
Accepted Manuscript

Contexts, refinement and determinism

Steve Reeves, David Streader

PII: S0167-6423(10)00210-8
DOI: 10.1016/j.scico.2010.11.011
Reference: SCICO 1270

To appear in: Science of Computer Programming

Received date: 5 May 2010
Revised date: 15 November 2010
Accepted date: 19 November 2010

Please cite this article as: S. Reeves, D. Streader, Contexts, refinement and determinism,
Science of Computer Programming (2010), doi:10.1016/j.scico.2010.11.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29198685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2010.11.011

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Contexts, Refinement and Determinism

Steve Reevesa,∗, David Streadera,∗

aDepartment of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract

In this paper we have been influenced by those who take an “engineering
view” of the problem of designing systems, i.e. a view that is motivated
by what someone designing a real system will be concerned with, and what
questions will arise as they work on their design. Specifically, we have bor-
rowed from the testing work of Hennessy, De Nicola and van Glabbeek, e.g.
[13, 5, 21, 40, 39].

Here we concentrate on one fundamental part of the engineering view
and where consideration of it leads. The aspects we are concerned with are
computational entities in contexts, observed by users. This leads to formal-
ising design steps that are often left informal, and that in turn gives insights
into non-determinism and ultimately leads to being able to use refinement in
situations where existing techniques fail.

1. Introduction

1.1. Initial comments

Refinement is the stepwise process of developing a specification towards,
or perhaps into, a satisfactory implementation. Each refinement step for-
malises a design decision and transforms a more abstract specification into a
more concrete one. One question that arises in practical situations is: “what
sort of refinement should I be using on this problem?”.

One way to answer this problem is to borrow the ideas behind testing
and to take an “engineering view” of the problem of designing systems, i.e.
a view that is motivated by what someone designing a real system will be

∗Corresponding authors
Email addresses: stever@cs.waikato.ac.nz (Steve Reeves),

dstr@cs.waikato.ac.nz (David Streader)

Preprint submitted to Science of Computer Programming November 15, 2010

*Manuscript
Click here to view linked References

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

concerned with, and what questions will arise as they work on their design.
While we do not address this engineering view directly in this paper, we are
largely motivated by it and borrow from the related testing work of Hennessy,
De Nicola and van Glabbeek, e.g. [13, 5, 21, 40, 39].

Using these ideas we introduced and formalised a general model of re-
finement in [27, 28] and used it to show how error states might be intro-
duced during design, and how new operations, or features, can be added too.
This general model is a generalisation of event-based models with handshake
events, event-based models with broadcast events and state-based models of
abstract data types (ADTs) and programs. We formalise our general model
by largely avoiding syntax basing it on the operational semantics. Both
event-based models use labelled transition systems (LTSs) to define their
operational semantics and the state-based model uses sets of named partial
relations (NPRs) to define the operational semantics of ADTs. To avoid
alienating either the event-based community or the state-based community
we postpone fixing which of the two equivalent operational semantics we use
until we talk about specific instances of our general model.

We formally define refinement that preserves certain guarantees and have
explored this theme of preservation of guarantees as a defining principle be-
hind the concept of refinement in [30].

Following the engineering view, we take as primitive the following three
components: a set of entities, the specifications and implementations we
wish to develop by refinement; a set of contexts, the environment with
which the entities interact; and a user, formalised by defining the set of
observations that can be made when an entity is executed in a given context.

We frequently use the notion of a context X waiting to “accept” an entity
because contexts can be pictured as, and defined by, terms with “holes” in.
Informally speaking the context of an entity is no more than a definition of
how the surrounding world interacts with the entity.

We are also explicit about what can be observed when an entity is placed
in some context, so given a set of contexts Ξ we also have an observation
function O . With non-deterministic entities O returns a set of observations
taken from O and with deterministic entities the set that O returns is a
singleton set. A function that returns a set is, of course, equivalent to a
relation, hence the semantics of an entity E, written JEK, is a subset of Ξ×O.

A set of entities, their contexts and an observation function define a layer
(rather like a layer in a protocol stack) at a certain stage of abstraction in
a design. Fixing both Ξ and O also fixes Ξ × O which we call the frame of

2

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

behaviours that we are interested in. So, layers and frames are closely linked
ideas.

We will sometimes refer to refinement within a layer (pushing the layering
analogy further) as horizontal refinement, which can also be viewed as the
reduction of non-determinism within the frame until the behaviour is deter-
ministic. Then, vertical refinement between layers, or frames, is what allows
for the expansion of the frame, i.e. the introduction of new contexts and ob-
servations, and optionally renaming of the existing contexts and observations
that go to make it up.

We still need to consider what exactly we mean by non-determinism and
determinism. Milner, when talking about processes, makes a very interesting
[20, p232] comment about determinism:

“Whatever its precise definition, it certainly must have a lot to
do with predictability; if we perform the same experiment twice
on a determinate system – starting each time in its initial state –
then we expect to get the same result, or behaviour, each time.”

Even though our notion of entity is more general than the processes Milner
was considering, the general idea that he is concerned with in the quote
above is something we will use in this paper, so we formalise this comment
as directly as we can. Thus “if we perform the same experiment twice on a
determinate system – starting each time in its initial state –” becomes, for
us, if we place the entity in the same context and run the test twice and “ we
expect to get the same result, or behaviour, each time” becomes we observe
the same behaviour. Consequently,

an entity (which will be situated in a certain frame, say Ξ × O)
is deterministic if its behaviour within the frame is given by a
function Ξ → O.

We call this characterisation Gen-Det . We use Gen-Det later in the paper
when we consider how to refine processes which, conventionally, are viewed
as deterministic and hence not refinable, which gives further motivation to
the general view we are concerned with in this paper.

On finite automata the definition of deterministic is defined directly on
the structure of the automata as:

no state has more than one transition, or event, with a given label
leaving it.

3

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

This definition of deterministic finite automata (which we call DFA) corre-
sponds to, i.e. picks out exactly the same automata as, Gen-Det when the
finite automata are placed only in contexts that are programs, i.e. linear
sequences of events (method calls).

However, both processes with handshake actions, e.g. CSP and CCS, and
processes with broadcast actions, e.g. IOA and CBS, place processes in more
contexts than just programs.

The literature on broadcast processes frequently provides a new definition
of determinism defined on the structure of the automata and it is quite easy to
see that this definition corresponds to our Gen-Det when the finite automata
are placed only in contexts that are valid broadcast processes.

But, for handshake processes like in CSP and CCS the DFA definition
of deterministic is inherited, even though these event-based models can be
placed in a much wider set of contexts than the DFA definition was designed
for, and the DFA definition of deterministic is not the same predicate as
Gen-Det within this wider set of contexts.

To help us understand why this definition Gen-Det of determinism is
different from the others, we construct, at an entirely intuitive level, an
interpretation or explanation of the difference in Section 3. It is this difference
and its explanation that we find more insightful than the similarity between
determinism in the other formal models.

1.2. Outline of paper

We show, in Section 2, how a consideration of the interfaces between the
entities, contexts and their users is useful in providing clarity, and show how
several familiar systems from the literature can be characterised as special
cases of this general model. We consider the case where our entities are
processes in Section 3, where we also delve further into the consequences of
Gen-Det and DFA.

The view of these instances of the general model as layers, within which
the notion of refinement as reduction of non-determinism exists, and the
notion of refinement between layers, or vertical refinement, is considered in
detail in Section 4.

In Section 5 we give an example of the utility of vertical refinement
by constructing a refinement between broadcast processes and interactive
branching programs, and we see how interactive branching programs can be
implemented on a platform which provides (just) broadcast communication.

4

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

We also show how the design step of adding error events is expressible as
vertical refinement.

An appendix covers some elementary, common definitions and ideas, for
completeness.

2. Interfaces

Interfaces can be classified in various ways. In this section we will classify
them into two types according to when interaction occurs. Later we will need
to classify them according to the type of the interaction.

2.1. Interface types

We will refer to an interface as transactional if interaction (which we
formalise as observation) occurs at no more than two distinct points: on
initialisation, when the interaction starts, and finalisation, when and if the
interaction ends. If termination is successful then there are distinct observa-
tions that could be made at finalisation, but if termination is unsuccessful
then all that can be “observed” is that the entity fails to terminate.

An example of an entity with transactional interaction is a program that
accepts a parameter when called and returns a value when it terminates.
Clearly if the program fails to terminate no value can be returned.

In contrast we refer to an interface as interactive when interaction can
occur and be observed at many points throughout the execution. Hence with
interactive interfaces observations can be made prior to termination and even
prior to non-termination.

Because we are interested in formalising, as directly as possible, the ob-
servation of interactive entities we break the observation of an entity into a
sequence of more primitive observations. The observation of transactional
entities can also be formalised as a sequence of observations, even though
this is not normally how state-based approaches describe the observations
they make.

An example of an interactive entity is a coffee machine. To obtain two
cups of coffee the user first inserts a coin, then pushes the appropriate button
and takes the first cup of coffee. But if, after inserting a second coin, the
vending machine now fails to terminate, the previously successful interactions
mean that what has been observed cannot be represented by noting non-
termination alone. (We still have our first cup of coffee!)

5

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

So, we have two interfaces, of yet to be determined type. Clearly with
two interfaces, each of which could be one of the two types transactional or
interactive, we have four cases to consider.

I-I

E
X

U

T-T

E
X

U

T-I

E
X

U

I-T

E
X

U

Figure 1: Interactive interfaces and transactional interfaces

We are concerned with how user U observes entity E, even though the
observation has to be made indirectly through context X. Clearly X acts as
an intermediary in this communication. The most that U can usefully observe
is all that occurs at the E–X interface hence, if we can find an X that acts
as a perfect communication buffer between the two interfaces, it is safe to
view the situation as having one interface, that between E and X, so in effect
U=X.

By assuming that the set of contexts is sufficiently large we are able to
find a context X that acts as a perfect communication buffer from the E–X
interface to the X–U interface in the first three cases. In T-T and T-I we
can build an X that passes any initialisation information from U to E and if
E terminates then passes its response out to U.

Now consider the I-I case. We assume the existence of actions (we give
them hats in the sequel) that our context X may perform that do not syn-
chronise with any action of the entity E. Using these actions we can easily
construct a context X̂ that after synchronising with E performs a distinct
special observable action â that announces to U the fact that the a action
has been performed. So we have (considering the entities as given by LTS
for the moment) that:1

if n
a−→Xm then n

a−→X̂z
â−→X̂m where z is not a node in X

Such contexts are a perfect communication buffer as they have the effect
of making visible, to the user U, any action in the E–X interface.

1In the relational semantics of [7, 8] they need to model the refusal of a set of operations
as observable to give liveness semantics for processes. It should be noted that we do not
need to do this because the domain of our relation is different.

6

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In the I-T case X cannot be a perfect communication buffer. The problem
lies in the fact that the interactive interface E–X is able to pass information
from E to X even if E subsequently fails to terminate. But because the inter-
face X–U is transactional it is unable to pass this information to U. Hence no
matter how large the set of contexts there can be no perfect communication
buffer for the I-T case.

I-I

E

X = U
T-T

E

X = U
T-I

E

X = U
I-T

E
X

U

Figure 2: With a sufficiently large set of contexts Ξ

Later we will give more concrete examples of all four cases in Fig. 2, and
in the I-I, T-T and T-I cases (left-hand three cases of Fig. 2) we will be able
to define contexts that behave as perfect communication buffers and hence
these cases can be modelled by considering only one interface.

2.2. Testing and divergence

We show the usefulness of I-T cases by using them to amend Hennessy
and de Nicola’s [5, 13] classic testing semantics. Their semantics models a
divergent process as having chaotic behaviour and this is known to have the
disadvantage that “divergence typically masks much [observed] behaviour we
should really want to see” [32, p297]. The advantage of our amendment is
that divergent processes mask less behaviour.

Hennessy and de Nicola make explicit use of both contexts and user (ex-
perimenter) in their testing semantics of processes, but only success ⊤ and
failure ⊥ are recorded. In our terminology this testing semantics is an I-T
case. The obvious questions that arise from our description are: would the
I-I style testing semantics give different and interesting results; and if so,
which best describes how the processes we are interested in are observed?

It is easy to see that for potentially non-terminating processes the I-I style
of tests do indeed make a difference. Let us consider A and B in Fig. 3. In
both these processes there exists a t loop originating from state n so when run
(i.e. when composed in parallel with—defined in the Appendix) in contexts
containing t the system has a τ loop. With the interpretation that τ loops
can run forever (as made by CSP) we must conclude that after executing an a

7

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A

s

n t

o o

e e

a

b
b

c d

B

s

n t

o

e e

a

b

c d

IT

s

n t

o
o
e

a

b

c
ω

II

s
.

n
.

◦

o
◦
e

t

t̂

a
â

b
b̂
c

ĉ

Figure 3: I-I tests give a less masking semantics of divergence than I-T tests

action both processes may never terminate. Consider a context IT that tries
to execute a, b, c and ω, a special event to mark success ⊤, and assume that
after a IT can perform a t loop. With this test, with either A or B, ω can be
observed or nothing is observed. So, with I-T tests the two processes A and
B cannot be distinguished as both success ⊤ and failure ⊥ can be observed.
We leave the interested reader to convince themselves that this is the case
no matter what context is chosen.

But, with I-I tests they can be distinguished and we only need consider
executions with II as context :

• the execution with B fails (i.e. ĉ is not observed) only when B moves
from state s to state n due to a and then forever executes a t action;

• the execution with A can fail (so ĉ is not observed) when A, like B,
moves from state s to state n due to a and then forever executes a t
action; but in addition it might move from state s to state n due to a
and then move from n to o-right using b.

Therefore A and B are different, as with test II only process A can have the
trace of length two â, b̂ observed; for process B, if an observation contains â,
b̂ then it must contain ĉ too and be of length three. Thus by a slight change
in Hennessy’s testing semantics we have a semantics of non-termination that
masks less of the behaviour of processes.

Having considered the two interfaces (entity/context and context/user)
thrown-up by the testing-inspired entity-context-user model in this section,
we move on to concentrating on the entity-context interface in the next,
essentially by treating the user as an unvarying presence that can be “factored
out”.

8

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3. Considering processes

In [28] we worked in the state-based world and we viewed an abstract data
type (ADT) as being a set of named partial relations (NPR) and explored our
general notion of refinement in that setting, with contexts being programs. A
program is a linear, unbranching sequence of operations. Each ADT-program
interaction is a call to (i.e. a use of) one of the ADT operations (i.e. one of
the named partial relations).

In this section we turn to the event-based world and consider the case
where entities are processes. While programs can be modelled by an un-
branching sequence of calls to an ADT and programs are the only valid
contexts for an ADT, processes can be placed in branching contexts. Thus
processes will have a distinct semantics to ADTs because the contexts in
which they can be placed are different to those for programs [29].

We will classify processes, as appearing in the literature, into two types.
The handshake processes of CSP, CCS and ACP treat all events in the same
way, i.e. give all events the same kind of semantics. The broadcast processes
have two types of events, the active output events that cause the passive
input events. The broadcast output event differs from all other observable
events that we model in that it is under local control, i.e. it cannot be placed
in a context that blocks its execution.

The handshake processes of CSP, CCS and ACP abstract away the cause
and response nature of event synchronisation. By modelling both a vending
machine and robot with the same type of actions the distinction between
cause and response is lost. The point here is that, for example, the but-
tons on a vending machine are passive and a robot can actively cause the
vending machine to respond by pushing a button on the vending machine,
so something has been lost in the abstraction of events in this way.

As determinism can be thought of as having a unique response to any
action we should not be surprised that losing the distinction between cause
and response might affect how well determinism can be defined. We spend
much of the section considering this.

In Section 3.1 we review broadcast processes, and consider what broadcast
processes are deterministic on Section 3.2, then in Section 3.3 and Section 3.4
we do the same for handshake processes.

Our interactive branching programs of Section 3.5 are classified as pro-
cesses (regardless of their name!) because they and their contexts can both
branch. They can be viewed as a restricted class of handshake processes for

9

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

which the cause and response nature of event synchronisation has not been
abstracted away and which have active and passive events. We consider
determinism for these process in Section 3.6.

Since we are no longer dealing with transactional interfaces, we need make
no distinction between context and user in what follows. Further, contexts
are going to be special processes that are composed in parallel with the entity
processes. Because we wish to define determinism by a unique observation
in any deterministic context then we must have that if the user can observe
something of a process in some state then it must observe it. If this was not
the case then our act of observation would introduce non-determinism.

This we can easily do by requiring that any action from some state of a
context that the user can observe must be the only action enabled from that
state.

Placing entity E in a context X will be written [E]X. We can break this
down into parts: E is the entity; the context consists of X and a means of
composing it with E. Let us rewrite [E]X using a binary operation Op, to give
E Op X. It is easy to see that if Op is an associative operation and Ξ is closed
under Op then refinement is a precongruence, i.e. a congruence based on the
refinement pre-order, with respect to Op.

For processes, E will be an LTS , Op will be parallel composition and X
will be an LTS too, and in X:

if n
u−→m is part of X and action u is not synchronised with E

actions but is observed by the user then n
v−→p implies v = u and

m = p.

We call this property 1. We restrict ourselves to contexts satisfying this
property to ensure that non-deterministic observers are not allowed.

3.1. Broadcast processes

There has long been interest in the relation between handshake- and
broadcast-style communication, but there are many variations of both styles
to be considered when trying to elucidate the relationship. A comparison
of the point-to-point handshake communication of CCS with the multi-way
broadcast of CBS can be found in [9]. But handshake need not be point-to-
point, and both CSP and ACP allow multi-way handshake synchronisation.
Handshake and broadcast styles also differ in that broadcast has local control
of output, i.e. a listener cannot block a multi-way radio message from being

10

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

broadcast nor can a receiver block a point-to-point email message from being
broadcast, whereas with handshake-style communication any events can be
blocked. The only difference between our handshake and broadcast models
will be that broadcasts cannot be blocked by any context and both will model
point-to-point communication (hence synchronisation will be between pairs
of events).

Even restricting communication to point-to-point there is a variety of dif-
ferent ways to formalise broadcast communication. Some models of broadcast
systems [35, 22, 16, 10] define parallel composition in such a way that output
events cannot be blocked. The alternative approach, found in [36, 23, 33,
19, 18] and used here, is to keep parallel composition the same as defined
for handshake operations and consider only entities, and thus contexts, that
have input actions always enabled so that outputs cannot be blocked.

In what follows we will often decorate events with question marks and
exclamation marks just to emphasise that the events concerned are most
helpfully to be thought of as events considered as inputs (“listening”) or
events considered as outputs (“broadcast”) , respectively. When composed
synchronisation still happens as usual between events with the same (base)
name, e.g. a? and a! will synchronise since they have the same base name a.

In terms of sets of contexts and sets of entities we can characterise broad-
cast process thus:

ΞBC , {[]x | x ∈ TBC}
and

TBC , {A an LTS | ∀ n ∈ NA, a? ∈ Act . ∃m ∈ NA. n
a?−→m}

where
Act = {a! | a ∈ Names} ∪ {a? | a ∈ Names} ∪ {τ}

3.2. Determinism and broadcasting

Here we turn to our theme of seeing how determinism looks in the context
of our various sorts of process.

We define a function MBC that turns a LTS into a broadcast process by

simply adding listening loops n
a?−→n to any n for which a? is not enabled:

MBC (A) , (NA, sA,TA ∪ {n a?−→n | ¬ n
a?−→})

Having introduced them, it is frequently clearer to not explicitly show
listening loops (see Fig. 4). Such LTSs can be interpreted as broadcast pro-
cesses by leaving listening loops implicit.

11

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

P!

s ◦
e1

e2

s

◦

◦ e2

e1Q!

a!
b!

c!

a!

a!

b!

c!

P?

s ◦
◦

◦

e1

e2

s

◦

◦ ◦

◦

e2

e1Q?

a?
b?

c?

x!

y!

a?

a?

b?

c?

x!

y!

Figure 4: MBC (P!) =BC MBC (Q!) and MBC (P?) 6=BC MBC (Q?)

The effect of MBC can be best understood by considering some examples.
Consider Fig. 4. Processes MBC (P?) and MBC (Q?) are not trace equivalent,
e.g. a?b?c?y! 6∈ MBC (P?) because if MBC (P?) hears a b? event after the initial
a? event then it must output x! not y! but a?b?c?y! ∈ MBC (Q?) as the
process, on hearing a?, can make one of two moves, one of which will lead to
output y! being made. This is not the result that might be expected from
the handshake perspective where trace semantics are unable to distinguish
P? and Q?. (Remember that we assume listening loops on all nodes.)

P! can broadcast either b! or c!. As broadcast output is under local
control no other process can block either of these events. Hence it seems
unavoidable that we consider P! to be non-deterministic. Yet clearly P! and
MBC (P!) are deterministic transition systems according to the usual criterion
DFA (there are no nodes with two (or more) transitions with the same name
leaving them).

Clearly there is a mismatch between our intuitions on the one hand and
the usual DFA characterisation on the other hand. Because of this mismatch
we turn to another characterisation, Gen-Det from Section 1.1.

We define the set of deterministic broadcast processes, as in [36, 23], as
processes, ignoring listening loops (prior to applying MBC), that branch on
only input events with different names (and where Act? is {a? | a ∈ Names}):
Definition 1. The set of deterministic broadcast processes, DBC :

DBC , {B an LTS | (n
x!−→Bm ∧ n

y−→Bk) ⇒
(y = x! ∧ m = k
∨ y ∈ Act? ∧ k = n)

∨ (n
x?−→Bm ∧ n

y−→Bk ∧ n 6= m) ⇒
y 6= x? ∧ y ∈ Act?}

12

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lemma 1. If D is a deterministic broadcast process from DBC , then Gen Det
holds, thus for all contexts X we have that O([D]X) is a singleton set.

Proof. (By contradiction.) Assume D ∈ DBC and O([D]X) is not a sin-
gleton set. As O([D]X) is not a singleton set [D]X must have at least two
execution traces that are observed to be distinct. As only X actions can be
observed and as property 1 (given just before section 3.1) tells us only one
action is enabled from any state when an observable action is enabled, we
know that these two execution traces must lead to distinct X states.

By induction on the length of the execution traces we show this cannot
be the case.

Base case: length equals one. The only way X can lead to two states

after one action is if sN
x?−→p and sN

y?−→q are in X but for both of these
listening events to be executable D would have to be prepared to output two
distinct actions. In order for this to happen D would already have to be in
two distinct states, whereas it must be in state sN .

Induction hypothesis: no branching has occurred for the first n−1 actions.

The only way X can lead to two states after n actions is if sn−1
x?−→p ∧

sn−1
y?−→q but for both of these listening events to be executable D would

have to be prepared to output two distinct actions. In order for this to
happen D would already have to be in two distinct states. For this to be the
case X would have had to been prepared to execute two output actions and
this could only be the case X was in two distinct states, and by the induction
hypothesis this cannot be true. •

DBC accords with Milner’s comment (from Section 1.1) and we draw
the reader’s attention to the fact that the definition of determinism in [36,
23] is consistent with our characterisation Gen-Det. In CBS all sequential
processes are deterministic: “Speakers in parallel are the only source of non-
determinism in CBS” [23]. An informal justification for this limitation is
that branching outputs of a sequential process could not be implemented on
a deterministic machine.

3.3. Handshaking processes

Any LTS can be used as the operational semantics for a handshake process
and such processes can be placed in a context consisting of any LTS. Hence
for handshake processes the characterisation is:

ΞPA , {[]x | x ∈ TPA}

13

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and
TPA , {A an LTS | α(A) ⊆ Names}2

3.4. Determinism and handshaking

The characterisation of deterministic processes we have chosen, e.g. for
broadcast processes in Section 3.2, is very different to the characterisation
(basically that a process is deterministic if no node has two transitions with
the same label leaving it) that is found in the process-algebraic literature.
We consider two simple examples of processes to investigate this.

VM

s ◦
◦

◦
c

b1
b2

d1

d2

Rob

s ◦
◦

◦

e

e
c

b1
b2

d1

d2

Figure 5: Are VM and Rob deterministic?

The vending machine VM in Fig. 5 starts by waiting for a coin to be
inserted (c) and then for one of two buttons to be pushed (b1 or b2) after
which a drink (d1 or d2) is dispensed and the vending machine returns to
the start state. We will show that the interpretation of the robotic user Rob
in Fig. 5 requires some thought.

Non-determinism can arise naturally with concurrent processes, for ex-
ample running processes R1 , c;b1 and R2 , b2 in parallel with VM. After
R1 inputs a coin R1 and R2 race to push different buttons and which but-
ton is pushed is not determined. We accept Hoare’s view [15, p81] that:
“There is nothing mysterious about this kind of non-determinism: it arises
from a deliberate decision to ignore the factors which influence the selec-
tion”. By restricting ourselves to untimed models of processes we view this
non-determinism as arising from a deliberate decision to ignore time. Al-
ternatively, non-determinism can be viewed as partial specification to be
resolved by refinement prior to implementation.

In CSP, CCS and ACP Rob is deterministic but exhibits non-deterministic
behaviour when interacting with VM, that is, when Rob and VM are run in

2α gives the set of names used by an LTS, i.e. its alphabet.

14

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

parallel the drink that Rob ends up with is not determined. It is not clear
from the literature whether the non-determinism of [Rob]VM is a natural
consequence of implementable processes or is due to partial specification and
is unavoidable because the model has abstracted away the cause; or should
we expect to resolve it by further refinement? Unfortunately, however, both
Rob and VM are viewed as deterministic in CSP, CCS and ACP and therefore
neither can be refined.

This leads us to the obvious question: what factor is ignored in the Rob
and VM example that causes this non-determinism to arise? It is our view
that the robot, not the vending machine, has to select what button to push
and consequently it must be the robot’s choice that has been ignored.

Note that an important point, which emerges on comparing the two ex-
amples here, is that the non-determinism comes from different factors being
ignored. As we said, time is ignored in the first example involving R1 and
R2, giving rise to their racing. In the second example we have ignored cause-
and-effect, and this has led to the non-determinism there. Thus, since the
reasons for the non-determinism are different, it would be entirely reason-
able if the “solutions” in each case might be different too. Put another way,
since we can differentiate between two different sorts of non-determinism (by
reason of the different factors ignored) then it would not be surprising if we
dealt with them in different ways too. In one case, the race case, we might
accept it and in the other, the cause-and-effect case, we might not and seek
to remove it.

Process algebras have abstracted away the cause and response nature of
event synchronisation, e.g. the robot’s “button pushing” events cause the
vending machine’s “button pushed” event to occur. This makes it hard for
process algebra to require that the robot, and not the vending machine, must
make a choice as to what button to push.

Cause and response are modelled in broadcast operations in Section 3.1
by requiring pairs of events that synchronise to consist of one passive event
and one active event, the latter causing the former to occur. We apply this
approach to handshake processes in the next section.

This is the only model in which our characterisation of determinism differs
from that found in the literature. This can be used to argue that there is
a weakness in our general model. But an alternative view is that because
these process models have chosen to abstract away the cause and response
nature of event synchronisation they are forced to accept that determinism is
hard to define: recall Milner’s comment [20, p232] about determinism from

15

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Section 1.1.
We must take care not to be misled here: processes such as Rob and

VM can be coded in the Occam programming language and their concurrent
execution can be performed on a single transputer, so we might think that
there is no non-determinism here in our example as transputers, like other
digital computers, are finite-state deterministic machines and so they cannot
exhibit non-deterministic3 behaviour, and so our processes running together
cannot, therefore, be non-deterministic, so there is no problem after all; it
might be thought that we are mistakenly worrying about this.

But, the Occam compiler in fact decides which button is pushed. This
could be described as the Occam compiler refining [Rob]VM by removing non-
determinism and then implementing the deterministic process produced by
the refinement. So, Occam does not actually implement the non-deterministic
process (obviously; how could it?) we are concerned with, but it refines this
process (it might, for example, have a strategy within the compiler which
says: “when there is a choice take the first alternative”) and implements
that. So, there is non-determinism here, and we view the source of it as be-
ing the interpretation of Rob given by the process algebras, and Rob in our
opinion is therefore not implementable as it stands. Occam shows one way to
change Rob so as to render it implementable, and there may be other ways.

3.5. Interactive branching programs, IBP

Interactive programs are different from the processes of CSP/CCS. Pro-
cesses are prepared to perform an operation from a whole set of operations,
whereas programs are only prepared to perform one specific operation. For
example, a program can perform some sequences of push and pop operations
on a stack that offers both these operations. But a process, not a program,
can offer the stack the ability to perform either push or pop and allow the
stack to select which.

We have seen different styles of event interactions for both processes
and programs and now we introduce another style of interaction, interactive
branching programs (IBP) from [25], that combines process and program
ideas.

It is common in the literature on handshake events ([15, 32, 20, 2]) to
treat events that synchronise in exactly the same way, and not differentiate

3They can exhibit complex behaviour that approximates non-deterministic behaviour
but they are inherently deterministic.

16

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

between, for example, the events of Rob and the events of VM. It is our
intuition that the events of a vending machine VM are passive and the events
of a robot Rob are active and cause the passive events of VM to occur, just
as a program causes a method of an ADT to be executed. For IBP we view
the active events as causing the performance of the passive events, but unlike
broadcast events, and like programs and ADT, we do not have local control
of the active events. Thus we allow the active events to be blocked by a
context. The active events are written with the name over-lined (e.g. a) and
the passive events with no over-line (e.g. a).

As the active events of IBP are the calling of a method (or the causing of
a passive event) we model it as committing, i.e. once started the caller cannot
back off but is blocked if the passive event cannot be executed.

In order to formalise this we restrict the LTS that can be used to represent
IBP. These LTS require that active events must be preceded by a unique τ
event (see Fig. 6 for an example of how this looks) and after this τ event
only the single active event can be executed. We therefore characterise IBP
as follows:

ΞIBP , {[]x | x ∈ TIBP}
where

TIBP , {A an LTS | n a−→Ar ∧ n
x−→At ⇒ (a = x ∧ r = t) ∧

q
y−→An

a−→A ∧ p
z−→An ⇒ (y = z = τ ∧ p = q)}

3.6. Determinism and IBP

We define MIBP (A) which changes an LTS’s operational semantics to be
IBP processes. The only change it makes is to active events.

Definition 2. For A an LTS (NA, sA,TA):

MIBP (A) , (NMIBP (A), sA,TMIBP (A))

where
NMIBP (A) , NA ∪ {z(n,a,m) | n a−→Am}

and

TMIBP (A) , {n a−→m | n a−→Am} ∪ {n τ−→z(n,a,m)
a−→m | n a−→Am}

17

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

MIBP (Rob)

s ◦ ◦
◦ ◦ ◦ e

◦ ◦ ◦ eτ
c

τ
τ

b1

b2

τ d1

τ d2

Figure 6:

The IBP process MIBP (Rob) (Fig. 6) is a non-deterministic specification
of the behaviour of Rob in Fig. 5 where the non-determinism arises from not
specifying which button the robot will push.

We define the set of deterministic IBP in the same way as the deter-
ministic broadcast processes in Section 3.1. The deterministic IBP are the
processes, prior to applying MIBP , that branch on only passive events with
different names.

Definition 3. The set of deterministic IBP, DIBP :

DIBP , {P an IBP | q
τ−→Pn

y−→Pr ∧ q
z−→Pm ⇒ τ = z ∧ n = m

∧ n
x−→Pm ∧ n

x−→Pk ⇒ m = k}

[Rob]VM (taking Rob and VM from Fig. 5) and both [MIBP (Rob)]MIBP (VM)

and MIBP (Rob) (see Fig. 6) are non-deterministic. This is not because distinct
sequential processes are racing to perform active events but because the robot
fails to choose what active event it will perform. What is more MIBP (Rob)
can be refined into a deterministic IBP, whereas no refinement of the robot
was possible using the process semantics of Fig. 5.

There are two ways to relate IBP and process algebra. Either we say that
IBP is a subset of process algebras, TIBP ⊂ TPA, or IBP can be mapped onto
process algebras by removing the τ events. With this second relation, we will
see, IBP refinement extends process algebra refinement, ⊑PA⊂⊑IBP.

We leave it for the interested reader to check that DIBP satisfies Gen-
Det (in Section 1.1) but draw the reader’s attention to the fact that this
definition of determinism for IBPs is consistent with our abstract characteri-
sation. Thus IBP is a subset of handshaking-style processes in Section 3.3 for
which the cause and response nature of event synchronisation has not been
abstracted away and for which determinism is consistent with our abstract
definition.

18

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4. General Refinement

The general notion of refinement as used in [28] is given by the following
definition.

Definition 4. General refinement. Let Ξ be a set of contexts each of which
the entities A and C can communicate privately with, and let O be a func-
tion which returns a set of observations, each observation being what a user
observes of an execution. Then:

A ⊑Ξ,O C , ∀ x ∈ Ξ.O([C]x) ⊆ O([A]x)

Note that for event-based interaction the observations will be sequences of
more primitive observations, i.e. traces. For abstract data types, i.e. state-
based systems, the observations will be of the traditional “started” and “fin-
ished” sort (which we can also read as traces with at most two primitive
observations in them).

We view the various systems given in the previous sections as special
models since, using the various characterisations of contexts and entities
given, and using them in Definition 4, gives us various specialisations of the
general notion of refinement. We now, further, regard these special theories
as layers in the larger scheme of things (as introduced in [28], where we also
introduces the notions of frames and vertical refinement).

4.1. Refinement and layers

By the characterisation given above, a layer is formalised by a set of
entities and a set of contexts, and hence by a refinement relation (once we
agree to use the same method of observation for all models, as we do here).
It is important to recall that the entities in a layer can be ADTs, processes
of various kinds and even individual operations.

Definition 5. A layer L is (EL,⊑L) where EL is a set of entities and ⊑L⊆
EL × EL is a refinement relation

General refinement gives us a way of linking layers and contexts and ob-
servation functions. A triple consisting of a set of LTSs representing entities,
a set of LTSs representing contexts and an observation function on LTSs, also
defines a layer if we can lift the observation function from LTSs to entities,
i.e. if AL =L BL ⇒ O(AL) = O(BL), and lift placement in a context from LTS

19

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to entities, i.e. AL =L BL ⇒ ∀ x ∈ ΞL.[AL]x =L [BL]x . This is the case for all
the models we consider.

We can make the idea of refinement more flexible now that we have layers,
by giving a general definition of vertical refinement between an abstract and a
concrete layer. Since layers themselves have their own refinement relations,
this gives us the flexibility to move between theories which have different
definitions of refinement while still keeping the essence of what makes refine-
ment a valuable concept—the relation that exists between entities and the
guarantees about their behaviours relative to one another.

Definition 6. Semantic mappings J KHL
v and AHL

v define a vertical refinement
⊑HL

v between high-level layer (EH,⊑H) and low-level layer (EL,⊑L) if they are
adjoint:

∀XH ∈ EH, YL ∈ EL.JXHKHL
v ⊑L YL ⇔ XH ⊑H AHL

v (YL)

The definition is based on two semantic mappings: J Kv , that defines how
to interpret the high-level abstract entities as low-level concrete entities; and
Av , that defines how to interpret the low-level concrete entities as high-level
abstract entities. The semantic mappings are vertical refinements if and only
if any low-level refinement is interpreted as a high-level refinement and any
high-level refinement is interpreted as a low-level refinement. Mathematically
our vertical refinement is a Galois connection (or an adjunction) between the
layers.

This definition of vertical refinement can be seen as a generalisation of
non-atomic refinement [6] or action refinement [31, 12] when we consider the
LTS used to represent entities.

It also turns out to be useful to consider the relational semantics of an
entity. This is defined by

Definition 7. Let L be a layer. Let ΞL be a set of contexts each of which
the entity AL can communicate privately with, and OL be a function which
returns a subset of the set OL all of observations, each observation being what
a user observes of an execution.The relational semantics of an entity AL is a
subset of ΞL ×OL:

JALKΞL,OL
, {(x , o) | x ∈ ΞL, o ∈ OL([AL]x)}

20

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The whole of the product that goes to provide a universe for the relational
model is what we call a frame:

FrameL , ΞL ×OL

and we describe the relation as being a relation over the frame. When the
frame is the same for all relations under consideration it is frequently left
implicit but here we are interested in changing the frame and thus must be
explicit. In particular, we are interested here in theories (or layers) H and L
where FrameH ⊆ FrameL.

It is well-known ([34, p155] [14, 4.1]) that subset relations like FrameH ⊆
FrameL form a simple theory morphism, and hence a vertical refinement,
which we denote by ⊑HL

sub , where the interpretation mappings are:

embedding of the abstract in the more complex concrete, where for any
PH ∈ EH (using the definitions ΞL\H , ΞL\ΞH and OL\H , OL\OH) :

JPHKHL
sub , JPHKΞH,OH

∪ {(x , o) | x ∈ ΞL\H ∨ o ∈ OL\H};

projection of the concrete back into the abstract, where for any PL ∈ EL:

AHL
sub(PL) , JPLKΞH,OH

.

We can establish that ⊑HL
sub is a theory morphism or vertical refinement,

i.e. that:

∀XH ∈ EH, YL ∈ EL.JXHKHL
sub ⊑L YL ⇔ XH ⊑H AHL

sub(YL)

by checking that:

∀XH ∈ EH, YL ∈ EL.JXHKΞH,OH
∪ {(x , o) | x ∈ ΞL\H ∨ o ∈ OL\H} ⊇ JYLKΞL,OL

⇔ JXHKΞH,OH
⊇ JYLKΞH,OH

This is true by basic set theory.
Intuitively we can think of subset morphisms as formalising being silent

outside of frame.
Our subset theory morphism formalises the addition of new observations,

like the y in Fig. 7. The justification for adding {(a, y), (b, y), (c, y), (x , y)}
is that in the abstract specification, i.e. the relation over FrameH , the y

21

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ΞH OH
a e

b f

c g

ΞL OL

OH , {e, f , g}

ΞH , {a, b, c}

a e

b f

c g

x y

Figure 7: H ⊑HL
sub L

observation had not been considered or recorded, so we have no information
(yet) about it, which is to say the abstract H is silent outside of FrameH.

It is the adding of the new observations that makes this an example of the
flexibility of our formal model of both single operations and machines, and
hence an example of the flexibility of vertical refinement. More informally,
it is the preservation of the guarantee that allows us to view such theory
morphisms as refinements, which we now discuss.

The strict embedding projection morphisms satisfy a strict guarantee:

PH ⊑HL
sub JPHKHL

sub guarantees the high-level Asub-interpretation ofJPHKHL
sub behaves exactly like entity PH whenever it is placed in

any abstract context ΞH and only the abstract observations OH

are made.

But, this is not always very useful in practice as JPHKHL
sub may be unhealthy

(by which we mean that it is not in fact an entity in L). So we take a more
pragmatic view and consider PH ⊑HL

sub JPHKHL
sub ⊑L PL. Hence we can choose

some actual entity PL whose relational semantics is a subset of the potentially
unhealthy JPHKHL

sub and we still have a useful refinement guarantee.
Restricting the guarantee for vertical refinement to this special case we

get:

PH ⊑HL
sub JPHKHL

sub ⊑L PL guarantees the high-level Asub-interpretation
of any entity PL behaves like (can be observed to have a subset
of the observations of) entity PH whenever it is placed in any
abstract context ΞH and only the abstract observations OH are
made.

22

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.2. Common frame examples for programs and processes

4.2.1. Programs where an abstract data type was expected

Given that non-termination is usually regarded as a bad thing from a
transactional view, some people restrict the set of programs considered as
valid contexts to those that, when using the abstract data type A, always
succeed [29] (i.e. once started, giving the observation start , always stop,
giving the observation stop), where:

Ξass , {P | O([A]P) = {(start , stop)}} and Oass , {(start , stop), (start)}

Note a subtle but vital point here: (start) is in the frame as a possible ob-
servation, even though it will not be observed for the given set of contexts
(by construction). The point is that if (start) were not mentioned as a pos-
sible (though actually non-occurring) observation then we are being silent
about this observation, which would leave open the possibility it might sub-
sequently be introduced as the system is further developed. The fact that
we have said it is a possibility but then not used it fixes the fact that it will
never occur, as required.

4.2.2. Processes with compatible alphabets

Lotos’s extension refinement [4], which allows refinement by adding new
operations4, can be formalised using a semantics where the contexts are re-
stricted to be processes X that attempt to communicate with a process A
only via its alphabet α(A) [29] (i.e. X never uses an operation outside of A’s
alphabet) and the observation function is unchanged:

Ξα(A) , {X | α(X) = α(A)}

As the frame is defined in terms of the abstract process and all processes on
one layer have the same frame, the concrete process resulting from extension
refinement will be on a different layer to the abstract process because its
frame is different (because it is extended). But for extension refinement
we have FrameA ⊆ FrameC and consequently we always have the necessary
subset morphism ⊑AC

sub , so:
A ⊑AC

sub C

4Lotos allows ‘standard’, i.e. failures, refinement within a layer.

23

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.2.3. Component states with compatible alphabets; deterministic components

The next two examples are more recent and are an attempt to “provide
a more expressive way of describing component interfaces” [17]. Neither
provide a testing semantics and both have some explicit control over the
contexts in which they can be placed.

The usual CSP-style interpretation of an action a not being enabled at

some state n (i.e. n
a

6−→) is a guarantee that any process trying to execute
an action is blocked. An alternative interpretation is adopted in Interface
Automata [1], where a not enabled action defines an assumption that no
context tries to execute the action while the process is in the state from which
the action is not enabled. We can capture this interpretation by defining
FrameIA where the contexts satisfy the assumption

ΞIA , {X | ∀ nmρ.X
ρ−→n ∧ A

ρ−→m ⇒ π(n) ⊆ π(m)}5

The definition of refinement of Interface Automata [1] is called alternating
simulation and is not based on a testing semantics and is different in its
detail from our testing-based semantics.

Interface Input Output Automata [17] use two automata to define the
interface: one to define the environment Env (context) and one to define
the system Sys (entity). They also base their definition of refinement and
implementation on the subset of prefixed closed traces relation and thus
limit themselves to safety-only properties. To capture this we define the
observation function to return the set of prefixed closed traces (not just the
complete traces).

5. Vertical refinement between event-based LTS

As a concrete example of vertical refinement we implement the IBP layer
in the broadcast layer. What is particularly interesting about this is that
we can find no way to extend this to be able to implement handshake on
broadcast. The problem appears when considering the same processes that
cause problems with the definition of determinism.

5.1. From Restriction and Hiding to subset morphisms

Restriction and hiding in the process literature refer to functions that
remove events from a process and can be viewed as “abstraction” functions.

5The function π maps a node to the set of nodes next reachable from it.

24

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Having defined the observational semantics of processes ACP models Re-
striction as a function renaming events to certain “δ events”, here called
δ-abstraction, and Hiding as a function renaming events to τ events, here
called τ -abstraction.

The abstraction functions, Restriction and Hiding, can simply be applied
to a process to remove events from a concrete process whenever the developer
chooses. But here, as in [4, 11], we are interested in reversing this process
and introducing these events to the abstract process, and thus creating the
concrete process. Further, and crucially for our example, we are interested
in viewing the introduction of these new events as a formal refinement step
rather than an informal design decision.

We reverse the τ -abstraction and δ-abstraction (Definition 16 in the Ap-
pendix) by extending refinement to introduce events in two quite separate
ways [29, 26].

Definition 8. δ–refinement and τ–refinement. For LTS A and C :
A ⊑ΞδDel C , A ⊑Ξ CδDel

A ⊑ΞτHid C , A ⊑Ξ CτHid

Firstly if δ–refinement holds, i.e. A ⊑ΞδDel C and α(ΞA) ∩ Del = ∅,
then events are introduced that were previously not observable and always
blocked. This would be used, for example, to refine a specification that
defined successful behaviour and assumed error events, in set Del , never
occurred.

Secondly if τ–refinement holds, i.e. A ⊑ΞτHid C and α(A)∩Hid = ∅, then
events are introduced that were previously not observable and never blocked
in the more abstract view.

Clearly the guarantee from the subset refinement applies in both these
cases.

5.2. Refining the (TIBP,⊑IBP) layer into the (TBC,⊑BC) layer

In this section we will define a particular vertical refinement between high-
level IBP entities and low-level broadcast processes. We will then show that
we have been unable to extend the high-level layer to all handshake processes.
An explanation can be found by considering the way handshake processes
have abstracted away the cause and response nature of event synchronisation.

25

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Definition 9. Let A be an LTS (NA, sA,TA).JAKB , MBC (NJAKB , sA,TJAKB)

NJAKB , NA ∪ {nt | t ∈ TA} ∪ {n(m,a) | m ∈ NA ∧ m
a

6−→}
TJAKB , {s tx!−→z , z

rx?−→s , z
ax?−→t | s x−→t ∧ z = n

s
x−→t
}∪

{s tx?−→z , z
ax!−→t | s x−→t ∧ z = n

s
x−→t
}∪

{s tx?−→z , z
rx!−→s | s

x

6−→ ∧ z = n(s,x)}
We map an active high-level event such as b (see Fig. 8) into three parts.

The try event tb! is performed, subsequently either aborting (rb?) if the
context cannot interact on b, or succeeding (ab?) if the context can interact
on b. The mapping for the passive event b can be seen in right-hand side of
Fig. 8.

◦x

x

tb?
rb!

s ◦ e

s e

tb!
ab?

rb?

b

s ◦ e

s e

tb? ab!

b

Figure 8: Mapping from high to low using J KB
Our semantic mapping J KB from a high-level layer to a low-level layer

will not only map events b and b to different processes but will also add
try-reject loops tb?rb! wherever a passive event b cannot be performed, i.e.
when b 6∈ π(x) (see left-hand side of Fig. 8).

Although we see this as the natural solution, because of the addition of
the try-reject loops it is neither an action refinement nor indeed an instance
of vertical implementation [31].

We need some care in interpreting the events of Fig. 8. In particular both
handshake events b and b are able to be blocked but the broadcast events
tb!,rb! and ab! are not.

Not all the processes (NJAKB , sA,TJAKB) are valid broadcast processes, i.e.
they are not all in TBC . For this reason we have applied MBC . For ease of
understanding we have not shown the events added by MBC in Fig. 8.

Next we define the abstraction AB . It should be noted that tx? events
are replaced by two τ events, one each way.

26

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Definition 10. Let A be an LTS (NA, sA,TA).

AB(A) , (NA, sA,TAB (A))

TAB (A) , {s x−→t | s ax?−→t} ∪ {s x−→t | s ax!−→t}∪
{s τ−→t | s tx!−→t ∨ s

rx!−→t ∨ s
rx?−→t ∨ s

τ−→t ∨ s
tx?−→t ∨ t

tx?−→s}
We will need some lemmas in what follows:

Lemma 2. For any vertical refinement ⊑HL
v , J Kv and Av are adjoint if and

only if J Kv and Av are monotone and JAv()Kv ⊑L idL and idH ⊑H Av(J Kv)
Proof [34, p151]. •

Lemma 3. For any entities A and C in TBC, if Tr c(C) ⊆ Tr c(A) then
Tr c(AB(C)) ⊆ Tr c(AB(A)).

Similarly, For any entities A and C in TIBP, if Tr c(C) ⊆ Tr c(A) then
Tr c(JCKB) ⊆ Tr c(JAKB). (See the appendix for a definition of Tr c.)

•

Lemma 4. Let N be a set of low-level BC events and let AB(N) be the set
of observable high-level events built from them by applying AB to each event
in turn. Then, for any X ∈ TBC:

Tr c(AB(C‖NX)) = Tr c(AB(C)‖AB (N)AB(X)).

Similarly, let N be a set of high-level IBP events and let JN KB be the set of
observable low-level events built from them by applying J KB to each event in
turn. Then, for any X ∈ TIBP:

Tr c(JC‖NXKB) = Tr c(JCKB‖JN KB JXKB).

•

Theorem 1. Semantic mappings AB and J KB define a vertical refinement
⊑IBP BC

B from the handshake layer (with its refinement ⊑ΞIBP,Trc within the
layer) to the broadcast layer (with its refinement ⊑ΞBC,Trc within the layer).

27

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. We will prove our result using Lemma 2. To do this we must
prove that AB and J KB are monotone and JAB()KB ⊑BC idBC and idIBP ⊑IBP

AB(J KB).
First we prove that AB and J KB are monotone.
Monotonicity: ∀PBC, QBC ∈ TBC. PBC ⊑BC QBC ⇒ AB(PBC) ⊑IBP AB(QBC)
Consider arbitrary PBC, QBC ∈ TBC and assume PBC ⊑BC QBC

∀ x ∈ ΞBC.Tr c([QBC]x) ⊆ Tr c([PBC]x) Defn. of general refinement
∀ x ∈ ΞBCTr c(AB([QBC]x)) ⊆ Tr c(AB([PBC]x)) From Lemma 3
∀ x ∈ ΞBCTr c([AB(QBC)]AB (x)) ⊆ Tr c([AB(PBC)]AB (x)) From Lemma 4
∀ y ∈ ΞIBPTr c([AB(QBC)]y) ⊆ Tr c([AB(PBC)]y) AB is surjective

∴ AB(PBC) ⊑IBP AB(QBC).
PIBP ⊑IBP QIBP ⇒ JPIBPK ⊑BC JQIBPK is similar.
Consider arbitrary PIBP, QIBP ∈ TIBP and assume PIBP ⊑IBP QIBP

∀ x ∈ ΞIBPTr c([QIBP]x) ⊆ Tr c([PIBP]x) Defn. of general refinement
∀ x ∈ ΞIBPTr c(J[QIBP]x KB) ⊆ Tr c(J[PIBP]x KB) From Lemma 3
∀ x ∈ ΞIBPTr c([JQIBPKB]JxKB) ⊆ Tr c([JPIBPKB]JxKB) From Lemma 4
∀ y ∈ ΞBCTr c([JQIBPKB]y)) ⊆ Tr c([JPIBPKB]y)) J KB is surjective

We must prove JAB()KB ⊑BC idBC and idIBP ⊑IBP AB(J KB) but actually
we prove the stronger results JAB()KB = idBC and idIBP = AB(J KB).

To do this we prove PIBP = AB(JPIBPKB), that is to say these LTSs are
isomorphic. There is clearly a bijective mapping from nodes to nodes as J KB
first adds some new nodes and AB removes them. This bijection between the
nodes maps start node to start node.

That there is a bijection between the transitions can be seen by case
analysis:

Case 1. the tx?rx! loop is first added by J KB and removed by AB .
Case 2. the tx?rx? loop and ax? replace an b action by application ofJ KB and this is then reversed by AB .
Case 3. the tx!ax! transitions replace an b action by application of J KB

and this is then reversed by AB .
From these three cases we have idIBP = AB(J KB).
Applying J KB to above gives J KB = JAB(J KB)KB . Then because we

restrict the low-level to be in the range of J KB we have JAB()KB = idBC. •

5.3. Vertical refinement failure—and success

In this section we look at two examples using the two vertical refinements
introduced in the previous sections.

28

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5.3.1. Using ⊑B

We take the vertical refinement ⊑B , defining how to refine IBPs into
broadcast processes, as being correct by construction. But, we find that
we cannot expand IBP to all processes as defined by CSP/CCS etc. as is
illustrated by returning to the example from a previous section (Fig. 5) and
reproduced, as IBP processes, here in Fig. 9. Recall that we described Rob
as non-deterministic (even though according to the usual process algebra
definitions it is not recognised as such) and here our “implementation” on a
broadcast layer will also have its version JRobKB of Rob as non-deterministic,
as we can see in Fig. 10,6 where JRobKB is a non-deterministic broadcast
process. In particular which button, b1 or b2, it tries to push first is not
determined, hence when offered both buttons by VM its behaviour is non-
deterministic.

Process RobotL in the BC layer is a refinement of JRobKB that will try
button b1 only, and this refinement is possible because in broadcast commu-
nication this move is a removal of non-determinism. Note, then, that we have
a vertical refinement between Rob in IBP and RobotL in BC. No such refine-
ment relation exists between Rob in PA and RobotL in BC because although
RobotH ⊑B RobotL we know that Rob 6⊑PA RobotH. This lack happens when-
ever the notion of determinism in a layer differs from our notion Gen-Det,
based on Milner’s understanding of determinism.

VM

s ◦
◦

◦
c

b1
b2

d1

d2

Rob

s ◦
◦

◦

e

e
c

b1
b2

d1

d2

Figure 9: Are VM and Rob deterministic?

5.3.2. Using ⊑v

Let us assume we wish to stepwise refine our model to formalise the design
decision that the vending machine only has two cups and that when out of

6So as to keep the lower level diagrams small we have expanded only the high-level
events b1! and b2!. The expansion of the other events is obvious from Fig. 8.

29

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

s ◦
◦

◦ JRobKB

◦ e

◦ e

c
tb1!

rb1?
tb2!

rb2?

ab1?

ab2?

d1

d2

s ◦ ◦

◦

e

e

c b1
b2

d1

d2

⊑BC

6⊑PA RobotH

s ◦
Rob

◦ ec b1 d1

RobotL

s ◦

◦ ◦ e

c

tb1!
rb1?

ab1? d1

Figure 10: JRobKB ⊑BC RobotL but Rob 6⊑PA RobotH and MIBP (Rob) ⊑IBP RobotH

cups it responds to further requests with error events that are broadcast not
handshake events.

First the vending machine VM in Fig. 9 is defined with handshake inter-
actions. This can be vertically refined into an entity with broadcast interac-
tions, VMv in Fig. 11.

VMvs ◦ ◦
◦

◦

◦

◦

◦

◦
tc? ac! tb1?

tb2?

ab1!

ab2!

td1?

td2?

ad1!

ad2!

Figure 11: (Fig. 9) VM ⊑v VMv

Secondly we add an error event, the “return of the coin”. This event is to
occur if a button is pushed but the vending machine has none of the required
drink left. But since we do not wish this error event to be blocked by a user
(robot), it must be under local control. Thus the return of the coin event is
a broadcast event cr!.

This step is formalised by a δ-refinement, as discussed in Section 5.1, to
give VMvd in Fig. 12.

A more compact way to view this process is VMb in Fig. 13 where the
original handshake events are shown with the newly visible broadcast event
cr!. We could formalise this by defining LTS with four types of event but

30

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

VMvds ◦ ◦
◦

◦

◦

◦

◦

◦
tc? ac! tb1?

tb2?

ab1!

ab2!

cr!

cr!

td1?

td2?

ad1!

ad2!

Figure 12: (Fig. 11) VMv ⊑BCδ{cr} VMvd

here we simply view VMb as “sugar” for VMvd in Fig. 12 and leave the reader
to expand the dashed lines in Fig. 13.

VMbs ◦
◦

◦
c

b1
b2

d1

cr!

cr!

d2

Figure 13: (Fig. 9) VM ⊑BCδ{cr} VMb

Having made visible the return of coin event we now have an entity that
is non-deterministic, as you can never tell if the result of pushing a button
will be to dispense a drink or return the coin. More technically, the events
cr! and td2? both leave the same node.

We can easily refine this specification to model a vending machine which
can vend a total of two drinks only, i.e. d1 and then d2 or d2 and then d1,
thus giving Fig. 14.

6. Conclusions

We have seen how considering a system as made up from contexts for
entities and observations of the behaviour of those entities in those contexts
can lead to insights, as does consideration of the interfaces between those
three elements of a system.

Also, refinement as presented in this paper is parameterised on the set
of contexts an entity can be placed in and on the observations that can be

31

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

VM2s ◦
◦

◦
c

b1
b2

◦ ◦ ◦
◦

c b1
b2cr!

◦d1

d2

◦
◦
◦c

b1
b2

cr!

◦
d2

d1

◦
◦

◦
c

b1
b2

cr!

cr!

Figure 14: (Fig. 12) VMvd ⊑BC VM2

made by a user of the system thus formed. Since refinement turns out to
have sets of contexts Ξ as a parameter, by changing Ξ we were able to model
different types of interaction [29].

We continued the story with a generalisation, which we call vertical re-
finement, of what, in the literature, has been called action refinement or
non-atomic refinement. The traditional view of refinement is that it all hap-
pens in one layer or logical theory. Vertical refinement allows movement
(i.e. design steps) between different layers, where each layer may contain
different styles of event-interaction, or may introduce new events or states.
As an example we defined vertical refinement from a “handshake layer” to a
“broadcast layer”, and elsewhere (e.g. [27, 28]) we have shown how the design
step of adding error handling or new events can be described formally. This
formalisation between handshake and broadcast layers brings out different
assumptions made about determinism and this issue has had to be addressed
too.

Acknowledgements

We would like to thank the many people who have discussed the ideas
presented in this paper over many years—you know who you are! In particu-
lar, though, we give thanks to Lindsay Groves, John Derrick, Jim Woodcock,
Jim Davies, Eerke Boiten and Mark Utting.

References

[1] Luca Alfaro and Thomas A. Henzinger. Interface automata. In Pro-
ceedings of the Ninth Annual Symposium on Foundations of Software
Engineering (FSE), pages 109–120. ACM Press, 2001.

32

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[2] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts
in Theoretical Computer Science 18, 1990.

[3] Christie Bolton and Jim Davies. A singleton failures semantics for Com-
municating Sequential Processes. Research Report PRG-RR-01-11, Ox-
ford University Computing Laboratory, 2001.

[4] E. Brinksma and G. Scollo. Formal notions of implementation and con-
formance in LOTOS. Technical Report INF-86-13, Twente University
of Technology, Department of Informatics, Enschede, The Netherlands,
1986.

[5] R. de Nicola and M Hennessy. Testing equivalences for processes. The-
oretical Computer Science, 34, 84.

[6] John Derrick and Eerke Boiten. Non-atomic refinement in Z. In J.M.
Wing, J.C.P. Woodcock, and J. Davies, editors, FM’99 World Congress
on Formal Methods in the Development of Computing Systems, volume
1708 of Lecture Notes in Computer Science, pages 1477–1496, Berlin,
September 1999. Springer.

[7] John Derrick and Eerke Boiten. Relational concurrent refinement. For-
mal Aspects of Computing, 15(2 - 3):182–214, 2003.

[8] Steve Dunne and Stacey Conroy. Process refinement in B. In Helen
Treharne, Steve King, Martin C. Henson, and Steve Schneider, editors,
ZB 2005: Formal Specification and Development in Z and B, 4th Inter-
national Conference of B and Z Users, volume 3455 of Lecture Notes in
Computer Science, pages 45–64. Springer, 2005.

[9] C. Ene and T. Muntean. Expressiveness of Point-to-Point versus Broad-
cast Communications. In Fundamentals of Computation Theory, 12th
International Symposium FCT’99, volume 1684 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[10] C. Ene and T. Muntean. Testing Theories for Broadcasting Processes.
Submitted for publication, http://www.esil.univ-mrs.fr/, 2004.

[11] Clemens Fischer and Heike Wehrheim. Behavioural subtyping relations
for object-oriented formalisms. Lecture Notes in Computer Science,
1816:469–483, 2000.

33

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[12] R. Gorrieri and A. Rensink. Action refinement. In Jan A. Bergstra,
Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra,
pages 1047–1147. Elsevier, 2001.

[13] M Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[14] C. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice
Hall International Series in Computer Science, 1998.

[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall In-
ternational Series in Computer Science, 1985.

[16] R. Kumar and M. Heymann. Masked prioritized synchronization for
interaction and control of discrete event systems. IEEE Transactions
on Automatic Control, 45(11):1970–1982, Nov 2000.

[17] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Interface in-
put/output automata. In International Symposium on Formal Methods,
volume 4085 of LNCS, 2006.

[18] N. Lynch and R. Segala. A Comparison of Simulation Techniques and
Algebraic Techniques for Verifying Concurrent Systems. Formal Aspects
of Computing Journal, 7(3):231–265, 1995.

[19] N. Lynch and M. Tuttle. An introduction to input/output automata.
CWI-Quarterly, pages 2(3):219–246, 1989.

[20] R. Milner. Communication and Concurrency. Prentice-Hall Interna-
tional, 1989.

[21] R. De Nicola and M Hennessy. CCS without τs. LNCS 250, pages
138–151, 92.

[22] K. V. S. Prasad. A calculus of value broadcasts. In Parallel Architectures
and Languages Europe, pages 391–402, 1993.

[23] K. V. S. Prasad. A calculus of broadcasting systems. Science of Com-
puter Programing, 25((2-3)):285–327, 1995.

[24] S. Reeves and D. Streader. Atomic Components. Technical report, Uni-
versity of Waikato, http://hdl.handle.net/10289/1002, 2004. Computer
Science Technical Report 01/2004, http://www.cs.waikato.ac.nz/˜dstr.

34

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[25] S. Reeves and D. Streader. Constructing programs or processes. Journal
of Universal Computer Science, 11(12):2034–2045, December 2005.

[26] S. Reeves and D. Streader. Liberalising Event B without changing it.
Technical report, University of Waikato, 2006. Computer Science Work-
ing Paper Series 07/2006, ISSN 1170-487X.

[27] S. Reeves and D. Streader. Feature refinement. Fifth IEEE International
Conference on Software Engineering and Formal Methods SEFM, pages
371–380, 2007.

[28] S. Reeves and D. Streader. Generics tools via general refinement. In
Proceedings of TTSS, Electronic Notes in Theoretical Computer Science,
2007.

[29] Steve Reeves and David Streader. Comparison of data and process re-
finement. In J.C.P. Woodcock and J.S. Dong, editors, Proceedings of
ICFEM 2003, number 2885 in Lecture Notes in Computer Science, pages
266–285. Springer-Verlag, 2003.

[30] Steve Reeves and David Streader. A Robust Semantics Hides Fewer
Errors. In Ana Cavalcanti and Dennis Dams, editors, FM2009: Formal
Methods, volume 5850 of LNCS, pages 499–515. Springer-Verlag, 2009.

[31] Arend Rensink and Roberto Gorrieri. Vertical implementation. Infor-
mation and Computation, 170:95–133, 2001. Extended version of “Ver-
tical Bisimulation” (TAPSOFT ’97). Full report version: Hildesheimer
Informatik-Bericht 9/98, University of Hildesheim.

[32] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall
International Series in Computer Science, 1997.

[33] R. Segala. A Process Algebraic View of I/O Automata. Technical Report
MIT/LCS/TR-557, Massachusetts Institute of Technology, 1992.

[34] P. Taylor. Practical Foundations of Mathematics. Cambridge University
Press, 1999. Cambridge studies in advanced mathematics 59.

[35] D. Tretmans. A Formal Approach to Conformance Testing. PhD thesis,
Faculteit der Informatica, 1992.

35

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[36] Frits W. Vaandrager. On the relationship between process algebra and
input/output automata. In Logic in Computer Science, pages 387–398,
1991.

[37] A. Valmari and M. Tienari. An improved failure equivalence for finite-
state systems with a reduction algorithm. In Protocol Specification,
Testing and Verification, IFIP XI. North-Holland, 1991.

[38] Antti Valmari and Martti Tienari. Compositional Failure-based Seman-
tics Models for Basic LOTOS. Formal Aspects of Computing, 7(4):440–
468, 1995.

[39] R. J. van Glabbeek. Linear Time-Branching Time Spectrum I. In CON-
CUR ‘90 Theories of Concurrency: Unification and Extension, LNCS
458, pages 278–297. Springer-Verlag, 1990.

[40] R. L. van Glabbeek. The linear time - branching time spectrum I. the
semantics of concrete sequential processes. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra, chapter 1, pages
3–99. Elsevier Science, Amsterdam, The Netherlands, 2001.

Appendix

The basics of operational semantics

In this section we gather together some standard definitions.
We are interested in modelling entities that have been considered as either

state-based or event-based. By defining mappings between the state-based
operational semantics (relation-based) and the event-based operational se-
mantics (labelled transition system-based) we are free to switch how we view
our entities. This correspondence rests upon the usual and simple idea that
transitions can be represented as relations (we often see this in finite-state
automaton accounts, where the diagrams use transitions and the text uses
transition relations).

We assume a universe containing a set of names Names that will be used
to give names to operations in a state-based system and names to events in
an event-based system. A special event τ is introduced that models an event
that can neither be seen nor blocked.

36

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

First the state-based operational semantics, a relation-based semantics.
Interacting entities can be given a state-based semantics by using named
relations (which share state and relate the state before an operation takes
place to the state after an operation takes place).

Definition 11. Let ΣA be a state space and initA a start state. Named partial
relational (NPR) semantics A is given by A , (ΣA, initA,NprA) where initA ∈
ΣA and we have a set of named partial relations

NprA ⊆ {(o,R) | o ∈ Names ∪ τ ∧ Ro ⊆ ΣA × ΣA}

Let Op(A) , {o | ∃R.(o,R) ∈ NA} be the set of operation names of NPR
semantics A. •

Now we move to event-based operational semantics, a labelled transition
system-based semantics. Interacting entities can given an event-based se-
mantics (by labelling a state transition with an event) for process algebras
CSP [15, 32], CCS [20], ACP [2], for broadcast systems IOA [19], CBS [23],
for abstract data types [3] and for objects [7].

The observable event a can be performed only when the process is exe-
cuted in a context that includes a parallel process that is also ready to execute
a. It is only events that interact at an interface; there is no shared state.
But, LTS are open to a variety of interpretations. To define the semantics
of entities unambiguously they can be represented by equivalence classes of
LTS, where the choice of equivalence relation more accurately captures what
the LTS should be interpreted as, e.g. as a handshake entity or as an ADT
and so on. In handshake processes the execution of events is not under lo-
cal (their own) control and they are blocked from execution whenever the
context they are in is not ready to execute them.

Definition 12. Let NA be a finite set of nodes and sA the start node. Labelled
transition system (LTS) A is given by A , (NA, sA,TA) where sA ∈ NA and
we have a set of transitions

TA ⊆ {(n, a,m) | n,m ∈ NA ∧ a ∈ Names ∪ τ}

Let α(A) , {a | ∃ x , y .(x , a, y) ∈ TA} be the alphabet of the LTS A. We write

x
a−→y for (x , a, y) ∈ TA where A is obvious from context and refer to event

a as being enabled in state x . We write n
a−→ for ∃m.(n, a,m) ∈ TA. •

37

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

To take account of τ actions being unobservable we define the observa-
tional semantics =⇒. One small point to notice is that when we consider
event-based models, where we are interested in a testing semantics where
entities and components are composed by parallel composition, we need se-
mantics no finer than failures semantics. Consequently our observational
semantics is free to remove all non-looping τ actions (see [24] for details).
The removal of τ loops is treated in various different ways in the literature.
CSP [32] takes the view that they must be removed and hence models them
as having divergent behaviour. CCS [20] views choice as fair and hence loops
can at most cause a delay and as CCS is untimed they can safely be removed.
Finally NDFD and CFFD [37, 38] treat choice as unfair but, unlike CSP, do
not model such loops as having divergent behaviour (see [24] for more de-
tails). Here our observational semantics is based on the CCS model as this is
the most appropriate for broadcast operations. But Section 2.2 is implicitly
based upon the unfair interpretation of divergence, so we have followed the
view of NDFD and the operational semantics from [24].

Definition 13. =⇒o is a predicate where:

s1
τ

=⇒sn
def
= s0

τ−→s1, s1
τ−→s2, . . . sn−1

τ−→sn ∨ s1 = sn

n
a

=⇒om
def
= n

τ
=⇒n ′, n ′ a−→m ′,m ′ τ

=⇒m

Traces: Tr(A)
def
= {ρ | ∃m.sA

ρ
=⇒om}

Complete traces: Tr c(A)
def
= {ρ | sA

ρ
=⇒on ∧ (π(n) = ∅ ∨ | ρ |= ∞)}7

To make the point that LTS and NPR are essentially the same, we will
define a translation lts from relation-based semantics to LTS and its in-
verse npr . As we previously stated both operational semantics are open to
many different interpretations so we view them as giving just part of the
semantic story (completed by giving contexts and observations). By defin-
ing the translation between state-based systems and event-based systems on
the operational semantics we have not restricted ourselves to a particular
interpretation of the operational semantics.

Definition 14.

lts((ΣA, initA,NprA)) , (NA, sA,TA)

7The function π maps a node to the set of nodes next reachable from it.

38

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where NA , ΣA, sA , initA and

TA , {(x , n, y) | (n,R) ∈ NprA ∧ (x , y) ∈ R}
Also:

npr((NA, sA,TA)) , (ΣA, initA,NprA)

where ΣA , NA, initA , sA and

NprA , {(n,R) | x n−→y ∈ TA ⇔ (x , y) ∈ R}
•

Parallel composition is defined to represent the point-to-point private
communication between concurrent entities.

Definition 15. Parallel composition of A = (NA, sA,TA) and B = (NB, sB,TB):
for S ⊆ Names, NA‖SB , NA × NB, sA‖SB = (sA, sB) and TA‖SB is defined as
follows.

Let x ∈ Names ∪ τ :
n

x−→Al , x 6∈ S

(n,m)
x−→A‖SB(l ,m)

n
x−→Bl , x 6∈ S

(m, n)
x−→A‖SB(m, l)

n
a−→Al ,m

a−→Bk , a ∈ S

(n,m)
τ−→A‖SB(l , k)

A ‖S B , (NA‖SB, sA‖SB,TA‖SB) •

Note that our definition of the entity/context interface requires synchro-
nisation on Act , all possible events in the entity.

τ–Abstraction and δ–Abstraction

In process algebra, events can be abstracted from a process in two distinct
ways. In CCS these ways are restriction and hiding. Here we will use the
ACP special events δ and τ to define the two distinct ways δ–abstraction and
τ–abstraction to abstract events.

Definition 16. δ–abstraction and τ–abstraction. Given LTS A = (NA, sA,TA)
and Del ⊆ Names ∪Names we have:

AδDel , (NA, sA,TAδDel
)

where, for all x ∈ Names ∪ Names, TAδDel
is defined by:

n
x−→Al , x 6∈ Del

n
x−→AδDel

l

39

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Let Hid ⊆ Names ∪ Names and

AτHid , Abs(NA, sA,TAτHid
)

where for all x ∈ Names ∪Names, TAτHid
is defined by:

n
x−→Al , x 6∈ Hid

n
x−→AτHid

l

n
x−→Al , x ∈ Hid

n
τ−→AτHid

l

40

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Research Highlights :

• We show how considering interfaces of entities,
contexts and users gives clarity

• We show how it relates to characterisations of
systems via a notion of testing

• We give examples of five refinement relations as
instances of a general model

• An example is refinement between broadcast and
interactive branching programs

• Refinement moves from abstract to concrete,
preserving certain valuable guarantees

