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Abstract

This thesis is devoted to investigate the capability of the Superposition
Method for obtaining the transient response of plates and the natural frequencies
of thin doubly curved shallow shells. The Superposition Method gives accurate

results with only a few terms and has proved to be efficient for both cases.

To investigate the transient response, all supports of a thin simply supported
rectangular plate under self weight are suddenly removed. The resulting motion
comprises a combination of the natural modes of a completely free plate. The
modal superposition method is used for determining the transient response. The
modes and natural frequencies of the plate are obtained using the Superposition
Method and the Rayleigh-Ritz method with the ordinary and degenerated free-free
beam functions. The W-W algorithm is then used to delimit the natural
frequencies from the frequency equation derived in a determinantal form. There is
an excellent agreement between the results from both approaches but the modes
based on the Superposition Method result in more accurate values with fewer
terms, and have shown faster convergence. The results from the Superposition
Method may serve as benchmarks for the transient response of completely free
plates. The transient response is found to be dominated by the lower modes. The
centre of vibration is shifted parallel from the original xy plane by the distance of
the first mode of the plate (a rigid body translation) multiplied by the first

transient coefficient.

In the investigation of doubly curved shells, the natural frequency
parameters of thin shallow shells with three different sets of boundary conditions
were obtained for several different curvature ratios and two aspect ratios. The
solutions to the building blocks, which are subject to simply-supported out-of-
plane conditions and shear diaphragm in-plane conditions at all four edges, are
represented by series of sine and cosine functions, generated using Galerkin’s
method since an exact solution is not available for the doubly curved shells. Once
displacement functions for the building blocks are obtained, the prescribed

boundary conditions of the actual shell under investigation are then satisfied using



the Superposition Method. The rate of convergence is found to be excellent and
the results agree well with published results obtained using the Ritz method and
those obtained using a Finite Element package, Abaqus. The computations show
that it is possible to obtain the first 12 natural frequency parameters of the shallow

shells on the rectangular planform with a rapid convergence rate.
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INTRODUCTION

1.1 Vibration of plates and shells

Thin plates and shells are two of the most common components in
engineering machines and structures. Examples of applications include building
walls, large-span roofs, turbine disks, pressure vessels, and airplane wings. In
general, shell structures are more advantageous in engineering applications than
plates in term of resistance to load. The engineering components must resist not
only static loads but also dynamic loads. For instance, buildings must be designed
to withstand dynamic forces such as earthquake excitations. Earthquake forces
usually have low excitation frequency range. However, buildings must also be
designed to minimise noise related problems. This means the structures must also
be able to withstand acoustic excitations which extend to very high frequency
range. Such engineering structures are also subjected to transient forces. One
example is an airplane when it is exposed to gust. In engineering design, it is,
therefore, important to use a method that is accurate and efficient for dynamic
analysis including transient and steady state analyses of plates and shells.

Much research has been conducted into plate behaviour, using a wide range
of methods. An excellent monograph of the early literature relating to vibration
analysis of plates was published by Leissa [1]. Among the methods utilised for
plate vibration analysis, it is known that the Superposition Method developed by
Gorman is very efficient and accurate for a range of geometric shapes. The
Superposition Method has been successfully applied for analysis of out-of-plane
vibrations of a plate having classical boundary conditions, such as, clamped, free
and cantilevered [2], and more complicated systems, such as elastic supported,
orthotropic, and Mindlin plates [3-7]. The Superposition Method has also been
utilised to analyse in-plane vibrations of plates [8,9]. In many cases the results
from the Superposition Method are the benchmarks for the natural frequencies.

Recently, the Superposition Method was shown to be applicable for the



determination of steady state response of plates [10], but until the commencement
of this thesis, there has not been any publications dealing with the application of

the Superposition Method for transient vibration analysis.

The Superposition Method mentioned above solves the plate problems using
subsystems of the plates that have an exact solution, which are referred to as
building blocks. However, Gorman and Wing obtained solutions for the free
vibration of the fully clamped orthotropic and Mindlin plates using approximate
modes for the building blocks, in a procedure they call the Superposition-Galerkin
method [11]. Gorman also used the same method for the free vibration analysis of

completely free orthotropic and Mindlin plates [12].

It is proven that the Superposition Method is very useful and efficient in
solving various plate problems but the method is not limited only to plates. Yu,
Cleghorn and Fenton extended the application of Gorman’s Superposition Method
to open circular cylindrical shells and investigated the analytical solutions for the

free vibration of the shells with various boundary conditions [13].

The research about shells has a history as long as that of plates. An excellent
review of the literature relating to vibration analysis of shells was also published
by Leissa [14]. More recently, literature reviews on the vibration behaviour of
shallow shells of various shapes and boundary conditions were published by Qatu
[15], and Liew, Lim and Kitipornchai [16]. Although numerous publications that
deal with vibration analyses of cylindrical and spherical shallow shells using
various analytical and numerical methods, such as the Ritz method, the Finite
Element Method and the Finite Strip Method are available, there are no articles on
the vibration of shallow shells using Gorman’s Superposition Method except for

the paper on open cylindrical shells [13].

Research into the analysis of the transient response of plates and shells has
spanned several decades. In one of the earliest papers on this subject, Forsyth and
Warburton [17] predicted the transient response of cantilever plates to an impulse
load using the natural frequencies and mode shapes obtained by applying the

Rayleigh method. Craggs [18] solved the transient problems of simply supported,
3



clamped and cantilever plates using the transition matrix method. Nagaya [19]
investigated the transient response of a continuous plate on elastic supports to an
impact load using the Laplace transform method. The Finite Element Method was
used by Rock and Hinton [20] to obtain the transient response of both simply
supported thick and thin plates. Coleby and Mazumdar [21] analysed the large
amplitude transient response of an elliptical plate using the Berger method. Celep
[22] presented the transient response of a thin elastic plate supported on a
foundation that reacts in compression only, where the plate displacement is
approximated by the product of vibration modes of the free beam. Nath and
Shukala [23] have carried out the non-linear transient analysis of moderately thick
laminated composite plates with different combinations of clamped, simply
supported, and free boundary conditions based on the Chebyshev approximation.
In a recent publication, Abrate [24] examined the transient response of beams,
plates and shells to certain pulse type loads using the modal expansion technique.

A review of literature at the commencement of this thesis, as presented
above, indicated two potential areas for research, namely the applicability of the
Superposition Method for obtaining natural frequencies of doubly curved shells

and the effectiveness of this approach for solving transient vibration problems.

1.2 Research Questions

The general objectives of the study are to investigate the applicability of the
Superposition Method for the transient response of plates and the free vibration
analysis of doubly curved shells. The previous investigations [25-27] have shown
that the Superposition Method has generally yielded results for frequencies and
modes that are more accurate than those obtained using other competing methods.
This observation has led to the question, whether transient response solutions
obtained using modes generated from the Superposition Method would be

significantly more accurate than those obtained using other methods.



Moreover, as mentioned, the applicability of the Superposition Method to
doubly curved shells has not yet been explored. If the rapid rate of convergency
and high level of accuracy of this method are also established for the doubly
curved shells, it would prove to be a major contribution in the field of vibration of
continuous systems. For doubly curved shells, exact solutions for natural
frequencies and modes are not available. Therefore, the second research question
is whether it is possible to use the Superposition Method, in conjunction with a
suitable approximate method to compute the natural frequencies and modes of

doubly curved shells of various boundary conditions.

1.3 Thesis Outline

In Chapter 2, it will be shown that the Superposition Method can also be
used to accurately and efficiently determine the transient response of an
undamped plate undergoing flexural vibration. The case considered is that the
transient response of a thin rectangular plate with all edges simply supported,
subject to an initial displacement corresponding to that of a plate under uniform
load distribution, when all supports are suddenly removed. The natural
frequencies and mode shapes of the plates used in this study are obtained by the
Superposition Method. The results are compared with the response computed
based on the natural frequencies and mode shapes given by the Rayleigh-Ritz
method with the ordinary and degenerated free-free beam functions. This study,
already reported in a recent paper [28] complements the recent publication on
steady state response by the Superposition Method [10].

In Chapter 3, the applicability of the Superposition Method for the free
vibration analysis of doubly curved shallow shells is investigated, and some
numerical data for the natural frequencies of doubly curved thin shallow shells are
presented for three different sets of boundary conditions. The procedure presented
in this thesis and the Matlab code developed may be used to generate the solutions
for many different combinations of boundary conditions but for brevity, results for
only three cases are presented. In contrast to the application of the Superposition

5



Method for plates and cylindrical shells, for doubly curved shells in general, the
Superposition Method requires approximate modes of the building blocks
generated from other methods, such as Galerkin’s method. The work shows that
when the approximate modes of shells under one set of boundary conditions are
known then the Superposition Method may be used to find the natural frequencies

of shells subjected to other boundary conditions.



2. Chapter I

Transient vibration analysis of
a completely free plate using modes obtained

by Gorman’s Superposition Method



Chapter Il

Transient vibration analysis of a completely
free plate using modes obtained by Gorman’s
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Superposition Method

Nomenclature

plate dimension in x direction

plate dimension in y direction

plate flexural rigidity, (En®/12)/(1-v%)
elastic modulus of the material
thickness of plate

transient response of plate

plate lateral deflection

plate spatial co-ordinates

wa®\[p/D

dimensionless plate spatial co-ordinates y/b
Poisson’s ratio of material

2-v

dimensionless plate spatial co-ordinates x/a
density of plate

aspect ratio of plate b/a

radian frequency of vibration



2.1 Introduction

In this chapter, it will be shown that the Superposition Method can also be
applied accurately and efficiently to determine the transient response of an
undamped plate undergoing flexural vibration. A thin rectangular plate whose
edges are all simply supported is given an initial displacement corresponding to
uniform load distribution, namely self weight. The transient response of the plate
is investigated when all its supports are suddenly removed. The plate, after being
released from its supports, is treated as a completely free plate. The natural
frequencies and mode shapes of the plates used in this study are obtained by the
Superposition Method. The results are compared with the response computed
based on the natural frequencies and mode shapes given by the Rayleigh-Ritz
method with the ordinary and degenerated free-free beam functions. The response
generated from the Superposition Method agrees closely with the Rayleigh-Ritz
results but it is noted that the Superposition Method converges faster. For the
same matrix size, the Superposition Method gives more accurate results and it is
believed that the results presented may be regarded as benchmarks for future

comparisons.

2.2 Procedure

2.2.1 Natural frequencies and modes of vibration

Consider the motion of the completely free rectangular plate with the
dimensions a and b as shown in Fig. 2. 1. The natural frequencies and modes will
be calculated using both the variational method based on an energy functional and
the partial differential equation, i.e. the Rayleigh-Ritz method and the
Superposition Method. They are described in detail, in references [1,29] and [2,7]

respectively.



v

Fig. 2. 1 A completely free plate

2.2.2 The Rayleigh-Ritz Method

For the Rayleigh-Ritz method, it is assumed that the out-of-plane displacement,

W(X, y), is taken in the form of the following series,

kK k
W(x,y) = Z GrinXm ()Y, () mn = 1,23k (2.1)

m n

where Xn(x) is ordinary free-free beam functions, which are expressed below [1].

X, () =1 (2.2)

" 2x
,(x)=1-— — (2.3)

x 1 x 1
Xn(x) = cosy; (a - E) + 6,,, coshy, (E — E) (m = 3,5,7,...) (24)

and

) x 1 ) x 1
Xim(x) = sinvy, (E - E) + 6, sinhy, (E - E) (m = 4,6,8,...) (2.5

10



where 6,,,;, = —sin(y;/2)/sinh(y,/2) and 0,,,, = sin(y,/2)/sinh(y,/2).
The ordinary beam functions satisfy all the boundary conditions of a free-free
beam and are actually the natural modes of free-free beams. The values of y; and

v2 are obtained as roots of following Eq. (2.6) and Eq. (2.7) respectively.

tan(y,/2) + tanh(y,/2) =0 (2.6)
tan(y,/2) — tanh(y,/2) =0 (2.7)

Yn(y) is given by simply changing x to y and a to b in above equations.

Using the Rayleigh-Ritz method brings a set of equations expressed as [29]

Vinax 2 0¥ max
- =0 2.8
ac,  “ Tag, (28)

where w is a natural frequency of the plate, Viyax and @?%max are maximum

potential energy and maximum Kkinetic energy function respectively, which are

given by
. _Djajb 62W2+ 62W2+2 ;wow azwzdd
max 20y Jo [\ 0x? dy? YV ox? dy? = 0xdy xey
(2.9)
and
,Dh a rb
Yax = 7] J W2dxdy =0 (2.10)
0 Y0

By inserting Egs. (2.1), (2.9) and (2.10) into Eq. (2.8), one obtains a set of

homogeneous linear algebraic equations in G;j, expressed in the following matrix

form:
[KI{G} — w?[M]{G} =0 (2.11)

where
K _ aZVmax d M _ azlpmax 2 12
786,06, " T 86,06, (2.12)

11



The natural frequencies are determined by equating the determinant of the system
to zero. The coefficients, G’s, are given as the eigenvector corresponding to the

natural frequency.

However, it has been noted that the ordinary free-free beam functions do not
completely satisfy the free edge conditions of plate. The use of these functions to
form the displacement of plates yields some residual moments and shear force at
edges, whearas both should vanish at the extremities. Because of the above fact,
the system is over-constrained, and hence, the calculated natural frequencies using

the Rayleigh-Ritz method will converge to inaccurate values.

To overcome the above problem, Bassily and Dickinson introduced the
concept of degenerated beam functions which effectively relaxes the end
conditions [30]. This relaxation can be achieved by simply floating 6 in Eqgs (2.4)
and (2.5). The @ is replaced by a coefficient, which will be determined during the

usual minimisation procedure in the Rayleigh-Ritz method.

2.2.3 The Superposition Method

Determining the natural frequencies and mode shapes of the completely free
plates by using the Superposition Method is described in detail by Gorman [2,7].
In this study, the Superposition Method is utilised with the W-W algorithm [31-
33] to determine the natural frequencies to ensure that coincident roots of the

frequency equation are not missed as explained later.

The partial differential equation governing the out-of-plane vibration of
rectangular plates, may be expressed in non-dimensional form using
dimensionless coordinates & and 7, where & = x/a, n = y/b,. The equation is written

as

12



*W (&) LW, (0*W (&)
—gpr T2 G an O {—654

—-A4VV(€,H)}== 0 (2.13)
where 42 = wa?,/ph/D and @ is the plate aspect ratio b/a. (2.14)
The bending moment distributed along the edges perpendicular to the & axis and

the # axis are expressed as follows

LM _ [0*W(Em) *W(,m)
D ——[a—nz”q’za—eﬂ 19
and
aM(n)
D
__[wEm
- 7
v 0*W (¢, n)
+ET (2.16)

The vertical edge reaction along the edges perpendicular to the & axis and the #

axis are expressed as follows

Ve  [PwEn) |, W)
e S e e
and
a’?v(m)  [PW(E ) v PW(En)
D —‘[ o6 +awl 19)

In the Superposition Method, the plate model is considered as consisting of
four plate problems which have exact solutions [2,7], which are referred to as the
building blocks as shown in Fig. 2. 2. The two small adjacent circles depict slip-
shear condition, which is that there is no rotation normal to the edge and no
transverse edge reaction. The rotation is applied on a driving edge of each
building block. The displacement of the original plate, W(x, y), is expressed as the
sum of the displacement of these building blocks (Eq. (2.19)).

13
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Fig. 2. 2 Building blocks used to analyse the completely free plate

WEn) = W+ W, + W, + W, (2.19)

The displacements of the first building block is taken to be in the form of the Lévy

type solution,

k
Wa(Em = ) ¥p(n) cosmnt (2:20)

m:OJl...

Substituting Eq. 2.20 into Eq. 2.13 one obtains

d*Y,, ()
dn*

2 dzym(n)
dn?

+ 20?(mmn) + o*{(mm)* - 24}, () =0 (2.21)

The solution for Eq. 2.21 depends on whether the eigenvalue A° is greater than or

less than (mz)°. The typical solutions that satisfy Eq. 2.21 are

for A*>(mn)?

Y,.(n) = A, sinh B,,n + B, cosh 8,,n + C,,, siny,,n + D, oS YN (2.22)

and, for A*<(mn)?,

14



Y,(m) = A, sinh B,n + B, cosh B,,n + C,, sinh y,,n + Dy, coshy,,n (2.23)

where B, = ®/A? + (mm)?
and y,, = ®/A%2 — (mm)? or y,,, = @/ (mm)? — A2, whichever is real.

Here, An, Bm, Ci, and Dy, are constants to be determined.

Since there is no edge rotation and transverse edge reaction at the edge » =
0, sine and hyperbolic sine terms will be eliminated. The other two coefficients
are determined by enforcing the boundary condition of zero vertical edge reaction
and the equilibrium of edge rotation along the edge » = 1. The edge rotation is

expressed as following Fourier expansion

W (§,) _

Rm(f) = an

E,, cosmmé (2.24)
1o

1l
(=)

m

The analytical function Yn(7) is readily determined. The solutions for Y () are

expressed in terms of the coefficients Ep, [7] as

for A% > (mr)?
Y (M) = Ep(Om11 cosh Bn + 0,12 COS Y1) (2.25)
where 0,11 = 1/{(Bm — ZZ1Vm/ZZ,) sinh B, }
and 0,15 = 221 /{225 (B — ZZ1¥m/ZZ5) Sin Y }
with ZZ; = —Bn{BZ — v*®*(mn)?}
and ZZ, = yp{y3 + v ®*(mn)?}

and, for /2 < (mn)?
Ym(n) = Em(9m21 COSh .an + 9m22 COSh an) (2-26)

where 6,21 = 1/{(Bm — ZZ1Ym/ZZ>) sinh i}
and 9m22 = ZZl/{ZZZ(ﬁm + ZZle/ZZZ) sinh Vm}

with ZZ, = —Bn{B2 — v*®? (mn)?}
and ZZ, = yp{y2 — v ®*(mn)?}

15



Next, the analytical function Y,(&) for the second building block can be deduced
from the first building block by interchange of coordinate variables » and & The
aspect ratio must be replaced by its inverse and 4% must be multiplied by &°. The

subscript should be change from m to n.

Once the solutions to the first and second building blocks are obtained,
solutions to the third and forth building blocks are determined by simply replacing
n in the first building block solution to 1-7, & in the second building block solution

to 1-¢& and changing subscripts to p and q respectively, i.e.

Y,(n) =Yn(l—n) (2.27)
Yq (E) = Yn(l - ’f) (2.28)

These building blocks are superimposed in order to solve the original plate
problem. Applying the boundary conditions of original plate problem, i.e. zero
bending moment at the edges, using k terms in each building block, yields a set of
4k homogeneous algebraic equations relating 4k coefficients, En, E,, Ep and Eq

which can be expressed in matrix form as follows:

[AI{Ex} = {0} (2.29)

where [A] is 4kx4k matrix, {Ex} is 4kx1 column vector of coefficients, En, Ey, Ep
and E,.

The natural frequencies are determined by searching for the A values which
make the determinant of the system vanish by trial and error. Once the 1 values
are found, the coefficients, E’s, are found by substituting into Eq. (2.29) and these
give the natural modes of the plate. However, this procedure also picks up some
unexpected values when the determinant goes through a pole (case (b) in Fig. 2. 3),
and misses the values associated with coincident modes of a square plate (case(c)),
i.e. the symmetric-antisymmetric modes and the antisymmetric-symmetric modes

about x and y axes.
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Fig. 2. 3 Plot of the determinant vs. trial A

To ensure that coincident roots are not missed, the W-W algorithm [31-33]
has been used. The coefficient matrix generated with the trial value is modified to
an upper triangular matrix according to the W-W algorithm. The number of
negatives along the diagonal of the matrix is counted for each trial frequency. Any
change in this number gives the number of roots that exist between the previous
trial frequency and the current trial frequency, therefore, the natural frequency
parameters A can be defined in this way. If the number changes in two, then the
value of 2 is considered as associating with a coincident mode. However, using
this procedure still gives some unexpected values when the determinant changes
sign through zero at the poles and the values of A corresponds to the eigenvalues
of the square plate having all edges fully constrained against rotation (case (d)).
Technically, the application of the W-W algorithm requires the knowledge of the
natural frequencies of the fully constrained plate and each time such frequencies
are passed the number of such frequencies should be accounted into the sign count.
This was effectively achieved using the following procedure. The distances of the
determinant from the zero line are stored at a given trial frequency which gives a
determinant do. The previous two determinants are examined when the number of
negatives changed. Let the previous two values of determinant d; and d, as shown
in Fig. 2. 3. If d; is closer to the zero line than d,, then 4 is considered as the value

associating with a natural frequency or coincident natural frequencies (when

17



change of the negatives is two), otherwise the value of A is omitted. This
procedure has eliminated the false roots and given only the required set of natural
frequency parameters. These results agree closely with those in the literature
[2,7,25-27].

2.2.4 Transient vibrations
In the transient analysis studied here, the effect of damping has not been

considered. The response due to an initial disturbance is then expressed in term of

its modes as follows:

w(x, y,t) = z a;W;(x,y) sin(w;t) + Z b;W;(x,y) cos(w;t) (2.30)

where Wi(x,y) is i™ normal mode and w; is the i"™ natural frequency. Wi(x,y) is
given by Eg. (2.1) or (2.19). Eqg. (2.30) has to satisfy the prescribed initial
conditions, i.e. the displacement and/or velocity at t = 0. An expression for the

velocity may be obtained by differentiating Eq. (2.30) with respect to t.

w(x,y, t) = z wi(a;W;(x,y) cos(w;t) —b;W; sin(w;t)) (2.31)
Let the displacement and the velocity at t = 0 be following equations,

Att =0, Egs. (2.30) and (2.31) become,

wo(x,9) = D bili(x,) (234)

o (6,9) = ) @i Wi(x,y) (2:35)
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The coefficients a; and b; may be determined by multiplying both sides of Egs.
(2.34) and (2.35) by W; and integrating over the area of plate, i.e.,

JJ woCe )Wy, y)dxdy = [] D bW, )W, y)dxdy  (236)

and

I oo e )W y)edxdy = [ ) aonaiWiCe, )Wy (x, y)dxdy - (2:37)

However, from the orthogonality condition,
I Wi, y)Wi(x, y)dxdy =0 (i # J) (2.38)
From Eqgs. (2.36), (2.37) and (2.38), the coefficients a; and b; are given by,

o JJ oo (x, yIW; (x, y) dxdy
o Jf (W (x, )} dxdy

(2.39)

and

— ff WO(x' y)]/V](X, y)dxdy

k (2.40)
JI {w;(x, )} dxdy

J

2.2.5 Initial conditions

The initial conditions given in this study are that there is an imposed
deflection which is equal to that of a plate with all edges simply supported, and
subject to a uniformly distributed load such as self weight and that the velocity is
zero everywhere. The deflection expression for this case which is readily available
in the literature [34] is,

16 sin——sin—=
wo(x,y) = qozza—l’z (k = 1,3,5,.. 1 = 1,3,5,...) (2.41)
k 1
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where (, is a load per area. The load is assumed as the weight of the plate per area,
which is given by g, = phg. Five terms in each direction were found to be
sufficient to ensure that the results for the displacement have converged to four
significant figures, and therefore k and | in Eq (2.41) were set for nine in
computation. It should be noted here that if the transient response of a plate that is
freely falling under gravity after removal of its simple supports is required, the
rigid body motion of the plate due to the gravity force gt*/2 should be added. The
above initial condition was chosen as a convenient case to remember for the

purpose of benchmarking and not due to any engineering significance.

2.3 Result and discussion

The transient response of a completely free plates has been calculated when
the plates having all the edges simply supported are suddenly released from the all
supports. The computation of the response of the plates for the various aspect
ratios was done using the natural frequencies and modal shapes given by the
Superposition method and the Rayleigh-Ritz method with the ordinary and
degenerated free-free beam functions. The first 50 modes were used in the

calculation. The displacement and time are given in dimensionless forms, which

4
are w/(liqe—";) and t/(a?,/ph/D) respectively. All responses were calculated by

using the software MATLAB in default double precision. However, the maximum
number of terms used in the degenerated beam functions to compute the natural
frequencies and mode shapes is limited to eight terms in each direction because
the computing procedure showed numerical instability when using more than nine

terms.

Firstly, the convergence tests were carried out for the results computed by
all the methods mentioned above. The responses at the centre of the square plate
obtained using the natural frequencies and modes given by the Superposition

Method are plotted in Fig. 2. 4 for various values of number of terms used in each
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building block. It may be seen that except for the four term solution, all other
results agree well even for non-dimensional time of 100 units, showing that
convergence has been reached with only six terms. Figs. 2. 5 and 2. 6 show the
response at the same point calculated based on the natural frequencies and modes
given by the Rayleigh-Ritz method in respect of the terms used in the ordinary
beam functions and the degenerated beams functions respectively. As can be seen
from Part (a) of these figures, there are no significant differences between the
results for different number of terms for either method, immediately after the
plates were released. However, the differences become larger as time increases as
can be seen from Part (b) of the figures. While almost no differences are found
between the results obtained using 10 and 15 terms in EQ.(2.20) for the
Superposition Method, and six and eight terms in each direction of Eq.(2.1) for
the degenerated beam functions, there are obvious disagreements between the
results obtained using the ordinary beam functions. For a fair comparison between
the convergence rates of the Superposition Method and the Rayleigh-Ritz method
with degenerated beam functions, it is useful to note that to get convergence to the
same level of agreement, the Superposition Method uses a matrix size of 40x40
where as the Rayleigh-Ritz method requires about 100x100. The rates of
convergence of the Superposition Method and the Rayleigh-Ritz method with the
degenerated beam functions are considerably better than that of the Rayleigh-Ritz
method with the ordinary beam functions. Results of the convergence test
presented here are only for the square plate, but the same occurrences were

observed for plates of other aspect ratios.

Fig. 2. 7 shows the transient response of the completely free square plate at
(@) the centre, (b) the point x=0.75a and y=0.75b and (c) the corner. The natural
frequencies and mode shapes used in the computation were obtained using 15
terms in the Superposition Method, eight-term degenerated beam functions and
50-term ordinary beam functions in the Rayleigh-Ritz method. Initially, there is an
excellent agreement between the results given by all three methods. However, the
difference becomes noticeable as time increases. Fig. 2. 8 shows that the response
at the corner of the plate at the time of 98 to 100. While the results obtained based
on the Superposition Method and the degenerated beam functions are in excellent

agreement with each other, there is a large discrepancy between the result based
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on the ordinary beam functions and others. This is due to the fact that the
Rayleigh-Ritz method using the ordinary free-free beam functions gives higher
values for the natural frequencies of the completely free plates than those given by
the Superposition Method and the Rayleigh-Ritz method with the degenerated
free-free beam functions. Similar differences were also found in the responses at
other points of the plate and of the plates for other aspect ratios.

It can also be seen from Fig. 2. 7 that the plates vibrate about a shifted plane
parallel to the original xy plane representing the undeformed state of the plate. The
plane shift was also discovered in the responses of the plates for the aspect ratios
1.5 and 2.0. The distance between the planes that are at the centre of vibration and
the xy plane almost agree with the displacement contribution of the first mode,
which is the rigid body motion in dimensionless distance of 1.0, multiplied by the
first transient coefficient of the plates, which is 0.1023 for the square plate (Table
2.1).

The modal superposition method used in this thesis to investigate the
transient response of the plate gives an insight into how modes participate in the
response, as mentioned in the reference [24]. Fig. 2. 9 shows the proportions of
modes participating in the transient responses. Since, in the case studied here, the
initial disturbance is symmetric about both centre lines of the plate parallel to x
and y axes, only doubly symmetric modes participate. The first three participating
modes dominate about 90-percent of the responses for the square plate. The
transient responses of the plates with aspect ratios 1.5 and 2.0 are governed in
similar rates by the first four and five participating modes respectively. The
figures also show that the proportion of higher modes contributing to the transient
response of the plates with aspect ratios 1.5 and 2.0 are larger than that of a square
plate.

It is known that both the Superposition Method and the Rayleigh-Ritz
method give upper bounds for the natural frequencies of completely free plates
[1,26,27] and lowest values would be considered as benchmarks. The
Superposition Method and the Rayleigh-Ritz method using the degenerated free-

free beam functions give lower values of natural frequencies than those given by
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the Rayleigh-Ritz method using the ordinary free-free beam functions for the
completely free plates. Those methods also give faster convergence rates. For the
same matrix size, however, the Superposition Method gives lower values than
those obtained using the degenerated beam functions, and also use of the
degenerated beam functions exhibits numerical instability in the results when
using more than nine terms in the series. Therefore, it is preferable to use the
Superposition Method. It seems appropriate at this stage to treat the transient
responses obtained using the natural frequencies and modes given by the
Superposition Method as benchmark results for the response of the plates with all
edges simply supported when being suddenly released from all the supports after
being subject to an initial displacement corresponding to that due to a uniformly
distributed load. The first few participating modes, transient coefficients,
corresponding natural frequency parameters, A> [26,27] and modal displacements
at the centre, the point of 0.75a, 0.75b and the corner are given in Table 2. 1. It
should be noted that the numerical results may serve as benchmarks for transient

response of plates.
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Fig. 2. 4 The transient response of the completely free square plate at the
centre, based on the natural frequencies and modes given by the
Superposition Method at the time of (a) 0 to 1.5 and (b) 98 to 100.
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Fig. 2. 5 The transient response of the completely free square plate at the
centre, based on the natural frequencies and modes given by the Rayleigh-
Ritz method with the ordinary beam functions at the time of (a) 0 to 1.5 and
(b) 98 to 100.

25



I e R Deg(4) -—-Deg(6) —— Deg(8)
S 03
g 0.2 N N /\ /(\ o /\
P ANl WY A" WO /20. W ol W A v
= NS N\ N oS NP N
o O Vi v Y = N\
o -01 . '
0 0.5 _ 1 15
Time
(a)
. 04 Deg(4) —-——-Deg(6) — Deg(8)
$ 03
g 0.2 ’/“ VA ‘,:"\'(‘\ — A “,’.\/‘\A //'\‘/\ s A "'\ 2\ ’/"\“/\
A AW AN AN S W AW AW ST A
a g i\l SN N AN SN A AN
0 Y% %Y NV M A% AV v (YA
o -01 . . .
98 98.5 - 99 99.5 100
Time
(b)

Fig. 2. 6 The transient response of the completely free square plate at the
centre, based on the natural frequencies and modes given by the Rayleigh-
Ritz method with the degenerated beam functions at the time of (a) 0 to 1.5
and (b) 98 to 100.
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Fig. 2. 7 The transient response of the completely free square plate at (a) the
centre, (b) the point x=0.75a y=0.75b and (c) the corner, obtained using the
natural frequencies and modes given by the Superposition Method and the
Rayleigh-Ritz method with the ordinary and degenerated beam functions.
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Fig. 2. 8 The transient response of the completely free square plate at the
corner at the time of 98 to 100.
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Fig. 2. 9 The proportion of the participating modes of completely free plates
with aspect ratio of (a) 1.0, (b) 1.5 and (c) 2.0
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Table 2. 1 Contribution of participating modes.
®=1.0
Participating Modes 1 6 11
% 0 2427  63.69
Transient Coefficients 0.1023 0.8051 -0.5145
Modal displacement  Centre 1.000 0.1433 -0.0795
0.75a,
0.75b  1.000 0.0213 -0.0031
Corner 1.000 -0.2411 -0.1420
®=1.5
Participating Modes 1 5 7 11 12
% 0 9517 2218 4393 5335
Transient Coefficients 0.1968 -1.0559 -1.3461 -1.0306 -0.1060
Modal displacement ~ Centre 1.000 -0.0780 -0.1032 -0.0696 0.0512
0.75a,
0.75b  1.000 -0.0126 -0.0128 -0.0090 -0.0386
Corner 1.000 0.1333 0.1667 -0.1215 0.0838
=20
Participating Modes 1 4 8 11 12
A2 0 5366 22.00 29.68 36.04
Transient Coefficients 0.2646 -1.4421 19101 1.3581 1.0745
Modal displacement ~ Centre 1.000 -0.0844 0.0929 -0.0255 0.0986
0.75a,
0.75b  1.000 -0.0139 0.0022 0.0388 -0.0129
Corner 1.000 0.1440 -0.1244 -0.0559 0.1650
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2.4 Concluding Remarks

It has been shown that the natural frequencies and modes determined by
applying the Superposition Method can be used to calculate the transient response
of completely free plates accurately and efficiently. The results agree well with
those obtained using the frequencies and modes found by applying the Rayleigh-
Ritz method for short periods of time. The response based on the Rayleigh-Ritz
modes based on ordinary beam functions are slower to converge compared to the
corresponding results based on the degenerated beam functions. The results based
on the Superposition Method prove to be the fastest to converge. This means that
for a given matrix size, the Superposition Method gives the most accurate results
for the response. The difference between the results found using the Superposition
Method and the Rayleigh-Ritz modes increase with time and the use of the
degenerated beam functions shows numerical instability during the computation
when using more than nine terms in the series. Therefore, the results calculated
using the natural frequencies and modes given by the Superposition Method are
more accurate and reliable, and may be considered as benchmark data for the

transient response of the completely free plates.

As expected the transient response is dominated by the lower modes. The
plates vibrate about the shifted plane parallel to the original xy plane. The
distances between these two planes agree with the displacements for the first
mode of the plate (a rigid body translation) multiplied by the first transient
coefficient.
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3. Chapter Il

Free vibration analysis of
thin shallow shells using

the Superposition-Galerkin Method
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Chapter lll

Free vibration analysis of thin shallow shells
using the Superposition-Galerkin Method

Nomenclature

planform dimension in x direction
planform dimension in y direction
plate flexural rigidity, (Eh*/12)/(1-v%)

elastic modulus of the material

o m g o o

thickness of shell

Y
>

radius of curvature parallel to x axis

Py
<

radius of curvature parallel to y axis
in-plane displacement in x direction
dimensionless displacement, u/a
in-plane displacement in y direction
dimensionless displacement, v/a

out-plane displacement

< s < < Cc =

dimensionless displacement, w/a

platform spatial co-ordinates

x
<

curvature ratio, a/Ry

=

Gaussian curvature, Ry/Ry
o thickness ratio, a/h

n, & dimensionless co-ordinates; y/b, x/a

v Poisson’s ratio of material

v 1-v)/2

p density of shell

@ aspect ratio of planform b/a

0} radian frequency of vibration

Q  frequency parameter wa?\/ph/D
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3.1 Introduction

This chapter shows that the Superposition Method is applicable for the
free vibration analysis of doubly curved shallow shells with any combinations
of simply-supported and clamped edges, which leads to 55 possible
combinations. Some numerical data of the natural frequencies are presented for
singly and doubly curved thin shallow shells with three different sets of
boundary conditions described later. The computed results for fully clamped
shells are compared with the data obtained using the Ritz method in the earlier
literature, and the results for other boundary conditions are compared with
results generated using a Finite Element package Abaqus. While the
application of the Superposition Method for plates and cylindrical shells
generally requires an exact solution for the building blocks, the present work
utilises approximate modes of the building blocks generated using the Galerkin
method because, in general, an exact solution is not yet available for doubly
curved shells. Consequently, it is shown that when the approximate modes of
shells under one set of boundary conditions are known then the Superposition
Method may be used to find the natural frequencies of the same shells
subjected to other boundary conditions.

3.2 Procedure

In the Superposition Method, a free vibration problem was solved by
superimposing plural forced vibration solutions. They are referred to as
building blocks. The vibration analysis of plates using the ordinary
Superposition Method and the Superposition-Galerkin Method has been
described in detail in literature [2,7] and [11,12] respectively.
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Fig. 3. 1 A shallow shell on rectangular planform

Fig. 3. 1 shows the middle surface of a shallow shell on a rectangular

planform. The governing equations based on Donnell - Mushtari

- Vlasov

theory for free vibration of thin shallow shells are given in reference [35] and

the dimensionless form of the governing equations is expressed as follows.

where the symbols are given in the nomenclature.

zaZU ~ 2 2 2 5 W 5
126 522 121/(1) Frel +12(v +V)_afa + 126 /3(1+vy)¥+g U=0
202 , 0%V 5% 0%V 1252[)’ ow
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The dimensionless bending moment, M, and membrane force, N, are given in

terms of displacements as

and

( <62W v 02W\)
- 982 @2 on?
M 32w 32w
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At each edge of the three classical boundary conditions, namely, free,
simply supported, and clamped conditions, in this study only simply-supported
and clamped cases are considered. For in-plane conditions, of the four common
combinations of tangentially free or restrained and normally free or restrained,
it is tangentially restrained and normally free or restrained conditions that are
considered. With the selected boundary conditions, it is possible to have 55
different combinations for a shell of rectangular planform with arbitrary
curvature, and for certain special cases such as cylindrical shells, there are 100
different combinations of the above boundary conditions. The Superposition
scheme developed here is easily applicable to solve any of these cases but for
brevity, results for only three combinations are presented. The boundary
conditions treated are: (a) all edges are fully clamped; (b) a pair of opposite
edges is simply-supported out-of-plane, shear diaphragm in-plane and others
are clamped; (c) two adjacent edges are simply-supported out-of-plane, shear
diaphragm in-plane and others are clamped. Let us begin by explaining the
procedure for the fully clamped case.

The analysis of fully clamped shallow shells is accomplished by using
eight building blocks whose edges are all simply supported with shear
diaphragm in-plane conditions, as shown in Fig. 3. 2. The boundary conditions
of a simply supported shallow shell with shear diaphragm in-plane conditions

are given by Eq. (3.4).
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Fig. 3. 2 Building blocks used for the free vibration analysis of the shell
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First let us consider the first two building blocks. The first and second building
blocks are subjected to bending moments, M, and an in-plane force parallel to
n-axis, N, respectively on its driving edges. These moment and in-plane force

terms are expressed in a series form (Eqg. (3.5)).

k
M,, = z E,,sinmmé
1 (3.5)

3
[

=

N, = Ey,sinmmé J

1

3
I

The in-plane displacements U and V, and out-of-plane displacement W are
expressed by Eq. (3.6). The specific set of functions that satisfy the governing
differential equations and the boundary conditions approximately for building
blocks 1 and 2 are given by Egs. (3.7) and (3.8), respectively.

37



N

k
Uy = Z X, (n) cosmmé

m=1

k
V, = Z Y, (n) sinmmé

(3.6)

'

m=1

k
W, = Z Zm(m) sinmmé
— J

1

K
X)) = ) Apygsinimy
i=1

(3.7)

'

K
VD) = ) Apy cos(j = Dy
=1

J

K
— : Em 3
Zm(m) = Apy sinlmn + ? m-n°)
=1 /

K )
Xn(m) = Z B,,; sinimn
i=1

K

2

. n

Ym(m) = zij cos(j — D)mn + B, >
=

(3.8)

~~

K
Zm(m) = Z B, sin lmn
=1

Egs.(3.6) and (3.7) are substituted into Eq. (3.1) and differentiated term-by-
term. This creates an algebraic equation relating the 3xK Fourier unknowns,

Ani, Amj, Ami and driving coefficient Ey,, which is given as follows.

62
Z {—1262(mn)2 — 1217@ (im)? + Qz}Ami sin imn

2
+ Z {—12(1/ + V)%(mn)(j — 1)n}Amj sin(j — 1) n

+ 2{12623(1 +vy)(mn)} A,y sinlnn

+128%p(1 + vy)(mn)E?m(n -73)=0 (3.9)
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2
+1262%B%(1 + 2yv + y?) — QZ}Aml sin lmn + [g (mm)?n
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+ {(mm)* + 1262%B2%(1 + 2yv + y?) — 0?} c
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By following the Galerkin method, these equations are expanded in an
appropriate trigonometric function of K terms, which gives a set of 3xK
simultaneous non-homogeneous algebraic equations [11,12]. These Fourier
unknowns are obtained by solving the algebraic equations, and thus a solution
for the first building blocks is expressed in terms of E,. A schematic
explanation of the algebraic equations in a matrix form is shown in Fig. 3. 3.
The short bars depict non-zero elements. It is noted that it is advantageous to
use sine functions for out-of-plane and tangential displacements, and cosine
functions for perpendicular displacements because of their simplicity and
orthogonality. A solution for the second block is obtained similarly and

expressed in term of F,
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Fig. 3. 3 A Schematic explanation of the algebraic equations given by
Galerkin method in matrix form

The solution for the third and fourth building block will be obtained by
interchanging » and &, as well as X and Y of Egs (3.7) and (3.8), and
substituting into Eq.(3.1) followed by Galerkin’s procedure used to solve the
first two building blocks. Once the solutions to the first four building blocks
are available, solutions for the other building blocks can be generated from the
first four building blocks by simply replacing # in the first two building block
solution to 1-x, ¢ in the third and fourth building block solution to 1-&, and
changing subscripts from m to p and n to g respectively. The solution for X, Z,,

Yq and Z, should be preceded with negative sign, i.e.

Xp,(m) = —Xp(1—n)
Yo(m) = Yn(1—mn) (3.12)
Zp(n) = —Zp(1—n)

Xq(f) =X, (1-8)
Yq(f) =-Y,(1-9%) (3.13)
Zq(f) = _Zn(]- - E)
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Once the solutions for all building blocks are obtained, these building
blocks are superimposed and the coefficients in the solutions of building blocks
are adjusted so as to satisfy the boundary conditions of the original clamped
shell. In other words, the flexional rotation and in-plane displacement
perpendicular to edges of the superimposed set of building blocks should
vanish. The boundary conditions of fully clamped shell are given by the

following equations.

ow

U=V=W=0, and a—fzo (até =0and 1)
ow

U=V =W=0, and W=0 (at77=0and1))

(3.14)

These flexional rotation and in-plane displacement contributions are expanded
in an appropriate trigonometric series and this yields a set of 8k homogeneous
algebraic equations relating 8k coefficients, E’s and F’s which can be

expressed in matrix form as follows:
Ey _
[41{ F} = {0} (3.15)

where [A] is 8kx8k matrix, {I{Z} is 8kx1 column vector of coefficients, E’s and

F’s.

A schematic representation of the matrix [A] of Eq. (3.15) when k=3 is
given in Fig. 3. 4. The dots in the figure depict non-zero components. The
matrix is divided into 8x8 segments, and each column and row the segment
denote the building block and its contribution to the boundary condition at the
edge respectively. The natural frequencies are determined by searching for the
Q values for which the determinant of the system vanishes by trial and error.
Once the Q values are found, the coefficients, E’s, and F’s are found by
substituting into Eq.(3.15) and these give the natural modes.
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Fig. 3. 4 A schematic representation of matrix [A] for k = 3.

The preceding paragraphs explain how to obtain the natural frequency
parameters of fully clamped shallow shells using eight building blocks whose
edges are all simply-supported with in-plane shear diaphragm. However, shells
with any combination of boundary conditions of simply-supported and
clamped in the out-of-plane case, and shear diaphragm or fully constrained in
the in-plane case, can be solved using the same building blocks employed here.
In other words, each edge of a shell is imposed four different boundary
conditions, depending on whether or not the out-of-plane rotation and/or the in-
plane displacement normal to the edge are prohibited. As mentioned earlier,
this leads to 55 possible different combinations of boundary conditions.
Solutions for shells with any of these combinations can be obtained by simply
eliminating certain building blocks and corresponding sub-matrices from the
matrix [A]. For example, a shell whose edges are simply supported and on

shear diaphragm at £ = 1 and 0, and others are clamped can solved by removing
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the building blocks 3, 4, 7, and 8, namely third, forth, seventh and eighth
columns and rows of segments of the matrix [A]. This shows the versatility of
the Superposition Method.

3.3 Result and discussion

The numerical results are presented for three type of shallow shells,
which are cylindrical (R«/Ry = 0), spherical (Ry/Ry = 1), and hyperbolic-
paraboloidal (Ry/Ry = -1) shells and for three different sets of boundary
conditions. The results are compared to the results in earlier literature and those
obtained using an FEA package, Abaqus. The natural frequencies are given in a
dimensionless form, which will be referred to as the natural frequency
parameter. The Poisson’s ratio and the ratio of planform dimension to thickness
(a/h) are set to 0.3 and 100 respectively for all calculations in this thesis. All
natural frequency parameters were obtained for the curvature ratios (a/Ry) of
0.1 to 0.5. A shell, in general, is considered as thin and shallow if the ratio of
thickness to radius of curvature is less than 1/20 [36] and a subtended angle is
not more than 40° [37], which means the curvature ratio is less than 0.68,
respectively. Since all shells studied here are in the above criteria, the thin
shallow shells theory is valid for this study. The present results were calculated
by using the software MATLAB in default double precision. The spec of the
computer used for this study is that Intel® Pentium® D CPU 2.80GHz 2.79GHz
and 1.00 GB of RAM.

Convergence tests were carried out to determine the number of terms
which are used in the series expansions. The Superposition-Galerkin method
requires two numbers for the series summations. One is the number of terms
for the series expansions in Egs. (3.7) and (3.8), which is “K” and the other is
the number of terms for the driving coefficients E’s and F’s, which is “k”.
Table 3. 1 shows that computed fundamental natural frequency parameters of
the fully clamped cylindrical shallow shell on the square planform for various

number of K. There is no change in four significant digits beyond 11 terms.

43



Table 3. 2 presents the fundamental natural frequency parameters of the same
type of shell for various values of k. No change in fourth digit is found after
using more than five terms. It may be seen that there is no difference in the
parameters for the number of k between 1 and 2, and also 3 and 4. This is
because the solution includes both symmetrical and anti-symmetrical terms but
Table 3. 2 presents results for a mode which is symmetrical and therefore not
influenced when adding an anti-symmetrical term. After convergence tests for
other modes and other shells with different curvature ratios, the values of k =
10 and K = 20 are chosen. These numbers could be considered large enough to
obtain four significant digits in the natural frequency parameters although
using more terms gives results which converged to more significant digits. The
work also shows that the Superposition-Galerkin method gives excellent

convergence in its results for the fundamental natural frequency parameters.

In Table 3. 3, the frequency parameters obtained using the Superposition
- Galerkin method for cylindrical shallow shells having an aspect ratio of 1.0
and a curvature ratio of 0.1 are compared with those in the reference published
by Monterrubio [38]. He uses the Rayleigh-Ritz method and the penalty
function method to obtained true upperbound results [39]. There is an excellent
agreement between the results but the present results are lower. This is
reasonable since the present results seem to be lowerbound as can be seen from
Table 3. 2. However, it may not possible to declare that the Superposition-
Galerkin Method gives lowerbounds for the results obtained for the fully
clamped shell because of the following reason. If one were to use exact modes
of the building blocks, one would expect the Superposition Method to yield
lowerbound results, but if the modes of the building blocks are approximate
this is not guaranteed. In the present case the Superposition Method gives
higher values if fewer terms were used for K. For example, using three terms
only for K gives the higher value than that of published upperbound frequency

parameters.
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Table 3. 1 The fundamental frequency parameter of the fully clamped
square cylindrical shallow shell for various number of K (a/Ryx = 0.1).

K 3 4 5 6 7 8 9 10 11
(o 46.86 46.26 46.33 46.26 46.29 46.27 46.28 46.27 46.28
K 12 13 14 15 16 17 18 19 20
(o)) 46.28 46.28 46.28 46.28 46.28 46.28 46.28 46.28 46.28

Table 3. 2 The fundamental frequency parameter of the fully clamped
square cylindrical shallow shell for various number of k (a/Rx = 0.1).

k 1 2 3 4 5 6

(o)) 45.84 45.84 46.26 46.26 46.28 46.28
k 7 8 9 10 11 12
O 46.28 46.28 46.28 46.28 46.28 46.28

Table 3. 3 Comparison of present results and those in the reference [38]
for fundamental frequency parameter of the fully clamped square
spherical shallow shell

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8

Ref. [38] 46.292 74.748 79.376 110.58 132.78 135.78 166.28 167.42
Present 46.28 7465 79.28 1103 1325 1355 1657 166.9

Fig. 3. 5, 3. 6 and 3. 7 show the first natural frequency parameter of shallow
shells for K = 10, 15 and 20 with boundary conditions of CCCC (all edges are
clamped out-of and in-plane), SCSC (simply supported out-of-plane and shear
diaphragm in-plane at £ = 0, 1 and clamped at # = 0, 1), and CCSS respectively.
As can be seen from these figures, the natural frequency parameters increase
with number of driving coefficients, k. This has been confirmed for all shells
studied. However, since the Galerkin’s solution is an upperbound it is not
possible to assure lowerboundedness for the final solution to the original
problem. For a given number of driving coefficients k, increasing the number
of terms in the Galerkin’s series K generally shows upperbound behaviour but
it is not consistent. On the boundedness, it should be noted here that even for
plates, Superposition Method gives bounded solutions only for some boundary

conditions. It is not possible to get bounded solutions for CFCF plates for
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example, as any usable building block would have some boundaries that are
stiffer and others that are more flexible compared to the final solution.
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Fig. 3. 5 First frequency parameter of CCCC shallow shell (® = 1.0, a/Ry =
0.1, Ry/Ry = 0)
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Fig. 3. 6 First frequency parameter of SCSC shallow shell (® = 1.0, a/Rx =
0.1, Ry/Ry=1)
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Fig. 3. 7 First frequency parameter of CCSS shallow shell (® = 1.0, a/Ry =

0.1, Rley = '1)
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Tables 3. 4 and 3. 5 give the first 12 natural frequency parameters of
SCSC and CCSS shallow shell on the square planform respectively. Those
values are compared with the results obtained using Abaqus as the results for
the shells having the same combination of boundary conditions were not found
in published literature. The Abaqus results were calculated using 10000
quadric elements. The element used is the doubly curved, reduced integration,

thin shell element with five degree of freedom at each node, (S8R5).

Table 3. 6 shows the first 12 natural frequencies parameters of fully
clamped shallow shells with the aspect ratio of 1.0 and curvature ratios of 0
(flat plate) to 0.5. Table 3. 7 gives results for the shallow shells having the
aspect ratio of 2.0. The obtained results are compared with the natural
frequency parameters available in reference [40] and [41]. The results in
reference [40] are based on the pb-2 Ritz method and those in reference [41]
were computed using the Ritz method with the displacement functions

expressed by polynomials in Egs. (3.16) and (3.17) [42].

M-1N-1 3\
U= z zPini(f)Y(U)
Z Z BAGION (3.16)
k= l=
W= Ry Xin (§)Yn (1)
m=0 n=0
Xi(©) = £+ P -
() =n/(1+m) 721 -
Xe(§) = €51+ ) (1 - 9 | 317

Y,(n) = n'(1 +n) BY2(1 —n)B*

Xm(&) =&ML+ &)1 - &)Bw3
Y,(m) =n™(1+n) B2 (1 — )P4 )
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where £ = 2x/a,n = 2y /b, and Pjj, Qu and Rm, are unknown coefficients. Bys
(r=u,v,w;s=1,2,3,4)is called the boundary index.

These polynomials satisfy arbitrary kinematic boundary condition by changing
the boundary index [42]. For a fully clamped shell, the boundary indices are as

follows:

Bys=Bys=1 By, =2 (3.18)

From the results it may be noted that for the fully clamped shells, the
agreement between the Superposition-Galerkin Method and the Rayleigh-Ritz
method is excellent. However, the Superposition Method is more efficient than
the Rayleigh-Ritz method in term of matrix size. Once the steady state
solutions of building blocks are obtained, the Superposition Method requires a
smaller size of eigenmatrix than that required by the Rayleigh-Ritz method. For
example, the Superposition Method using 10 terms raises a matrix of 8x10
rows and columns while the Rayleigh-Ritz method raises 3x10x10 rows and
columns. In addition, it should be noted that the same procedure and functions
can be used to solve shell problems with any combination of clamped or
simply-supported (out-of-plane), and shear diaphragm or fully constrained (in-
plane) edge conditions by only eliminating building blocks which are not
necessary.

For the same boundary conditions, there exists some noticeable
discrepancy between the Abaqus results and the present results. This may be
partly due to the difference between the Abaqus model which is based on the
classical thin shell theory and the present results which are based on the thin
shallow shell theory (DMV theory). The shallow shell theory, neglecting in-
plane displacements in bending and twisting, leads to a stiffer condition. It may
be seen that the differences generally increase as the curvature ratio, a/Ry, and

aspect ratio increase [37].

While we acknowledge that the application of the Superposition Method
for doubly curved shells requires approximate solutions for another set of

boundary conditions, this chapter illustrates how the solution for different
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boundary conditions may be generated without the need to go through a
procedure that requires satisfying the governing equations of motion for the
entire shell. Instead, only the boundary conditions are used to compose the
final solution from functions that already satisfy the governing differential

equations of motion.
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Table 3. 4 Natural frequency parameters of the SCSC shallow shell (®=1.0)

a/Ry Q4 Q) Qs Q4 Qs Qp Q7 Qg Qg Qo Q1 Q12
Ry/Rx=0 0.1 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 Present
34.01 55.43 74.15 95.94 102.1 132.1 140.2 156.0 169.8 199.7 206.0 209.8 Abaqus
0.3 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 Present
60.77 61.13 102.8 105.7 107.6 143.4 156.5 169.0 169.1 205.0 206.2 227.4  Abaqus
05 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8  Present
71.20 93.27 104.1 127.9 149.6 150.4 167.7 192.6 196.8 206.8 2154 252.8 Abaqus
Ry/Ry=1 0.1 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 Present
47.41 64.39 77.39 100.5 107.3 133.4 143.8 158.0 173.0 201.8 208.5 210.1 Abaqus
0.3 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 Present
114.7 115.2 123.8 138.9 141.5 165.7 171.0 184.2 194.0 221.3 226.2 229.0 Abaqus
05 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 Present
176.4 180.9 181.1 192.0 192.5 214.3 217.4 226.2 229.9 254.8 257.1 260.8 Abaqus
Ry/Rx = -1 0.1 4152 61.49 73.03 96.18 106.3 132.3 141.6 156.0 173.0 200.3 208.0 210.5 Present
41.48 61.39 72.84 95.88 106.0 131.8 141.1 155.3 172.4 199.3 207.1 209.3 Abaqus
0.3 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 Present
92.04 97.06 98.24 107.6 133.9 152.1 155.3 165.3 193.2 203.8 217.6 224.3  Abaqus
05 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3  Present
127.5 132.0 135.8 142.7 171.8 172.3 190.9 197.5 216.5 229.1 237.8 251.6 Abaqus




1S

Table 3. 5 Natural frequency parameters of the CCSS shallow shell (®=1.0)

a/Ry Q Q Q3 Q4 Qs Qg Q7 Qg Qg Q10 Q1 Q12
Ry/Rx=0 0.1 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 Present
34.44 61.90 66.63 94.66 114.6 118.3 146.1 147.5 187.8 190.4 198.1 218.5 Abaqus
0.3 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 2215 Present
59.31 78.51 99.79 1114 117.4 145.5 151.1 162.4 187.5 204.4 209.9 219.4  Abaqus
05 7237 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 2445 Present
72.24 104.1 127.1 132.4 146.6 167.4 184.4 187.8 191.3 217.5 222.0 243.9 Abaqus
Ry/Ry=1 0.1 45.19 69.57 70.38 99.06 1194 119.8 149.7 150.0 191.4 191.6 200.9 221.7 Present
45.17 69.47 70.26 98.85 119.1 119.4 149.2 149.6 190.6 190.8 200.2 220.8 Abaqus
0.3 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 Present
108.0 118.3 122.7 137.9 151.3 153.5 175.8 176.9 210.0 211.7 219.8 237.7  Abaqus
0.5 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 Present
170.9 177.9 184.0 192.7 199.7 208.2 219.9 222.0 243.6 246.7 253.4 267.3 Abaqus
Ry/Rx=-1 0.1 35.59 65.72 65.83 94.61 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4  Present
35.57 65.60 65.71 94.34 117.7 117.8 146.5 146.8 190.0 190.1 197.7 219.3 Abaqus
0.3 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.8 229.8 Present
69.49 92.08 97.30 112.1 141.0 141.2 156.7 156.9 201.4 206.8 206.9 227.2  Abaqus
05 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 Present
94.36 122.0 136.4 148.5 170.9 172.7 181.4 185.7 212.6 235.4 235.9 243.4  Abaqus
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Table 3. 6 Natural frequency parameters of the fully clamped shallow shell (® = 1.0)

alRy Qi Q Q3 Q4 Qs Qg Q7 Qg Qg Q1o Qu Q
0 3598 73.38 73.38 108.2 131.6 132.2 1649 1649 2105 2105 2198 242.0
R/Rx=0 0.1 46.28 74.65 79.28 110.3 1325 1355 1657 166.9 210.6 2129 220.8 242.7 Present
46.28 74.66 79.29 110.4 1325 1356 165.8 167.0 Ref. [40]
46.24 74.46 79.14 110.0 132.0 135.1 165.1 166.3 209.5 211.9 219.8 241.4  Abaqus
0.3 8392 90.39 115.0 125.9 1405 161.2 1728 181.8 211.7 228.3 230.8 2455 Present
83.92 90.40 115.1 125.9 140.5 161.3 172.8 181.8 Ref. [40]
83.42 90.20 1149 125.3 1393 1608 1714 1809 209.2 2266 229.9 242.8 Abaqus
05 9926 119.0 1511 156.3 1725 1924 2017 2078 2139 2434 2511 2629 Present
99.26 119.0 151.1 156.4 1725 1924 2017 207.8 Ref. [40]
98.48 117.2 150.3 1555 1713 1904 201.2 206.6 2088 240.6 246.0 261.9 Abaqus
R/AR,=1 01 5830 8L75 8L75 1141 1360 1377 1687 1687 2132 2132 2227 2445 Present
58.30 81.76 81.76 114.2 136.0 137.7 168.8 168.8 Ref. [40]
58.24 8155 81.55 113.8 1354 137.2 1679 1679 2120 2120 221.4 243.0 Abaqus
0.3 130.2 130.2 134.0 153.4 167.2 181.2 196.3 196.3 234.0 2340 2440 2629 Present
130.2 130.2 134.0 153.4 167.2 181.2 196.4 196.4 Ref. [40]
129.0 1294 133.2 152.1 1658 1798 1944 1945 231.2 2315 2413 260.1 Abaqus
05 1920 192.0 1969 210.0 216.2 2422 2422 2574 270.7 270.7 2824 296.4 Present
1920 1920 196.9 210.0 216.2 2422 2422 257.4 Ref. [40]
187.4 1895 1933 206.2 2123 2371 2379 2532 263.6 2659 276.6 290.1 Abaqus
R/Ry =-1 0.1 5075 79.14 79.14 110.7 135.2 135.7 166.7 166.7 212.7 2127 220.8 243.4 Present
50.75 79.15 79.15 110.7 135.3 135.7 166.8 166.8 Ref. [40]
50.70 78.95 78.95 110.3 134.7 135.2 1659 166.0 2116 211.6 219.6 242.0 Abaqus
0.3 1108 1141 1141 128.6 1616 162.0 180.6 180.6 228.7 229.7 229.7 254.1 Present
110.8 114.1 114.1 128.6 161.6 162.0 180.7 180.7 Ref. [40]
111.0 113.7 113.7 127.7 160.5 1609 1790 1790 226.1 2274 2275 251.0 Abaqus
05 1573 157.3 1574 1665 204.0 208.7 208.7 208.9 247.1 259.7 259.7 272.8 Present
157.4 1574 1574 1665 204.0 208.7 208.7 208.8 Ref. [40]
156.4 1569 157.0 166.8 202.8 206.1 206.2 208.0 2427 2553 255.9 267.6 Abaqus
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Table 3. 7 Natural frequency parameters of the fully clamped shallow shell (® = 2.0)

a/Rx Ql Qz Qs Q4 Qs QG Q? QS QQ Q10 Q-11 -QlZ
0 2458 3182 4476 6331 6398 7106 8323 8722 100.7 1163 1232 123.6
R/Rc=0 01 3775 4297 5353 6434 7002 7227 8516 92.38 1030 1204 1239 1258 Present
3775 4297 5354 6435 70.05 72.29 Ref. [41]
37.72 4293 5348 64.18 69.94 7210 8498 9225 1028 120.1 1235 125.6 Abaqus
0.3 67.15 8113 8364 8820 96.35 9899 108.6 119.2 1257 132.7 1385 1425 Present
67.15 8114 8365 8821 96.37 99.03 Ref. [41]
66.58 80.64 8339 88.00 96.21 9853 1084 1187 1255 1316 1374 1419 Abaqus
05 7227 9578 1064 1164 1209 1320 1452 150.6 1685 170.0 170.0 170.3 Present
72.28 95.8 1064 1164 1210 1321 Ref. [41]
71.07 9499 1044 1146 1203 130.7 1445 1498 1674 169.0 169.2 169.5 Abaqus
RJ/Rx=1 0.1 51.11 5154 5938 7241 7281 7932 9054 9409 106.8 121.3 1284 128.6 Present
51.11 5154 5938 7241 7295 79.33 Ref. [41]
51.056 5150 59.27 7224 7258 79.12 90.29 9373 1064 120.8 128.0 128.1 Abaqus
0.3 1155 1166 1198 1270 1283 130.1 1351 1418 146.2 1559 1622 170.1 Present
1155 116.7 119.8 127.0 129.2 130.7 Ref. [41]
1149 1158 1185 1257 127.2 1288 133.7 1403 1444 1531 159.7 168.4 Abaqus
05 1794 1799 1805 1879 189.6 1925 1945 2004 2025 208.1 2140 2245 Present
1794 180.2 180.6 1879 1908 1945 Ref. [41]
1736 1774 1780 1829 1857 188.3 190.0 1951 1975 2021 2079 216.5 Abaqus
RJ/Rx =-1 0.1 4358 4485 5415 69.80 7094 7561 86.18 9212 1029 120.1 1254 127.6 Present
4355 4480 5403 6957 70.78 7540 8591 91.73 1025 1195 1249 127.1 Abaqus
0.3 9490 96.03 1023 1026 108.8 1114 1142 120.6 1256 140.0 1464 158.1 Present
9479 96.02 101.8 102.0 1084 1114 1138 1194 1248 138.2 1447 157.0 Abaqus
05 131.0 1312 139.2 1399 1544 1555 1584 159.0 1751 1835 186.1 189.9 Present
130.4 1305 139.0 1391 153.0 1535 1573 158.6 173.8 183.1 1846 1849 Abaqus




3.4 Concluding Remarks

The applicability of the Superposition Method for free vibration analysis of
doubly curved thin shallow shells has been demonstrated. In addition, the natural
frequencies of thin shallow shells with various curvature ratios and aspect ratios
were computed for three different sets of boundary conditions using the
Superposition-Galerkin method. The procedure described here and the code
developed for this study could be used to generate any of the 55 different
combinations of in-plane/out-of-plane boundary conditions. This is achieved
simply by removing appropriate rows and columns from the eigenmatrix of the
shell with all four edges fully clamped. Displacements of the shells were
represented by series of sine and cosine functions, generated using the Galerkin
method. These functions are simple, orthogonal and the final series approximately
satisfy the governing equations but correspond to a different set of boundary
conditions. The prescribed boundary conditions are then satisfied using the

Superposition Method.

There is an excellent agreement between the results obtained by the
Superposition-Galerkin Method and the values found in earlier literature for the
fully clamped shell. For the other two boundary conditions, the results showed
reasonable agreement with FEA results obtained using Abaqus. The Superposition
- Galerkin Method shows very good convergence for the fundamental natural

frequencies with only five terms.
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4. Chapter IV

Conclusions
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CONCLUSIONS

4.1 General Conclusions

The applicability of the Superposition Method for the transient vibration
analysis of the plates and the free vibration analysis of the doubly curved shells
has been investigated. It has been shown that the use of the natural frequencies
and the modes obtained using the Superposition Method can provide accurate and
efficient predictions of the transient response of an undamped plate. The results
based on the Superposition Method require a smaller size of matrix to converge
than that of the matrix which is required for the results based on the natural
frequencies and the modes determined using the Rayleigh-Ritz method with either
the ordinary or the degenerated beam functions. The values obtained using the
natural frequencies and modes given by the Superposition Method are more
accurate and reliable, and may be considered as benchmark data for the transient

response of completely free plates.

More interestingly, it is the first time that the Superposition Method is
employed to determine the natural frequencies of thin doubly curved shallow
shells. The approximate modes given by the Galerkin method are used for the
building blocks since an exact solution is not available for doubly curved shells.
The work shows that the present method gives a fast convergence rate in its
results. The obtained results have an excellent agreement with those in the
literature published earlier and a reasonable agreement with FEA results obtained

using Abaqus.
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4.2 Future Research

It has been shown so far that the Superposition Method is an accurate and
efficient method for vibration analyses of plates, including steady states and
transient analyses of plates with various boundary conditions, and free vibration
analysis of the open cylindrical shells and thin doubly curved shallow shell. The
Superposition Method may be able to be applied for free vibration analysis of thin
shallow shells having more complicated geometry, or other combinations of
boundary conditions such as completely free, elastically supported, and various
types of shells such as orthotropic, and composite shells. Transient and steady
state vibration analyses of those shells are also a worthwhile area for research.
The Superposition Method could also be applied for any other linear eigenvalue

problem, such as buckling or aeroelastic analysis of the plates and shells.

The Superposition Method will not be limited to only two-dimensional
vibration problems. Three-dimensional problems can also be solved. In the thin
plate theory, the effects of shear deformation and/or rotatory inertia are neglected,
and therefore the obtained solution will be inaccurate when the plates become
thicker. Since the three-dimensional theory provides more reliable and accurate
results for thick plates, the three-dimensional solutions attract many researchers’
attention. A literature review on the vibration analysis of thick plates was

published by Liew, Xiang and Kitipornchai [43].

Mindlin assumed that a shear stress distribution is constant through the
thickness and took account of both the shear deformation and rotatory inertia in an
analysis of thick plates [44]. Gorman successfully applied the Superposition
Method for the Mindlin plates with some boundary conditions [45-47]. Srinivas,
Joga Rao, and Rao used a three-dimensional linear, small deformation theory to
investigate the free vibration of simply-supported, homogeneous, isotropic thick
plates as shown in Fig. 4. 1. and obtained an exact solution by solving the
characteristic equations that are derived from a double trigonometric series of
displacement functions [48]. Liew, Hung and Lim predicted the vibration

behaviours of the thick plates based on the same theory for various boundary
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conditions, namely a combination of simply-supported, clamped and free
conditions, using the Ritz method with a set of orthogonal polynomial functions
[49]. The boundary conditions on simply-supported, clamped and free straight
edges, x = constant, are expressed as Eqgs (4.1), (4.2) and (4.3) respectively [49].
These boundary conditions are effectively the same as the boundary conditions of
the shells studied in this thesis. Filipich, Rosales and Belles considered
rectangular plates as tridimensional solids and analysed the case where the plates
are simply-supported using the variational method developed by the authors,
which is named Whole Element Method (WEM) [50]. WEM was extended for the
clamped thick plates by Rosales, Filipich and Andreu Torras [51].

w=0,v=0,and o4 =0 4.1)
u=0,v=0andw=0 4.2)
ox=0, 7y =0,and 7, =0 4.3)

To the author’s knowledge, however, the Superposition Method has not
been utilised for thick plates with basis of the three-dimensional theory.
Considering the rapid rate of convergence shown by the Superposition Method for
all the problems studied so far, it is believed that accurate results for thick plates
based on exact three-dimensional theory could be obtained more efficiently using

the Superposition Method.

z (w)

y (v)

X (u
Fig. 4. 1 Reference coordinates and dimension of thick rectangular plate
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Appendix I: Theory of Thin shallow shell

Ventsel and Krauthammer explain the thin shallow shell theory in terms of
out-of-plane displacement and the Airy stress function [36]. Suzuki et al. take a
different approach and describe the thin shallow shell theory in terms of out-of-
plane and in-plane displacements in their book [52]. For convenience and
completeness, the relevant parts in the derivations for thin shallow shells based on
Donnell-Mushtari-Vlasov (DMV) Theory are presented here. The key
assumptions are listed below, in which (a) and (b) are the Kirchhoff-Love
hypotheses and (c) and (d) are additional assumptions in the DMV theory [36]

(@) “Normals to the undeformed middle surface remain straight and normal to
the deformed middle surface and undergo no extension, i.e. all the strain
components (normal and shear) in the direction of the normal to the
middle surface vanish.”

(b) “The transverse normal stress is small compared with other normal stress
components and may be neglected.”

(C) “The effect of the transverse shear in the in-plane is negligible.”

(d) “The influence of the out-plane deflections, w, will predominate over the
influences of the in-plane displacements u and v in the bending response of
the shell.”

Consider the case of a thin shallow shell on a rectangular planform shown as
Fig. Al. 1. The shape of the middle surface of the shell is defined by Eq. (Al. 1).

S Al.1
“=72\R, "R, (ALD)

It is assumed that the radii of curvature, Ry and Ry are constant in the x and y

directions respectively.
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4

v

n (y)
Fig. Al. 1 A shallow shell on rectangular planform

The stresses on a surface at the distance of z from the middle surface, neglecting
the stresses in z-direction, are given by the Eq. (Al. 2).

E

1—v2
E .. . . (A1.2)
1 — 2 (g) +vez) |

Vaéy = nylcy }

Oy =

(8,’6 + vej’,)\

[—
Oy =

The normal forces per unit length are given by integrating Eq. (Al. 2) through the
thickness of shell, which are expressed in Eg. (Al. 3).

1 v 0
Nex (% En [v 1 o [(Z
Ny, =j oy rdz = > 11 (A1.3)
N 2y 1=v o |l
Xy 2 ny 2 xy
where
_ ou N W
= 9x "R,
ov w
& =7—+—1 (A1.4)
dy R,
_ Jdu N v
Yoy = dy 0xJ

&x, & and iy are strains and u, v, and w are displacements at the middle surface.
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Similarly, the moments per unit length are given by integrating the relevant
stresses in EQ. (Al. 4) multiplied by z and infinitesimal thickness dz (Eq. (Al. 5)).

1 1 v 0
h
%’”‘ 2| % ER® v 1 o0 :x
yy :fh Oy Zdezm 1—v y ¢ (A1.5)
Mxy 2 V,éy 0 0 Kxy
where
02w )
K=~
0w
Ky=—a—y2 4 (A16)
_ 0w
v = T4 9xay)

Next, let us consider the equilibrium of the forces and moments acting on
the middle surface of the shell. Fig. Al. 2 (a) shows an element ox x dy of the
shell on which normal forces per unit length are working. The bending and
twisting moments, and out-of-plane shear forces, Qy and Qy, acting on the element
are also shown in Fig. Al. 2 (b). Normal forces, N’s and moments, M’s are given
by Egs. (Al. 3) and (Al. 5) respectively. From Fig. Al. 2 (a), the sum of normal
forces in x-direction is

Applying Newton’s 2" law in the x-direction gives

W 1y + 2 gty = phandy x 22 A1.8
oy xdy + g mdxdy = phdxdy X o (A1.8)

ONyy ONy,, _ phazu
dx ady at?

(A1.9)
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Similarly in the y-direction, we get

0Ny, ONy, 0%
ax | ay Pae

(A1.10)

(b)

Fig. Al. 2 Equilibrium of (a) in-plane forces, (b) out-of-plane forces and
moments
By applying Newton’s second law in the z-direction to the element in Fig. Al. 2

(b) gives
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0Q, 00, 0w
W-I_W_phﬁ (A1.11)

By applying Newton’s second law in the about the x- and y-axes and neglecting

the rotary inertia gives Eq. (Al. 12) and (Al. 13) respectively.

OM,,, OMy,,
- =0 Al.12

oM, OM,,
T+ =0y =0 (41.13)

If substituting Qx and Qy obtained from Egs (Al. 12) and (Al. 13) into Eq. (Al.

11) one will get the following equation.

My | OPMyy  0*Myy , 92w
dx? 0x0y dy? at?

(A1.14)

These derived equations of motion in x-, y- and z-direction do not include
terms counting the curvatures of the shell. In DMV theory, the terms for
transverse shear in the in—plane, which should be included in Egs. (Al. 9) and
(A1.10) in general shell theory, are neglected (Assumption (c)). However, the
relationship of between the in-plane strains (i.e. in-plane forces) and the out-of-
plane deflections, as expressed in Eqg. (Al. 4), need to be counted in Eq. (Al. 14).
The components of normal forces in z-direction as shown in Fig. Al. 3 are given
by Eq. (Al. 15).

_ (de 0N, (4o
Ny = —N,,dysin (7) - [Nxx + ( e )dx] dysin (7) (41.15)

When d6 is small the following approximation is valid.

= — and — (A1.16)

2 2 " 2R,

C/de\ do d8  dx
sm(z)
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Fig. Al. 3 The components of normal forces in z-direction

Then, Eq. (Al. 15) is rearranged, neglecting the third order infinitesimal

component, dxdydé, as

N
N, =— (ﬂ) dxdy (A1.17)
Rx
Similarly in y-direction,
N
Ny = — <ﬂ> dxdy (A1.18)
Ry

Including terms expressed by Egs. (Al. 17) and (Al. 18) in Eqg. (Al. 14) gives,

0?My, _0°M,, 0°M,, Ny Ny,  9%w
W ph— (AL19
oz V2oxay "oy R, R, Plam ( )

y

Now, let the displacement, u, v and w, be the following functions.

u(x,y, t) = u(x,y)sinwt
v(x,y,t) = v(x,y)sinwt (A1.20)
w(x,y,t) = w(x, y)sinwt
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Then, the derivatives of these functions in terms of time, t, would be given by Eq.

(AL 21).
2%u
o
d0%v
o
2%w
Fria

Finally, by substituting Egs. (Al. 3) ~ (Al.

(A1.21)

6), and (Al. 21) into Egs. (Al. 9),

(Al1.10), and (Al. 19), the governing equations of vibration of thin shallow shell

are expressed by Eq. (Al. 22) and (Al. 23).

Lll L12 L13 u _ph O 0 u
|:L12 L22 L23] {U} - (1_)2 [ 0 _ph 0 ] {U} = O (Al. 22)
Liz Lpz Lzzl'w 0 0 phliw
2 62 \
62
Lis=F ! + V)9
¥ TPA\R, "R, ox
) 52 r (A41.23)
LZZ = Ghﬁ + Ep a_:yZ
P <V 1 ) 0
27 "P\R, " R,)0y
Lys =D 64+2 0" +(74 +E 1+2v+1
33 — Ox4 axzayz ay4 p sz Rny Ryz J
where
E, = Eh G = E D= ER Al1.24
P(1-v2) S 2(1+v) ~12(1—v?2) (41.24)

The dimensionless forms of the governing equations are also given as follows.
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L'yy L'y Lz (U 1 02 0 0
L'yz L'y L'y {V +1262 0 Q2 0
L'ys Laz LW 0 o0 -—-0i\w
, 02 v 02
Vn=gatoigye
, _(w+v) 92
L'y = T
0
L’13=ﬁ(1+v»}/)a_€
, _ 0% 1 9?
L'y = 1/a—s(2+aa—772

, _F d
L23=5(V+)/)%
1 64 2 64 1 64 2 2
53 = 2 — = | + BE(L+ 2vy +v?)
Lss = 1952 (a§4+q>2 38202 T o on’ B=( vy +y?)

where Q = wa?/ph/D.

U
{V}=o (A1.25)

> (A1.26)
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Appendix Il: The results for transient responses of the completely free plates

R I SM(4) -~ - SM() -~ SM(10) — SM(5)
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3 NS Nt N s\ N
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0 05 1 15
Time
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Time
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Fig. A2. 1 The transient response of the completely free square plate at the
centre, based on the natural frequencies and modes given by the
Superposition Method at the time of (a) 0 to 1.5 and (b) 98 to 100.
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Fig. A2. 2 The transient response of the completely free square plate at the
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Fig. A2. 3 The transient response of the completely free square plate at the
centre, based on the natural frequencies and modes given by the Rayleigh-
Ritz method with the degenerated beam functions at the time of (a) 0 to 1.5
and (b) 98 to 100.
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1.5 and (b) 98 to 100.
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Fig. A2. 7 The transient response of the completely free rectangular plate (®

= 2.0) at the centre, based on the Superposition Method at the time of (a) 0 to
1.5 and (b) 98 to 100.
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Fig. A2. 10 The transient response of the completely free square plate at (a)
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of 0 to 2.0.
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Fig. A2. 11 The transient response of the completely free square plate at (a)
the centre, (b) the point x=0.75a y=0.75b and (c) for the duration of 98 to 100.
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Fig. A2. 12 The transient response of the completely free rectangular plate
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for the duration of 0 to 1.5.
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Appendix I11: Convergence study for the natural frequency parameters of

the shallow shells
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Table A3. 1 Convergence study for the natural frequency parameters of the CSCS cylindrical shallow shell on the square planform (®=

1.0, Ry/R, = 0)
k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o

alR, = 0.1 3 3403 5551 7427 9614 1023 1325 1406 1565 200.5 210.7
4 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
5 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
6 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
7 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
8 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
9 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
10 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
11 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7
12 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7

alR, =03 3 6066 6131 1035 1057 1079 1443 1569 1696 206.2 228.2
4 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
5 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
6 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
7 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
8 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
9 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
10 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
11 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
12 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2
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Table A3. 2 Convergence study for the natural frequency parameters of the CSCS cylindrical shallow shell on the square planform (®=
1.0, Ry/Rx = 0) -continued

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, =05 3 7132 9263 1057 1279 1498 1513 1931 1969 2172  259.8
4 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 259.8
5 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
6 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
7 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
8 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
9 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
10 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
11 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
12 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8
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Table A3. 3 Convergence study for the natural frequency parameters of the CSCS spherical shallow shell on the square planform (®=

1.0, Ry/R, = 1)
k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o

alR, = 0.1 3 4743 6447 7754 1007 1075 1338 1442 1585 202.6 2111
4 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
5 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
6 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
7 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
8 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
9 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
10 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
11 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1
12 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1

alR, =03 3 1149 1157 1250 1401 1430 1673 1730 1862 2242 231.8
4 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
5 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
6 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
7 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
8 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
9 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
10 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
11 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
12 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8
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Table A3. 4 Convergence study for the natural frequency parameters of the CSCS spherical shallow shell on the square planform (®=
1.0, Ry/Rx = 1) -continued

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, =05 3 1776 1828 1858 1952 1961 2192 2217 2318 262.1 268.2
4 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
5 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
6 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
7 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
8 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
9 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
10 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
11 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2
12 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2




Table A3. 5 Convergence study for the natural frequency parameters of the CSCS hyperbolic-paraboloidal shallow shell on the square
planform (®= 1.0, R/Ry = -1)

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
a/Ry=0.1 3 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 200.3 210.5
4 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
5 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
6 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
7 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
8 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
9 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
10 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
11 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
12 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5
alR, =03 9202 9758 9813 1080 1336 1525 1564 1665 205.2 226.4

3

4 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
5 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
6 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
7 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
8 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
9 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
10 9202 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
11 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4
12 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4

16



Table A3. 6 Convergence study for the natural frequency parameters of the CSCS hyperbolic-paraboloidal shallow shell on the square
planform (®= 1.0, R,/Ry = -1) -continued

=~

Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/lRy=0.5 3 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 255.3
4 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
5 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
6 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
7 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
8 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
9 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
10 1279 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
11 1279 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3

12 1279 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3
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Table A3. 7 Convergence study for the natural frequency parameters of the CCSS cylindrical shallow shell on the square planform (®=

1.0, Ry/R, = 0)
k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o

alR, = 0.1 3 3445 6200 6669 9475 1148 1184 1461 1475 1875 1900 1977 2153
4 34.45 62.01 66.71 94.83 114.9 118.5 146.5 147.8 188.5 191.0 198.7 219.2
5 34.45 62.02 66.71 94.85 114.9 118.5 146.5 147.9 188.6 191.1 198.8 219.4
6 34.45 62.02 66.71 94.85 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5
7 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5
8 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5
9 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5
10 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5
11 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5
12 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5

alR, = 0.3 3 5036 7876 99.85 1117 1181 1457 1515 1625 1884 2042 2095 2176
4 59.37 718.77 99.85 111.8 118.2 145.7 152.0 162.9 189.4 205.6 210.4 221.1
5 59.37 718.77 99.85 111.8 118.3 145.7 152.1 162.9 189.5 205.7 210.5 221.5
6 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
7 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
8 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
9 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
10 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
11 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
12 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5
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Table A3. 8 Convergence study for the natural frequency parameters of the CCSS cylindrical shallow shell on the square planform (®=
1.0, Ry/Rx = 0) -continued

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, = 0.5 3 7235 1055 1272 1328 1474 1677 1846 1909 1917 2174 2226 2436
4 72.37 105.5 127.2 133.0 147.5 168.5 184.6 191.8 192.0 219.4 225.7 244.5
5 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.6 226.1 244.5
6 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.6 226.2 244.5
7 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5
8 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5
9 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5
10 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5
11 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5
12 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5
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Table A3. 9 Convergence study for the natural frequency parameters of the CCSS spherical shallow shell on the square planform (®=

1.0, Ry/R, = 1)
k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o

alR, = 0.1 3 4518 6957 7034 9896 1194 1196 1492 1496 1902 1906  199.8 2173
4 45.19 69.57 70.37 99.03 1194 119.7 149.7 149.9 191.4 191.4 200.7 221.4
5 45.19 69.57 70.38 99.05 1194 119.7 149.7 150.0 191.4 191.5 200.9 221.7
6 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7
7 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7
8 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7
9 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7
10 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7
11 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.1 191.4 191.6 200.9 221.7
12 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.1 191.4 191.6 200.9 221.7

alR, = 0.3 3 1083 1191 1236 1391 1530 1647 1777 1781 2125 2134 2215 2371
4 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.8 213.6 214.2 222.6 241.3
5 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.8 213.6 214.3 222.7 241.4
6 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.7 241.4
7 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.7 241.4
8 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4
9 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4
10 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4
11 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4
12 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4
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Table A3. 10 Convergence study for the natural frequency parameters of the CCSS spherical shallow shell on the square planform (®=
1.0, Ry/Rx = 1) -continued

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, =05 3 1716 1803 1870 1953 2040 2100 2234 2251 2510 2534 2506 2723
4 171.6 180.3 187.0 195.3 204.0 210.1 223.5 225.9 252.1 254.1 260.7 276.4
5 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.4
6 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5
7 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5
8 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5
9 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5
10 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5
11 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5
12 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5




Table A3. 11 Convergence study for the natural frequency parameters of the CCSS hyperbolic-paraboloidal shallow shell on the square
planform (®= 1.0, R/Ry = -1)

=~

Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/Ry=0.1 3 3559 6568 6583 9449 1179 1180 1465 1470 1896 1899 1974 2157
4 3559 6571 6583 9458 1180 1181 1471 1472  190.7 190.8 1984  220.3
5 3559 6572 6583 9460 1180 1181 1471 1473  190.8 1909 1985  220.4
6 3559 6572 6583 9460 1180 1181 1471 1473  190.8 1909 1986  220.4
7 3559 6572 6583 9460 1180 1181 1471 1473  190.8 1909 1986  220.4
8 3559 6572 6583 9460 1180 1181 1471 1473  190.8 1909 1986  220.4
9 3559 6572 6583 9460 1180 1181 1471 1473  190.8 1909 1986  220.4
10 3559 6572 6583 9461 1180 1181 1471 1473  190.8 1909 1986  220.4
11 3559 6572 6583 9461 1180 1181 1471 1473  190.8 1909 1986  220.4
12 3559 6572 6583 9461 1180 1181 1471 1473  190.8 1909 1986  220.4
a/Ry = 0.3 69.31 9245 9759 1125 1416 1421 1566 1581 2011 207.1 2079 2239

3

4 69.31 92.45 97.59 112.7 141.6 1421 157.7 158.2 203.2 208.5 208.7 229.1
5 69.31 92.45 97.60 112.7 141.7 1421 157.8 158.2 203.4 208.6 208.7 229.7
6 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.7 229.8
7 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.7 229.8
8 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.7 229.8
9 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.8 229.8
10 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.8 229.8
11 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.8 229.8
12 69.31 92.45 97.60 112.7 141.7 1421 157.9 158.2 203.4 208.7 208.8 229.8
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Table A3. 12 Convergence study for the natural frequency parameters of the CCSS hyperbolic-paraboloidal shallow shell on the square
planform (®= 1.0, R,/Ry = -1) -continued

=~

Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/lRy=0.5 3 94.15 122.4 136.9 149.2 172.9 173.0 182.2 187.0 211.5 238.0 238.8 240.0
4 94.17 122.4 137.0 149.2 173.0 173.6 183.1 187.1 215.8 239.0 239.3 247.1
5 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.2 239.0 239.3 247.7
6 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.2 239.0 239.3 247.8
7 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8
8 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8
9 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8
10 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8
11 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8

12 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8
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Table A3. 13 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the square planform
(®=1.0,R,/Rx=0)

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, = 0.1 3 4626 7444 7910 1092 1323 1353 1643 1655 2086 2108 2189 2329
4 46.26 74.61 79.25 110.2 132.3 135.3 165.1 166.3 210.4 212.6 218.9 242.2
5 46.28 74.63 79.27 110.2 132.5 135.5 165.6 166.8 210.5 212.7 220.6 242.2
6 46.28 74.64 79.28 110.3 132.5 135.5 165.7 166.8 210.6 212.8 220.6 242.7
7 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.8 220.8 242.7
8 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7
9 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7
10 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7
11 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7
12 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7
alR, =03 3 6767 7806 9446 1348 1455 1668 1711 2089 2176 2216 2346 2418
4 67.67 78.25 94.57 116.3 134.8 145.5 167.6 1721 210.8 219.6 221.6 243.2
5 67.68 78.27 94.60 116.3 135.0 145.7 168.1 172.5 210.9 219.6 223.4 243.2
6 67.68 78.28 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.4 243.7
7 67.68 78.29 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.6 243.7
8 67.68 78.29 94.61 116.4 135.0 145.7 168.3 172.6 211.0 219.8 223.6 243.8
9 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
10 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
11 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
12 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8




Table A3. 14 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the square planform
(®=1.0, R,/Rx = 0) -continued

K Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/Ry=0.5 3 9889 1189 1494 1562 1723 1907 2016 2054 2117 2409 2426  260.2
4 9922 1189 1511 1562 1723 1916 2016  207.3 2137 2409 2504  262.7
5 9925 1190 1511 1563 1725 1923 2017  207.6 2138 2432 2504 2628
6 9926 1190 1511 1563 1725 1924 2017 2077 2139 2432 2510 2629
7 9926 1190 1511 1563 1725 1924 2017  207.8 2139 2434 2510 2629
8 9926 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629
9 9926 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629
10 9926 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629
11 9927 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629

12 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9
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Table A3. 15 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the square planform (®=

1.0, Ry/R, = 1)
k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o

alR, = 0.1 3 4626 7444 7910 1092 1323 1353 1643 1655 2086 2108 2189 2329
4 46.26 74.61 79.25 110.2 132.3 135.3 165.1 166.3 210.4 212.6 218.9 242.2
5 46.28 74.63 79.27 110.2 132.5 135.5 165.6 166.8 210.5 212.7 220.6 242.2
6 46.28 74.64 79.28 110.3 132.5 135.5 165.7 166.8 210.6 212.8 220.6 242.7
7 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.8 220.8 242.7
8 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7
9 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7
10 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7
11 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7
12 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7

alR, =03 3 6767 7806 9446 1348 1455 1668 1711 2089 2176 2216 2346 2418
4 67.67 78.25 94.57 116.3 134.8 145.5 167.6 1721 210.8 219.6 221.6 243.2
5 67.68 78.27 94.60 116.3 135.0 145.7 168.1 172.5 210.9 219.6 223.4 243.2
6 67.68 78.28 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.4 243.7
7 67.68 78.29 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.6 243.7
8 67.68 78.29 94.61 116.4 135.0 145.7 168.3 172.6 211.0 219.8 223.6 243.8
9 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
10 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
11 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
12 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
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Table A3. 16 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the square planform (®=
1.0, Ry/Rx = 1) -continued

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, =05 3 98890 1189 1494 1562 1723 1907 2016 2054 2117 2409 2426 2602
4 99.22 118.9 151.1 156.2 172.3 191.6 201.6 207.3 213.7 240.9 250.4 262.7
5 99.25 119.0 151.1 156.3 1725 192.3 201.7 207.6 213.8 243.2 250.4 262.8
6 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.7 213.9 243.2 251.0 262.9
7 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.0 262.9
8 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9
9 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9
10 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9
11 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9
12 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9




Table A3. 17 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the square
planform (®= 1.0, R/Ry = -1)

=~

Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/Ry = 0.1 3 4626 7444 7910 1092 1323 1353 1643 1655 2086 210.8 2189 2329
4 4626 7461 7925 1102 1323 1353 1651 1663 2104 2126 2189 2422
5 4628 7463 7927 1102 1325 1355 1656 1668 2105 2127 2206 2422
6 4628 7464 7928 1103 1325 1355 1657 1668 2106 2128 2206 2427
7 4628 7465 7928 1103 1325 1355 1657 1669 2106 2128 2208 2427
8 4628 7465 7928 1103 1325 1355 1657 1669 2106 2129 2208 2427
9 4628 7465 7928 1103 1325 1355 1657 1669 2106 2129 2208 2427
10 4628 7465 7928 1103 1325 1355 1657 1669 2106 2129 2208 2427
11 4628 7465 7928 1103 1325 1355 1658 1669 2106 2129 2208 2427
12 4628 7465 7928 1103 1325 1355 1658 1669 2106 2129 2208 2427
a/Ry=0.3 67.67 78.06 9446 1348 1455 1668 1711 2089 2176 2216 2346 2418

3

4 67.67 78.25 94.57 116.3 134.8 145.5 167.6 1721 210.8 219.6 221.6 243.2
5 67.68 78.27 94.60 116.3 135.0 145.7 168.1 172.5 210.9 219.6 223.4 243.2
6 67.68 78.28 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.4 243.7
7 67.68 78.29 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.6 243.7
8 67.68 78.29 94.61 116.4 135.0 145.7 168.3 172.6 211.0 219.8 223.6 243.8
9 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
10 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
11  67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
12 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8
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Table A3. 18 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the square
planform (®= 1.0, R,/Ry = -1) -continued

=~

Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/Ry=0.5 3 9889 1189 1494 1562 1723 1907 2016 2054 2117 2409 2426  260.2
4 9922 1189 1511 1562 1723 1916 2016  207.3 2137 2409 2504  262.7
5 9925 1190 1511 1563 1725 1923 2017  207.6 2138 2432 2504 2628
6 9926 1190 1511 1563 1725 1924 2017 2077 2139 2432 2510 2629
7 9926 1190 1511 1563 1725 1924 2017  207.8 2139 2434 2510 2629
8 9926 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629
9 9926 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629
10 9926 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629
11 9927 1190 1511 1563 1725 1924 2017 207.8 2139 2434 2511 2629

12 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9
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Table A3. 19 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the rectangular
planform (®= 2.0, R,/Ry = 0)

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, = 0.1 3 3774 4269 5325 6428 6453 7158 8428 8806 8833 1170 1238 1296
4 37.74 42.94 53.25 64.31 69.75 72.19 84.52 88.33 102.3 1131 117.1 117.1
5 37.75 42.95 53.50 64.33 69.78 72.19 85.06 92.16 102.3 117.1 117.1 123.9
6 37.75 42.96 53.50 64.34 70.00 72.25 85.07 92.16 102.9 120.2 123.9 125.2
7 37.75 42.96 53.52 64.34 70.00 72.25 85.14 92.36 102.9 120.2 123.9 125.7
8 37.75 42.97 53.52 64.34 70.02 72.26 85.14 92.36 103.0 120.3 123.9 125.7
9 37.75 42.97 53.53 64.34 70.02 72.26 85.15 92.38 103.0 120.3 123.9 125.8
10 37.75 42.97 53.53 64.34 70.02 712.27 85.16 92.38 103.0 120.4 123.9 125.8
11 37.75 42.97 53.53 64.34 70.02 712.27 85.16 92.39 103.0 120.4 123.9 125.8
12 37.75 42.97 53.53 64.34 70.03 712.27 85.16 92.39 103.0 120.4 123.9 125.8
a/Ry=0.3 3 67.06 80.40 83.64 87.96 96.18 98.07 99.13 100.3 119.7 127.0 132.7 135.4
4 67.09 81.04 83.64 88.19 96.18 98.37 108.4 118.6 119.7 127.0 132.7 138.2
5 67.13 81.04 83.64 88.19 96.35 98.89 108.4 118.6 125.5 132.7 138.3 141.8
6 67.13 81.11 83.64 88.20 96.35 98.91 108.6 119.1 125.5 132.7 138.5 141.9
7 67.14 81.11 83.64 88.20 96.35 98.97 108.6 119.1 125.7 132.7 138.5 142.4
8 67.14 81.12 83.64 88.20 96.35 98.98 108.6 119.2 125.7 132.7 138.5 142.4
9 67.15 81.12 83.64 88.20 96.35 98.99 108.6 119.2 125.7 132.7 138.5 1425
10 67.15 81.13 83.64 88.20 96.35 98.99 108.6 119.2 125.7 132.7 138.5 1425
11 67.15 81.13 83.64 88.20 96.35 99.00 108.6 119.2 125.7 132.7 138.5 1425
12 67.15 81.13 83.64 88.20 96.35 99.00 108.6 119.2 125.7 132.7 138.6 1425




Table A3. 20 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the rectangular
planform (®= 2.0, R,/Rx = 0) -continued

=~

Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/lR,=0.5 3 7215 9500 1064 1162 1199 1209 131.8 1440 1448 1508 1643  168.7
4 7219 9568 1064 1163 1204 1318 1447 1505 1508 1643 1687  170.1
5 7224 9568 1064 1163 1208 1319 1447 1505 1685 1695 1700  170.2
6 7225 9576 1064 1164 1209 1319 1451 1506 1685 1695 1700  170.3
7 7226 9576 1064 1164 1209 1320 1451 1506 1685 1699 1700  170.3
8§ 7226 9578 1064 1164 1209 1320 1452 1506 1685 1699 1700  170.3
9 7227 9578 1064 1164 1209 1320 1452 1506 1685 1700 1700  170.3
10 7227 9578 1064 1164 1209 1320 1452 1506 1685 1700 1700  170.3
11 7227 9578 1064 1164 1209 1320 1452 1506 1685 1700 1700  170.3

12 72.27 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 170.0 170.0 170.3
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Table A3. 21 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the rectangular planform
(®=2.0,Ry/Rc=1)

k Q Q Q3 Q Qs Qs Q7 Qg Qo Qo Qu Q7
alR, = 0.1 3 5073 5152 5906 6840 7235 7861 8967 9051 9286 1163 1182 1285
4 51.09 51.52 59.06 72.38 72.53 79.26 89.89 90.51 106.1 116.3 118.3 128.5
5 51.09 51.53 59.36 72.40 72.55 79.26 90.45 93.86 106.1 118.3 127.7 128.6
6 51.11 51.53 59.36 72.40 72.78 79.31 90.46 93.86 106.7 121.1 127.8 128.6
7 51.11 51.54 59.38 72.41 72.79 79.31 90.52 94.07 106.7 121.1 128.3 128.6
8 51.11 51.54 59.38 72.41 72.81 79.32 90.52 94.07 106.8 121.3 128.4 128.6
9 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.09 106.8 121.3 128.4 128.6
10 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.09 106.8 121.3 128.4 128.6
11 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.10 106.8 121.3 128.4 128.6
12 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.10 106.8 121.3 128.4 128.6
alR, = 0.3 1134 1152 1198 1256 1262 1279 1339 1340 1404 1511 1527 1657

3

4 115.2 116.6 119.8 126.9 127.9 127.9 134.1 140.4 145.4 151.2 153.1 170.0
5 115.5 116.6 119.8 126.9 127.9 130.1 135.1 141.7 145.4 153.1 161.4 170.1
6 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.7 146.2 155.7 161.5 170.1
7 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.7 162.1 170.1
8 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.1 170.1
9 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1
10 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1
11 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1
12 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1
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Table A3. 22 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the rectangular planform
(®=2.0, Ry/Rx = 1) -continued

k Q Q, Q3 Q4 Qs Qg Q7 Qg Qg Q1o Q1 Q1o
alR, =05 3 1751 1793 1794 1846 1874 1910 1920 1921 1995 2042 2049 2133
4 179.3 179.4 179.8 187.4 187.8 191.5 192.3 199.5 201.0 204.3 205.9 221.4
5 179.4 179.8 180.5 187.8 189.5 191.5 194.5 200.2 201.0 205.9 212.9 221.4
6 179.4 179.9 180.5 187.9 189.5 192.4 194.5 200.2 202.4 208.0 213.0 222.2
7 179.4 179.9 180.5 187.9 189.6 192.4 194.5 200.4 202.4 208.0 213.9 224.4
8 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 213.9 224.4
9 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5
10 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5
11 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5
12 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5
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Table A3. 23 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the
rectangular planform (®=2.0, R,/Rx = -1)

K Q Q) Q3 Q4 Qs Qs Q7 Qg Qg Q1o Q11 Q17

a/Ry=0.1 3 4356 4414 5369 6319 7088 7433 8501 8748 8783 1122 1164 1275
4 4356 4482 5369 69.47 70.89 7551 8526 8748 1021 1123 1165 1275
5 4358 4483 5412 6950 7093 7551 86.06 91.87 1021 1165 1246 1276
6 4358 4485 5412 69.77 7093 7559 86.08 91.87 1028 1199 1247 1276
7 4358 4485 5415 69.78 7094 7559 8616 9209 1028 1199 1253 1276
8 4358 4485 5415 69.80 7094 7560 8616 9209 1029 1201 1253 1276
9 4358 4485 5415 69.80 7094 7560 8618 9212 1029 1201 1254 1276
10 4358 4485 5415 6980 7094 7561 86.18 9212 1029 1201 1254  127.6
11 4358 4485 5416 6980 7094 7561 8619 9212 10291 1201 1254  127.6
12 4358 4486 5416 6981 7094 7561 8619 9212 10292 1201 1254  127.6
a/Ry=0.3 83.66 87.04 9421 9967 1025 1068 109.1 1093 1201 1251 1396 1410

3

4 94.21 96.03 99.93 102.2 106.8 108.1 109.3 117.7 120.1 125.3 140.2 151.0
5 94.89 96.03 102.2 102.5 108.1 111.4 114.1 117.7 125.2 138.4 140.2 151.0
6 94.89 96.03 102.2 102.5 108.7 111.4 114.1 120.4 125.2 138.5 146.2 158.1
7 94.90 96.03 102.2 102.6 108.7 111.4 114.2 120.4 125.6 139.9 146.2 158.1
8 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.5 125.6 139.9 146.4 158.1
9 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.5 125.6 140.0 146.4 158.1
10 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1
11 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1
12 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1
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Table A3. 24 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the
rectangular planform (®= 2.0, R,/Ry = -1) -continued

k Q Q Q3 Q Qs Qs Q7 Qg Qo Qo Qu Q7
a/Ry=0.5 3 95.54 114.1 119.1 137.6 140.0 142.1 149.1 150.0 157.9 164.6 169.8 171.9
4 114.3 130.7 137.6 139.8 140.3 142.8 149.1 157.5 164.6 169.9 174.7 176.8
5 130.7 130.9 139.2 139.8 142.8 154.6 157.6 159.0 171.0 174.7 176.8 183.2
6 130.9 131.2 139.2 139.9 154.1 154.7 158.4 159.0 171.0 183.2 186.0 187.9
7 131.0 131.2 139.2 139.9 154.1 155.5 158.4 159.0 175.0 183.5 186.0 187.9
8 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.0 183.5 186.1 189.7
9 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.1 183.5 186.1 189.7
10 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.1 183.5 186.1 189.9
11 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.1 183.5 186.1 189.9
12 131.0 131.2 139.2 139.9 154.4 155.5 158.4 159.0 175.1 183.5 186.1 189.9




Appendix 1V Matlab code

%90%%%% %% % %% % %% %% % %% %% %% %% %% % %% %% % %% % %% %% % %%

% This programme is to calculate the natural frequency parameters of doubly %
% curved fully clamped thin shells on a rectangular planform using the %
% Superposition-Galerkin Method for different curvature ratios and aspect ratios. %

%%%%% %% %% %% % %% % %% %% %% %% %% %% % %% %% % %% % %% %% % %%

clear all

k=input('Please enter the value for k="); % No. of terms for driving coefficient
PHI=input('Please enter the value for b/a="); % aspect ratio
beta=input('Please enter the value for a/Rx="); % ratio of planform

% dimension to the radius of curvature
delta=input('Please enter the value for a/h="); % thickness ratio
gamma=input('Please enter the value for Rx/Ry="); % Gaussian curvature
% 0:cylindrical 1:spherical -1:hyperbolic paraboloidal
almds=input('Please enter the trial value of Lambda to be begun almds=");
delO=input('Please enter the increment of Lambda del=");

BC=[11111111;12345678]; % boundary condition matrix
% BC(2,m) stands for the mth building block
% 1:clamped
% 0: simply-supported or shear-diagraph (in-plane)
% at the its driving edge

PHIS = PHI"2;

POI=0.3; % Poisson's ratio

POIS = 2-POl;

POIb = (1-POI)/2;

kk = 20; % No. of terms for series expansion
del = delO;

Ls = almds+del;
h=1;

Dc=1;

r=1;

d1=0;

d2 =0;
counter0 = 0;
1=1;

ML=12; % No. of frequency parameter to be obtained

% Solving vibration problem of the building blocks in terms of E's using Galerkin
% method.

111



while h <= ML

% First building block
a = zeros(3);
b = zeros(3,1);
¢ = zeros(3,1);

form=1k
emp = m*pi;

for s = 1:kk
esp = s*pi;

a(1,1) = -12*delta"2*emp”2 - 12*delta*2*POIb/PHIS*esp"2 + Ls"2;
a(1,2) = -12*delta"2*(1+POI)/2/PHI*emp*esp;
a(1,3) = 12*delta”2*beta*(1+POI*gamma)*emp;
a(2,1) = -12*delta”2*(1+POI)/2/PHI*emp*esp;
a(2,2) = -12*delta2*POlb*emp”2 - 12*delta”2/PHIS*esp"2 + Ls"2;
a(2,3) = 12*delta”2*beta/PHI*(POIl+gamma)*esp;
a(3,1) = -12*delta"2*beta*(1+POl*gamma)*emp;
a(3,2) = -12*delta*2*beta/PHI*(POl+gamma)*esp;
a(3,3) = (emp™4 + 2/PHIS*emp”2*esp”2 + esp™4/PHISN2)...
+ 12*delta"2*beta2*(1+2*POIl*gamma+gamma’2) - Ls"2;

b(1,1) = -2*12*delta*2*beta*(1+POI*gamma)*emp*(-cos(esp)/esp”3);
b(2,1) = -2*12*delta*2*beta/PHI*(POl+gamma)*(-cos(esp)/esp”2);
b(3,1) = -2*(2/PHIS*emp”2*(-cos(esp)/esp)...
+ (emp™4 + 12*delta”2*beta2*(1+2*POl*gamma+gamma’2) - Ls"2)...
*(-cos(esp)/esp”3));

c(1,1) = -2*6*(1+POl)*delta*2/PHI*emp*(-cos(esp)/esp);
c(2,1) = -2*(-12*delta”2*POlb*emp”2 + Ls"2)*(cos(esp)/esp”2);
¢(3,1) = -2*12*delta"2*beta/PHI*(gamma+POI)*(-cos(esp)/esp);

Em(:,s,m) = a\b;
Fm(:,s,m) = a\c;
end
Em(2,2:kk,m) = Em(2,1:kk-1,m);
Em(2,1,m) = 0;
Fm(2,2:kk,m) = Fm(2,1:kk-1,m);
Fm(2,1,m) = ((12*delta*2*POlb*emp”2 - Ls"2)/6 - 12*delta"2/PHIS)...
/(-12*delta”2*POlb*emp”2 + Ls"2);
end

% Second building block
a = zeros(3);
b = zeros(3,1);
¢ = zeros(3,1);

forn=1:k
enp = n*pi;

fort=1:kk
etp = t*pi;
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a(1,1) = -12*delta"2*etp”2 - 12*delta™2*POIb/PHIS*enp”2 + Ls"2;
a(1,2) = -12*delta"2*(1+POI)/2/PHI*etp*enp;
a(1,3) = 12*delta"2*beta*(1+POI*gamma)*etp;
a(2,1) = -12*delta"2*(1+POI)/2/PHI*etp*enp;
a(2,2) = -12*delta”2*POlb*etp”2 - 12*delta"2/PHIS*enp”2 + Ls"2;
a(2,3) = 12*delta"2*beta/PHI*(POI+gamma)*enp;
a(3,1) = -12*delta"2*beta*(1+POIl*gamma)*etp;
a(3,2) = -12*delta"2*beta/PHI*(POl+gamma)*enp;
a(3,3) = (etp”4 + 2/PHIS*etp2*enp”2 + enp™4/PHISN2)...
+ 12*delta"2*beta"2*(1+2*POlI*gamma+gamma’2) - Ls"2;

b(1,1)=-2*12*delta"2*beta*(1+POI*gamma)*(-cos(etp)/etp”2);
b(2,1)=-2*12*delta™2*beta/PHI*(POl+gamma)*enp*(-cos(etp)/etp”3);
b(3,1)=-2*(2/PHIS*enp”2*(-cos(etp)/etp) + (enp™4/PHIS"2 ...
+ 12*delta”2*beta"2*(1+2*POI*gamma+gamma’2) - Ls"2)...
*(-cos(etp)/etp”3));

c(1,1)=-2*(-12*delta®2*POIb/PHIS*enp”2+ Ls"2)*(cos(etp)/etp”2);
¢(2,1)=-2*(6*(1+POl)*delta”2/PHI*enp)*(-cos(etp)/etp);
¢(3,1)=-2*(12*delta"2*beta*(1+gamma*POl))*(-cos(etp)/etp);

En(:,t,n) = a\b;
Fn(:,t,n) = a\c;

end

En(1,2:kk,n) = En(1,1:kk-1,n);

En(1,1,n) =0;

Fn(1,2:kk,n) = Fn(1,1:kk-1,n);

Fn(1,1,n) = ((12*delta"2*POIb/PHIS*enp”2 - Ls"2)/6 - 12*delta"2)...
/(-12*delta”2*POIlb/PHIS*enp”2 + Ls"2);

end

Ep=Em;
Eq=En;
Fp=Fm;
Fg=Fn;

% Generating a coefficient matrix "A"
A = zeros(8*k,8*Kk);

form=1k
emp = m*pi;

for s = 1:kk
esp = s*pi;
espc = (s-1)*pi;

A(m,m) = A(m,m)+Em(3,s,m)*esp*cos(esp);

A(k+m,k+m) = A(k+m,k+m)+Fm(2,s,m)*cos(espc);
A(4*k+m,4*k+m) = A(4*k+m,4*k+m)+Ep(3,s,m)*esp*cos(esp);
A(5*k+m,5*k+m) = A(5*k+m,5*k+m)+Fp(2,s,m)*cos(espc);

A(m,k+m) = A(m,k+m)+Fm(3,s,m)*esp*cos(esp);
A(m,4*k+m) = A(m,4*k+m)+Ep(3,s,m)*esp;

113



A(m,5*k+m) = A(m,5*k+m)+Fp(3,s,m)*esp;

A(k+m,m) = A(k+m,m)+Em(2,s,m)*cos(espc);
A(k+m,4*k+m) = A(k+m,4*k+m)+Ep(2,s,m);
A(k+m,5*k+m) = A(k+m,5*k+m)+Fp(2,s,m);

A(4*k+m,m) = A(4*k+m,m)+Em(3,s,m)*esp;
A(4*k+m,k+m) = A(4*k+m,k+m)+Fm(3,s,m)*esp;
A(4*k+m,5*k+m) = A(4*k+m,5*k+m)+Fp(3,s,m)*esp*cos(esp);

A(5*k+m,m) = A(5*k+m,m)+Em(2,s,m);

A(5*k+m,k+m) = A(5*k+m,k+m)+Fm(2,s,m);

A(5*k+m,4*k+m) = A(5*k+m,4*k+m)+Ep(2,s,m)*cos(espc);
end

A(m,m) = (A(m,m)-1/3);

A(k+m,k+m) = (A(k+m,k+m)+1/2);
A(4*k+m,4*k+m) = (A(4*k+m,4*k+m)-1/3);
A(5*k+m,5*k+m) = (A(5*k+m,5*k+m)+1/2);

A(m,4*k+m) = (A(m,4*k+m)+1/6);
A(4*k+m,m) = (A(4*k+m,m)+1/6);
end

forn=1k
enp = n*pi;

for t = 1:kk
etp = t*pi;
etpc = (t-1)*pi;

A(2*k+n,2*k+n) = A(2*k+n,2*k+n)+EN(3,t,n)*etp*cos(etp);
A(3*k+n,3*k+n) = A(3*k+n,3*k+n)+Fn(1,t,n)*cos(etpc);
A(6*k+n,6*k+n) = A(6*k+n,6*k+n)+Eq(3,t,n)*etp*cos(etp);
A(7*k+n,7*k+n) = A(7*k+n,7*k+n)+Fq(1,t,n)*cos(etpc);

A(2*k+n,3*k+n) = A(2*k+n,3*k+n)+Fn(3,t,n)*etp*cos(etp);
A(2*k+n,6*k+n) = A(2*k+n,6*k+n)+Eq(3,t,n)*etp;
A(2*k+n,7*k+n) = A(2*k+n,7*k+n)+Fq(3,t,n)*etp;

A(3*k+n,2*k+n) = A(3*k+n,2*k+n)+En(1,t,n)*cos(etpc);
A(3*k+n,6*%k+n) = A(3*k+n,6*k+n)+Eq(1,t,n);
A(3*k+n,7*k+n) = A(3*k+n,7*k+n)+Fq(1,t,n);

A(6*k+n,2*k+n) = A(6*k+n,2*k+n)+En(3,t,n)*etp;
A(6*k+n,3*k+n) = A(6*k+n,3*k+n)+Fn(3,t,n)*etp;
A(6*k+n,7*k+n) = A(6*k+n,7*k+n)+Fq(3,t,n)*etp*cos(etp);

A(7*k+n,2*k+n) = A(7*k+n,2*k+n)+En(1,t,n);

A(7*k+n,3*k+n) = A(7*k+n,3*k+n)+Fn(1,t,n);

A(7*k+n,6*k+n) = A(7*k+n,6*k+n)+Eq(1,t,n)*cos(etpc);
end

A(2*k+n,2*k+n) = (A(2*k+n,2*k+n)-1/3);
A(3*k+n,3*k+n) = (A(3*k+n,3*k+n)+1/2);

114



A(6*k+n,6*k+n) = (A(6*k+n,6*k+n)-1/3);
A(7*k+n,7*k+n) = (A(7*k+n,7*k+n)+1/2);

A(2*k+n,6*k+n) = (A(2*k+n,6*k+n)+1/6);
A(6*k+n,2*k+n) = (A(6*k+n,2*k+n)+1/6);

end

form=1k
forn=1k

p=m
a=nm

if m> kk

En3 =0;
Eg3=0;
Fn3=0;
Fg3 =0;

En2 =0;
Eg2 =0;
Fn2 =0;
Fg2 =0;

else

En3 = En(3,m,n);
Eq3 = Eq(3,m,q);
Fn3 = Fn(3,m,n);
Fg3 = Fa(3,m,g);

En2 = En(2,m,n);
Eqg2 = Eq(2,m,q);
Fn2 = Fn(2,m,n);
Fg2 = Fq(2,m,q);

end

if n> kk

Em3 =0;
Ep3=0;
Fm3=0;
Fp3 =0;

Eml=0;
Epl=0;
Fml=0;
Fpl=0;

else

Em3 = Em(3,n,m);
Ep3 = Ep(3,n,p);
Fm3 = Fm(3,n,m);
Fp3 = Fp(3,n,p);

Eml = Em(1,n,m);
Epl = Ep(1,n,p);
Fml = Fm(1,n,m);
Fpl =Fp(1,n,p);
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end

emp = m*pi;
enp = n*pi;
epp = p*p!;
eqp = q*p;

A(m,2*k+n) = 2*enp*cos(enp)*(1/2*En3-cos(emp)/emp”3);
A(m,3*k+n) = 2*enp*cos(enp)*(1/2*Fn3);

A(m,6*k+q) = -2*eqp*cos(eqp)*(-1/2*Eg3*cos(emp)+1/emp”"3);
A(m,7*k+q) = -2*eqp*cos(eqp)*(-1/2*Fqg3*cos(emp));

A(k+m,2*k+n) = 2*cos(enp)*(1/2*En2);
A(k+m,3*k+n) = 2*cos(enp)*(1/2*Fn2);
A(k+m,6*k+q) = -2*cos(eqp)*(-1/2*Eg2*cos(emp));
A(k+m,7*k+q) = -2*cos(eqp)*(-1/2*Fg2*cos(emp));

A(2*k+n,m) = 2*emp*cos(emp)*(1/2*Em3-cos(enp)/enp”3);
A(2*k+n,k+m) = 2*emp*cos(emp)*(1/2*Fm3);

A(2*k+n,4*k+p) = -2*epp*cos(epp)*(-1/2*Ep3*cos(enp)+1/enp”3);
A(2*k+n,5*k+p) = -2*epp*cos(epp)*(-1/2*Fp3*cos(enp));

A(3*k+n,m) = 2*cos(emp)*(1/2*Em1);
A(3*k+n,k+m) = 2*cos(emp)*(1/2*Fm1);
A(3*k+n,4*k+p) = -2*cos(epp)*(-1/2*Epl*cos(enp));
A(3*k+n,5*k+p) = -2*cos(epp)*(-1/2*Fpl*cos(enp));

A(4*k+p,2*k+n) = 2*enp*(1/2*En3-cos(epp)/epp”3);
A(4*k+p,3*k+n) = 2*enp*(1/2*Fn3);

A(4*k+p,6*k+q) = -2*eqp*(-1/2*Eq3*cos(epp)+1/epp”3);
A(4*k+p, 7*k+q) = -2*eqp*(-1/2*Fg3*cos(epp));

A(5*k+p,2*k+n) = 2*(1/2*En2);
A(5*k+p,3*k+n) = 2*(1/2*Fn2);
A(5*k+p,6*k+q) = -2*(-1/2*Eg2*cos(epp));
A(5*k+p,7*k+q) = -2*(-1/2*Fg2*cos(epp));

A(6*k+qg,m) = 2*emp*(1/2*Em3-cos(eqp)/eqp”3);
A(6*k+q,k+m) = 2*emp*(1/2*Fm3);

A(6*k+q,4*k+p) = -2*epp*(-1/2*Ep3*cos(eqp)+1/eqp”3);
A(6*k+q,5*k+p) = -2*epp*(-1/2*Fp3*cos(eqp));

A(7*k+q,m) = 2*(1/2*Em1);
A(7*k+q,k+m) = 2*(1/2*Fm1);
A(7*k+q,4*k+p) = -2*(-1/2*Epl*cos(eqp));
A(7*k+q,5*%k+p) = -2*(-1/2*Fpl*cos(eqp));
end
end

AA = A;
% if the driving edge of a building block is simply-supported (out of plane) or
% shear diaphragm (in-plane) the corresponding row and column are removed.
bm=0;
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form=1:8
if BC(1,m) ==
bc = BC(2,m)-bm;
A((bc-1)*k+1:bc*k,:) =I;
A(,(bc-1)*k+1:bc*k) = [];
bm =bm+1;
end
end

% Gaussian elimination
bn = 8-bm;
for p = 1:bn*k
for m = p+1:bn*k
if A(m,p)~=0
alp=A(m,p)/A(p,p);
for n = p:bn*k
A(m,n)=A(m,n)-A(p,n)*alp;
end
end
end
end

% Counting the negatives in diagonal and determining natural frequency parameters

da=1;
DA = diag(A);
counter = 0;
for m = 1: bn*k
if DA(m)<0
counter = counter+1;
end
end

d = det(A)*10"6;
D(I) =d;

L(l) = Ls;

C(I) = counter,;

I =1+1;

if counterQ ==
ifdl*d>0
if (abs(d3) > abs(d2)) && (abs(d) > abs(dl))
LA(h,k) = Ls-1.5*Dc*del;
LA(h+1,k) = Ls-1.5*Dc*del;
h=h+2;
Ls = Ls+Dc*del;
else
Ls = Ls+Dc*del;
end
elseif ((d1*d< 0) && (abs(d2) > abs(dl1)))
LA(h,k) = Ls-Dc*del/2;

h=h+1;
Ls = Ls+Dc*del;
else
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Ls = Ls+Dc*del;
end
counter0 = 1;

elseif ((d1*d< 0) && (abs(d2) > abs(dl)))
LA(h,K) = Ls-Dc*del/2;
h=h+1;
Ls = Ls+Dc*del;
else
Ls = Ls+Dc*del;
end

if counterQ ==
counter0 = 1;
counterl = counter;
d2 =di;
dl=d;

elseif PHI == 1 && abs(counterl-counter) ==
counterQ = 2;
counterl = counter;
d3 =d2;
d2 =di;
dl=d;

else
counterl = counter;
d2 =di;
dl=d;

end

if Ls > (10"\(r+1)-Dc*del);

Dc = 10",
r=r+l;
end
end

Eigenvalues = LA
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