
 
UNIVERSITY OF WAIKATO 

 
Hamilton 

New Zealand 
 
 
 
 

Can We Trust Cluster-Corrected Standard Errors? 

An Application of Spatial Autocorrelation  

with Exact Locations Known  
 

John Gibson 
University of Waikato 

 
Bonggeun Kim 

Seoul National University 
and 

 
Susan Olivia 

Monash University  
 

 
 

Department of Economics 

Working Paper in Economics 10/07 

November 2010 
 

Corresponding Author 
 

John Gibson 
Department of Economics  

University of Waikato,  
Private Bag 3105, 

Hamilton, New Zealand 
 

Fax: +64 (7) 838 4331 
Email: jkgibson@waikato.ac.nz 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29198742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

 
 
 
 
 
 
 

Abstract 
 

Standard error corrections for clustered samples impose untested restrictions on spatial 

correlations. Our example shows these are too conservative, compared with a spatial error 

model that exploits information on exact locations of observations, causing inference errors 

when cluster corrections are used. 
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1. Introduction 

Inference methods that recognize the clustering of individual observations are now widely 

used in applied econometrics (Wooldridge, 2003). An early, cautionary, example of distorted 

inferences when ignoring the potential correlation between observations sharing the same 

cluster was provided by Pepper (2002). Yet with continuing changes in the technology of 

survey data collection, it is possible that clustered standard errors are now too widely used, 

causing a new set of distorted inferences.  

 

Increasingly, household surveys geo-reference exact locations (within 15 meter 

accuracy) of respondents, using the Global Positioning System (GPS). This is especially in 

developing countries, where face-to-face surveying predominates so dwellings are easily geo-

referenced when interviewers visit households, and where the falling cost and improved 

accuracy of GPS receivers has most increased demand for location data (Gibson and 

McKenzie, 2007). In this note, we question whether the usual inference methods for dealing 

with clustered samples remain the best option when econometricians know exact locations, 

rather than just that groups of observations share the same cluster.  

 

We first use a simple spatial error model to show the untested restrictions that clustered 

standard errors place on spatial correlations. We then provide an example from a geo-

referenced household survey in Indonesia where inferences about village-level determinants 

of income from non-farm rural enterprises (NFRE) are distorted by using clustered standard 

errors. These NFRE are an important escape path from rural poverty and are heavily affected 

by location-specific investments in infrastructure and the quality of the business environment 

(Isgut, 2004).  Hence, correct inferences about drivers of NFRE activity can be very useful to 

economists and policy makers interested in rural poverty. 

 

2. Robust Standard Errors for Clusters and Spatial Correlation  

To show the restrictions on spatial correlations from the typical (robust) cluster correction, 

we consider a simple model with a string city, equal distance between respondents, and first-

order (positive) spatial correlations ),( ρλ  of errors in a simple linear regression, 

.10 uXy ++= ββ   The variance of the slope coefficient 1̂β  of the population regression is: 
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where cN  is the total number of clusters, m  is the total number of observations, j in a cluster, 

and cN m N= × . The first term in ( )V u  is the sum of the covariances within a cluster, with 

intra-cluster spatial correlation, .λ  The second term involves the inter-cluster correlation, 

( )ρ λ≤ .  
 

Cluster corrections make no allowance for spatial correlations between observations in 

different clusters, imposing the untested restriction .0=ρ  But in reality, such correlations 

may not vanish, as recently shown for the example of State-level variables in the U.S. 

(Barrios et al., 2010). Moreover, since spatial correlations within clusters are rarely known, 

cluster corrections assume the same intra-cluster correlation between any two error terms, 

( , )jc j ccorr u u γ′ =  for j j′≠ . But rural clusters are often of quite unequal area and the 

strength of common factors shared by observations in the same cluster may vary with 

environmental and economic heterogeneity. Hence intra-cluster correlations in errors may 

vary with population density and the strength of omitted common factors. 

 

With these restrictions imposed, equation (1) becomes the clustered estimator: 
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 When the right-hand side of equation (3) is negligible, as with ,0→ρ we expect 

1, 1
ˆ ˆvar( ) var( )Cβ β>  from the efficiency gain when using the precise weighted least squares 

error terms for first-order spatial correlations, rather than assuming the same spatial 

correlation within every cluster. Note also that 1, 1 1,
ˆ ˆ ˆ( ) ( ) ( )C OLSV V Vβ β β> > where 1,

ˆ( )OLSV β  is 

the case where potential correlations between disturbances (whether in the same cluster or 

not) are ignored.   
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3. Application 

To investigate effects of the restrictions imposed by the standard cluster correction, we use 

clustered data from a geo-referenced household survey in Indonesia to estimate an income 

share equation for net earnings from non-farm rural enterprises. The key features of the Rural 

Investment Climate Survey (RICS) are clustering, with our sample of 1600 rural households 

located in 97 clusters, and geo-referencing of every household by GPS. The survey was 

fielded in only six of Indonesia’s 370 districts (kabupaten) so clusters within each district are 

closer together than for a similarly sized national survey. The survey includes both 

household-level and community-level variables; since community variables are common to 

all households in a cluster, inferences about them may be especially susceptible to 

misspecification of the spatial correlations between errors.  

 

To illustrate the spatial scale of correlations in the income shares we estimate Moran’s I  
 

yy
Wyy
′
′

=I       (4) 

 

where y is a vector of income shares, W is the (row-standardized) spatial weight matrix, with 

wij=0 for non-neighbours and otherwise ijij dw 1=  where dij is the distance between 

observations i and j (inverse distance weights). This is equivalent to a regression of the 

spatially weighted average of income shares within a neighbourhood on the income share for 

each household. 

 

  Latitude and longitude coordinates were used to calculate dij for every household, for 

varying neighbourhood sizes of 1-40 km. The average distance from each household to the 

cluster center is only 0.8 km and the largest distance between any two households in a given 

cluster averages 1.9 km. Hence this range allows for correlations that extend far beyond the 

boundary of clusters. For all neighbourhood sizes considered, Moran’s I is statistically 

significant, ranging from 0.15 at 1 km to 0.09 at 20 km and 0.06 at 40 km (Figure 1).  

To see if spatial correlations extending beyond cluster boundaries are also apparent in 

OLS residuals, an income share model was estimated with explanatory variables typically 

used in the NFRE literature. These included attributes of the household head (age, gender, 

religion, marital status, education), and the household (size, composition, land ownership, 
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income), and community characteristics. The community variables are of most interest; these 

are common to all households in a cluster so inferences about them may be sensitive to mis-

specified spatial correlations between errors. Moreover, factors such as village infrastructure 

and quality of the business environment may be more amenable to intervention than are 

individual characteristics, giving policy salience to these community variables. 

 

 

 The OLS results suggest that households in larger villages with a business association 

have higher NFRE income shares. In villages further from both cooperatives and the sub-

district headquarters, experiencing crime or other disputes, and with a low occurrence of 

electricity blackouts, households have lower NFRE income shares (Table 1, column 1). But, 

while standard errors from this OLS model are heteroscedastically-robust, they ignore 

potential correlations between disturbances (whether in the same cluster or not), and so may 

be misleading. 
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In fact when Moran’s I is estimated for these OLS residuals, there is always a statistically 

significant (p<0.01) spatial correlation, for neighbourhoods extending from 1 km to 40 km.1 

Hence, the spatial correlation in the dependent variable shown in Figure 1 is not removed by 

the covariates, making the inferences from the OLS results potentially misleading, even with 

robust standard errors. The spatial scale considered extends well beyond cluster boundaries, 

implying that the restriction imposed by the usual correction for clustering, of ,0=ρ does not 

hold. 

 
 

Table 1: OLS, Clustered, and Spatial Error Estimates 
Community 
Variables 

Robust 
std errors 

Clustered 
std errors 

Spatial error 
model 

Spatial error 
(ρ=0) 

log(# of households in village) 0.102 0.102 0.097 0.101 
 (0.0231)** (0.0442)* (0.0299)** (0.0302)** 
Village has business association 0.103 0.103 0.117 0.112 
 (0.0299)** (0.0636) (0.0391)** (0.0385)** 
Village had crime/dispute last year -0.080 -0.080 -0.078 -0.080 
 (0.0224)** (0.0314)* (0.0299)** (0.0301)** 
Village has a cooperative 0.040 0.040 0.039 0.042 
 (0.0245) (0.0374) (0.0328) (0.0323) 
Distance to cooperative (km) -0.490 -0.490 -0.451 -0.466 
 (0.1788)** (0.2344)* (0.2464)+ (0.2415)+ 
Distance to sub-district (km) -1.284 -1.284 -1.314 -1.342 
 (0.6688)+ (0.9727) (0.9062) (0.8947) 
Low blackouts (< 30 minutes/day) -0.051 -0.051 -0.054 -0.053 
 (0.0282)+ (0.0481) (0.0372) (0.0366) 
Village has no telephones 0.057 0.057 0.056 0.059 
 (0.0404) (0.0633) (0.0544) (0.0532) 
Village has unsealed roads 0.041 0.041 0.044 0.045 
 (0.0293) (0.0446) (0.0386) (0.0388) 
Phi (spatial autoregressive parameter)   0.285 0.271 
   (0.046)** (0.0384)** 
R-squared 0.16 0.16   
Log-likelihood function -566.32 -566.32 -541.34 -541.68 
Notes: Standard errors in ( ). **=p<0.01, *=p<0.05, +=p<0.10. Characteristics of the household head (age, 
gender, religion, marital status, education) and the household (size, composition, land ownership, income) 
also included.  
 

 When the clustered standard errors are calculated (Table 1, column 2) they exceed the 

robust standard errors, by 47 percent on average. Moreover, three community variables 

(having a business association, distance to sub-district headquarters and blackouts) appearing 

statistically significant with the robust standard errors now appear insignificant.  

 
                                                 
1  The evidence of statistically significant spatial autocorrelation in the OLS residuals is also 

apparent from Lagrange Multiplier tests, for all neighbourhood sized considered. Results of these 
tests are available from the authors. 
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The first two columns of Table 1 ignored the GPS information on exact locations. To 

exploit this extra information we estimate a spatial error model: 

 

εϕ
β

+=
+=

Wuu
uXY

      (5) 

 

where φ is the spatial autoregressive coefficient, ε a vector of iid errors and everything else is 

as defined above. In this model, the error for one observation depends on a weighted average 

of the errors for neighbouring observations (irrespective of whether in the same cluster or 

not). After experimenting with neighbourhoods of different sizes, a 10 km neighbourhood 

was found to maximize the log-likelihood and resulted in a spatial autoregressive estimate of 

φ=0.29 (Table 1, column 3). In other words, the spatially weighted residual NFRE share 

within a 10 km radius is significantly associated with the residual income share for a 

particular household even after controlling for household characteristics and a set of location 

attributes.  

 

When the spatial error model is used, standard errors are mostly smaller (by 21 percent, 

on average) than for the clustered standard errors. Moreover, one of the indicators of the 

quality of the local business environment, whether there is a village business association, has 

a strongly significant (p<0.01) effect on income from non-farm rural enterprises. Yet when 

the cluster correction was used, the standard error on the business association indicator was 

almost twice as large and it appeared as an insignificant determinant of NFRE income shares. 

 

The standard cluster correction imposes two restrictions; that inter-cluster correlations 

vanish (ρ=0), and that intra-cluster correlations are the same everywhere irrespective of 

cluster area, density of observations and importance of shared unobservable factors for 

neighbours. To see which of these two sources is more important to the smaller standard 

errors and changed inferences when moving from the cluster correction to the spatial error 

model, we estimate a spatial error model where all weights are set to zero for pairs of 

observations not in the same cluster.  

 

The results in the last column of Table 1 that rely on the restriction that ρ=0 are almost 

identical to the results in column 3 where no restrictions were placed on the spatial error 

model. This comparison suggests that most of the overstatement of standard errors when 
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using the standard cluster correction comes from assuming the wrong form of spatial 

correlation within clusters, rather than from the implicit assumption that inter-cluster 

correlations vanish. 

 

4. Conclusions  

The widely used standard error correction for clustered surveys imposes untested restrictions 

on spatial correlations. The resulting clustered standard errors are too conservative, compared 

with those coming from a spatial error model that uses exact locations of observations. In our 

example, the main source of error was from assuming the wrong form of spatial correlation 

within clusters, rather than from the implicit assumption that inter-cluster correlations vanish. 

These results suggest that more robust inferences are likely to come from knowing actual 

distance between observations, supporting the growing use of GPS in household surveys to 

identify neighbours and the strength of their interactions. 
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