wk227; Rotoma Ash 8370 ± 90, Wk522; 8350

± 100, Wk523; Opepe Tephra 9370 ± 210, Wk230;

Mangamate Tephra 9700 ± 140, Wk23l; 10000

± 120, Wk232; Waiohau Ash 12 200 ± 230,

Wk233; 12500 ± 190, Wk234; 12450 ± 200,

Wk5l5 12300 ± 190,Wk516;RotoruaAsh 13450

± 120, WkSll; 5 on the deposition of Hinuera

Formation alluvium 16 300 ± 250, Wk239; 16 900

± 470, Wk240; 17050 ± 200, Wk358; 16200

+360 -340, Wk509; 15 850 ± 130, Wk510; and

3 on basal peat of the Rukuhia bog 10 250 ± 90,

Wk114; 15200 ± 130, Wk534; 10600 ± 90,

Wk553.

Lake Maratoto originated c. 1 7 000 years ago

when a small valley was dammed by volcanogenic

alluvium Hinuera Formation. From c. 17 000 to

c. 1 4 000 years ago the lake was about 2 m deep

with clear water. Marginal peat first developed at

c. I 5 000 years ago, reducing the area of the lake

by about one-half by c. 1 3 000 years ago. Lake area

then expanded, possibly because of marginal

erosion and/or oxidation of the peat, to its maxi

mum size at the present day. The adjacent Ruku

hia peat bog grew rapidly from c. 1 1 000 years ago

and is now 8 m thick immediately to the west of

the lake. As a result ofthis growth, the lake became

dystrophic and deepened 3.5 m at c. 7000 years

ago, 6.4 m at c. 2000 years ago, and 7. 1 m today.

The developmental history suggests that net pre

cipitation increased at c. 1 5 000 years ago, increased

further at c. 1 1 000 years ago, remaining high to c.

7000 years ago at least, but with a decline at or

before c. 2000 years ago. There may have been a

distinctly wetter or windier period from c. 1 0 000

to 9000 years ago.

This interpretation is consistent with other

reconstructions of postglacial climate in the South-

em Hemisphere.

Keywords paleolimnology; lake sediments;

drainage basins; peat; pyroclastics; tephrostratig

raphy; tephrochronology; C-14; absolute age; fer

romagnesian mineralogy; glass chemistry; late

Quaternary; Holocene; climate; lake-level fluctua

tions; Hamilton Basin; Hinuera Formation; Lake

Maratoto; Rukuhia; bogs

INTRODUCTION

Paleolimnology is a useful discipline for the

investigation of Quaternary paleoecology and

paleoclimate e.g., Frey 1969; Birks & Birks 1980;

Pennington 1981; Binford et al. 1983; Brugam

1 984. Few such studies, none comprehensive, have

been done in New Zealand e.g., Deevey 1955;

Kennedy et al. 1978; Boubée 1983; McGlone 1983,

and hence we have begun a programme of paleo

limnological studies based on sediment cores from

lakes in the northern North Island.

One of the most promising areas for these stud-

ies is the Hamilton Basin Fig. 1. Its major geo

morphological features were developed in the late

Quaternary, mainly by aggradation of the ancestral

Waikato River McCraw 1967; Hume et al. 1975,

when a number of peat bogs and small lakes were

formed. Exploratory corings of sediments on some

ofthe lakes in 1979 verified that they are ideal sites

for paleolimnological studies. The lakes are shal

low with soft sediments and very low sediment-

ation rates. Particularly notable is a series of

laterally continuous, thin, distinct volcanic ash lay-

ers. The stratigraphic sequence, thickness, lithol

ogy, and bedding characteristics of these layers is

practically identical in all of the lakes examined,

hence they are regarded as primary tephras Lowe

et al. 1980 and of great value as time-stratigraphic

markers. Lake Maratoto, located about I 0 km south

of Hamilton City Fig. 1, was chosen as the siteReceived 25 June 1 984, accepted 22 July 1985
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Fig. I The Hamilton Basin showing the location of Lake Maratoto and the distribution of other Waikato lakes, peat
bogs, and the latest paleochannels ofthe Waikato River after McCraw 1967.
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for initial paleolimnological studies. The purpose

of this paper is to establish the age, origin, and

developmental history of the lake basin.

Previous accounts of the origins of the lakes in

the Hamilton Basin have been based on observa

tions of lakes situated away from peat bogs e.g.,

Lakes Rotokauri, Mangakaware, and Ngaroto; Fig.

1. Such lakes were formed when small valleys in

low hills were blocked with alluvium Hinuera For-

mation deposited by the Waikato River at about

the close ofthe last glaciation McCraw 1967. Lakes

on the margins ofpeat bogs, such as Lake Maratoto

and Lakes Cameron, Mangahia, Rotomanuka, and

D; Fig. 1, are all situated within or near embay

ments in the hills, suggesting that they also lie in

dammed valleys. However, this cannot be con-

firmed by observation of the local geomorphology

as much of the older landscape in their vicinity is

hidden by the blanket of younger peat. It is con-

ceivable that some of these lakes may have been

formed by encroaching peat alone, backing up water

draining from a valley Grange et al. I 939. If the

lakes did originate as valleys dammed by alluvium,

it seems likely that later peat accumulation would

have `contributed to the form and depth ofthe pres

ent lake basins.

The age of the lakes is unknown, but they could

have been formed at any time since the onset of

deposition of the Hinuera Formation, which

occurred in two phases: Hinuera-l sedimentation

between c. 65 000 and 20 000 years ago and Hin

uera-2 sedimentation between c. 20 000 and 12 000

years ago Schofield 1965; Hume et al. 1975;

McGlone et al. 1978.

We have clarified the mode of origin of Lake

Maratoto and, by implication, other peat lakes in

the area by determining the topography, compo

sition, and age of the surface lying below the lake
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Fig, 2 The present-day Lake Maratoto area. The bathymetry is from Irwin 1982. The drainage ditches are modern,
the lake having no outlet in pre-European times.
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Fig. 3 Locations of transects and probing and coring sites. Lake sediment cores were labelled according to the
transect they were on a number and their position in the lake a letter as follows: western cores 5W; 6W; 7W,

eastern cores 5E; 6E; 7E, north cores 1N and central cores all on transect 1-I ` 4,1; 5,1; 6, 1; 7, 1. The first core
taken at each location was designated a e.g., 5Wa, the second b 5Wb, and so on see also Fig. 8.

sediments and surrounding peat. To find the age

of the lake we have radiocarbon-dated the base of

the lake sediments, and have estimated rates of

sedimentation in the lake using the dated tephras

in the sediments Lowe et a!. 1980. Utilising this

tephrochronology, we also determined variations

in the lake's area and depth, and the influence of

peat development, from changes in the character

of the lake sediment. The results have enabled us

to make inferences about some aspects of postgla

cial climatic change.

Lake Maratoto and its surroundings

Lake Maratoto 37°53'S 175°18'E lies on the east-

em border of the domed ombrogenous Rukuhia

peat bog 23 000 ha Fig. 1. The lake, at an ele

vation of 52 m a.s.l., occupies an embayment in

low hills that rise to 76 m a.s. 1 . immediately to the

east of the lake with lower elevations to the north

and south Fig. 2. Such low hills in the Hamilton

region consist of weathered Pleistocene tephras,

ignimbrites, and volcaniclastic sediments that pre

date deposition of the volcanogenic Hinuera For-

mation Kear & Schofield 1978. The lake is

surrounded by peat, but to the west and northwest

Fig. 2 the tops of Pleistocene hills emerge above

the peat, showing that the surface below is of var-

ied relief. Some of this subpeat surface consists of

Hinuera Formation sands and gravels since farm

well-drilling showed "sand" 7-1 0 m below the

present peat surface c. 400 m to the west of the

lake B. Davies pers. comm..
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The lake's bathymetry is shown in Fig. 2; its sur
face area is 16 ha, maximum depth 7.1 m, and
volume 535 100 m3.

METHODS

Depths of peat and lake sediment were determined
at regular distances along a series of transects Fig.
3*

Surface contours ofthe peat along these transects
were determined by standard levelling techniques
with the lake surface 52 m a.s.l as the datum. Peat
depths were measured, usually at 30 m intervals
along the transects, with a peat probe fitted with
an auger for obtaining a bottom sample. An mdi-
cation of the type of substrate below the peat was
obtained by 1 examining the sample in the auger
screw, which sampled clays and muds, and 2
listening to sound transmitted up the probe-gray-
els and sands were readily identified in this way.
Lake sediment was sampled along the transects

Fig. 3 with a modified Livingstone piston corer.
The coring tube was 4 m of 50 mm internal
diameter PVC pipe. The lake sediment was
described and classified from its colour, consist-
ence, texture, and organic content.

*Sone of these transects have also been profiled using
subsurface interface radar in a separate study by Lowe
1985. this issue. evaluating the effectiveness of the radar
method for this sort of work.

Table I Dominant ferromagne
sian mineral abundances* in

Mamaku Ash. Rotoma Ash, and
Waiohau Ash at Lake Maratoto.

To positively identify substrate types noted
during peat probing, seven cores were taken through
the peat and into the underlying sediments Fig. 3.
Six ofthe cores GC1-GC6 were taken with a Gid
dings motorised hydraulic drilling rig, and one RJ1
with a modified Russian/Jowsey D-section manual
corer. The particle-size distribution of substrate
samples from these cores was analysed by sieve and
pipette Folk 1968, and sand-fraction 2-4 corn-
positions were determined by standard methods
see Table 3. Alluvial and colluvial muds and sands
beneath the lake sediments were also sampled and
particle-size distributions and sand-fraction corn-
positions were similarly determined. Ashy hori
zons found in the peat column, and in the lake
sediment cores below Rerewhakaaitu tephra i.e.,
additional to the tephras described by Lowe et al.
1980, were correlated with known tephras mainly
from their ferromagnesian mineralogy; the identi
fication of one tephra Waiohau Ash was con-
firmed by electron microprobe analysis of its glass
shards see Table 2.

Sixteen samples of the lake sediment were col
lected to date the major tephra layers and other
significant horizons in the core e.g., the base of the
lake sediment. These samples were composites of
several 1 cm thick slices of sediment taken above
and below the tephras in suitable cores from
throughout the lake. The tephras, identified by
Lowe et al. 1 980, were correlated from core to

core by their distinctive colour, thickness, lithol
ogy, and stratigraphic position. Several of the

tephra identifications of Lowe et al. 1980 were

Tephra Samplet

Ferromagnesian

summed to
silicate minerals

100%
Opaques
vo1%Hyp Aug Hbe Cgt Bio

Mamaku Ash 1
2

75

56
8 17

10 34

tr

0

0

0

19
32

Rotoma Ash 3
4

57
49

29 4
27 Ii

10
13

tr

0

25

8

Waiohau Ash 5
6
7

73
52
58

2 24

18 27

7 31

0
is

0

1

3
4

34
27
42

*Determined by point-count of the 2-4 250-63 m size fraction of the heavy

mineral assemblage 2.95 g/cm3. Between 200 and 500 grains were counted.

1 1 = peat core Ri 1 -2; 2 = Lake Maratoto core 4, 1 b 3 = Lake Maratoto core
4,lb; 4 = Lake Maratoto core 4jf 5 = peat core RJI-3; 6 = Lake Maratoto

core 4,lb 7 = Lake Maratoto core 4,ld.

Proportion ofopaque minerals mainly titanomagnetite in 2-44 heavy mineral

fraction.

Hyp hypersthene Aug = augite; Hbe = calcic hornblende; Cgt = cum
mingtonite; Bio = biotite; tr = trace < 1%.
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Table 2 Electron microprobe analyses* of glass from Mamaku Ash, Rotoma Ash, Waiohau Ash, and Rotorua Ash
in peat and lake sediment cores from Lake Maratoto or Lake Rotomanuka. The analyses are presented on a nor-
malised 100% loss free basis.

1 2 3 4 5

Si02 78.87 0.50 78.63 0.16 78.32 0.33 78.61 0.30 77.57 0.58
AlO 12.05 0.17 12.33 0.10 12.38 0.13 12.35 0.13 12.68 0.32
TiO 0.12 0.02 0.10 0.05 0.11 0.05 0.13 0.03 0.21 0.05

FeOt 0.87 0.07 0.87 0.07 0.87 0.07 0.92 0.08 1.26 0.09
MgO 0.10 0.02 0.12 0.02 0.10 0.03 0.14 0.01 0.20 0.i8
CaO 0.69 0.10 0.71 0,07 0.82 0.05 0.89 0.04 1.20 0.33
NaO 3.80 0.20 3.76 0.06 3.55 0.16 3.60 0.28 3.55 0.29
KO 3.38 0.43 3.37 0.09 3.73 0.41 3.26 0.10 3.19 0.44
Cl 0.12 0.02 0.11 0.05 0.12 0.01 0.10 0.03 0.14 0.03
Water 1.13 1.40 0.70 0.43 3.05 1.58 4.99 3.00 7.07 1.71
n 14 10 11 10 10

1 = Mamaku Ash Lake Rotomanuka, core A; 2 = Rotoma Ash Lake Rotomanuka, core C; 3 Waiohau Ash
peat core RJ 1-3, Lake Maratoto; 4 = Waiohau Ash Lake Rotomanuka, core A; 5 Rotorua Ash Lake Roto
manuka, core A.

n = number ofanalyses in mean each analysis was done on a different shard; numbers in parentheses are 1 standard
deviation. The location of Lake Rotomanuka is shown in Fig. 1; cores A & C were taken from near grid ref.
NZMS26O Sl5/136615.

*Glass shards in the 2-4 size fractions were separated and purified using heavy liquids and Frantz electromagnetic
methods, embedded in epoxy resin, polished, carbon coated, and analysed with a JEOL JXA-733 SUPERPROBE
at the Analytical Facility, Victoria University ofWellington Froggatt & Gosson 1982. All samples were analysed
using an 8.0 nA beam current with either a 1 0 m or 20 tm beam diameter, and peak counts of 3 >< 1 0 s meaned.
Repeated analysis of glass standards KN-l 8 comendite glass; VG-99 basaltic glass; VG-568 rhyolite glass gave
a check on probe calibration and operation. There was probably some loss of Na and water by volatilisation see
also Froggatt 1 983. Concentrations are given in oxide weight percent except Cl which is in atomic weight percent.
Data are from D. J. Lowe in prep.: "Stratigraphy, chronology, and correlation of late Quaternary rhyolitic and
andesitic tephras interbedded with organic lake deposits in the Waikato region, North Island, New Zealand".

tAll Fe calculated as FeO.
Difference between analytical total and 100.

provisional, and modifications based on new

mineralogical and glass chemistry data Table 1 and
2 are noted below. Slices ofpeat 5 cm in thickness
from the bottoms of cores RJ 1 and GC 1 were also
collected. The samples were submitted for C-14
dating at the University of Waikato Radiocarbon
Dating Laboratory symbol Wk. All the dates pre
sented and discussed in this paper are conventional
and are based on the old Libby half-life of 5568

years Hogg 1982.

STRAT1GRAPHY

Peat and prepeat deposits

To the north and northwest of the lake transects
1-1 `, 3-3' , 4-4'; Fig. 4, peat depths are relatively
shallow 1-4 m and the subpeat deposits consist
ofgreenish-blue to greyish-brown, sometimes gritty,

muds. Further to the west and southwest, the peat
deepens to 7-8 m and the subpeat materials are
sands and gravels with a relatively flat surface
transects 5-5 ` , 6-6 ` , 7-7 ` , 1 0- 1 0 ` , 1 1 - 1 1 ` ; Fig. 4.

Between the lake and the hills to the east and south
of the lake, the peat is less than 4 m thick. It shal
lows towards the hills and is underlain by muds

similar to those beneath the peat to the north and
west of the lake transects 1-1 `, 2-2', 3-3' , 4-4',

5-5', 6-6', 9-9'; Fig. 4.

Core GC1 Fig. 5 shows that the subpeat
materials to the west of the lake consist of at least
5.5 m of Hinuera Formation and are overlain by
8 m of fibrous peat. The base of the peat in GC1
has been dated Wk553 at 10 600 ± 90 years B.P.
see Fig. 9.

In core RJ 1 , at the southwestern lake edge, the
subpeat sediments consist of a thin 10 cm layer
of greenish-grey mud passing down to sand of the
Hinuera Formation Fig. 5. There is more vertical
variation in the texture of the peat in RJ1 than in
GC1, but fine lake sediment is not present. Basal
peat in RJ1 has been dated Wk534 at 1 5 200 ±
130 years B.P. Three diffi.ise ashy horizons, of about
10-20 mm thickness, were found in the RJ1 core.
The top one RJ1-l; Fig. 5 is identified as Taupo
Pumice from its field character vesicular, fine
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Fig. 4 Transect profiles vertical
exaggeration x20 produced by
combining the levelled lake sedi
ment and peat probe depths. Lake
sediment thickness was taken to
be the thickness of sediment plus
tephra layers between the top of
the consolidated lake sediment
above the Taupo tephra and the
junction between the muds below
the Rerewhakaaitu tephra names
and stratigraphy of the tephras are
given in Fig. 8. Because of its
sloppy nature, some of the sedi
ment above the Taupo tephra was
occasionally not sampled or was
lost during coring, and sometimes
the bottom alluvial mud layer was
not quite reached. In these cases,
total sediment thickness was
obtained by adding estimated
sediment thicknesses above the
Taupo tephra and below the
Rerewhakaaitu tephra. These
estimates were calculated from
sedimentation rates in the sedi
ment immediately above and
below these tephras respectively,
provided the core included all the
tephras between and including the
Taupo and Rerewhakaaitu. The
estimates were corroborated from
sediment thicknesses in more
complete nearby cores.

pumice lapilli and persistent occurrence within a

metre ofthe bog's surface. The middle RJ1-2 ahd

lowest RJ1-3 ashy horizons both have a ferrom

agnesian mineralogy consistent with a source from

the Okataina Volcanic Centre Table I; Lowe et a!.

1 980, and are probably Mamaku Ash and Waio

hau Ash, respectively. The identification of the

lowest tephra as Waiohau Ash was supported by

the major element chemistry of its glass Table 2.

The only viable alternative, Rotorua Ash c. 13 400

years, has distinctly more Ti02, FeO, MgO, and

CaO than Waiohau Ash Fig. 6 and hence is a less-

likely correlative.

Cores GC2-5 to the north and northwest of the

lake all showed similar features Fig. 5. The peat

column consists entirely of fibrous, sometimes

woody, peat, occasionally with two diffuse ash lay-

ers. In GC2 these are identified as the Taupo top

and the Mamaku tephras; in GC3 they are prob

ably the Mamaku and Waiohau tephras. The sub-

peat materials consist of about I m of moderately

weathered gritty mud upper unit unconformably

overlying at least 3 m of stongly weathered clay

lower unit Fig. 5. Upper unit samples U- 1 to

U-4 are texturally similar sandy mud or sandy

silt; Fig. 7A. Their grading curves Fig. 7B closely

1 S

2'si-2

1sss1o,

SM SM

SSSSMMM

SMV

lOOm

Lakewater

Peat and/or
Lake sediment
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Fig. 6 Chemical composition of glass in peat core sam-
pie RJ 1-3 compared with that in samples ofWaiohau Ash
and Rotorua Ash data from columns 3, 4, and 5 in Table
2, respectively. The histograms are plots of ratios of ele
ment concentrations in the samples to concentrations of
the same elements in Yellowstone Rhyolite Glass stand-
ard VG-568 the method ofplotting ratios is after Sarna
Wojcicki et al. 1984. RJ1-3 is better matched to Waio
hau Ash, its probable correlative, than to Rotorua Ash.

match those of late Pleistocene tephras that mantle

the Pleistocene hills in the area. The sand miner-

alogical analyses Table 3 confirm that the upper

unit consists of late Pleistocene tephras. The top

part U-3 is probably largely derived from ?Hau

paru tephra; the middle to bottom parts U-4, U-

1, and U-2 are mainly derived from ?Tahuna

tephra mixed with Rotoehu tephra Table 3; Fig.

7D. The lower unit consists of strongly weathered

materials deposited considerably before Rotoehu

tephra, hence is not considered further.

Lake sediment and prelake-sediment deposits

The stratigraphy, lithology, and chronology of the

cores are given in Fig. 8. Complete cores pene

trated to sublake-sediment muds and sands; other

cores were incomplete but could be matched with
the rest using the tephras as stratigraphic markers.

Complete cores all have an upper part consisting
of 2-3 m of lake sediment mainly dy-gyttja and
gyttja, or peat in shallow-water cores containing a
series ofthin 1-40 mm tephra layers, and a lower
part of either about 1 m of olive to greenish-grey

n
fine mud in middle and northern cores or up to
about 50 cm or less ofalternating greyish-white mud
and unweathered pumiceous sand layers in cores
from the southwest of the lake. The junction
between the gyttja and the underlying muds and
sands is taken as marking the origin of the present-
day lake.

Particle-size analysis Fig. 7A, C of three sam-

ples 5-1 to 5-3 of these subgyttja materials sand,
mud, and clay, respectively show a fining trend
eastward and northward in the lake basin evi

denced also in Fig. 8. There is thus a gradation in

the subpeat and subgyttja deposits from coarse
gravelly sands west of the lake at GC1, through
sands at the base of RJ 1 and the lake cores from

the western side ofthe lake cores 7W, 6W, to muds

fining to clays in the eastern and northern parts of
the lake. We interpret these muds and clays as a
fine lithofacies ofthe Hinuera Formation deposited
from suspension. This view is supported by the
grading curves plotted in Fig. 7C that show that 5-
1 is similar to Hinuera lithofacies C2 of Hume et
al. 1975, while 5-2 and 5-3 apparently represent a
finer variant of their lithofacies D. The C-l4 dates

straddling the Hinuera muds and clays Wk239,

5 10; Wk240, 509; Fig. 9 show that these were

deposited relatively rapidly between c. 16 000 and
c. 1 7 000 years ago. This time is around that of the
last stages of vigorous Hinuera-2 deposition in the
Hamilton Basin McGlone et al. 1978.

The 10 cores that penetrated beneath the Hin

uera muds or sands have a thin layer 5-1 5 cm of
olive gyttja overlying up to 80 cm of gritty mud,

usually with a dark 20 cm thick paleosol-like top
containing two or three diffuse grey ashy layers Fig.

8. We interpret the thin gyttja layer as having been

deposited in a relatively shortlived proto-Lake

Maratoto see "Developmental history".

The composition of the gritty muds samples

U-5 to U-8; Fig. 5 below the proto-Lake Maratoto

gyttja matches that of the subpeat upper unit

materials Fig. 7A, B, D; Table 3. Hence they are

also Pleistocene hill materials and are contiguous

with the subpeat materials.

All these Pleistocene hill material samples U-i

to U-8 thus appear to consist chiefly of Hauparu,

Tahuna, and Rotoehu tephras, which are aged

between c. 37 000 and c. 40 000-50 000 years Fig.

7D, 8. Neither Okareka Ash, aged between c.

1 7 000 and c. 20 000 years Vucetich & Pullar 1969;

cD

:
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Sand
63'm-2rnm

Fig. 7 Compositional analyses of the subpeat and sub-
lake materials.
A Triangular textural plot for samples S-i to 5-3 Hin
uera Formation and U-i to U-6 subpeat and subgyttja
Pleistocene hill materials. Textural classes from Folk
1968 are: 5, sand; s, sandy; Z, silt; z, silty; M, mud; m,
muddy; C, clay; C, clayey. Sample S- 1 is a slightly gravelly
sand.

Pullar et al. 1973, nor Kawakawa Tephra, aged c.

20 000 years Vucetich & Howorth 1976a, are

recognised Table 3; Fig. 7D, although both are

known to have been deposited in the region Pullar

& Birrell 1 973; Lowe 1 98 1. So it seems that there

is a disconformity, possibly of up to about 20 000

years duration, between the proto-Lake Maratoto

gyttja and the Pleistocene paleosurface, a sugges

tion supported by the moderately weathered and

paleosol-like character of the paleosurface.

Lowe et al. 1 980 identified the series of tephra

layers above the Hinuera mud in core 4, lb. The

tephras that were provisionally identified as

?Rotoma Ash and Unnamed ash by Lowe et al. p.

483 are reidentified here as Mamaku Ash, and

Rotoma Ash, respectively. Mamaku Ash, dated at

Wk227 6830 ± 90 years B.P. Fig. 9, is charac

tensed by its Okataina-derived ferromagnesian

mineralogy Table 1 and glass chemistry Table 2;

cf. analyses in Cole & Nairn 1975 and Kohn 1979.

Rotoma Ash, with dates of Wk522 8370 ± 90

years B.P. and Wk523 8350 ± 100 years B.P. Fig.

9, contains the diagnostic amphibole, cumming

tonite Table 1 ; Hogg & McCraw 1 983. Its glass

chemistry is listed in Table 2.

The Taupo, Tuhua, Mamaku, Opepe, Manga

mate, Waiohau, Rotorua, and Rerewhakaaitu

tephras were readily discernible in cores from

throughout the lake Fig. 8 and were used to cal-

culate sedimentation rates during the lake's his-

B

B Comparison ofthe particle-size distributions of upper
unit materials U- 1 , U-3 to U-8 with those of late Pleis
tocene tephras from the Waikato region stippled band.
The latter Waikato samples 30 comprise tephras aged
from c. 1 7 000 to c. 40 000-50 000 years see Table 3;
data from Lowe 1981.

tory. Dates on gyttja associated with all these

tephras, including 1 1 dates not published in Lowe

et al. 1980, are given in Fig. 9. Dates on the gyttja

above and below the Hinuera muds, and on the

proto-Lake Maratoto gyttja, are given also.

The C-14 dates obtained on the tephras used as

markers, apart from those for the Waiohau Ash,

closely match dates on the same tephras elsewhere

Topping 1 973; Pullar et al. 1 973; Nairn 1 980; Hogg

& McCraw 1983*. This agreement indicates that

the chronology for the lake's developmental his-

tory may be regarded in large part as reliable, as

the independently dated tephras provide a check

on the accuracy of the radiocarbon dates an
important consideration for projected paleoecol

ogical and paleolimnological studies; Mathewes &

Westgate 1980. The Waiohau Ash has been pre
viously dated at NZ568 1 1 250 ± 200 years B.P.,

NZ878 11 100 ± 210 years B.P., and NZ1 135

1 1 800 ± 150 years B.P. Pullar & Heine 1971 and

has a generally accepted age of c. 1 1 300 years Pul

*The dates obtained on Rotoma Ash which was not used
as a stratigraphic marker differ markedly from previous
age estimates of c. 7000-7300 years by Pullar & Heine
1971 and Pullar et al. 1973, but are better matched
with the date ofNZ1945 8860 ± 120 years B.P. given
by Nairn 1980. This latter date is significantly older
than our dates, however, hence the specific age of the
Rotoma Ash eruption is uncertain.

A

<4jm
CIay:Silt ratio

-2 -1 0 1 2 3 4 5 6
4 2 1 0.5 0.25 0.126mm 63 31 16

GraveN. Sand--4..---------SiIt -4 LIay-
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Fig. 7 continued.
C Particle-size distribution of
subgyttja alluvial samples S-i to
S-3. Grading curves of various
lithofacies of Hinuera Formation
sediments are shown for compar
ison mainly after Hume et a!.
1975; the majority of the unla
belied curves represent !ithofacies
Al or Cl.

D Ternary diagrams comparing
relative abundances of ferrom
agnesian minerals summed to
100%, see also Table 3 of upper
unit tephric materials U-i to U-
8 with those of some late Pleis
tocene tephras that are their poss
ibie correiatives. On this basis, the
bulk ofthe upper unit is probably
derived from Hauparu Tephra,
aged c. 37 000 years; Tahuna
Tephra, aged c. 38 000 years; and
Rotoehu Ash, aged c. 40 000-
50 000 years McGione et al.
l984b; see C-l4 dates in Fig. 8.
In diagram i, amphibole consists
of calcic hornblende plus cum
mingtonite. Rotoehu Ash is char-
acterised by a high cummingtonite
content diagram u-Lowe 1981;
Hogg & McCraw 1983. Data
sources for the mineralogies of the
late Pleistocene tephras are given
in note d of Table 3.

lar & Birrell 1973. The average age of 12 400 years

we obtained for Waiohau Ash in Lake Maratoto is

significantly older than this. This difference in age

may result from an "error" in the Lake Maratoto

dates due to contamination by redeposited organic

material cf. Björck & Hâkansson 1982. Alterna

tively, the previous ages on the Waiohau Ash, all

determined on charcoal which is very susceptible

to contamination Hogg 1982, may be underesti

mates. We prefer the older age 12 400 years, but

the age discrepancy nevertheless signifies that the

chronology in this zone of the cores is less certain

than in the others.

LAKE SEDIMENT CHARACTERISTICS

AND SEDIMENTATION RATES

The characteristics of the four types of lake sedi

ment described are summarised in Table 4. Since

the bulk of the sediment probably originates in the

catchment, as in other small lakes e.g., Mackereth

1 966, we have made broad inferences about con-

ditions in the catchment using this classification.

In addition, we use sedimentation rates to indicate

rates of erosion in the catchment.

Sediment type 1 Ti, largely inorganic, suggests

that catchment soils had a low organic content with

C

Hypersthene Calcic Hornbende

Sig S
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Table 3 Mineralogical composition of the sand fractions of subpeat and subgyttja samples at Lake Maratoto*. Corn-

positions of some widespread late Pleistocene tephras note d below and Hinuera Formation sediments are included

for comparison with upper unit U-i to U-8 and Hinuera S-l samples, respectively. Some of the ferromagnesian

mineralogical data is plotted in Fig. 7D.

Heavy mineralsi

Accessory
minerals

as % of

Ferromagnesian silicate minerals heavy

Samples

summed to 100% minerals

Zir Mag

Light mineralsb

relative

abundancesHyp Aug Hbe Cgt Bio

Hinuerac

S-I 65 17 17 0 1 tr 12 gf>q

Hinuera Formation' 75 8 14 0 3 0 38 g f q >> 1

Upper unit cmt
U-5 5-12 45 30 20 5 0 2 5 g>>fq

U-31O-l5 60 15 21 2 2 1 18 g>>fq

U-7130--33 59 25 16 0 0 2 6 g>>f>q

U-84O-42 31 3 65 1 0 3 17 g>>f>q

U-6 45-50 51 22 18 9 0 2 9 g>>fq

U-4 50-55 31 20 33 16 0 2 7 g>>fiq

U-l 60-65 40 4 34 22 0 1 18 g>>fq

U-2 100-105 24 11 30 35 0 tr 14 g>>fq

Tephrad

OkarekaAsh23 16-23 1-9 20-61 0-1 19-49 5 30 g>>feq

Kawakawa Tephra3 41-62 2-20 23-53 0 0-2 1-2 33-38 g > f> q

Hauparu Tephra56 38-83 15-38 0-32 0-1 0 nd nd nd

Tahuna Tephra3 ` 32-60 tr-12 26-65 0-2 0-2 1-3 47-54 g >> f q

Rotoehu Ash4 ` 7-16 0-2 1-44 47-91 0-2 1-3 28-5 1 g > f> q
"Composite"i4 30-39 11-21 24-29 16-31 0-2 1-2 32-67 gf>q

a = S.G. > 2.9 g/cm3: Hyp = hypersthene; Aug = augite; Hbe = calcic hornblende; Cgt = cummingtonite; Bio =

biotite; Zr = zircon; Mag = predominantly titanomagnetite.

b = S. G. < 2.9 g/cm3: g = glass and rare pumice; f = feldspars mainly plagioclase; q = quartz; 1 = lithics.

C = Hinuera Formation sediments are volcanogenic with diverse mineralogy. Data source: 1 = Hume et al. 1975.

d = Widespread rhyolitic tephras of c. 17 000 - c. 50 000 years age range that are predicted to be the most likely

constituents of the Upper unit. Values show the characteristic range of mineral abundances in each tephra from
various localities in the North Island. Data sources and locations are: 2 = D. J. Lowe, unpublished data Lake

Rotomanuka, Fig. 1; 3 = Howorth et a!. 1980 Poukawa; Gavin Road; Whangamata Road; Okataina area; 4
= Lowe 1981 Waikato; S = Hogg & McCraw 1983 Coromandel; 6 = McGlone et al. 1984b Bay of
Plenty-Gisborne; 7 = Vucetich & Howorth 1976b Taupo. Data in the `Accessory minerals" and "Light mm-
erals" columns are derived wholly from references 2 and 4 above.

e = "Composite" refers to a composite of pedogenically mixed late Pleistocene and Holocene tephras that occur as
c. 50-150 cm thick cover bed deposit on the low hills in the Hamilton City-Lake Maratoto area Lowe 1981.

*Sands 2-4 were fractionated by sieve and heavy liquid separation methods and analysed by standard petrological
microscope point-count and X-ray diffraction procedures.

Depth of sample below base of peat or paleosurface.
jU-7 and U-8 occur as discrete, apparently pure tephra layers and probably represent the Hauparu Tephra and Tahuna

Tephra, respectively see text.
tr = trace amount < 1%; nd = not determined.
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Table 4 General descriptions of four classes of lake sediment in Lake Maratoto.

Type Sediment description
Munsell colour
notation range

Organic

matter %*
Occurrence in present-day

Lake Maratotot

T4 Black fibrous soft peaty sediment
containing plant fragments > 2 mm

1OYR 2/1 54.2 Around lake margins to depths of
1 m

T3 Black to very dark brown fine soft
dy-gyttja. Particles < 1 mm

1OYR 2/1

1OYR 2/2

42.7 Water depths > 1 m

T2 Very dark grey to very dark
greyish-brown firm fine gyttja.
Particles < 1 mm

1OYR 3/1

1OYR 3/2
2.5Y 3/2

18.9 Not found in surficial sediments

Ti Olive to very dark grey, firm

slightly sticky fine gyttja.

Particles < 1 mm

5Y 3/i

5Y 3/2

5Y 4/3

9. 1 Not found in surficial sediments

688

eI'
11/2 OLD 11/2 NEW Sam

1730±60 1750±60

6210±70 6420±70

6830±90 7050±100

8350±100 8600±100
8370± 90 8620± 100

9310± 210 9680± 220

Fig. 9 Summary ofradiocarbon dates on gyttja and peat

deposits in the Lake Maratoto area.

`All ages discussed in the text are old half-life dates.

2g = gyttja; p = peat.
*Dates published by Lowe et al. 1980.

tSamples of basal peat in cores GC1 and Ri 1 Fig. 5 -

stratigraphic positions inferred from ages. Peat sample

Wkl 14 10 250 ± 90 years B.P. was collected from

the base of the Rukuhia bog at 8.3 m depth about 6

km northwest of Lake Maratoto near grid ref.

S15/076694; sample WkI 15 10 750 ± 90 years B.P.;

McGlone et al. 1978 was collected at 9 m depth about

3 km north of Lake Maratoto near S 1 5/1 1969 1 A.

G. Hogg pers. comm. 1983. Grid references are based

on the national 1000 m grid of the topographical map

series NZMS 260.

9700± 140
10000± 120
10 120± 100

10600±90

12 300± 190
12 200± 230
12 500±190
12 650±200

10000 ± 140
10400± 120
10440±100

10950±90

12 700 190
12600± 240
12900 ±200
12810 t 200

Tephr Waikato Radiocarbor±

Pumice _Wk 21 5

OJp Laboratory Na.

Tuhu± Tephra - Wk 214*
- Wk 227

Mamaku Ash

-.- Wk523
Rotoma Ash __.

Wic 522

Opepe Iephra .._ Wk 230

Manqan±cfe Tephra -- Wk 231
, Wk 232
- Wk2139

.-- Wk5536

,- Wk 516
-- Wk 233

Waiohau Ash __ Wk234
S- Wk515

Rotorua Ash
-WkSll

- Wk237*
Rerewhakaa,tu Ash _._ Wk 238

5340

/- Wk 239
--" -Wk510

Hinuera Formation
overbank mud
deposits

.-- Wk509

Proto- Lake Wk 240
Maratoto ytfja

Pre:Lake
hilt materials

9
9

9
9

p

9

g

9

13450±120 13850± 120

14700± 220 15200 ± 230
14700± 180 15200± 190

15200±130 15650± 140

16300±250 16800±270
10 800± 130 16300 ±130

16 200

16 900 ±670

17 050 m200

1665o

17500 ±690

17620 ±210

*Loss on ignition determined on at least two samples of dried sediment by combusting at 550CC for 30 mm.

tFrom Boubée 1983.
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little vegetational cover. The greenish tinge of this
sediment is due largely to secondary chlorophyll
degradation products, possibly produced within the
lake itself. The lack of brown staining implies that
the lake water was clear. The browner T2, with
higher organic content, suggests more vegetation in

the catchment and soils with greater organic con-
tent. Marginal vegetation may have contributed also
to its darker colour. The very dark peaty T3 con-
sists of decomposing remains of aquatic plants and
animals, faecal pellets of aquatic animals, and fine
plant remains from surrounding terrestrial vege
tation Boubêe 1 983, and is stained with humic
material extractable with 10% KOH. Such sedi
ment, often described as dy-gyttja e.g., Hansen in
Berg & Petersen 1 956, shows dystrophic condi
tions in the lake and considerable peat develop-
ment around it. Leafy fragments occur in T3
sediment within and around beds of the sedge
Eleocharis sphacelata. T4 sediment is fibrous and
woody and is similar to peat from the Rukuhia bog.
It is found around the margins of the present-day
lake Table 4.

Changes in sediment type and sedimentation
rates were examined in two groups ofthe lake sedi
ment cores-those taken from modern lake depths
shallower than 4 m shallow-water cores and those
taken from depths deeper than 4 m deep-water
cores Fig. 10.

The temporal sequence is similar in most of the

deep-water cores Fig. 10, right panel. Sediment
Tl occurs from c. 16 300 to 14 700 years ago, T2
from 14 700 to c. 12 400 years ago, and T3 there-
after, except for a briefperiod ofT2 deposition from

Waiohau
124OO 200

Rotorua
13 4S0 120

R ocowhakaaitu
14700t 210

3ase of sedonnt
16300o 250

10 000 to c. 9000 years ago. No T4 or wood was
found in the deep-water cores, and leaf remains are
rare. Most of the shallow-water cores Fig. 10, left
panel differ from the deep-water cores in having
a band of woody T4 from c. 13 500 to c. 12 000
years ago, leafy T3 from c. 12 000 to 10 000 years
ago, and a less-obvious zone of T2 from c. 1 0 000
to 9000 years ago.

For most of the lake's history c. 1 6 300- 1 3 500
years ago, c. 12 400-10 000 years ago, and c. 9000
years ago to present Fig. 10, mean sedimentation
rates were slow 0. 10-0.20 mm/year. For two brief
periods, from c. 13 500 to 12 400 years ago, and
from c. 10 000 to 9000 years ago, the sediment-
ation rate was faster 0.20-0.35 mm/year.
There was no significant difference in sediment-

ation rate between shallow and deep water cores
early c. I 6 300 - 1 3 500 years ago and late from
c. 9000 years ago to present in the lake's history.
However, from c. 1 3 500 to 10 000 years ago, sedi
mentation rates in shallow water were significantly
faster than in deep water. During this period, sedi
ment types T4 and leafy T3 were deposited in shal
low water. In contrast, from c. 1 0 000 to 9000 years
ago, sedimentation rate was significantly faster in
deep water, coinciding with T2 deposition. This was
the only period of sediment focussing i.e. , greater
accumulation of sediment in the deepest part of a
lake basin; Davis & Ford 1982 in the lake's history.

In central locations along transect 1-1 ` ; Fig. 3,
between c. 16 300 and 12 400 years ago, sedi
mentation rates declined in the south of the lake
location 7, 1 but increased in the northern 4,1
and middle 5,1 locations Fig. 1 1. Thereafter,

Fig. 11 Sedimentation rates in
cores taken from central locations
along transect 1-1 ` in Fig. 3 and
averaged for each designated time
period denoted by horizontal
dashed lines.
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Table 5 Total lake sediment
locations.*

thickness in central

Location
No. of cores used

in calculation
Sediment

thickness cm

4,1 4 259

5l 1 310
6,1 1 251

7,1 2 201

*Data also plotted in transect 1-1', Fig. 4.

from C. 1 3 500 to 7000 years ago, sedimentation
rate was consistently slowest in the south and fast-
est in the middle narrow area of the lake. The
faster sedimentation rates in location 5, 1 from c.
1 3 500 to 7000 years ago account for the greater
total sediment thickness there Table 5. From c.
7000 to 2000 years ago, sedimentation rate was
similar in all central locations. Sedimentation rates
were faster in the northern basin 4, 1 from c. 2000

years ago to the present.
In the central locations transect 1-1 `, sedi

mentation rates were inversely proportional to the
distance from the shoreline e.g., station 7,1 is 150
m, and station 5, 1 is 50 m, from the shore, sug
gesting that input oflittoral and terrestrial material

is the major factor determining the sedimentation

rates in Lake Maratoto.

DEVELOPMENTAL HISTORY

Origin of the lake basin

Beneath the lake is a shallow, elongated, northeast-

southwest-orientated depression. This is an embay

rnent in the Pleistocene hills which is dammed to

the southwest by Hinuera sands and gravels and

floored by Hinuera muds and clays Fig. 12. The

southwest margin of the paleosurface depression,

made up of these Hinuera sands and gravels, is

lower lying than the low ridges and Pleistocene hills

around its other sides. The lake is thus held at its

present level mainly by the 8 m depth ofpeat over-

lying the sands and gravels to the southwest.

The Hinuera sediments blocking the embayment

were laid down in two main episodes Fig. 13, the

first of which occurred c. 1 7 000 years ago forming

a proto-Lake Maratoto in which the thin layer of

gyttja lying beneath the Hinuera muds was depos

ited. The proto-Lake Maratoto gyttja lies directly

on the Pleistocene hill derived materials in the val

ley floor with no intervening layer of Hinuera muds,

at least in the northern part of the lake basin. This

suggests either that there was no extensive flooding

by mud-laden river water, possibly because the
major course of the Waikato River moved some
distance away from the mouth of the valley after
deposition of the dam materials, or that the basin
was too shallow to hold enough water to produce
an appreciable thickness of mud. Whichever, this
proto-Lake Maratoto sediment was laid down in
what may have been a swampy hollow with only
shallow water. The duration of the proto-lake was
between 1 50 and 800 years Fig 9.
The second episode of Hinuera deposition, that

produced the initial modern lake basin, was more
extensive and rapid. There must have been a con-
siderable depth of floodwater ponded in the valley

to act as a buffer to the river current to produce
the sorted nature of Hinuera deposits in the
embayment Fig. 1 3. The alternating sand and mud
layers found in the base of the cores from the
southwest ofthe lake and in GC1 Fig. 5, 8 suggest
that the ponded mud-laden water was renewed in

a series of floods. This is consistent with what is
inferred about Hinuera Formation deposition by
Hume et al. 1975 who deduced that the river

formed an extensive braided channel system with
high flow-rates and subject to periodic flooding and

channel movements. Hume et al. 1975 identified
several lithofacies related to flow regimes, and their

lithofacies C2, formed by plane bed movements on

the surface of longitudinal bars at higher dis

charges, is very similar to the gravelly sands in core
7Wa Fig. 7C, 8. The presence of such deposits at

this site shows that, at least during periods of high

flow, the main channel system of the river flowed
near the mouth of the valley. The river may have

flowed in a north-south direction broadly along the

course shown in Fig. 1 from the site ofthe present-

day Hamilton Airport, past the lake, and then west

into the Waipa River near Te Rore. Lakes Cam-

eron, Ruatuna, Ngaroto, and Mangakaware, which

lie adjacent to this paleochannel, are thus likely to

have been formed at the same time, and in the

same way, as Lake Maratoto.

Development of the lake basin and catchment

Initially, the lake was probably no larger than it is

today because fine gyttja does not occur in the RJ 1

core at the southwestern edge of the lake nor in

GC3 only 10 m from the northern lake shore. At

c. 1 6 300 years ago, the shoreline probably lay

between the 7 and 8 m palzobasin contours Fig.

12. The RJ1 core site lies on the 7 m contour and

was clearly either above water or close enough to

the shoreline for wave action to remove any gyttja

to deeper water. The 8 m contour, however, seems

to have been under water from the start of the lake's

development, and cores from sites SW, 6W, and

7W, that are on or close to this contour line, have
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Fig. 12 Subsurface materials and topography of the Lake Maratoto area, derived from the transect profiles in Fig.
4. The 0 m contour is the lake-surface datum 52 m altitude. The map shows the northeast-southwest-orientated
depression in which the modern lake heavy line lies. A separate, narrow, east-west-orientated paleovalley occurs
to the north of Lake Maratoto. See also Fig. 13.

a considerable thickness ofgyttja between the Hin

uera overbank muds and the Rerewhakaaitu tephra.

The lake would thus have been about 2 m deep in

its early stages.

The subsequent development ofthe lake has been

largely governed by the massive growth of peat

around its margins and in the adjacent Rukuhia

bog, as well as by the accumulation ofgyttja. Peat

growth has modified the basin configuration area

and depth and water chemistry.

There was little or no peat development during

the first 1000 years or so ofthe lake's history. The

type of sediment deposited shows that lake water

was clear and that, in the catchment, soils were low

in organic matter, with probably little vegetational

cover. From pollen analyses of peat lenses,

McGlone et al. 1978 and McGlone et al. l984a

concluded that there was sparse vegetation in the

Hamilton region at this time.

Peat began to accumulate around the lake about

1 5 000 years ago, as shown by the date Wk534 of

1 5 200 ± 1 30 years ago at the base of RJ I . The

appearance of darker coloured T2 in the lake may

have resulted from such peat development although

other factors, such as increasing vegetational cover

in the catchment, may have been important. Else-

where in the central North Island, 14 700 years B.P.

marked the beginning of major podocarp forest

expansion e.g., McGlone & Topping 1977; Flem

692
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Hinuera
Formation
mainly
sands

Upper
unit

Lower
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Fig. 13 Schematic cross sections summarising the stratigraphic units and their relationship to one another in the
Lake Maratoto area, showing especially the differences between the northern and southern parts of the lake basin.
There is a time gap of a few hundred years between the Hinuera depositional episodes shown in B-B' , but note that
both occurred within the Hinuera-2 sedimentation phase of McGlone et al. 1978.

ing 1 979 and an increase in rates of soil formation

e.g., Vucetich & Pullar 1 969; Birrell & Pullar 1973.

This early peat development must have been fairly

localised because the change to T3, marking the

onset of dystrophy, did not occur until c. 12 400

years ago, and peat did not appear at the GC1 site,

only 400 m from the lake, until Wk553 10 600 ±
90 years ago. Thus it seems peat first developed

near the lake and then spread outwards.

Dates from peat at the base of the main body of

the Rukuhia bog 10 750 ± 90 years B.P. Wkl 15

McGlone et al. 1978; 10250 ± 90 years B.P.

Wkl 14 unpublished Fig. 9 are similar to that

for Gd, showing that most bog development

occurred after c. 1 1 000 years ago. Peat bogs began

developing at other sites in the Waikato region e.g.,

Hauraki and Moanatuatua bogs-Schofield 1965;

McGlone et al. 1978; Hogg & McCraw 1983 and

elsewhere in the North Island McGlone & Top-

ping 1977; Lowe & Hogg in press at about this

time also, which suggests that climatic change

resulting in an increase in net precipitation, and

N A 6 2
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-i--.- .- . -

I * * * : - . . 2nd depi
H inuera :i- ? : . epius.. _ -; - - . -

Formation . - * . . - . . . -. - . . - -

gravels * -, * * -.1st depositional - * . :

a sands I - . episode : *-

? -

II



g

I

Present day The lake basin is formed in the surrounding peat,

perched above and divorced from the initial lake basin in the

valley floor. Area and depth of lake at maximum. Other lakes

similar to present-day Lake Maratoto, and thus possibly of a

similar ontogenetic stage, include Cameron, Pataka, Posa, and

D.

10 000 years ago to present Rukuhia peat bog expands, most
rapidly after c. 7000 years ago. Water deepens as rate of peat
growth is much greater than gyttja sedimentation rate in the
lake. Water depth perhaps 3.5 m at 7000 years ago, 6.5 m at
2000 years ago. Lake area gradually expands but is never larger
than at present. Lake dystrophic. A sequence of modem lakes
possibly illustrating the development in the first part of this
period is Lakes Mangahia, Rotoroa, Ruatuna, and Serpentine.

14 000 to 10 000 years ago Marginal peat and swamp vegeta
tion encroaches into lake and reduces its surface area by half at
c. 13 000 years ago. From 13 000 to 10 000 years ago, lake area
expands again and water deepens. Main body of Rukuhia bog
begins growth at c. 1 1 000 years ago, and the peat growing west-
ward arrow from the lake contributes to this development. Dark
brown-black gyttja ofhigh organic content because ofpeat growth
and extensive catchment vegetation. Lake becomes dystrophic.
Water 2.5 m deep at 10 600 years ago. Modem analogues include
Lakes Rotomanuka, Rotokauri, Mangakaware, and Ngaroto.

16 300 to 14 000 years ago Initial lake development. Gyttja
olive-grey, low in organic matter. Gyttja darkens later in the
period because of development of marginal peat at 1 5 200 years
ago and possibly catchment vegetation. Water clear, still c. 2
m deep. Modern analogues are Lakes Waahi and Hakanoa.
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Pleistocene Hinuera gravels Hinuera muds Peat G üa . Swamp

hill material and sands and clays vegetation

16 300 years ago Second phase of Hinuera deposition in the

area. Coarse sediment deposited in valley mouth, fining to muds

and clays at the end of the valley. Lake Maratoto forms, c. 2 m

deep, with its shoreline approximating the 7 m contour in Fig.

12. Lake water clear. No peat, and sparse vegetation in catchment.

1 7 000 years ago First phase of Hinuera-2 deposition in the
area. Proto-Lake Maratoto forms by damming of the valley by
alluvium. Basin swampy or with only very shallow water.

Before c. 17000 years ago Valley in Pleistocene hills draining
to the southwest and west. Clear area represents land below c.
40 m contour.
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Fig. 14 above andfacing page Summary of the developmental history of Lake Maratoto bold outline. Cross sections have a vertical exaggeration

of X25. Possible modem analogues see Fig. I of the major development stages are given also.
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not local-changes in drainage patterns, initiated the

development of the bog.

The dystrophic conditions induced in the lake by

the development of the Rukuhia bog have contin

ued to the present, except for the brief period of

T2 deposition from c. 10 000 to 9000 years ago.

This was probably a time of increased input of

material derived from erosion of surrounding soils

because T2 has a higher inorganic content than T3.

Possible explanations include sustained high rain-

fall, or disruption of catchment vegetation by events

such as fire, drought, or increased storminess. Sedi

ment focussing also occurred during this period,

with greater transport of littoral material to the

centre of the lake by presumably increased wave

erosion at the shoreline. Such focussing is consist-

ent with wetter or windier weather at this time.

The vertical distance between the bases of cores

RJ 1 and GC1 is 1 . 1 m and their respective ages

are 1 5 200 and 10 600 years, so 1 . 1 m of peat accu

mulated in this time interval 4600 years, a net

peat accumulation rate of 0.03 cm/year. This peat

growth would not have greatly affected the lake

depth because in this period about 65 cm of lake

sediment was deposited. The net change of lake

depth was thus 45 cm and the rate of increase in

water depth was 0.01 cm/year. The lake would thus

have been about 2. 5 m deep at 10 600 years ago.

The main body ofthe Rukuhia bog developed after

C. 1 0 600 years ago, and with a much greater net

peat accumulation rate e.g., at GCI, 8 m of peat

has accumulated since then, giving a net peat accu

mulation rate of 0.08 cm/year, treble the rate

between 15 200 and 10 600 years ago. Similar rates

of 0.10, 0.06, and 0.08 cm/year average 0.08

cm/year were estimated from peat depths between

Mamaku tephra and Taupo tephra in cores RJ 1,

GC2, and GC3, respectively Fig. 5.

This rapid peat growth around Lake Maratoto

resulted in rapid deepening of the water. From

1 0 600 years ago to the present, the rate of peat

growth was much greater than the rate of accu

mulation oflake sediment, and lake depth increased

by 4.6 m, a change of 0.04 cm/year, four times the

rate before 10 600 years ago. Assuming that the

positions ofthe Mamaku and Taupo tephras in the

peat cores mark the approximate level of the lake

surface when they were deposited, and that the peat

has not been compressed, we estimate that lake

depth was 3.5 m c. 7000 years ago and 6.4 m c.

1 800 years ago. Thus, between 10 600 and 7000

years ago, the rate of change of lake water depth

was 0.03 cm/year; between 7000 and 1 800 years

ago, 0.06 cm/year; and from 1 800 years ago to the

present, 0.04 cm/year. Thus, lake depth has

increased markedly in the last 11 000 years, but

particularly since 7000 years ago.

Variations in the spatial pattern of the deposi

tion of lake sediment have resulted in minor mod-

ifications to the bathymetry. Early in the lake's

history, lake depth gradually increased from north

to south, but because sedimentation rates were

fastest in the region of core location 5, 1 because

of nearness to the shoreline, there is now a shal

lower zone in the narrow waist of the lake Fig. 2.

Although the area of the lake in its early stages

was probably similar to that of today, the band of

woody T4 sediment in the shallow-water cores

between c. 1 3 500 and 1 2 400 years ago Fig. 10

shows that during this period the lake margin

moved inward to lie near the position of these cor

ing sites, between the 3 m and 4 m water depth

contours. The change to leafy T3 sediment between

c. 12 400 to 10 000 years ago at these sites shows

that the shoreline moved outward again, but was

still close to the 3 m and 4 m depth contours. The

faster rates ofsedimentation in shallow-water cores

from 1 3 500 to 10 000 years ago reflect this prox
imity of the shoreline to the coring sites and also
suggest little movement of littoral material into

deeper water. The disappearance of leafy T3 sedi
ment from the shallow-water cores after about
10 000 years ago shows that lake area continued to
expand. The shoreline reached the present 1 . 5 m
water depth contour at about 7000 years ago, as
shown by the abrupt transition from T4 to T3 sedi
ment at this time in core lNa Fig. 10. Thereafter,
expansion continued to the present day. This
shoreline expansion in the last 1 0 000 years
occurred together with the increase in water depth.

Throughout its history, the lake has never been
larger than it is now, while at its minimum at c.
1 3 000 years ago, the area of open water was only

about one-half that of today 7.6 ha using the 3.5
m depth contour.

Most lakes occupying basins in which peat
development is occurring are gradually reduced in
area and depth by centripetal peat growth that
eventually develops into zones of "quaking bog",
made of floating mats of encroaching peat vege
tation and often supporting large trees Moss 1980.
The final result of this process is extinction of the
lake. The complete process from lake origin to
extinction can take less than about 1 2 000 years in
the Northern Hemisphere e.g., Pigott & Pigott
1963; Walker 1970. The only lake we know of
which has a similar developmental history to Lake
Maratoto is Myrtle Lake, in the Agassiz peatland
area of Minnesota Heinselman 1970. This lake
originated as an embayment blocked by alluvium
c. 10 000 years ago and, like Lake Maratoto, has
maintained its area and increased its depth despite
massive peat growth in the catchment during the
last 3000-5000 years. Heinselman 1 970 suggested
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that because of Myrtle Lake's location adjacent to
higher areas of mineral soil, it would have contin
ually received minerotrophic water that has
enhanced microbial breakdown of the encroaching
peat. This explanation may apply to Lake Mara
toto as well because there is only a narrow zone of
peat between the lake water and the Pleistocene
hills to the east Fig. 2, 4. Also, these hills rise
considerably above the lake's surface which would
encourage greater flow rates of minerogenic ground
and surface water into the lake during heavy
rainfall.

Other mechanisms may also be involved in the
expansion of Lake Maratoto's area. Wells & Boyce
1953 and Frey 1954 suggested that erosion of
peat margins by wave action may have been a factor
in the development of the Carolina Bays North
Carolina. This almost certainly occurs in Lake
Maratoto. In the present-day lake, a vertical 50 cm
high bank is maintained around the lake margins,
particularly at the north and south ends, by wave
action produced by the prevailing southwest and
northerly winds. Wind-induced currents stir and
aerate the lake waters for most of the year. The
lake develops thermal stratification and deoxygen
ated bottom waters for only a few months in the
summer Boubée 1 983, hence the lake waters are
usually saturated or supersaturated with oxygen
which will enhance organic breakdown.
Our interpretation of the development of the lake

basin in summarised in Fig. 14, along with possible

modern analogues of the major developmental

stages.

CLIMATIC INFERENCES

Between c. 1 7 000 and 1 5 000 years ago, there

seemed to be no peat development near the lake.

The first appearance of peat at c. 1 5 000 years ago

may indicate that effective rainfall increased at this

time. Subsequently, net peat accumulation rate,

regional water tables, and lake level rose contin

ually until c. 2000 years ago. The major part of the

Rukuhia peat bog developed after c. 1 1 000 years

ago, but the fastest growth rates, and thus highest

net precipitation rates, were apparently not until

after c. 7000 years ago. Regional postglacial cli-

matic warming, reaching a maximum at c. 9000

years ago Hendy & Wilson 1968, may also have

contributed to the peat growth.

In summary, there was a sudden increase in net

precipitation at c. 1 5 000 years ago followed by fur-

ther increases at c. 1 1 000 years ago continuing to

c. 7000 years ago at least, but with a decline at or

before c. 2000 years ago. The period from c. 10 000-

9000 years ago may have been distinctly wetter or

windier, or both. These inferences are consistent

10

12

13

1

15

16

Fig. 15 Inferred changes in climate in the Lake Mara
toto area compared with interpretations from some other
North Island sites. References are: 1, Harris 1963; 2,
McGlone & Topping 1 977; 3, McGlone & Topping
1983; 4, Stewart & Neall 1984.

with late-glacial and postglacial climatic interpre

tations from other studies in the North Island of

New Zealand Fig. 15 McGlone 1983; McGlone

et al. l984a and elsewhere in the Southern Hemi

sphere e.g., Burrows 1979; Street & Grove 1979;

Heusser & Streeter 1980; Coihoun et al. 1982.
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