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Abstract: We present theory and measured performance of an autonomous slot car driven by a 
heuristic algorithm on a typical track. The hardware consists of a PIC 8-bit single-chip 
microcontroller with various sensors driving a standard permanent-magnet (PM) 
brushed dc (BDC) motor in a mechanically-standard Scalextric platform. We present 
some interesting results concerning the relative difficulty of apparently-balanced lanes 
on a track. The car achieves optimum lap times with high consistency. Measured 
performance agrees with theoretical expectation. The consistency of performance allows 
the impact of experimental changes to be reliably assessed.  

1 Introduction 

Slot cars are popular all over the world. One might think 
that because one does not have to steer a slot car they do 
not represent a test of skill. However this is not true, as 
evidenced by many national championships, student 
competitions [1], many popular accounts of races, and a 
selection of electronic designs centred around the sport 
[2], [3], [4]. Recently digitally controlled versions that 
can change lanes have appeared. There are at least three 
manufacturers of such systems [5], [6], [7]. 
 
The authors wanted to find out whether a simple 8-bit 
microcontroller could drive a slot car better than a per-
son, and if that would allow them to use slot cars to test 
real automotive innovations. This manuscript reports the 
outcome of that study. 

 

2 Track Theory 

Most slot car enthusiasts realise that a track needs to be 
carefully designed in order not to give an advantage to a 
driver in one particular lane. For example, a simple oval 
circuit gives a considerable advantage to the driver in the 
inside lane. Consider the track diagram shown in fig-
ure 1. At first glance one might expect this to represent a 
fair layout because there are an equal number of left and 
right hand turns of the same radii presented to the driver 
in each lane. This does not prove to be the case. 
 
Let us assume that there is an optimum speed at which a 
standard car will traverse any given corner. It is possible 
to construct a diagram, once the optimum corner speeds 
are known, such as that in figure 2. This figure shows the 
maximum possible speed as a function of distance 

around the track. The square waveform assumes infinite 
acceleration and deceleration, the more “triangular” 
waveform accounts for finite acceleration and decelera-
tion. The heuristic algorithm programmed into the car 
delivers the thrust required to approach the triangular 
trajectory as closely as possible. 

 

 

 

Figure 1 Scale drawing of an example slot car layout with equal left 
and right turns in each lane. 

 

Figure 3 differs from figure 2 only in the lane of the 
track. The interesting observation is that mathematically 
we predict that a car travelling at optimum achievable 
speed will traverse one lane more quickly than the other. 
It is not immediately obvious but this arises because of 
the order in which each section of track is presented to 
the driver in each lane is different. Will our robot car 
perceive this small difference? 
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Figure 2 Plot of ideal (joined dots) and achievable (light continuous 
lines) velocity of a car as a function of distance around the left lane of 

the track shown in figure 1. 

 

 

 

Figure 3 Plot of ideal and achievable velocity of a car as a function of 
distance around the right lane of the track shown in figure 1. 

 

3 Vehicle Parameters 

In order to program the car we need to measure optimum 
cornering speeds, maximum acceleration and braking, 
etc. These are parameters of the vehicle and track sys-
tem. The parameter measurement methods are described 
in this section. The values are stored in non-volatile 
memory in the microcontroller. Eventually these pa-
rameters can be fine-tuned by the microcontroller, as a 
driver would tune his driving to suit his vehicle and a 
particular track.  
 
Loops of identical curves, such as the example shown in 
figure 4, were used to determine the optimum corner 
speed for each radius. The car was driven around each 
loop at increasing thrust and the speed measured. As 
expected there was an optimum speed, above which the 
car lost traction and increased power resulted in reduced 
speed. These speeds were recorded. The results for the 
prototype car’s maximum speeds are given in Table 1. 
Video analysis of the car moving along a straight test 
track for varied levels of thrust allowed determination of 
the maximum acceleration and deceleration that could be 
achieved. Figure 5 plots the car’s speed as a function of 
time, and also shows a linear fit to the measured data.  
Analysis of the data for the various thrust levels gave the 
optimum values. 

 

 
 

Figure 4 Example set up for measuring optimum cornering speed on a 
particular track section. 

 

 
 

Figure 5 Optimum deceleration performance measured on the proto-
type car through frame-by-frame analysis of video recording, and 

straight line fit to the measured data. 

 

Track Pieces and Lengths Velocity 
 cm/s 

Straight section about 70 cm long 400 
Straight section about 35 cm long 400 
Straight section about 18 cm long 400 
Straight section about 8 cm long 400 
The Starting Grid, about 35 cm long 400 
  
Half Std curve, turning left, LH lane 211 
Half Std curve, turning right, RH lane 208 
Half Std curve, turning left, RH lane 208 
Half Std curve, turning right, LH lane 186 
  
Hairpin curve, turning left, LH lane 167 
Hairpin curve, turning right, RH lane 148 
Hairpin curve, turning left, RH lane 132 
Hairpin curve, turning right, LH lane 120 
  
Std curve, turning left, LH lane 211 
Std curve, turning right, RH lane 208 
Std curve, turning left, RH lane 208 
Std curve, turning right, LH lane 186 
  
Outside curve, turning left, LH lane 250 
Outside curve, turning right, RH lane 219 
Outside curve, turning left, RH lane 256 
Outside curve, turning right, LH lane 219 

 
Table 1: The maximum velocity measured for each track piece. 

 

4 Hardware 

Figure 6 shows a photograph of the prototype slot car. 
Figure 7 shows the circuit diagram.  
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We built a barcode reader using an opto-sensor IC. We 
defined a custom barcode encoding of which an example 
appears in figure 8. Each barcode has a stop bit and a 
start bit and 5 data bits in between. The known spacing 
from start to stop bit allowed the car to verify its velocity 
as it passed each barcode. The 5 bits encoded the length, 
radius, and handedness of each track section by means of 
a lookup table in electrically-erasable non-volatile RAM. 
The motor was driven with a PWM pulse train. The elec-
tronics were arranged so the motor saw a low impedance 
in both the mark and space parts of the waveform. This 
was accomplished using a half bridge constructed with 
MOSFETs. 
 
The track has power constantly applied. When first put 
on the track, the car drives slowly around until it has 
memorised and verified the sequence of tracks. Once 
memorised successfully, it puts the track sequence into 
non-volatile memory, proceeds to the starting straight 
and halts. When the photo-sensor detects the flash of a 
flash gun the car starts racing. 
 
The intention was to have a learning mode, activated by 
the press of a button rather than the flash of light. In this 
mode the car will gradually increase speed on each indi-
vidual track section, one at a time. When the optimum 
speed on each section of track is identified, the working 
parameters in memory are updated. This will constitute 
an artificially intelligent tuning process. Unfortunately 
time did not permit us to get to this part of the project. 
 

 

 
 

Figure 6 Photograph of the prototype slot car showing 
the printed circuit board. The barcode scanner is situated 
adjacent to the right-front wheel. A second photo sensor 
looks upward. The microprocessor is the 14-pin IC near 
the center. There is an ICSP connector for programming. 

 

 

 
 

Figure 7 Complete circuit diagram of the car based around a microchip 
PIC16F684. Apart from a power supply regulator there are no other 

ICs in the entire design. 

 

 
 

Figure 8 Example of a track identifing barcode. This code shows 10011 
with start and stop bits eqaul to 1 giving a complete sequence of 

1100111. Ones are white, and are always spaced apart by a black bar, 
so the 5 white sections in the diagram correspond to the 5 ones in the 
sequence 1100111. A black region appears before the start and follow-
ing the stop bit. All codes are equally long, allowing a passing car to 

simultaneously confirm its speed. 

 

5 Results 

Figure 9 shows a cumulative frequency chart as a func-
tion of lap time measured on the track of figure 1 in left 
and right hand lanes for both the prototype car and a 
skilled volunteer known to the authors. It is immediately 
clear from the data in the figure that the car is faster than 
the most skilled human available to us. This did not sur-
prise us. 
 
The next observation is that the car was much more con-
sistent in its performance than any person we tested. This 
serves to build our confidence that the robot slot car plat-
form will be able to resolve the impact of any small ex-
perimental change. Indeed we were reliably able to 
check that tyres were properly “run in” or sense if they 
were worn out, or if pickups or track joints were not in 
order. To a user watching lap times, it feels as if you 
have a superhuman benchmarking everything, much like 
“The Stig” of Top Gear fame. Hence the title of this 
manuscript.  
 
The car could readily distinguish the difference between 
the left and right lanes of our test track, identifying one 
as “easier”, precisely as we had predicted. One lane re-
corded a track time of 3.0 s and the other 3.1 s, with a 
standard deviation in each case of around 0.05 seconds. 

This did (pleasantly) surprise us. 
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Figure 9: Plot of the frequency of lap times achieved by car and expert 
on left and right lanes of the test track. The consistency of the slot car 
compared with a skilled human clearly reveals the difference between 

the lanes. 

 

4   CONCLUSIONS 

When controlled electronically a slot car can perform 
very consistently. Heuristic driving algorithms that are 
readily programmed into truly low-cost, US$1, micro-
controllers can deliver performance better than a prac-
ticed human. The platform allows small design innova-
tions to be assessed with great sensitivity because of the 
high consistency and optimal performance. The proto-
type could quantify the relative difficulty of lanes in a 
track that might otherwise have been considered equal 
and balanced. 
 
The application of scientific rigour and microcontroller 
precision to slot car racing has the potential to teach 
many lessons. We do not think it unreasonable to use the 
slot car model to test principles and ideas for use with 
real cars. 
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