

Working Paper Series
ISSN 1177-777X

A Review of User Interface Adaption in

Current Semantic Web Browsers

Emmanuel Turner, Annika Hinze, Steve Jones

Working Paper: 02/2011
February 2011

© 2011 Emmanuel Turner, Annika Hinze, Steve Jones

Department of Computer Science

The University of Waikato

Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29198808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

A Review of User Interface Adaption in Current

Semantic Web Browsers

Emmanuel Turner, Annika Hinze, Steve Jones

University of Waikato, Hamilton, New Zealand

{eturner,hinze,stevej}@cs.waikato.ac.nz

8 February 2011

Abstract

The semantic web is an example of an innumerable corpus because it contains innumerable

subjects expressed using innumerable ontologies. This paper reviews current semantic web

browsers to see if they can adaptively show meaningful data presentations to users. The paper

also seeks to discover if current semantic web browsers provide a rich enough set of capabilities

for future user interface work to be built upon.

1 Introduction

This working paper examines the current (December 2010) state of the art in Semantic Web

Browsers. The purpose of this research is twofold. Firstly it will be established that there is

sufficient research and working examples of current semantic web browsers to build upon.

Secondly it argues that current semantic web-browsers do not select appropriate data

presentations for an innumerable corpus such as the semantic web. An innumerable corpus has

an innumerable number of subjects expressed in innumerable ontologies.

If these two points can be established then it shows that a gap in currently available browser

software exists around data presentation which can further research can explore and that there is

enough existing research in place that an exploration into an adaptive semantic web browser has

a good chance of success.

In answering the hypothesis the following questions are explored:

2

1. What is the current state of the art in semantic web browser capability?

2. How do current semantic web browsers allow for alternative data presentations?

Question 2 assumes that a good semantic web browser takes advantage of the innumerable

ontologies present on the semantic web by providing alternative data presentations to best suit

the subject and the user. The ideal semantic web browser for the innumerable corpus is one that

is able to adapt to meaningfully present data from any ontology and will also be able to adapt that

data presentation to suit an individual user.

The format of the paper outlines the case study methodology in Section 2, describes and

evaluates each browser in turn (Section 3) and then the browsers are discussed in comparison

with each other (Section 4). Finally, a summary is made and conclusions drawn about the

hypothesis (Section 5).

2 Methodology

The methodology followed is a case study that takes the form of a series of software reviews that

focus on gaining knowledge that may inform the hypothesis. Following good case study

methodology, firstly each semantic web browser is reviewed independently then the browsers

are compared and contrasted against each other. Finally conclusions are drawn from the data

gathered in terms of the hypothesis.

The semantic web browsers that are reviewed are: BrownSauce (Steer, 2003), Disco (Bizer &

Gauß, 2007), Exhibit (Huynh, Karger, & Miller, 2007), Marbles (Becker & Bizer, 2009),

ObjectViewer (Lerner & Self, 2004), Tabulator (Tabulator Team, 2008), and Zitgist DataViewer

(OpenLink Software, 2009). These browsers reflect both the current state of the art and/or have

some interesting properties that are worth investigating. There are many other semantic web

browsers but these are not reviewed because they were either unavailable to the researcher or

have no significant properties that, from a preliminary examination, are not already explored by

the semantic web browsers above. Notable semantic web browsers that were not reviewed are:

Longwell (MIT, 2005), /facet (Hildebrand, van Ossenbruggen, & Hardman, 2006), BrowseRDF

(Oren, Delbru, & Decker, 2006), Explorator (de Araújo & Schwabe, 2009), IsaViz (W3C, 2007),

OpenLink Data Explorer (OpenLink Software, 2006), Noadster (Rutledge, van Ossenbruggen, &

Hardman, 2005) and MindRaider (Dvorak, 2008).

3

Software was reviewed on a Windows Vista 32-bit computer, quad-core with 4GB of RAM. The

screen resolution is Full HD 1920x1080 at 32-bit colour. Where applicable and not otherwise

stated the default HTML web browser used is Firefox Portable version 3.6.8. The semantic web

browsers software reviewed was the current version as at August 2010.

Each case study begins with a description of the browser followed by an evaluation of the browser

against key criteria. (The criteria are outlined in the next section.)

The description briefly introduces the semantic web browser project to help contextualize the

later data. Then setup of where the browser logic actually runs is explained. Following this are

two screenshots of the browser showing real subjects. One screenshot will show Tim Berners-

Lee’s FOAF file (http://www.w3.org/People/Berners-Lee/card#i), the other screenshot shows a

subject that shows the data presentation capabilities of the semantic web browser. The second

screenshot will be either Berlin from GeoNames (http://sws.geonames.org/2950159/about.rdf) or

a test calendar file (http://www.w3.org/2002/12/cal/test/bus-hrs.rdf) .Next is a description of the

user interface. Following this is a description of which data presentations the browser allows and

how the data presentations are selected.

This evaluation section scores the semantic web browser against a set of criteria formed from the

hypothesis. The evaluation section of each case study is divided into two parts. First the

capabilities of each browser is analysed and secondly the data presentation handling is evaluated.

http://www.w3.org/People/Berners-Lee/card#i
http://sws.geonames.org/2950159/about.rdf
http://www.w3.org/2002/12/cal/test/bus-hrs.rdf

4

2.1 Browser Capability Criteria

This set of criteria scores each browser for its capabilities. This evaluation seeks to establish

whether current semantic web browsers provide a mature enough platform upon which to build

further research upon. These criteria are scored using a range of --, -, 0, + and ++. A total score is

given for each semantic web browser. Higher scores (more +s) are considered better.

Eases of Use: A candidate scores well for potential ease of use and setup. The highest scores go to

web server hosted semantic web browsers (++) followed by local applications and HTML web

browser plugins (+). Candidates that must install a local server score the lowest (--). This criterion

should be seen as having a lesser importance than the others.

 Supported Data Sources: A candidate scores maximum marks for supporting multiple unbounded

sources that can be supplied by the user a run-time (++). Fewer marks are awarded for only

displaying data from a single user provided data source at a time (+). The lowest marks are

awarded to a candidate that does not allow users to specify the data source, having the data

source hard coded at author-time (--).

Data Formats: Candidates score well for supporting most of the common document data formats

used to exchange semantic web data (++). Candidates score poorly for supporting only a single

document standard data format (-). A browser would score -- if only proprietary data formats are

supported.

5

2.2 Data Presentation Criteria

Data presentation criteria evaluate each of the case study subjects on how well they meet criteria

relating to the second hypothesis. These criteria are a quality judgment on how semantic web

browsers handle alternative data presentations in response to different users and different

ontologies. In order to solve the problems of dealing with an innumerable ontology, a semantic

web browser would be in the highest in each of the data presentation criteria.

Ontology Adaption: This criterion gauges how a particular semantic web browser adjusts the data

presentation when displaying subjects from different onotlogies. The allowable values, in worst to

best order, are:

1. None

The candidate does not change the display based on different ontologies.

2. Fixed

The candidate has a fixed number of alternative data presentations that match particular

ontologies and these are hardcoded at compile time.

3. Extensible

The candidate has a template system for extending the alternative data presentations.

Templates may be added after compile time. The skills set for producing templates are

within reach of a power user.

4. Innumerable

The candidate will adaptively produce a data presentation for every different ontology

encountered. Each data presentation will aim to be more meaningful for an average user

than a generic static display.

User Adaption: This criterion gauges how a particular semantic web browser adjusts the data

presentation based upon its knowledge of the current user. The allowable values, in worst to best

order, are:

1. None

The candidate makes no attempt to provide data presentations that are more meaningful

to the individual user.

6

2. Fixed

The candidate will change the data presentation based upon placing the user into one of a

fixed number of groups that are specified at compile time (e.g. librarian, enrolment

officer, genealogist).

3. Open

The candidate changes the data presentation to suit an individual user based upon a user

model. There are no fixed categories of users – the user model allows each user to be

treated uniquely.

User Affordance: This criterion gauges the user interface affordances provided by a particular

semantic web browser to change to an alternative data presentation. The allowable values, in

worst to best order, are:

1. None

The candidate has does not provide alternative data presentations so no user affordance

is provided, or indeed, is necessary. A candidate that is placed here will have no ontology

adaption and no user adaption.

2. Manual

The candidate provides an affordance for users to change to an alternative data

presentation but this must be deliberately operated by the user.

3. Automatic

The candidate selects the best data presentation and automatically uses that one. No user

interface affordance is necessary.

3 Results

The Results section examines each of the featured semantic web-browsers in turn to examine

what they offer the user. This section focuses on exploring the unique attributes of each browser

in isolation. Later sections will compare and contrast the features of each semantic web browser

and will examine each against the hypothesis. The purpose of this section is to provide the raw

data that the later Findings and Conclusions sections will draw upon.

7

3.1 BrownSauce

BrownSauce (Steer, 2003) is a web browser based system for viewing RDF documents. The

homepage for the project is at: http://brownsauce.sourceforge.net. The current version as at

August 2010 is 0.1.2. The name is a reference to the old HotSauce hypertext program.

BrownSauce is written in java and runs a local web server that is then accessed via a web-

browser. All code is executed in the web server and the browser is only used to display the

resulting HTML/CSS pages.

Figure 3.1: BrownSauce screen shot showing data for Tim Berners-Lee. (Author’s own)

http://brownsauce.sourceforge.net/

8

Figure 3.2: BrownSauce screen shot showing Berlin from GeoNames (http://sws.geonames.org/2950159/about.rdf).

BrownSauce starts with a plain web-form where a semantic web URI can be submitted. The

display that shows a semantic web document has the current URI at the top followed by a banner

showing the label and data-types of the current subject. To the right is a panel containing links to

known subjects that relate to the current subject. The main area (to the left) displays the subject’s

data.

The current subject’s data is displayed as an indented text list of RDF predicate-object pairs. Much

of the data is hyperlinked where-ever possible and the hyperlinks use plain-text labels rather than

URIs when labels are available. No images are shown. No other data presentations are available.

It is possible for the person running the web server to edit BrownSauce’s CSS file to change the

presentation – though such changes are globally applied to all semantic web subjects

subsequently viewed via BrownSauce. Following this is a commentary on the searching and

filtering facilities provided by the browser.

Table 3.1: BrownSauce summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

9

BrownSauce Local Web

Server

One at a time RDF (Any) Indented text

list

Hard-coded at

compile-time

3.1.1 BrownSauce Evaluation

The browser capabilities of BrownSauce do not score highly when evaluated against the criteria

established in the methodology. BrownSauce requires the installation of a local web server which

does create potential ease of installation and use problems (--). BrownSauce displays data from

only single semantic web document at a time and has no ability to aggregate data from multiple

sources. The single data source can be specified at run time by a user (+). BrownSauce does have

good support for RDF data formats (++). Brownsauce scores a total of + (1).

Brownsauce does not score well in the Data Presentation Criteria. There is no facility to adapt to

either the ontology of the current subject or to the user. Since no data presentation alternatives

are available there is no need for a user affordance to change data presentations.

10

3.2 Disco

The Disco Hyperdata Browser (Bizer & Gauß, 2007) is a simple browser for navigating the

unbounded Semantic Web. Disco will take a Semantic Web URI and load the data found there. It

will provide links to data linked within the Semantic Web document. Disco is described online at

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/. The Disco version reviewed is current as at

August 2010. A live version of the Disco browser is available here: http://www4.wiwiss.fu-

berlin.de/rdf_browser/.

Disco is a web-server hosted application that can be accessed from any modern web-browser. It is

written in Java. No code is run on the local web-browser client so it requires no installation of

special software or changes to browser configuration.

Figure 3.3: Edited screenshot of Disco browser showing Tim Berners-Lee’s FOAF file. (Edits: Cuts made show relevant
features) (Author’s own).

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
http://www4.wiwiss.fu-berlin.de/rdf_browser/
http://www4.wiwiss.fu-berlin.de/rdf_browser/

11

Figure 3.4: Edited screenshot of Disco browser showing Berlin from GeoNames (http://sws.geonames.org/2950159/).
(Edits: Cut made show relevant features). (Author’s own)

Disco displays data in a property value table. The third column of the property-value table gives a

reference to the provenance (data source) of the triplet. RDF documents are added to the sources

section as they are explored during a browsing session. Disco is able to incorporate data from

multiple RDF documents at once. Disco can read most valid RDF formatted documents that

conform to the Linked Data specification.

Disco will display properties as plain text, links or images as applicable. There are no other data

presentations so therefore there is no affordance provided to allow users to change the

presentation. The Disco homepage explicitly states that Disco is a lower-level semantic web

browser suitable debugging and demonstrating linked data.

Table 3.2: Disco summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

Disco Web Server Multiple

Unbounded

RDF (Any) Predicate-

object table

Hard-coded at

compile-time

12

3.2.1 Disco Evaluation

Disco scores well against the browser capability criteria. Disco runs locally in a web browser so no

software installation is needed (++). Disco can aggregate the data from multiple sources into a

single presentation and the data sources can be specified at runtime by the user (++). Disco also

supports a wide variety of RDF file formats (++). Disco scores a total of ++++++ (6).

Disco scores poorly against the data presentation criteria. Disco does not change the data

presentation dependent upon the ontology of the current subject. Disco does not use knowledge

of the current user to adapt the data presentation. Disco has no alternative data presentations so

there is no affordance to switch to an alternative.

13

3.3 Exhibit

Exhibit (Huynh et al., 2007) is a framework for creating interactive web pages based on semantic

web documents. Exhibit is part of the Simile project and is available online at: http://www.simile-

widgets.org/exhibit/. The Exhibit version reviewed is 2.2.0.

Exhibit is deployed in any modern HTML browser and uses standard technology (HTML, CSS and

JavaScript) to work. Exhibit does not require the installation of special client-side software or

browser extensions. Exhibit does not run any code on the web-server; all code is contained in

client-side run JavaScript files that are downloaded from the web-server.

Figure 3.5: Exhibit showing keyword search, facets, timeline and map. (Screenshot of: http://www.simile-
widgets.org/exhibit/examples/presidents/presidents.html, taken 26 Aug 2010)

Figure 3.6: Exhibit showing a timeline overview (left) and a detail view of a person (right). (Author's own)

http://www.simile-widgets.org/exhibit/
http://www.simile-widgets.org/exhibit/

14

An Exhibit based browser is a custom written piece of HTML code that uses extended XML

attributes to instruct the Exhibit framework where to display widgets and the meanings of

interface elements. The Exhibit framework allows easy creation of an interface to data that

affords ways for users to search and browse the JSON document in ways useful to them.

Exhibit allows the browsing of a single data file that is available in JSON format. It does not

natively aggregate data from many sources. JSON (JavaScript Object Notation) is a lightweight text

file data format that is meant to be readable and writeable by both humans and machines. JSON

can be used as an alternative to RDF for semantic web data. (For more information on JSON, see

http://json.org)

Exhibit display widgets (called “views”) can display data in List, Timeline, Graph, Map, Tabular and

Custom HTML forms. The map view allows data to be overlaid on the map with a variety of

different graphics to represent different data. Map data can also become hotspots that either

display a bubble of HTML information on click, or go to a detail page. Timelines are scrollable and

show data items as duration bars that are clickable to access details. Graphs also allow clickable

detail hotspots in their plots.

An Exhibit based browser is actually a custom written database front-end application that uses

semantic web technologies as an underlying data-store. All of Exhibit’s display widgets are set at

author-time, the data-source is set at author-time and facet’s are set are author-time. While

Exhibit is not strictly a generic semantic web browser it is included because it does show the

possibilities for semantic web technology.

Table 3.3: Exhibit summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

Exhibit HTML Web

Browser

Single author-

time specified

JSON only List, Timeline,

Map, Graph,

Table,

Custom HTML

form

HTML Author-

time

http://json.org/

15

3.3.1 Exhibit Evaluation

Exhibit does not score well in the browser capability criteria. An Exhibit browser is delivered by a

web server and runs within a web browser. No special server-side support for scripting languages

or databases is needed because it is driven totally by HTML, CSS and JavaScript in the local HTML

web browser (++). Exhibit supports only a single data source that is hard coded at the author time;

the time when the Exhibit-based site is created (--). Exhibit supports only the JSON data format (-).

Exhibit scores a total of – (-1).

Exhibit does not score highly against the data presentation criteria. Exhibit has support for a fixed

set of different data presentations based on the ontology of the current semantic web subject.

However, the ontology based data presentations provided are hard coded into Exhibit at author

time. Exhibit has does not adjust the data presentation based on knowledge on the current user.

Affordances are generally provided in the user interface for manually switching between

alternative data presentations.

16

3.4 Marbles

Marbles (Becker & Bizer, 2009) is a linked data semantic web browser that can aggregate data

from many sources into a single display. The marbles homepage is available at:

http://marbles.sourceforge.net/. The version reviewed is current as at August 2010.

Marbles is a web-server based application that formats semantic web data for consumption with

a modern HTML web browser. Marbles is written in Java.

Marbles produces data presentations by transforming data through Fresnel Lenses and Formats.

Fresnel (http://www.w3.org/2005/04/fresnel-info/) is an effort to provide a standardized

language for representing the presentation of semantic web data. Fresnel Lenses specify the

ordering of predicate-object pairs and Fresnel Formats specify how semantic web resources are

visually presented.

Figure 3.7: Marbles screenshot showing Tim Berners-Lee’s FOAF file. (Author's own)

http://marbles.sourceforge.net/
http://www.w3.org/2005/04/fresnel-info/

17

Figure 3.8: Marbles screen shot showing Berlin from GeoNames (http://sws.geonames.org/2950159/). (Author's
own)

The top row of the Marbles display provides a text input box to submit a semantic web URI.

Underneath that, the label for the current semantic web subject is displayed. Following this is a

predicate-object table. The coloured circles to the right of the value labels relate to the source

document of that predicate-object pair. Hovering the mouse cursor over a coloured circle with

display the source’s URI. The list of source documents, and their retrieval status, is listed at the

end of the HTML page.

Marbles displays both text and images. Marbles automatically follows references to linked data in

order to complete the text in the display. Both attributes and values are hyperlinked where

applicable. Marbles will ensure semantic web data links redirect back to display in the Marbles

browser, while links to HTML files are left to display in HTML mode.

The impact of the use of Fresnel was not apparent in the version reviewed. The display appeared

generic and uncustomised. There does not appear to be the facility for multiple presentations.

Marbles does have switchable data presentations for full versions, photos only or mobile versions.

The view is selected depending on the URI used to access the Marbles browser. No user interface

affordances are given to switch the view.

18

Table 3.4: Marbles summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

Marbles Web Server Multiple

Unbounded

RDF (Any) Predicate-

object table

Fresnel.

3.4.1 Marbles Evaluation

Marbles scores very highly against the browser capability criteria. Marbles runs on a web server

with all resources delivered to the local web browser as standard HTML/CSS/JavaScript (++).

Marbles allows the user to specify a data source URL at run time and will aggregate the data from

multiple data sources into a single data presentation (++). Marbles also has good support for RDF

data formats (++).Marbles scores a total of ++++++ (6).

Figure 3.9: Marbles alternative data presentations (from left to right) Full view, Summary view, Photo view. (Author’s
own)

Marbles scores poorly against the data presentation criteria. Marbles does not change the data

presentation in response to subjects expressed in different ontologies. Marbles has a selector to

change the display type based on a user preference, but not a user type. The display types are full,

summary and photo. The selection of data presentation is done manually by the user.

19

3.5 ObjectViewer

ObjectViewer (Lerner & Self, 2004) is a linked data browser that is capable of browsing the

unbounded semantic web linked data cloud. ObjectViewer takes a given URI and loads the data

contained there. ObjectViewer is available online from:

http://projects.semwebcentral.org/projects/objectviewer/. The current version is 1.1.

ObjectViewer is a Java Swing application that runs all code on the desktop machine. It uses the

Jena framework (http://jena.sourceforge.net/) to read and parse RDF data.

Figure 3.10: ObjectViewer window showing address bar, graph viewing area, sources list and instances list. (Author’s
own)

http://projects.semwebcentral.org/projects/objectviewer/
http://jena.sourceforge.net/

20

Figure 3.11: Object Viewer screen shot showing Berlin from GeoNames (http://sws.geonames.org/2950159/).
(Author's own)

The ObjectViewer window has an address bar at the top where the user can input a linked data

URI. The view button will clear the current graph and load the new document into it. The Merge

button will load a new document and merge its contents into current graph. To the right of the

window is a list of source RDF documents and a list of current instances discovered. The largest

pane of the ObjectViewer window displays a graph starting from the current RDF node.

While ObjectViewer does work, there are many facilities missing that are common in standard

HTML browsers that may also be of use in a semantic web browser. The ObjectViewer browser

includes no status indicators to show that data is being transferred, no history facilities (though

the Sources pane is of some utility) and no Back button. There is no bookmarking and no

homepage facility. Printing does not exist and there is no facility to open a new window or tab for

simultaneous browsing of multiple semantic web subjects.

ObjectViewer only displays RDF data in a graph form. The graph is interactive, with yellow labels

acting as links to other graphs. The graph display works well for smaller data sets, but quickly

becomes very large to scroll around when the RDF graph becomes more complex.

21

Table 3.5: ObjectViewer summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

ObjectViewer Desktop Java Multiple

Unbounded

RDF (Any

supported by

Jena)

Graph -

interactive

Hard-coded at

compile-time

3.5.1 ObjectViewer Evaluation

ObjectViewer scores highly against the browser capability criteria. The ObjectViewer semantic

web browser runs as a desktop java application so it is cross platform but it is not the easiest

software to install (+). ObjectViewer can aggregate data from multiple sources that are specified

at run time (++). ObjectViewer also has good support for RDF data formats via its use of the Jena

libraries (++). ObjectViewer scores +++++ (5).

ObjectViewer scores very poorly against the data presentation criteria. ObjectViewer does not

change the data presentation in response to subjects expressed in different ontologies. There is

also no change in the data presentation in response to user types. Since there are no alternative

data presentation then there is also no need for a user interface affordance to switch between

them.

22

3.6 The Tabulator Extension

Tabulator (Tabulator Team, 2008) is a high level browser for browsing the linked data cloud.

When it comes across Semantic Web Data, Tabulator will format and display the data found

there. The Tabulator homepage is: http://dig.csail.mit.edu/2007/tab/. It appears that in recent

versions, the Tabulator Extension has become known as simply The Data Browser Extension. The

version tested is 0.8.7 running in Firefox Portable 3.0.19 because Tabulator is not compatible with

more recent browser versions.

Tabulator is implemented as a browser extension for Firefox browsers. It is therefore written in

JavaScript, HTML, CSS and XUL. As a browser extension it runs completely on the local desktop

and does not require server support. It works by registering itself as a handler for Semantic Web

documents where the Tabulator extension takes over displaying semantic web documents.

The Tabulator display has the current semantic web subject at the top, with some display toggle

options next to the subject header. Following this, the default display of data is to present a

predicate-object table. Values that are links are either displayed as label if the label information is

available or as a URI. Linked values are expandable in place using a small triangle icon to the left

of the value’s text. Between this triangle and the value’s text label is a round coloured icon.

Hovering the mouse cursor over the circle shaped icon will display the data’s source URI with

information on whether or not that data has been fetched. The colour of the circle represents the

fetch status; Green for successfully fetched, blue for not yet fetched, red for a failed fetch and

yellow for a fetch in progress. Data available from multiple sources will have multiple source

icons, one per source. Clicking a source icon will (re)fetch the data. This means that Tabulator is

able to aggregate the data from multiple sources into a single display.

http://dig.csail.mit.edu/2007/tab/

23

Figure 3.12: Tabulator Extension showing a Friend Of A Friend (FOAF) profile in Friends view. (Author's own)

Figure 3.13: Editted Tabulator Extension screen shot showing Berlin from GeoNames
(http://sws.geonames.org/2950159/about.rdf). (Edit: cut to show interesting data). (Author's own)

To the right of a subject’s label are the display toggle items. Clicking these will either display

additional information or show a more tailored view of the subject. Tailored data presentation

icons are made available when Tabulator recognizes the data-type of the semantic web subject.

The view will always default to the predicate-object table and the user must select the tailored

view they want. The image above shows an icon for selecting a specialized data presentation

because the current semantic web subject contains FOAF data.

24

Tabulator currently has support for table, map, friends, calendar and web page data

presentations. Tabulator can also show the underlying data as RDF/N3, RDF/XML. Further view-

types must be coded directly into the Tabulator extension.

Table 3.6: Tabulator summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

Tabulator Firefox Web

browser

extension

Multiple

Unbounded

RDF (Any) Table,

Calendar,

Map, Friends.

RDF/N3,

RDF/XML,

HTML

Run-time

manually by

user.

Available

presentations

are decided

by data-type.

3.6.1 Tabulator Evaluation

Tabulator scores highly against the browser capability criteria. Tabulator runs as an extension in

the Firefox web browser and all intelligence driving semantic web browsing is contained locally

within the JavaScript of the extension (+). Tabulator is able to take run-time data sources URL

provided by the user and aggregate these into a data presentation (++). Tabulator has good

support for RDF data formats (++). Tabulator scores a total of +++++ (5).

Tabulator scores just above par against the data presentation criteria. Tabulator provides a fixed

number of data presentations that cater for subjects expressed in key known ontologies.

Tabulator does not change the data presentation based on knowledge of the user. Switching

between alternative data presentations is done manually.

25

3.7 Zitgist DataViewer

The Zitgist DataViewer (OpenLink Software, 2009) is a high-level semantic web browser that can

amalgamate data from many sources to display information from a single semantic web

document. The DataViewer homepage is at:

http://zitgist.com/products/dataviewer/dataviewer.html. The version reviewed is current as at

August 2010.

DataViewer is a web server based product that renders HTML/CSS and JavaScript suitable for

display in a reasonably modern HTML web browser. DataViewer uses a templating system that

selects a presentation based on data-type. DataViewer will follow linked data hyperlinks in order

to complete all text needed to render the web page.

Figure 3.14: Zitgist DataViewer showing a Friend Of A Friend (FOAF) file. (Author's own)

http://zitgist.com/products/dataviewer/dataviewer.html

26

Figure 3.15: Zitgist DataViewer screen shot of a test calendar file (http://www.w3.org/2002/12/cal/test/bus-hrs.rdf).
The calendar ontology is not recognized so a generic data presentation is shown. (Author's own)

At the top-centre of the DataViewer display is a text input box for submitting a new semantic web

URI. On the right hand edge of the page is an anchor icon that activates the Navigator panel. The

Navigator panel allows the user to select a subject type, then a specific instance of that subject

from the current document. The “Bullets” tab below the anchor tab opens the Selector panel

which allows the user to manually show or hide particular subject types and particular attributes.

Each subject contained within the semantic web document is displayed in a tabbed form. The top

of the tab specifies the subject type and the label (where applicable) of the subject. To the right of

the tab are controls to open a list of linked subjects, focus the browser on just this subject to the

exclusion of others, to scroll to the top of the page and to show/hide the contents of the tab.

Templates are then used to display subjects according to their data type. DataViewer currently

includes support for special templates covering the following ontologies: Music Ontology,

Description of a Project, Friend Of A Friend (FOAF), Geonames and Semantically-Interlinked

27

Online Communities (SIOC). All other data is rendered using a default predicate-object table. For

example, in the above screenshot, Zitgist DataViewer renders the start of the FOAF data in a

business card style format and the location information in a Google map widget.

Table 3.7: Zitgist DataViewer summary.

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

Zitgist

DataViewer

Web Server Multiple

Unbounded

RDF (Any) Templates,

Predicate-

object table

Automatically

selected by

data-type.

3.7.1 Evaluation of Zitgist DataViewer

The Zitgist DataViewer semantic web browser scores highly against the browser capability criteria.

Zitgist DataViewer runs on a web server and the user accesses it via a standard HTML web

browser (++). Zitgist DataViewer is able to aggregate data from multiple sources that are supplied

at runtime (++). It also has good support for RDF data formats (++). Zitgist DataViewer scores a

total of ++++++ (6).

Zitgist DataViewer scores the best against the data presentation criteria. Zitgist is able to provide

alternative data presentation dependent upon the ontology of the current subject. The set of data

presentation alternatives is extensible via a template system. Zitgist does not change the data

presentation based on knowledge of a user. ZitGist DataViewer automatically switches to the

most appropriate data presentation alternative and therefore does not require manual

intervention by the user.

4 Findings

The Findings section compares and contrasts information from the Results section into a form

that makes it easier to draw conclusions from. Firstly a table of the key attributes is presented,

followed by evaluation tables and then further commentary is made.

Table 4.1: Comparison of Semantic Web Browsers

Browser Runs Data Sources Data Formats

Data

Presentations

Presentation

selection

28

BrownSauce Local Web

Server

One at a time RDF (Any) Indented text

list

Hard-coded at

compile-time

Disco Web Server Multiple

Unbounded

RDF (Any) Predicate-

object table

Hard-coded at

compile-time

Exhibit HTML Web

Browser

Single author-

time specified

JSON only List, Timeline,

Map, Graph,

Table, Custom

HTML form

HTML Author-

time

Marbles Web Server Multiple

Unbounded

RDF (Any) Predicate-

object table

Fresnel.

ObjectViewer Desktop Java Multiple

Unbounded

RDF (Any

supported by

Jena)

Graph -

interactive

Hard-coded at

compile-time

Tabulator Firefox Web

browser

extension

Multiple

Unbounded

RDF (Any) Table,

Calendar,

Map, Friends.

RDF/N3,

RDF/XML,

HTML

Run-time

manually by

user.

Available

presentations

are decided

by data-type.

Zitgist

DataViewer

Web Server Multiple

Unbounded

RDF (Any) Templates,

Predicate-

object table

Automatically

selected by

data-type.

Exhibit, Marbles and Tabulator do allow filtering and ordering of which attribute value pairs are

displayed – Exhibit at author-time of the configuration HTML file, Marbles via Fresnel and

Tabulator by the use of different data presentations. Zitgist DataViewer allows the user to

manually filter which attributes are displayed. None of the other reviewed semantic web

browsers provides the facility to filter or order the display of predicate-object pairs. The default

ordering of the reviewed browsers was to either present data alphabetically, or in the order

specified in the source RDF document.

29

4.1 Evaluation

The following table merges the evaluations of the reviewed semantic web browsers into a single

place for ease of comparison. Each of the two criteria groups are presented separately.

4.1.1 Browser Capability criteria

Table 4.2: Evaluation of semantic web browsers against the Browser Capability criteria

Browser

Browser Capability Criteria

Total
Ease of Use

Supported Data

Sources

Supported Data

Formats

BrownSauce -- + ++ + (1)

Disco ++ ++ ++ ++++++ (6)

Exhibit ++ -- - - (-1)

Marbles ++ ++ ++ ++++++ (6)

ObjectViewer + ++ ++ +++++ (5)

Tabulator + ++ ++ +++++ (5)

Zitgist DataViewer ++ ++ ++ ++++++ (6)

The semantic web browsers scoring the highest (6) against the browser capability criteria were

Disco, Marbles and Zitgist DataViewer. These three semantic web browsers we easy to use

because they ran in a standard HTML web browser. They all supported multiple arbitrary data

sources supplied at runtime and the support for semantic web standard data formats was good.

Tabulator and ObjectViewer scored 5. Both Tabulator and ObjectViewer also supported multiple

arbitrary data sources supplied at runtime and had good support for standard semantic web data

formats. However, both Tabulator and ObjectViewer required client-side installation of software.

Brownsauce scored 1 because it supported only a single data source at a time and required the

client-side installation of server software. Exhibit scored the lowest (-1) because it supported only

a single data source hardcoded at author time and only supported the JSON file format. However,

Exhibit did score highly for ease of use since it runs in a standard HTML web browser.

30

4.1.2 Data Presentation criteria

Table 4.3: Comparison of semantic web browsers against the Data Presentation criteria. An 'x' marks where the
browser places.

 Ontology Adaptation User Adaption UI Affordance

N
o

n
e

Fi
xe

d

Ex
te

n
si

b
le

In
n

u
m

er
ab

le

N
o

n
e

Fi
xe

d

O
p

en

N
o

n
e

M
an

u
al

A
u

to
m

at
ic

Brownsauce x x x

Disco x x x

Exhibit x x x

Marbles x x *

.).

 x

Openviewer x x x

Tabulator x x x

Zitgist

Dataviewer

 x x x

* Marbles does have a fixed selector for choosing between full, summary and photo views – but this is not considered adapting to

different fixed user groups.

None of the semantic web browsers did well against the data presentation criteria. None of the

candidates adapted to innumerable ontologies. No browsers took into account the individual user

– although Marbles potentially could have provided manual facilities to change between fixed

user types. Only Zitgist Dataviewer automatically changed to an alternative data presentation.

5 Summary and Conclusions

In this section significant findings are summarised by evaluating against the questions established

in the Introduction section. Then each hypothesis is directly answered in turn to provide

conclusions to the research. This is followed by additional discoveries, extra to those that directly

inform the hypotheses.

31

What is the current state of the art in semantic web browser capability?

Current semantic web browsers have demonstrated workable solutions that transfer (via HTTP)

semantic web documents and parse them into data for later display. Five out of seven of the

reviewed semantic web browsers scored highly against the browser capability criteria. This

suggests that there is enough existing work in underlying infrastructure so that this research can

focus on presentation issues only.

There is a wide interpretation of ideas on where the actual code running the semantic web-

browser should reside. The server-based solutions tended to use traditional HTML web browsers

as thin clients to display semantic web renderings. Of the client-side solutions, Tabulator runs as

an extension within the FireFox HTML web browser. ObjectViewer uses a standalone Java Swing

application. While each deployment method has advantages and disadvantages that may better

suit them for particular circumstances, this paper has taken the assumption that a system that

provides the easiest setup and lowest maintenance is better.

How do current semantic web browsers display data?

BrownSauce displays data in an indented text list. Disco displays data in a predicate-object table.

Exhibit displays data in timeline, map, graph, tabular and custom HTML forms. ObjectViewer

displays data as a graph. Tabulator displays data in many different data presentations: predicate-

object table, map, calendar and friends. Tabulator can also display the underlying RDF or HTML.

There is limited facility for run-time filtering and ordering in the reviewed semantic web browsers.

Fresnel does provide a vocabulary for filtering and ordering, but Fresnel is not yet widely

implemented. Zitgist DataViewer uses a template system that filters and orders data. Zitgist

DataViewer provides the Selector panel that allows the user to manually filter attributes at run-

time. However, subjects with many predicate-object pairs will have long displays which make it

difficult to locate specific data of interest. Also, ordering of predicate-objects could potentially put

the most important information first. This is a gap in the current body of work that this research

can explore.

Do current semantic web browsers adjust the data presentation based on ontology?

Over half of the current semantic web browsers adjusted the data presentation based on the

ontology of the current subject. In all cases this was a single mapping of data presentation to a

fixed set of ontologies. In two cases the set of data presentations could be extended via

32

templates. No current semantic web browser was able to adjust the data presentation for an

innumerable number of ontologies.

Do current semantic web browsers adjust the data presentation based on the user?

No current semantic web browser takes the individual user into consideration when building a

data presentation.

What user interface affordances are available to change to an alternative data presentation?

For the semantic web browsers that had alternative data presentations most provided a user

interface affordance that had to be manually operated to change to the alternative data

presentation. Only one of the current semantic web browsers automatically used an alternative

data presentation automatically and without user intervention.

33

5.1 Summary of Conclusions

1. Many of the semantic web browsers reviewed meet the browser capability criteria which

indicates that there is a strong technology base that further research can be built upon.

2. The reviewed semantic web browsers reviewed performed poorly against the data

presentation criteria which indicates a research gap that can be further explored.

a. Adaption of the data presentation based on ontology was limited to a fixed set or

extensible via templates and did not provide facilities for adapting to the innumerable

ontologies found on the semantic web. Further research could explore adaption to

innumerable ontologies.

b. No semantic web browser took the individual user’s data presentation needs into

consideration. There is an opportunity for new research into selecting presentations

based on user needs, rather than just data type.

c. Only one semantic web browser automatically attempted to select the best data

presentation from the available alternatives. Further research could explore the

automatic display of the best available data presentation.

Additional Conclusions

During the course of the research, additional things were discovered that while not directly

related to the hypotheses of the research are of potential use for further research.

 There is room for significant improvement in the variety of data presentations possible.

 A semantic web browser could be deployed server-side with an HTML web-browser client,

desktop application or hosted in an HTML web browser.

 There is an opportunity for new research into filtering and ordering presentations of

predicate-objects in semantic web data - perhaps built upon the Fresnel Lenses language.

 Current view types are hard-coded by humans. There exists a new research opportunity in

exploring computer generation of presentations – perhaps in Fresnel Formats language.

Currently semantic web browsers do provide a suitable and mature enough foundation for

building further research upon. It is clear that the current state of the art in semantic web

browsers do not adapt to present data from an innumerable corpus in meaningful ways.

Therefore a gap exists in the current research that that future research can build upon.

34

References

de Araújo, S. F., & Schwabe, D. (2009). Explorator: a tool for exploring RDF data through direct

manipulation. In Proceedings of the WWW2009 Workshop on Linked Data on the Web

(LDOW2009). Madrid, Spain. Retrieved from http://ceur-ws.org/Vol-

538/ldow2009_paper2.pdf

Becker, C., & Bizer, C. (2009). Marbles linked data browser. Marbles. Retrieved November 23,

2010, from http://marbles.sourceforge.net/

Bizer, C., & Gauß, T. (2007, January 15). Disco - Hyperdata Browser. Retrieved November 23,

2010, from http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/

Dvorak, M. (2008). MindRaider - Semantic Web Outliner. Retrieved November 23, 2010, from

http://mindraider.sourceforge.net

Hildebrand, M., van Ossenbruggen, J., & Hardman, L. (2006). /facet: A browser for heterogeneous

semantic web repositories. The Semantic Web-ISWC 2006, Lecture Notes in Computer

Science, 4273, 272–285. doi:10.1007/11926078_20

Huynh, D. F., Karger, D. R., & Miller, R. C. (2007). Exhibit: lightweight structured data publishing. In

Proceedings of the 16th international conference on World Wide Web - WWW '07 (pp.

737–746). Banff, Alberta, Canada: ACM. doi:10.1145/1242572.1242672

Lerner, J., & Self, T. (2004). Object Viewer. SemWebCentral: Object Viewer: Project Info. Retrieved

November 23, 2010, from http://projects.semwebcentral.org/projects/objectviewer/

MIT. (2005). SIMILIE: Longwell RDF Browser. Retrieved November 23, 2010, from

http://simile.mit.edu/wiki/Longwell

OpenLink Software. (2006). OpenLink Data Explorer. Retrieved November 23, 2010, from

http://linkeddata.uriburner.com/ode/

OpenLink Software. (2009). Zitgist DataViewer. Retrieved November 23, 2010, from

http://zitgist.com/products/dataviewer/dataviewer.html

35

Oren, E., Delbru, R., & Decker, S. (2006). Extending Faceted Navigation for RDF Data. (I. Cruz, S.

Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, et al., Eds.)The Semantic

Web - ISWC 2006, Lecture Notes in Computer Science, 4273, 559-572.

doi:10.1007/11926078_40

Rutledge, L., van Ossenbruggen, J., & Hardman, L. (2005). Making RDF presentable: integrated

global and local semantic Web browsing. In Proceedings of the 14th international

conference on World Wide Web (pp. 199–206). Presented at the WWW05, Chiba, Japan:

ACM. doi:10.1145/1060745.1060777

Steer, D. (2003, January 28). BrownSauce: an introduction. HP Laboratory. Retrieved from

http://www.hpl.hp.com/techreports/2003/HPL-2003-10.pdf

Tabulator Team. (2008, November 24). The Tabulator Extension. The Tabulator Extension.

Retrieved November 23, 2010, from http://dig.csail.mit.edu/2007/tab/

W3C. (2007, October 21). IsaViz: A Visual Authoring Tool for RDF. IsaViz Overview. Retrieved

November 23, 2010, from http://www.w3.org/2001/11/IsaViz/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Browser Capability Criteria
	2.2 Data Presentation Criteria

	3 Results
	3.1 BrownSauce
	3.1.1 BrownSauce Evaluation

	3.2 Disco
	3.2.1 Disco Evaluation

	3.3 Exhibit
	3.3.1 Exhibit Evaluation

	3.4 Marbles
	3.4.1 Marbles Evaluation

	3.5 ObjectViewer
	3.5.1 ObjectViewer Evaluation

	3.6 The Tabulator Extension
	3.6.1 Tabulator Evaluation

	3.7 Zitgist DataViewer
	3.7.1 Evaluation of Zitgist DataViewer

	4 Findings
	4.1 Evaluation
	4.1.1 Browser Capability criteria
	4.1.2 Data Presentation criteria

	5 Summary and Conclusions
	5.1 Summary of Conclusions
	Additional Conclusions

	References

