
Working Paper Series
ISSN 1177-777X

THREE VARIATIONS
OF OBSERVATION EQUIVALENCE

PRESERVING SYNTHESIS ABSTRACTION

Sahar Mohajerani, Robi Malik, Simon Ware, Martin Fabian

Working Paper: 01/2011
January 26, 2011

c©Sahar Mohajerani, Robi Malik, Simon Ware, Martin Fabian

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton, 3240
New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29198773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THREE VARIATIONS
OF OBSERVATION EQUIVALENCE

PRESERVING SYNTHESIS ABSTRACTION

Sahar Mohajerani
Department of Signals and Systems
Chalmers University of Technology

Göteborg, Sweden
mohajera@chalmers.se

Robi Malik
Department of Computer Science

The University of Waikato
Hamilton, New Zealand

robi@cs.waikato.ac.nz

Simon Ware
Department of Computer Science

The University of Waikato
Hamilton, New Zealand

siw4@cs.waikato.ac.nz

Martin Fabian
Department of Signals and Systems
Chalmers University of Technology

Göteborg, Sweden
fabian@chalmers.se

January 26, 2011

Abstract

In a previous paper we introduced the notion ofsynthesis abstraction,
which allows efficient compositional synthesis of maximally permissive su-
pervisors for large-scale systems of composed finite-stateautomata. In the
current paper,observation equivalenceis studied in relation to synthesis ab-
straction. It is shown that general observation equivalence is not useful for
synthesis abstraction. Instead, we introduce additional conditions strength-
ening observation equivalence, so that it can be used with the compositional
synthesis method. The paper concludes with an example showing the suit-
ability of these relations to achieve substantial state reduction while comput-
ing a modular supervisor.

1

1 Introduction

Modular approaches to supervisor synthesis are of great interest insupervisory
control theory[2, 15], firstly in order to find more comprehensible supervisor rep-
resentations, and secondly to overcome the problem ofstate-space explosionfor
systems with a large number of components. Many approaches studied so far, such
as [17,20], rely on structure to be provided by users and hence are hard to automate.
Other early methods such as [1] only consider the synthesis of a least restrictive
controllable supervisor, ignoring nonblocking.Supervisor reduction[18] greatly
helps to simplify synthesised supervisors, yet it relies on a monolithic supervisor
to be constructed first, and thus remains limited by its size.

More recently, abstraction based onnatural projectionhas been studied for
compositional supervisor synthesis. Natural projection with theobserver property
produces a nonblocking but not necessarily least restrictive supervisor; if output
control consistencyis added as an additional requirement, least restrictiveness can
be ensured [4]. In [16], it is furthermore shown that output control consistency can
be replaced by a weaker condition calledlocal control consistency.

Supervisor synthesis and abstractions have also been studied in a nondeter-
ministic setting. In [9, 19],conflict-preservingabstractions andweak observation
equivalenceare shown to be adequate for the synthesis of nonblocking supervisors,
but least restrictiveness is only guaranteed if all observable events are retained in
the abstraction. The methods in [5,10] also allow for the abstraction of observable
events throughhiding.

In [5], a monolithic and least restrictive supervisor is constructed in symbolic
form, after abstracting automata according tosupervision equivalence. Yet, the
equivalence requires additionalstate labels, making some desirable abstractions
impossible. State labels are removed in [10], where supervision equivalence is re-
placed bysynthesis equivalence, and hiding is used to abstract all local events. The
authors propose a two-pass algorithm for compositional synthesis, whichproduces
an over-approximation of the least restrictive solution; an additional nonblocking
check is necessary to guarantee correctness.

In more recent work [14], the authors propose another means of abstraction
calledsynthesis abstraction, which avoids hiding and some of the problems en-
countered in [5, 10]. This present working paper builds on this work and investi-
gates how automata can be simplified in the framework of synthesis abstraction.
The focus is onobservation equivalenceand related methods.

After the preliminaries in section 2, the framework of synthesis abstraction is
presented in section 3. Next, in section 4 observation equivalence-based abstrac-
tions are studied in detail. It is first shown that general observation equivalence is
not suitable for synthesis abstraction, and then the stronger versions ofuncontrol-

2

lable observation equivalenceandsynthesis observation equivalenceare shown to
guarantee synthesis abstraction. It is also shown that synthesis observation equiv-
alence can produce better abstraction than the projection-based method of[16].
Formal proofs of these results are given in section 5. Finally, section 6 demon-
strates observation equivalence-based abstraction using a practical example, and
section 7 adds some concluding remarks.

2 Preliminaries and Notation

2.1 Events and Languages

Discrete event systems are modelled using events and languages [15]. Events are
taken from a finite alphabetΣ, which is partitioned into two disjoint subsets, the
setΣc of controllableevents and the setΣu of uncontrollableevents. The special
eventω ∈ Σc denotestermination.

The set of all finite strings of elements ofΣ, including theempty stringε, is
denoted byΣ∗. A subsetL ⊆ Σ∗ is called alanguage. The concatenation of two
stringss, t ∈ Σ∗ is written asst. A string s ∈ Σ∗ is called aprefix of t ∈ Σ∗,
written s ⊑ t, if t = su for someu ∈ Σ∗. For Ω ⊆ Σ, thenatural projection
PΩ : Σ∗ → Ω∗ is the operation that removes from stringss ∈ Σ∗ all events not
in Ω.

2.2 Nondeterministic Automata

Discrete system behaviours are typically modelled by deterministic automata, but
notation in this paper is based on nondeterministic automata, which may arise as
intermediate results during abstraction.

Definition 1 A (nondeterministic) finite-state automaton is a tupleG = 〈Σ, Q,→,
Q◦〉, whereΣ is a finite set of events,Q is a finite set of states,→ ⊆ Q×Σ×Q is the
state transition relation, andQ◦ ⊆ Q is the set ofinitial states. G is deterministic,
if |Q◦| ≤ 1 andx

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

The transition relation is written in infix notationx
σ
→ y, and is extended to

strings inΣ∗ by lettingx
ε
→ x for all x ∈ Q, andx

sσ
→ z if x

s
→ y andy

σ
→ z for

somey ∈ Q. Furthermore,x
s
→ means thatx

s
→ y for somey ∈ Q, andx → y

means thatx
s
→ y for somes ∈ Σ∗. These notations also apply to state sets,X

s
→

for X ⊆ Q means thatx
s
→ for somex ∈ X, and to automata,G

s
→ means that

Q◦ s
→, etc.
A special requirement is that states reached by the termination eventω do not

have any outgoing transitions, i.e., ifx
ω
→ y then there does not existσ ∈ Σ such

3

thaty
σ
→. This ensures that the termination event, if it occurs, always is the final

event of any trace. The traditional set of marked states isQω = {x ∈ Q | x
ω
→} in

this notation. For graphical simplicity, states inQω are shown shaded in the figures
of this paper instead of explicitly showingω-transitions.

For a state or state setx, the continuation languageis L(x) = { s ∈ Σ∗ |
x

s
→}. The language of an automatonG is L(G) = L(Q◦), and its marked

language isM(G) = { s ∈ Σ∗ | sω ∈ L(G) }.
When automata are brought together to interact, lock-step synchronisationin

the style of [6] is used.

Definition 2 Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 andG2 = 〈Σ2, Q2,→2, Q

◦
2〉 be two

automata. Thesynchronous compositionof G1 andG2 is defined as

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (1)

where
(x, y)

σ
→ (x′, y′) if σ ∈ (Σ1 ∩ Σ2), x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (Σ1 \ Σ2), x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (Σ2 \ Σ1), y

σ
→2 y′ .

Another common automaton operation is thequotientmodulo an equivalence
relation on the state set.

Definition 3 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let∼ ⊆ Q × Q be an
equivalence relation. Thequotient automatonof G modulo∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (2)

where→/∼ = { [x]
σ
→ [y] | x

σ
→ y } and Q̃◦ = { [x◦] | x◦ ∈ Q◦ }. Here,

[x] = {x′ ∈ Q | x ∼ x′ } denotes theequivalence classof x ∈ Q, andQ/∼ =
{ [x] | x ∈ Q } is the set of all equivalence classes modulo∼.

2.3 Supervisory Control Theory

Given aplant automatonG and aspecificationautomatonK, supervisory control
theory[15] provides a method to synthesise a supervisor that restricts the behaviour
of the plant such that the specification is always fulfilled. Two common require-
ments for the supervisor arecontrollability andnonblocking.

Definition 4 Let G andK be two automata using the same alphabetΣ. K is
controllablewith respect toG if, for every strings ∈ Σ∗, every statex of K, and
every uncontrollable eventυ ∈ Σu such thatK

s
→ x andG

sυ
→, it holds thatx

υ
→

in K.

4

Definition 5 Let G = 〈Σ, Q,→, Q◦〉. A statex ∈ Q is calledreachablein G if

G → x, andcoreachableif x
tω
→ for somet ∈ Σ∗. G is called reachable or co-

reachable, if every statex ∈ Q has the respective property.G is callednonblocking
if every reachable state is coreachable.

For a deterministic plantG and specificationK, it is shown in [15] that there
exists aleast restrictivecontrollable sublanguage

supCG(K) ⊆ L(K) (3)

such thatsupCG(K) is controllable with respect toG and nonblocking, and this
language can be computed using a fixed-point iteration.

In [10], this result is generalised to nondeterministic automata. For nondeter-
ministic automata, synthesis produces asubautomatoninstead of a language, and
the controllability condition is modified accordingly.

Definition 6 [10] Let G1 = 〈Σ, Q1,→1, Q
◦
1〉 andG2 = 〈Σ, Q2,→2, Q

◦
2〉 be two

automata.G1 is asubautomatonof G2, writtenG1 ⊆ G2, if Q1 ⊆ Q2, →1 ⊆ →2,
andQ◦

1 ⊆ Q◦
2.

Definition 7 [10] Let G = 〈Σ, QG,→G, Q◦
G〉 andK = 〈Σ, QK ,→K , Q◦

K〉 be
automata such thatK ⊆ G. ThenK is calledcontrollable in G if, for all states
x ∈ QK andy ∈ QG and for every uncontrollable eventυ ∈ Σu such thatx

υ
→G y,

it also holds thatx
υ
→K y.

The upper bound of controllable and nonblocking subautomata is again con-
trollable and nonblocking, and this implies the existence of a least restrictive syn-
thesis result.

Theorem 1 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. There exists a unique sub-
automatonsupCN (G) ⊆ G such thatsupCN (G) is nonblocking and controllable
in G, and such that for every subautomatonS ⊆ G that is also nonblocking and
controllable inG, it holds thatS ⊆ supCN (G).

Therefore,supCN (G) is the unique synthesis result for aplant G. It is shown
in [10] how supCN (G) can be computed using a fixpoint iteration. This is done
by iteratively removing blocking and uncontrollable states of a plant, until a fixed
point is reached, and restricting the automaton to these states.

Definition 8 [10] Let G = 〈Σ, Q,→, Q◦〉 be an automaton. Therestrictionof G
to X ⊆ Q is

G|X = 〈Σ, Q,→|X , Q◦ ∩ X〉 , (4)

where→|X = { (x, σ, y) ∈ → | x, y ∈ X }.

5

Definition 9 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. The synthesis step opera-
tor ΘG : PQ → PQ for G is defined asΘG(X) = Θcont

G (X) ∩ Θcont
G (X), where

Θcont
G (X) = {x ∈ X | ∀σ ∈ Σu, x

σ
→ y impliesy ∈ X } ; (5)

Θnonb
G (X) = {x ∈ X | x

tω
→|X for somet ∈ Σ∗ } . (6)

Θcont
G captures controllability, andΘnonb

G captures nonblocking. The synthesis
result forG is obtained by restrictingG to the greatest fixed point ofΘG.

Theorem 2 [10] Let G = 〈Σ, Q,→, Q◦〉. The synthesis step operatorΘG has a
greatest fixed pointgfpΘG = Θ̂G ⊆ Q, such thatG|Θ̂G

is the greatest subautoma-
ton ofG that is both controllable inG and coreachable, i.e.,

supCN (G) = G|Θ̂G
. (7)

If the state setQ is finite, the sequenceX0 = Q, Xi+1 = ΘG(Xi) reaches this
fixed point in a finite number of steps, i.e.,Θ̂G = Xn for somen ≥ 0.

The synthesis operationsupCN only performs synthesis for a plant automa-
tonG. In order to apply this synthesis to control problems that also involve speci-
fications, the transformation proposed in [5] is used. A specification automaton is
transformed into a plant by adding, for every uncontrollable event that isnot en-
abled in a state, a transition to a new blocking state⊥. This essentially transforms
all potential controllability problems into potential blocking problems.

Definition 10 [5] Let K = 〈Σ, Q,→, Q◦〉 be a specification. Thecomplete plant
automatonK⊥ for K is

K⊥ = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 (8)

where⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x 6
υ
→} . (9)

Proposition 3 [5] Let G, K, andK ′ be deterministic automata over the same
alphabetΣ, and letK ′ be reachable. ThenK ′ ⊆ G ‖ K⊥ is nonblocking and
controllable inG ‖K⊥ if and only if K ′ ⊆ G ‖K is nonblocking and controllable
with respect toG.

According to this result, synthesis of the least restrictive nonblocking andcon-
trollable behaviour allowed by a specificationK with respect to a plantG can be
achieved by computingsupCN (G ‖ K⊥). If G andK are both deterministic, it
can be shown that

LsupCN (G ‖ K⊥) = supCG(K) . (10)

6

3 Compositional Synthesis

Many discrete event systems aremodularin that they consist of a large number of
interacting components. This modularity can be used to abstract components be-
fore composing them, in many cases avoiding state-space explosion. This section
briefly describes the framework introduced in [14] to perform synthesiscomposi-
tionally in this setting.

3.1 General Compositional Approach

A modular system consists of a modular specificationK = K1 ‖ · · · ‖ Km and a
modular plantG = G1 ‖ · · · ‖ Gn,

G ‖ K = G1 ‖ · · · ‖ Gn ‖ K1 ‖ · · · ‖ Km . (11)

As discussed in Section 2.3, all the specifications can be translated to plants,so the
synthesis problem is given as

G ‖ K⊥ = G1 ‖ · · · ‖ Gn ‖ K⊥
1 ‖ · · · ‖ K⊥

m . (12)

In the compositional algorithm of [14], the modular system (12) is abstractedstep
by step. Each automatonGi or K⊥

j in (12) may be replaced by an abstracted

version,G̃i or K̃⊥
j , until no more abstraction is possible. Then synchronous com-

position is computed step by step, abstracting each intermediate result again.
When abstracting an automatonGi, this automaton will typically contain some

events that do not appear in any other componentGi or K⊥
j . These events are

called local events. In the following, local events are denoted by the setΥ, and
Ω = Σ \Υ denotes the non-local orsharedevents. Local events are helpful to find
an abstraction.

Eventually, the procedure leads to a single automatonG̃, the abstract descrip-
tion of the system (12). After abstraction,̃G has less states and transitions com-
pared to the original system. OncẽG is found, the final step is to usẽG instead
of the original system, to calculate a synthesis resultsupCN (G̃), which leads to a
solution for the original synthesis problem (12).

3.2 Synthesis Abstraction

The general compositional approach explained above requires an appropriate no-
tion of abstraction. The task is to find the least restrictive, nonblocking, and con-
trollable supervisor, so each automaton should be abstracted in such a waythat the
behaviour of the supervised system is left unchanged.

7

Definition 11 [14] Let G andG̃ be two deterministic automata with alphabetΣ.
ThenG̃ is a synthesis abstractionof G with respect to the local eventsΥ ⊆ Σ,
written G .synth,Υ G̃, if for every deterministic automatonT = 〈ΣT , QT ,→T ,
Q◦

T 〉 such thatΣT ∩ Υ = ∅ the following holds,

L(G ‖ T ‖ supCN (G̃ ‖ T)) = L(G ‖ T ‖ supCN (G ‖ T)) (13)

Definition 11 requires that the synthesis result forG and its abstractioñG are
the same in every possible contextT . The synthesis resultssupCN (G ‖ T) and
supCN (G̃ ‖ T) are composed with the original plantG ‖ T , and the resultant
behaviours must be equal. The following theorem shows how synthesis abstraction
is applied to a control problem such as (12).

Theorem 4 Let Hi = 〈Σi, Qi,→i, Q
◦
i 〉, i = 1, . . . , k, be deterministic automata,

and letΥ ⊆ Σ1 such thatH1 .synth,Υ H̃1 andΥ∩Σ2 = · · · = Υ∩Σk = ∅. Then

L(H1 ‖ · · · ‖ Hk ‖ supCN (H1 ‖ H2 ‖ · · · ‖ Hk))

= L(H1 ‖ · · · ‖ Hk ‖ supCN (H̃1 ‖ H2 ‖ · · · ‖ Hk)) . (14)

Proof. The claim follows directly from definition 11 by consideringH2 ‖ · · · ‖Hk

asT . �

Theorem 4 is applied several times when simplifying (12). It can be shown by
induction that, if (12) is composed and simplified to a single automatonG̃, then the
synthesis result̃S = supCN (G̃) composed with the original system (12) is equal
to the monolithic synthesis result for (12). A least restrictivemodular supervisor
can be constructed as̃S ‖ K1 ‖ K2 ‖ · · · ‖ Km.

Note that the modular supervisor̃S ‖ K1 ‖ K2 ‖ · · · ‖ Km never needs to be
calculated. It can be represented in its modular form, and synchronisationcan be
performed on-line, tracking the synchronous product states as the system evolves.
In this way, synchronous product computation and state-space explosion can be
avoided.

This paper focuses on abstractions obtained by merging of equivalent states,
i.e., abstractions that can be represented as an automaton quotient modulo anequiv-
alence relation. For such abstractions the conditions of synthesis abstraction in
definition 11 can be replaced by the following sufficient condition.

Definition 12 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence relation
∼ ⊆ Q × Q is a state-wise synthesis equivalencerelation onG with respect to
Υ ⊆ Σ, if for all x ∈ Q, all deterministic automataT = 〈ΣT , QT ,→T , Q◦

T 〉 such
thatΣT ∩ Υ = ∅, and for all statesxT ∈ QT the following relations hold,

8

(i) if (x, xT) ∈ Θ̂G‖T , then([x], xT) ∈ Θ̂G/∼‖T ;

(ii) if ([x], xT) ∈ Θ̂G/∼‖T , then(x, xT) ∈ Θ̂G‖T .

State-wise synthesis equivalence implies synthesis abstraction.

Proposition 5 Let G be a deterministic automaton, and letΥ ⊆ Σ. Let ∼ be a
state-wise synthesis equivalence relation onG with respect toΥ such thatG/∼ is
deterministic. ThenG .synth,Υ G/∼.

Proof. It must be shown that for any deterministic automatonT = 〈ΣT , QT ,→T ,
Q◦

T 〉 such thatΣT ∩ Υ = ∅, equation (13) holds.
First, lets ∈ L(G‖T ‖supCN (G‖T)). This meansG‖T ‖supCN (G‖T)

s
→

(xG, xT , x′
G, x′

T), and sinceG andT are deterministicx′
G = xG andx′

T = xT . Let
s = σ1 · · ·σn, then(xG

0 , xT
0)

σ1→|Θ̂G‖T
(xG

1 , xT
1)

σ2→|Θ̂G‖T
· · ·

σn→|Θ̂G‖T
(xG

n , xT
n) =

(xG, xT) such that(xG
k , xT

k) ∈ Θ̂G‖T for k = 0, ..., n. By (i), ([xG
k], xT

k) ∈

Θ̂G/∼‖T for k = 0, . . . , n, and thus([xG
0], xT

0)
σ1→|Θ̂G/∼‖T

([xG
1], xT

1)
σ2→|Θ̂G/∼‖T

· · ·
σn→|Θ̂G/∼‖T

([xG
n], xT

n) = ([xG], xT). Therefore,G ‖ T ‖ supCN (G/∼ ‖ T)
s
→

(xG, xT , [xG], xT), which means thats ∈ L(G ‖ T ‖ supCN (G/∼ ‖ T)).
Conversely, lets ∈ L(G ‖ T ‖ supCN (G/∼ ‖ T)). SinceG, T , andG/∼

are deterministic, this meansG ‖ T ‖ supCN (G/∼ ‖ T)
σ1→ (xG

1 , xT
1 , [xG

1], xT
1)

σ2→

· · ·
σn→ (xG

n , xT
n , [xG

n], xT
n), wheres = σ1 · · ·σn. Since([xG

k], xT
k) ∈ Θ̂G/∼‖T for

k = 0, . . . , n by (ii), (xG
k , xT

k) ∈ Θ̂G‖T for k = 0, . . . , n. Therefore,G ‖ T ‖

supCN (G ‖ T)
σ1→ (xG

1 , xT
1 , xG

1 , xT
1)

σ2→ · · ·
σn→ (xG

n , xT
n , xG

n , xT
n), and thus it can

be concluded thats ∈ L(G ‖ T ‖ supCN (G ‖ T)). �

4 Methods of Abstraction

This section discusses some possible methods to compute synthesis abstractions.
While observation equivalence does not in general yield synthesis abstractions, it
can be strengthened to do so.

For clarity of presentation, this section starts with the simplest abstraction,
bisimulation, which turns out to be a special case of more advanced abstractions
presented later. Therefore, the formal proofs of the theorems are carried out in the
opposite order in which they are presented, and this is done later in section 5.

9

G
q0

q1

q2

(α)

!β

γ

G̃
q0

(α)

!β γ

q12

T

!β

γ

Figure 1:G̃ is observation equivalent toG, but not a synthesis abstraction.

4.1 Observation Equivalence

Observation equivalenceor weak bisimilarityis a well-known general abstraction
method for nondeterministic automata [13]. It seeks to mergeobservation equiva-
lent states, i.e., states with the same future behaviour.

Definition 13 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ. An
equivalence relation≈ ⊆ Q × Q is called anobservation equivalenceon G with
respect toΥ, if the following holds for allx1, x2 ∈ Q such thatx1 ≈ x2: if

x1
t1σu1−→ y1 for someσ ∈ Σ and t1, u1 ∈ Υ∗, then there existy2 ∈ Q and

t2, u2 ∈ Υ∗ such thatx2
t2PΩ(σ)u2
−→ y2 andy1 ≈ y2.

Observation equivalence is known to preserve all temporal logic properties [13]
includingconflict equivalence[12]. However, it does not always produce a synthe-
sis abstraction, and the following counterexample shows this.

Example 1 Consider automataG, G̃, andT in figure 1. Uncontrollable events are
prefixed with!, and local events inΥ are marked with parentheses around them.
With α ∈ Υ, statesq1 andq2 in G are observation equivalent, and merging them
produces the abstractioñG. However,γ ∈ LsupCN (G‖T) butγ /∈ LsupCN (G̃‖
T), because inG, the local controllable eventα can be disabled to prevent the
stateq2 and thus the undesirable uncontrollable!β, but this is no longer possible
in G̃. Thus,L(G ‖ T ‖ supCN (G̃ ‖ T)) 6= L(G ‖ T ‖ supCN (G ‖ T)), andG̃ is
not a synthesis abstraction ofG.

This counterexample seems to contradict results in [9, 19], where observation
equivalence is used in synthesis abstraction. However, the above mentioned pa-
pers only allowunobservableevents to be considered as local, while in this paper
observableevents can also be local. This makes it more difficult to find suitable

10

G

α
α βγ

(!ν)

(!ν)

(!µ)

G̃

α
βγ

(!ν)

(!ν)

(!µ)

T

α

S

α

β

β

γ

γ

(!ν)

(!ν)

Figure 2: G̃ is observation equivalent toG with only uncontrollable local events.
Nevertheless it is not a synthesis abstraction.

abstractions, because the synthesised supervisor may synchronise onobservable
events, even if they are local.

4.2 Bisimulation

One simple way to restrict observation equivalence such that it implies synthesis
abstraction is by not permitting any local events. This leads tobisimulation equiv-
alence[13], one of the strongest known process equivalences.

Definition 14 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. An equivalence relation
≈ ⊆ Q×Q is called abisimulationonG, if the following holds for allx1, x2 ∈ Q
such thatx1 ≈ x2: if x1

σ
→ y1 for someσ ∈ Σ, then there existsy2 ∈ Q such that

x2
σ
→ y2 andy1 ≈ y2.

Theorem 6 Let G be an automaton, and let≈ be a bisimulation onG. Then
G .synth,∅ G/≈.

4.3 Uncontrollable Observation Equivalence

While bisimulation ensures synthesis abstraction, not permitting any local events
is highly restrictive, and it is desirable to relax the condition. In example 1, the
local event,α, is controllable; if it was uncontrollable, merging the states would
result in a synthesis abstraction. This suggests to restrict the set of localevents
to be uncontrollable, yet the following counterexample shows that this is still not
enough.

11

G
q0

q1

q2

⊥
(α)

(α)

(β)
!ν

G̃
q0

q1

q2

⊥
(α)

(α)
!ν

T

!ν

Figure 3:G̃ is observation equivalent toG, but not a synthesis abstraction.

Example 2 In figure 2, the local events!µ and!ν are both uncontrollable, and̃G
is observation equivalent toG. The figure also showsS = G ‖T ‖ supCN (G ‖T).
However,LsupCN (G̃ ‖ T) = ∅, because iñG there is no way to permit eventα
without also permitting the deadlock after the uncontrollable!µ. Thus,G̃ is not a
synthesis abstraction ofG.

The situation in example 2 can be avoided by requiring that the trace matching
a controllable transition (such as theα-transition in the example) does not contain
any more local eventsafter the controllable event.

Definition 15 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇Υ andΥ ⊆
Σu. An equivalence relation∼ ⊆ Q × Q is called anuncontrollable observation
equivalenceonG with respect toΥ, if the following conditions hold for allx1, x2 ∈
Q such thatx1 ∼ x2:

(i) ∀σ ∈ Σc, if x1
σ
→ y1 then∃t2 ∈ Υ∗ such thatx2

t2PΩ(σ)
−→ y2 andy1 ∼ y2;

(ii) ∀σ ∈ Σu, if x1
σ
→ y1 then∃t2, u2 ∈ Υ∗ such thatx2

t2PΩ(σ)u2
−→ y2 and

y1 ∼ y2.

Condition (ii) is like observation equivalence (definition 13), but (i) imposesa
stronger requirement for controllable events.

Theorem 7 Let G be an automaton, and let∼ be an uncontrollable observation
equivalence onG with respect toΥ. ThenG .synth,Υ G/∼.

4.4 Synthesis Observation Equivalence

This section shows that the conditions of uncontrollable observation equivalence
can be relaxed, permitting controllable local events under certain conditions.

12

Example 3 AutomataG andG̃ in figure 3 are observation equivalent with control-
lable local eventsα andβ, because the local controllableβ-transition is redundant
according to observation equivalence [3]. In bothG andG̃, the controllable eventα
must be disabled to prevent the undesired uncontrollable!ν. By disablingα in G̃,
termination no longer can be achieved, yet termination is still possible inG using
theβ-transition. Therefore,̃G is not a synthesis abstraction ofG.

The situation in example 3 can be avoided by imposing an additional require-
ment as follows: a local controllable transitionx

σ
→ y in G needs to have a match-

ing sequence of local transitions[x]
s
→ [y] in G̃ such that every state along this

path, reached by a local controllable transition, is equivalent tox. In the exam-

ple, the transitionq0
β
→ q2 in G can only be matched by the transition sequence

q0
α
→ q1

α
→ q2 in G̃, but the stateq1 in this sequence is not equivalent toq0 in G.

This idea leads to the following definition.

Definition 16 Let G = 〈Σ, Q,→, Q◦〉 be an automaton withΣ = Ω ∪̇ Υ. An
equivalence relation∼ ⊆ Q × Q is called asynthesis observation equivalence
on G with respect toΥ, if the following conditions hold for allx1, x2 ∈ Q such
thatx1 ∼ x2:

(i) ∀σ ∈ Σc, if x1
σ
→ y1 then∃t2 ∈ Υ∗ such thatx2

t2PΩ(σ)
−→ y2 andy1 ∼ y2

and for all stringsp2 ⊑ t2 such thatx2
p2
→ z2 andp2 ∈ Σ∗Σc it holds that

x1 ∼ z2;

(ii) ∀σ ∈ Σu, if x1
σ
→ y1 then∃t2, u2 ∈ (Υ ∩ Σu)∗ such thatx2

t2PΩ(σ)u2
−→ y2

andy1 ∼ y2.

Theorem 8 Let G be an automaton, and let∼ be a synthesis observation equiva-
lence onG with respect toΥ. ThenG .synth,Υ G/∼.

4.5 Relationship to Projection

In related work [4, 16], natural projection is used to simplify subsystems and per-
form modular synthesis. It is well-known that, in general, natural projection of
local events in a subsystem cannot ensure the preservation of a globalsynthesis
result. In [4], it is shown that the synthesis result is preserved if the projection
satisfies two additional requirements known as theobserver propertyandoutput
control consistency. The condition of output control consistency is relaxed tolocal
control consistencyin [16].

In the following, it is shown that observation equivalence-based abstractions
have a higher abstraction potential than methods based on natural projection, and

13

that every natural projection that satisfies the observer property and local control
consistency leads to an abstraction that can also be achieved using synthesis obser-
vation equivalence.

Definition 17 Let G = 〈Σ, Q,→, Q◦〉 be an automaton, andΣ = Ω ∪̇ Υ. The
natural projectionPΩ : Σ∗ → Ω∗ is

• an observerfor G, if for all s, s′, t ∈ Σ∗ and all statesx ∈ Q such that

PΩ(s) = PΩ(s′), G
stω
→, andG

s′
→ x, there existst′ ∈ Σ∗ such thatPΩ(t′) =

PΩ(t) andx
t′ω
→; [11]

• locally control-consistent (LCC)for G, if for all s ∈ Σ∗, all υ ∈ Ω ∩ Σu,
and all statesx ∈ Q such thatG

s
→ x andPΩ(s)υ ∈ PΩL(G), if there

existst ∈ Υ∗ such thatx
tυ
→ then there also existsu ∈ (Υ ∩ Σu)∗ such that

x
uυ
→. [16]

Natural projection is a language-theoretic operation, which can be applied
to automata using the standard algorithms ofsubset constructionandminimisa-
tion [7]. Alternatively, natural projection can be seen to induce a state equivalence
relation on nondeterministic automata usingNerode equivalence[15].

Definition 18 Let G = 〈Σ, Q,→, Q◦〉 and Ω ⊆ Σ. The natural projection
PΩ : Σ∗ → Ω∗ induces theNerode equivalencemoduloΩ on the state setQ:

x ≡Ω y if and only if PΩL(x) = PΩL(y) . (15)

It is known that Nerode equivalence implies observation equivalence if the pro-
jection satisfies the observer property [11, 21]; in this case, the quotientG/≡Ω is
a candidate for abstraction ofG. On the other hand, not every observation equiva-
lence abstraction can be expressed using projection.

Example 4 Consider automatonG in figure 4. Hiding the local uncontrollable
events!γ1 and!γ2 does not yield an observer projection, because eventα is enabled
in the source statesq1 andq2, but not in the target stateq3 of the local transitions!γ1

and !γ2. Nevertheless, statesq1 andq2 are uncontrollable observation equivalent
and can be merged, producing the abstractionG̃ such thatG .{!γ1,!γ2} G̃.

This example shows that uncontrollable observation equivalence can perform
abstractions that are not possible using natural projection. In addition to remov-
ing events, under certain conditions events can also be identified and merged, and
synthesis observation equivalence provides some conditions under which this is
possible.

14

G q0

q1 q2

q3

q4

α

α α

β

(!γ1) (!γ2)

!δ

G̃
q0

q12

q3

q4

α

α, β

(!γ1, !γ2)

!δ

Figure 4: Uncontrollable observation equivalence has more abstraction potential
than observer projection.

The following theorem 10 shows that every abstraction obtained by a projection
with the observer and LCC properties induces a synthesis observation equivalence
abstraction, fornonblockingautomata. Blocking states can always be merged while
ensuring synthesis abstraction, but this cannot be done via observationequivalence.
For blocking automata, the relationship to projection is similar to the results in [11].

Lemma 9 Let G = 〈Σ, Q,→, Q◦〉 be a reachable and nonblocking automaton,
and letΣ = Ω ∪̇ Υ such thatPΩ : Σ∗ → Ω∗ is an observer forG.

(i) If x
τ
→ y for someτ ∈ Υ, thenx ≡Ω y.

(ii) If x1 ≡Ω x2, x1
s1→ y1, x2

s2→ y2 for somes1, s2 ∈ Σ∗ such thatPΩ(s1) =
PΩ(s2), theny1 ≡Ω y2.

Proof. (i) For x
τ
→ y, it clearly holds thatPΩL(y) ⊆ PΩL(x). For the converse

inclusion, lett ∈ PΩL(x). Then there existst′ ∈ Σ∗ such thatPΩ(t′) = t and

x
t′
→ y′. Also, sincex is reachable, there existss ∈ Σ∗ such thatG

s
→ x, and since

G is nonblocking, there existsu ∈ Σ∗ such thaty′
uω
→. That is,

G
s
→ x

t′
→ y′

uω
→ and G

s
→ x

τ
→ y , (16)

wherePΩ(sτ) = PΩ(s). By the observer property, there existsv ∈ Σ∗ such that
PΩ(v) = PΩ(t′u) and y

vω
→. Therefore,t = PΩ(t′) ⊑ PΩ(t′u) = PΩ(v) ∈

PΩL(y).
(ii) Let x1 ≡Ω x2, x1

s1→ y1, x2
s2→ y2 for somes1, s2 ∈ Σ∗ such thatPΩ(s1) =

PΩ(s2), and lett ∈ PΩL(y1). ThenPΩ(s2)t = PΩ(s1)t ∈ PΩL(x1) = PΩL(x2).

15

Then there existst2 ∈ Σ∗ such thatPΩ(t2) = t andx2
s2t2−→ z2 for somez2 ∈ Q.

Furthermore, sincex2 is reachable, there existss ∈ Σ∗ such thatG
s
→ x2, and

sinceG is nonblocking, there existsu2 ∈ Σ∗ such thatz2
u2ω
−→. Thus,G

s
→ x2

s2t2−→
z2

u2ω
−→, which impliesPΩ(ss2t2u2ω) ∈ PΩL(G). Since furthermoreG

s
→ x2

s2→
y2, it follows by the observer property thatt = PΩ(t2) ⊑ PΩ(t2u2ω) ∈ PΩL(y2).

�

Theorem 10 Let G = 〈Σ, Q,→, Q◦〉 be a reachable and nonblocking automaton,
and letΣ = Ω ∪̇ Υ such thatPΩ : Σ∗ → Ω∗ is an observer and LCC forG. Then
≡Ω is a synthesis observation equivalence onG with respect toΥ.

Proof. Let x1 ≡Ω x2. It is enough to confirm the two conditions in definition 16.

(i) Let σ ∈ Σc such thatx1
σ
→ y1.

First consider the caseσ ∈ Ω. Thenσ ∈ PΩL(x1) = PΩL(x2), so there

existst ∈ Υ∗ such thatx2
t
→ z2

σ
→ y2 for some statesy2, z2 ∈ Q. By

lemma 9 (ii), it holds thaty1 ≡Ω y2. Furthermore, letp ⊑ t such that
x2

p
→ z′2. Thenp ∈ Υ∗, and thusx1 ≡Ω x2 ≡Ω z′2, by lemma 9 (i).

Second assumeσ ∈ Υ. Thenx1 ≡Ω y1 by lemma 9 (i), andx2
ε
→ x2

satisfiesPΩ(ε) = ε = PΩ(σ) andy1 ≡Ω x1 ≡Ω x2. Furthermore, forp ⊑ ε

andx2
p
→ z2 it holds thatx1 ≡Ω x2 = z2.

(ii) Let υ ∈ Σu such thatx1
υ
→ y1.

First consider the caseυ ∈ Ω. Thenυ ∈ PΩL(x1) = PΩL(x2), and since

y is reachable, there existss ∈ Σ∗ such thatG
s
→ x2

t
→ z2

υ
→ for some

t ∈ Υ∗, i.e., stυ ∈ L(G) and thusPΩ(s)υ = PΩ(stυ) ∈ PΩL(G). Since
PΩ is LCC, there existsu ∈ (Υ∩Σu)∗ such thatx2

uυ
→ y2 for somey2 ∈ Q.

By lemma 9 (ii), it also follows thaty1 ≡Ω y2.

Second assumeυ ∈ Υ. Thenx1 ≡Ω y1 by lemma 9 (i), andx2
ε
→ x2

satisfiesPΩ(ε) = ε = PΩ(υ) with ε ∈ (Υ ∩ Σu)∗. �

In combination with example 4, this result confirms that synthesis observa-
tion equivalence can perform more abstraction than the projection-basedmethod
of [16].

5 Proofs of Theorems

This section contains the proofs of the theorems that are presented in section 4. As
mentioned in the previous section, synthesis observation equivalence is a general-

16

isation of uncontrollable observation equivalence, and both of them are generali-
sations of bisimulation. Therefore, in the following theorem 8 is proven first,and
proofs for theorem7 and 6 follow subsequently.

5.1 Proof of Synthesis Observation Equivalence

To prove theorem 8, the key step is to show that synthesis observation equivalence
implies state-wise synthesis equivalence. This is done below in lemma 12. Before
that, lemma 11 establishes an auxiliary result needed for the second part ofthe
proof of lemma 12.

Lemma 11 Let G = 〈Σ, Q,→, Q◦〉 andT = 〈ΣT , QT ,→T , Q◦
T 〉 be two auto-

mata withΣ = Ω ∪̇Υ andΣT ∩Υ = ∅, and let∼ be a synthesis observation equiv-
alence onG with respect toΥ. Furthermore, letX ⊆ Q×QT such that([x], xT) ∈
Θ̂G/∼‖T always implies(x, xT) ∈ X. For all states([x1], x

T
1), ([x2], x

T
2) ∈

Θ̂G/∼‖T andy1 ∈ Q and for all eventsσ ∈ Σ such that(x1, x
T
1)

σ
→ (x2, x

T
2) and

x1 ∼ y1, there existt, u ∈ Υ∗ andy2 ∈ Q such that(y1, x
T
1)

tPΩ(σ)u
−→ |X (y2, x

T
2)

andx2 ∼ y2.

Proof. Let x1, x2, y1 ∈ Q andxT
1 , xT

2 ∈ QT such that([x1], x
T
1), ([x2], x

T
2) ∈

Θ̂G/∼‖T andx1 ∼ y1, and letσ ∈ Σ such that(x1, x
T
1)

σ
→ (x2, x

T
2). Consider two

cases.

(i) If σ ∈ Σu, then sincex1 ∼ y1 andx1
σ
→ x2, by condition (ii) of defini-

tion 16, there existt, u ∈ (Υ ∩ Σu)∗ andy2 ∈ Q such thaty1
tPΩ(σ)u
−→ y2

andx2 ∼ y2. Let p ⊑ tPΩ(σ)u such thaty1
p
→ z. Then[x1] = [y1]

p
→ [z],

and sincep ∈ Σ∗
u andΣT ∩ Υ = ∅, it follows that([x1], x

T
1)

p
→ ([z], xT

d)

for somed ∈ {1, 2}. Sincep ∈ Σ∗
u and ([x1], x

T
1) ∈ Θ̂G/∼‖T , it fol-

lows that ([z], xT
d) ∈ Θ̂G/∼‖T . This implies(z, xT

d) ∈ X by assump-
tion. This argument holds for all prefixesp ⊑ tPΩ(σ)u, and therefore

(y1, x
T
1)

tPΩ(σ)u
−→ |X (y2, x

T
2).

(ii) If σ ∈ Σc, then sincex1 ∼ y1 andx1
σ
→ x2, by condition (i) of definition 16,

there existst ∈ Υ∗ andy2 ∈ Q such thaty1
tPΩ(σ)
−→ y2 andx2 ∼ y2, and for

all prefixesp ⊑ t and all statesz ∈ Q such thaty1
p
→ z andp ∈ Σ∗Σc it

holds thaty1 ∼ z. Let t = τ1 · · · τk. Then sincet ∈ Υ∗ andΣT ∩ Υ = ∅,

(y1, x
T
1) = (z0, xT

1)
τ1→ (z1, xT

1)
τ2→ · · ·

τk→ (zk, xT
1)

PΩ(σ)
−→ (y2, x

T
2) . (17)

17

It is shown by induction oni that([zi], xT
1) ∈ Θ̂G/∼‖T for i = 0, . . . , k.

Base case.Fori = 0, it follows by assumption that([z0], xT
1) = ([y1], x

T
1) =

([x1], x
T
1) ∈ Θ̂G/∼‖T .

Inductive step. Assume the claim holds for somei ≥ 0, i.e., ([zi], xT
1) ∈

Θ̂G/∼‖T . It must be shown that([zi+1], xT
1) ∈ Θ̂G/∼‖T . There are two

possibilities forτi+1 ∈ Υ:

(a) τi+1 ∈ Σc. In this case,τ1 · · · τi+1 ∈ Σ∗Σc, and with(y1, x
T
1)

τ1···τi+1
−→

(zi+1, xT
1), it follows from condition (i) in definition 16 thatzi+1 ∼ x1.

This implies([zi+1], xT
1) = ([x1], x

T
1) ∈ Θ̂G/∼‖T .

(b) τi+1 ∈ Σu. From(zi, xT
1)

τi+1
−→ (zi+1, xT

1) it follows that([zi], xT
1)

τi+1
−→

([zi+1], xT
1), where ([zi], xT

1) ∈ Θ̂G/∼‖T by inductive assumption.

Then it follows that([zi+1], xT
1) ∈ Θ̂G/∼‖T becauseτi+1 ∈ Σu.

It has been shown fori = 0, . . . , k that([zi], xT
1) ∈ Θ̂G/∼‖T , which implies

(zi, xT
1) ∈ X by assumption. It follows that

(y1, x
T
1) = (z0, xT

1)
t
→|X (zk, xT

1)
PΩ(σ)
−→ (y2, x

T
2) . (18)

Since furthermore([x2], x
T
2) ∈ Θ̂G/∼‖T andx2 ∼ y2, it also follows by

assumption that(y2, x
T
2) ∈ X. Therefore,(y1, x

T
1)

tPΩ(σ)
−→ |X (y2, x

T
2). �

Lemma 12 Let G = 〈Σ, Q,→, Q◦〉 be an automaton. Let∼ be a synthesis
observation equivalence onG with respect toΥ ⊆ Σ as in definition 16. Then∼
is a state-wise synthesis equivalence relation onG with respect toΥ.

Proof. Let T = 〈ΣT , QT ,→T , Q◦
T 〉 be an automaton. The conditions of state-

wise synthesis equivalence in definition 12 must be confirmed.

(i) It is shown by induction onn ≥ 0 that

If (x, xT) ∈ Θ̂G‖T then ([x], xT) ∈ X̃n = Θn
G/∼‖T (Q/∼× QT) .

(19)
Base case. ([x], xT) ∈ Q/∼× QT = Θ0

G/∼‖T (Q/∼× QT) = X̃0.

Inductive step. Assume the claim holds for somen ≥ 0, i.e., if (x, xT) ∈
Θ̂G‖T it holds that([x], xT) ∈ X̃n. Now let (x, xT) ∈ Θ̂G‖T . It must be

shown that([x], xT) ∈ X̃n+1 = Θn+1
G/∼‖T (Q/∼ × QT) = Θcont

G/∼‖T (X̃n) ∩

Θnonb
G/∼‖T (X̃n).

18

To see that([x], xT) ∈ Θcont
G/∼‖T (X̃n), let υ ∈ Σu and([x], xT)

υ
→ ([y], yT).

Then[x]
υ
→ [y] andxT

υ
→ yT . This implies thatx′ υ

→ y′ for somex′ ∈ [x]
andy′ ∈ [y]. Sinceυ ∈ Σu, according to condition (ii) in definition 16, there

existt, u ∈ (Υ∩Σu)∗ andy′′ ∈ Q such thatx
tPΩ(υ)u
−→ y′′ andy′ ∼ y′′. Since

t, u ∈ (Υ ∩ Σu)∗ andΣT ∩ Υ = ∅, it follows that(x, xT)
tPΩ(υ)u
−→ (y′′, yT).

Since(x, xT) ∈ Θ̂G‖T andtPΩ(υ)u ∈ Σ∗
u, it follows that(y′′, yT) ∈ Θ̂G‖T .

Then by inductive assumption([y], yT) = ([y′], yT) = ([y′′], yT) ∈ X̃n,
which implies([x], xT) ∈ Θcont

G/∼‖T (X̃n).

Next, it is shown that([x], xT) ∈ Θnonb
G/∼‖T (X̃n). Since(x, xT) ∈ Θ̂G‖T ,

there exists a path

(x, xT) = (x0, x
T
0)

σ1→|Θ̂G‖T
· · ·

σk→|Θ̂G‖T
(xk, x

T
k)

ω
→|Θ̂G‖T

(xk+1, x
T
k+1) .

(20)
Then (xl, x

T
l) ∈ Θ̂G‖T for l = 0, . . . , k + 1. By inductive assumption,

([xl], x
T
l) ∈ X̃n for l = 0, . . . , k + 1. Thus,

([x], xT) = ([x0], x
T
0)

σ1→|X̃n · · ·
σk→|X̃n ([xk], x

T
k)

ω
→|X̃n ([xk+1], x

T
k+1) ,

(21)
which implies([x], xT) ∈ Θnonb

G/∼‖T (X̃n).

Thus, it has been shown that([x], xT) ∈ Θcont
G/∼‖T (X̃n) ∩ Θnonb

G/∼‖T (X̃n) =

X̃n+1.

(ii) It is shown by induction onn ≥ 0 that

If ([x], xT) ∈ Θ̂G/∼‖T then (x, xT) ∈ Xn = Θn
G‖T (Q × QT) . (22)

Base case. (x, xT) ∈ Q × QT = Θ0
G‖T (Q × QT) = X0.

Inductive step. Assume the statement holds forn ≥ 0, i.e, if ([x], xT) ∈
Θ̂G/∼‖T , it holds that(x, xT) ∈ Xn. Now let ([x], xT) ∈ Θ̂G/∼‖T . It
must be shown that(x, xT) ∈ Xn+1 = Θn+1

G‖T (Q × QT) = Θcont
G‖T (Xn) ∩

Θnonb
G‖T (Xn).

To see that(x, xT) ∈ Θcont
G‖T (Xn), let υ ∈ Σu and (x, xT)

υ
→ (y, yT).

Then x
υ
→ y and xT

υ
→ yT . This implies [x]

υ
→ [y] and ([x], xT)

υ
→

([y], yT). Since([x], xT) ∈ Θ̂G/∼‖T andυ ∈ Σu, it follows that([y], yT) ∈

Θ̂G/∼‖T . Then by inductive assumption(y, yT) ∈ Xn, and thus(x, xT) ∈
Θcont

G‖T (Xn).

19

Next it is shown that(x, xT) ∈ Θnonb
G‖T (Xn). Since([x], xT) ∈ Θ̂G/∼‖T ,

there exists a path

([x], xT) = ([x0], x
T
0)

σ1→|Θ̂G/∼‖T
([x1], x

T
1)

σ2→|Θ̂G/∼‖T
· · ·

σk→|Θ̂G/∼‖T
([xk], x

T
k)

ω
→|Θ̂G/∼‖T

([xk+1], x
T
k+1) . (23)

Consider the first transition in (23). Since[x0]
σ1→ [x1], there existsx′

0 ∈

[x0] andx′
1 ∈ [x1] such thatx′

0
σ1→ x′

1. The preconditions of lemma 11
apply to this transition: by inductive assumption,Xn can be used as the
setX in the lemma, and furthermore([x′

0], x
T
0) = ([x0], x

T
0) ∈ Θ̂G/∼‖T ,

([x′
1], x

T
1) = ([x1], x

T
1) ∈ Θ̂G/∼‖T , (x′

0, x
T
0)

σ1→ (x′
1, x

T
1), andx ∼ x1 ∼

x′
1. Therefore, there existt1, u1 ∈ Υ∗ andx′′

1 ∈ Q such that(x, xT) =

(x, xT
0)

t1PΩ(σ1)u1
−→ |Xn (x′′

1, x
T
1) andx1 ∼ x′

1 ∼ x′′
1.

Sincex′′
1 ∈ [x1], the same logic applies to the second transition in (23),

so there existt2, u2 ∈ Υ∗ andx′′
2 ∈ Q such that(x′′

1, x
T
1)

t2PΩ(σ2)u2
−→ |Xn

(x′′
2, x

T
2) and x2 ∼ x′′

2. By induction, it follows that there exist strings
t1, u1, . . . , tk, uk, tk+1 ∈ Υ∗ and statesx′′

1, . . . , x
′′
k ∈ Q such that

(x, xT)
t1PΩ(σ1)u1

−→ |Xn (x′′
1, x

T
1)

t2PΩ(σ2)u2
−→ |Xn · · ·

tkPΩ(σk)uk
−→ |Xn (x′′

k, x
T
k)

tk+1ω
−→ |Xn . (24)

Therefore,(x, xT) ∈ Θnonb
G‖T (Xn).

Thus, it has been shown that(x, xT) ∈ Θcont
G‖T (Xn) ∩ Θnonb

G‖T (Xn) = Xn+1.
�

In lemma 12, it is proven that synthesis observation equivalence implies state-
wise synthesis equivalence, and in proposition 5 it is shown that state-wisesyn-
thesis equivalence implies synthesis abstraction. Therefore, the proof of theorem 8
follows directly from lemma 12 and proposition 5.

5.2 Proof of Uncontrollable Observation Equivalence

By restricting the set of local events to only uncontrollable local events, synthe-
sis observation equivalence becomes a special case of uncontrollable observation
equivalence.

Lemma 13 Let G = 〈Σ, Q,→, Q◦〉 be an automaton, and let∼ be an uncon-
trollable observation equivalence onG with respect toΥ ⊆ Σ as in definition 15.
Then∼ is a synthesis observation equivalence onG with respect toΥ.

20

Proof. Let ∼ be an uncontrollable observation equivalence onG with respect
to Υ. It is enough to show that the two conditions in definition 16 are satisfied.
Therefore, letx1 ∼ x2.

(i) Let σ ∈ Σc such thatx1
σ
→ y1. Since∼ is an uncontrollable observation

equivalence onG, there existy2 ∈ Q andt2 ∈ Υ∗ such thatx2
t2PΩ(σ)
−→ y2

andy1 ∼ y2. SinceΥ∩Σc = ∅, there does not exist any prefixp2 ⊑ t2 ∈ Υ∗

with p2 ∈ Σ∗Σc. Therefore, the second part of condition (i) in definition 16
is trivially satisfied.

(ii) Given thatΥ ⊆ Σu, condition (ii) in definition 15 is equal to condition (ii)
in definition 16. �

In lemma 13, it is proven that uncontrollable observation equivalence implies
synthesis observation equivalence, which implies synthesis abstraction bytheo-
rem 8. Therefore, the proof of theorem 7 follows directly from lemma 13 and
theorem 8.

5.3 Proof of Bisimulation

Considering the set of local events as an empty set for uncontrollable observation
equivalence results in bisimulation.

Lemma 14 Let G = 〈Σ, Q,→, Q◦〉 be an automaton and let≈ ⊆ Q × Q be
a bisimulation onG as in definition 14. Then≈ is an uncontrollable observation
equivalence onG with respect toΥ = ∅.

Proof. Let≈ be a bisimulation onG. It is enough to show that the two conditions
in definition 15 are satisfied. Therefore, letx1 ≈ x2.

(i) Let σ ∈ Σc such thatx1
σ
→ y1. Since≈ is a bisimulation onG, there

existsy2 such thatx2
σ
→ y2 andy1 ≈ y2. Clearly, given thatPΣ(σ) = σ,

condition (i) in definition 15 is satisfied witht2 = ε.

(ii) Let σ ∈ Σu such thatx1
σ
→ y1. Since≈ is a bisimulation onG, there

existsy2 such thatx2
σ
→ y2 andy1 ≈ y2. Clearly, given thatPΣ(σ) = σ,

condition (ii) in definition 15 is satisfied witht2 = u2 = ε. �

In lemma 14, it is proven that bisimulation implies uncontrollable observation
equivalence, which implies synthesis abstraction by theorem 7. Therefore, the
proof of theorem 6 follows directly from lemma 14 and theorem 7.

21

put2

B2

M2

fetch3get
2get

1
fetch4

put1

B1

put3

H3

put4

H4

H1 H2
B3 B4

Sub1 Sub2 Sub3 Sub4

M1

fetch2

input1

get
3

get
4

fetch1

input2 output2

output1

Figure 5: Manufacturing system overview.

6 Example

In this section, the proposed method is applied to a manufacturing example pre-
viously studied in [8]. Figure 5 gives an overview of the system, and figure 6
shows automata models. The manufacturing system consists of two machines (M1

andM2) for processing workpieces and four subsystems (Sub1, . . . ,Sub4) for
moving and buffering workpieces in transit between the machines. Each subsys-
tem Subi consists of a buffer (Bi) that can store up to two workpieces, and a
handler (Hi) that fetches a workpiece from a machine and puts it into the buffer.

The manufacturing system can produce two types of workpieces. Type Iwork-
pieces are first processed byM1 (action input1). Then they are passed through
Sub1: they are fetched byH1 (fetch1) and placed intoB1 (put1). Next, they are
processed byM2 (get1), fetched byH4 (fetch4) in Sub4 and placed intoB4 (put4).
Finally, they are processed byM1 once more (get4), and released (output1). Sim-
ilarly, type II workpieces are first processed byM2, passed throughSub3, further
processed byM1, passed throughSub2, and finally processed byM2.

In the first step of compositional synthesis, eventsoutput1 andoutput2 are
controllable local events inM1 andM2. Since both conditions of synthesis ob-
servation equivalence are fulfilled, it can be applied toM1 andM2, resulting in
abstractionsM̃1 andM̃2 as shown in figure 7.

The remaining automata cannot be abstracted, so the next step is to compose
the automata in each subsystem. After composingHi andBi, eventputi becomes
an uncontrollable local event, and uncontrollable observation equivalence becomes
applicable. The compositionHi ‖Bi and the resulting abstracted automaton,HB i,
are shown in figure 7.HB i is obtained by mergingq1 with q2 andq3 with q4.

The final step of compositional synthesis is to compute a supervisor forM̃1,
M̃2, andHB i, i = 1, . . . , 4. The calculated supervisor̃S has685 states, and the

22

M1

q0

q1

q2

q3

fetch1

fetch2

get3

get4

input1

output1

M2

q0

q1

q2

q3

fetch4

fetch3get1

get2

input2

output2

Hi q0

q1

putifetchi

Bi q0

q1

q2

⊥

puti

puti

puti

geti

geti

Figure 6: Automata for manufacturing example.

M̃1

q0

q1

q2

fetch1

fetch2

get3

get4

input1

output1

M̃2

q0

q1

q2

fetch4

fetch3get1

get2

input2

output2

Hi ‖ Bi q0

q1 q2

q3 q4

q5

fetchi

fetchi

fetchi

⊥

puti

puti

puti

geti

geti

geti geti

HB i
q0

q1

q2

q3

geti

geti

geti

puti

puti

puti

⊥

fetchi

fetchi

fetchi

Figure 7: Abstractions of manufacturing system.

23

modular supervisor for the system is̃S ‖ B1 ‖ B2 ‖ B3 ‖ B4. Composing this
supervisor with the system results in the least restrictive monolithic supervisor for
the system, an automaton with9216 states.

7 CONCLUSIONS

Three variations of observation equivalence are investigated for their applicabil-
ity in the compositional synthesis framework ofsynthesis abstraction[14], which
allows the synthesis of least restrictive modular supervisors for discreteevent sys-
tems. While standard observation equivalence is not useful for synthesis abstrac-
tion, the stronger conditions ofbisimulation, uncontrollable observation equiva-
lence, andsynthesis observation equivalenceare shown to preserve synthesis ab-
straction and guarantee the construction of a correct modular supervisor. It is also
shown that observation equivalence based synthesis abstraction provides more ab-
straction than natural projection using local control consistency [16], and an exam-
ple demonstrates the potential of state-space reduction using the proposedabstrac-
tions.

References

[1] K. Åkesson, H. Flordal, and M. Fabian. Exploiting modularity for synthesis
and verification of supervisors. InProceedings of 15th IFAC World Congress
on Automatic Control, Barcelona, Spain, 2002.

[2] C. G. Cassandras and S. Lafortune.Introduction to Discrete Event Systems.
Kluwer Academic Publishers, September 1999.

[3] Jaana Eloranta. Minimizing the number of transitions with respect to obser-
vation equivalence.BIT, 31(4):397–419, 1991.

[4] Lei Feng and W. M. Wonham. Computationally efficient supervisor design:
Abstraction and modularity. InProceedings of the 8th International Work-
shop on Discrete Event Systems, WODES’06, pages 3–8, Ann Arbor, MI,
USA, July 2006.

[5] Hugo Flordal, Robi Malik, Martin Fabian, and KnutÅkesson. Compositional
synthesis of maximally permissive supervisors using supervision equivalence.
Discrete Event Dynamic Systems: Theory and Applications, 17(4):475–504,
2007.

[6] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

24

[7] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley, 2001.

[8] Feng Lin and W. Murray Wonham. Decentralized control and coordination
of discrete-event systems with partial observation.IEEE Transactions on
Automatic Control, 35(12):1330–1337, December 1990.

[9] Petra Malik, Robi Malik, David Streader, and Steve Reeves. Modularsynthe-
sis of discrete controllers. InProceedings of 12th IEEE International Con-
ference on Engineering of Complex Computer Systems, ICECCS ’07, pages
25–34, Auckland, New Zealand, 2007.

[10] Robi Malik and Hugo Flordal. Yet another approach to compositionalsyn-
thesis of discrete event systems. InProceedings of the 9th International
Workshop on Discrete Event Systems, WODES’08, pages 16–21, G̈oteborg,
Sweden, May 2008.

[11] Robi Malik, Hugo Flordal, and Patrı́cia N. Pena. Conflicts and projections.
In Proceedings of 1st IFAC Workshop on Dependable Control of Discrete
Systems, DCDS ’07, pages 63–68, Paris, France, June 2007.

[12] Robi Malik, David Streader, and Steve Reeves. Fair testing revisited: A
process-algebraic characterisation of conflicts. In Farn Wang, editor, Pro-
ceedings of 2nd International Symposium on Automated Technology for Ver-
ification and Analysis, ATVA 2004, volume 3299 ofLNCS, pages 120–134,
Taipei, Taiwan, October–November 2004. Springer-Verlag.

[13] Robin Milner.Communication and concurrency. Series in Computer Science.
Prentice-Hall, 1989.

[14] Sahar Mohajerani, Martin Fabian, Robi Malik, and Simon Ware. Composi-
tional synthesis of discrete event systems using synthesis abstraction. InPro-
ceedings of the 23rd Chinese Control and Decision Conference, CCDC 2011,
Mianyang, China, 2011. to appear.

[15] Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event
systems.Proceedings of the IEEE, 77(1):81–98, January 1989.

[16] Klaus Schmidt and Christian Breindl. On maximal permissiveness of hierar-
chical and modular supervisory control approaches for discrete event systems.
In Proceedings of the 9th International Workshop on Discrete Event Systems,
WODES’08, pages 462–467, G̈oteborg, Sweden, May 2008.

25

[17] Raoguang Song and Ryan J. Leduc. Symbolic synthesis and verification of
hierarchical interface-based supervisory control. InProceedings of the 8th
International Workshop on Discrete Event Systems, WODES’06, pages 419–
426, Ann Arbor, MI, USA, July 2006.

[18] R. Su and W. Murray Wonham. Supervisor reduction for discrete-event sys-
tems.Discrete Event Dynamic Systems: Theory and Applications, 14(1):31–
53, January 2004.

[19] Rong Su, Jan H. van Schuppen, and Jacobus E. Rooda. Modelabstraction of
nondeterministic finite-state automata in supervisor synthesis.IEEE Trans-
actions on Automatic Control, 55(11):2527–2541, November 2010.

[20] K. C. Wong and W. M. Wonham. Modular control and coordination of
discrete-event systems.Discrete Event Dynamic Systems: Theory and Ap-
plications, 8(3):247–297, October 1998.

[21] K. C. Wong and W. M. Wonham. On the computation of observers in discrete-
event systems.Discrete Event Dynamic Systems: Theory and Applications,
14(1):55–107, 2004.

26

