

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29198890?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchcommons.waikato.ac.nz/

Measuring TCP Congestion

Control Behaviour in the

Internet

Stephen Eichler

This report is submitted in partial fulfilment of the

requirements for the degree of Master of Science at the

University of Waikato.

February 28, 2011

c© 2011 Stephen Eichler

All Rights Reserved

i

Abstract

The Internet is constantly changing and evolving. In this thesis the behaviour

of various aspects of the implementation of TCP underlying the Internet are

measured. These include measures of Initial Congestion Window (ICW),

type of reaction to loss, Selective Acknowledgment (SACK) support, Ex-

plicit Congestion Notification (ECN) support. We develop a new method to

measure congestion window reduction due to three duplicate ACK inferred

loss. In a previous study 94% of classified servers showed window halving,

whereas we found that 50% of classified servers exhibited Binary Increase

Congestion control (BIC) or Cubic style behaviour, which is a departure

from a Request For Comments (RFC) requirement to reduce the congestion

window by at least 50%. ECN is predicted to improve Internet performance,

but previous studies have revealed a low support for it 0.5%, and ECN con-

nections failed at a high rate due to middlebox interference 9%; in this thesis

we show a steady increase over time of ECN being implemented and sup-

ported 7.2%-10.3%. ECN testing of webservers with globally routable IPv6

adderesses showed a higher success rate 21.9%. Analysis of congestion control

behaviour such as Tahoe, Reno and New Reno showed New Reno dominating

more strongly than before, increasing from 35% to 70% of popular webservers.

ii

SACK sending analysis revealed that 45% of popular webservers implement

it properly, as compared to 18% in earlier studies. SACK receiving analy-

sis showed higher results to the earlier studies, with success increasing from

64.7% to 81.1%. For both of these SACK studies results for webservers with

globally routable IPv6 addresses showed a higher success rate when errors

remained low. Analysis of ICW indicates that 75% of popular webservers

implement the older ICW regime of an initial congestion window of two or

less packets, as compared to 96% in previous studies. The new regime of an

ICW of three or four packets depending on segment size was implemented at

20%. We see from these results that RFCs do affect TCP implementation,

but change can be slow. However we see that implementation and support

for modern TCP features is increasing.

iii

Acknowledgements

I would like to thank the following people and organisations for

their assistance with this thesis:

Dr Matthew Luckie from the WAND Group - my supervisor.

The Waikato University scholarship office - for funding me through

a Masters Research Scholarship.

Shane Alcock and Brendon Jones from the WAND group - for

assistance with programming and assembling the controlled en-

vironment.

iv

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Specific questions . 2

1.3 Overview of Thesis . 5

1.4 Contribution . 6

2 Background 8

2.1 Introduction . 8

2.2 Overview of the Transmission Control Protocol (TCP) 8

2.3 Overview of the Internet Protocol (IP) 11

2.4 Measurements of TCP behaviour 12

2.4.1 TBIT overview . 12

2.4.2 Related work . 14

2.5 Scamper . 15

2.6 Controlled environment . 17

2.7 Operating system identification 18

2.8 BIC and Cubic . 19

v

3 Congestion Window Behaviour 22

3.1 Introduction . 22

3.2 Recent developments . 22

3.3 Related work . 23

3.4 Improving the test . 25

3.5 Method . 30

3.5.1 Second slow start . 31

3.5.2 Congestion Window Profiles 31

3.5.3 Increased Congestion Window Size 32

3.5.4 Increased MSS . 32

3.6 Data collection . 33

3.7 Results . 33

3.8 Conclusions . 38

4 Explicit Congestion Notification 39

4.1 Introduction . 39

4.2 Explicit Congestion Notification 40

4.3 Related work . 41

4.4 Method . 42

4.5 Data collection . 43

4.6 Results . 46

4.7 Conclusions . 51

5 Reaction to loss: Tahoe, Reno and New Reno 53

5.1 Introduction . 53

5.2 TCP reaction to loss . 54

vi

5.3 Related work (TBIT) . 56

5.4 Method . 58

5.5 Results . 59

5.6 Conclusions . 62

6 Selective Acknowledgment 63

6.1 Introduction . 63

6.2 How SACK works . 63

6.3 Related work . 64

6.3.1 Sender SACK test . 64

6.3.2 Receiver SACK test . 65

6.4 Method . 66

6.4.1 Sender SACK test . 66

6.4.2 Receiver SACK test . 67

6.5 Data collection . 67

6.6 Results . 68

6.6.1 Sender SACK test . 68

6.6.2 Receiver SACK test . 73

6.7 Conclusions . 74

6.7.1 Sender SACK test . 74

6.7.2 Receiver SACK test . 76

6.7.3 Overall . 77

7 Initial congestion window 78

7.1 Introduction . 78

7.2 Initial congestion window . 78

vii

7.3 Related work (TBIT) . 79

7.4 Method . 79

7.5 Data collection . 80

7.6 Results . 80

7.7 Conclusion . 86

8 Conclusions 87

Bibliography 90

viii

List of Acronyms

AS Autonomous System

ABC Appropriate Byte Counting

BIC Binary Increase Congestion control

CE Congestion Experienced

CWR Congestion Window Reduced

ECE ECN Echo

ECN Explicit Congestion Notification

ECT ECN Capable Transport

IP Internet Protocol

ICW Initial Congestion Window

MSS Maximum Segment Size

MTU Maximum Transmission Unit

PMTUD Path MTU Discovery

ix

RED Random Early Detection

RFC Request For Comments

RTO Retransmission Time Out

RTT Round Trip Time

SACK Selective Acknowledgment

TBIT TCP Behaviour Inference Tool

TCP Transmission Control Protocol

WAND Waikato Applied Network Dynamics

x

Chapter 1

Introduction

1.1 The Problem

Transmission Control Protocol (TCP) is a critical Internet protocol yet there

is a lack of knowledge about how the TCP behaves “in the wild”. This may

be because it has largely been accepted by users as a black box [50] [47],

that works at an acceptable level most of the time. In order to maintain

stability and to improve performance it is important to know how it behaves.

Do TCP implementations behave in the way the Request For Comments

(RFC) documents say they should? This is important because these RFCs

are intended to specify changes that improve Internet behaviour [4, 20, 34].

In particular there is a lack of recent information about the state of TCP in

the Internet [36].

TCP is a complicated transport protocol because its features and be-

haviour have evolved over time [4, 53, 34, 43, 45, 1, 21, 2]. There is always

a delay between the design of a new TCP algorithm and its appearance in

operating systems. Accepted changes are slower if they involve changes to

network hardware such as ECN [36], rather than being strictly “end to end”

1

involving only end host operating system software. It is of interest to detect

and understand different rates of TCP modification uptake, because it may

prove useful in improving prediction of future uptake of new TCP features.

Furthermore it has proven difficult to predict these time frames of change

with any degree of accuracy [10].

There is a lack of tools to analyse the TCP behaviour of the entire In-

ternet. However there are tests that can analyse many aspects of subsets of

Internet TCP. There has been fairly limited analysis of TCP change on the

Internet, and active probing suites of TCP evaluations have largely not been

reported since 2001 and 2004 [36]. Furthermore, there has not been com-

prehensive extension of these tests to cover newer TCP characteristics. This

means that there are some useful analyses that have not yet been put into

practise. For example, varying negotiated Maximum Segment Size (MSS)

when testing Initial Congestion Window (ICW), or analysing packet flights

when analysing congestion window reduction due to loss inferred by three

duplicate acknowledgements.

1.2 Specific questions

The behaviours of TCP that were chosen to study are related to the ability

of TCP to cope with congestion and hence the performance of the Internet

under heavy load.

When loss is experienced as inferred by three duplicate acknowledge-

ments, the congestion window should reduce by half as specified in RFC

2581 [4]. An important behaviour of TCP in preventing congestion collapse

2

is that this reduction is to lessen the traffic at points in the network where

packet loss is occurring, the initial stage of congestion collapse [38], and pre-

vent congestion collapse from occurring. Congestion collapse is a state where

there is high loading demand and very little network throughput. So does

this congestion window reduction occur, or do smaller reductions occur in

some cases? It is desirable to know if modern TCPs conform to this ex-

pectation, and in addition which operating systems do and do not behave

in the expected way as congestion collapse results in severe loss of Internet

performance [38].

Another possibility for controlling congestion is through using Explicit

Congestion Notification (ECN) [45]. This method controls congestion with-

out dropping packets by having routers mark packets before congestion oc-

curs. This is an improvement on Random Early Detection (RED) which

drops packets with a probability associated with queue size. In response to

the ECN marked packets the notified sender should then behave as though a

packet were dropped reducing its congestion window. The question of quan-

tifying ECN uptake and its accurate implementation is important because

ECN is intended to improve TCP performance by reducing packet loss but

previous studies [36] have revealed impediments, such as high rate of failure

of ECN capable connections which was largely atributed to middleboxes.

The ICW setting also affects the control of Internet congestion. It is

important that senders start at a small congestion window value to prevent

the sender from causing congestion when it starts transmitting [4]. RFC

5681 [2] specifies an ICW of 2 packets for MSS greater than 2190 bytes, ICW

of 4 for MSS less than or equal to 1095 and otherwise ICW is 3. In simple

3

terms the initial window is limited to 4380 bytes [1]. Some advantages of

increasing ICW are that receivers using delayed ACKs do not have to wait

for a time out, senders transmitting a small amount of data may complete

their transmission very quickly, and senders able to open to large congestion

windows may save as much as three RTTs and the delay mentioned in the

first case [1]. So, what proportions of ICW values do we observe in the

Internet, and do they conform to guidelines?

Selective Acknowledgment (SACK) is a means to prevent loss of through-

put when multiple packet losses occur. The receiver sends information about

which packets have been received successfully to the sender. The sender re-

sponds by sending the specific packets which are missing. In the past partial

SACK implementation has been observed and cases of incorrect SACK im-

plementation [36]. As these factors affect TCP performance, it is useful to

ask what changes in SACK implementation have occurred on the Internet,

in order that operating system designers might have more information about

how the SACK algorithm is performing on existing systems.

Finally, there are a number of flavours of TCP loss recovery which occur

in the absence of SACK. TCP loss recovery is part of the congestion control

mechanism, however an important difference between these flavours of TCP

is the effect on throughput. Tahoe responds to loss in the same way as a

timeout, Reno is designed to deal with single packet drops, and New Reno

deals better with multiple drops. As New Reno has better performance than

Reno, and Reno in turn than Tahoe, what is their relative prevalence?

4

1.3 Overview of Thesis

The problem addressed by this research is outlined in this chapter, and in

the subsequent chapter relevant background to this work is presented.

Chapter 3 examines congestion window behaviour under loss as inferred

by multiple duplicate acknowledgements; we find a large increase in BIC

and Cubic behaviour and a corresponding reduction in regular TCP be-

haviour [36]. Chapter 4 examines the implementation of ECN in the In-

ternet; we find a steady increase in ECN server support over several months

(Sep 2010 - Feb 2011). Similarly chapter 5 reports on analysis of Tahoe,

Reno and New Reno flavours of TCP, we find a large increase in New Reno

conformant webservers. Chapter 6 analyses for adoption of SACK; we find

a large increase in correct implementation of SACK as determined by the

sender SACK test (webserver SACK usage) relative to the level measured in

2004 [36]. Sender SACK is where the ability of the receiving webserver to

interpret SACK blocks is determined. There is a moderate increase in correct

SACK implementation as determined by the receiver SACK test (webserver

SACK generation). Receiver SACK is where the ability of the webserver

under test to send correct SACK blocks is determined. Chapter 7 looks

at measures of initial congestion window, we find that there has been an in-

crease from 2% [36] to 20% adoption of the new standard, of 2, 3 or 4 packets

in the initial congestion window. Chapter 8 discusses conclusions and new

questions which arise from these findings.

5

1.4 Contribution

This thesis makes several contributions to the area of studying TCP dynamics

in the wild.

• A congestion window analysis algorithm has been created, which deals

with non-conformance with RFC 2581 [4] and RFC 5681 [2]. When nec-

essary focus has been shifted to a second packet drop in the algorithm

which elicits more conventional TCP behaviour than the first, making

the algorithm more useful for analysis. In order to carry out this anal-

ysis, profiles of congestion windows or flights have been collected and

analysed across a wide variety of operating systems, though the final

analysis still focuses on the congestion window reduction, after a loss

event. This involves repeated measurements of congestion windows in

a packet stream.

• Further data points have been added to the profile of changing Internet

behaviour, as these tests have not been carried out recently. The tests

include initial congestion window according to recent RFC 5681 [2],

adoption of SACK, adoption of ECN and adoption of New Reno or

New Reno like TCP. Analysis has also placed emphasis on detecting

misbehaving implementations, and also detecting the effects of middle-

boxes.

• The TCP Behaviour Inference Tool (TBIT) ICW test was extended to

include packets of different sizes, and an expected initial window made

up of different numbers of packets.

6

• A number of TBIT algorithms have been modified to run as part of a

modern Internet analysis tool. This involved adapting the algorithms

to run in an event driven environment where several tests can be run

concurrently. The structure was also modified in order to store rel-

evant data in binary warts files including packet traces, rather than

simply collecting results from standard text output from the running

test program.

7

Chapter 2

Background

2.1 Introduction

This chapter contains a discussion of various facets of TCP important to

this work and a discussion of prior work including measurements of TCP

behaviour with TBIT and other methods such as measuring the behaviour

of large numbers of packets in a test bed. There is also an introduction to

scamper, an event driven active measurement tool, the controlled environ-

ment used to try out my scamper tests on a selection of operating systems,

and the area of web server OS classification.

2.2 Overview of the Transmission Control Pro-

tocol (TCP)

TCP is the most popular transport protocol on the Internet supporting the

World Wide Web, email and file transfer, and is thus a critical part of the

Internet. TCP provides a reliable byte stream service from an application on

8

one host to an application on another host over the Internet [44]. This in-

cludes the establishment of connections, and their tear-down after use. There

is bidirectional sequence numbering, reordering of out of sequence segments

and deletion of duplicate segments. TCP uses acknowledgements to confirm

that packets have arrived [11], and a Retransmission Time Out (RTO) timer

to determine when to resend unacknowledged packets [43]. TCP retransmits

a lost segment if no acknowledgment arrives, and detects corrupted segments

by using checksum error detection [9]. These features of TCP originated

because of the need for reliability [48]. TCP regulates its contribution to

network congestion in order to minimise packet loss and reordering, and to

prevent congestion collapse [2].

Seq

Time

xx
x
xx
xx
xx
xx
x
x
xx

x

x
xx
xx
xx
xx
xx
xx
xx
x x

xx
xx
xx
xx
xx
xx
x

Retransmission

(a) Transmission without conges-
tion window

x
x
x
x

x
x
x
x

Seq

x
x

Time

x

x
x
x
xx
x

x
x

x
x

Timeout

Retransmission

(b) TCP with congestion window

Figure 2.1: Figures (a) and (b) show transmission without and with a con-
gestion window. Both graphs show retransmission occurring. Without a
congestion window transmission proceeds at a constant rate irrespective of
loss, that is packet flow goes to the maximum allowed by the receive window
or the maximum that the network is capable of transmitting. TCP with a
congestion window in this case shows slow start behaviour.

9

The purpose of using congestion windows is to limit traffic or packets in

flight to a level that minimises congestion events in the network. Figure 2.1

shows TCP behaviour with and without congestion windows. For each end of

a TCP connection a congestion window [2] is kept, and it is used to limit the

number of unacknowledged packets in flight from sender to receiver. A mech-

anism called slow start has the goal of quickly ramping up congestion window

size until the point at which congestion begins to occur can be deduced. Slow

start [4] involves a MSS sized increment of the congestion window for each

packet acknowledged, resulting in an exponential increase of the congestion

window, after connection initialisation or connection timeout. RTO is used

to determine when to retransmit a packet, without waiting for a time that

is either too long and wasting unnecessary time, or too short and triggering

unnecessary packet retransmission. The RTO is calculated from estimates of

Round Trip Time (RTT) [43]. The slow start threshold (ssthresh) is usually

initialised to an ‘arbitrarily high’ value and then reduced to half the flight

size when loss, timeout and retransmission occur. When the congestion win-

dow exceeds ssthresh, the state changes to congestion avoidance [53]. In this

state there is a MSS sized increment of the congestion window for each RTT

elapsed, so the congestion window grows linearly rather than exponentially.

When loss is signaled by the presence of three or more duplicate acknowl-

edgements, the goal is to avoid unnecessarily returning to slow start, as

illustrated in Figure 2.2, because packets are still being acknowledged mean-

ing that congestion is not severe and a more moderate congestion control

method may be used. When this type of loss occurs the state changes to

fast retransmit then fast recovery [4]. Here the missing packet is retrans-

10

mitted before time out occurs and ssthresh is reduced, usually to half the

present congestion window but at least 2*MSS [2]. In fast recovery, conges-

tion window incrementing occurs similarly to congestion avoidance. When a

cumulative acknowledgement of outstanding packets already sent is received,

the state changes to congestion avoidance [26] and the congestion window

is set to ssthresh. Fast retransmit and fast recovery originated after the

timeout mechanism, as a result of the need to maintain TCP throughput in

conjunction with balancing the need to control congestion [15].

Appropriate Byte Counting (ABC) [3] deals with the problem of the re-

duced numbers of ACKs associated with delayed ACKing. Delayed ACKing

results in a reduction in the rate at which the congestion window opens, due

to these less frequent ACKs. In ABC the congestion window is increased

based on the number of bytes ACKed rather than the number of ACKs.

2.3 Overview of the Internet Protocol (IP)

Internet Protocol (IP) is a protocol that occurs in layer 3 of the ISO refer-

ence model [24]. This layer is one of four of these layers also referred to in

RFC 1122 [8] and is known as the network layer. IP provides end-to-end

delivery of packets from network to network, via the use of routing. This

delivery protocol only makes a best effort attempt at packet transmission.

Data segments from a number of upper layer protocols can be carried by IP,

including TCP which provides reliability. TCP is a transport layer protocol,

or an ISO layer 4 protocol.

11

There are two forms of IP: IPv4 and IPv6. IPv4 addresses are contained

in 32 bits or 4 bytes, which allows at most 4,294,967,296 addresses. The

supply of IPv4 addresses is running out and the use of the alternative IPv6

protocol [13] is growing [27]. IPv6 uses 128 bit addressing, which relates to

a vast number of addresses.

Seq

Time

xx
xx
xx
xx
xx
xx
x

x

xx
xx
xx
xx
xx
x

Timeout

(a) Without fast re-
tramsmit

xx
xx
xx
xx
xx
xx
x

x

xx
xx

xx
xx
x xx
xx
xx

Time

Seq

Fast retransmit

(b) With fast retramsmit

Figure 2.2: Figures (a) and (b) show TCP with and without a fast retransmit.
In TCP without fast retransmit there is a timeout followed by slow start.

2.4 Measurements of TCP behaviour

2.4.1 TBIT overview

The typical situation on the Internet where active measurement occurs is

where web servers act as data senders and web clients are receivers [12]. The

web client is the probing or interrogating and analysing program. TBIT,

an active Internet probing and analysis program, has been used to test web

servers for a number of characteristics [36] [39] [40] [35]. These tests in-

clude web server SACK generation, ECN capable connections, Path MTU

12

Discovery (PMTUD), IP options, TCP options, Reno/New Reno discrimina-

tion, web server SACK usage, initial congestion window, congestion window

reduction, byte counting, limited transmit and time wait duration. The IP

and TCP options tests involve testing several options including a made up

one, to see if a connection is established and to see if the option is ignored

or not.

In general, a connection was established with a webserver and specific

packets were sent to the webserver to elicit a response that could be anal-

ysed to determine if that system correctly implements a TCP algorithm in

question. For some tests it was possible to draw conclusions about interfer-

ence by middleboxes.

Reasonable levels of SACK implementation were seen, and a low but sig-

nificant level of middlebox interference. This is good progress. For ECN low

levels of implementation were seen, and decreasing interference by middle-

boxes from a moderate level. Not much progress is evident, and middlebox

interference has been part of the cause of this reluctance to activate ECN.

PMTUD was successfully implemented at a moderate level, and a moderate

level of middlebox interference was seen. This is good progress in spite of

middlebox interference.

New Reno was seen to dominate over the other types of response to loss,

at a moderate level. This is good progress. Initial congestion windows were

mostly one or two packets. This is a very good level of implementation.

Congestion window halving was seen to be most of classified webservers, a

very good level of implementation. Appropriate byte counting was seen at a

very low level, thus there has been very little progress made in implementing

13

this. Limited transmit was seen implemented at a moderate level. This is a

good level of implementation progress.

2.4.2 Related work

There have been a number other contributions to TCP measurement besides

that of the TBIT authors. In a report by Langley [30] their experiments

measure responses to SYN packets with payloads where 9% of hosts do not

respond, SYN packets with non standard options where 0.2% of hosts do not

respond and SYN packets which attempt to negotiate ECN where 0.6% of

hosts do not respond. Feyzabadi et al. [17] [18] analyse congestion control

algorithm by looking at a series of congestion window measurements. They

detect Reno, BIC and Cubic using large data sets in a controlled labora-

tory environment, but this approach is not well suited to being applied to

the mostly smaller data sets available on Internet web servers. Fonseca et

al. [23] found that consistent drops associated with IP options were found

in a small group (12%) of Autonomous System (AS). Ladha et al. [29] ex-

amined five TCP enhancements by probing the top Alexa 500 webservers

with TBIT: SACK, initial congestion window, limited transmit, appropriate

byte counting and early retransmit. SACK negotiated was 69%, SACK in-

formation used 18%, ICW window of one packet at 128 bytes was 12%, two

packets 62%, three packets 5%, four packets 3% and greater than four packets

2%, limited transmit support was 20%, appropriate byte counting support

24% and early retransmit support 0%. Synscan is an OS finger-printer that

measures the type of congestion control used, among a raft of other tests.

Luckie et al. [31] [32] analysed PMTUD failures also using active measure-

14

ment. This work found that failure in some cases was not caused by firewalls

discarding ICMP “Packet too big” messages as previously thought. Arlitt

et al. [5] carried out analysis on reset behaviour of TCP. This work showed

that 15-25% of TCP connections contain a RST packet. Beverly [7] used a

naive Bayesian classifier to also carry out OS finger-printing of packet head-

ers. This method worked better than rule based finger-printing when data

was incomplete. Bellardo et al. [6] used active probing extensions to sting

to measure packet reordering rates. In this work reordering was measured in

both directions of the TCP connection.

2.5 Scamper

Scamper is an event driven Internet active measurement tool. This means

that the program operates using a list of future events with associated times,

and that the programmer can specify a time when an event should occur. It

also means that a number of target hosts can be analysed together. This is

called a window of active probing tests, and the value for this is set from the

command line. Some scamper modules require a firewall called IPFW, which

is available on MacOS X and FreeBSD operating systems. This is used

to prevent the scamper host operating system from responding to packets

received during the running of a test, interfering in the measurement.

In order to abstract implementation from the test module, I made changes

to the infrastructure of scamper to allow test modules to carry out fundamen-

tal activities in support of this thesis. For example the sending and receiving

of the SACK permitted option in SYN and SYN ACK packets. Modifica-

15

probe

write
reply

timeout
probe

write
reply

timeout
probe

write
reply

timeout

probe

write
reply

timeout
probe

write
reply

timeout

Queues

Waiting

Probe

Done

File descriptors

Internet sockets

Probes

Replies

Queue

ecn sack cwnd red

icw reno

Current tasks

Figure 2.3: The architecture of scamper. Scamper sends probe packets to
selected web servers and analyses the response packets. Scampers possible
tasks include a number of methods adapted from TBIT. Key: ecn - explicit
congestion notification, sack - selective acknowledgements, cwnd red - con-
gestion window reduction resulting from loss, icw - initial congestion window,
reno - flavour of TCP (tahoe, reno, new reno).

16

tion was also made to make the sending of SACK blocks possible, in ACK

packets sent by scamper. These new scamper modules were also modified

to produce warts and pcap output. The warts output made it possible to

persue in-depth analyses of collected packet trace data after it was collected.

The test modules or tasks involve queueing probes and waiting for result-

ing replies, as illustrated in Figure 2.3. The replies are analysed to determine

the behaviour of the web server involved.

2.6 Controlled environment

A facility which was set up for this research is the Controlled Environment

and is illustrated in Figure 2.4. The purpose of this is to allow scamper tests

to be carried out on web servers with known operating systems, to provide

a situation where there are no middle boxes that might interfere, and to

allow testing of scamper modules under construction, avoiding using third-

party web host servers for this purpose. The controlled environment is made

up of 7 computers, where 3 computers are connected together at any one

time. Two of these are always the same two: scamper test and delay, and

the other is one of the other five. The two permanent machines both run

FreeBSD8, where one runs the chosen scamper test and the other provides a

100ms delay in each direction, to and from the web server under test. Each

of the web servers uses a different operating system. These are FreeBSD8,

Debian Squeeze 2.6.32, OpenBSD4.6, NetBSD5.0.2 and Windows XP SP2.

Windows 7 was used for some tests where its minimum TCP data length

of 536 does not cause errors, such as in the ECN test where even though

17

FreeBSD
Scamper

FreeBSD

Delay

NetBSD

OpenBSD

Debian

WinXP

FreeBSD

Figure 2.4: The controlled environment. The computers and their connection
layout is shown, where the connection to one of five web servers can be varied.
The delay is 100ms in either direction adding up to an RTT of 200ms.

capability was determined, no echo was received. Each of the web server

machines runs Apache apart from the Windows machines which run IIS.

Each server machine has the same large file and small file in its web service

directory, available to download by HTTP. Routes have been set up on all

the machines to make them behave correctly as a mini network. To connect

a particular web server machine to the two permanent FreeBSD8 machines

a cable is adjusted to connect only that test operating system machine.

2.7 Operating system identification

For some of this research it would be useful to identify individual web server

operating systems, in order to localise particular behaviours identified in

18

scamper tests. NMAP is an active OS probing program which has been used

in the past by the TBIT researchers [39] [33], however it was considered

that NMAPs behaviour could be interpreted as a form of attack by web

hosts under test. A less invasive OS classifier is p0f, which will analyse a

trace of a normal TCP connection. There are however limited definitions

available for the SYN/ACK mode of p0f which analyses a remote web server

connected to by a web client which collects the trace data. We tested p0f on

some traces collected, using wget to generate the web traffic and tcpdump to

collect the packets. P0f made less than 2% predictions from these data when

analysis was carried out, ruling it out as a useful classifier. Another possibility

to get some server OS information unobtrusively is to collect HTTP server

data from HTTP responses to HTTP ‘GETs’. Though this specifies only

“Apache” or no data in about 40% of cases, it still provides some useful OS

information, however it often lacks detail such is specific OS version.

2.8 BIC and Cubic

Linux kernels 2.6.8 (Aug 2004) - 2.6.18 (Sep 2006) use BIC, and 2.6.19 (Nov

2006) and above use Cubic. Binary Increase Congestion control (BIC) was

developed to deal with high speed networks with large delay [54] and is

illustrated in Figure 2.5. It was later superseded by Cubic [46] in linux,

which is simpler and less aggressive. The congestion avoidance phase of BIC

involves additive increase followed by binary search and maximum probing

phases. These three phases were replaced by a cubic function in Cubic TCP,

as shown in Figure 2.6. When a packet loss event occurs, as inferred by

19

Wmin

Wmax

Probing

Congestion

Time

Additive
Increase

Binary
Search

Window

Figure 2.5: BIC congestion window control. Additive increase and binary
search are shown on the approach to Wmax. Wmin is the destination of the
previous window reduction. Wmax is the congestion window size at which
loss last occurred.

three or more duplicate acknowledgements, the window value just prior to

reduction is assigned to Wmax (cwnd maximum), and the value that it is

reduced to, is assigned to Wmin (cwnd minimum). Both BIC and Cubic

involve a slow approach to Wmax or previous congestion window, followed

by aggressive increases or probing. In Cubic this increase is linear when far

above Wmax i.e. the window increment is clamped to Smax per second.

Smax is typically set to 160 [46]. The reduction is by a multiplication factor

which is typically 0.8 or 0.875 [54] [46], rather than half. In both protocols

Wmax is located where the flat part of the curve occurs, the point at which

loss previously occurred.

20

Wmin

Wmax

Probing

Congestion

Time

Window

Cubic behaviour

Figure 2.6: Cubic congestion window control. Cubic behaviour is shown on
the approach to Wmax. Wmin is the destination of the previous window
reduction. Wmax is the congestion window size at which loss last occurred.

21

Chapter 3

Congestion Window Behaviour

3.1 Introduction

Congestion control is a pivotal foundation of the Internet [40, 18, 22, 2, 19,

25]. It is expected that the congestion window will be halved after packet

loss [4], as this behaviour prevents congestion collapse from occurring [41].

Conformance with this requirement has been measured in the past, and 2%

non-conformance in a population of web servers was observed [36] in 2001

and 2004. It is of ongoing interest to monitor for possible threats to Internet

stability.

3.2 Recent developments

This chapter describes developments based on the Congestion Window Halv-

ing analysis method of TBIT [36] [40]. The test measures reduction in con-

gestion window after packet loss inferred with duplicate acknowledgements.

A reduction of less than half is considered to be non compliant with RFC

22

2581 [4]. A fast retransmit resulting from three or more duplicate acknowl-

edgments should not be followed by slow start but congestion window halving

and congestion avoidance [20] [2]. The reason that slow start should not be

used in this circumstance is that packets are still being received as is ev-

idenced by the duplicate acknowledgements [4]. We build on an existing

TBIT technique by finding a way to avoid measuring unexpected behaviour

of some operating systems, which occurs after the first drop but not usually

the second. The expected behaviour is shown in Figure 3.1. We are also

interested in interpreting some congestion window reductions to more than

half the prior congestion window as BIC or Cubic, as these are thought to

constitute a significant proportion of modern web servers [18].

The development of operating systems in practice can lead to situations

where there are such deviations from standards. It is also possible for some

operating systems to accidentally operate outside of expected boundaries, due

to programming errors, and exhibit smaller congestion window reductions or

even no reduction when loss occurs.

3.3 Related work

The TBIT Congestion Window Halving test works by opening a TCP con-

nection with a website, and then acknowledging packets received until a con-

gestion window of 8 segments is built up, and then dropping packet 15 [40].

Duplicate acknowledgements are sent at this point, until the dropped packet

is retransmitted. Retransmission should occur before an RTO interval passes

from when the duplicate acknowledgements started, thus without timing out.

23

x x

x
x x

xx
xx
xx
xx
xx

xx
x

xx
xx

x

xx
xx
x

xx
xx
x

x

xx
xx
xxx
x

Last
acknowledged
packet

Seq
No.

Time

Fast retransmit

Fast recovery

Congestion
avoidance

Slow start

1
2

4

8

4

5

6

7

1+3

Figure 3.1: Expected behaviour of a TCP stream under packet loss inferred
by three duplicate acknowledgement packets. Slow start and exponential in-
crease is shown ending in a dropped packet. Fast recovery and fast retransmit
follow which result in halving of the congestion window, and then congestion
avoidance which climbs at a linear rate. This is the behaviour of Reno and
New Reno TCP.

24

After a cumulative acknowledgement, no more acknowledgement packets are

sent, and the received packets are counted. The test ends when a second

retransmission of the dropped packet occurs, after the connection times out.

A value of 5 packets or less is interpreted as Window Halved, otherwise the

host is not compliant.

Window halving rate among webservers in US web cache logs was found

in 2004 at 94% of classified servers [36]. This was a good level of compliance

with the existing RFC specification [4].

3.4 Improving the test

To start with TBIT Congestion Window Halving was adapted to run under

scamper. This involved rebuilding and providing the structures and services

that TBIT provides to its program modules. It also involved adaptation

to an events driven environment. It was still however possible to leave the

module unchanged in its function.

There is some variability seen in the ICW as published by others [36], and

even more so as seen in this research. The partial shift from an ICW of 2 to 4

and sometimes more makes it now more desirable to measure the congestion

window immediately before the drop, rather than simply estimating it by

assuming that ICW is two packets i.e. an ICW of four could mean that

dropping packet 15 indicates a congestion window of 16 rather than 8. The

TBIT test appears to be well suited to the 2004 environment, but the current

environment has these new problems.

25

URL cwnd
Linux: www.wand.net.nz/scamper... 3 segments
FreeBSD8: package.dyndns.org/m̃jl/scamper... 1 segment
Linux: www.kernel.org 3 segments

Table 3.1: Operating system and associated URL of the web server are shown
in column 1. Column 2 shows measured reduced congestion window after loss
as inferred by three duplicate acknowledgements. The analysis tool to obtain
these results was adapted but unmodified TBIT. A result of 4 segments is
expected if the congestion window reduces by half.

A small number of local websites were selected and analysed with origi-

nal TBIT run under scamper. Reductions to less than or equal to half i.e.

four, were observed as shown in Table 3.1. An extreme reduction down to a

congestion window of one packet was observed in one case.

Because a result of one or three packets is not many packets different from

four, though percentage-wise it is, it was decided to open the congestion

window wider by dropping a later packet. This means that a difference

of one packet has less affect on the resulting percentage of the window at

the loss event. To investigate this area further the modified TBIT method

was also allowed to continue after the point at which it would have been

terminated. This was done by acknowledging the packets received after the

fast retransmission. A small number of popular websites were selected and

analysed this way, and packet flights were calculated and collected. To do

this, received packets where grouped based on their timing. A gap greater

than 50% RTT was considered to be a flight boundary. Furthermore as flights

lost their natural grouping, each interval of one RTT was designated a flight.

This latter phenomenon usually occurred later in the TCP connection, and is

caused by the limited bandwidth of the connection resulting in a larger delay

26

30000

20000

10000

0

2.5 s 2 s 1.5 s 1 s 500 ms 0

sequence offset

relative time

R3

SYN
.

Figure 3.2: An example of loss and reduction followed by slow start. The
website was www.youtube.com. Duplicate acknowledgements were limited
to four. New data was ACKed when it arrived.

from packet to packet in a flight. Sometimes a reduction to a low value was

followed by slow start, as illustrated in Figure 3.2. We originally got quite a

high proportion of website hosts showing this behaviour, but this was when

the number of duplicate acknowledgements was limited to four after the first

drop. When a duplicate acknowledgement was sent for each packet received

after loss, less web hosts exhibited this second slow start behaviour.

This slow start behaviour is an unexpected result so the test was repeated

in a controlled environment. This was also decided partly because our at-

tempts to identify operating systems with p0f were unsuccessful, and partly

because of the possibility of middle boxes interfering with measurement. The

test bed described in Section 2.6 was used to collect initial data about various

27

OS Loss Loss-4-Acks
FreeBSD 8 ss-ca ss-ss-ca
OpenBSD 4.6 ss-ss-ca ss-ss-ca
NetBSD 5.0.2 ss-ss-ss ss-ss-ss
Debian Sqeeze 2.6.32 ss-ca ss-ss-ca
Windows XP SP2 ss-ca ss-ca

Table 3.2: Behaviour after loss for each operating system in the controlled
environment. Loss behaviour is shown for where full duplicate acking is
provided and then where duplicate acking is limited to 4 after the first drop.
ss - slow start, ca - congestion avoidance, dash - loss event as inferred by
three or more duplicate acknowledgements. A sequence of these behaviours
is listed in chronological order in columns 2 and 3.

operating systems without any interference from middleboxes. The results

are shown in Table 3.2. The OpenBSD and NetBSD machines went to slow

start after loss signalled by duplicate ACKs. We then modified the test to

drop a second packet. This resulted in expected congestion window reduction

behaviour at the second drop for OpenBSD as illustrated in Figure 3.3, but

not NetBSD.

The third column of Table 3.2 shows the behaviour when the test sends

only 4 duplicate ACKs after the first drop, in the controlled environment.

Here we see that FreeBSD and Linux were affected by the reduced duplicate

ACKing, but this effect was lost when full duplicate acking was used. It is

interesting that three duplicate ACKs were not sufficient in these cases to

trigger normal fast retransmission behaviour, as might be expected from the

specifications [4].

28

Figure 3.3: An example of loss and reduction on the second drop, then
exhibiting expected behaviour. The operating system in the controlled envi-
ronment was OpenBSD. Arrows show where dropped packets occurred. Two
slow start sequences are observed, and normal congestion window reduction
is observed subsequent to these.

29

3.5 Method

The modified method also analyses congestion window reduction after packet

loss from the TCP data stream. This method is similar to TBIT but takes

steps to avoid measuring anomalous slow start behaviour which is sometimes

encountered. It also attempts to get a profile of congestion windows during

a trace rather than just measurement before and after loss. Though the

final measurement is similar, attempts are made to categorise results into

more groups than just greater than or less than half the original congestion

window. This is because of the existence BIC and CUBIC TCP which reduce

their congestion windows to 80%, when loss occurs as indicated by three or

more duplicate acknowledgements. We also distinguish reduction to much

less than half the congestion window, as the first drop in some cases reverts

to slow start. Furthermore we attempt to measure the congestion window

immediately prior to the drop event, rather than just calculate what it should

be after a set number of packets. Also, the congestion window was opened

wider than in the TBIT test, in order to improve accuracy of the reduction

measurement. A test where window reduction could be measured after a first

or second drop, depending on presence of repeated slow start behaviour was

a logical modification.

The modified method is called Congestion Window Reduction Analysis.

Four main changes to the original method have been made. They are detailed

in the following subsections.

30

3.5.1 Second slow start

It was decided to measure congestion window change after a second drop

when a second slow start occurred, in order to observe and analyse conven-

tional fast retransmission behaviour, because in some cases fast retransmis-

sion and an associated window reduction was seen after a second drop when

not seen after the first.

3.5.2 Congestion Window Profiles

Where there is a reasonable length RTT, there is time for a full congestion

window of packets to be sent bunched within the RTT, and then a wait

follows for acknowledgement before transmission can continue. The flights

of packets produced this way are bounded when a wait for acknowledgement

occurs, but the flow of packets is not stopped, allowing many subsequent

flights to be measured without a loss of any kind occurring. This is not

a commonly used procedure, but there are a small number of instances of

its use [18, 52, 51, 42]. One method of confirming this interpretation of

flights is to count the packets from when the drop occurs until when the

retransmission occurs, and to compare this to the flight in which the drop

occurs. Beyond this it is necessary, as in the TBIT method, to stop ACKing

and count the packets sent until a retransmission timeout (RTO) occurs, in

order to measure the congestion window at one place only.

Analysis of flights is used to obtain a profile of congestion windows. It

is used in the Congestion Window Reduction Analysis method to estimate

congestion windows without the need to stop acknowledging packets and

31

wait for a timeout. This is a desired outcome because it is then possible to

check for expected congestion avoidance behaviour after retransmission, and

to observe the congestion window before and after the drop.

3.5.3 Increased Congestion Window Size

The TBIT method dropped packet 15, and the window at this point was

assumed to be eight packets. No attempt was made to measure this, only

the size of the final window, as a percentage of eight. Because we wished to

distinguish BIC and CUBIC from regular TCP and to also distinguish the

anomalous slow start behaviour, we chose to increase the size of the conges-

tion window before introducing loss. This meant allowing more packets to

be sent before dropping a packet. Because we wished to measure congestion

window before and after a second loss the initial congestion window needed

to be bigger still, as the Slow Start Threshold (ssThresh) is reduced by the

first drop, which is at packet 50.

3.5.4 Increased MSS

The TBIT method used a MSS of 100 bytes. In our initial testing we encoun-

tered some operating systems which would not accept a value as low as 100

bytes, so MSS was increased to 256 bytes. The TBIT researchers suggested

that MSS should be optimised for running this kind of test [36]. This change

reduced the error rate of the test, and did not seem to have any other effect,

although we had to ensure that we selected webservers with sufficient data

to supply the larger sized packets.

32

3.6 Data collection

In order to generate a data file for this test a perl crawler program was used

to gather IP addresses and data size of the websites. This was carried out on

30000 websites. Another perl program was used to filter out websites with

data size less than 75000 and repeated IP addresses, this left 6784 websites,

23%. A driver was used to run the test and carry out up to three retries

if ‘missed drop’ or ‘no retransmit’ errors occurred. Drops were specified at

packets 50 and 170 because the congestion window needed to be allowed to

open wide for the reduction measurement, the second drop if required, also

needed to allow for a large flight in which the first drop occurred.

The resulting window reductions were categorised as ‘Cwnd less than 20’

where the window reduced to less than 20%, ‘Regular TCP’ where the range

was 20% to 70%, ‘BIC or Cubic’ where the range was 70% to 120%, and ‘cwnd

increase’ where there was an increase above 120%. The same categories were

applied to the second drop if a second slow start occurred. These boundaries

are based on the expected results plus or minus an error margin.

3.7 Results

Congestion window reduction analysis was run in the controlled environ-

ment, and the results for the five operating systems are shown in Table 3.3.

FreeBSD and Windows XP exhibited Regular TCP and Linux BIC or Cubic.

Second slow starts were seen for OpenBSD and NetBSD, and Regular TCP

was exhibited by the former whereas a third slow start was seen for the later.

33

OS %cwnd Conclusion
FreeBSD8 43 Regular TCP
OpenBSD4.6 56 Regular TCP
NetBSD5.0.2 12 Tahoe (Slow Start)
Debian Squeeze2.6.32 92 BIC or Cubic
Windows XP SP2 66 Regular TCP

Table 3.3: Congestion window reduction and probable meaning. Column 1
shows the operating system of the analysed web server machine, column 2
shows the window after loss as percentage of window before loss, and column
3 shows the likely interpretation of column 2. The interpretation/conclusion
is based on %cwnd percentage ranges. The OpenBSD and NetBSD values
are both measured after a second slow start.

The results from the window reduction test are shown in Table 3.4. The

error categories are as follows. ‘No TCP connection’ or ‘Early reset’ indicate

that the TCP connection failed. ‘No data response’ indicates that an early

FIN packet was received. ‘HTTP error’ indicates that HTTP ‘200’ OK was

not received in the data response. ‘Drop’ indicates that an unwanted packet

drop occurred. ‘Not enough packets’ indicates that insufficient data packets

were available in the packet stream; that is, an early FIN packet was received.

‘MSS error’ indicates that a packet larger than the negotiated MSS was

received. ‘No data’ indicates that the test timed out three times waiting

for data. ‘Drop not found’ and ‘Not enough flights’ indicate that the flight

containing the drop was not able to be identified, this occurs when a large

number of very small flights are found and a normal increase in congestion

window is not seen. ‘Late retransmit’ indicates that the retransmission occurs

later than the third flight after the drop. ‘Net retry errors’ indicates the

remaining errors after the repeats of ‘Missed drop’ and ‘No retransmit’, a

combination of these two categories. ‘Missed drop’ indicates that the packet

34

to be dropped was not received and failed to trigger the drop mechanism. ‘No

retransmit’ usually results from reordering that defeats the drop mechanism.

These two latter errors resulted in the driver retrying the test up to three

times. This proved effective as only 289 errors remained after the retries

occurred. The overall error rate was low compared to previous studies in

2004 [36], 22% compared to 64%. The major contributors to the previous

test data were ‘Not enough packets’ and ‘HTTP error’, and the reason we did

not see so much of these was that we checked our URL data file for validity

and data quantity available. The test could be modified to eliminate MSS

errors by allowing packets larger than MSS and further reduce the error rate.

Medina et al. [36] reported 94% of classified servers as having reduced

their congestion window by at least 50% in 2004. This is similar to combining

‘Cwnd less than 20’ and ‘Regular TCP’ categories, which correspond to 37%

of classified servers. This includes the final window range of 0% to 70%

making 37% of classified servers an upper bound for 50% reduction. The

main group is ‘BIC and Cubic’ at 56% of classified servers, and there is a

small number that unexpectedly increase their congestion window.

There is only a smaller number that show a second slow start, and the

largest group of these exhibit a possible third slow start and a smaller number

exhibit ‘regular TCP’. Smaller still is a group of these that exhibits BIC or

Cubic.

Figure 3.4 shows the cumulative distribution function of percent conges-

tion window change after loss. There is a distinct region of reduction to the

range of 2% to 15% which accounts for 10% of cases. There is then a steady

gradient from 50% to 80% change. After this there is another steady steeper

35

Result Count Percent
No TCP connection 44 0.7%
Early reset 16 0.2%
No data response to TX request 62 0.9%
HTTP error 125 1.8%
Drop 19 0.3%
Not enough packets 201 3.0%
MSS error 404 6.0%
No data 7 0.1%
Drop not found 50 0.7%
Not enough flights 6 0.1%
Late retransmit 265 3.9%
Net retry errors 289 4.3%
Errors - 22.0%
Cwnd less than 20 181 2.7%
Regular TCP 1048 15.4%
BIC or CUBIC 2830 41.7%
Increased cwnd 360 5.3%
2nd SS, Cwnd less than 20 448 6.6%
2nd SS, Regular TCP 263 3.9%
2nd SS, BIC or CUBIC 133 2.0%
2nd SS, Increased cwnd 33 0.5%
total IPs 6784 -
Missed drop 268 -
No retransmit 1117 -
Retry after error 1096 -

Table 3.4: Results category counts and percentages for the window reduction
test carried out on 04/12/2010. Error counts are grouped at the top of the
table, and the total error rate is shown beneath these. The four window
reduction ranges are shown twice once for the first loss, and then a second
group which signify that reduction was measured after a second loss event,
which occurred after a second slow start.

36

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

P
ro

ba
bi

lit
y

Percent window size after loss

Window change CDF
 due to loss

Figure 3.4: Cumulative distribution function for percent congestion window
change due to loss. The x axis is the window size after loss, as a percentage
of window size at the time of packet drop and the y axis is the cumulative
probability.

gradient from 80% to 100%. These different gradients indicate distinct re-

gions, which are similar to the regions that were chosen empirically, apart

from the region from 100% through to 120% which gradually levels out. It

can also be seen that only 20% of webservers reduce their congestion window

by half as required by the original specification. The main contributors to

this changed situation appear to be a shift to BIC or Cubic and a group of

machines that fail to make a reduction. There also appears to be a group

slightly above 50% of prior window, which is within an error margin.

37

3.8 Conclusions

There are two small second slow start categories that relate to behaviour

similar to OpenBSD and NetBSD. Extra window behaviour information has

been successfully gathered by extending analysis to second drops when ap-

propriate.

Congestion behaviour affects Internet stability, and implementations in-

volve a trade-off between stability and performance. We found a swing in

behaviour from emphasis on stability to greater emphasis on performance.

There has been significant migration of systems exhibiting regular TCP and

reduction to congestion windows smaller than half, to BIC and Cubic style

algorithm based systems. We also see a small amount of aberrant behaviour

where the congestion window is observed to increase. In all these cases re-

transmission of the dropped packets was confirmed.

38

Chapter 4

Explicit Congestion

Notification

4.1 Introduction

ECN is a TCP enhancement designed to control congestion without the need

for packet loss [45]. For this reason, if ECN is implemented it is likely to result

in improved Internet performance with reduced packet loss. It is therefore de-

sirable to know the extent to which ECN has been successfully implemented

on the Internet, and compare our measures with earlier measurements [36].

This chapter describes ECN and how its implementation has been mea-

sured before. Then our ECN test is described along with details of data

collection. We find a steady increase in successful ECN implentation over

several months, some indications that many machines that successfully im-

plement ECN are Linux systems and that anomalous CWR packets are sent

by some of these successful servers.

39

4.2 Explicit Congestion Notification

Regular TCP congestion control involves the detection of packet loss as a

signal to reduce the congestion window, though not all loss is due to con-

gestion e.g. wireless where loss due to transmission errors is a common

occurrence [49]. Though ECN makes use of end to end communication in

its function, it is dependent on upgraded network infrastructure experienc-

ing congestion to mark packets instead of dropping them. This means that

not only must end hosts be upgraded to ECN capability but also network

routers. A TCP flow may use ECN if it was negotiated by the two end hosts

at connection time.

ECN makes use of the least significant two bits of the IPv4 Type Of

Service field [45] or the least significant two bits of the IPv6 Traffic Class

byte, and the most significant two bits of the TCP flags field. When ECN is

used with TCP, fields are used to signal ECN Echo (ECE) and Congestion

Window Reduced (CWR), while the IP fields are used to signal ECN Capable

Transport (ECT) and Congestion Experienced (CE).

00 - Non ECN-Capable Transport - Non-ECT

10 - ECN Capable Transport - ECT(0), (preferred when used with TCP [45])

01 - ECN Capable Transport - ECT(1)

11 - Congestion Encountered - CE

The implementation of ECN in IP is insufficient for use without further

implementation in a transport protocol like TCP, because there is no signal

for an echo nor is there a signal to acknowledge the echo once it has been

responded to. IP does however take care of carrying packet CE marks.

40

Once packets are marked as having encountered congestion at the IP level,

they must be echoed back to the sender by the receiver. The ECE flag in the

TCP header is used as this ECN echo signal. The TCP CWR flag is then

used to signal that the sender has reduced its congestion window and the

echo may be acknowledged. If the echo is not cancelled the echo continues to

be sent. Apart from SYN packets and ECE ACK packets, only data packets

contain ECN flags [28]. The use of these flags is shown in Figures 4.1, 4.2

and 4.3.

A TCP connection which negotiates ECN sends a SYN packet with the

ECE and CWR flags set. If ECN is negotiated the SYN ACK packet has the

ECE flag only set.

This chapter examines whether a selection of web servers from the Alexa

list are able to negotiate ECN, and then whether they are able to echo a

marked packet. These are the key features of successful ECN implementation.

4.3 Related work

There is a TBIT test used to determine ECN success of a webserver [36] [39].

In order to determine if ECN negotiation results in a failed connection, a non

ECN connection is attempted before attempting an ECN connection and the

ECN test. The ECN test starts by sending an ECN SYN to the web server.

If no response is received a further two SYN packets may be sent. If a SYN

ACK packet is received the test continues. The SYN ACK packet is checked

for the presence of an ECE flag and the absence of CWR as confirmation

that ECN was negotiated. Regardless of this last outcome an HTTP request

41

is sent with the IP header ECN field set to CE to mark the packet as though

a router had marked it. If an ACK is received the ECE flag is checked for.

If this is not present the web server does not support ECN.

The test we use differs from this test in that non ECN negotiation occurs

only if ECN negotiation fails, the test only continues after negotiation if the

correct SYN ACK ECE packet is received, and IPv6 webservers are tested.

ECN success rate among webservers in US web cache logs was found in

2000 at 0.1% and 2004 at 0.5%. In this time the rate of failed connections,

only with ECN, dropped from 9% to 1%, and error rates were below 10%. We

see here the beginning of an upward trend in the correct implementation of

ECN, and reduction in the rate of connection failure due to ECN negotiation

attempts.

In a previous project in September 2009 [14] I measured the rates of ECN

success for IPv4 at 2.2% and IPv6 at 2.6%, using the top 400 and top 300

websites respectively from Alexa.org. In this study repeated measurements

over time are carried out using larger data sets of 10000 IPv4 addresses, and

a driver is used to automatically carry out null tests when necessary. Higher

levels of successful ECN implementation are seen.

4.4 Method

Scamper TBIT is similar in its behaviour to original TBIT, however a driver is

used to run ECN tests and if this fails to connect or is reset, only then is a null

test run. The null test checks to see if all SYN packets are unacknowledged or

just ones negotiating ECN. This null test simply negotiates a TCP connection

42

without ECN, then requests data, and receives and acknowledges data until

the download ends normally. The scamper TBIT test also completes the

website download in order to appear like a normal browser. Figures 4.1- 4.2

show the packet exchange structure of the ECN test. Scamper TBIT does

not send an HTTP request unless ECN is successfully negotiated.

SYN ACK ECE

SYN ECE CWR

Sender Receiver

(a) Successful ECN negotia-
tion.

SYN ECE CWR

Sender Receiver

SYN ACK

SYN ACK ECE CWR

or

(b) Failed ECN negotiation.

Figure 4.1: Subfigures (a) and (b) show successful and failed TCP ECN
connections. A successful connection requires a SYN ACK packet with just
one ECN flag, ECE.

4.5 Data collection

The list of one million Alexa most popular websites was downloaded and

used as input for a perl web crawler program to generate a data file for the

ECN test, containing the IP address with the URL to use. Data for the top

ten thousand websites was collected in this way. This list was then used with

the ECN scamper driver and a scamper daemon, to carry out the ECN test

on these websites. A script was used to repeat this analysis every two weeks

to gather a profile over time.

43

Sender Receiver

ACK

ACK CE Req

ACK ECE

ECT ECE data

Figure 4.2: The sending of an ACK followed by a marked HTTP request
packet is shown. Following this an ACK packet and data packet each carrying
an echo are returned by the receiver.

Sender Receiver

ECT ECE data

CWR

ECT data

Figure 4.3: A data packet carrying an echo is shown, followed by a packet
with the CWR flag. After this there are no more echos.

44

OS ECN behaviour
FreeBSD 8 Not ECN capable
FreeBSD 8 ECN enabled ECN no echo
OpenBSD 4.6 Not ECN capable
NetBSD 5.0.2 Not ECN capable
Debian Squeeze 2.6.32 ECN echo
Windows XP SP2 Not ECN capable
Windows 7 Not ECN capable
Windows 7 ECN enabled ECN no echo

Table 4.1: Type of ECN behaviour observed for each operating system in
the controlled environment. ‘Not ECN capable’ means that ECN could not
be negotiated. ‘ECN no echo’ means that though ECN was negotiated, the
mark was not echoed. ‘ECN echo’ means that the test was successful and
the mark was echoed back.

The ECN test was also carried out on the machines in the controlled

environment. These data were used to characterise the operating systems on

these machines in the absence of middle boxes.

Another web crawler was run on the full set of one million websites on

12/1/2011, which found webservers via their IPv4 addresses which also had

IPv6 addresses. After collecting these IPv4, IPv6 addresses and URLs the

data set was further refined to contain only globally routable addresses. This

includes the IPv4 addresses along with 2000::/3 IPv6 addresses and excludes

2002::/16 IPv6 addresses. This resulted in a relatively small data file with

2964 addresses, as the number of webservers with globally routable IPv6

addresses is still small.

45

result 2004 count percent
Classified Servers 95% 97.5%
ECN incapable 93% 9272 88.7%
ECN capable 2.1% 8.8%
ECN success 0.5% 853 8.2%
No ECE (echo) 1.5% 66 0.6%
Bad SYN ACK 0.2% 161 1.5%
No data packets 0% 1 0.0%
No TCP connection 3.8% 93 0.9%
Early TCP reset 7 0.1%
total 10453
null
null-success 1% 46 0.4%
Early TCP reset 4 0.0%
Later TCP reset 6 0.1%
No data packets 2 0.0%
No TCP connection 2.8% 42 0.4%
total 100

Table 4.2: These are the results from an ECN test of 10453 websites on the
01/11/2010. TBIT results from 2004 [36] are also shown. There is a count
of websites and a percent value, for each result type.

4.6 Results

Debian Squeeze Linux was the only OS of those tested which showed suc-

cessful ECN behaviour, as shown in Table 4.1. ECN enabled FreeBSD 8 and

Windows 7 were ECN capable but gave no echo, and the others could not

negotiate ECN.

The results in Table 4.2 are typical of all the data points in terms of

error rates. We see that the null test was run 100 times (93 + 7) and half of

these resulted in successful connection. This indicates that 0.4% of machines

reject ECN connection while accepting regular connections, quite a low level

46

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

01/10/10 01/11/10 01/12/10 01/01/11 01/02/11

P
er

ce
nt

 E
C

N
 s

uc
ce

ss

Date

ECN utilisation
by top 10000 Alexa websites

with date as x-values

Figure 4.4: The success rate of the ECN test versus date is shown. The data
set was the top 10000 Alexa popular websites, as downloaded from the Alexa
website on the dates where there are data points plotted.

compared to 2000 [36] when it was 9%. All other error counts are quite small.

The meaning of the other errors is as follows. ‘No TCP connection’ means

that no connection was achieved, ‘Early TCP reset’ is similar but indicates

that a reset packet was received. ‘Bad SYN ACK’ means that SYN ACK

ECE CWR was received, and ‘No data packets’ means that no data was

received in response to the HTTP request. The null test error messages have

a similar meaning to those in the ECN tests.

Of classified server results ‘No ECE’ means that ECN was negotiated

but there was no echo, ‘ECN incapable’ indicates that ECN could not be

negotiated and ‘ECN success’ indicates that an echo was received.

47

date cwr
Fri 17 sep 24.6%
Mon 04 oct 18.0%
Tue 19 oct 27.0%
Mon 01 nov 5.5%

Table 4.3: This table shows the percentage of successful traces where one or
more CWR packets was received from the webserver, on the given date.

category 17 Sep 4 Oct 19 Oct 1 Nov
null+misc 190 189 216 226
Apache 241 248 254 263
nginx 153 166 172 182

Table 4.4: This table shows the number of successful ECN connections in a
common HTTP server category, on the given date. There is an upward trend
in each case, over time.

Figure 4.4 shows a steady increase in ECN success rate of on average

0.25% every two weeks, over several months. This implies that as operating

systems are upgraded, that some of the new replacement systems successfully

implement ECN. Additionally it could imply that System Administrators are

generally more inclined to have ECN turned on than before.

Table 4.3 shows frequency of successful ECN traces where CWR packets

were received from the webserver. On all these dates >95% of these CWR

packets occurred in traces where 3 duplicate ACKs occurred. Because of this

it might be expected to see a drop in percentage with CWR after the first

date as this is when a patch to deal with packet reordering was written and

installed, which prevented reordering from being treated as loss. These CWR

packets are unexpected, and it is difficult to see why they should be there

as there are no ECN echos being sent to the server, from the measurement

host.

48

Server information was gathered from the warts data files where available,

and it was noted that the general indication was that the ECN successes

where made up of mostly Linux webservers. Server information specified

the type of Linux but not the version, and the count for this did not vary

significantly from 85 hosts. There were a small number of Microsoft Windows

machines where ECN had been activated. Table 4.4 shows several large

categories of ECN successes, ‘null+misc’ are traces were no server information

was provided or a rarely seen specification was given, ‘Apache’ and ‘Nginx’

are likely to be mostly Linux systems in addition to the specifically identified

ones. These three categories showed increases over time, as the number of

successes increased.

The Linux kernel releases that first enabled ECN by default were released

in 2006. The website news.netcraft.com reported that 60% of webservers use

Apache, 21% Microsoft IIS and 7.5% nginx. A value less than the sum of

Apache and nginx (68%) is the proportion of Linux servers, which is likely

to be a ceiling value for ECN.

The results in Table 4.5 show the IPv4 and IPv6 ECN test results for

the same but small set of webservers. It seems likely that one would expect

similar results for IPv4 and IPv6 on the same machine. The IPv6 successes

are however slightly higher than IPv4 and both are more than double what

was seen in the IPv4 only test (9.7% success) carried out at the same time. On

the other hand ‘ECN capable’ is slightly higher for IPv4, and the difference

is mostly caused by the also higher ‘no ECE’ result. Possible causes of these

differences include IPv4 echos being cleared or stopped by some middleboxes,

operating system specific differences between ECN for IPv4 vs IPv6, and the

49

result count 4 percent 4 count 6 percent 6
Classified Servers 98.9% 85.3%
ECN incapable 1096 74.1% 931 62.7%
ECN capable 24.8% 22.6%
ECN success 288 19.5% 325 21.9%
No ECE (echo) 79 5.3% 10 0.7%
Bad SYN ACK 1 0.1% 2 0.1%
No data packets 0 0.0% 0 0.0%
No TCP connection 14 0.9% 179 12.1%
Early TCP reset 2 0.1% 38 2.6%
total 1480 1485
null
null-success 2 0.1% 6 0.4%
Early TCP reset 2 0.1% 38 2.6%
No data packets 1 0.1% 0 0.0%
No TCP connection 11 0.7% 173 11.6%
total 16 217

Table 4.5: These are the results from an ECN test of 1480 websites on the
02/02/2011. There is a count of websites and a percent value, for each result
type. This is repeated for each of IPv4 and IPv6, where there is a suffix of 4
or 6 respectively.

50

larger number of failed connections for IPv6 could skew the results if there

were a bias towards ‘no ECE’ operating systems failing to connect IPv6.

Possible explanations for the higher success rates than in the IPv4 only

test include, the small size of the data set available for this test, bias in-

troduced by using a higher proportion of less popular webservers and, the

likelihood that webserver machines set up for IPv6 on the Internet use more

modern ECN capable operating systems.

4.7 Conclusions

The successful implementation of ECN is showing steady improvement, how-

ever there are still some out of place events (e.g. CWR packets) which occur

even in successful implementations. At the present rate of improvement it

will improve about 6% per year, however this may improve as operating sys-

tems updates that fix ECN are introduced. Based on my earlier results in

September 2009 of ECN success less than 3%, this rate is a recent occurrence

and could be increasing.

One of the hurdles has reduced and that is the proportion of ECN con-

nections that fail, while normal connections succeed. This factor put OS

designers off activating ECN in their operating systems, because of the in-

creased Internet access failure rates incurred. Middleboxes clearing ECN

flags or dropping ECN packets were believed to be partly to blame for this

problem, and the prevalence of this problem appears to have abated.

It is also clear that an improved method of identifying operating sys-

tems would be useful, as this would improve the quality of feedback on the

51

performance of the Internet that can be provided and the operating system

specificity of such information.

It is also concluded that webservers running via IPv6 are more likely to

be ECN successful than the average webserver, and that corresponding IPv4

ECN is more likely to fail to echo when ECN is capable.

52

Chapter 5

Reaction to loss: Tahoe, Reno

and New Reno

5.1 Introduction

Tahoe, Reno and New Reno are algorithms of TCP that operate in the ab-

sence of SACK to react to packet loss as inferred by three duplicate ACKs

and control congestion. The points of difference include whether RTOs oc-

cur, whether packets are unnecessarily retransmitted and whether multiple

losses can occur without these events occurring. These characteristics affect

the performance of TCP when congestion occurs and as such are useful to

evaluate. Furthermore these algorithms are of interest as there are Internet

systems that use them, not all systems are SACK capable, and feedback on

Internet behaviour is part of making developmental progress. In this chapter

the prevalence of these modes of TCP are measured and the likely impact

on performance is assessed.

53

5.2 TCP reaction to loss

Tahoe and Reno only occur in older operating systems and have been reduc-

ing in prevalence [36]. New Reno behaviour is emulated by some newer TCP

varieties such as BIC and CUBIC [46] [54].

x
x

x
x
x
x

x

x

x

x

xxx

Se
qu

en
ce

 N
um

be
r

Time
Dropped packet Received packet

(a) Tahoe packet trace with drop.

C
on

ge
st

io
n

W
in

do
w

Time
Acknowledgementx

(b) Tahoe congestion window be-
haviour.

Figure 5.1: Figures (a) and (b) show the trace of packet flights and the
changing congestion window for Tahoe TCP. A second slow start is observed
after packet loss as inferred by three duplicate acknowledgements, and an
RTO.

There are a number of TCP behaviours in response to loss. Tahoe reacts

to loss inferred by three duplicate acknowledgements by treating it the same

as a timeout, as illustrated in Figure 5.1. The ssthresh variable is set to half

the congestion window as above, initial window is set to one or two segments,

and conventional slow start follows. There are implementations of Tahoe that

have fast retransmit, which is distinguished from other fast retransmit algo-

rithms by the fact that it transmits an extra packet that was not previously

dropped [39] as illustrated in Figure 5.2. Reno differs from Tahoe in that it

includes the fast recovery algorithm and fast retransmit [15]. In Reno fast

54

Dropped packet Received packet

x
x

x
x
x
x

x

x
x

Se
qu

en
ce

 N
um

be
r

Time

x

xxx

x

(a) Tahoe FR packet trace with
drop.

C
on

ge
st

io
n

W
in

do
w

Time
Acknowledgementx

(b) Tahoe FR congestion window
behaviour.

Figure 5.2: Figures (a) and (b) show the trace of packet flights and the
changing congestion window for Tahoe with fast retransmit TCP. Fast re-
transmission is observed after packet loss as inferred by three duplicate ac-
knowledgements. An extra packet is retransmitted and a second slow start
follows.

recovery involves halving the congestion window and waiting for a cumu-

lative acknowledgement of all unacknowledged packets. After a cumulative

acknowledgement, TCP continues with congestion avoidance. If a second

packet is dropped the first is still fast retransmitted but the second causes

a timeout. This leads back to slow start and thus Reno does not perform

well when multiple losses occur, as illustrated in Figure 5.3. This is as might

be expected as Reno was optimised for dealing with single packet drops [16].

In New Reno each duplicate acknowledgement results in transmission of a

further packet during recovery [20]. For every progressing acknowledgement

that is not fully cumulative, the next unacknowledged packet is sent. New

Reno does not timeout when two packets are dropped but deals with them

in this way, provided there are acknowledgements arriving, as illustrated in

Figure 5.4. These drops result in a halving of the congestion window and

55

x
x

x
x
x
x

x

x
x

x
x
x

x

xxx

x

Dropped packet Received packet

Se
qu

en
ce

 N
um

be
r

Time

(a) Reno packet trace with drops.

C
on

ge
st

io
n

W
in

do
w

Time
Acknowledgementx

(b) Reno congestion window be-
haviour.

Figure 5.3: Figures (a) and (b) show the trace of packet flights and the
changing congestion window for Reno TCP. A second slow start is observed
after packet loss as inferred by three duplicate acknowledgements.

congestion avoidance. Reno evolved from Tahoe and New Reno from Reno

as a result of the need to improve throughput under congestion conditions,

as much as is permissible without further adding to congestion [37].

5.3 Related work (TBIT)

TBIT starts by connecting to the remote web server using the three packet

handshake, where MSS is set to a small value such as 100 bytes and a receiver

window of 5 times this is set. Then an HTTP get request is sent for the

webpage. TBIT acknowledges the data packets received from the remote

server. Packet 13 is then dropped and the ACKs for packets 14 and 15

are duplicate ACKs for packet 12. Packet 16 is dropped and subsequent

acknowledgement occurs as appropriate. The connection is closed after 25

data packets have been received.

56

x
x x

x
x
x x

x
x
x
x

x
x

x

x

xxx

Dropped packet Received packet

Se
qu

en
ce

 N
um

be
r

Time

(a) New Reno packet trace with
drops.

C
on

ge
st

io
n

W
in

do
w

Time
x Acknowedgement

(b) New Reno congestion window
behaviour.

Figure 5.4: Figures (a) and (b) show the trace of packet flights and the
changing congestion window for New Reno TCP. Congestion avoidance is
observed after packet loss as inferred by three duplicate acknowledgements.

NewReno is detected if there is a fast retransmit for packet 13, no RTOs

and no retransmission of packet 17. Here the first packet dropped is fast

retransmitted, packet 17 was not dropped and is the one after the second

packet that was dropped and retransmitted. RenoPlus (or aggressive fast

retransmit) is detected when there are no RTOs for packet 13 and 16, there

is transmission of additional packets between the retransmissions of packets

13 and 16, and there are no unnecessary retransmissions. RenoPlus is a step

toward New Reno from Reno. Reno is detected when there is a fast retrans-

mission of packet 13, there is an RTO for packet 16, and no unnecessary

retransmission of packet 17. Here the first packet which was dropped was

fast retransmitted and the second drop timed out. The unnecessary retrans-

mission of packet 17, the packet after the second drop, which did not occur

here is a feature of Tahoe. Tahoe with fast retransmit is detected when there

is fast retransmission of packet 13, and unnecessary retransmission of packet

57

17. Here the dropped packet is fast retransmitted, an unnecessary packet

is retransmitted, the next packet is transmitted and then the second packet

is retransmitted. Tahoe with no fast retransmit is detected when there is

an RTO for packet 13 and unnecessary retransmission of packet 17. Here

the first dropped packet is retransmitted after an RTO, after an RTT the

second retransmission and the extra retransmission are sent. Aggressive fast

retransmit is detected when there are no RTOs, there are more than 3 re-

transmissions, and unnecessary retransmission of packets 14 and 17. This

algorithm does not time out but does retransmit unnecessary packets. Ag-

gressive Tahoe with no fast retransmit is detected when there is an RTO

for packet 13, there is no RTO for packet 16, and there are more than 2 re-

transmissions including that of packet 14. Once again the aggressive version

involves extra retransmissions.

5.4 Method

The scamper test used was similar to the original TBIT method, however

a driver was used to repeat the test up to three times if unwanted drops

or reordering occurred in the trace. Previously TBIT tests where repeated

five times requiring agreement of three [39], and in later work [36] involving

larger data sets each test was run only once.

The top 10000 Alexa websites were used as data, a subset of the top 1

million. The Reno test was run on the 22/11/2010 on a machine outside the

University of Waikato’s firewall.

58

The initial version of the Reno test resulted in 9% of cases where the test

failed because of varying packet size, and 35% of cases where out of order

packets caused failure. The program was rewritten to deal with varying

packet size, and a driver was written to rerun the test up to three times

when reordering was encountered. These changes reduced the error rate to

25% due to reordering and 0% due to packet size variation. This testing was

carried out on a sample size of 1000 randomly selected from the top 10000

Alexa websites.

This modification had the side affect that reordering was included with

drops as a failed result. A further modification was made to allow variable

packet size and reordering to occur. The difficulty was that the program

must predict a packet number for each packet it receives. This includes the

case where a packet is received before its predecessor. In order to make a

prediction the size of the packet before a gap is used to predict the size of

the gap, either one or two packets worth. If the prediction did not fit the size

of the gap the test failed. This modification reduced the error rate, though

there were still errors due to excessive packet size variation, retransmission

of packets with different sequence numbers and repeated drops.

5.5 Results

The error rate is lower than for the measurements made in 2004 [36], as

shown in Table 5.1. This breaks down into the following categories. ‘No

TCP connection’ and ‘Early reset’ indicate a failed TCP connection. This

was similar to 2004. ‘No data response to TX request’ indicates that the

59

Result 2004 Count Percent
Classified servers 33% - 78.3%
Reno 5% 774 7.7%
New Reno 25% 6690 66.6%
Tahoe with fast retransmit 1.2% 290 2.9%
Tahoe (no fast retransmit) 1.4% 18 0.2%
Aggressive Tahoe no FR 0% 1 0.0%
Reno, Aggr FR 0.2% 6 0.1%
Uncategorised 0.4% 77 0.8%
Errors 53% - 19.1%
No TCP connection 2.6% 134 1.2%
Early reset 330 3.3%
No data response to TX request 4% 98 1.0%
TCP Error 379 3.8%
Extra retransmits 29 0.3%
Not enough packets 27% 851 8.5%
15 drop after 12 RT 78 0.8%
12 drop after 15 drop 16 0.2%
Classified but ignored - 2.7%
net unwanted drops etc. 272 2.7%
total IPs 10043 -
Unwanted drops 527 -
Packets not sequential 597 -
Packet not seen before 2024 -
Retries after unwanted drops etc. 2876 -

Table 5.1: Results category counts and percentages for the Reno test carried
out on 22/11/2010. TBIT results from 2004 [36] are also shown. The counts
adding up to ‘total IPs’ are shown above that line and the number with
‘Unwanted drops’, ‘Packets not sequential’,‘Packet not seen before ’ and the
number of retries are shown below that line. If any of these three errors
occurs then the test is rerun up to a total of three times.

60

connection timed out three times waiting to receive data. This was one

quarter of that seen in 2004. ‘TCP Error’ includes absence of HTTP 200

OK message and packets received greater in size than than the negotiated

MSS. This was also one quarter of that seen in 2004. ‘Extra retransmits’

occurs when the dropped packets are retransmitted extra times. ‘Not enough

packets’ occurs when a FIN packet is received before the end of the test. This

was only 34% of what it was in 2004. ‘15 drop after 12 RT’ occurred when

packet 15 was dropped after packet 12 was retransmitted. ‘12 drop after 15

drop’ occurred when the drop of packet 12 occurred after the drop of packet

15. These two both occurred at a low level.

The classified but ignored category: ‘net unwanted drops etc.’ was only

19% of the unwanted drops measured in 2004. This category also included

‘Packets not sequential’ and ‘Packet not seen before’. The former means

that the received out of order packet does not fit the existing gap, and the

later indicates that an out of order packet did not have an expected sequence

number.

The proportion of ‘Classified servers’ is more than double that in 2004,

as shown in Table 5.1. ‘New Reno’ is more than double the previous level.

‘Reno’ is similar to what it was. Tahoe is just over double. ‘Tahoe no fast

retransmit’ is reduced to 14% of the previous level. ‘Aggressive Tahoe no

FR’ is still very low. ‘Aggr FR’ is still very low and half of what it was.

61

5.6 Conclusions

The significant contributors to the previously published errors in 2004 at

53% are ‘Not enough packets’ at 27% and ‘HTTP error’ at 16%. Now we

see far fewer websites with very small amounts of data, and our use of a

web crawler immediately prior to testing to gather address data prevents the

use of stale addresses. ‘Extra retransmits’ a new error category, was not an

important contributor to the error rate. Similarly out of order drops and

retransmissions were not important either.

The low level of ‘net unwanted drops etc’ shows that the process of retry-

ing after certain errors, mostly errors related to reordering (Unwanted drops,

Packets not sequential, Packet not seen before), was successful at achieving

a reduced error rate.

The reduced error rate appears to have sustained Tahoe and Reno pro-

portions, as it is expected that they should gradually decrease. In fact,

as percentages of classified servers: Reno has decreased from 15% to 10%,

Tahoe no FR from 4.2% to 0.2% and New Reno has increased from 75% to

85%. The increase in New Reno is consistent with modern TCP congestion

control algorithms such as BIC and Cubic being conformant with it. From

these results we would expect on average slightly improved performance un-

der congestion of webservers not implementing SACK successfully or with

SACK turned off.

62

Chapter 6

Selective Acknowledgment

6.1 Introduction

Another development for dealing with multiple packet losses is SACK [34] [15].

The problem SACK addresses is that TCP performance may be impaired

when more than one packet is lost in a data stream. This leads to the sit-

uation where it requires one RTT to learn about each lost packet, and may

also lead to received packets being retransmitted. SACK involves sending of

information from the receiver to the sender in acknowledgements, which in-

dicates which blocks of packets have been successfully received. In so doing,

the receiver infers which packets have been lost from it.

6.2 How SACK works

Firstly permission to operate SACK is granted during connection phase. The

‘SACK permitted’ option may only be sent in SYN and SYN ACK packets.

When it is sent both ways SACK is established. The ‘SACK’ option is sent

by the TCP receiver, and contains pairs of numbers that indicate edges of

63

sequence space that relate to data received. The bytes above and below the

block between these edges have not been received. This allows the iden-

tity of multiple packets requiring retransmission to be established from one

acknowledgement packet.

6.3 Related work

6.3.1 Sender SACK test

The TBIT sender SACK test is described in [39], where sender or receiver

means that the measurement host sends or receives SACK blocks in the test

respectively. The test begins by negotiating a SACK connection by sending

a SYN packet with a ‘SACK permitted’ option. If the SYN/ACK packet

does not contain a ‘SACK permitted’ option then the test does not continue.

The testing program then drops packets 15, 17 and 19. SACKs are sent

as expected, this continues until the retransmission of the dropped packets

has occurred. The retransmissions of the dropped packets is timed, and

interpreted after the connection is closed.

‘Proper SACK’ is detected when all 3 retransmissions occur in one RTT,

with no unnecessary retransmissions, as shown in Figure 6.1. In ‘Semi SACK’

some, but not complete, use is made of SACK information. Two retrans-

missions occur in one RTT of dropping, but the other retransmission takes

longer. In ‘NewReno’ no use is made of SACK information, and only re-

sponses to cumulative ACKs are observed, as shown in Figure 6.2. In ‘Tahoe

without fast retransmit’ after an RTO, packet 15 is retransmitted, then one

RTT later packets 17 and 18 are retransmitted.

64

6.3.2 Receiver SACK test

The TBIT reciever SACK test is detailed in [36]. Negotiation is carried out

in the same way as for sender SACK, and then an HTTP GET is split into

a number of packets each containing one byte of data, the first and third

packets are sent with appropriately set sequence numbers, and an ACK for

each packet is in turn awaited. The second of these ACK packets should

contain a SACK block which is tested for correctness. The pattern of received

packets is also checked for correctness, by confirming that valid ACKs are

received in response to each of the two data packets.

x
x
x
x

x
x

x

x

x
x
x
x
x
x
x
x

x

x

x
x
x
x
x
x
x
x

Time
Dropped packet Received packet

Se
qu

en
ce

 N
um

be
r

(a) Proper SACK.

x
x
x
x

x
x
x
x
x
x
x
x x

x

x

x

x
x
x
x
x
x
x
x

x

x

x

x

Time
Acknowledgement

Se
qu

en
ce

 N
um

be
r

(b) Semi SACK.

Figure 6.1: Figures (a) and (b) show traces of ‘proper SACK’ and ‘semi
SACK’ webservers. ‘Proper SACK’ retransmits all the dropped packets
promptly making full use of the SACK information sent in the ACK pack-
ets. ‘Semi SACK’ is similar but delays retransmission of one of the packets,
making only partial use of the SACK information provided.

65

x
x
x
x

x
x
x
x
x
x
x
x

x
x

x

x

x

x

Time
Dropped packet Received packet

Se
qu

en
ce

 N
um

be
r

Se
qu

en
ce

 N
um

be
r

(a) New Reno.

x
x
x
x

x

x
x
x
x
x
x
x
x

x

x
x

x

x x

x

Time
Acknowledgement

Se
qu

en
ce

 N
um

be
r

(b) Tahoe no FR.

Figure 6.2: Figures (a) and (b) show traces of ‘New Reno’ and ‘Tahoe no fast
retransmit’ webservers. ‘New Reno’ makes no use of the SACK information
sent in the ACK packets, but does not timeout or retransmit packets unnec-
essarily. ‘Tahoe no FR’ also makes no use of SACK information but times
out and resends some packets unnecessarily.

6.4 Method

The methods used were similar to TBIT SACK, however drivers were writ-

ten to repeat testing when necessary. In previous research carried out in

2004 [36], for each webserver, each sender or receiver SACK test was carried

out once.

6.4.1 Sender SACK test

SACK holes are the gaps between contiguous regions (blocks) that the SACK

option indicates have been received. A maximum of four SACK blocks can

66

be sent in the options of one ACK packet. A prerun of 100 websites showed

that there was 32% of cases where there were ’too many holes’. This is likely

to result from gaps caused by extra dropped packets or reordering, resulting

in more gaps in the byte stream received than can be represented in one

ACK packet. To solve this problem, a driver was written which retried the

cases where there were too many SACK holes, up to three times. Retrying is

useful because the extra drop is unlikely to occur a second time and neither

are the accompanying extra holes. This resulted in a net ’too many holes’

error rate of 5%, a very useful improvement.

6.4.2 Receiver SACK test

In the receiver SACK test the driver had the role of carrying out a null test

if the initial test failed to negotiate SACK.

6.5 Data collection

Data collection was based on active measurement of the 10000 most popular

websites from Alexa. The sender test was run and warts data was collected

on 20/11/2010. Similarly the receiver SACK test was run on 16/02/2011.

The data input set used for the sender and receiver IPv4/IPv6 SACK tests

is the same data set as was used for IPv6 ECN. This was 1460 addresses of

each IPv4 and IPv6 collected across the entire one million Alexa most popular

websites. This was the same list of webservers for each type of IP address.

67

OS SACK behaviour
FreeBSD 8 Semi SACK
OpenBSD 4.6 Proper SACK
NetBSD 5.0.2 New Reno (SACK permitted, non SACK)
Debian Sqeeze 2.6.32 Proper SACK
Windows XP SP2 Semi SACK

Table 6.1: Type of sender SACK behaviour observed for each operating
system in the controlled environment. Two machines showed proper SACK,
two showed SemiSACK and one showed non SACK behaviour.

6.6 Results

6.6.1 Sender SACK test

The machines in the controlled environment were tested with the SACK test,

and the results are shown in Table 6.1. Debian Linux and OpenBSD made

full use of the SACK information provided by the receiver, FreeBSD and

Windows XP made partial use of SACK and NetBSD made no use at all,

although all of them negotiated ‘SACK permitted’.

The result for ‘Proper SACK’ is 45% as shown in Table 6.2. This is

an increase from 18% in 2004 [36], which was measured using TBIT. The

webservers which are ‘not SACK capable’ failed to negotiate SACK in the

handshake. ‘Uses SACK’ is the sum of ‘Proper SACK’ and ‘Semi SACK’.

‘Does not use SACK’ is the sum of ‘New Reno’ and ‘Tahoe no FR’. ‘No

TCP connection’ and ‘Early reset’ indicate a failed TCP connection. ‘No

data response’ indicates that HTTP 200 OK was not received. ‘Delayed re-

transmit’ indicates that the time between dropping the packets and their

retransmission was longer than 2 * RTT. ‘Not enough packets’ means that a

FIN was received before the test was completed. ‘No more data’ means that

68

Result 2004 Count Percent
Not SACK capable 29% 1790 16.9%
SACK-capable 68% - 55.2%
Uses SACK 27% - 52.2%
Proper SACK 18% 4737 44.7%
Semi SACK 9% 800 7.5%
Does not Use SACK 3% - 3.0%
New Reno 2% 283 2.7%
Tahoe no FR 1% 30 0.3%
No TCP connection 2% 69 0.7%
Early reset 13 0.1%
No data response 0.5% 42 0.4%
Delayed retransmit 23 0.2%
Not enough packets 25% 757 7.1%
No more data 305 2.9%
MSS error 0% 371 3.5%
More than max packets/reordered 411 3.9%
net too many holes 970 9.2%
total IPs 10601 -
Too many holes 7831 -
Retries after too many holes 6861 -

Table 6.2: Results category counts and percentages for the sender SACK test
carried out on 20/11/2010. TBIT results from 2004 [36] are also shown. The
counts adding up to ‘total IPs’ are shown above that line and the number
with ‘Too many holes’ and the number of retries are shown below that line.
If ‘Too many holes’ occurs then the test is rerun up to a total of three times.

69

the connection timed out waiting for more data three times. ‘MSS error’ in-

dicates that the negotiated packet size was exceeded by the webserver. ‘More

than max packets/reordered’ is also contributed to by excessive reordering.

‘Net too many holes’ is the number of webservers classified with too many

SACK holes, after retries have produced more results in other categories from

webservers originally in this category. ‘Total IPs’ is the number of distinct

webservers tested. ‘Too many holes’ is the total number of webservers in

this category including all retries. ‘Retries after too many holes’ is the total

number of retry tests carried out.

Most of the errors in the 2004 test were ‘Not enough packets’ at 25%

compared to 7% here. Our test experienced greater error rates from packet

reordering and drops as seen in the ‘Too many holes’ and ‘More than max

packets/reordered’ results. This may be a result of using a congested vantage

point location to carry out the tests or possibly a result of the existence of

multiple paths.

Though the error rates are quite low, it may be possible to reduce them

further by selecting the data set differently or by relaxing some constraints.

‘Not enough packets’ error rate could be reduced by using data size informa-

tion from the web crawler to exclude webservers with data below 25 packets.

The MSS packet size limit could be relaxed to reduce this error. ‘More than

max packets/reordered’ could be included in the cases which are retried. The

number of retries could be increased from 3 to 4. It is however of interest to

compare some of these error rates with the 2004 results, and to compare the

SACK results on a similar basis of measurement. Furthermore it may not be

desirable to make selections on the data set, as this may introduce bias.

70

‘Semi SACK’ and ‘New Reno’ had similar values to 2004, however ‘Semi

SACK’ is now much less than 50% of the ‘Uses SACK’ group i.e. 14%. This

indicates that most operating systems deployed using SACK information

now implement SACK correctly. ‘Tahoe no FR’ has reduced to about 30%

of what it was. This might be expected as Tahoe is now associated with

obsolete operating systems. Some of the classified cases in these categories

other than ‘Proper SACK’ could be affected by middleboxes, as SACK blocks

may not be correctly translated.

Analysis of HTTP server specification within the SACK results categories

was carried out. Of the ‘Proper SACK’ machines, 23% were positively iden-

tified as Linux, however the categories ‘Apache’ and ‘nginx’ made up most of

the rest, with Microsoft-IIS at 4% and no server identifier at 11%. Microsoft-

IIS is well represented in the ‘Semi SACK’ category at 40% of webservers.

5% of these webservers were identified as running a Linux operating sys-

tem. In the ‘New Reno’ category 7% were positively identified as Linux,

and 13% Windows. In the ‘Tahoe no FR’ category no Linux machines were

positively identified, and 13% Windows was found. It should be noted that

categories ‘Apache’, ‘nginx’ and ‘Unspecified’ together make up more than

50% of servers. This makes interpretation difficult.

The results of sender SACK via IPv4 and IPv6 are shown in Table 6.3.

It is likely that access via both types of IP to the same operating system

will produce similar results. ‘Proper SACK’, ‘Semi SACK’ and ‘Tahoe’ are

higher in IPv4, whereas ‘New Reno’ is similar. The higher levels of ‘No TCP

connection’ and ‘Early reset’ may explain these differences. Other than these

differences the errors appear similar with eachother.

71

Result Count 4 Percent 4 Count 6 Percent 6
Not SACK capable 67 4.5% 83 5.6%
SACK-capable - 71.6% - 60.0%
Uses SACK - 70.4% - 59.1%
Proper SACK 997 67.4% 865 58.2%
Semi SACK 45 3.0% 14 0.9%
Does not Use SACK - 1.2% - 0.9%
New Reno 10 0.7% 13 0.9%
Tahoe no FR 7 0.5% 0 0%
No TCP connection 14 0.9% 186 12.5%
Early reset 7 0.5% 38 2.6%
No data response 1 0.1% 0 0%
Delayed retransmit 0 0% 2 0.1%
Not enough packets 265 17.9% 238 16.0%
No more data 23 1.6% 18 1.2%
MSS error 39 2.6% 21 1.4%
More than max packets/reordered 1 0.1% 4 0.3%
net too many holes 4 0.3% 3 0.2%
total IPs 1480 - 1485 -
Too many holes 32 - 30 -
Retries after too many holes 28 - 27 -

Table 6.3: Results category counts and percentages for the IPv4 and IPv6
sender SACK test carried out on 7/2/2011. The Count and Percent column
headings have a suffix which specifies the type of IP. The counts adding up
to ‘total IPs’ are shown above the bottom line and the number with ‘Too
many holes’ and the number of retries are shown below that line. If ‘Too
many holes’ occurs then the test is rerun up to a total of three times.

72

OS SACK behaviour
FreeBSD 8 Success
OpenBSD 4.6 Success
NetBSD 5.0.2 Success
Debian Sqeeze 2.6.32 Success
Windows XP SP2 Success

Table 6.4: Type of receiver SACK behaviour observed for each operating sys-
tem in the controlled environment. All of the webservers exhibited successful
sending of SACK blocks and interaction with the SACK test.

The IPv4 only results give a lower result for ‘Proper SACK’ and a higher

result for ‘Semi SACK’ and ‘New Reno’. Apart from ‘Not enough packets’

which is lower in IPv4 only, some of the errors are higher, as is ‘Not SACK

capable’. This is consistent with the machines addressable by IPv6 having

more modern operating systems and a greater likelihood of being SACK

capable.

6.6.2 Receiver SACK test

The receiver SACK test was executed in the controlled environment and the

results are shown in Table 6.4. This shows that all of the systems tested were

able to send valid SACK blocks.

The proportion of ‘SACK blocks OK’ is 81% as shown in Table 6.5. This

is an increase from 65% in 2004 [36]. The ‘Not SACK capable’ level has

reduced by 40% and the error rate mostly made up of ‘No connection’ cases

has reduced to a low level. Small numbers of ‘Shifted SACK blocks’ and null

‘Success’ are both indicators of possible middlebox interference with SACK.

73

Result 2004 Count Percent
Not SACK capable 28.8% 1747 16.6%
SACK blocks OK 64.7% 8511 81.1%
Shifted SACK blocks 0.5% 82 0.8%
Packet sequence error 0.1% 54 0.5%
No block 0.1% 56 0.5%
No connection 5.3% 42 0.4%
Early reset 0.4% 3 0.0%
total IPs 10495 -
Null
Success - 6 0.1%
No connection - 34 0.3%
Early reset - 5 0.1%

Table 6.5: Results category counts and percentages for the receiver SACK
test carried out on 16/02/2011. TBIT results from 2004 [36] are also shown.
The null test referred to in the ECN chapter is run if the test fails to negotiate
a SACK capable connection.

The results for IPv4/IPv6 receiver SACK testing are shown in Table 6.6.

‘SACK blocks OK’ for IPv6 is lower than for IPv4 and this seems to be largely

explained by increases in ‘Packet sequence error’ and ‘No connection’. The

level of ‘Not SACK capable’ seems to be similar for the two types of IP

address. ‘Shifted SACK blocks’ and null ‘Success’ levels indicate only a very

low level of possible middlebox interference.

6.7 Conclusions

6.7.1 Sender SACK test

There has been a decrease in errors from 40% in 2004 [36] to 28% in this

research. There is also a change in composition as ‘Not enough packets’ and

74

Result Count 4 Percent 4 Count 6 Percent 6
Not SACK capable 71 4.8% 88 5.9%
SACK blocks OK 1371 92.6% 881 59.3%
Shifted SACK blocks 3 0.2% 3 0.2%
Packet sequence error 3 0.2% 245 16.5%
No block 10 0.7% 45 3.0%
No connection 21 1.4% 177 11.9%
Early reset 1 0.1% 46 3.1%
total IPs 1480 - 1485 -
Null
Success 0 0.0% 2 0.1%
No connection 20 1.4% 174 11.7%
Early reset 2 0.1% 46 3.1%
No data 0 0.0% 1 0.1%
total 22 - 223 -

Table 6.6: Results category counts and percentages for the IPv4 and IPv6
receiver SACK test carried out on 15/2/2011. The Count and Percent column
headings have a suffix which specifies the type of IP. A null test is run if the
test fails to negotiate a SACK capable connection.

75

‘HTTP error’ are reduced in proportion and ‘too many holes’ is increased.

This may be a result of there being less stale URLs but a more congested

Internet access point currently. The frequency of ‘too many holes’ would

have been much greater if not for the use of the driver. This error was built

in to the original TBIT program but was not reported in the 2004 results.

Modern successful SACK implementations in Linux make up the great

proportion of ‘Proper SACK’ capable webservers, and though some Windows

systems are SACK successful the proportion is still quite low.

Globally routable IPv6 addressable machines are more likely to implement

proper SACK than IPv4 only, and on the same machine SACK capable IPv4

is more likely to fail to implement proper sack. This latter situation may

however be associated with cases where IPv6 fails to connect.

6.7.2 Receiver SACK test

The high success rate in the controlled environment suggests that most web-

servers are capable of sending SACK blocks. One might therefore expect that

many non success cases seen might be related to middlebox interference.

Successful SACK for popular webservers with IPv4 addresses has in-

creased at the expense of errors and SACK incapable cases. Strangely the

IPv4 success rate for webservers with IPv6 addresses is higher than for IPv4

only, whereas the IPv6 success rate itself is lower than this level, though

failed IPv6 connections and failed packet sequences are major contributors

to this latter situation.

76

6.7.3 Overall

More than half of high traffic webservers use SACK information, and most of

these make full and proper use of this, and for sender SACK the rate of Semi-

SACK has decreased. These are large increases in the correct implementation

of SACK, a benefit to the Internet.

A small amount of middlebox interference was detected. This is likely

to mean that SACK blocks are being incorrectly recalculated, or remaining

unchanged when conversion is necessary along with transformed sequence and

related numbers. Interference could also involve blocked SACK connections,

where the ‘SACK permitted’ option is interfered with. The amount of SACK

interference appears to be insufficient to hinder its uptake and activation.

77

Chapter 7

Initial congestion window

7.1 Introduction

ICW is the value of the congestion window that occurs at the beginning of a

connection. The value of this parameter affects the speed at which the initial

slow start accelerates, and thus affects TCP performance. This setting has

been changed to allow smaller packets sizes to occur in greater numbers at

connection start. It is thus of interest to know if this specification change

has been adopted and what impact on TCP performance has occurred. In

this chapter details of ICW algorithms are explained and measurements are

carried out on the prevalence of different values.

7.2 Initial congestion window

The ICW for slow start when a connection is initialised was originally set

at less than or equal to 2*MSS and not more than 2 segments [4]. This

has recently been relaxed [1] [2] to: 4*MSS for MSS <= 1095, 3*MSS for

MSS <= 2190 and 2*MSS for MSS > 2190. These changes were made for

78

a number of reasons. A disadvantage of starting with one segment is that

a receiver implementing delayed acknowledgements may timeout before con-

tinuing. Connections carrying out small data transfers will be quicker than

previously. This improves high bandwidth high delay connections by remov-

ing up to three RTT delays and one RTO delay [1].

7.3 Related work (TBIT)

Firstly TBIT establishes a TCP connection and an MSS option of 256 bytes

is specified, after this an HTTP request is made for the web page. None

of the resulting data packets are acknowledged, so eventually the first data

packet is resent by the server after a congestion window full of packets has

been sent. The data packets are counted to give initial congestion window.

If a FIN packet is received from the server then the test fails, as the size of

the window is likely to have been limited by lack of data.

7.4 Method

The TBIT test was adapted into a scamper module. Scamper’s state struct

was extended to cover necessary TBIT variables, and the scamper routine

to process a received packet was connected to the TBIT function for this

purpose. A scamper function to send a data packet was also called at the

appropriate time. The main deviation from the TBIT regime, where the test

was run once for each website in the later analysis [36], was that a driver was

used to run the test twice, once at each of two different MSS settings.

79

7.5 Data collection

The top 10000 servers of the most popular and thus most commonly fre-

quented websites were considered to be a useful and representative sample

of Internet traffic providing hosts. The Alexa top one million websites were

downloaded. A perl web crawler program was run to gather the 10000 most

popular websites and their IP addresses in a correctly formatted data file.

This data file was assembled on the 29/10/2010 and the test was run using

the driver set on MSS 256 and 1460 bytes. The ICW test produced a warts

data file and this was analysed after the test was finished.

7.6 Results

Once the ICW test was initially assembled, it was run in a controlled en-

vironment where several machines running various operating systems were

connected to a test machine via a 200ms delay. The test machine was used

to run the ICW TBIT test on these isolated servers. Table 7.1 shows the

observed behaviour of the common operating systems tested, where the ex-

pected behaviour is shown by one operating system, which is Debian Sqeeze

Linux.

The total errors came to a similar value for each of the MSS settings,

which was a fairly low 17%, as shown in Table 7.2. The breakdown of these is

as follows. ‘No TCP connection’ occurred when no SYN/ACK was returned

after an initial SYN was sent, and the SYN was sent a further two times.

‘Early reset’ was when a RST packet was received from the web server at

connection time.

80

OS 256 MSS 1460 MSS
FreeBSD 8 1 1
OpenBSD 4.6 5 4
NetBSD 5.0.2 4 4
Debian Sqeeze 2.6.32 4 3
Windows XP SP2 2 2

Table 7.1: Initial congestion window behaviour observed for each operating
system in the controlled environment. The numeric result is the number of
packets making up the initial congestion window.

Error type 256 MSS 1460 MSS
No TCP connection 118 1.1% 105 1.0%
Early reset 81 0.8% 62 0.6%
No data response 119 1.1% 114 1.1%
TCP Error 328 3.1% 41 0.4%
HTTP error 216 2.1% 205 2.0%
Not enough packets 101 1.0% 553 5.3%
MSS error 383 3.7% 0 0.0%
Length error 0 0.0% 374 3.6%
Too many packets 103 1.0% 26 0.2%
Early reordering 315 3.0% 310 3.0%
Total errors 1764 17.2% 1790 17.2%

Table 7.2: These are the errors from an ICW test of 10424 websites on the
29/10/2010. There is a count of errors and a percent value for each of MSS
256 and 1460.

81

‘No data response’ was when no HTTP data was received after the HTTP

request was sent, this is similar to a count of window size zero but may also

contain cases where another error occurred, though most of these will have

been an HTTP error. ‘TCP error’ was when the initial window estimate was

greater than the number of packets received, this is mostly cases of dropped

packets. ‘HTTP error’ occurred when an HTTP response code of 200 OK

was not received in the first data packet.

‘Not enough packets’ occurred when a FIN packet was received from the

server, indicating that there was no more data and the full congestion window

may not have been seen.

‘MSS error’ occurred when the segment size specified by the MSS op-

tion sent in the SYN packet was exceeded, this occurred in 4% of cases for

MSS 256 but not at all for 1460. This is likely to be because the common

Maximum Transmission Unit (MTU) for ethernet is 1500, thus the segment

size is usually 1460, without the TCP and IP headers, and is commonly not

exceeded. On the other hand MSS 256 is fairly small and in some cases may

be exceeded by operating systems that ignore the MSS option requirement.

Initially ‘Length error’ occurred when the packets where shorter than that

specified by the MSS setting of the test. After the test was run it was de-

cided to reclassify these as valid if the data packets were all larger or all

smaller than the transition value of 1095 segment size, and in line with the

MSS setting of the test. This reduced the MSS 1460 error measurement from

15% to 4% and the MSS 256 measurement from 3% to 0%. The now valid

packet streams were counted in the warts data file to give the additional ICW

counts.

82

‘Too many packets’ was when the measured window size was larger than

29 packets, and these same numbers are used for the ‘more’ category of the

results table. MSS 256 showed a larger rate of occurrence of this error, this

may have something to do with the pattern of allowing greater numbers of

smaller packets, though greater than 29 packets is really a somewhat extreme

case of this.

‘Early reordering’ occurred when the sequence number of the first data

packet received was greater than that of a subsequent data packet. This

requirement was later relaxed to allow out of order data packets at the be-

ginning of the trace.

For each MSS setting, the second largest count is the expected result [2]

4 or 3 for MSS 256 and 1460 respectively, and the largest is 2 packets, as

shown in Table 7.3. Looking at this result in terms of the results from the

controlled environment and knowing that windows is a popular operating

system, one might deduce that windows is producing a predominance of 2

results, assuming that other windows operating systems behave in the same

way as XP, and Linux is responsible for producing the second largest counts

correctly. It can also be noted MSS 256 has a larger count above ICW of 6

than MSS 1460.

Results published by others from 2004 [36] reported that 2% of servers had

results of 3 or 4 segments and 1% were larger. These results were reported

for testing based on an MSS of 256. We have seen a change in the former 3

or 4 segments group, increasing to about 20% for the appropriate MSS, and

the later group (ICW > 4 segments) at MSS 256 is largely unchanged.

83

init cwnd 256 MSS 1460 MSS
1 120 1.2% 333 3.2%
2 6200 59.5% 6177 59.3%
3 264 2.5% 1359 13.0%
4 1595 15.3% 581 5.6%
5 303 2.9% 39 0.4%
6 38 0.4% 73 0.7%
7 29 0.3% 9 0.1%
8 17 0.2% 9 0.1%
9 16 0.2% 5 0.0%
10 27 0.3% 7 0.1%
11 8 0.1% 3 0.0%
12 7 0.1% 3 0.0%
13 10 0.1% 4 0.0%
14 3 0.0% 2 0.0%
15 4 0.0% 0 0.0%
16 3 0.0% 2 0.0%
17 1 0.0% 2 0.0%
18 7 0.1% 0 0.0%
19 1 0.0% 2 0.0%
20 1 0.0% 1 0.0%
22 1 0.0% 3 0.0%
23 2 0.0% 7 0.1%
26 2 0.0% 1 0.0%
29 1 0.0% 1 0.0%
more 103 1.0% 26 0.2%
>6 243 - 87 -

Table 7.3: These are the results from an ICW test of 10424 websites on
the 29/10/2010. There is a count of websites with a given initial congestion
window size and a percent value, for each of MSS 256 and 1460.

84

init cwnd 256 MSS 1460 MSS
Microsoft-IIS/6.0 12 24
Microsoft-IIS/7.0 3 7
Apache-Coyote/1.1 3 6
Apache/2.2.3 (CentOS) 36 1
LiteSpeed 5 0
nginx 8 0
Apache/2.2.3 (Red Hat) 17 3
Squeegit 1 0
Apache/2.2.4 (Fedora) 2 0
Oracle Application Server 1 1
IBM HTTP Server 10 3
Sun-ONE-Web-Server/6.1 5 1
Zeus/4 3 5 1
PWS/1.6.2 1 0
Resin/3.1.8 0 1
Mongrel 2 0
Unix 14 8
Apache 83 16
no value 35 15
total 243 87

Table 7.4: These are the prolific servers from an ICW test of 10424 websites
on the 29/10/2010. There is a count of servers producing more than 6 ICW
packets, for each of MSS 256 and 1460.

Many servers specified Apache or no value at all, however there are enough

servers specified to give an indication of the population. Table 7.4 shows that

from MSS 256 to 1460 Red Hat and CentOS show a decrease and Microsoft-

IIS/6.0 shows an increase. The Microsoft trend is particularly pronounced

with Microsoft-IIS/6.0 making up about 30% of the MSS 1460 prolific group.

CentOS is next in frequency making up 15% of the MSS 256 prolific group.

85

7.7 Conclusion

‘TCP error’, ‘HTTP error’ and ‘early reordering’ are the main contributors to

errors in the MSS 256 group. For the MSS 1460 group ‘Not enough packets’

shows up as an important error contribution also. Both sets of errors are low

at 17%. The effects of congestion and perhaps multiple paths seem apparent,

and for the larger MSS group, lack of data in some cases.

These results suggest that about 75% of classified web servers adhere

to the older specification of ICW, some 20% have changed to the newer

standard, and some small 3% are prolific or have a large ICW. Some specific

operating systems may be of interest for further study of why some prolific

ICW traces occur, however better identification of specific operating system

versions is needed to do this.

86

Chapter 8

Conclusions

The implementation rates of a number of TCP congestion control related

algorithms have been measured. Window reduction due to loss has shown

a large transition to BIC or Cubic style behaviour since 2004. ECN has

shown a steady increase of successful implementation from a low level over

several months. This is a 16 fold increase since 2004. Interference by middle

boxes seems to have reduced to a level where ECN is not being switched off

to the extent that it was. ECN success has shown to be twice as likely in

machines that have interfaces with globally routable IPv6 addresses. These

machines are more likely to have more up to date ECN capable and ECN

activated operating systems. It is possible that the higher rate of ‘no ECN

echo’ for IPv4 is due to middleboxes which block IPv4 ECN echos and not

IPv6. In reaction to loss, Tahoe has remained steady as a percentage of

classified servers, Reno has reduced and New Reno has greatly increased.

This is consistent with new TCP protocols adopting New Reno conformant

behaviour. Nearly half of webservers successfully implement SACK as mea-

sured by the sender SACK test. Proper SACK implementation has increased

by 250% since 2004. Implementation of proper SACK in IPv6 addressable

87

webservers was higher than for IPv4 only. Though proper SACK was more

frequent for IPv4 than IPv6 for the same set of machines, semi SACK was

also more frequent. As for ECN the IPv6 addressable machines seem more

likely to have more modern proper SACK capable operating systems. An-

other possible cause of higher non proper SACK, SACK capable results, as

seen for IPv4 is middleboxes. This is because middleboxes sometimes fail

to properly translate SACK blocks. In the receiver SACK test case, high

success rates are seen, and increases are seen from previously measured lev-

els. We also see some cases of shifted SACK blocks which is an indicator of

possible middlebox interference, at a low level. When measuring over IPv6

webservers, success tends to be higher unless there are significant error rates.

ICW protocols have transitioned to 20% implementation of the new standard

of 3 or 4 packets rather than 2 packets.

There is a general trend of operating system designers and system ad-

ministrators to conform with these RFC directions, in the area of congestion

control, if slowly at times. This is good for the Internet because the perfor-

mance and stability experienced by the end user is improving. This situation

is also better for ISPs and other providers of Internet services.

Further work could involve monitoring TCP status on the Internet with

repeats of the same tests or analysis with tests upgraded to cater for change.

In particular this could include testing IPv6 webservers with an array of tests.

It would also be recommended to follow up the anomalies found in this re-

search, such as inappropriate CWR packets, shifted SACK blocks, larger than

expected ICWs, and to study the relationship of congestion window reduction

on loss to congestion measures. It would also be helpful to see an increase

88

in the detail about operating systems available in the server specification

provided by HTTP. This could lead to more detailed analysis of particular

operating system involvement in specific diagnosed TCP behaviours.

89

Bibliography

[1] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Win-

dow. RFC3390, 2002.

[2] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control.

RFC5681, 2009.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.

RFC2581, 1999.

[4] Mark Allman, Vern Paxson, and W. Richard Stevens. TCP congestion

control. RFC 2581, 1999.

[5] M. Arlitt and C. Williamson. An analysis of TCP reset behaviour on the

Internet. ACM SIGCOMM Computer Communication Review, 35:37–

44, 2005.

[6] J. Bellardo and S. Savage. Measuring packet reordering. Proceedings

of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages

97–105, 2002.

90

[7] R. Beverly. Passive and Active Network Measurement, chapter A Robust

Classifier for Passive TCP/IP Fingerprinting, pages 158–167. Springer-

Verlag, 2004.

[8] R. Braden. Requirements for Internet Hosts - Communication Layers.

RFC1122, 1989.

[9] R. Braden, D. Borman, and C. Partridge. Computing the Internet check-

sum. RFC1071, 1988.

[10] M. P. Brig. Projected Impacts of the Internet Protocol version 6

(IPv6) on the USN and USMC Enterprise. SPAWAR Systems Cen-

ter Charleston www.cav6tf.org/articles/ipv6impactreport.doc, pages 1–

25, 2002.

[11] D.D. Clark. Window and acknowledgement strategy in TCP. RFC813,

1982.

[12] D.Antoniades, M.Athanatos, A.Papadogiannakis, E.P.Markatos, and

C. Dovrolis. Available bandwidth measurement as simple as running

wget. Proceedings of Passive and Active Measurements (PAM), 2006.

[13] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifi-

cation. RFC2460, 1998.

[14] S.J. Eichler. Quantifying ECN implementation in the Internet. Comp514

report, 2009.

[15] K. Fall and S. Floyd. Comparisons of Tahoe, Reno, and Sack TCP.

Lawrence Berkeley National Laboratory, pages 1–14, 1995.

91

[16] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno,

and SACK TCP. ACM SIGCOMM Computer Communication Review,

26(3):5–21, 1996.

[17] S. Feyzabadi and J. Schonwalder. Identifying TCP congestion control

algorithms using active probing. PAM2010 conference, page 1, 2010.

[18] S.S. Feyzabadi. Identifying TCP congestion control mechanisms

using active probing. cnds.eecs.jacobs-university.de/courses/nds-

2009/feyzabadi-report.pdf, 2009.

[19] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control

in the Internet. IEEE/ACM Transactions on Networking, 7:458–472,

1999.

[20] S. Floyd and T. Henderson. The NewReno Modification to TCPs Fast

Recovery Algorithm. RFC2582, 1999.

[21] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to

TCP’s Fast Recovery Algorithm. RFC3782, pages 1–19, 2004.

[22] Sally Floyd. Congestion control principles, 1999.

[23] Rodrigo Fonseca, George Manning Porter, Randy H. Katz, Scott

Shenker, and Ion Stoica. IP Options are not an option. Technical Re-

port UCB/EECS-2005-24, EECS Department, University of California,

Berkeley, Dec 2005.

[24] ITU. Information technology - Open systems interconnection - Basic

reference model: The basic model. ITU-T Recommendation X.200, 1994.

92

[25] V. Jacobson. Congestion avoidance and control. Proceedings of SIG-

COMM 88, pages 1–25, 1988.

[26] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM Com-

puter Communication Review, 25:157 – 187, 1995.

[27] Elliott Karpilovsky, Alexandre Gerber, Dan Pei, Jennifer Rexford, and

Aman Shaikh. Quantifying the Extent of IPv6 Deployment. In Sue

Moon, Renata Teixeira, and Steve Uhlig, editors, Passive and Active

Network Measurement, volume 5448 of Lecture Notes in Computer Sci-

ence, pages 13–22. Springer Berlin / Heidelberg, 2009.

[28] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ramakrishnan. Adding

Explicit Congestion Notification (ECN) Capability to TCP’s SYN/ACK

Packets. RFC5562, 2009.

[29] S. Ladha, P.D. Amer, A.Caro, and J.R. Iyengar. On the prevalence and

evaluation of recent TCP enhancements. IEEE Globecom, 3:1301–1307,

2004.

[30] A. Langley. Probing the viability of TCP extensions. Technical report,

Google Inc., 2009.

[31] M. Luckie, K. Cho, and B. Owens. Inferring and debugging path MTU

discovery failures. In Proceedings of the 5th ACM SIGCOMM conference

on Internet Measurement, 2005.

[32] M. Luckie and B. Stasiewicz. Measuring path MTU discovery behaviour.

IMC’10, 2010.

93

[33] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap

Project Guide to Network Discovery and Security Scanning. Insecure,

USA, 2009.

[34] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective

acknowledgment options. RFC2018, 1996.

[35] A. Medina, M. Allman, and S. Floyd. Measuring interactions between

transport protocols and middleboxes. Proceedings of the 4th ACM SIG-

COMM conference on Internet measurement, pages 336–341, 2004.

[36] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of trans-

port protocols in the Internet. ACM SIGCOMM Computer Communi-

cation Review, 35:37–52, 2005.

[37] B. Moraru, F. Copaciu, G. Lazar, and V. Dobrota. Practical analysis of

TCP implementations: Tahoe, Reno NewReno. RoEduNet International

Conference, pages 125–130, 2003.

[38] J. Nagle. Congestion control in IP/TCP Internetworks. ACM SIG-

COMM Computer Communication Review, 14, 1984.

[39] J. Padhye and S. Floyd. Identifying the TCP behavior of web servers.

ACM SIGCOMM, pages 1–13, 2000.

[40] J. Padhye and S. Floyd. On inferring TCP behavior. Proceedings of the

2001 conference on Applications, technologies, architectures, and proto-

cols for computer communications, pages 287–298, 2001.

94

[41] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Mod-

eling TCP throughput: a simple model and its empirical validation.

Proceedings of SIGCOMM, pages 303–314, 1998.

[42] V. Paxson. Automated packet trace analysis of TCP implementations.

Proceedings of the ACM SIGCOMM ’97 conference on Applications,

technologies, architectures, and protocols for computer communication,

pages 167–179, 1997.

[43] V. Paxson and M. Allman. Computing TCP’s retransmission timer.

RFC2988, 2000.

[44] Jon Postel. Transmission control protocol. RFC793, 1981.

[45] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit

Congestion Notification (ECN). RFC3168, pages 1–63, 2001.

[46] I. Rhee and L. Xu. CUBIC: a new TCP-friendly high-speed TCP variant.

ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[47] J.P. Robinson, M. Kestnbaum, A. Neustadtl, and A. Alvarez. Mass Me-

dia Use and Social Life Among Internet Users. Social Science Computer

Review, 18:490–501, 2000.

[48] M. T. Rose and D. E. Cass. OSI transport services on top of the TCP.

Computer Networks and ISDN Systems, 12:159–173, 1986.

[49] N.K.G. Samaraweera. Non-congestion packet loss detection for TCP

error recovery using wireless links. Communications, IEE Proceedings,

146:222–230, 1999.

95

[50] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,

A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Za-

horjan. Detour: informed Internet routing and transport. Micro, IEEE,

19:50–59, 1999.

[51] S. Shakkottai, N. Brownlee, and K.C. Claffy. A Study of Burstiness in

TCP Flows. Passive and Active Network Measurement, Lecture Notes

in Computer Science, 3431:13–26, 2005.

[52] S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and K.C. Claffy.

The RTT distribution of TCP flows in the Internet and its impact on

TCP-based flow control. 2004.

[53] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit.

RFC2001, 1997.

[54] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control

(BIC) for fast long-distance networks. IEEE Infocom, pages 1–11, 2004.

96

