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Abstract 

 

Lake Waikaremoana is a high-altitude, large-volume lake located within the 

rugged terrain of the Urewera National Park. At the lake outflow a rapid elevation 

change of nearly 450 metres in 8 kilometres facilitates the lake‟s use as the upper 

intake portal for the Waikaremoana Hydro Power Scheme. At the time of this 

study, Genesis Energy operated the Waikaremoana Power Scheme in response to 

a water availability model based on daily lake level differencing from which daily 

generation capacity is predicted, allowing strategic bidding into the electricity 

market. However, when river flows are low this model is subject to error, as small 

changes in lake level sometimes cannot be determined accurately beyond 

background noise on daily timescales.  

This project develops a method of estimating both current day and day-ahead 

water availability of Lake Waikaremoana, independent of lake levels using simple 

hydrological models, thereby improving operational efficiency of the 

Waikaremoana Power Scheme. The forecasting is developed specifically for the 

lower inflow conditions when the lake level differencing approach is most error 

prone. 

It has long been recognised that a significant volume of Lake Waikaremoana 

water leaks through the ancient landslide dam which created the lake. Previous to 

this study, it was considered that an inaccurate estimation of this leakage rate 

combined with evaporative losses might contribute to the error within the existing 

water availability model. A modified catchment water balance and simple 

regression approach was applied to Lake Waikaremoana to estimate the lake water 

loss not accounted for by recorded outflows. Estimating this unrecorded loss 

translates to estimating the intercept of a linear regression relation, where the 

assumption is made that there is a linear relationship between the discharge of the 

Aniwaniwa Stream and the net lake water balance (excluding known outflows) 

under low inflow conditions. On the basis of the confidence intervals about the 

intercept, the balance term (constant background lake inflow minus leakage and 

evaporative loss) is estimated to within the range of 2.89 and -1.17 m
3
s

-1
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suggesting that the unknown portion of leakage and evaporative losses are not 

significant contributors to model error. A useful consequence of the regression 

was that regression coefficients could be used as a means of upscaling to give net 

lake storage change for low-flow conditions. This enabled day-ahead water 

availability forecasts to be acquired from Aniwaniwa Stream discharge day-ahead 

forecasts. 

Two forecasting methodologies are developed to forecast the Aniwaniwa Stream 

discharge: a finite mixture rainfall-runoff model, and a multiple linear regression 

method. The rainfall-runoff model is formulated initially as a many-parameter 

model which is then subjected to a lasso-based model simplification concurrent 

with model calibration. The simplified model forecasts next-day inflows by using 

a weighted linear combination of hydrograph forms which best match the 

previous observed discharges in the calibration set where the various weights are 

linear functions of recent rainfalls. An auto-recalibrating version of the rainfall-

runoff model was also developed where model simplification and calibration is 

carried out for each forecast, with the greatest fitting weights most likely on the 

most recent discharges to allow for changing catchment conditions.  

The rainfall-runoff model was calibrated under a range of lasso-based parameter 

elimination pressures to determine the number of parameters which gave the best 

validation fit as quantified by the Nash-Sutcliffe fit. The highest validation fit 

using the original rainfall-runoff model was 50.7%. Using the auto-recalibrating 

rainfall-runoff model a slightly better maximum validation fit of (52.3%) occurred 

at an elimination pressure giving 14 final parameters from an initial 300. 

However, a validation fit which is not much lower (46.8%) is achieved at a higher 

elimination pressure yielding just 6 final parameters, demonstrating a trade-off 

between model simplification and validation fit. As expected, the rainfall-runoff 

model was more successful at predicting low to medium flows because 

forecasting focus was on the lower flows. Higher discharges were consistently 

under-predicted. Validation fits of the rainfall-runoff model could probably be 

improved by increasing the range of possible hydrograph forms available for 

selection at the expense of model simplicity. 
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The multiple regression technique was applied to forecast „next-day‟ Aniwaniwa 

inflows in a simpler way, in this case using just current daily rainfall and 

discharges as independent variables. The discharge forecasts derived from both 

techniques are then scaled using the regression equation mentioned earlier to give 

net storage change estimates into Lake Waikaremoana for low to medium inflows. 

The regression approach was the more successful for overall day-ahead 

Aniwaniwa flow forecasts. The final prediction for current day storage change is: 

ΔS = 0.399(AQ) + 0.59      [1] 

Where AQ is the observed daily total discharge of the Aniwaniwa Stream. Day-

ahead Aniwaniwa Stream forecasts can be approximated by equation [2] then 

scaled to storage change using equation [1] 

  AQ(Next-day) = 0.095(Train) + 0.558(TQ) + 0.611   [2] 

Where Train is current day total rainfall and TQ is current day total discharge. This 

single equation gave higher calibration fits than separate regressions based on 

season. Using only current rainfall and current discharge as independent variables, 

the Nash-Sutcliffe validation fits were as high as 66%.  

The linear regression approach gives the most useful inflow estimates to Lake 

Waikaremoana for the current day, based on upscaling the Aniwaniwa Stream 

discharges for low to medium flows. Estimating the day-ahead lake inflows is 

then equated to estimating day-ahead Aniwaniwa discharges for conditions 

outside of high flows. For this day-ahead forecasting the regression technique 

proved better than the rainfall-runoff models. It is thus recommended that the 

multiple regression technique is applied at the Waikaremoana Power Scheme. 
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Chapter 1 - Introduction 

 

1.1 Background 

The hydro power potential of Lake Waikaremoana has been recognised since the 

19
th

 century (Natusch, 2004). In 1904 Hay (cited in McPike, 1980) reported of the 

power generation opportunity that would exist at Waikaremoana should leakage 

through its naturally formed landslide dam be controlled. An indication of the 

amount of generation that could be achieved, and a layout for a power scheme, 

was produced by Anderson in 1916 (cited in McPike, 1980).  

Tuai power station, the first of the three stations to be built which make up the 

Waikaremoana scheme, was commissioned in 1929 with an installed capacity of 

60 Megawatts (MW). Piripaua power station was later commissioned in 1943 with 

an installed capacity of 42MW and Kaitawa power station was commissioned in 

1948 with an installed capacity of 36MW. At maximum capacity the scheme is 

capable of contributing 138MW to the national grid (Genesis Energy, 2006, 

Natusch, 2004). The completed scheme (Figure 1) transports water from Lake 

Waikaremoana via tunnels to Kaitawa Power Station before discharging into Lake 

Kaitawa, the water then passes through Tuai Power Station and is discharged into 

Lake Whakamarino. From there, water is transported to Piripaua Power Station by 

tunnel and discharged into the Waikaretaheke River (Natusch, 2004). 

In the 1980s a substantial restructuring of the New Zealand electricity industry 

was undertaken, with generation and transmission assets transferred to the 

Electricity Corporation of New Zealand (ECNZ), which was created under the 

State Owned Enterprises Act 1986. In the 1990s the ECNZ was split into four 

companies, the privatised Contact Energy, and three state owned enterprises: 

Meridian Energy, Genesis Energy, and Mighty River Power. Genesis Energy 

obtained the Waikaremoana Power Scheme as part of their portfolio in 2000. 

The Waikaremoana Power Scheme is an important part of North Island 

generation. The scheme provides voltage support for Gisborne and Tokomaru Bay 
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Figure 1: Cross Section of Waikaremoana Power Scheme showing important features. Bottom image follows on from the right of the top image. Modified from Natusch, 

(2004). 
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Transpower transmission circuits. It is also in the best position to provide power 

to the East Cape area should it lose its connection to the national grid. The 

proximity of the Waikaremoana Scheme in relation to Gisborne results in lower 

transmission losses, somewhat reducing the overall national need for generation 

(Genesis Energy, 2009). 

A number of constraints exist in the Waikaremoana Scheme which means that 

effective water management must be applied. These constraints include in 

particular, the location of the scheme in the conservation land of the Urewera 

National Park. Also the small storage capacity of Lakes Kaitawa and 

Whakamarino requires the three stations to be run in tandem. Another constraint 

derives from leakage of the natural dam which holds back Lake Waikaremoana. 

This leakage water was originally used to supply the Tuai and Piripaua power 

stations prior to the commission of the Kaitawa power station. This substantial 

leakage through the dam has the ability to quickly fill Lake Kaitawa, thus the 

scheme must constantly be run at a minimum of 12 MW (Genesis Energy, 2006). 

The daily operational efficiency of the Waikaremoana scheme requires estimation 

of lake water availability for hydro power generation on a per day basis. At the 

time of this study, net daily water availability of Lake Waikaremoana is estimated 

using a mathematical model of net storage change obtained from lake water level 

changes. This model uses daily lake water level differencing after correcting for 

the volume extracted for power generation and known lake losses to estimate net 

daily lake inflows. The model is used as opposed to direct measurement of river 

inflows due to the impracticality of gauging the large number of small tributaries 

and direct groundwater inflows which supply the lake. The water availability 

estimate is sometimes subject to error when changes in lake level are small, giving 

rise to negative estimates which may indicate errors in level differencing or 

inaccurate estimation of leakage. Under low flow conditions the unknown portion 

of lake losses may be not insignificant relative to inflows, thus in these instances 

the model approximates storage change. 

The model includes an estimation of the leakage rate through the natural dam 

based on measurement of the discharge of the Waikaretaheke Stream at Kaitawa 
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weir, a stream almost entirely derived from leakage and it is possible that an 

inaccurate estimation of leakage loss which does not pass though the weir could 

cause some of the error within the water availability model. Also, when there is 

little change in lake level the effect of brief water level fluctuations which result 

from waves and wind set up becomes large relative to lake level differences.  

Genesis Energy therefore required an improved water availability model for low 

flows to allow increased operational efficiency of the Waikaremoana hydro power 

scheme as measured by income generated. Optimal income generation requires 

accurate estimates of how much electricity can be generated when bidding into the 

electricity market particularly for low flow conditions.  

 

1.2 Objectives 

The main intention of this thesis is to create an improved net daily water 

availability model for Lake Waikaremoana to better estimate how much power 

can be generated from the Waikaremoana power scheme on a given day under low 

flow conditions. This will be achieved through three specific objectives: 

1. Create an improved low flow model of river inflows into Lake 

Waikaremoana using two forward (next-day) prediction approaches: 

multiple regression and a lasso simplified rainfall-runoff model. 

2. Make a water balance based estimate of leakage loss from Lake 

Waikaremoana and detect any possible difference from earlier estimates. 

3. Combine the results of objectives 1 and 2 to create an improved estimation 

of net daily water availability under low flow conditions. 

 

1.3 Thesis Outline 

This thesis is structured into a number of chapters on different aspects of this 

study. 

 

Chapter 2 presents an overview of the Lake Waikaremoana catchment including 

its location, the geomorphology, geology and climate. It presents detail on the 
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origin of Lake Waikaremoana and its relevance to this study through the 

formation of a landslide dam and associated natural leakage. Chapter 2 also 

describes the findings of previous studies on local catchment hydrology and 

catchment modifications for hydro power. 

 

Chapter 3 describes the data available for this study from various sources. 

 

Chapter 4 investigates total lake water losses from Lake Waikaremoana through 

the combined effects of evaporative loss and leakage of lake water through Lake 

Waikaremoana‟s natural dam. This estimation is derived from a simple 

hydrological model based on a modified catchment water balance equation and 

linear regression. 

 

Chapter 5 utilises a regression relation developed as a consequence of 

hydrological modelling in Chapter 4 to estimate net storage change of Lake 

Waikaremoana under low flow conditions, based on the discharge of the 

Aniwaniwa Stream. 

 

Chapter 6 involves the use of two finite mixture rainfall-runoff models for 

forecasting future inflows of the Aniwaniwa Stream into Lake Waikaremoana, 

which can then be extrapolated to the wider Waikaremoana catchment using the 

regression relation developed in Chapter 5.  

Chapter 7 uses a multiple regression technique to forecast next-day Aniwaniwa 

Stream inflows as a simple method of inflow estimation, which may be more 

practical for operational use at the Waikaremoana Power Scheme. 

Chapter 8 compares the results from the three techniques used to model day-ahead 

inflows of the Aniwaniwa Stream into Lake Waikaremoana. Chapter 8 also 

compares the inflow estimates of the three models scaled to net storage change  to 

a storage change record in order to determine which method provides both the 

most accurate and practical method for operational use at the Waikaremoana 

Power Scheme.  

Chapter 9 presents conclusions and recommendations.
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Chapter 2 - Study Area 

2.1 Introduction 

This chapter presents an overview of previous studies and the characteristics of 

the Lake Waikaremoana area. It focuses on aspects of the study area which are 

particularly relevant to hydro electric development and operation, and leakage 

through the natural dam. 

Lake Waikaremoana, „the sea of rippling waters‟ is situated 80 km south east of 

Lake Taupo in the North Island of New Zealand among the rugged unmodified 

terrain of the Urewera National Park (Urewera National Park Board, 1975). It lies 

at approximately 600m elevation above sea level amid thick temperate rainforest 

(Koyama et al., 1989, Matthews, 1992) (Figure 2). The large surface area and high 

altitude facilitates the use of Lake Waikaremoana for hydro power (Keam, 1958). 

The three power stations at Waikaremoana utilise the steep fall of nearly 450 m in 

8 km to generate electricity which is distributed to the national grid for public 

supply (Read, 1979). 

2.2 Geomorphology 

Lake Waikaremoana is a drowned valley system with topography at its eastern 

end consistent with infilling and damming by debris from a large ancient landslide 

(Main, 1976). The catchment is steep, with 65% of the catchment classified as 

moderately steep to steep (slopes of 21° -35° ) and 10% of the catchment 

classified as very steep with slopes greater than 35°  (Newnham et al., 1998). The 

elevations in the Urewera National Park are typically high, with maximum 

elevations up to 1300m above sea level (Matthews, 1992). There are just two 

minor wetlands in the Waikaremoana catchment (Newnham et al., 1998). 
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Figure 2: Location of Lake Waikaremoana within New Zealand (a) and Northern Hawkes Bay (b). (c) shows a detailed view of Lake Waikaremoana where Lake 

Waikaremoana catchment is outlined in red and blue where blue is the Aniwaniwa sub-catchment. (Source: InfoMap 266 New Zealand, NZMS 265-1 North 

Island, NZMS 260 W18 Waikaremoana).

(b) 

(c) 

(a) 
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While evidence of debris avalanches exists in the form of erosion scarps, other 

erosion is minimal due to the presence of dense native forest cover (Urewera 

National Park Board, 1976). Sediment from debris avalanches reaches Lake 

Waikaremoana during storms via the Hopuruahine and Mokau Streams whose 

catchments have major erosion features which are not as prevalent in other, less 

steep catchments (Matthews, 1992). Lake Waikaremoana and Lake Whakamarino 

both act as sediment traps. At Lake Whakamarino high sediment accumulation 

may limit the operational flexibility and the economics of the Waikaremoana 

hydro power scheme. This occurred in 1986 when dredging of Lake 

Whakamarino was required (Chester, 1986).  

2.3 Geology 

The Urewera National Park landforms are geologically young, but basement rocks 

range from Urewera Greywacke from the Upper Jurassic period through to tertiary 

surface geology (Grindley et al., 1960, Johnson, 1976). The park is composed of a 

depression named the Wairoa Basin, a mountain backbone, and part of the 

Rotorua-Taupo volcanic zone (Johnson, 1976) (Figure 3). 

The Waikaremoana area is underlain by uplifted marine sedimentary rocks with a 

stratigraphic thickness of at least 12,000 m (Grindley et al., 1960). The dominant 

lithologies present are siltstone, mudstone and sandstone, where the sandstone 

commonly contains calcareous beds (Figure 4). The sedimentary sequence dips to 

the south-east at angles up to 20°. Several locally significant faults with north-east 

trends similar to the major faults of the North Island are present. The steep 

topography of the area is a result of its relatively recent uplift. Much of the area is 

mantled with volcanic tephra from the Taupo Volcanic Zone (Read et al., 1992). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Location of Lake Waikaremoana in relation to the physiographic units of the Wairoa Basin, mountain axis and the Rotorua-Taupo Volcanic Zone. Modified from 

Urewera National Park Board (1976).
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Figure 4: Simplified stratigraphic column of the Waikaremoana area (based on Grindley et al., 

1960) 
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2.4 Origin of Lake Waikaremoana 

The origin of Lake Waikaremoana was unknown for a number of years, 

prompting discussion in the scientific literature. The first study of its origin was 

carried out by Smith in 1876 (cited in Ongley, 1932) who simply concluded that 

its origin was „not glacial‟. Later in 1876 Cox of the Geological Survey (cited in 

Ongley, 1932) found that its origin was „not glacial and not volcanic‟. In 1892 

Hector (cited in Ongley, 1932) concluded that the lake occupied the depression of 

the downthrow side of a great fault. This was disproved in 1897 when Smith 

(cited in Ongley, 1932) recognised that the origin of the lake was a large slip. 

Smith commented that this was „obvious‟ despite his earlier comments on the 

origin as simply „not glacial‟. In 1912 Marshall suggested that Lake 

Waikaremoana had been formed by solution of rock leaving large cavities into 

which the overlying rock collapsed. This suggestion was made despite never 

having been to the lake (cited in Ongley, 1932). Lambert challenged the idea that 

the lake origin was „not volcanic‟ in 1925 concluding that it was a crater lake 

formed by a „great volcanic outburst‟ and that landslides had contributed to the 

formation of the basin (cited in Ongley, 1932). 

Today it is accepted that Lake Waikaremoana was formed following a landslide, 

possibly triggered by a large earthquake, which blocked the flow of the 

Waikaretaheke River forming a natural dam (Davies et al., 2006, Riley and Read, 

1992) (Figure 5). The landslide has an area of 18 km
2
 and a volume of 

approximately 2.2   10
9
 m

3
, ranking it as one of the biggest landslides in the 

world (Davies et al., 2006). The landslide dam is approximately 400 m thick, with 

an average surface slope of 6° and a maximum thickness of 425m. It extends for 8 

km along the Waikaretaheke Valley (Riley and Read, 1992). The landslide debris 

is made up of tertiary age sandstone and siltstone blocks up to tens of meters in 

diameter supported by a fine grained matrix of sand, silt and pumice. The blocks 

are randomly oriented and vary in shape (Read et al., 1992). Numerous large 

cavities exist between clasts (Figure 6). The sliding surface of the block is thought 

to be within a sandstone layer (Davies et al., 2006).  
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Figure 5: The natural dam at Lake Waikaremoana formed by an ancient landslide showing intact 

block (red), backscarp (yellow) and debris (blue). Modified from Riley and Read (1991) and 

Davies et al., (2006).  

While landslide lakes are generally short lived, Lake Waikaremoana is known to 

be at least 2,200 years old, based on carbon dating of dead trees found within the 

lake (Matthews, 1992, Natusch, 2004, Read et al., 1992, Riley and Read, 1992). 

However, the presence of the Waimihia Tephra on the landslide debris and 

exposed slide scarp shows that the landslide occurred at least 3,300 years ago 

(Allan et al.,2002, Soons and Selby, 1992). 

In 1927 Marshall recognised that the landslide occurred in two phases. The first 

phase was composed of a rock avalanche which blocked the Waikaretaheke 

Valley. This was followed by a block glide which fractured as it was brought to 

rest, creating pressure ridges (Riley and Read, 1992). The south eastern part of the 

landslide dam is formed from landslide debris and intact block forms the north 

west side. It was later suggested that the landslide occurred in three stages (Read, 

1979).  

Backscarp 

Intact Block 

Landslide debris 



  CHAPTER TWO                                                                                                             STUDY AREA 

14 

 

 

 

 

 

 

 

 

 

 

Figure 6: a) An example of the numerous cavities within the landslide debris b) example of the 

large blocks which make up the landslide debris (note scale). 

The first phase is differentiated from the second by its increased mobility which 

was identified by its morphology, wider areal extent and smaller thickness of 

debris (Read, 1979). 

The landslide barrier appears to leak substantially though its upper levels. Prior to 

hydro electric development the leakage rate was estimated to be as high as           

12 m
3
s

-1
. This was reduced to approximately 5 m

3
s

-1
 by upstream sealing works in 

the Te Whara Whara Bay area (Riley and Read, 1992). 

 

2.5 Climate 

Lake Waikaremoana has a temperate climate with a mean annual temperature of 

11°C. Summer daily maximum temperatures are approximately 25°C and winter 

daily minima are approximately-5°C. The catchment is a high rainfall area, with 

annual rainfall at the lake outlet exceeding 2000 mm/year, tending to occur as 

infrequent high intensity events (Table 1). Snowfall and ground frosts occur 

regularly in winter months. The predominant strong wind directions are from the 

north and north west sectors (Newnham et al., 1998). 

aa))  bb))  
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Table 1: Annual mean, minimum, and maximum annual rainfall in millimetres for sites gauged by 

Hawkes Bay Regional Council in the Waikaremoana area. 

Catchment 

Record 

begins 

Mean annual 

rainfall (mm) 

Min annual 

rainfall (mm) 

Max annual 

rainfall (mm) 

Erepeti Met 1928 1825.1 1165.3 2619.7 

Aniwaniwa 1977 2232.4 1750.5 2892.7 

Nga Tuhoe 1985 1683.6 1263.5 2255.0 

Upper Waiau 1985 1224.4 745.5 1547.5 

Bushy Knoll 1986 1447.4 785.0 2352.5 

Rocky Pad 1989 2144.2 1575.2 2754.0 

Mt Manuoha 1989 2879.7 2164.0 2352.5 

Waimaha 2000 1215.9 948.5 1466.3 

 

Evaporation from Lake Waikaremoana has been estimated by Finklestein (1973) 

who calculated open water evaporation rates for New Zealand using a modified 

Penman equation. Finkelstein (1973) gives evaporation rates for a large number of 

sites in New Zealand, including Onepoto, Waikaremoana. At Lake Waikaremoana 

evaporation was measured directly using an electric type sunken pan (Table 2). 

Finkelstein (1973) found that over the period of a year, pan evaporation is 

generally consistent with lake evaporation. 

Table 2: Average monthly lake evaporation and total annual evaporation in millimetres. Modified 

from Finkelstein (1973). 

Month 

Average Monthly 

Evaporation (mm) Month 

Average Monthly 

Evaporation (mm) 

January 91 July 22 

February 68 August 25 

March 58 September 33 

April 40 October 50 

May 30 November 75 

June 22 December 81 

Total 
 

 595 
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2.6 Hydrology 

Lake Waikaremoana is the North Island‟s deepest lake with a maximum depth of 

248 m, an average depth of 93 m, and a surface area of 56 km
2
 (Riley and Read, 

1992). In terms of physical classification the lake has been defined as warm 

monomictic and oligotrophic (Main, 1976).  

The Lake Waikaremoana catchment consists of a large number of small streams 

(approximately 114) which flow into the lake. The nature of the terrain and the 

large number of streams mean that inflows are impractical to measure directly. 

However, a low-flow study carried out by Hawkes Bay Regional Council found 

that of the largest streams in the catchment, the highest low-flow specific 

discharges occurred in the Aniwaniwa and Mokau catchments (9.8 l/s/km
2
 and 

13.8 l/s/km
2
 respectively). It was thought that the highest low flow specific 

discharges occurred in the Aniwaniwa and Mokau catchments due to high 

baseflow produced by the fractured nature of the surface of the landslide which 

formed Lake Waikaremoana. The lowest specific discharges occurred where the 

subsurface geology was hard, impermeable unfractured rock (Black, 1992). 

While Lake Waikaremoana currently has no natural surface channel outflow, lake 

overflow occurred approximately 50% of the time prior to hydroelectric 

development (Read, 1979). It has long been recognised that outflow also occurs in 

the form of lake leakage through the natural dam, and exits as springs and streams 

on the landslide surface. The leakage is thought to travel through cavities in the 

landslide debris formed by the haphazard placement of very large clasts during the 

lake-forming landslide event. Water passage through the natural dam has been 

found to be complex and widely dispersed. Tracer studies have produced 

breakthrough curves with long tails and lag times, suggesting that each spring 

may be fed by a number of leaks with multiple and intersecting paths (McPike, 

1980). Tracer testing carried out in 1931 and 1932 found that the dispersion of 

water from individual leaks along different fractures was considerable and 

appeared to be controlled by fracture direction (Read, 1979). 
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Riley and Read (1992) hypothesised that water conduits which exist in open 

fissures or bedding planes may be constricted at their downstream limits by 

landslide debris and could cause high pressures to develop within or beneath the 

landslide mass, resulting in artesian fissure pressures.  

Read et al., (1979) divided the springs in the Waikaremoana area into „warm 

springs‟ and „cold springs‟. Warm springs were found to have up to a 5 degree 

annual temperature variation, while cold springs had a smaller temperature range, 

in the order of 2 degrees (McPike, 1980). Warm springs (also known as primary 

springs) included all major springs located within 300 m of the lake outlet at Te 

Whara Whara Bay. The water in these springs was thought to have travelled 

through a zone of fissured sandstone and siltstone and accounted for >85% of the 

leakage from the lake prior to sealing. The cold springs were found to be 

distributed throughout the landslide area. Cold water springs were thought to be 

derived from source water below thermocline within the lake, while warm water 

springs were believed to have a source above the thermocline (Read et al., 1979). 

Under conditions of maximum stratification the top of the thermocline occurs at 

approximately 15-20 m depth (Howard-Williams et al., 1986, Mylechreest, 1978).  

Other miscellaneous springs in the Waikaremoana area, including those labelled 

in the study by Read (1979) as „U group and associated springs‟ are not thought to 

have been affected by the sealing of the dam, and are colder than both the warm 

and cold springs previously mentioned. Thus it is unlikely that Lake 

Waikaremoana is their source. No evidence has been found to suggest that leakage 

from Lake Waikaremoana occurs through undisturbed rock beyond the landslide 

area (Figure 7).  

The Kaitawa weir measures the flow of the Waikaretaheke Stream, a stream 

almost entirely derived from Lake Waikaremoana leakage via the primary and U 

group springs. A slight increasing trend in discharge has been recorded at the 

Kaitawa weir (Figure 8). This increasing trend may be due  to inaccurate weir 

readings as a result of debris accumulating on the weir over time, or due to an  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Locations of warm springs (pink), cold springs (blue) and miscellaneous springs (purple). 
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increase in leakage rate over time as the leakage pathways erode due to the 

passage of water. 

 

 

Figure 8: Measured leakage at Kaitawa weir showing a slight increase in leakage over time, and 

large peaks associated with siphon use. Leakage data has been corrected for lake level. 

 

Leakage rate is also affected by lake level (Figure 9). This may be due to a 

seasonal effect where increased rainfall which leads to a higher lake level also 

leads to higher groundwater inputs, or that a higher lake level means that more 

leakage pathways may be utilised. Alternatively the relationship between leakage 

rate and lake level may be due to a hydraulic effect where a higher lake level 

results in increased leakage due to an increased head, or a combination of these 

two ideas. Freestone et al., (1996a) estimated that leakage increased by 0.2 m
3
s

-1
 

per meter of lake level rise.  
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Figure 9: Regression of daily mean lake level and leakage rate as measured at Kaitawa weir where 

siphon discharge into the Waikaretaheke Stream has been removed. This shows that lake level and 

leakage rate are related.  

 

2.7 Modifications from Hydro Power 

Lake Waikaremoana‟s waters have been used for hydroelectric power generation 

since 1929 resulting in modification of the lake environment. Prior to 

development for hydroelectric generation, lake outflow in the form of leakage 

through the natural dam occurred at a much higher rate, and reappeared as springs 

which collectively formed the Waikaretaheke River (Freestone et al., 1996a). In 

1946 modification of the natural overflow area began as a result of the 

construction of Kaitawa Power Station in order to deliver water to its penstocks.  

In the late 1940s, partial sealing of the lake bed was carried out in order to reduce 

the leakage from the lake through its natural dam to prevent leakage water from 

by-passing Kaitawa Power Station representing a missed generation opportunity. 

Prior to this sealing the majority of the leakage originated in the area of Te Whara 

Whara Bay at a rate approximately 50% greater than occurs today (Read, 1979). 

The Te Whara Whara Bay area is also the location of lake overflow, which 

occurred approximately 50% of the time prior to hydroelectric development, with 

discharge into the Waikaretaheke River (Read, 1979).  
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Despite sealing works in the late 1940s, leakage still exists into the landslide dam. 

As a result the landslide debris is essentially saturated, indicated by the presence 

of streams and springs on most of the landslide surface (Figure 10). Most of the 

major springs are located on the intact block where the water table levels are 

closer to the surface (Riley and Read, 1992).  

In 1978 and 1979, a further investigation showed additional leakage derived from 

an area of the lake which was deeper and to the north of other areas previously 

examined (McPike, 1980). This area was beyond the diving capabilities of the 

1940s, although it was identified as a possible leakage source in the 1930s through 

temperature data.  Sealing of this area was not carried out as a result of economic 

limitations and problems with the method of sealing. The economic limitations 

were overcome in the 1950s due to an increase in the value of electricity, and in 

the 1970s power shortages prompted feasibility studies into further sealing. 

Further sealing work was not carried out however, due to the possibility of the 

reduction in the availability of stock water supplied by springs and the effect on 

the local natural character of the Urewera National Park (McPike, 1980).  

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Fairy Spring, an example of one of the many springs on the landslide surface. 
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Feasibility studies for further sealing have investigated a number of well known 

springs, such as Bush Spring, Fairy Spring and Quarry Spring which are thought 

to be derived from Lake Waikaremoana. Concerns have been raised that further 

sealing may affect these springs, which have importance to the natural character 

of the Urewera National Park. Read (1979) found that Bush spring is partially a 

result of subterranean flow from Lake Waikaremoana, as well as from local 

runoff. This conclusion was drawn as the flow from Bush Spring varied with lake 

level prior to sealing, and post sealing its flow volume was reduced from 50-85 

litres per second to 20 litres per second. Fairy Spring and Quarry Spring appear to 

be interrelated. They are both recharged by local rainfall and Fairy Springs were 

slightly affected by sealing of the lake and by fluctuations in lake level. However, 

the effect of lake sealing on Fairy Springs has not been quantified. Quarry Springs 

showed no significant variation following sealing or in response to lake level 

fluctuation. Quarry Springs may be more closely related to the level of Lake 

Kaitawa (McPike, 1980). 

A number of springs in the Waikaremoana area are thought not to be connected to 

Lake Waikaremoana, these include Lake Kiriopukae, Lake Whakatutu, and the 

Hikaka group (Figure 7). Lake Hikaka and adjacent springs are thought to be 

interconnected with Lake Kiriopukae. Other small springs such as Lake Pakiaka 

are likely to be fed from Lake Hikaka or Mangaone stream. This may also be the 

source of springs such as Lake Whakatutu. Lakes Umuamahu, Mauriahea, and 

Pataka Lagoon are formed on areas of ponding of the Mangaone Stream outside 

the landslide debris and are considered to be recharged locally (Read, 1979). 

The construction of Kaitawa Power Station and subsequent modification of the 

lake inlet allowed for control of lake level and resulted in lake level lowering by 

4.7 m below its mean natural level (Figure 11). This was carried out to aid the 

stability of the natural dam, and to provide flood protection to downstream areas 

by enhanced storage (Howard-Williams et al., 1986). 
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Figure 11: Monthly average lake level in meters from (1921-2009) showing the decrease in lake 

level by 4.7m in 1946. 

Lake level variation has also been modified by hydroelectric generation. From the 

beginning of the record in 1921 until the construction of siphons and the lowering 

of lake level in 1946, lake level was controlled solely by the catchment water 

balance, even though generation using water sourced from lake leakage has been 

carried out since 1929 at Tuai Power Station. From 1946 the annual range in lake 

level extremes had an average of 3.1 m, a minimum of 1.0 m and a maximum of 

9.0 m. Such a large maximum range is a result of the 4.7 m lake level reduction in 

1946, as well as power shortages which followed the end of World War II from 

1946 to 1965. Since the conclusion of the power crisis in 1965 the annual 

operating range has been constrained to a maximum range of 5.640 m with an 

average of 2.561m (Freestone et al., 1996b).  

Modifications in lake level fluctuation associated with hydro power generation 

were reported in an early study by Mylechreest (1979). Mylechreest (1979) 

graphically showed the changes in lake level in response to hydro generation. A 

reproduction of lake level analysis by Mylechreest (1979) has been produced with 

the addition of more recent lake level data for the period 1921 to 2009 (Figure 

12).   

Mylechreest (1979) showed that prior to hydroelectric development (for the 

period 1921 to 1945), lake level varied naturally with season such that the highest 
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lake levels occurred in winter in response to high rainfall inputs, and the lowest 

lake levels occurred during the summer months. For the period 1966 to 1973 

seasonal variation showed a reversed trend, where high lake levels occur in 

summer as a result of storage of water in order to meet the demand in winter 

months. The lowest lake levels then occur during the winter months to supply 

peak demand (Figure 12). This reversed seasonal trend is similar to the approach 

adopted at South Island hydro lakes (Harding et al., 2004). 

The period 1946 to 1965 follows the same seasonal variation pattern as that prior 

to hydro electric development but with a reduced lake level. This is due to the 

lowering of the lake level by 4.7 meters in 1946. There is also a wider operating 

range due to the post World War II power crisis. The natural seasonal pattern 

continues due to the stable power demand at all times during the year. 

 

 

Figure 12: Seasonal (mean monthly) lake level variation for five periods from before hydro 

electric development (1921-1945) to (2009). Modified from Mylechreest (1979). 

In the following period, from 1958 to 1965 the lake level exists at a constantly 

lower level and has a reduced operating range. Seasonally, minimum lake levels 
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occur in winter, and peak lake levels in summer. This follows the end of the 

Second World War power crisis, where the operating range was restricted within 

smaller limits and the „power use in winter, storage in summer‟ trend begins to 

reappear. The most recent period of the graph, from 1974 to 2009, has the 

smallest operating range due to restrictions imposed by resource consent 

conditions. It also has a slight seasonal variation with minor winter maxima and 

summer minima. 

While hydro electric development has modified lake level variation, at present the 

natural seasonal pattern of maximum lake levels occurring during winter months 

in response to high inflows and minimum lake levels occurring in summer still 

exists. However, this seasonal variation has a much smaller range than prior to 

hydro electric development (Figure 13).The lower range is a result of the resource 

consent conditions imposed on the scheme, which limit lake level variability in 

order to protect shoreline morphology and vegetation (Genesis Energy, 2009). 

 

Figure 13: Mean monthly lake level variation, showing variation before (1921-1945) and after 

(1946-2009) hydroelectric development. Modified from Mylechreest (1979). 

Daily lake level fluctuates naturally in response to the effects of waves and wind 

set up which results in high frequency noise in the lake level record (Figure 14). 

This noise is reduced by utilising the three hourly average of lake level data 

(Figure 15) however, it is likely that sufficient noise still exists within the data set 

to be a significant source of error. 
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Figure 14: Raw lake level data for the period 2 Feb 99 – 24 Mar 99 showing high frequency noise. 

 

Figure 15: Three hourly averaged lake level data for the period 2 Feb 99 – 24 Mar 99 showing 

reduction in high frequency noise. 
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A number of other modifications have been made in the Waikaremoana area to 

facilitate the generation of hydro power. These modifications include the initiation 

of a new sequence of shoreline development due to the modification of lake shore 

platforms caused by the lowering of the lake level in 1946 (Allan et al., 2002), and 

the creation of small new headpond lakes to serve as storage: Lake Kaitawa and 

Lake Whakamarino (Chester, 1986, Genesis Energy, 2009). 

Many other environmental modifications have also occurred as a result of 

hydroelectric development, such as to terrestrial vegetation, aquatic vegetation, 

trout, water quality and erosion. These are monitored by Genesis Energy such that 

mitigating action can be taken should the power scheme result in any adverse 

environmental effects (Genesis Energy, 2009). 
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Chapter 3 –Data Sources 

 

3.1 Introduction 

Data availability is a critical aspect of any field study, and was particularly 

important during this research due to the heavy reliance on historical data sets. 

During this study a large amount of data including rainfall, river flow, lake level, 

and power station operation was available for use. Rainfall and river inflow data 

was obtained from Hawkes Bay Regional Council. Lake level, limited rainfall 

data, and power station operation was available from Genesis Energy. However, 

data availability limited this study in some aspects. 

3.2 Rainfall and River Inflows 

Eight rain gauges (Aniwaniwa, Erepeti Met, Bushy Knoll, Nga Tuhoe, Waimaha, 

Upper Waiau, and Mt Manuoha) and four stream flow recorders (Aniwaniwa, Te 

Kumi, Mokau and Hopuruahine) monitor inflow into Lake Waikaremoana (Figure 

16, Figure 17). Many of these were initially installed by Hawkes Bay Regional 

Council between 1928 and 2000 to allow the allocation of water permits and to set 

lake levels under the Water and Soil Conservation Act of 1967 (Black,1992). The 

results from this gauging show that Lake Waikaremoana lies in a high rainfall 

area (Figure16). Of these rainfall sites, only the Aniwaniwa and Mt Manuoha are 

located within the catchment of Lake Waikaremoana (Figure 17). However, other 

sites close to the catchment still provide an indication of rainfall in the 

Waikaremoana catchment (Sansom and Thompson, 2008). 

The Waikaremoana catchment has an approximate area of 283 km
2
. Of this, 

inflows originating from 169.0 km
2
 are measured by Hawkes Bay Regional 

Council, making 59% of the catchment area gauged (Figure 17). River inflows are 

recorded for the Aniwaniwa Stream, Te Kumi Stream, Mokau Stream and the 

Hopuruahine Stream. 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Isohyet map of mean annual rainfall showing locations of raingauges in the Waikaremoana area from which data was used in this study. Contours 

modified from Black (1992). 
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Figure 17: Catchment areas of streams from which inflow data was used in this study. Inset: Gauged catchment area (blue) and ungauged 

area (red) of the Lake Waikaremoana catchment. 
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Despite a large amount of data, data availability limited this study. Inflow data for 

the Aniwaniwa stream was the only data set used of the available stream data due 

to the data for the other three streams not being available and/or continuous 

throughout the required time periods. The Aniwaniwa flows were available from 

1988 to 2009. Inflows for the Mokau catchment were available for 1990 to 2001, 

Hopuruahine from 1989 to 2000, and the Te Kumi from 2000 to 2009. 

Of the 9 rain gauges in the Waikaremoana region, Mt Manuoha, Rocky Pad, Nga 

Tuhoe, Waimaha, Upper Waiau, Bushy Knoll and Onepoto are telemetered. That 

is, the data is received in real time. This data is received at Hawkes Bay Regional 

Council, with the exception of the Onepoto raingauge which is monitored by 

Genesis Energy. The Aniwaniwa raingauge is non-telemetered and the data must 

be periodically downloaded by staff. The Erepeti Met site is a daily manual Met 

Service site where the data is supplied to Hawkes Bay Regional Council by Met 

Service once per year.  

Data from these rain gauges are available at hourly resolution from 1928, 1977, 

1985, 1985, 1986, 1989, 1989 and 2000 for Erepeti Met, Aniwaniwa, Nga Tuhoe, 

Upper Waiau, Bushy Knoll, Rocky Pad, Mt Manuoha and Waimaha respectively. 

3.3 Lake Levels 

Lake level data was available from Genesis Energy in two forms, raw 

instantaneous data, and Three-hourly averages. Three-hourly averages are used to 

reduce the effects of noise such as seiching and wind waves. Three hourly average 

data was used in all instances where lake level input data was required during this 

study as well as in Genesis Energy‟s existing water availability model. 

3.4 Power Station Operation 

Data related to operation of the Waikaremoana Power Scheme was made available 

by Genesis Energy. Available data included flow through Kaitawa Power Station, 

the first of the three power stations in the Waikaremoana Scheme, and flow 

through Onepoto Siphons 1 and 2. 

Kaitawa Power Station data was available in two forms: „Opus‟ power station data 

for the period 1995 to 1998, and „current‟ power station data for the period 1998 

to 2009. „Opus‟ data comes from prior to Genesis Energy taking over the 
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operation of the Waikaremoana Power Scheme, with discharge through the power 

station calculated using a combination of headwater level, tail water level and 

generation. The „current‟ calculations are a rating derived from load versus flow. 

The differences are thought to be very small. However, only „current‟ data was 

used in this study. 

The Lake Waikaremoana spillway is capable of both manual and automatic spill. 

Automatic spill occurs via the Onepoto siphons which discharge into the 

Waikaretaheke Stream when the lake level reaches 585.51 m asl. However as the 

lake rarely reaches this level, automatic spill is a rare occurrence.  The Onepoto 

siphons are also used for manual lake water spill when lake level approaches the 

maximum resource consent limit for lake level of 583.29 m asl in order to control 

the lake level. The siphons are also used periodically to test for correct operation. 

Data for siphon operation is available from 2002 to 2009. 

3.5 Leakage 

Some measure of leakage through the natural dam is available from Genesis 

Energy in the form of discharge through the Kaitawa Weir on the Waikaretaheke 

River. The Waikaretaheke River emerges from its river bed as a spring derived 

entirely from leakage from Lake Waikaremoana. No streams run into the 

Waikaretaheke River upstream of Kaitawa weir. However, since the Onepoto 

siphons discharge into the Waikaretaheke River when in use, this data has large 

peaks which represent siphon operation rather than leakage. Discharge data of the 

Waikaretaheke River at Kaitawa weir is available from 1988 to 2009.  

Estimations of the average leakage rate are also available from a number of earlier 

studies as described in detail in Chapter 4. These estimates range between 4 and 6 

m
3
s

-1
. 

3.6 Waikaremoana Water Quality Buoy 

A water quality buoy was installed in Lake Waikaremoana in late 2009 as part of 

a joint water quality monitoring programme involving The University of Waikato, 

Genesis Energy, Fish & Game and a number of other parties concerned with the 

ecology of Lake Waikaremoana. This buoy collects a variety of water quality 

information, but also collects some meteorological data. This meteorological data 
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includes wind speed, direction, air temperature, relative humidity, barometric 

pressure, rainfall, hail, and buoy orientation. However, due to the short length of 

the record data from the Waikaremoana Water Quality Buoy was not used in this 

study.
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Chapter 4 –Lake Water Loss Estimation 

 

4.1 Introduction 

Leakage through Lake Waikaremoana‟s natural dam has been well recognised 

since as early as 1916 due to observations of a combination of falling lake levels, 

calm weather vortices and the sound of water moving through subterranean 

passages (McPike, 1980). Since then, numerous studies have observed and sought 

to measure this leakage. Prior to hydroelectric development in the Waikaremoana 

area various studies estimated leakage through the natural dam to be within the 

range of 10 m
3
s

-1
 at low lake levels and 18 m

3
s

-1
 at high lake levels (Freestone et 

al., 1996, McPike, 1980). This substantial leakage rate would limit the operational 

efficiency of the Waikaremoana Power Scheme as there would be less water 

available for electricity generation as leakage water emerges below the intake of 

the Kaitawa Power Station. Thus, in the late 1940‟s sealing works were carried 

out in Te Whara Whara Bay to reduce leakage (Read, 1979). 

Following the completion of the sealing operation in the early 1950‟s, various 

studies were carried out in order to determine its success by estimating the 

reduction in leakage rate. Carter (1952) provided the first estimation of the 

reduced leakage rate stating that leakage had been reduced by 51% with the 

current total leakage rate 4 m
3
s

-1
 (cited in Read, 1979). In 1979 Read suggested a 

total leakage rate of 4.4 m
3
s

-1
. This rate was estimated on the basis of a review of 

a range of published information including maps and aerial photographs; studies 

involving tracer testing, flow and temperature monitoring, drilling, sealing 

operations, oxygen 18/deuterium isotope analysis, and reports produced in 

association with the construction of the Piripaua Power Station and Kaitawa 

intake tunnels.  

In 1980 McPike estimated a total leakage rate of approximately 4 m
3
s

-1
 using 

some measurement of flows and a review of the literature. A chemical tracer study 

was also carried out in order to investigate leakage pathways and dispersion 

(McPike, 1980). That study used 3 types of chemical tracers: rhodamein wt, 

fluorescein, and salt, and produced comparable results to a chemical tracer test 
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carried out prior to sealing in the 1930s, where the nature of the pathways as 

interconnected and widely dispersed was discovered (McPike, 1980). In 1994 

leakage was calculated using the sum of flow gaugings of known springs and 

streams derived from Lake Waikaremoana, producing a total leakage rate of 4.3 

m
3
s

-1
 (Freestone et al., 1996). Freestone et al., (1996) concluded that the leakage 

rate varied between 4.0 m
3
s

-1
 and 6.0 m

3
s

-1
 and fluctuated in response to a change 

in lake level. 

Mylechreest (1979) suggested that since the lake bed sealing had only reduced 

leakage from Lake Waikaremoana rather than stopping it completely, the project 

could be considered only partially successful. After the initial sealing works were 

carried out it was not considered economically feasible to continue with further 

sealing. However, the prospect of further sealing became viable in the 1970s due 

to power shortages and a dramatic increase in the price of electricity. Further 

leakage studies were carried out at this time. However, no further sealing was 

carried out as local residents were concerned that sealing would have an effect on 

springs and streams which were important for stock watering. The Urewera 

National Park board also had concerns that sealing might affect the local natural 

character of the National Park by altering springs and streams, in particular Fairy 

Spring (McPike, 1980). 

It is possible that an inaccurate estimation of leakage and/or evaporative loss is a 

significant contributor to error in Genesis Energy‟s current water availability 

model. The aim of this chapter is to present independent estimates of the 

combined effect of leakage and evaporative loss using a simple regression model 

based on a modified catchment water balance equation such that the combined 

role of leakage and evaporation in the error of storage change estimates might be 

determined with minimal assumptions while avoiding field measurement error. 

This chapter will first give an overview of selected literature of lake water balance 

studies in other catchments. The methods used in estimating leakage and 

evaporative loss at Lake Waikaremoana, the results gained, and the implications 

that this has for further water availability modelling will then be discussed.  
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4.2 Selected Lake Water Balance Studies in Other Catchments 

A wide range of techniques have been used to estimate unknown components of 

lake catchment water balances. An estimation of catchment water balance for a 

closed basin lake can be calculated most simply by direct measurement of 

hydrological and meteorological variables to find the balance of catchment inputs 

and outputs where the remainder is equal to change in storage, as seen by a 

change in lake level. However, in many cases there is little or no hydrological or 

meteorological record and direct measurement of water balance variables may be 

impractical. For this reason, the majority of lake water balance studies use direct 

measurement of some water balance variables, in combination with various 

techniques of estimation of others. In many cases, evaporation, groundwater flux 

and ungauged inflow are unknown components of the catchment water balance 

(Gibson, 2002, Gurrieri and Furniss, 2004, Wale, 2009). 

A wide number of techniques for estimating lake water balance variables are 

available and widely used. These include mathematical techniques, numerical 

modelling, chemical and/or isotopic mass balances or a combination of these 

approaches.  

Lake evaporation is not known accurately in the vast majority of studies due to the 

difficulty of its direct measurement. In these instances, surface water evaporation 

is often estimated using one of many available equations. The Penman equation or 

a variation of the Penman equation has been used in a number of lake water 

balance studies (Chebud and Melesse, 2009, Gurrieri and Furniss, 2004, Shanahan 

et al., 2007, Wale et al., 2009), as has the Priestly-Taylor equation (Shanahan et 

al., 2007, Stets et al., 2010) and the energy or radiation balance (LaBaugh et al., 

1997, Shanahan et al., 2007). In Shanahan et al., (2007) a number of equations 

including the Priestly-Taylor, penman-combination, and radiation balance 

approaches were used in order to achieve the best estimation of evaporation. This 

then allowed the water balance to be solved, and the results compared to a 

reconstructed lake level for each evaporation method, where the best matching 

results were used. Similarly, Chebud and Melesse (2009) estimated evaporation 

by three methods, the Penman, Meyers and Thornwaite‟s techniques, where the 

Penman and Meyers methods were used for estimation of the monthly water 
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budget, while the Thornwaite‟s method was applied to the annual water budget 

(Chebud and Melesse, 2009). 

Lake groundwater flux has been estimated using flow nets drawn from a networks 

of wells and Darcy‟s law (LaBaugh et al., 1997), chemical mass balances 

(Holzbecher et al., 1999, Schmidt et al., 2010), isotope studies (Schuster et al., 

2003, Stets et al., 2010, Vallet-Coulomb et al., 2006), or numerical modelling 

techniques (Ayenew and Gebreegziabher, 2006, Chebud and Melesse, 2009, Zuo 

et al., 2006). However, construction of a network of wells is often beyond the 

scope or resources of many lake studies (LaBaugh et al., 1997). 

Another approach for estimating lake groundwater flux is through the use of 

numerical models. Holzbecher et al., (1999) used a 2d steady-state numerical 

model to model the subsurface flow pattern, at Lake Stechlin, Germany and 

Aneyew and Gebreegziabher (2006) calculated the net groundwater flux by 

calculation of the residual of other water balance components using a model 

simulation. The water balance of Lake Tana in Ethiopia was estimated using a 

numerical model where groundwater inflow was an unknown variable (Chebud 

and Melesse, 2009). 

Kebede et al., (2006) calculated the annual water balance of Lake Tana, Ethiopia 

using a numerical model using lake level simulation at a monthly timestep. A 

differential water balance equation was used which was integrated with simulated 

lake level over a monthly timestep. This equation was then solved iteratively 

using Excel SOLVER. Inflow and outflow volumes of Lake Bosten, China, were 

calculated using a numerical model as functions of known variables from which 

the water balance could then be calculated (Zuo et al., 2006). A study by Wale et 

al., (2009) calculated the contribution of ungauged catchments to the water 

balance of Lake Tana using a regionalisation procedure which established 

relationships between water balance parameters and catchment characteristics 

based on gauged catchments, the parameters were then transferred to ungauged 

catchments based on catchment size. The HBV-IHMS model was then used to 

simulate catchment runoff (Wale et al., 2009). Unknown water balance 

components of evaporation and runoff of Lake Bosumtwi in Ghana were 

calculated in a study by Shanahan et al., (2007) using a rainfall-runoff calculation 
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based on a simple rainfall-evapotranspiration balance model in order to determine 

a runoff parameter.  

Stable isotopes of oxygen have also been widely used as a method for estimation 

of unknown water balance variables. In Stets et al., (2010) stable isotopes of 

oxygen-18 were used to calculate surface and groundwater fluxes. Isotopes were 

also calculated for precipitation, evaporation and stream inflow however, these 

were constrained by direct measurement of these variables. Since stable isotope 

methods are typically only effective in lakes with long residence times a time 

series model of oxygen-18 stable isotope signature was applied to 6 lakes, two of 

which were closed basin (Stets et al., 2010). 

Stable isotopes were used in two separate studies of the closed basin Williams 

Lake in Minnesota, USA. Schuster et al., (2003) used stable isotopes to calculate 

groundwater flux, which was estimated to be approximately equal to half the 

annual water input to the lake. The isotope mass balance in the pore water of 

sediment was also used to determine the amount of mixing of lake water and 

groundwater in the littoral zone. Isotope analysis of the same lake by LaBaugh et 

al., (1997) found that 79% of annual inflow was a result of groundwater inputs. 

While isotope studies are generally steady-state in nature, some situations require 

non-steady-state conditions. In 2004, Gurrieri and Furniss applied a non-steady-

state model to the alpine lakes of Montana, USA. A non-steady-state model was 

required since the entire volume of the lakes are replaced every spring as a result 

of snowmelt, therefore, the lakes themselves never reach a steady-state. However, 

the isotope component of this study did not perform well. A non-steady isotope 

mass balance was also used in Gibson (2002) in shallow arctic lakes which 

undergo fluctuations in heavy isotopes seasonally due to the extreme seasonality 

of water balance processes in this region. This study produced much more 

successful results. 

Similar to the isotope mass balance method is a radon mass balance approach. In 

Canada, Schmidt et al., (2010) used the radon 222 mass balance of two small 

lakes to determine their groundwater influxes. Radon 222 can be used for 

measuring groundwater processes within a time scale of approximately 15 days, 

due to its half life of 3.8 days. Radon 222 can be used because in some geological 
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settings where groundwater readily comes into contact with material containing 

radon, whereas lake water does not. Thus, groundwater discharge into a lake 

results in elevated radon concentrations in lake water. 

Chemical mass balances can also be used to solve unknown water balance 

components, and can include mass balances of Ca 2+, K+, Mg2+, K+ and Cl- 

among others. These types of study are often used in conjunction with isotope 

studies (Gurrieri and Furniss, 2004, LaBaugh et al., 1997). A chemical mass 

balance study was used at Williams Lake, Minnesota, USA for Na+, Mg2+, Cl, 

and dissolved organic carbon in conjunction with an isotope study (LaBaugh et 

al., 1997). A combined water balance and chemical mass balance equation was 

also used to solve for groundwater inflow in alpine lakes of Montana, USA by 

Gurrieri and Furniss (2004). 

In summary, there are a number of different techniques available for estimation of 

unknown variables of the catchment water balance for closed basin lakes which 

are applied in order to solve the catchment water balance. It seems that in many 

instances more than one technique is applied in order to ensure reliable results. It 

also seems that both mathematical/modelling techniques are used equally as 

widely as experimental techniques. However, many such experimental techniques 

are not effective for water balance studies at the daily time scale. 

It should be noted that all previous leakage estimation studies carried out in the 

Waikaremoana area have used physically based methods which involve some 

measurement of known springs and streams. It is unknown whether sealing of 

lake leakage was truly as effective as indicated by previous studies or of the 

leakage was simply forced to take a new path such that it exited at some unknown 

spring or stream. In this study, a statistical approach is used which has the ability 

to determine whether leakage has reduced to the level reported in these studies or 

has simply taken a new path to exit at an unknown location. 

 

 

 



  CHAPTER FOUR                                                                    LAKE WATER LOSS ESTIMATION 

41 

 

 

4.3 Method 

4.3.1 Lake Data Investigation 

Lake water loss by leakage and evaporation was estimated using a modified lake 

water balance equation based on a lake volume change time series derived from 

differencing a sequence of lake level changes which are greater than noise effects 

of waves and wind set-up. Prior to construction of the lake water balance an initial 

data investigation was carried out as a quality control measure.  

3-hour average lake level plots were created in order to carry out a visual check 

that the lake level points chosen for lake level differencing were indeed greater 

than noise (Figure 18). From examination of these plots it is clear that noise in 

lake level occurs at a scale of approximately 0.025 m - 0.05 m. It is important that 

chosen lake level points are greater than noise since this ensures that the variation 

in lake level is large compared to error when it is multiplied over the area of the 

lake. Chosen lake level points are never less than 0.1 m so are much greater than 

data noise. 
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Figure 18: Quality control plot showing that points chosen for lake level change are much greater than that of random noise. 
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4.3.2 River Inflow Comparisons 

The consistency of inflows from the Aniwaniwa Stream are compared with other 

gauged streams in the Waikaremoana catchment. The inflows of the Aniwaniwa 

Stream and Te Kumi Stream appear to be consistent with one another at low 

inflows, and less consistent at higher inflows where there is most probably 

increased spatial variation (Figure 19). This is observed as increased scatter in 

scatterplots of Aniwaniwa Stream and Te Kumi Stream discharges at higher 

inflows. It must also be noted that Figure 19 compares a small catchment with a 

much larger one, thus it is expected that they will only have similarity for low 

flows.  

 

 

Figure 19:  Log-log plot of Te Kumi Stream against Aniwaniwa Stream showing the consistency 

of inflows with high inflows corresponding to high spatial variation and less consistency of 

inflows. 

 

Similarly, the discharge of the Aniwaniwa Stream with the Mokau and 

Hopuruahine Streams, both of which are more similar in size to the Aniwaniwa 

Stream show consistency of inflows at low flows, but not at high flows due to an 

increased spatial variation in rainfall (Figure 20, 21). 
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Figure 20: Log-log plot of discharge of the Aniwaniwa Stream and Mokau Stream (m
3
s

-1
) 

showing consistency of inflows at low flows.  

 

Figure 21: Log-log plot of discharge of the Aniwaniwa Stream and Hopuruahine Stream (m
3
s

-1
) 

showing consistency of inflows at low flows.  

Both these streams are less consistent with the Aniwaniwa Stream than the Te 

Kumi Stream. It is likely that this is because they are located a greater distance 

away from the Aniwaniwa Stream and are thus influenced by spatial rainfall 

variations. Thus, scatter within scatterplots of the Aniwaniwa Stream against the 

Mokau and Hopuruahine Streams is more significantly reduced when flows which 

correspond to a rise in lake level are removed (Figure 22, 23).  
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Figure 22:  Log-log plot of discharge of the Aniwaniwa Stream and Mokau Stream (m
3
s

-1
) 

showing consistency of inflows at low flows. Scatter is reduced when flows corresponding rises in 

lake level are removed. 

 

 

Figure 23: Log-log plot of discharge of the Aniwaniwa Stream and Hopuruahine Stream (m
3
s

-1
) 

showing consistency of inflows at low flows. Scatter is reduced when flows corresponding rises in 

lake level are removed. 
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4.3.3 Method Utilised for Loss Estimation 

Leakage and evaporative loss from Lake Waikaremoana under low flow 

conditions was estimated using a simple hydrological model based on a modified 

lake water balance. The basic lake water balance equation can be written:  

Loss = Inflow - Δ Storage       [1] 

However, since total inflow into Lake Waikaremoana is unknown, loss cannot be 

deduced from storage change. Thus, a modified catchment water balance equation 

was created for this study. 

As a starting point for estimation of the lake water balance, a storage change time 

series was created by lake level differencing over consecutive time intervals. Lake 

level data was first plotted in a time series in order to identify a sequence of 

changes in lake levels which are much greater than high-resolution noise effects 

such as waves and wind set-up. These changes were converted to storage volume 

changes by scaling via the lake surface area. 

From this volume change sequence, corresponding lake outflow volumes from 

discharge through Kaitawa Power Station were added, giving the modified 

volume sequence defined as Li. A second modified volume sequence, Lk was 

calculated as lake volume change + volume discharge through Kaitawa Power 

Station + volume leakage measured at the Waikaretaheke Stream. These volumes 

are all with respect to the time sequence of lake level changes mentioned earlier. 

The second modified volume sequence was created to give an estimate of the 

unknown leakage and evaporative component of the water balance since the initial 

volume sequence provides an estimate which includes known leakage as 

measured at the Kaitawa weir on the Waikaretaheke Stream. Because the periods 

over which the changes in lake level were taken were not equal in length, Li and 

Lk were divided by their associated days durations in order to standardise leakage 

on an averaged per day basis for each period of lake level change, giving Li/Δti 

and Lk/Δti. 
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Thus, on an averaged daily basis within a given storage change period, loss can be 

calculated as: 

Change in lake volume - measured outflow volume = inflow volume – (any 

additional leakage + evaporation loss).      [2] 

For the special case of low inflows, the assumption is made that the total lake 

inflow volume from all streams and direct groundwater input is proportional to the 

Aniwaniwa Stream discharge. Equation [2] can therefore be rewritten as: 

Change in lake volume - measured outflow volume = α (Aniwaniwa inflow 

volume) – (additional leakage + evaporation loss)    [3] 

Where α is a proportionality factor to be estimated. 

Therefore, if the terms in equation [3] are on a per day basis, both daily leakage 

and evaporative losses are approximated as roughly constant over time. So a plot 

of change in lake volume - measured outflow volume should appear as a linear 

plot with gradient α and intercept of total daily loss rate. The loss rate was 

calculated for the period 1998-2008 due to the availability of power station 

outflow data. 

Initially, a simple scatterplot was created using Lk/Δti as the dependent variable, 

and the daily inflow of the Aniwaniwa Stream (Aniwaniwa inflow/ Δti) as the 

independent variable. Li/ Δti, was then plotted in place of Lk/ Δti to determine 

whether this would provide a better estimation (Table 3). However, the error of 

the intercept was relatively large on both plots (Figure 24, Figure 25). In order to 

reduce error width, volume sequence data derived only from falling lake levels 

was used to reduce the effect of spatial variation of heavy rainfall and resulting 

high flows, which are likely to violate the assumed linear approximation.  

Table 3: Results of linear regression showing large intercept error width. 

Dependent 

variable Independent variable Intercept (m
3
s

-1
) R

2
 

p of 

estimate 

Li/ Δti Aniwaniwa inflow/ Δti -2.22 ± 2.61 0.78 < 0.0001 

Lk/ Δti Aniwaniwa inflow/ Δti 2.71 ± 2.60 0.78 < 0.0001 
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Figure 24: Scatterplot of Li/Δti and inflow/Δti with 95% prediction interval.  

 

Figure 25: Scatterplot of Lk/Δti and inflow/Δti with 95% prediction interval.  

 

This was successful in reducing the error of the intercept, indicating that a 

component of scatter was derived from rainfall situations (Figure 26).  
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In order to reduce scatter further, the data was reduced to that for which the 

corresponding river inflows were both low and decreasing, such that the error 

arising from any rainfall spatial variation was further reduced. It was thought that 

if inflows are low and falling, there is most likely no rainfall which is the 

dominant causal factor of spatial variation in inflows. However, this idea was 

difficult in its application since many of the periods of lake level decline included 

both flows which were low and falling, and flows which were high and/or rising. 

Using only the periods where the flows were only low and falling reduced the 

volume of the data significantly that little was left to plot. As a result, the standard 

errors of these plots were higher because of the reduced number of data points. 

Consequently, this idea was abandoned. Instead, data which corresponded to a 

decrease in lake level was used for further investigation. 

In an attempt to improve the accuracy of the intercept a multiple regression was 

used with the long term evaporation average now incorporated as a second 

independent variable in addition to Aniwaniwa inflow. The intercept of the 

regression line therefore becomes solely unmeasured leakage. The evaporation 

variable was calculated as a weighted average to allow for lake level change 

periods which extend over month boundaries. Mean evaporation values were 

based on monthly average values of open water evaporation from Onepoto, 

Waikaremoana from Finkelstein (1973) who calculated average monthly open 

water evaporation using a modified form of Penman‟s equation. Finkelstein 

(1973) used data for more than 20 years of evaporation pans for locations all over 

New Zealand. The evaporation pan situated at Lake Waikaremoana was in use 

from 1956 to 1970. 

In a further attempt to define the intercept mean lake level above the minimum 

operating range allowed by Genesis Energy and measured leakage from Kaitawa 

weir were also used as independent variables. A suite of different combinations of 

each of these independent variables were then used in a multiple regression 

against both dependent variables Li/Δti and Lk/Δti in order to find the best 

estimation of lake water loss. 
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4.4 Results  

The most useful result from the regression analysis was deemed to be the 

regression of Lk/ Δti as the dependent variable, and Aniwaniwa inflow/ Δti as the 

independent variable, as this estimate includes only the unknown portion of 

leakage and evaporative losses. The Lk/ Δti  and Aniwaniwa inflow/ Δti estimate  

also meets conditions of having a small intercept error, acceptable R
2
 value, 

statistical significance in terms of its p value, and has independent variables of 

which all are significant. The most useful result has an intercept of  0.59 ± 2.3 

m
3
s

-1
 (± 2 standard errors) with an R

2
 value of 0.57 and a p value of the regression 

gradient of < 0.001 (Figure 26). 

 

 

 

 

 

 

 

 

 

Figure 26: Regression of Lk/Δti and Aniwaniwa inflow on a per day basis, where the intercept is 

equal to daily loss volume, showing 95% prediction interval. 

The regression equation here is 

Li/Δti =5.1   10
4
 + 3.99х       [4] 

where 5.1   10
4
 is the leakage and evaporation loss rate in m

3
 per day, 3.99 is the 

constant which relates the flow of the Aniwaniwa Stream to the total catchment 

inflow under low flow conditions, and х is the inflow of the Aniwaniwa Stream. 
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Regression analyses which included independent variables of evaporation and 

known leakage were generally found not to be significant and the standard error 

of the estimate derived from using evaporation and known leakage as independent 

variables was high. Lake level was found to be significant as an independent 

variable, however, it also produced results where the associated coefficient 

standard error was high. The lake level coefficient was positive, indicating that 

higher lake levels result in a greater leakage loss. 

4.5 Discussion 

The intercept value of 0.59 ± 2.3 m
3
s

-1 
(± 2 standard errors)

 
implies that the 

combination of unknown leakage and evaporative loss in the Waikaremoana 

catchment is likely to be within the range of 0 to 1.71 m
3
s

-1
. A positive intercept 

indicates that the estimated unknown portion of leakage loss is not significantly 

different from zero, suggesting that the leakage rate is sufficiently small that it 

may be ignored. If real, the positive intercept has the physical meaning that under 

very dry conditions with zero river inflow direct groundwater inflow is still 

greater than the unknown leakage and evaporative loss. The leakage and 

evaporative loss estimate is not far removed from the estimates made using 

physical means in numerous previous studies. The estimate represents evaporation 

and lake water leakage which does not pass through Kaitawa weir on the 

Waikaretaheke Stream, a stream almost entirely derived from leakage. 

While a large proportion of the total leakage from Lake Waikaremoana is 

measured at the Waikaretaheke Stream, this known leakage did not serve as an 

independent variable during the regression analysis. It is possible that measured 

leakage was not a significant variable due a slight increasing trend in weir 

readings over time, or that the maximum and minimum leakage rates are not too 

different from each other (see Section 2.6 Hydrology). Extreme peaks in the flow 

measured at Kaitawa weir which is usually solely lake leakage are observed and 

may also account for some of the lack of correlation with this variable. These 

peaks arise from siphon usage, since the Waikaremoana spillway discharges into 

the Waikaretaheke Stream. As the siphon discharge record begins as late as 2002, 

not all of these extreme peaks could be removed from the leakage rate record. 
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In many of the regression analyses lake level was a significant though minor 

variable. It is thought that this may be due to seasonal or hydraulic effects, or a 

combination of these two ideas (see Section 2.6 Hydrology). However, the 

correlation of lake level may simply be a proxy for some other variable. 

Evaporation was not found to be a significant variable during the regression 

analysis. Evaporation may not have improved estimates due to the limitations of 

open pan evaporation measurement and because evaporation estimates were in the 

form of average monthly estimates, from which daily evaporation can vary 

significantly depending on meteorological conditions. Evaporation may also not 

be significant as it has a very minimal contribution to daily storage change (mean 

annual evaporation is 1.6mm). 

The best estimate of lake water loss gave a confidence interval width of ± 2.3 m
3
s

-

1
 suggesting that the leakage rate is less than 1.71 m

3
s

-1
. Since this is relatively 

small, that suggests that unmeasured leakage and evaporation are not big factors 

in the production of negative inflow values in Genesis Energy‟s current water 

availability model, and that it is more likely to be a result of the error which 

accumulates in water level differencing. 

4.6 Conclusion 

Leakage plus evaporative loss from Lake Waikaremoana can be estimated using 

the regression equation Lk/Δti = 5.1   10
4
 + 3.99х where the value of the intercept 

is equal to unknown daily leakage plus evaporative loss. This gives a leakage and 

evaporative loss rate of 0.59 ± 2.3 m
3
s

-1
. Since estimated lake leakage and 

evaporation is not significantly different from zero and the absolute value of the 

confidence interval is small it can be concluded that leakage and evaporation are 

not big factors in producing error within Genesis Energy‟s current water 

availability model. It is more likely that lake level differencing is the cause of the 

error, with noise large relative to consecutive levels. 
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Chapter 5 – Application of estimation of net storage 

change in Lake Waikaremoana under low flow conditions 

5.1 Introduction 

For effective operation of the Waikaremoana Power Scheme Genesis Energy 

estimates water availability for hydro electric generation in the Lake 

Waikaremoana catchment. Currently, this water availability estimation consists of 

a lake level differencing model which predicts total lake inflows when inflows are 

large relative to losses (excluding known outflow) and losses can be neglected. 

Under low flow conditions, the water availability model in fact estimates net 

storage change as there is a possibility that unknown losses may not be small 

relative to inflows. Lake inflows are not measured directly due to the large 

number of small streams which enter the lake and possibly direct groundwater 

inflow, as well as the large area and rugged nature of the terrain.  

However, the existing water availability model has been found to be error prone 

under low flow conditions, producing negative estimates of net storage change 

(excluding known outflow) (Figure 27). In order to allow for more strategic 

bidding into the electricity market, thereby increasing the operational efficiency of 

the Waikaremoana Power Scheme an improved estimation of net storage change 

of Lake Waikaremoana at low flows has been created. 

Two possible causes of the negative estimates were considered: 

1. An inaccurate estimation of leakage rates through Lake Waikaremoana‟s 

natural dam. 

2. The effect of lake level error derived from waves and wind set up such that 

when lake level changes are small, the size of the error is large. 

In the previous chapter, leakage was found to be within the range of leakage 

estimates used by Genesis Energy in the existing model and therefore is not likely 

to be a significant factor in the production of negative inflows. This means that 
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the cause of the negative estimates is likely to be a result of lake level 

differencing. 

 

Figure 27: Modelled „inflows‟ using Genesis Energy‟s estimation technique showing negative 

estimations. 

It is expected that under low flow conditions and in the absence of rainfall, 

streams (with a minor groundwater component) will generally follow the shape of 

a recession curve. Since groundwater inputs are low in the Lake Waikaremoana 

catchment, this assumption is likely to hold. A recession curve pattern is generally 

not observed in the existing model which produces large fluctuations in inflow 

which are not observed in the gauged streams in the Waikaremoana catchment 

(Figure 28). However, the existing model has the ability to estimate inflows under 

medium to high flow conditions when lake level changes are large (Figure 29). 
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Figure 28: Genesis Energy‟s „inflow‟ estimation compared to gauged inflows from the 

Aniwaniwa, Mokau, Hopuruahine and Mokau streams under low flow conditions. 

 

Figure 29: Genesis Energy‟s estimate of „inflows‟ compared to the Aniwaniwa Stream under 

normal to high flow conditions.  
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5.2 Method 

Inflow data is not available for the vast majority of the streams which flow into 

Lake Waikaremoana, consequently net „inflow‟ must be estimated. A simple 

linear model was constructed on the basis that at low flows in the absence of 

rainfall the true total inflow has a linear association with the recorded inflow of 

the Aniwaniwa Stream. This approximation is likely to hold under low inflow 

conditions only since this allows for minimal effect of errors arising from spatial 

variation of rainfall.  

The regression technique applied for the estimation of unknown leakage and 

evaporative loss in the previous chapter produced a regression equation which 

related the discharge of the Aniwaniwa Stream during periods of low, decreasing 

lake levels to the net storage change of the Waikaremoana catchment at low 

flows. This regression equation is: 

Lk/Δti = 5.1   10
4 

+ 3.99х     [4] 

Where 5.1   10
4 

is the volume of leakage over a 24 hour period, 3.99 is the 

scaling factor and х is the inflow from the Aniwaniwa catchment. Using this 

estimation of the relationship between the discharge of the Aniwaniwa Stream and 

the total catchment, estimation of net „inflow‟, or net storage change of Lake 

Waikaremoana (excluding known outflow) is: 

Net inflow (at low flow) = 0.59 + α (Aniwaniwa inflow)   [5] 

Where 0.59 is the estimate of leakage and evaporation rate in m
3
s

-1
. 

Since this relationship holds only for low flows, a definition of „low flow‟ must be 

used. Two situations have been modelled: low flow defined by the upper bound of 

5 m
3
s

-1
 and low flow defined by the upper bound of 7 m

3
s

-1
. 

5.3 Results and Discussion 

Using two definitions of low flow, that where low flow is defined by the upper 

bound of 5m
3
s

-1
 and that where low flow is defined by the upper bound of 7 m

3
s

-1
 

modelled net „inflows‟ have been compared to „inflows‟ previously modelled by 

Genesis Energy (Figure 30).  
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The new net inflow model involves multiplying a positive scaling factor by the 

measured inflow of the Aniwaniwa Stream, and the addition of a positive 

intercept value which means that modelled net discharge can never be negative. 

This removes a large amount of fluctuation from the modelled data (Figure 31). In 

reality the wide confidence intervals mean that negative net discharges may occur, 

representing periods where unknown leakage and evaporative loss is greater than 

true inflows.  

 

Figure 30: Genesis Energy‟s estimate of net inflows for the period 99-09 and the situation where 

for inflows greater than 5 m
3
s

-1
 Genesis Energy‟s estimate is used, and where inflows are less than 

5m
3
s

-1
 this study estimate is used. 

At higher resolution, the difference between Genesis‟ estimate and the new 

estimate can be seen clearly for the situations where low flows are defined by the 

upper bound of 5 m
3
s

-1
 (Figure 31) and 7 m

3
s

-1 
(Figure 32). The new estimate 

more closely resembles a recession curve, and eliminates many of the large 

fluctuations observed in the existing model. The situation where low flows are 

defined by the upper bound of 7 m
3
s

-1
 more closely resembles a recession curve 

than the upper bound of 5 m
3
s

-1
 estimate due to the elimination of fluctuations in 

the estimate. 
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Figure 31: Genesis Energy‟s estimate and the situation where for Aniwaniwa inflows greater than 

5 m
3
s

-1
 Genesis Energy‟s estimate is used, and where Aniwaniwa inflows are less than 5m

3
s

-1
 this 

study estimate is used for the period 3 Jan 99 to 31 May 99. 

 

Figure 32: Genesis Energy‟s estimate and the situation where for Aniwaniwa inflows greater than 

7 m
3
s

-1
 Genesis Energy‟s estimate is used, and where Aniwaniwa inflows are less than 7 m

3
s-

1
 this 

study estimate is used for the period 3 Jan 99 to 31 May 99. 
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In order to test whether fluctuations in the estimated data are false or are due to 

rainfall modelled net inflows have been plotted against recorded rainfall for both 

the 5 m
3
s

-1
 (Figure 33) and 7 m

3
s

-1
 situations (Figure 34). The 7 m

3
s

-1
 upper bound 

definition provides the most accurate estimation of low flow conditions, as the 

majority of the false fluctuations are eliminated, leaving only those fluctuations 

which relate to rainfall inputs. 

 

 

Figure 33: Genesis Energy‟s estimate and the situation where for Aniwaniwa inflows greater than 

5 m
3
s

-1
 Genesis Energy‟s estimate is used, and where Aniwaniwa inflows are less than 5 m

3
s

-1
 this 

study estimate is used for the period 3 Jan 99 to 31 May 99 and rainfall from the Aniwaniwa 

raingauge. 
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Figure 34: Genesis Energy‟s estimate and the situation where for Aniwaniwa inflows greater than 

7 m
3
s

-1
 Genesis Energy‟s estimate is used, and where Aniwaniwa inflows are less than 7 m

3
s

-1
 this 

study estimate is used for the period 3 Jan 99 to 31 May 99 and rainfall from the Aniwaniwa 

raingauge. 

5.5 Conclusion 

An improved estimate of net inflows into Lake Waikaremoana under low flow 

conditions has been created. This estimation happens to never yield negative 

„inflows‟ as the intercept is greater than zero. However, given the confidence 

interval it appears that sometimes negative net inflows do occur in reality. The 

low flow conditions defined by the upper bound of 7 m
3
s

-1
 has proven to give a 

more accurate estimation of inflows at low flows than the upper bound of 5 m
3
s

-1
 

definition as it eliminates the majority of fluctuations that are not caused by 

rainfall.  
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Chapter 6 –Rainfall – Runoff Model 

6.1 Introduction 

A rainfall-runoff model has been developed in order to provide an improved 

prediction of daily inflows into Lake Waikaremoana such that water availability 

for the Waikaremoana Power Scheme can be estimated with particular emphasis 

on next-day low flow conditions. The model is used to forecast next-day inflow of 

one of the largest streams in the Waikaremoana catchment, the Aniwaniwa 

Stream. The Aniwaniwa Stream is utilised as opposed to another of the 

approximately 114 streams which discharge into Lake Waikaremoana because it 

has the most complete discharge record. A scaling factor relating inflows of the 

Aniwaniwa Stream to net water storage change into Lake Waikaremoana was 

derived in Chapter 5, which can be used to extrapolate the discharge of the 

Aniwaniwa Stream to the entire Waikaremoana catchment, thus predicting net day 

ahead net lake storage change as defined by inflows minus evaporation and 

leakage not already accounted for in the observed leakage discharge. 

The net water storage change for Lake Waikaremoana was estimated in Chapter 5 

using a regression relation derived from a modified catchment water balance and 

linear regression technique used to estimate lake water loss in Chapter 4. 

However, as the net storage change estimation was made based on daily totals of 

input variables, it could be applied only to predict present day inflows, rather than 

next-day inflows as is the case here. The net inflow predictions in Chapter 5 also 

held under low flow conditions only, as the assumed linear relationship between 

the discharge of the Aniwaniwa Stream and net inflows into Lake Waikaremoana 

could not be assumed to hold under higher flows due to spatial variation of heavy 

rainfalls. This limitation will also exist when extrapolating results from a rainfall-

runoff model to the entire catchment. Nevertheless, prediction of „next-day‟ 

inflows will allow for further increased operational efficiency of the 

Waikaremoana Power Scheme by allowing for improved water availability 

estimates and therefore generation capacity.  

There is concern among various authors of hydrological literature that 

hydrological models have become fraught with over-complexity such that 
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uncertainty within the models is increased (Beven, 2002a, Jakeman and 

Hornberger, 1993, Kirchner, 2006, Perrin et al., 2001, Sivakumar, 2008b, 

Wagener et al., 2001). This chapter demonstrates the use of a model simplification 

technique, the “lasso”, in an over-parameterised model with the aim of reducing 

model complexity and computational time. The lasso technique is widely applied 

in the statistical community although it appears not to have been widely used in 

hydrology (Bardsley et al., under review).  

The aims of this chapter are: 

1. To forecast day-ahead Aniwaniwa Stream inflows, which can then be 

extrapolated to estimate net storage change in Lake Waikaremoana. 

2. To demonstrate the model simplification tool, the lasso in a finite mixture 

rainfall-runoff model. 

 

6.2  Literature Review 

6.2.1  Introduction 

Numerical models have been applied to hydrological science in some form for 

over 150 years (Beven, 2001). Rainfall-runoff models, models which predict 

streamflow based on a precipitation-runoff relationship have been important in the 

last few decades due to their numerous real-world applications, including water 

availability for regional water allocation, hydro power and studies involving the 

effects of land use and climate change (Beven, 2002a).   

However, in recent years hydrologists have noted a lack of progress being made in 

catchment-scale hydrologic modelling (Jakeman and Hornberger, 1993). Over 

time, hydrological models have become increasingly complex in response to 

advances in our understanding of small-scale physical processes and significantly 

increased computational power (Sivakumar, 2008a). Various authors have 

expressed concern that this increased complexity is not resulting in better 

predictions or further advances in understanding of hydrological systems, but 

rather in increasing uncertainties (Beven, 2002a, Jakeman and Hornberger, 1993, 

Kirchner, 2006, Perrin et al., 2001, Sivakumar, 2008b). This section will briefly 
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discuss the current state of catchment runoff modelling as reported in the 

literature. 

6.2.2 Are Complex Models Better Than Simple Models? 

While some hydrological models are developed for the primary purpose of 

increasing scientific understanding of complex hydrological systems or processes, 

many are created for „real-world‟ practical applications such as hydro power, 

water resource allocation or land use change (Kirchner, 2006). In these 

applications, the over-complexity of hydrological models becomes particularly 

relevant since it is more computationally efficient and cost effective to use the 

simplest model which can explain the data. Any unnecessary complexity simply 

allows another avenue for uncertainty (Bardsley et al., under review). Thus, an 

acceptable level of model complexity should be determined during the initial 

stages of any hydrologic modelling project in relation to the purpose of the model 

to ensure that the model does not become anymore complex than necessary.  

 

6.2.3 Model Structure 

The level of model complexity is often, in part, a result of the model structure 

applied.  Physically based hydrological models require a set of governing 

equations which describe physical processes and calculate the behaviour of each 

process in response to other processes within the system across an area 

represented by a grid (Beven, 2001).  

Physical models often apply the upward mechanistic approach to modelling where 

a number of small-scale physical processes are represented using physical 

equations which are then scaled to represent a catchment-wide process taking into 

account as much natural heterogeneity within the catchment as possible. This 

leads to a model which is highly complex, as it is composed of large number of 

parameters and governing equations. In recent years, catchment models have 

tended towards incorporating more and more detail about each physical process, 

leading to physical models becoming increasingly complex (Beven, 2002a). 

A common assumption within many physical models is that micro-scale processes 

will scale up to catchment scale. However, this is not always the case. For 
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example, Darcy‟s law for unsaturated subsurface flow is applicable at small scales 

but not at large scales.  This assumption limits the well known and widely applied 

„blueprint‟ for physical hydrological models created by Freeze and Harlen (1969) 

(Beven, 2002b).  

A criticism of the upward approach to hydrological modelling is that its 

application is not limited to scientifically based studies of which the focus is to 

gain an understanding of hydrologic systems. Often, our purpose in hydrology is 

to predict the behaviour of a system rather than to understand its elements and 

processes in detail. In these instances the upward mechanistic approach may not 

be the most appropriate choice of model structure (Sivakumar, 2008b). Sivakumar 

(2008b) recognises that physically based models may not always be appropriate 

for prediction studies and suggests that „understanding does not necessarily lead 

to better prediction‟.  

The attempt to capture physical processes and represent them in a way which is 

true to their actual form means that physical models are limited by the current 

understanding of physical processes and their interactions (Kirchner, 2006). Even 

a physical process which is well understood may be difficult to translate into a 

model in a way which can be considered a true representation. This is particularly 

so since the catchment is an open system, within which each process has unique 

characteristics and boundary conditions which may be difficult to define (Beven, 

2002a). However, in support of the use of physical models in hydrology is the 

notion that should the model give a good result then it is „the right answer for the 

right reasons‟ (Kirchner, 2006). This may be particularly important when trying to 

predict beyond circumstances represented in the calibration data such as extreme 

events, land use change and climate change (Kirchner, 2006). 

Conceptual catchment models, often described as the „black box‟ approach, 

require input data which is then manipulated by a set of equations which attempt 

to approximate the behaviour of the overall system rather than individual 

processes. The model then produces an output. The processes which take place 

inside the „black box‟ are not necessarily any true representation of real processes 

(Sivakumar, 2008b). Beven (2002a) argues that while conceptual models will be 

„wrong‟ in terms of their representation of hydrological processes within the 
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model, and they will be „known to be wrong but still have the possibility of being 

approximately realistic‟. 

6.2.4 Problems with Complex Models 

6.2.4.1 Less is More – The Problem of Over-Parameterisation 

Over-parameterisation is the situation where a large number of parameters are 

included in a model where many of the parameters have little to no predictive 

power and their inclusion in the model increases model uncertainty. Perrin et al., 

(2001) is of the opinion that over parameterisation is one of the root causes of 

model output uncertainty, and is inherent in the majority of complex models. Over 

parameterisation is of particular concern when input or comparison data is noisy 

or limited, as is often the case in hydrology. As the number of free parameters is 

increased, uncertainty within the model increases non-linearly (Kirchner, 2006). 

In 1989 Beven expressed the „great danger of over-parameterisation‟, a trap many 

modellers fall into when attempting to simulate all hydrological processes thought 

to be relevant.  

Various authors have shown that for prediction purposes very simple models can 

perform almost as well as models with a large number of parameters. Mein and 

Brown (1978) showed that in their modified 13 parameter SFB model a drastic 

reduction in the number of optimised parameters only caused a slight reduction in 

model performance. Chew and McMahon (1994) showed that all of the 19 

parameters used in their model were not necessary and that sufficient estimation 

of stream flow could be achieved with only 9 of them (cited in Jakeman and 

Hornberger, 1993). Hooper (1988) examined a very simple model with 6 

parameters and found it to be over-parameterised (cited in Jakeman and 

Hornberger, 1993). Beven (1989) found than „3 to 5 parameters should be 

sufficient to reproduce most of the information in the hydrological record.‟ 

 

In 1993 a study was conducted to investigate how much complexity was 

warranted in a rainfall-runoff model (Jakeman and Hornberger, 1993). Jakeman 

and Hornberger concluded that the limitations of the observed data placed 

restrictions on the complexity of a rainfall-runoff model such that most data are 

sufficient only to justify models of limited complexity. Nash and Sutcliffe (1970) 
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also expressed the need for simplicity in hydrological models and suggested that 

adding components to a model is only acceptable „if they substantially increase 

model accuracy and robustness‟. 

6.2.4.2 Parameter Identifiability 

Parameter identifiability is a model property which, if satisfied, means that model 

inference is possible. That is, that it is possible to learn about the underlying 

model parameters through model outputs (Kotz et al., 2006). Parameter 

identifiability is important in hydrology as it enables us to improve both our 

understanding of hydrological systems and our prediction ability. Parameter 

identifiability is particularly important in physical models where all parameters 

supposedly represent real-world physical processes (Kotz et al., 2006). The result 

may be that a lack of identifiability in model parameters limits the use of models 

in studies which involve parameter regionalisation, and land use change or climate 

change (Wagener et al., 2001). Wagner et al., (2001) argue that there is a „need to 

balance model performance and identifiability of parameters‟ as a model which 

performs well but has unidentifiable parameters is less hydrologically relevant (in 

a sense that we can learn from it) than a model which performs moderately well 

but has highly identifiable parameters. Over-parameterisation also makes 

parameter identification more difficult, thus parameter identifiability may be more 

difficult in complex models than in simple models (Wagener et al., 2001).  

6.2.4.3 Calibration and Validation 

Model calibration, the process of modifying a model to increase fit with observed 

data and model validation, the process of assessing a models predictive ability are 

critical components in all types of environmental modelling. A models‟ predictive 

capacity can be identified by the success of calibration and validation fits. 

Complex models, both physical and non-physical are more flexible in fitting data 

during calibration, giving the appearance that they predict better than simple 

models (Schoups et al., 2008). However, over-complex models encounter the 

problem of over-fitting during calibration where a model is over-parameterised 

such that many different sets of parameters, and many different models will give 

almost identical fits to calibration data (the equifinality problem). When an over-

parameterised model is validated, the model gives very poor data fits, 

demonstrating poor predictive power (Schoups et al., 2008). Simple models are 



CHAPTER SIX                                                                                    RAINFALL-RUNOFF MODEL 

67 

 

generally not prone to calibration over-fitting, and thus may provide a better 

validation prediction in some cases. 

In order to test whether a model has encountered the equifinality problem a split 

calibration-validation test can be performed. A split calibration-validation test 

involves the creation of a split data set where the model is calibrated on part of the 

data, then validated on the remaining part. Ideally, the validation set should 

include extreme events to test the models predictive power under situations not 

encountered in calibration. This is a common test which is performed in many 

modelling situations (Schoups et al., 2008). Another, more difficult calibration-

validation test is the differential split calibration-validation test where the model is 

required to validate data which has been subjected to climate or land use change. 

These tests often fail, indicating inflexible models (Kirchner, 2006). 

Schoups et al., (2008) found that in a non-physical polynomial model calibration 

fit increased with model complexity but validation fit decreased with complexity 

due to over-fitting. However, when physical principles were applied to the model 

to limit it, for example a storage-discharge relationship, then validation fit did not 

decrease with model complexity. 

6.2.4.4 Failure Opportunity  

The lack of progress in hydrological modelling noted by Jakeman and Hornberger 

(1993) may be a result, in part, of the approach taken towards hydrological 

modelling. Hydrological modelling should be undertaken by the setting of a 

hypothesis, and the creation of a simple model with few enough parameters that 

the model will fail when the hypothesis is incorrect (Kirchner, 2006, Sivakumar, 

2008b). Failure of the model allows for opportunities to learn about hydrological 

processes, improving both our understanding of hydrological systems and our 

ability to forecast them. Giving models the ability to fail also provides an 

important tool for recognising a model which does not perform well and may 

encourage revision of the model, which may be beneficial in making progress in 

hydrological modelling. However, in modern day hydrology model failure is 

generally not considered acceptable (Beven, 2002a). Perhaps, as Beven (2002a) 

suggests „our reluctance to reject our models is because complete model rejection 

is not a good strategy in writing a thesis, journal article, or reporting to a client‟. 
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Gupta et al., (2008) argues that in order to detect model failure, more 

sophisticated approaches to model evaluation are required. In most hydrological 

models validation is represented as graphical plots of observed vs. simulated 

hydrographs accompanied by fit statistics such as the Nash efficiency and 

correlation coefficient (Gupta et al., 2008). Gupta et al., (2008) contends that the 

Nash efficiency summarises model efficiency to a relatively weak benchmark. It 

is also suggested that an increased ability to diagnose the problems in our models 

is required (Gupta et al., 2008). 

6.2.5 Data Quality and Quantity 

The quality and quantity of data is a significant factor in the success of any model. 

Due to the nature of hydrology as a science, and the expense of collecting data, 

many data sets in hydrology can be considered „sparse and noisy‟ (Schoups, 

2008). For more accurate, identifiable models more emphasis must be placed on 

the value of data. This is most likely to be achieved in situations where data is 

collected for specific purposes (Kirchner, 2006).  

6.2.6 For the Future 

There is discussion in hydrological literature that progress in the field of 

hydrological modelling requires a change in attitude among hydrological 

modellers from the current notion which Sivakumar (2008b) describes as being 

that „complex models and new concepts are better than simple models and old 

concepts‟. This existing mindset has lead to the development of hydrological 

models which are fraught with over-complexity which may not be warranted. The 

modelling mindset needs to move towards what Sivakumar (2008b) describes 

neatly that „something is better than nothing, but nothing is better than nonsense‟. 

The future of hydrological modelling appears to be to move away from the idea of 

„modelling everything‟ and towards „capturing the essential features‟ as this will 

reduce the risk of over-parameterisation thereby decreasing model uncertainty 

(Sivakumar, 2008b).  Beven (2008) argues that the future of environmental 

modelling should place more emphasis on „parametrically simple robust models, 

carefully designed for specific purposes‟. Similarly, Sivakumar (2008b) argues 

that „complex models may only be better where adopted scientific concepts are 
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correct, and the data is reliable in information, and of sufficient quantity. This is 

rarely the case in hydrology‟. 

There is agreement in the literature that in order for hydrological modelling to 

progress as a science, there must be a change in attitude among the hydrological 

community to dismiss the belief that failure of a model is a failure in science, 

since it is when we admit that our models do not perform well that we may learn 

from our mistakes and progress, both in terms of improvement in prediction 

ability and understanding (Kirchner, 2006, Sivakumar, 2008b). 

6.3 The Lasso Methodology 

The lasso technique is one of many different methods of model shrinkage. Put 

simply, the lasso technique works by selecting a subset of linear predictor 

parameters, and discarding the remaining parameters (Hastie et al., 2009). The 

lasso has the capability to select variables with predictive power during model 

calibration, with the particular practicality of being able to handle a large number 

of contender variables (Bardsley et al., under review). 

The lasso technique originally appeared in the Journal of the Royal Statistical 

Society in 1996, for the purpose of linear model simplification for the 

development of interpretable models (Tibshirani, 1996). That is, if models which 

have a very large number of parameters can be simplified so that only those which 

have the greatest effects on the system remain then models should be easier to 

interpret as the parameters may have increased identifiability (Tibshirani, 1996). 

The lasso technique was also developed to address dissatisfaction among 

statisticians at the time with ordinary least squares estimates which produced 

models which in general, had low bias but high variance. In these situations it is 

common to attempt to increase prediction accuracy and reduce variance by setting 

some co-efficient to zero. However, this introduces bias as a trade off for a better 

prediction (Tibshirani, 1996). 

Model simplification can be achieved by methods other than shrinkage methods. 

The most common of these is subset selection. However, subset selection has the 

disadvantage of being a discrete process since variables are either retained or 

eliminated; this results in high variance within models such that the prediction 

error may not be reduced. Subset selection also has a heavy calculation load 
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which limits variables. Shrinkage methods exhibit less variability since they are 

continuous (Hastie et al., 2009). The lasso was originally designed based on 

another shrinkage method, the non-negative garrotte which was proposed by 

Breiman in 1993. The non-negative garotte uses non-negative factors to shrink 

ordinary least squares estimates. However, the garotte is limited in that its solution 

depends on the sign and magnitude of the ordinary least squares estimate, 

consequently the garrotte may perform poorly when the ordinary least squares 

estimate is overfit. The lasso avoids this drawback by not depending explicitly on 

the ordinary least squares estimate (Hastie et al., 2009). 

Presently, two standard techniques for the improvement of ordinary least squares 

estimates exist. These include best subsets regression and ridge regression. 

However, best subsets regression is limited in that it is too discrete. This allows 

small variations within a data set to give vastly different results. Ridge regression 

is a continuous technique like the lasso, but simply „shrinks‟ parameters without 

setting any to zero, meaning that the total number of parameters are retained. This 

may make model interpretation difficult due to lack of parameter identifiability. 

The lasso technique however has the disadvantage that unlike best subsets 

regression the remaining selected parameters are not necessarily „best‟. However, 

best subsets regression is unable to cope with a large number of potential 

parameters like the lasso can (Bardsley et al., under review).  

The lasso technique has been compared to subset regression and ridge regression 

in terms of prediction accuracy under three scenarios, a small number of large 

effects, small to moderate number of moderate effects, and a large number of 

small effects (Table 4). Subset selection performs best for a small number of large 

effects, followed by the lasso and then ridge regression, the lasso performs best 

for a small to moderate number of moderate effects, followed by ridge regression 

then subset regression, and the ridge regression does best for a large number of 

small effects followed by the lasso then subset regression, so it is the most 

versatile of the three (Tibshirani, 1996). 
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Table 4: Relative performance of subset selection, the lasso and ridge regression under different 

scenarios (based on text from Tibshirani, 1996).  

Performance 

Small number 

of large effects 

Small-moderate 

number of moderate 

effects 

Large number of 

small effects 

Best Subset selection Lasso Ridge regression 

Intermediate Lasso Ridge regression Lasso 

Worst Ridge regression Subset regression Subset regression 

 

The lasso technique was proposed as an intermediate between the two 

aforementioned techniques, retaining the positive features of both. There is 

suggestion of the power of the lasso methodology in its wide application in the 

statistical community as a method of variable elimination in a least-squares 

regression (Tibshirani, 1996). The original lasso paper by Tibshirani, 1996 has 

been cited over 1,400 times as of the 8
th

 of January 2011 across a wide range of 

scientific fields.  

The original lasso is defined in least squares form as: 

Letting β = ( β 1… β p)T  the lasso estimate is defined by 

arg min                  
 
  

   
  subject to λ              

Where (x
i
,yi), i=1,2,….N is the data,  x

i
=(xil…,xip)

T
 are predictor variables and yi 

are the responses. The assumption is made that yi is either independent or 

conditionally independent given standardised xij so that ∑ ixij / N=0, ∑ix2
ij / N=1. t 

  0 applies elimination pressure to the parameters, and thus determines the 

amount of shrinkage which is applied. Forcing variables to zero thus removes less 

informative variables (Tibshirani, 1996). 

The lasso technique uses a parameter, λ which applies elimination pressure to the 

β parameters. As λ is increased more variables are forced towards zero. This 

means that variables which have poor prediction of the data are forced to zero 

during calibration, and variables which have good fit to the data are reduced in 

size but are not eliminated. The result is a set of non-zero parameters which may 

be constrained to be positive, depending on the model formulation. A second 

[6] 
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calibration is then carried out where λ is set at zero and consequently there is no 

elimination pressure. Any variables which went to zero in the previous calibration 

will remain at zero. The remaining variables are then subjected to a standard 

calibration, increasing the values of the variables which have been shrunk during 

the initial calibration towards the observed data. Therefore, there is a trade-off 

between model simplification and fitting to data since as the model becomes 

simpler the calibration fit decreases. 

The lasso method has to date not been widely applied in hydrology although a 

wide range of possible applications exist. For example, the lasso method can be 

applied to finite mixture rainfall runoff models, and may have a number of other 

hydrological applications. 

6.4 Method Used 

A lasso-simplified finite mixture rainfall-runoff model was used to predict the 

day-ahead inflow of the Aniwaniwa Stream into Lake Waikaremoana. The 

rainfall-runoff model utilised the lasso technique in an initially over-parameterised 

rainfall runoff model as a method of model simplification. The model requires a 

complete record of rainfall data as an input. Initially some data exploration was 

carried out to determine which raingauges were the most appropriate to use as 

parameters for model input. 

6.4.1 Data Organisation 

The rainfall data used for input into the rainfall-runoff model is from a single 

raingauge in the Aniwaniwa catchment as it is the closest raingauge to the 

Aniwaniwa Stream, being in the catchment itself. However, the actual record of 

Aniwaniwa rainfall is not complete. Therefore, rainfall from another raingauge in 

the Waikaremoana area must be used to patch in missing rainfall data. 

In order to determine which of the 7 other raingauges in the Waikaremoana area is 

most suitable for patching into the Aniwaniwa record the rainfall-runoff 

relationships with the Aniwaniwa Stream were compared. The lag time between 

rainfall events and observed peaks in the Aniwaniwa Stream were compared in 

order to determine which raingauge behaved most similarly to the Aniwaniwa 

raingauge (Figure 35).  
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Figure 35: Example hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and 

Aniwaniwa rainfall (mm) for 2001. 

While the rainfall and runoff relationship for each raingauge was compared over a 

large time scale, some short time scale plots of a large rainfall event in August 

2001 are shown here for ease of comparison (Figure 36). While only one large 

rainfall event is shown, there are often rainfall events almost as large at other 

dates. 

Figure 36: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Aniwaniwa daily 

rainfall (mm) for a high rainfall event in August 2001. 
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The Aniwaniwa stream responds to Aniwaniwa rainfall fairly rapidly with the 

peaks occurring either on the same day or on the following day. Situations where 

the hydrograph peak occurs on the day following recorded rainfall may be a result 

of night time rainfall such that a runoff response time of a few hours means that 

the hydrograph peak occurs the following day. It may also be a result of low 

catchment wetness state such that the soil moisture stores are filled first, delaying 

the hydrograph peaks. 

The Erepeti Met raingauge is located on the other side of a topographic ridge from 

the Aniwaniwa catchment, approximately 6km from the mouth of the Aniwaniwa 

Stream (Figure 16). River flows in the Aniwaniwa Stream tend to lag the recorded 

rainfall by a period of one day. Rainfall peaks at this rain gauge tend to be smaller 

than at the Aniwaniwa raingauge, possibly due to a rain shadow effect of the ridge 

between the two catchments (Figure 37). The Nga Tuhoe raingauge is situated 

close to the Erepeti Met raingauge and also lags the river flows by 1 day. Both 

raingauges are outside the Waikaremoana catchment. In both Erepeti Met and Nga 

Tuhoe raingauges the size of the rainfall peaks relative to the size of the river flow 

peaks are not as closely related as for the Aniwaniwa raingauge (Figure 38).  

 

 

Figure 37: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Erepeti Met daily 

rainfall (mm) for a rainfall event in August 2001. 
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Figure 38: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Nga Tuhoe daily 

rainfall (mm) for a rainfall event in August 2001. 

The Upper Waiau raingauge is located on the opposite side of Lake 

Waikaremoana to the Aniwaniwa catchment, approximately 20 km from the 

mouth of the Aniwaniwa Stream and is separated from the Waikaremoana 

catchment by the Panekiri Range. Rainfall peaks recorded at the Upper Waiau 

raingauge occur either on the same day as discharge peaks of the Aniwaniwa 

Stream or lag the peaks by one day. However, the magnitude of rainfall peaks is 

only moderately well related to those of the Aniwaniwa raingauge (Figure 39). 

The Upper Waiau raingauge receives less rainfall than many of the other 

catchments.  

The Bushy Knoll raingauge is located approximately 23 km NNE of the 

Aniwaniwa Stream. Discharge in the Aniwaniwa Stream lags Bushy Knoll rainfall 

by one day. This is to be expected as Bushy Knoll is located some distance from 

the Waikaremoana catchment. However, the rainfall magnitude of rainfall peaks 

are fairly similar to that of the Aniwaniwa raingauge (Figure 40).  
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Figure 39: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Upper Waiau 

daily rainfall (mm) for a rainfall event in August 2001. 

Mt Manuoha is located 10 km to the NNW of the mouth of the Aniwaniwa 

Stream. It is a topographic peak some 670 m higher than the mouth of the 

Aniwaniwa Stream. High rainfall events appear to be more frequent at the Mt 

Manuoha raingauge, possibly due to the orographic effect of high topography. 

River flows in the Aniwaniwa Stream lag Mt Manuoha rainfall by 2 days (Figure 

41). 

 

Figure 40: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Bushy Knoll 

daily rainfall (mm) for a rainfall event in August 2001. 
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Figure 41: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Mt Manuoha 

daily rainfall (mm) for a rainfall event in August 2001. 

Rocky Pad is located across Lake Waikaremoana from the Aniwaniwa catchment, 

approximately 21 km from the mouth of the Aniwaniwa Stream. Rainfall peaks at 

the Rocky Pad raingauge and river peaks in the Aniwaniwa Stream match 

moderately well. Rainfall occurs on either the same day, or river flow lags rainfall 

by one day (Figure 42).  

The Waimaha raingauge is located approximately 20 km to the North East of the 

Aniwaniwa Stream. The Waimaha raingauge has the shortest rainfall record which 

is only 9 years long. River flow peaks and rainfall peaks match quite well but the 

absolute value of rainfall are much lower in the Waimaha catchment compared to 

the Aniwaniwa catchment. Aniwaniwa discharge lags rainfall by one day (Figure 

43).  

The Onepoto raingauge is located 7 km to the south west of the Aniwaniwa 

Stream, and Aniwaniwa discharge lags Onepoto rainfall by 1 day. The Onepoto 

rainfall record also has large amounts of missing data (Figure 44).  
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Figure 42: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Rocky Pad daily 

rainfall (mm) for a rainfall event in August 2001. 

 

 

Figure 43: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Waimaha daily 

rainfall (mm) for a rainfall event in August 2001. 

Monthly rainfall totals for each raingauge were compared to determine which 

raingauge has the closest monthly rainfall totals to the Aniwaniwa raingauge, and 

which raingauges had the same relative seasonal variation in rainfall (Figure 45). 

Onepoto rainfall is not included in Figure 45 due to the large amount of missing 

data. 
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Figure 44: Hydrograph of the Aniwaniwa Stream showing discharge (m
3
s

-1
) and Onepoto daily 

rainfall (mm) for a rainfall event in August 2001. 

 

 

Figure 45: Monthly rainfall totals and average monthly discharge of the Aniwaniwa Stream    
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3
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It was found that the Aniwaniwa rainfall consistently had the second highest 

rainfall total each month for the year until September. During September to 

December Aniwaniwa rainfall is matched or slightly exceeded by Rocky Pad 

rainfall. The Mt Manuoha raingauge had the highest rainfall totals each month. 

This is likely due to an orographic effect caused by high topography. 

The closest monthly rainfall totals to the Aniwaniwa rainfall are Rocky Pad, 

Erepeti Met and Nga Tuhoe which are within ± 93 mm of rainfall over the entire 

year. The other raingauges considered are ± 130 mm of rainfall each month 

compared to Aniwaniwa rainfall (Table 5). Thus, at a monthly scale it is clear that 

the Rocky Pad rainfall is most closely matched to the Aniwaniwa rainfall. 

 

Table 5: Deviation of monthly rainfall totals from Aniwaniwa rainfall totals (%) 

 
Jan Feb Mar Apr May Jun 

Erepeti Met 7.1 1 -9.9 -9.5 -13.6 -35.7 

Mt Manuoha 53 39.8 17 3.2 30.8 7.9 

Rocky Pad 17.8 -15.6 -10 -18.1 -4.6 -9.8 

Nga Tuhoe 0.7 -8.9 -16 -29.3 -25.4 -36.6 

Upper Waiau -32.6 -43.3 -41.4 -51 -45.4 -49 

Bushy Knoll -20 -26.9 -22.5 -40 -35.1 -44.5 

Waimaha -42.3 -27.8 -52.8 -48.5 -56.9 -50.5 

Table 5 continued. 

     

 
Jul Aug Sep Oct Nov Dec 

Erepeti Met -30.5 -15.6 -14.4 -27.5 -23.1 -15.7 

Mt Manuoha 16.9 22.9 33.7 49.1 49.1 43.1 

Rocky Pad -3.8 -4.8 2.6 4.2 6.4 -2.5 

Nga Tuhoe -30.1 -31.6 -18.3 -23.5 -20.9 -25.3 

Upper Waiau -45.2 -51.5 -46.7 -42.4 -38.2 -36 

Bushy Knoll -33.2 -41 -39.4 -34.5 -38.7 -34.4 

Waimaha -38.2 -43.4 -52.9 -44.7 -50.9 -33.3 

 

The various raingauges were also compared on a daily scale using a scatterplot of 

Aniwaniwa rainfall and each of the contender raingauges (Figure 46), the R
2
 

values of the plots could then be compared (Table 6). The Nga Tuhoe raingauge 

had the highest R
2
 value followed closely by the Onepoto raingauge. 
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Table 6: R
2
 value and Nash-Sutcliffe coefficient for comparison of Aniwaniwa rainfall to each of 

the 8 raingauges in the Waikaremoana catchment. 

Raingauge R
2
 

 Erepeti Met 0.377 

 Nga Tuhoe 0.840 

 Upper Waiau 0.627 

 Bushy Knoll 0.724 

 Mt Manuoha 0.515 

 Rocky Pad 0.68 

 Waimaha 0.697 

 Onepoto 0.827 

  

 

 

Figure 46: Scatterplot of Aniwaniwa daily rainfall (mm) and Nga Tuhoe rainfall showing linear 

relationship. 

The Nga Tuhoe raingauge appears to be the most correlated to Aniwaniwa rainfall 

as it has the highest R
2
 value, similar monthly rainfall totals, and a similar lag 

time when compared to Aniwaniwa rainfall. 

The seasonality of the rainfall-runoff relationship was investigated prior to model 

development (Figure 47). This may be important in the Waikaremoana catchment, 

as strong seasonal variation in spring may denote snowmelt unrelated to rainfall 

events which may make runoff more difficult to predict during this time.
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Figure 47: Ratio of average monthly runoff and average monthly rainfall. 

Seasonal variation in average monthly runoff and average monthly rainfall 

changes is indicated by a change in the runoff/rainfall ratio. Seasonal variation in 

the Waikaremoana catchment is apparent, with the ratio of runoff to rainfall 

increasing to a peak in August, with summer minima. As the larger ratios occur in 

mid to late winter, this suggests a reduced evaporation loss as well as the soil 

already having a high moisture content, allowing infiltration capacity to be 

exceeded much more quickly than during other times of the year. Higher ratios in 

September and October compared to June and July could also be a result of this, 

but could also be related to snow melt. 

6.4.2 Method 

The lasso methodology is used to develop a simplified model to forecast daily 

inflows of the Aniwaniwa Stream into Lake Waikaremoana. The model is run 

using linear programming routines set up and called from COMSOL. The model 

is set up for calibration/simplification using linear programming model where an 

input file created and edited in Microsoft Excel is read into the model. The input 

file contains the observed daily discharge of the Aniwaniwa Stream, as well as 

Aniwaniwa daily rainfall. Included are 5 other rainfall variables which represent 

the rainfall of the Aniwaniwa catchment at different lags, for example 1 day, 2 

day, 3 day and 4 day lags. This is included to give the model information about 

the catchment wetness state since previous rainfall is likely to affect hydrograph 

form. Where rainfall data was not available for certain (small) periods, data from 

the Nga Tuhoe raingauge, was patched in. Rainfall input data was standardised as  
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a requirement of the model by dividing by the no-zero mean such that rainfall 

values fluctuate around 1.0. This has the effect of removing any very large input 

values after rainfall is squared, since these values will be preferentially eliminated 

from the model which may produce bias. 

The data set used ranges from the beginning of 1995 to March 2009. Although a 

longer data set is available, this period was used because there is no missing 

discharge data during this period. The calibration/simplification computational 

time is approximately 20 minutes. 

Since the lasso technique requires linear inputs, and rainfall-discharge 

relationships are rarely linear, a pseudo-linear approach has been taken. A finite 

mixture rainfall-runoff model has been created where a number of hydrograph 

forms (25 in this case) are made available to the model. A large range of pre-

calculated forms must be available such that all possibilities may be predicted. 

That is, there must be forms which can approximate the peaks, and forms which 

can approximate long recession tails (Figure 48). The forms are given a more or 

lesser weight via the algorithm depending on the intensity of the rain event, and 

the previous 5 days rainfall to allow for catchment wetness state. Therefore, the 

shape of the hydrograph is related to the catchment variables by the relative 

weight of chosen hydrograph forms which serve as shape parameters.  

The weights also serve as scale parameters so results are independent of units of 

measurement. This approach does not attempt to represent the physical processes 

between hydrological variables such as rainfall and runoff beyond representative 

forms of hydrograph components but simply selects hydrographs as an empirical 

function of past rainfall events. Therefore, any hydrological interpretation is 

carried out after modelling rather than as part of the model input. 
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Figure 48: Illustrative example of the possible hydrographs which may be selected for the rising 

limb (a) peak (b) and recession tail (c) of a hydrograph. 

A modified form of the original least squares lasso equation is used here (Wang et 

al., 2006). This enables the use of the lasso in linearly constrained models using 

standard linear programming techniques which produce a single global minimum 

during calibration. 

                        
 
   

 
                 

 
    

where values of β are coefficients associated with independent variables, Yi are 

the N data values of the model which are being approximated by the model, β0 is a 

constant term which is not minimised as it is not used in prediction, Xi,j are the M 

standardised independent variables. The parameter λ a user supplied value, 

provides elimination pressure. 

[7] 
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The weights of pre-calculated hydrograph forms are linked to rainfalls through 

quadratic functions with coefficients constrained to non-negative values. 

Constraining the quadratic coefficients to be non-negative gives non-negative 

weights and avoids the possibility of negative discharges. The use of quadratic 

coefficients can be used to represent nonlinear processes of runoff such as rapidly 

increasing discharge as a result of infiltration capacity being exceeded. This does 

not violate the requirement of linearity since both calculation of the hydrograph 

forms and raising them to powers is a pre-calculation. There is no explicit 

representation of causal mechanisms between hydrological variables such as 

rainfall and runoff. The pre-calculated forms are linked to physical reality by the 

large set of hydrograph forms available which are selected by the user. 

Thus, the model takes a large number of different hydrograph forms and rainfall 

inputs thereby creating a highly over-parameterised constrained linear model, in 

excess of 300 parameters. The model is then subjected to 

calibration/simplification using the lasso technique. Here, a λ parameter is 

selected by the user to determine the elimination pressure. That is, as λ increases 

the number of non-zero variables decreases by reducing the size of the parameters 

such that some parameters become zero. Even when the λ parameter = 0 and there 

is no elimination pressure some parameters will still move to zero, as they 

contribute best to the fit when set to zero. Since all of the parameters have been 

subjected to elimination pressure during the first round of calibration causing 

them to move towards zero, a second round of calibration is carried out to allow 

the parameters to adjust to best match the original calibration set, reducing the 

under-prediction bias. Any parameters which were forced to zero during the 

simplification will remain at zero. Any parameters which try to change sign will 

be eliminated.  

Initially the model was run at λ = 0 which reduced the number of parameters from 

300 to 45. The λ value was then increased incrementally to λ =2500 giving 9 

parameters, λ =2750 giving 6 parameters, λ =3000 giving 4 parameters. The 

model parameter „maximum hydrograph baselength‟ was set at 50 hours. While 

the maximum hydrograph baselength is generally not very important, it needs to 

be long relative to the length of the recessions in the recorded hydrograph. If the 
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maximum hydrograph baselength is set too short, then the modelled hydrograph 

tail will fall to a constant baseflow after the number of hours set as the hydrograph 

baselength following the hydrograph peak. This is avoided by setting a longer 

baselength. Alternatively, this can be avoided by including a range of heavy-tailed 

distributions amongst the forms available for selection. A Gumbel scale parameter 

can also be set by the user, however, setting of the Gumbel scaling factor is 

thought to not be too important as the rainfall-runoff model has the ability to 

shuffle the Gumbel scale parameter during calibration 

The Nash-Sutcliffe coefficient of observed vs. predicted inflows was used to 

observe validation fit.  

6.5 Results 

The rainfall-standardised model was initially run with no elimination pressure on 

the parameters, that is, λ was set to zero. This produced a model with 45 

parameters, a significant reduction from the original 300 contender parameters. 

This means that many of the potential parameters did not have predictive ability 

and thus contributed best to fit when they were set to zero under standard 

calibration. 

As anticipated, the number of parameters in the model decreased as elimination 

pressure, λ was increased (Figure 49). The elimination pressure was increased 

incrementally between λ =0 and λ =3500, when the number of parameters was 

reduced to zero. Parameter reduction was not found to occur linearly with 

increasing elimination pressure, rather, small „bumps‟ or peaks are observed 

where the number of parameters increases temporarily with elimination pressure. 

Explanation of this non-linearity is beyond the scope of this study. 
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Figure 49: Number of parameters and elimination pressure showing a non-linear decrease in 

number of parameters with increasing elimination pressure.  

A visual examination of time series plots of observed and predicted inflows was 

carried out to check where the model fits were best and worst. When the 

elimination pressure, λ, is set to zero the model appears to over-predict some low 

flow periods, particularly the tails of the hydrographs, and under-predicts peak 

flows quite severely (Figure 50, Figure 51).  

As elimination pressure is increased and more model parameters are eliminated, 

calibration fit decreases. This can be observed visually through time series plots of 

observed and predicted flows. As elimination pressure is increased the peak flows 

are predicted more and more poorly, that is, they are more severely under-

estimated and the baseflows are more severely over-estimated (Figure 52). Some 

peaks are predicted very poorly even when λ=0. This may be caused by increases 

in discharge which are not related to rainfall, such as snow melt or may be due to 

a temporary change in the relationship between rainfall and runoff, such as flashy 

hydrophobic behaviour. Hydrograph peaks are often difficult to predict using 

rainfall-runoff models due to the high spatial variability of heavy rainfall. 
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Figure 50: Observed flows (green) and predicted flows (blue) for the entire data set under no 

elimination pressure. This plot is for illustrative purposes only and is not a calibration set. 

 

Figure 51: Observed flows (green) and predicted flows (blue) under elimination pressure, λ =0 for 

700 days of data. This plot is for illustrative purposes only and is not a calibration set.
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Figure 52: Observed dicharge (green) and predicted discharge of the Aniwaniwa Stream under a range of elimination pressures, resulting in 45, 14, 6 and 4 

parameters. Showing the increased under-prediction of peak discharges and over prediction of low flows with increasing elimination pressure. 
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It was expected that calibration fit would increase with the number of parameters, 

but that validation fit would decrease with increasing number of parameters due to 

calibration over-fitting. However, the models with a large number of parameters 

had a reasonably high validation fit (Figure 53, 54). Relatively high validation fits 

were achieved with a large number of model parameters because the non-linear 

relation has been made discrete in effect by a large number of combinations. The 

validation fit then began to decline at approximately 35 parameters, but rose to a 

peak where the elimination pressure, λ was 800 with 14 parameters. Validation fit 

then plateaus although elimination pressure still increases and the number of 

variables decrease. The highest elimination pressure on this plateau is λ=2750, 

where there are 6 parameters. Validation fit then decreases rapidly with increasing 

elimination pressure. The validation peak at 14 parameters suggests that it is over-

parameterised above this value. 

 

Figure 53: Number of non-zero model parameters and Nash-Sutcliffe validation fit (%). 
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Figure 54: Validation fit as measured by the Nash-Sutcliffe coefficient (%) and elimination 

pressure, λ. 

Validation fit can also be observed visually through scatterplots of observed and 

predicted discharge. The highest validation scores were obtained for λ=800 (14 

parameters) and λ=2750 (6 parameters) using the Nash-Sutcliffe coefficient. 

However, quite a lot of scatter exists within the data (Figure 55). As observed 

discharge values increase, however, the model under-predicts peak flows quite 

severely suggesting that the prediction of the low-medium flows may be better 

than the validation score suggests. In the λ=2750 (6 parameters) under-prediction 

of peak flows is more severe than for λ=800 (14 parameters) (Figure 56). The 

peak flows become more poorly estimated as parameters are dropped from the 

model.  
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Figure 55: Scatterplot of observed vs. predicted discharge (m
3
s

-1
) and 1:1 line when λ=800 (14 

parameters). 

 

Figure 56: Scatterplot of observed vs. predicted discharge (m
3
s

-1
) and 1:1 line when λ=2750 (6 

parameters). 

6.6 Discussion 

The finite mixture rainfall-runoff model used in this chapter was created in order 

to forecast the inflow of the Aniwaniwa Stream, which is in turn to be used to 

anticipate storage change of Lake Waikaremoana. The rainfall-runoff model is 

also used to demonstrate a use of the lasso technique as a model simplification 

tool in rainfall-runoff modelling. 
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Forecasting of Aniwaniwa Stream inflows into Lake Waikaremoana was of 

moderate success. Under all model variations tested peak flows were under-

estimated. This may have been due to the model being composed of a limited 

number of hydrograph forms available as well as spatial variation of heavy 

rainfall. That is, there may not have been enough „flashy‟ hydrographs among the 

pre-calculated forms. More steep hydrograph forms could be added to the model 

to improve the prediction of peak flows, however, this would be at the expense of 

model simplicity since the number of contender parameters would be significantly 

increased. The ability to predict peak flows decreased with increasing elimination 

pressure, the most likely reason for this is as elimination pressure was increased 

not enough hydrograph forms were available to match the well defined peaks 

resulting in more forms being selectively removed. It is important to note here 

however, that the focus of this study is on forecasting medium to low discharges. 

In very few cases, the model failed to predict discharge peaks at all. There is the 

possibility that during these periods high discharges were a result of snow melt, or 

a situation where the soil moisture stores were full meaning that a much larger 

proportion of rainfall became quickflow as opposed to baseflow compared to the 

normal rainfall-runoff relationship in this catchment. 

Low flows were generally predicted well under low λ values but predictions of 

low flows became increasingly poor as λ was increased. This occurred because as 

the elimination pressure was increased the model preferentially eliminated forms 

which did not contribute to peak flows. This lead to over-predictions of tail 

portions of the hydrographs and under-predictions of periods of little to no 

rainfall. The addition of heavy-tailed hydrograph forms may increase the 

prediction of lows and hydrograph tails, but as is the case with peak flows, this is 

at the expense of model simplicity.  

Therefore, the model was of moderate success in terms of prediction ability. It 

predicted peak flows poorly, and low flows fairly well at moderate levels of 

elimination pressure. The model is thus of use for predicting low to medium flows 

of the Aniwaniwa Stream but of little use for predicting the magnitude of high 

flows. However, the model does have the ability to give indication of the timing 

of peak flows. 
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The use of the lasso technique of model simplification has been demonstrated in a 

finite mixture rainfall-runoff model. The model was found to be highly successful 

at parameter elimination, having the ability to reduce the number of model 

parameters from over 300 to 1 while still maintaining some prediction ability. 

Calibration without implicit elimination pressure, just a non-negative constraint 

reduced model parameters to 45. The lasso technique was successful at further 

eliminating parameters. The model was able to be used to locate the λ value where 

the best validation fit occurred. Thus meaning it is possible to use the model to 

detect where it is no longer over-parameterised. The best validation fit was 

obtained using an elimination pressure of 800 which produced a model with 14 

parameters. 

6.6.1 Limitations 

As outlined in the literature review section of this chapter, in order to observe 

progression in hydrological modelling, modellers must aim to produce the 

simplest model which can fulfil its purpose with minimum uncertainty. In order to 

achieve this a number of conditions must be met, the model parameters must be 

identifiable, the model must not be over-parameterised, and the model must have 

the ability to fail among others. The model used in this chapter broadly meets the 

majority of these conditions. 

It should be noted that the finite mixture rainfall-runoff model will always „fail‟ in 

terms of parameter identifiability since the model is composed of many very 

similar pre-calculated hydrograph forms. Therefore, the model may select 

different hydrograph forms based on very small variations or errors in the data. 

Small errors in the data could mean the difference between a model parameter 

being small and positive, or being zero. However, the model can be deemed to 

have a consistent behaviour as long as the predicted forms do not differ greatly 

when calibration is carried out on the same rainfall data. Parameter identifiability 

is not as important here as it is in many models since any input rainfall data is 

summarised in a graphical form, as a hydrograph rather than as a physically 

meaningful parameter. 

Krichner, 2006 suggested that attempting to model non-linear hydrological 

processes in a linear way may cause a model to be subject to great error and 
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uncertainty. However, in this case, a pseudo-nonlinear method has been used such 

that nonlinear processes are pre-calculated to satisfy the requirement of the lasso 

technique of being a linear framework. 

The model can be said to be successful at reducing over parameterisation. The 

model was reduced from 300 parameters to a situation where maximum validation 

fit occurred at 14 parameters. However, as with any rainfall-runoff model the 

model is also limited in that for a true forecast of river flows into the future 

forecasted rainfall would also be required. 

6.7 Next-Day Forecasting 

In the previous section of this chapter, a lasso-simplified finite mixture rainfall-

runoff model was used to forecast daily inflows of the Aniwaniwa Stream into 

Lake Waikaremoana given the condition that rainfall data was available for the 

time period to be forecasted. In this section, a modified rainfall-runoff modelling 

methodology is developed to forecast „next-day‟ Aniwaniwa Stream inflows in 

the absence of future rainfall data.  

A „next-day‟ inflow prediction is relevant for operational use at the 

Waikaremoana Power Scheme as a one day in advance water availability 

estimation will allow for more strategic bidding into the electricity market. 

Predicting only one day ahead removes the need for rainfall forecasting as may be 

the case if long term forecasting was carried out. 

After obtaining a „next-day‟ inflow forecast of the Aniwaniwa Stream the 

regression relation developed in Chapter 5 can then be used to scale Aniwaniwa 

Stream inflows to the entire Waikaremoana catchment such that net storage 

change of Lake Waikaremoana is estimated. 

 

6.7.1 Method 

An auto-recalibrating finite mixture rainfall-runoff model was run using 

COMSOL Script 1.2. The rainfall-runoff model is similar to the model mentioned 

earlier where a hydrograph is created in response to current and previous rainfall 

by selection of a combination of hydrograph forms of varying weight from a suite 

of pre-calculated forms. The model uses linear programming and a double 
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calibration where the initial round of calibration makes use of the lasso, which 

applies an elimination pressure causing less descriptive variables to be forced 

towards zero. A second, standard round of calibration is then applied during 

which any variables which went to zero in the previous round of calibration 

remain set at zero and all remaining parameters are calibrated to fit the observed 

data. The auto-recalibrating model differs from the original model mentioned 

previously in that it makes one inflow prediction only following the 

calibration/simplification/calibration process –that of the „next-day‟. The model 

then auto-recalibrates moving down the calibration data by one line in order to 

predict inflow for the following day. The model is simplified from an initial state 

where it has in excess of 300 parameters. These parameters are all initially 

necessary to allow the model a wide range of possible hydrograph forms from 

which it may select the most descriptive parameters.  

As in the model mentioned previously in this chapter, an elimination pressure is 

applied to allow for model simplification by forcing model parameters towards 

zero. In the auto-recalibrating model a different number of parameters are used for 

each individual prediction under the same elimination pressure, due to a different 

number of parameters being required to describe different parts of the hydrograph. 

For example, approximation of a hydrograph peak may require 5 hydrograph 

forms while the model may only require 3 hydrograph forms to approximate a low 

flow period under the same elimination pressure. In order to further allow for 

catchment wetness state and improve validation fit two new variables are 

introduced into the model which are used to apply an increased weight to more 

recent calibration data. 

A number of model runs were carried out using various user selected variables. 

The „best‟ result of these trials was selected by comparing the validation scores 

derived from the Nash-Sutcliffe model efficiency coefficient. Due to the relatively 

long computational time required to carry out the calibration/simplification 

process the model was initially run through 86 predictions. This was felt to be a 

sufficiently long period that the model would encounter a large enough variety of 

conditions to allow it to gain experience predicting both high and low flows. After 

the selection of the model settings with the best validation fit for the Aniwaniwa 
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Stream a small suite of much longer model runs were carried out in order to 

achieve an improved validation fit by increasing the models experience.  

 

6.7.2 Results 

The rainfall-runoff model was run under a range of elimination pressures, λ, from 

0 to 3500. This was carried out in order to determine the magnitude of λ which 

produced the model with the highest validation fit as measured by the Nash-

Sutcliffe model efficiency coefficient. As was the case with the original finite 

mixture rainfall-runoff model used earlier in this chapter, validation fit was 

relatively high during the initial model run under only non-negativity elimination 

pressure that is, λ = 0.  As expected, even when no elimination pressure was 

applied many variables were eliminated from the model during calibration since 

these parameters contribute best to fit when they are set to zero thus reducing the 

maximum number of model parameters from 300 to 65 with an average of 52 

parameters. The highest validation fit was achieved under an elimination pressure 

of λ =650 (14 parameters) (Figure 57). 

 

Figure 57: Elimination pressure, λ and validation fit as measured by the Nash-Sutcliffe coefficient 

showing peak validation fit occurring at λ = 650 (14 parameters). 
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The day-ahead nature of the rainfall-runoff model means that the model is re-

calibrated prior to each prediction made. Therefore the number of parameters used 

to make each prediction may not be the same for a given set of user selected 

model parameters. The range of parameters for any given elimination pressure, λ 

fluctuates by up to 21 parameters at low values of λ, and the range generally 

decreases with increasing elimination pressure (Figure 58). As in the previous 

rainfall runoff model elimination pressure increases as the average number of 

parameters per model run decreases. 

 

Figure 58: Elimination pressure, λ and number of parameters showing average (circle) and 

maximum and minimum (bar). 

The highest validation fit is achieved using the λ = 650 (14 parameter) model as 

determined using the Nash-Sutcliffe efficiency. Time series plots of observed and 

predicted discharges were also used to compare the prediction success of different 

areas of the hydrograph between models with different numbers of parameters. 

All models were found to significantly under predict large peak flows. Time series 

plots of models with the two highest Nash-Sutcliffe validation fits (λ=650 and 
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the parameter model (λ=2750) was found to under-predict both areas of the 

hydrograph to a greater extent (Figure 59).  

 

Figure 59: Time series plot of observed discharge of the Aniwaniwa Stream (red) and predicted 

discharges under elimination pressure of 650 with 14 parameters (black solid) and 2750 with 6 

parameters (black dashed). 

The auto-recalibrating model allows the user to adjust the weight of more recent 

environmental input data as a proxy for catchment wetness state. As expected, 

both validation fit and the average number of parameters per prediction increased 

slightly as increased weight was put on more recent environmental input data. In 
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due to an increased lag in the predicted hydrograph. The validation fit then 

increased at a weight of 40 due to a less severe under-prediction of peak flows and 
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6.7.3 Discussion 

The model which gave the highest validation fit had an elimination pressure of 

650, maximum hydrograph baselength of 50 hours, an increased weighting of 40 

times for the most recent 30 days of data and a Gumbel scaling factor of 2. This 

model has a Nash-Sutcliffe efficiency of 52.3%.  

As elimination pressure was increased, the number of model parameters were 

reduced, and in general, validation fit was decreased. However, validation fit 

increased to local maxima at an elimination pressure of 650, and a smaller 

maximum at an elimination pressure of 2750. Validation fit at λ =650 (46.8%) 

with an average 14 parameters per prediction was greater than the validation fit 

when no elimination pressure was applied (44.5%) where there was an average of 

45 parameters. It is likely that the reduction in parameters resulted in an increased 

validation fit as the model was over parameterised at greater than 14 parameters. 

The small peak in validation fit at λ = 2750 may be due to the elimination of less 

informative parameters which contribute more to uncertainty within the model 

than to fit. As maximum validation fit was achieved at an elimination pressure 

greater than zero, the lasso technique can be seen as successful in simplifying the 

model such that an improved validation fit occurs. 

The increased weighting of more recent rainfall and river flow inputs can be 

considered to be a proxy variable for catchment wetness state. The length of the 

increased weighting was found to be important as validation fit decreased as time 

was increased past 30 days. 30 days was the optimal time for increased weight in 

both the λ =650 and λ =2750 plots supporting the theory that length and 

magnitude of the weight variable can be considered as a proxy for catchment 

wetness state. 

6.8 Model Evaluation 

The auto re-calibrating rainfall-runoff model was expected to perform much better 

than the original rainfall-runoff model in terms of validation fit due to the addition 

of the weight parameter allowing for catchment wetness state. However, the auto 

re-calibrating rainfall-runoff model performed to a similar level as the original 

rainfall-runoff model, achieving validation fits of up to 52.3%. 
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 The highest validation for the original rainfall-runoff model was achieved under 

an elimination pressure of 800 and a maximum hydrograph baselength of 40 hours 

with a validation fit of 50.7%. The highest validation fits achieved for the auto re-

calibrating rainfall-runoff model occurred at an elimination pressure of 650 with a 

weight of 40. A validation fit of 52.3% was achieved (Table 7). It is interesting to 

note that the highest validation fit was achieved with 14 parameters in both the 

original and auto-recalibrating rainfall-runoff models. 

Table 7: Validation fits and model parameters of highest scoring models using the original 

rainfall-runoff model and the auto re-calibrating rainfall-runoff model. 

Model λ Weight Validation fit (%) 

Original 2750 N/A 47.0 

 

800 N/A 50.7 

Auto re-calibrating 2750 10 46.8 

 

650 40 52.3 

 

Both models give fairly low validation fits, suggesting that they may not be 

suitable for operational use. Validation fit of peak flows has been observed to be 

very low through timeseries plots of observed and predicted inflows due to severe 

under-estimation. While prediction of low flows is also under-estimated at high 

elimination pressures time series plots suggest that the validation fit may be 

higher if peak flows were removed from the data. It is likely that poor prediction 

of peak flows masks the difference in non-peak validation fit between the original 

and auto re-calibrating rainfall-runoff models. 

Both the original and modified rainfall-runoff models can be considered to be 

somewhat successful in terms of model simplification ability as the validation fits 

of the models were improved at elimination pressures greater than zero. Thus, the 

use of the lasso technique of model simplification has meant that the model was 

both simplified and its fit was improved. An approach which may be used to 

improve the validation fits of both the original and auto-recalibrating models may 

be to create a wider range of available hydrograph forms. The model currently 

only uses 25 possible hydrograph forms. This could be increased to 50 forms. For 

example, hydrograph forms which are flashier may allow for better prediction of 

hydrograph peaks and a range of heavy tailed distributions may allow for better 
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prediction of hydrograph tails. However, this would also mean that there would be 

a much larger initial number of model parameters which would have to be 

removed from the model using the lasso simplification. Therefore there is a trade 

off between model simplification and fitting to data.  

6.9 Conclusion 

The lasso methodology was applied to two finite mixture rainfall-runoff models in 

order to forecast inflows into the Aniwaniwa Stream which can then be usefully 

extrapolated using the regression relation developed in Chapter 5 to give net Lake 

Waikaremoana storage change. Rainfall-runoff modelling was partially 

successful, the original rainfall-runoff model was able to predict inflows with 

some accuracy at low to medium flows with 14 parameters. The auto-recalibrating 

finite mixture rainfall-runoff model achieved similar validation fits as the original 

rainfall-runoff model, with a maximum validation fit of 52.3% with 14 

parameters.  

The problem of over-complexity of hydrological models is identified and the 

notion which is commonly asserted in the literature that the future of hydrological 

models is not in more and more complex models with more and more parameters 

but in simple models which predict well is addressed. This is a driving factor in 

the use of the lasso methodology as a technique of model simplification. 

While the method used has limitations in that parameter identifiability may be 

difficult, the methodology is concluded to be successful in reducing model 

parameters to tackle the problem of over-parameterisation of hydrological models 

which have been previously formulated in a linear context. The use of the lasso 

methodology allowed for the number of model parameters to be reduced beyond 

that of standard calibration such that an optimal validation result at a reduced 

number of parameters (14) was found which may otherwise have been 

unidentified.
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Chapter 7 –Multiple Regression for Forecasting 

Aniwaniwa Stream Inflows into Lake Waikaremoana. 

7.1 Introduction 

As a simpler alternative to the finite mixture rainfall-runoff models presented in 

Chapter 6, a multiple regression technique is applied in order to forecast inflows 

of the Aniwaniwa Stream into Lake Waikaremoana to allow estimation of net lake 

inflows. A regression technique may be more suitable for operational use at the 

Waikaremoana Power Scheme than the finite mixture rainfall-runoff model due to 

lower computational demands in terms of both software requirements and 

computational time. There is also the possibility that a regression approach may 

produce next-day inflow forecasts which are at least as accurate as the rainfall-

runoff models used in the previous chapter. Use of multiple regression also 

satisfies an underlying theme in this thesis, that modelling of a hydrological 

system for practical application should be no more complex than necessary. 

7.2 Method –Multiple Regression 

Seventeen years (1992-2009) of Aniwaniwa Stream daily discharge data, and 

Aniwaniwa rainfall data was available for use in a multiple regression. However, 

the discharge record was complete for only 14 years, therefore discharge and 

rainfall data for the period (1995-2009) was used. As the rainfall data was not a 

complete record, rainfall readings from a nearby raingauge, the Nga Tuhoe 

raingauge was used to patch in missing rainfall data.  

The data set was split into a 9 year calibration (1995-2004) and 5 year validation 

set (2005-2009). These time periods were chosen for the calibration and validation 

sets as the validation set was chosen to contain the largest peak flow to give an 

indication of the models‟ ability at predicting peaks beyond its experience (Figure 

60).  
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Figure 60: Time series plot of Aniwaniwa Stream inflows showing calibration and validation 

periods. Note logarithmic vertical scale. 

 

A suite of independent variables were selected for use in multiple regression 

against the dependent variable of „next-day‟ inflow. These independent variables 

were current day inflows (TQ); previous day inflows (YQ); current day rainfall 

(Train); previous day rainfall (Yrain); next-day rainfall (NDrain); the differences 

between current day and previous day rainfall and discharge (T-YQ, T-Yrain); and 

between next day and current day rainfall (ND-Train). 38 combinations of these 

variables were used in a suite of single or multiple regressions using the 

calibration data set. Of the 38 combinations the 10 results which gave the lowest 

standard error and the highest R
2
 /multiple R

2
 values in the calibration set were 

selected. Observed Aniwaniwa inflows and inflows predicted using the various 
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7.3 Results 

Of the 38 combinations of independent variables all gave a p value of less than 

0.001 suggesting that the correlation with the dependent variable is statistically 

significant to the 99% level (Table 8). In all but 5 cases, all of the independent 

variables used were also statistically significant. The regression equations which 

gave the 10 lowest standard error values, the 10 highest R
2
/multiple R

2
 values and 

where all independent variables were significant were selected for further analysis 

and the remaining regressions were discarded (Table 9).  

The regression coefficients of the „top three‟ regression equations as determined 

by comparing calibration fits were then used to create regression equations from 

which „next-day‟ predictions of Aniwaniwa Stream inflows were calculated 

(Table 10).  

Of the 10 regression equations, 6 gave negative predictions of Aniwaniwa 

discharge due to either a negative regression co-efficient or negative input values 

in the case of T-YQ and T-Yrain where previous day discharge/rainfall is greater 

than current day discharge/rainfall respectively. A rule was therefore applied 

which stated that if the model gives a negative discharge prediction, then the 

prediction is set to zero as negative discharges are considered hydrologically 

incorrect. 

Table 8: Suite of independent variables used in single/multiple regressions with the dependent 

variable NDQ in calibration data set.  

Dependent R
2
 mR

2
 p 

Standard 

error Intercept 

TQ 0.54 0.73 <0.001 2.4 0.699 

Train 0.41 0.64 <0.001 2.73 1.69 

NDrain 0.22 0.47 <0.001 3.11 1.93 

Train, NDrain 0.49 0.7 <0.001 2.52 1.37 

T-Yrain 0.04 0.19 <0.001 3.47 2.64 

T-YQ 0.18 0.42 <0.001 3.21 2.64 

Train, TQ 0.65 0.8 <0.001 2.1 0.611 

TQ, YQ 0.57 0.75 <0.001 2.33 0.87 

TQ, Yrain 0.54 0.74 <0.001 2.39 0.681 

TQ, NDrain 0.69 0.83 <0.001 1.96 0.23 

Yrain, Train 0.46 0.68 <0.001 2.6 1.44 
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TQ, YQ,Train, Yrain 0.65 0.81 <0.001 2.08 0.642 

TQ, T-Yrain 0.63 0.79 <0.001 2.16 0.592 

TQ, T-NDrain 0.55 0.74 <0.001 2.38 0.622 

Train, NDrain 0.49 0.76 <0.001 2.52 1.37 

TQ, YQ, Train 0.65 0.81 <0.001 2.1 0.662 

TQ, YQ, Train, Yrain 0.65 0.81 <0.001 2.1 0.643 

TQ, YQ, Train, Yrain, NDrain 0.75 0.87 <0.001 1.76 0.281 

TQ, Train, Yrain, NDrain 0.75 0.87 <0.001 1.77 0.23 

TQ, Yrain, NDrain, 0.69 0.84 <0.001 1.94 0.21 

TQ, NDrain, T-YQ 0.71 0.84 <0.001 1.9 0.38 

TQ, T-YQ, T-Yrain 0.63 0.8 <0.001 2.15 0.69 

TQ, T-Yrain 0.57 0.75 <0.001 2.33 0.87 

TQ, T-Yrain, T-NDrain 0.68 0.82 <0.001 2.01 0.35 

YQ 0.18 0.43 <0.001 3.2 1.51 

YQ, Train 0.53 0.73 <0.001 2.42 0.80 

YQ, Train, Yrain 0.54 0.73 <0.001 2.4 0.81 

YQ, Train, Yrain, NDrain 0.63 0.79 <0.001 2.19 0.46 

YQ, Yrain 0.22 0.49 <0.001 3.09 1.45 

YQ, T-YQ 0.56 0.75 <0.001 2.33 0.87 

Train, Yrain 0.46 0.75 <0.001 2.6 1.44 

Train, Yrain, NDrain 0.55 0.74 <0.001 2.37 1.10 

Train, Yrain, NDrain, T-YQ 0.56 0.75 <0.001 2.35 1.24 

Train, T-YQ 0.42 0.65 <0.001 2.69 1.79 

Yrain 0.17 0.41 <0.001 3.07 2.02 

Yrain, T-YQ 0.28 0.53 <0.001 2.93 2.13 

NDrain, T-YQ 0.35 0.6 <0.001 2.84 2.00 

ND-Train 0.02 0.14 <0.001 3.504 2.64 

 

Table 9: „Top 10‟ results selected on the basis of lowest standard error, highest R
2
/multiple R

2
 and 

where all independent variables are significant. 

Dependent R
2
 mR

2
 p 

Standard 

error intercept 

TQ, YQ, Train, Yrain, 

NDrain 0.75 0.87 <0.001 1.76 0.28 

TQ, Train, Yrain, NDrain 0.75 0.87 <0.001 1.77 0.23 

TQ, *Yrain, NDrain, 0.69 0.84 <0.001 1.94 0.21 

TQ, NDrain, T-YQ 0.71 0.84 <0.001 1.9 0.38 

TQ, NDrain 0.69 0.83 <0.001 1.96 0.23 
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TQ, T-Yrain, T-NDrain 0.68 0.82 <0.001 2.01 0.34 

TQ, YQ,Train, Yrain 0.65 0.81 <0.001 2.08 0.64 

Train, TQ 0.65 0.8 <0.001 2.1 0.61 

TQ, YQ, Train 0.65 0.81 <0.001 2.1 0.66 

TQ, YQ, Train, Yrain 0.65 0.81 <0.001 2.1 0.64 

  

The forecasts of the „top 10‟ regression equations were compared to observed 

discharges of the Aniwaniwa Stream for the validation period using the Nash-

Sutcliffe model efficiency coefficient. Three of these regression equations gave 

high calibration fits (Table 11). 

Table 10: Regression coefficients and intercept of the top 3 regression equations. 

Equation # Parameters Regression coefficients Intercept 

1 NDrain 0.097 0.376 

 

TQ 0.642 
 

 

T-YQ 0.187 
 

  
  

2 TQ 0.690 0.230 

 

NDrain 0.101 
 

  
  

3 Train 0.095 0.611 

 

TQ 0.558 
 

 

Table 11: Nash-Sutcliffe coefficient for the top 3 calibration fits results. 

Dependent Calibration fit Validation fit 

TQ, NDrain, T-YQ 71.02 69.48 

TQ, NDrain 69.43 69.42 

Train, TQ 64.69 66.16 

 

From inspection of the Nash-Sutcliffe coefficients equation 1 gives a slightly 

better forecast of next day inflows, followed by equation 2. However, equation 3 

is used for further analysis as the reliance of equations 1 & 2 on next day rainfall 

may introduce error (see 7.4 Discussion). It is encouraging that the validation fits 

of all three of the regression equations are similar to, or higher than the calibration 

fits. 
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Inspection of scatterplots of observed and predicted discharges for calibration and 

validation of regression equation 3 shows that the model under-predicts peak 

discharges (Figures 61 & 62). This is shown by the large number of points which 

occupy space below the 1:1 line. 

 

Figure 61:  Scatterplot of observed and predicted calibration data for regression equation 3 

showing under-prediction of peak flows.  

 

Figure 62: Scatterplot of observed and predicted validation data for regression equation 3 showing 

under-prediction of peak flows. 
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A time series plot of observed and predicted inflows further shows that while the 

model predicts inflows reasonably well, large hydrograph peaks are under-

predicted. The model also predicts some small hydrograph peaks in areas where 

no peak occurs in the observed data as a result of the model responding to minor 

rainfall inputs which do not impact the following days discharge (Figure 63). 

 

Figure 63: Time series plot of observed and predicted discharge using validation data of 

regression equation 3. 

It was shown in Chapter 6 that the rainfall/runoff ratio varied seasonally in the 

Waikaremoana catchment, therefore a seasonal regression analysis was carried out 

using the independent variables of regression equation 3 (Current day rainfall, 

current day discharge). However, higher calibration and validation fits were in 

fact achieved using the full data record (Table 12). It is possible that seasonal data 

may not apply as large discharges may have a dominating effect on the means of 

seasonal discharges. 
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Table 12: Nash-Sutcliffe calibration and validation fit for each season using independent variables 

of current day rainfall and discharge. 

Season Calibration fit Validation fit 

Summer 34.3 50.5 

Autumn 35.7 32.2 

Winter 52.9 55.9 

Spring 53.6 30.4 

 

7.4 Discussion 

Regression equation 3, which had independent variables of Train and TQ was 

selected as the most appropriate for all year operational use at the Waikaremoana 

Power Scheme despite regression equations 1 and 2 having higher validation fits. 

Regression equations 1 and 2 both utilise „next-day‟ rainfall as independent 

variables and would therefore require rainfall forecasts for operational use. While 

day-ahead rainfall can be forecasted, error associated with rainfall forecasting 

would introduce further error into the inflow model resulting in lower validation 

fits. As the Nash-Sutcliffe coefficient of regression equation 3 is not much lower 

than regression equations 1 and 2 it is suggested that regression equation 3 will be 

less error prone when applied. 

Regression equation 3 predicts low to medium flows reasonably well, while peak 

flows are under-predicted. It is likely that this under-prediction is caused by only 

having the current day rainfall information since heavy future rainfalls are not 

accounted for. This is supported by the fact that hydrograph peaks are under-

predicted less severely when regression equation 2 is applied (Figure 64). 
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Figure 64: Time series validation plot of observed and predicted discharges from regression 

equation 2. 

 The prediction of some small hydrograph peaks which are not observed in the 

discharge record may be the result of the model translating some small current 

day rainfalls into hydrograph peaks which do not actually affect next-day 

discharge. These small hydrograph peaks may also arise as a result of a lack of 

catchment wetness state information such that the model may predict hydrograph 

peaks as the result of small rainfalls during dry periods which is reality may 

contribute to replenishing soil moisture stores or subject to high evaporation rates. 

7.5  Conclusion 

A multiple regression technique has been applied in order to forecast next-day 

Aniwaniwa Stream inflows. Of a possible 38 combinations of various independent 

variables with the dependent variable of next-day inflows, three regression 

equations were generated which had Nash-Sutcliffe validation fits within the 

range of 66.2 - 69.5.  The two highest calibration fits obtained both utilised next-

day rainfall as independent variables. Use of next-day rainfall as a coefficient in 

practical use is not desirable due to error associated with rainfall forecasting.  The 

third highest calibration fit was achieved using independent variables of current 
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considered the most suitable for practical application at the Waikaremoana Power 

Scheme.  
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Chapter 8 - Comparison of Modelling Techniques 

8.1 Introduction 

Three hydrological modelling techniques were evaluated in this thesis in order to 

forecast the inflow of the Aniwaniwa Stream into Lake Waikaremoana. The best 

of each of these methods can then be used to extrapolate net storage change of 

Lake Waikaremoana using a regression derived inflow scaling factor (Chapter 5). 

The three modelling techniques are finite mixture rainfall-runoff model (Chapter 

6), an auto-recalibrating finite mixture rainfall-runoff model for next-day 

prediction (Chapter 6) and multiple regression for next day inflows (Chapter 7). 

The aim of this chapter is to compare the results of these three modelling 

techniques in order to: 

1. determine which technique preformed the best in terms of the most 

accurate forecasts. 

2. determine which technique is most suitable in terms of both practicality 

and prediction ability for operational use at the Waikaremoana Power 

Scheme. 

8.2 Comparison of Modelling Techniques 

The „best‟ model developed using each of the three modelling techniques applied 

in this thesis were compared. The „best‟ model was considered to be the model 

which gave the highest validation fit as measured by the Nash-Sutcliffe model 

efficiency coefficient. Validation fit was compared using two separate data sets. 

Initially the Nash-Sutcliffe coefficient was calculated for each model using the 

validation data set of that model (Table 13). However, as the validation data sets 

for each model are not identical such that they do not all cover the same time 

period as a result of different input and output requirements the Nash-Sutcliffe 

coefficient of the overlapping region between the three validation sets was also 

calculated. This ensured that comparison between the three models was fair as 

each model would be required to forecast the same observed data set (Table 14). 

The multiple regression technique gives the highest validation score when 

compared to the two rainfall-runoff modelling techniques using the Nash-Sutcliffe 
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coefficient. This was followed by the finite mixture rainfall-runoff model 

forecasts and finally by the looping finite mixture model (Table 13). The multiple 

regression model also outperforms both finite mixture rainfall-runoff models 

when the overlapping region of validation data is compared (Table 14). 

Table 13: Validation scores for „best‟ result from each model. 

Model Nash-Sutcliffe coefficient 

Original rainfall-runoff model 52.2 

 Auto-recalibrating rainfall-runoff model 47.3 

 Multiple regression model 61.5   
 

Table 14: Validation scores using only the overlapping region of the validation data. 

Model Nash-Sutcliffe coefficient 

Original rainfall-runoff model 53.4 
 

Auto-recalibrating rainfall-runoff model 47.9 
 

Multiple regression model 59.7 
 

 

A time series plot of observed Aniwaniwa inflows and predicted inflows for each 

of the three models is compared in order to identify areas where one model 

outperforms another (Figure 65).  All of the models were found to under-predict 

very large peak flows. However, the multiple regression model under-predicts the 

least, followed by the original rainfall-runoff model then the auto-recalibrating 

rainfall-runoff model.  

In some areas medium sized peaks are predicted by the multiple regression model 

which translate to small peaks or do not exist in observed data. The auto-

recalibrating rainfall-runoff model under-predict medium sized peaks most 

severely of all the models, while the multiple regression model tended to slightly 

over predict medium sized peaks. Low flow periods are over-predicted by the 

original rainfall-runoff model, and under predicted by the auto-recalibrating 

rainfall-runoff model but are predicted well by the multiple regression model. 



 

 

 

Figure 65: Representative example time series plot of observed Aniwaniwa Stream inflows and predicted inflows for each of the three modelling techniques. 
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The three models used in this study were also compared by scaling up the 

predicted inflows of the Aniwaniwa Stream to net inflows into Lake 

Waikaremoana using the simple linear regression equation developed in Chapter 

5. The models were also compared to both observed Aniwaniwa Stream data 

scaled using the regression relation and lake volume change data derived from the 

lake level record (Figure 66). 

The comparison shows a similar pattern to when comparing the results of the 

Aniwaniwa forecasts and discharges, where peak flows are under-predicted. It 

follows that large increases in lake volume are also under-predicted. Under-

prediction of peak flows is likely to be in large part a consequence of the high 

spatial variation of heavy rainfalls. This under-prediction problem further 

compounded in storage change modelling as the regression relation of Chapter 5 

holds only under low flow conditions. 

It is noted that in some cases prediction of an increase in lake storage proceeds 

actual storage increase, while the shape of the increase in time series is 

approximated well. This may also be due to spatial variation of rainfall 

representing rainfall moving across the catchment east to west or south to north 

such that the Aniwaniwa Stream is affected by rainfall earlier than the rest of the 

catchment. 

 



 

 

 

Figure 66: The original rainfall-runoff model, auto-recalibrating rainfall-runoff model, multiple regression model, and observed Aniwaniwa Stream inflows are scaled to net 

volume change using the regression relation of Chapter 5. These models are compared to net lake volume change from the lake level record.
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8.3 Discussion 

The highest Nash-Sutcliffe coefficient of forecasted Aniwaniwa Stream inflows is 

obtained using the multiple regression model. The multiple regression model 

provides a good prediction of low to medium sized Aniwaniwa inflows, but 

occasionally fails where medium sized inflows are predicted in the absence of a 

peak in observed data. While under-prediction of inflows is likely to occur as a 

result of spatial rainfall variation, the prediction of small hydrograph peaks in the 

absence of peaks in the observed record may be a result of the models‟ lack of 

catchment wetness state information. Prediction of these peaks may also be due to 

the daily resolution of the input data such that the model will not respond 

differently to a light rainfall which lasts 12 hours compared to a heavy rainfall 

lasting 30 minutes with the same total volume of rainfall.  

Both rainfall-runoff models under-predict peak flows more severely than the 

multiple regression model due to the restricted availability of hydrograph forms 

during the model calibration process and due to the spatial variation of rainfall. 

The multiple regression model also provides more reliable estimations of low 

flows as the rainfall-runoff models under-predict low flows as hydrograph forms 

which do not contribute to peak flows are preferentially dropped from the model 

as elimination pressure is applied. It is suggested that prediction of low and 

medium flows is more important for operational use at the Waikaremoana Power 

Scheme than prediction of peak flows as the existing lake level differencing 

model provides a reliable estimation of net inflow under peak flow conditions. 

Thus, the multiple regression model provides the most useful prediction of 

Aniwaniwa Stream inflows into Lake Waikaremoana. 

For current day inflows the most accurate measure of net change in storage in 

Lake Waikaremoana is observed Aniwaniwa Stream discharge scaled to net 

inflows using the regression relation developed in Chapter 5. For forecasts of day-

ahead inflows net storage change is best approximated using the multiple 

regression model to forecast Aniwaniwa Stream inflows which are then scaled to 

net inflows using the regression relation from Chapter 5. 
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Differences between net storage as calculated from the lake level changes record, 

and estimated net storage calculated using the techniques developed in this study, 

arise due to a number of possible factors: 

 Spatial variation of rainfall: The high spatial variation of rainfall is 

particularly important in this study as a single stream is being used to 

forecast inflows from a very large catchment. The Waikaremoana 

catchment encompasses approximately 114 streams, of which 3 major 

streams drain 59%. Of these streams only the Aniwaniwa Stream had a 

record which was both long and complete enough to use in this study. The 

remaining streams in the Waikaremoana catchment which drain 41% of 

the catchment are short and steep and are likely to have a higher runoff : 

rainfall ratio because of this, further increasing the problem of spatial 

variation. 

 

Spatial variation may be a particularly large factor in error where the three 

inflow models give very similar forecasts for the Aniwaniwa Stream 

which do not match storage change as derived from lake level when 

scaled. 

 

 Scaling: The scaling of forecasted inflows to net inflows means that any 

errors in Aniwaniwa Stream forecasts may become very large once scaled. 

 

 Errors in lake level differencing: It is likely that during some low flow 

periods where model forecasts do not match net storage estimations 

derived from the lake level record that error arises from lake level 

differencing when changes in lake level are small. This may be caused by 

the effects of waves and wind set up become significant in accurately 

determining lake level. This error is compounded when storage change 

volume is calculated over the large lake surface area. 

8.4 Practicality 

The three modelling techniques used in this thesis are compared here for 

practicality of operational use at the Waikaremoana Power Scheme. The finite 
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mixture rainfall-runoff models both require the use of an expensive specialist 

package COMSOL Multiphysics. This is a numerical computing and 

programming package with similar syntax to MATLAB. The cost of purchasing 

this software package in order to run the rainfall-runoff model is high leading to 

this option being somewhat impractical. 

The original rainfall-runoff model described in Chapter 6 has a computational 

time of approximately 20 to 30 minutes. The auto-recalibrating rainfall-runoff 

model however, has a computational time of approximately 8 hours further 

making operational use of the rainfall-runoff models impractical at the 

Waikaremoana Power Scheme. 

The multiple regression model is very practical in its application. The model 

requires any simple spreadsheet package such as Microsoft Office Excel or 

Statistica. Microsoft Office Excel is currently installed at Genesis Energy. The 

multiple regression model can also be run through a Microsoft Excel macro 

creating a user-friendly environment. Therefore, the multiple regression model is 

considered to be the most practical in terms of operational use. 

8.5 Conclusion 

In a comparison of the two rainfall-runoff models and the multiple regression 

model used to forecast Aniwaniwa Stream inflows into Lake Waikaremoana using 

the Nash-Sutcliffe validation fit and a visual examination of time series plots of 

observed and predicted discharges, the multiple regression model is found to be 

the most suitable for operational use at the Waikaremoana Power Scheme. 

When scaled to net inflows and compared to both scaled observed Aniwaniwa 

Stream inflows and net lake volume change as calculated using the lake level 

record, scaled observed Aniwaniwa Stream inflows is most suitable for current 

day storage estimation, and the multiple regression is most suitable for day ahead 

forecasts. The multiple regression model is also the most suitable for operational 

use at the Waikaremoana Power Scheme as both computational requirements and 

the cost of practical application is low. 



CHAPTER NINE                                                                                                           CONCLUSIONS 

121 

 

Chapter 9 – Conclusions  

 

Daily estimates of water availability at Lake Waikaremoana are required for 

efficient operation of the Waikaremoana Power Scheme. The current water 

availability model operated by Genesis Energy is subject to error when changes in 

lake level are small and supposed inflow estimates are in fact net lake balances, 

with the possibility of the negative term being derived from lake level error. The 

aim of this thesis was to resolve this issue. 

Prior to this research it was considered that an inaccurate estimation of lake water 

loss in the form of a combination of evaporation and leakage through the ancient 

landslide dam which formed Lake Waikaremoana could be the cause of negative 

net „inflow‟ estimates. This hypothesis was tested using a modified catchment 

water balance model to estimate the unknown lake water loss rate where the loss 

rate was calculated as the intercept of a simple regression. The assumption was 

made that under low flow conditions the inflow of the Aniwaniwa Stream is 

linearly related to net lake water balance. The unknown lake water loss rate 

measured in this way was not found to be significantly different from zero and the 

absolute value of the confidence interval was small, suggesting that unknown 

leakage and evaporative losses are not significant in the production of negative 

„inflow‟ estimates. It may be in fact that total losses per day never exceed inflows, 

though this can‟t be proven. It is suggested that negative estimates are more likely 

to arise as the result of the error effect of waves and wind set up during lake level 

differencing when changes in lake level are small. 

As a positive consequence of using a regression approach to estimate unknown 

lake water loss was the development of a regression relation which could be used 

to relate the flow of the Aniwaniwa Stream to net inflows into Lake 

Waikaremoana. This not only allowed current day estimates of net inflows to be 

calculated from observed Aniwaniwa Stream inflows but also allowed day-ahead 

estimates to be obtained by forecasting Aniwaniwa Stream inflows. 

Inflows of the Aniwaniwa Stream were forecasted using three different models in 

an attempt to develop a forecasting methodology that was both practical for 
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operational use and would give a reasonable prediction of inflows. The three 

modelling techniques were a finite mixture rainfall-runoff model, an auto-

recalibrating finite mixture rainfall-runoff model and a multiple regression. 

Both rainfall-runoff models were subjected to an established technique of linear 

model simplification, the lasso. While widely applied in the statistical community, 

the lasso has not been widely applied in hydrology to date. The lasso technique is 

used to simplify initial many-parameter models using an elimination pressure to 

force uninformative model parameters to zero thereby simplifying the model. The 

first of these rainfall-runoff models achieved a maximum validation fit at an 

elimination pressure of 800, giving a Nash-Sutcliffe coefficient of 50.7% with 14 

parameters. A validation fit which is not much lower (46.9%) was achieved with 

an elimination pressure of 2750 and 6 parameters demonstrating the trade off 

between validation fit and model simplicity.  

The second rainfall-runoff model, an auto-recalibrating finite mixture rainfall-

runoff model also simplified by lasso reached a peak validation fit (52.3%) under 

an elimination pressure of 650 with an average of 14 parameters and an increased 

weighting of 40 times on the last 30 days of environmental input data. Similarly to 

the original model a validation fit not much lower was achieved under an 

elimination pressure of 2750 with 6 parameters (46.8%). 

Both rainfall-runoff model generally under-predicted peak flows and over-

predicted hydrograph tails. Poor peak flow prediction is thought to be a result of 

spatial variation of rainfall and because of the limited range of hydrograph forms 

available for selection. To improve peak flow prediction a wider range of 

hydrograph forms could be made available to the model at the expense of model 

simplicity. Under-prediction low flows also occurred at very high elimination 

pressures as the model preferentially dropped out hydrograph forms which did not 

contribute to peak flow prediction. 

An increased weight was also set on the last 30 days of calibration data in the 

auto-recalibrating rainfall-runoff model as a proxy for catchment wetness state. 

While this rainfall-runoff model was expected to outperform the original rainfall-

runoff model in terms of validation fit due to its increased weighting on most 

recent rainfalls, validation fit (52.3%) was found not to be significantly different 
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to that of the original rainfall-runoff model (50.7%). This is likely to be due to a 

masking effect as a result of poor prediction of peak flows.  

The lasso technique was found to be successful at simplifying down complex 

initial finite mixture rainfall-runoff models, reducing model parameters from 300. 

The lasso appears to be successful at reducing over parameterisation in the rainfall 

models as higher validation fits were achieved at elimination pressures greater 

than zero with the highest validation fit being achieved at 14 parameters in both 

models. While the rainfall-runoff models gave reasonable predictions of low flows 

under lower elimination pressures, the models were not considered practical for 

operational use at the Waikaremoana Power Scheme due to computational 

requirements. 

A multiple regression technique was applied in order to forecast day-ahead 

inflows of the Aniwaniwa Stream into Lake Waikaremoana in a way which may 

be practical for operational use at the Waikaremoana Power Scheme. A suite of 

single and multiple regressions were carried out, resulting in three regression 

equations with the highest Nash-Sutcliffe validation fits. Both the regressions with 

the highest and second highest Nash-Sutcliffe validation fits (69.5% & 69.42%) 

made use of „next-day‟ rainfall as an independent variable. As forecasting of next-

day rainfall would be required for the use of these regression equations the 

regression with the third highest validation fit (66.16%) was used. This regression 

equation uses current day rainfall and discharge as coefficients.  

The multiple regression equation also under-predicted inflows of the Aniwaniwa 

Stream, however under-prediction was less severe than in the rainfall-runoff 

models. The multiple regression equation gave reasonable predictions of medium 

to low flows. 

A comparison of the three forecasting techniques used in this study was made in 

Chapter 8. The models were compared both in terms of their prediction ability and 

practicality for operational use at the Waikaremoana Power Scheme. The multiple 

regression technique was found to be the most practical for operational use as the 

only software requirements are Microsoft Excel or another basic statistical 

package, the model only takes seconds to run, and the model interface is user-

friendly. 
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Prediction ability of the three models was assessed by comparing the Nash-

Sutcliffe model efficiency coefficient of observed and predicted inflows 

calculated from the three models for an overlapping validation period. The 

multiple regression model was found to produce the results with the highest Nash-

Sutcliffe validation fit. The three models were also compared by a visual 

examination of a time series plot to determine the areas under which each model 

performs well or poorly. The multiple regression model was found to predict all 

areas of the hydrograph more accurately than the rainfall-runoff models. 

Results of the three Aniwaniwa Stream forecasting models were scaled to 

represent net storage volume of Lake Waikaremoana using the regression relation 

derived in Chapter 5. These results were then compared to scaled observed 

Aniwaniwa Stream discharges and storage change derived from the lake level 

record. The scaled observed Aniwaniwa Stream inflows gave a reasonable 

prediction for current day storage, while the scaled multiple regression model 

gave the most useful approximation of net storage of all the models used in this 

study. Spatial variation of rainfall, scaling and errors in lake level differencing are 

thought to account for the majority of error in net storage prediction. 

Thus, it is recommended that observed Aniwaniwa Stream inflows, scaled to net 

storage of Lake Waikaremoana using the regression relation developed in Chapter 

5 (Equation 5), are used for estimation of current day net storage for operational 

use at the Waikaremoana Power Scheme. For day-ahead forecasts it is 

recommended that regression equation 3 of the multiple regression models is used 

to forecast inflows of the Aniwaniwa Stream which can then be scaled. 



REFERENCES 

125 

 

References 

 

ALLAN, J. C., STEPHENSON, W. J., KIRK, R. M. & TAYLOR, A. (2002) 

Lacustrine shore platforms at Lake Waikaremoana, North Island, New 

Zealand. Earth Surface Processes and Landforms, 27, 207-220. 

AYENEW, T. A. & GEBREEGZIABHER, Y. (2006) Application  of a 

spreadsheet hydrological model for computing the long term water balance 

of Lake Awassa, Ethiopia. Hydrological Sciences Journal, 51, 418-431. 

BARDSLEY, W. E., LIU, S., JOHNSTONE, S. H., PURDIE, J. & FUKUDA, K. 

(under review) A lasso approach to formulation and simplification of 

hydrological models. 

BEVEN, K. (1989) Changing ideas in hydrology - The case of physically-based 

models. Journal of Hydrology, 105, 157-172. 

BEVEN, K. (2002a) Towards a coherent philosophy for modelling the 

environment. Proceedings of the Royal Society a-Mathematical Physical 

and Engineering Sciences, 458, 2465-2484. 

BEVEN, K. (2002b) Towards an alternative blueprint for a physically based 

digitally simulated hydrologic response modelling system. Hydrological 

Processes, 16, 189-206. 

BEVEN, K. (2008) On doing better hydrological science. Hydrological 

Processes, 22, 3549-3553. 

BEVEN, K. J. (2001) Rainfall-Runoff Modelling The Primer, Chichester, John 

Wiley & Sons Ltd. 

BLACK, R. (1992) Lake Waikaremoana Low Flow Hydrology. Hawkes Bay 

Regional Council. 

CHEBUD, Y. A. & MELESSE, A. M. (2009) Modelling lake stage and water 

balance of Lake Tana, Ethiopia. Hydrological Processes, 23, 3534-3544. 

CHESTER, P. I. (1986) Waikaremoana Power Development Dredging of Lake 

Whakamarino Archaeological Site Survey, Wellington, N.Z. Historic Places Trust. 

DAVIES, T. R., MCSAVENEY, M. J. & BEETHAM, R. D. (2006) Rapid block 

glides: slide-surface fragmentation in New Zealand's Waikaremoana 



                                                                                                                           REFERENCES  

126 

 

landslide. Quarterly Journal of Engineering Geology and Hydrogeology, 

39, 115-129. 

FINKELSTEIN, J. (1973) Survey of New Zealand tank evaporation. Journal of 

Hydrology (N.Z.), 12. 

FREESTONE, H. J., JACK, R. & BOWLER, J. (1996a) Lake Waikaremoana -

Hydrology. Works Consultancy Services Limited  

FREESTONE, H. J., JACK, R. & BOWLER, J. (1996b) Lake Waikaremoana 

Spring and Old Records. Works Consultancy Services. 

FREEZE, R. A. & HARLAN, R. L. (1969) Blueprint for a physically-based, 

digitally-simulated hydrologic response model. Journal of Hydrology, 9, 

237-258. 

GENESIS ENERGY (2006) Genesis Energy Waikaremoana Power Scheme. 

GENESIS ENERGY (2009) Waikaremoana Power Scheme Environmental 

Report, Genesis Energy. 

GIBSON, J. J. (2002) Short-term evaporation and water budget comparisons in 

shallow Arctic lakes using non-steady isotope mass balance. Journal of 

Hydrology, 264, 242-261. 

GRINDLEY, G.W., HARRINGTON, H.J., & WOOD, B.L. (1960) The 

Geological Map of New Zealand. New Zealand Geological Survey. 

GUPTA, H. V., WAGENER, T. & LIU, Y. Q. (2008) Reconciling theory with 

observations: elements of a diagnostic approach to model evaluation. 

Hydrological Processes, 22, 3802-3813. 

GURRIERI, J. T. & FURNISS, G. (2004) Estimation of groundwater exchange in 

alpine lakes using non-steady mass-balance methods. Journal of 

Hydrology, 297, 187-208. 

HARDING, J., MOSLEY, P., PEARSON, C. & SORRELL, B. (Eds.) (2004) 

Freshwaters of New Zealand, Christchurch, New Zealand Hydrological 

Society Inc, New Zealand Limnological Society Inc. 

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. (2009) The Elements of 

Statistical Learning Data Mining, Inference, and Prediction, New York, 

Springer. 

HOLZBECHER, E., NUTZMANN, G. & GINZEL, G. (1999) Water and 

component mass balances in the catchment of Lake Stechlin IN 



REFERENCES 

127 

 

LEIBUNDGUT, C., MCDONNELL, J. & SCHULTZ, G. (Eds.) IUGG 99 

Symposium HS4. Birmingham, IAHS. 

HOWARD WILLIAMS, C., LAW, K., VINCENT, C. L., DAVIES, J. & 

VINCENT, W. F. (1986) Limnology of Lake Waikaremoana with special 

reference to littoral and pelagic primary producers. New Zealand Journal 

of Marine and Freshwater Research, 20, 583-597. 

JAKEMAN, A. J. & HORNBERGER, G. M. (1993) How much complexity is 

warranted in a rainfall-runoff model. Water Resources Research, 29, 2637-

2649. 

JOHNSON, G. W. (1976) Urewera National Park, Christchurch, Bascands 

Limited. 

KEAM, R. F. (1958) Waikaremoana, the forests, rivers and lakes of Urewera 

National Park, Auckland, Institute Printing and Publishing Society Ltd. 

KEBEDE, S., TRAVI, Y., ALEMAYEHU, T. & MARC, V. (2006) Water 

balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue 

Nile basin, Ethiopia. Journal of Hydrology, 316, 233-247. 

KIRCHNER, J. W. (2006) Getting the right answers for the right reasons: Linking 

measurements, analyses, and models to advance the science of hydrology. 

Water Resources Research, 42. 

KOTZ, S., BALAKRISHNAN, N., READ, C. B. & VIDAKOVIC, B. (Eds.) 

(2006) Encyclopedia of Statistical Sciences, New Jersey, Wiley & Sons. 

KOYAMA, M., KAWASHIMA, M., TAKAMATSU, T., GLASBY, G. P. & 

STOFFERS, P. (1989) Mineralogy and Geochemistry of Sediments from 

Lakes Taupo and Waikaremoana, New Zealand. New Zealand Journal of 

Marine and Freshwater Research, 23, 121-130. 

LABAUGH, J. W., WINTER, T. C., ROSENBERRY, D. O., SCHUSTER, P. F., 

REDDY, M. M. & AIKEN, G. R. (1997) Hydrological and chemical 

estimates of the water balance of a closed basin lake in north central 

Minnesota. Water Resources Research, 33, 2799-2812. 

MAIN, W. L. (1976) Morphology of Lake Waikaremoana, New Zealand, and 

reconnaissance of its benthic fauna. New Zealand Journal of Marine and 

Freshwater Research, 10, 597-611. 



                                                                                                                           REFERENCES  

128 

 

MATTHEWS, B. W. (1992) Shoreline erosion and sedimentology of Lake 

Waikaremoana. Department of Earth and Ocean Sciences. Hamilton, The 

University of Waikato. 

MCPIKE, A. W. (1980) Lake Waikaremoana Leakage Investigations Chemical 

Tracing Experiments. Works Consultancy Services. 

MEIN, R. G. & BROWN, B. M. (1978) Sensitivity of optimized parameters in 

watershed models. Water Resources Research, 14, 299-303. 

MYLECHREEST, P. H. W. (1978) Some effects of a unique hydroelectric 

development on the littoral benthic community and ecology of trout in a 

large New Zealand lake. Department of Zoology. Cambridge, Cambridge 

University. 

MYLECHREEST, P. H. W. (1979) Hydroelectric-induced changes in Lake 

Waikaremoana. Wildlife -a review, 10, 46-50. 

NASH, J. E. & SUTCLIFFE, J. V. (1970) River flow forecasting through 

conceptual models part I -- A discussion of principles. Journal of 

Hydrology, 10, 282-290. 

NATUSCH, G. G. (2004) Power from Waikaremoana -A history of 

Waikaremoana Hydro-Electric Power Development, Gisborne, Te Rau 

Print. 

NEWNHAM, R. M., LOWE, D. J. & MATTHEWS, B. W. (1998) A late-

Holocene and prehistoric environmental change from Lake 

Waikaremoana, New Zealand. Holocene, 8, 443-454. 

ONGLEY, M. (1932) Waikaremoana. The N.Z. Journal of Science and 

Technology, 14, 173-184. 

PERRIN, C., MICHEL, C. & ANDREASSIAN, V. (2001) Does a large number 

of parameters enhance model performance? Comparative assessment of 

common catchment model structures on 429 catchments. Journal of 

Hydrology, 242, 275-301. 

READ, S. A. L. (1979) Lake Waikaremoana Outlet -Engineering Geological 

Studies of Factors Related to Leakage Through the Natural Dam, Lower 

Hutt, New Zealand Geological Survey. 

READ, S. A. L., BEETHAM, R. D. & RILEY, P. B. (1992) Lake Waikaremoana 

barrier- A large landslide dam in New Zealand. IN BELL, D. H. (Ed.) 

Landslides. Netherlands, A.A.Balkema. 



REFERENCES 

129 

 

RILEY, P. B. & READ, S. A. L. (1992) Lake Waikaremoana -Present day 

stability of landslide barrier. IN BELL, D. H. (Ed.) Landslides. 

Netherlands, A.A. Balkema. 

SANSOM, J. & THOMPSON, C. S. (2008) Spatial and temporal variation of 

rainfall over New Zealand. Journal of Geophysical Research-

Atmospheres, 113, 19. 

SCHMIDT, A., GIBSON, J. J., SANTOS, I. R., SCHUBERT, M., TATTRIE, K. 

& WEISS, H. (2010) The contribution of groundwater discharge to the 

overall water budget of two typical Boreal lakes in Alberta/Canada 

estimated from a radon mass balance. Hydrology and Earth System 

Sciences, 14, 79-89. 

SCHOUPS, G., VAN DE GIESEN, N. C. & SAVENIJE, H. H. G. (2008) Model 

complexity control for hydrologic prediction. Water Resources Research, 

44. 

SCHUSTER, P. F., REDDY, M. M., LABAUGH, J. W., PARKHURST, R. S., 

ROSENBERRY, D. O., WINTER, T. C., ANTWEILER, R. C. & DEAN, 

W. E. (2003) Characterization of lake water and ground water movement 

in the littoral zone of Williams Lake, a closed-basin lake in north central 

Minnesota. Hydrological Processes, 17, 823-838. 

SHANAHAN, T. M., OVERPECK, J. T., SHARP, W. E., SCHOLZ, C. A. & 

ARKO, J. A. (2007) Simulating the response of a closed-basin lake to 

recent climate changes in tropical West Africa (Lake Bosumtwi, Ghana). 

Hydrological Processes, 21, 1678-1691. 

SIVAKUMAR, B. (2008a) Dominant processes concept, model simplification and 

classification framework in catchment hydrology. Stochastic 

Environmental Research and Risk Assessment, 22, 737-748. 

SIVAKUMAR, B. (2008b) The more things change, the more they stay the same: 

the state of hydrologic modelling. Hydrological Processes, 22, 4333-4337. 

SOONS, J. M. & SELBY, M. J. (Eds.) (1992) Landforms of New Zealand, 

Auckland, Longman Paul. 

STETS, E. G., WINTER, T. C., ROSENBERRY, D. O. & STRIEGL, R. G. 

(2010) Quantification of surface water and groundwater flows to open- 

and closed-basin lakes in a headwaters watershed using a descriptive 

oxygen stable isotope model. Water Resources Research, 46. 



                                                                                                                           REFERENCES  

130 

 

TIBSHIRANI, R. (1996) Regression Shrinkage and Selection via the lasso. 

Journal of the Royal Statistical Society, 58. 

UREWERA NATIONAL PARK BOARD (1976) Urewera National Park 

Management Plan, Hamilton, Clark and Matheson Ltd. 

VALLET-COULOMB, C., GASSE, F., ROBISON, L. & FERRY, L. (2006) 

Simulation of the water and isotopic balance of a closed tropical lake at a 

daily time step (Lake Ihotry, South-West of Madagascar). Journal of 

Geochemical Exploration, 88, 153-156. 

WAGENER, T., BOYLE, D. P., LEES, M. J., WHEATER, H. S., GUPTA, H. V. 

& SOROOSHIAN, S. (2001) A framework for development and 

application of hydrological models. Hydrology and Earth System Sciences, 

5, 13-26. 

WALE, A., RIENTJES, T. H. M., GIESKE, A. S. M. & GETACHEW, H. A. 

(2009) Ungauged catchment contributions to Lake Tana's water balance. 

Hydrological Processes, 23, 3682-3693. 

WANG, L., GORDON, M. D. & ZHU, J. (2006) Regularized least absolute 

deviations regression and an efficient algorithm for parameter tuning. Sixth 

IEEE International Conference on Data Mining. 

ZUO, Q., DOU, M., CHEN, X. & ZHOU, K. (2006) Physically-based model for 

studying the salinization of Bosten Lake, China Hydrological Sciences 

Journal, 51, 432-449. 

 


