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Abstract 

 

This thesis is devoted to investigate the capability of the Superposition 

Method for obtaining the transient response of plates and the natural frequencies 

of thin doubly curved shallow shells. The Superposition Method gives accurate 

results with only a few terms and has proved to be efficient for both cases.  

 

To investigate the transient response, all supports of a thin simply supported 

rectangular plate under self weight are suddenly removed. The resulting motion 

comprises a combination of the natural modes of a completely free plate. The 

modal superposition method is used for determining the transient response. The 

modes and natural frequencies of the plate are obtained using the Superposition 

Method and the Rayleigh-Ritz method with the ordinary and degenerated free-free 

beam functions. The W–W algorithm is then used to delimit the natural 

frequencies from the frequency equation derived in a determinantal form. There is 

an excellent agreement between the results from both approaches but the modes 

based on the Superposition Method result in more accurate values with fewer 

terms, and have shown faster convergence. The results from the Superposition 

Method may serve as benchmarks for the transient response of completely free 

plates. The transient response is found to be dominated by the lower modes. The 

centre of vibration is shifted parallel from the original xy plane by the distance of 

the first mode of the plate (a rigid body translation) multiplied by the first 

transient coefficient. 

 

In the investigation of doubly curved shells, the natural frequency 

parameters of thin shallow shells with three different sets of boundary conditions 

were obtained for several different curvature ratios and two aspect ratios. The 

solutions to the building blocks, which are subject to simply-supported out-of-

plane conditions and shear diaphragm in-plane conditions at all four edges, are 

represented by series of sine and cosine functions, generated using Galerkin’s 

method since an exact solution is not available for the doubly curved shells. Once 

displacement functions for the building blocks are obtained, the prescribed 

boundary conditions of the actual shell under investigation are then satisfied using 
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the Superposition Method. The rate of convergence is found to be excellent and 

the results agree well with published results obtained using the Ritz method and 

those obtained using a Finite Element package, Abaqus. The computations show 

that it is possible to obtain the first 12 natural frequency parameters of the shallow 

shells on the rectangular planform with a rapid convergence rate. 
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INTRODUCTION 

 

 

1.1 Vibration of plates and shells 

 

Thin plates and shells are two of the most common components in 

engineering machines and structures. Examples of applications include building 

walls, large-span roofs, turbine disks, pressure vessels, and airplane wings. In 

general, shell structures are more advantageous in engineering applications than 

plates in term of resistance to load. The engineering components must resist not 

only static loads but also dynamic loads. For instance, buildings must be designed 

to withstand dynamic forces such as earthquake excitations. Earthquake forces 

usually have low excitation frequency range. However, buildings must also be 

designed to minimise noise related problems. This means the structures must also 

be able to withstand acoustic excitations which extend to very high frequency 

range. Such engineering structures are also subjected to transient forces. One 

example is an airplane when it is exposed to gust. In engineering design, it is, 

therefore, important to use a method that is accurate and efficient for dynamic 

analysis including transient and steady state analyses of plates and shells. 

 

Much research has been conducted into plate behaviour, using a wide range 

of methods. An excellent monograph of the early literature relating to vibration 

analysis of plates was published by Leissa [1]. Among the methods utilised for 

plate vibration analysis, it is known that the Superposition Method developed by 

Gorman is very efficient and accurate for a range of geometric shapes. The 

Superposition Method has been successfully applied for analysis of out-of-plane 

vibrations of a plate having classical boundary conditions, such as, clamped, free 

and cantilevered [2], and more complicated systems, such as elastic supported, 

orthotropic, and Mindlin plates [3-7]. The Superposition Method has also been 

utilised to analyse in-plane vibrations of plates [8,9]. In many cases the results 

from the Superposition Method are the benchmarks for the natural frequencies. 

Recently, the Superposition Method was shown to be applicable for the 
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determination of steady state response of plates [10], but until the commencement 

of this thesis, there has not been any publications dealing with the application of 

the Superposition Method for transient vibration analysis.  

 

The Superposition Method mentioned above solves the plate problems using 

subsystems of the plates that have an exact solution, which are referred to as 

building blocks. However, Gorman and Wing obtained solutions for the free 

vibration of the fully clamped orthotropic and Mindlin plates using approximate 

modes for the building blocks, in a procedure they call the Superposition-Galerkin 

method [11]. Gorman also used the same method for the free vibration analysis of 

completely free orthotropic and Mindlin plates [12].  

 

It is proven that the Superposition Method is very useful and efficient in 

solving various plate problems but the method is not limited only to plates. Yu, 

Cleghorn and Fenton extended the application of Gorman’s Superposition Method 

to open circular cylindrical shells and investigated the analytical solutions for the 

free vibration of the shells with various boundary conditions [13].  

 

The research about shells has a history as long as that of plates. An excellent 

review of the literature relating to vibration analysis of shells was also published 

by Leissa [14]. More recently, literature reviews on the vibration behaviour of 

shallow shells of various shapes and boundary conditions were published by Qatu 

[15], and Liew, Lim and Kitipornchai [16]. Although numerous publications that 

deal with vibration analyses of cylindrical and spherical shallow shells using 

various analytical and numerical methods, such as the Ritz method, the Finite 

Element Method and the Finite Strip Method are available, there are no articles on 

the vibration of shallow shells using Gorman’s Superposition Method except for 

the paper on open cylindrical shells [13].  

 

Research into the analysis of the transient response of plates and shells has 

spanned several decades. In one of the earliest papers on this subject, Forsyth and 

Warburton [17] predicted the transient response of cantilever plates to an impulse 

load using the natural frequencies and mode shapes obtained by applying the 

Rayleigh method. Craggs [18] solved the transient problems of simply supported, 
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clamped and cantilever plates using the transition matrix method. Nagaya [19] 

investigated the transient response of a continuous plate on elastic supports to an 

impact load using the Laplace transform method. The Finite Element Method was 

used by Rock and Hinton [20] to obtain the transient response of both simply 

supported thick and thin plates. Coleby and Mazumdar [21] analysed the large 

amplitude transient response of an elliptical plate using the Berger method. Celep 

[22] presented the transient response of a thin elastic plate supported on a 

foundation that reacts in compression only, where the plate displacement is 

approximated by the product of vibration modes of the free beam. Nath and 

Shukala [23] have carried out the non-linear transient analysis of moderately thick 

laminated composite plates with different combinations of clamped, simply 

supported, and free boundary conditions based on the Chebyshev approximation. 

In a recent publication, Abrate [24] examined the transient response of beams, 

plates and shells to certain pulse type loads using the modal expansion technique.  

 

A review of literature at the commencement of this thesis, as presented 

above, indicated two potential areas for research, namely the applicability of the 

Superposition Method for obtaining natural frequencies of doubly curved shells 

and the effectiveness of this approach for solving transient vibration problems.  

 

 

1.2 Research Questions 

 

The general objectives of the study are to investigate the applicability of the 

Superposition Method for the transient response of plates and the free vibration 

analysis of doubly curved shells. The previous investigations [25-27] have shown 

that the Superposition Method has generally yielded results for frequencies and 

modes that are more accurate than those obtained using other competing methods. 

This observation has led to the question, whether transient response solutions 

obtained using modes generated from the Superposition Method would be 

significantly more accurate than those obtained using other methods.  
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Moreover, as mentioned, the applicability of the Superposition Method to 

doubly curved shells has not yet been explored. If the rapid rate of convergency 

and high level of accuracy of this method are also established for the doubly 

curved shells, it would prove to be a major contribution in the field of vibration of 

continuous systems. For doubly curved shells, exact solutions for natural 

frequencies and modes are not available. Therefore, the second research question 

is whether it is possible to use the Superposition Method, in conjunction with a 

suitable approximate method to compute the natural frequencies and modes of 

doubly curved shells of various boundary conditions.  

 

 

1.3 Thesis Outline 

 

In Chapter 2, it will be shown that the Superposition Method can also be 

used to accurately and efficiently determine the transient response of an 

undamped plate undergoing flexural vibration. The case considered is that the 

transient response of a thin rectangular plate with all edges simply supported, 

subject to an initial displacement corresponding to that of a plate under uniform 

load distribution, when all supports are suddenly removed. The natural 

frequencies and mode shapes of the plates used in this study are obtained by the 

Superposition Method. The results are compared with the response computed 

based on the natural frequencies and mode shapes given by the Rayleigh-Ritz 

method with the ordinary and degenerated free-free beam functions. This study, 

already reported in a recent paper [28] complements the recent publication on 

steady state response by the Superposition Method [10]. 

 

In Chapter 3, the applicability of the Superposition Method for the free 

vibration analysis of doubly curved shallow shells is investigated, and some 

numerical data for the natural frequencies of doubly curved thin shallow shells are 

presented for three different sets of boundary conditions. The procedure presented 

in this thesis and the Matlab code developed may be used to generate the solutions 

for many different combinations of boundary conditions but for brevity, results for 

only three cases are presented. In contrast to the application of the Superposition 
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Method for plates and cylindrical shells, for doubly curved shells in general, the 

Superposition Method requires approximate modes of the building blocks 

generated from other methods, such as Galerkin’s method. The work shows that 

when the approximate modes of shells under one set of boundary conditions are 

known then the Superposition Method may be used to find the natural frequencies 

of shells subjected to other boundary conditions. 
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2. Chapter II 
 

Transient vibration analysis of 

a completely free plate using modes obtained 

by Gorman’s Superposition Method 
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Chapter II 

Transient vibration analysis of a completely 

free plate using modes obtained by Gorman’s 

Superposition Method 
 

 

Nomenclature 

 

a  plate dimension in x direction  

b  plate dimension in y direction  

D  plate flexural rigidity, (Eh
3
/12)/(1-ν

2
) 

E  elastic modulus of the material  

h  thickness of plate 

w  transient response of plate  

W plate lateral deflection 

x, y  plate spatial co-ordinates 

λ
2
    √  ⁄  

η  dimensionless plate spatial co-ordinates y/b 

ν  Poisson’s ratio of material  

ν
* 

2-ν 

ξ  dimensionless plate spatial co-ordinates x/a 

ρ  density of plate 

Φ aspect ratio of plate b/a 

ω  radian frequency of vibration 
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2.1 Introduction 

 

In this chapter, it will be shown that the Superposition Method can also be 

applied accurately and efficiently to determine the transient response of an 

undamped plate undergoing flexural vibration. A thin rectangular plate whose 

edges are all simply supported is given an initial displacement corresponding to 

uniform load distribution, namely self weight. The transient response of the plate 

is investigated when all its supports are suddenly removed. The plate, after being 

released from its supports, is treated as a completely free plate. The natural 

frequencies and mode shapes of the plates used in this study are obtained by the 

Superposition Method. The results are compared with the response computed 

based on the natural frequencies and mode shapes given by the Rayleigh-Ritz 

method with the ordinary and degenerated free-free beam functions. The response 

generated from the Superposition Method agrees closely with the Rayleigh-Ritz 

results but it is noted that the Superposition Method converges faster. For the 

same matrix size, the Superposition Method gives more accurate results and it is 

believed that the results presented may be regarded as benchmarks for future 

comparisons. 

 

 

2.2 Procedure 

 

2.2.1 Natural frequencies and modes of vibration 

 

Consider the motion of the completely free rectangular plate with the 

dimensions a and b as shown in Fig. 2. 1. The natural frequencies and modes will 

be calculated using both the variational method based on an energy functional and 

the partial differential equation, i.e. the Rayleigh-Ritz method and the 

Superposition Method. They are described in detail, in references [1,29] and [2,7] 

respectively. 
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Fig. 2. 1 A completely free plate 

 

 

2.2.2 The Rayleigh-Ritz Method 

 

For the Rayleigh-Ritz method, it is assumed that the out-of-plane displacement, 

W(x, y), is taken in the form of the following series,  

 

 (   )  ∑∑     ( )  ( )

 

 

 

 

                                  (   ) 

 

where Xm(x) is ordinary free-free beam functions, which are expressed below [1].  

 

  ( )                                                           (   ) 

  ( )    
  

 
                                                  (   ) 

  ( )       (
 

 
 

 

 
)           (

 

 
 

 

 
)     (           )   (   ) 

and 

  ( )      
 
(
 

 
 

 

 
)           (

 

 
 

 

 
)     (           )    (   ) 

b 

a 
x 

y 
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where         (   ⁄ )     (   ⁄ )⁄  and        (   ⁄ )     (   ⁄ )⁄ .  

The ordinary beam functions satisfy all the boundary conditions of a free-free 

beam and are actually the natural modes of free-free beams. The values of  1 and 

 2 are obtained as roots of following Eq. (2.6) and Eq. (2.7) respectively. 

 

   (   ⁄ )      (   ⁄ )                                       (   ) 

   (   ⁄ )      (   ⁄ )                                       (   ) 

 

Yn(y) is given by simply changing x to y and a to b in above equations. 

Using the Rayleigh-Ritz method brings a set of equations expressed as [29] 

 

     

   
   

     

   
                                            (   ) 

 

where ω is a natural frequency of the plate, Vmax and 2
Ψmax are maximum 

potential energy and maximum kinetic energy function respectively, which are 

given by 

 

     
 

 
∫ ∫ [(

   

   )

 

 (
   

   )

 

   
   

   

   

   
  (   ) (

   

    
)

 

]     
 

 

 

 

 

(2.9) 

and 

     
  

 
∫ ∫                                       (    )

 

 

 

 

 

 

By inserting Eqs. (2.1), (2.9) and (2.10) into Eq. (2.8), one obtains a set of 

homogeneous linear algebraic equations in Gi, expressed in the following matrix 

form: 

 

, -* +    , -* +                                           (    ) 

where 

    
      

      
         

      

      
                         (    ) 
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The natural frequencies are determined by equating the determinant of the system 

to zero. The coefficients, G’s, are given as the eigenvector corresponding to the 

natural frequency. 

 

However, it has been noted that the ordinary free-free beam functions do not 

completely satisfy the free edge conditions of plate. The use of these functions to 

form the displacement of plates yields some residual moments and shear force at 

edges, whearas both should vanish at the extremities. Because of the above fact, 

the system is over-constrained, and hence, the calculated natural frequencies using 

the Rayleigh-Ritz method will converge to inaccurate values. 

 

To overcome the above problem, Bassily and Dickinson introduced the 

concept of degenerated beam functions which effectively relaxes the end 

conditions [30]. This relaxation can be achieved by simply floating θ in Eqs (2.4) 

and (2.5). The θ is replaced by a coefficient, which will be determined during the 

usual minimisation procedure in the Rayleigh-Ritz method.  

 

 

2.2.3 The Superposition Method 

 

Determining the natural frequencies and mode shapes of the completely free 

plates by using the Superposition Method is described in detail by Gorman [2,7]. 

In this study, the Superposition Method is utilised with the W-W algorithm [31-

33] to determine the natural frequencies to ensure that coincident roots of the 

frequency equation are not missed as explained later.  

 

The partial differential equation governing the out-of-plane vibration of 

rectangular plates, may be expressed in non-dimensional form using 

dimensionless coordinates ξ and η, where ξ = x/a, η = y/b,. The equation is written 

as 
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   (   )

   
  Φ    (   )

      
 Φ ,

   (   )

   
    (   )-     (    ) 

 

where       √   ⁄  and Φ is the plate aspect ratio b/a.     (2.14) 

The bending moment distributed along the edges perpendicular to the ξ axis and 

the η axis are expressed as follows 

 

   ( )

  
  *

   (   )

   
    

   (   )

   
+                     (    ) 

and 

  ( )

 

  *
   (   )

   

 
 

  

   (   )

   
+                       (    ) 

 

The vertical edge reaction along the edges perpendicular to the ξ axis and the η 

axis are expressed as follows 

 

   ( )

  
  *

   (   )

   
     

   (   )

     
+                    (    ) 

and 

   ( )

 
  *

   (   )

   
 

  

  

   (   )

     
+                     (    ) 

 

In the Superposition Method, the plate model is considered as consisting of 

four plate problems which have exact solutions [2,7], which are referred to as the 

building blocks as shown in Fig. 2. 2. The two small adjacent circles depict slip-

shear condition, which is that there is no rotation normal to the edge and no 

transverse edge reaction. The rotation is applied on a driving edge of each 

building block. The displacement of the original plate, W(x, y), is expressed as the 

sum of the displacement of these building blocks (Eq. (2.19)).  
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Fig. 2. 2 Building blocks used to analyse the completely free plate 

 

 (   )                                               (    ) 

 

The displacements of the first building block is taken to be in the form of the Lévy 

type solution, 

 

  (   )  ∑   ( )

 

      

                                    (    ) 

 

Substituting Eq. 2.20 into Eq. 2.13 one obtains 

 

    ( )

   
  Φ (  ) 

    ( )

   
 Φ *(  )    +  ( )         (    ) 

 

The solution for Eq. 2.21 depends on whether the eigenvalue λ
2
 is greater than or 

less than (mπ)
2
. The typical solutions that satisfy Eq. 2.21 are  

 

for λ
2
>(mπ)

2
  

  ( )                                                   (    ) 

 

and, for λ
2
<(mπ)

2
, 


a 

b 

η 

ξ 

η 

Wm(ξ,η) 

Rm(ξ) 

ξ 

+ 

η 

Rn(η) Wn(ξ,η) 

ξ 

Rp(ξ) 

Rq(η) Wp(ξ,η) Wq(ξ,η) 

ξ ξ 

+ + 

η η 
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  ( )                                                 (    ) 

 

where    Φ√   (  )   

and    Φ√   (  )  or    Φ√(  )    , whichever is real.  

Here, Am, Bm, Cm, and Dm are constants to be determined.  

 

Since there is no edge rotation and transverse edge reaction at the edge η = 

0, sine and hyperbolic sine terms will be eliminated. The other two coefficients 

are determined by enforcing the boundary condition of zero vertical edge reaction 

and the equilibrium of edge rotation along the edge η = 1. The edge rotation is 

expressed as following Fourier expansion 

 

  ( )  
   (   )

  
 ∑                                (    )

 

      

 

 

The analytical function Ym(η) is readily determined. The solutions for Ym(η) are 

expressed in terms of the coefficients Em, [7] as 

 

for λ
2
 > (mπ)

2 

  ( )    (                      )                    (    ) 

where       *(           ⁄ )       +⁄  

and         *   (           ⁄ )      +⁄  

with        {  
    Φ (  ) } 

and       {  
    Φ (  ) } 

 

and, for λ
2
 < (mπ)

2 

  ( )    (                       )                 (    ) 

where       *(           ⁄ )       +⁄  

and         *   (           ⁄ )       +⁄  

with        {  
    Φ (  ) } 

and       {  
    Φ (  ) } 
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Next, the analytical function Yn(ξ) for the second building block can be deduced 

from the first building block by interchange of coordinate variables η and ξ. The 

aspect ratio must be replaced by its inverse and λ
2
 must be multiplied by Φ

2
. The 

subscript should be change from m to n. 

 

Once the solutions to the first and second building blocks are obtained, 

solutions to the third and forth building blocks are determined by simply replacing 

η in the first building block solution to 1-η, ξ in the second building block solution 

to 1-ξ, and changing subscripts to p and q respectively, i.e. 

 

  ( )    (   )                                             (    ) 

  ( )    (   )                                              (    ) 

 

These building blocks are superimposed in order to solve the original plate 

problem. Applying the boundary conditions of original plate problem, i.e. zero 

bending moment at the edges, using k terms in each building block, yields a set of 

4k homogeneous algebraic equations relating 4k coefficients, Em, En, Ep and Eq 

which can be expressed in matrix form as follows: 

 

, -*  +  * +                                                 (    ) 

 

where [A] is 4k×4k matrix, {Ex} is 4k×1 column vector of coefficients, Em, En, Ep 

and Eq.  

 

The natural frequencies are determined by searching for the λ values which 

make the determinant of the system vanish by trial and error. Once the λ values 

are found, the coefficients, E’s, are found by substituting into Eq. (2.29) and these 

give the natural modes of the plate. However, this procedure also picks up some 

unexpected values when the determinant goes through a pole (case (b) in Fig. 2. 3), 

and misses the values associated with coincident modes of a square plate (case(c)), 

i.e. the symmetric-antisymmetric modes and the antisymmetric-symmetric modes 

about x and y axes.  
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Fig. 2. 3 Plot of the determinant vs. trial λ 

 

To ensure that coincident roots are not missed, the W-W algorithm [31-33] 

has been used. The coefficient matrix generated with the trial value is modified to 

an upper triangular matrix according to the W-W algorithm. The number of 

negatives along the diagonal of the matrix is counted for each trial frequency. Any 

change in this number gives the number of roots that exist between the previous 

trial frequency and the current trial frequency, therefore, the natural frequency 

parameters λ can be defined in this way. If the number changes in two, then the 

value of λ is considered as associating with a coincident mode. However, using 

this procedure still gives some unexpected values when the determinant changes 

sign through zero at the poles and the values of λ corresponds to the eigenvalues 

of the square plate having all edges fully constrained against rotation (case (d)). 

Technically, the application of the W-W algorithm requires the knowledge of the 

natural frequencies of the fully constrained plate and each time such frequencies 

are passed the number of such frequencies should be accounted into the sign count. 

This was effectively achieved using the following procedure. The distances of the 

determinant from the zero line are stored at a given trial frequency which gives a 

determinant d0. The previous two determinants are examined when the number of 

negatives changed. Let the previous two values of determinant d1 and d2 as shown 

in Fig. 2. 3. If d1 is closer to the zero line than d2, then λ is considered as the value 

associating with a natural frequency or coincident natural frequencies (when 
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change of the negatives is two), otherwise the value of λ is omitted. This 

procedure has eliminated the false roots and given only the required set of natural 

frequency parameters. These results agree closely with those in the literature 

[2,7,25-27].  

 

 

2.2.4 Transient vibrations 

 

In the transient analysis studied here, the effect of damping has not been 

considered. The response due to an initial disturbance is then expressed in term of 

its modes as follows: 

 

  (     )  ∑    (   )    (   )  ∑    (   )    (   )    (    ) 

 

where Wi(x,y) is i
th

 normal mode and ωi is the i
th

 natural frequency. Wi(x,y) is 

given by Eq. (2.1) or (2.19). Eq. (2.30) has to satisfy the prescribed initial 

conditions, i.e. the displacement and/or velocity at t = 0. An expression for the 

velocity may be obtained by differentiating Eq. (2.30) with respect to t. 

 

  ̇(     )  ∑  (    (   )    (   )         (   ))           (    ) 

 

Let the displacement and the velocity at t = 0 be following equations, 

 

 (     )    (   )                                            (    ) 

 ̇(     )   ̇ (   )                                            (    ) 

 

At t = 0, Eqs. (2.30) and (2.31) become, 

 

  (   )  ∑    (   )                                      (    ) 

 ̇ (   )  ∑      (   )                                   (    ) 
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The coefficients ai and bi may be determined by multiplying both sides of Eqs. 

(2.34) and (2.35) by Wj and integrating over the area of plate, i.e., 

 

   (   )  (   )      ∑    (   )  (   )    

 

       (    ) 

and 

  ̇ (   )  (   )      ∑      (   )  (   )    

 

    (    ) 

 

However, from the orthogonality condition, 

 

   (   )  (   )              (   )               (    ) 

 

From Eqs. (2.36), (2.37) and (2.38), the coefficients ai and bi are given by, 

 

   
  ̇ (   )  (   )    

   {  (   )}
 
    

                                  (    ) 

and 

   
   (   )  (   )    

 {  (   )}
 
    

                                  (    ) 

 

 

2.2.5 Initial conditions 

 

The initial conditions given in this study are that there is an imposed 

deflection which is equal to that of a plate with all edges simply supported, and 

subject to a uniformly distributed load such as self weight and that the velocity is 

zero everywhere. The deflection expression for this case which is readily available 

in the literature [34] is, 

 

  (   )  
    

   
∑∑

   
   
    

   
 

  (
  

   
  

  )
 

  

     (                       )             (    ) 
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where qo is a load per area. The load is assumed as the weight of the plate per area, 

which is given by       . Five terms in each direction were found to be 

sufficient to ensure that the results for the displacement have converged to four 

significant figures, and therefore k and l in Eq (2.41) were set for nine in 

computation. It should be noted here that if the transient response of a plate that is 

freely falling under gravity after removal of its simple supports is required, the 

rigid body motion of the plate due to the gravity force gt
2
/2 should be added. The 

above initial condition was chosen as a convenient case to remember for the 

purpose of benchmarking and not due to any engineering significance. 

 

 

2.3 Result and discussion 

 

The transient response of a completely free plates has been calculated when 

the plates having all the edges simply supported are suddenly released from the all 

supports. The computation of the response of the plates for the various aspect 

ratios was done using the natural frequencies and modal shapes given by the 

Superposition method and the Rayleigh-Ritz method with the ordinary and 

degenerated free-free beam functions. The first 50 modes were used in the 

calculation. The displacement and time are given in dimensionless forms, which 

are  .
      

   
/⁄  and  (  √   ⁄ )⁄  respectively. All responses were calculated by 

using the software MATLAB in default double precision. However, the maximum 

number of terms used in the degenerated beam functions to compute the natural 

frequencies and mode shapes is limited to eight terms in each direction because 

the computing procedure showed numerical instability when using more than nine 

terms. 

 

Firstly, the convergence tests were carried out for the results computed by 

all the methods mentioned above. The responses at the centre of the square plate 

obtained using the natural frequencies and modes given by the Superposition 

Method are plotted in Fig. 2. 4 for various values of number of terms used in each 
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building block. It may be seen that except for the four term solution, all other 

results agree well even for non-dimensional time of 100 units, showing that 

convergence has been reached with only six terms. Figs. 2. 5 and 2. 6 show the 

response at the same point calculated based on the natural frequencies and modes 

given by the Rayleigh-Ritz method in respect of the terms used in the ordinary 

beam functions and the degenerated beams functions respectively. As can be seen 

from Part (a) of these figures, there are no significant differences between the 

results for different number of terms for either method, immediately after the 

plates were released. However, the differences become larger as time increases as 

can be seen from Part (b) of the figures. While almost no differences are found 

between the results obtained using 10 and 15 terms in Eq.(2.20) for the 

Superposition Method, and six and eight terms in each direction of Eq.(2.1) for 

the degenerated beam functions, there are obvious disagreements between the 

results obtained using the ordinary beam functions. For a fair comparison between 

the convergence rates of the Superposition Method and the Rayleigh-Ritz method 

with degenerated beam functions, it is useful to note that to get convergence to the 

same level of agreement, the Superposition Method uses a matrix size of 40×40 

where as the Rayleigh-Ritz method requires about 100×100. The rates of 

convergence of the Superposition Method and the Rayleigh-Ritz method with the 

degenerated beam functions are considerably better than that of the Rayleigh-Ritz 

method with the ordinary beam functions. Results of the convergence test 

presented here are only for the square plate, but the same occurrences were 

observed for plates of other aspect ratios.  

 

Fig. 2. 7 shows the transient response of the completely free square plate at 

(a) the centre, (b) the point x=0.75a and y=0.75b and (c) the corner. The natural 

frequencies and mode shapes used in the computation were obtained using 15 

terms in the Superposition Method, eight-term degenerated beam functions and 

50-term ordinary beam functions in the Rayleigh-Ritz method. Initially, there is an 

excellent agreement between the results given by all three methods. However, the 

difference becomes noticeable as time increases. Fig. 2. 8 shows that the response 

at the corner of the plate at the time of 98 to 100. While the results obtained based 

on the Superposition Method and the degenerated beam functions are in excellent 

agreement with each other, there is a large discrepancy between the result based 
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on the ordinary beam functions and others. This is due to the fact that the 

Rayleigh-Ritz method using the ordinary free-free beam functions gives higher 

values for the natural frequencies of the completely free plates than those given by 

the Superposition Method and the Rayleigh-Ritz method with the degenerated 

free-free beam functions. Similar differences were also found in the responses at 

other points of the plate and of the plates for other aspect ratios. 

 

It can also be seen from Fig. 2. 7 that the plates vibrate about a shifted plane 

parallel to the original xy plane representing the undeformed state of the plate. The 

plane shift was also discovered in the responses of the plates for the aspect ratios 

1.5 and 2.0. The distance between the planes that are at the centre of vibration and 

the xy plane almost agree with the displacement contribution of the first mode, 

which is the rigid body motion in dimensionless distance of 1.0, multiplied by the 

first transient coefficient of the plates, which is 0.1023 for the square plate (Table 

2. 1). 

 

The modal superposition method used in this thesis to investigate the 

transient response of the plate gives an insight into how modes participate in the 

response, as mentioned in the reference [24]. Fig. 2. 9 shows the proportions of 

modes participating in the transient responses. Since, in the case studied here, the 

initial disturbance is symmetric about both centre lines of the plate parallel to x 

and y axes, only doubly symmetric modes participate. The first three participating 

modes dominate about 90-percent of the responses for the square plate. The 

transient responses of the plates with aspect ratios 1.5 and 2.0 are governed in 

similar rates by the first four and five participating modes respectively. The 

figures also show that the proportion of higher modes contributing to the transient 

response of the plates with aspect ratios 1.5 and 2.0 are larger than that of a square 

plate.  

 

It is known that both the Superposition Method and the Rayleigh-Ritz 

method give upper bounds for the natural frequencies of completely free plates 

[1,26,27] and lowest values would be considered as benchmarks. The 

Superposition Method and the Rayleigh-Ritz method using the degenerated free-

free beam functions give lower values of natural frequencies than those given by 
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the Rayleigh-Ritz method using the ordinary free-free beam functions for the 

completely free plates. Those methods also give faster convergence rates. For the 

same matrix size, however, the Superposition Method gives lower values than 

those obtained using the degenerated beam functions, and also use of the 

degenerated beam functions exhibits numerical instability in the results when 

using more than nine terms in the series. Therefore, it is preferable to use the 

Superposition Method. It seems appropriate at this stage to treat the transient 

responses obtained using the natural frequencies and modes given by the 

Superposition Method as benchmark results for the response of the plates with all 

edges simply supported when being suddenly released from all the supports after 

being subject to an initial displacement corresponding to that due to a uniformly 

distributed load. The first few participating modes, transient coefficients, 

corresponding natural frequency parameters, λ
2
 [26,27] and modal displacements 

at the centre, the point of 0.75a, 0.75b and the corner are given in Table 2. 1. It 

should be noted that the numerical results may serve as benchmarks for transient 

response of plates. 
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Fig. 2. 4 The transient response of the completely free square plate at the 

centre, based on the natural frequencies and modes given by the 

Superposition Method at the time of (a) 0 to 1.5 and (b) 98 to 100. 
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Fig. 2. 5 The transient response of the completely free square plate at the 

centre, based on the natural frequencies and modes given by the Rayleigh-

Ritz method with the ordinary beam functions at the time of (a) 0 to 1.5 and 

(b) 98 to 100. 
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Fig. 2. 6 The transient response of the completely free square plate at the 

centre, based on the natural frequencies and modes given by the Rayleigh-

Ritz method with the degenerated beam functions at the time of (a) 0 to 1.5 

and (b) 98 to 100. 
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Fig. 2. 7 The transient response of the completely free square plate at (a) the 

centre, (b) the point x=0.75a y=0.75b and (c) the corner, obtained using the 

natural frequencies and modes given by the Superposition Method and the 

Rayleigh-Ritz method with the ordinary and degenerated beam functions.  

 

 

  

-0.2

0

0.2

0.4

0.6

0.0 0.5 1.0 1.5 2.0

D
is

p
la

c
e

m
e

n
t

Time

SM(15 terms)

RR with 50-Ordinary B.F.

RR with 8-Degenerated B.F.

-0.1

0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0

D
is

p
la

c
e

m
e

n
t

Time

SM(15 terms)

RR with 50-Ordinary B.F.

RR with 8-Degenerated B.F.

0

0.05

0.1

0.15

0.0 0.5 1.0 1.5 2.0

D
is

p
la

c
e

m
e

n
t

Time

SM(15 terms)

RR with 50-Ordinary B.F.

RR with 8-Degenerated B.F.

(a)

(b)

(c)



28 

 

Fig. 2. 8 The transient response of the completely free square plate at the 

corner at the time of 98 to 100. 
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Fig. 2. 9 The proportion of the participating modes of completely free plates 

with aspect ratio of (a) 1.0, (b) 1.5 and (c) 2.0 
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Table 2. 1 Contribution of participating modes. 

Φ = 1.0  

     Participating Modes  1 6 11 

  λ
2
  0 24.27 63.69 

  Transient Coefficients  0.1023 0.8051 -0.5145 

  Modal displacement Centre 1.000 0.1433 -0.0795 

  

 

0.75a, 

0.75b 1.000 0.0213 -0.0031 

  

 

Corner 1.000 -0.2411 -0.1420 

  
Φ= 1.5 

 

     Participating Modes  1 5 7 11 12 

λ
2
  0 9.517 22.18 43.93 53.35 

Transient Coefficients  0.1968 -1.0559 -1.3461 -1.0306 -0.1060 

Modal displacement Centre 1.000 -0.0780 -0.1032 -0.0696 0.0512 

 

0.75a, 

0.75b 1.000 -0.0126 -0.0128 -0.0090 -0.0386 

 

Corner 1.000 0.1333 0.1667 -0.1215 0.0838 

Φ = 2.0 
 

     Participating Modes  1 4 8 11 12 

λ
2
  0 5.366 22.00 29.68 36.04 

Transient Coefficients  0.2646 -1.4421 1.9101 1.3581 1.0745 

Modal displacement Centre 1.000 -0.0844 0.0929 -0.0255 0.0986 

 

0.75a, 

0.75b 1.000 -0.0139 0.0022 0.0388 -0.0129 

 

Corner 1.000 0.1440 -0.1244 -0.0559 0.1650 
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2.4 Concluding Remarks 

 

It has been shown that the natural frequencies and modes determined by 

applying the Superposition Method can be used to calculate the transient response 

of completely free plates accurately and efficiently. The results agree well with 

those obtained using the frequencies and modes found by applying the Rayleigh-

Ritz method for short periods of time. The response based on the Rayleigh-Ritz 

modes based on ordinary beam functions are slower to converge compared to the 

corresponding results based on the degenerated beam functions. The results based 

on the Superposition Method prove to be the fastest to converge. This means that 

for a given matrix size, the Superposition Method gives the most accurate results 

for the response. The difference between the results found using the Superposition 

Method and the Rayleigh-Ritz modes increase with time and the use of the 

degenerated beam functions shows numerical instability during the computation 

when using more than nine terms in the series. Therefore, the results calculated 

using the natural frequencies and modes given by the Superposition Method are 

more accurate and reliable, and may be considered as benchmark data for the 

transient response of the completely free plates. 

 

As expected the transient response is dominated by the lower modes. The 

plates vibrate about the shifted plane parallel to the original xy plane. The 

distances between these two planes agree with the displacements for the first 

mode of the plate (a rigid body translation) multiplied by the first transient 

coefficient. 
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3. Chapter III 
 

Free vibration analysis of 

thin shallow shells using 

the Superposition-Galerkin Method 
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Chapter III 

Free vibration analysis of thin shallow shells 

using the Superposition-Galerkin Method 
 

 

Nomenclature 

 

a  planform dimension in x direction 

b  planform dimension in y direction 

D  plate flexural rigidity, (Eh
3
/12)/(1-ν

2
) 

E  elastic modulus of the material  

h  thickness of shell 

Rx radius of curvature parallel to x axis 

Ry radius of curvature parallel to y axis 

u  in-plane displacement in x direction  

U  dimensionless displacement, u/a 

v  in-plane displacement in y direction 

V  dimensionless displacement, v/a 

w  out-plane displacement  

W dimensionless displacement, w/a 

x, y  platform spatial co-ordinates 

β  curvature ratio, a/Rx 

γ  Gaussian curvature, Rx/Ry 

δ  thickness ratio, a/h 

η, ξ dimensionless co-ordinates; y/b, x/a 

ν  Poisson’s ratio of material  

 ̅ (   )   

ρ  density of shell 

Φ aspect ratio of planform b/a 

ω  radian frequency of vibration 

Ω frequency parameter    √   ⁄  
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3.1 Introduction 

 

This chapter shows that the Superposition Method is applicable for the 

free vibration analysis of doubly curved shallow shells with any combinations 

of simply-supported and clamped edges, which leads to 55 possible 

combinations. Some numerical data of the natural frequencies are presented for 

singly and doubly curved thin shallow shells with three different sets of 

boundary conditions described later. The computed results for fully clamped 

shells are compared with the data obtained using the Ritz method in the earlier 

literature, and the results for other boundary conditions are compared with 

results generated using a Finite Element package Abaqus. While the 

application of the Superposition Method for plates and cylindrical shells 

generally requires an exact solution for the building blocks, the present work 

utilises approximate modes of the building blocks generated using the Galerkin 

method because, in general, an exact solution is not yet available for doubly 

curved shells. Consequently, it is shown that when the approximate modes of 

shells under one set of boundary conditions are known then the Superposition 

Method may be used to find the natural frequencies of the same shells 

subjected to other boundary conditions. 

 

 

3.2 Procedure 

 

In the Superposition Method, a free vibration problem was solved by 

superimposing plural forced vibration solutions. They are referred to as 

building blocks. The vibration analysis of plates using the ordinary 

Superposition Method and the Superposition-Galerkin Method has been 

described in detail in literature [2,7] and [11,12] respectively. 
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Fig. 3. 1 A shallow shell on rectangular planform 

 

Fig. 3. 1 shows the middle surface of a shallow shell on a rectangular 

planform. The governing equations based on Donnell - Mushtari - Vlasov 

theory for free vibration of thin shallow shells are given in reference [35] and 

the dimensionless form of the governing equations is expressed as follows.  
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where the symbols are given in the nomenclature. 

The dimensionless bending moment, M, and membrane force, N, are given in 

terms of displacements as  
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At each edge of the three classical boundary conditions, namely, free, 

simply supported, and clamped conditions, in this study only simply-supported 

and clamped cases are considered. For in-plane conditions, of the four common 

combinations of tangentially free or restrained and normally free or restrained, 

it is tangentially restrained and normally free or restrained conditions that are 

considered. With the selected boundary conditions, it is possible to have 55 

different combinations for a shell of rectangular planform with arbitrary 

curvature, and for certain special cases such as cylindrical shells, there are 100 

different combinations of the above boundary conditions. The Superposition 

scheme developed here is easily applicable to solve any of these cases but for 

brevity, results for only three combinations are presented. The boundary 

conditions treated are: (a) all edges are fully clamped; (b) a pair of opposite 

edges is simply-supported out-of-plane, shear diaphragm in-plane and others 

are clamped; (c) two adjacent edges are simply-supported out-of-plane, shear 

diaphragm in-plane and others are clamped. Let us begin by explaining the 

procedure for the fully clamped case.  

 

The analysis of fully clamped shallow shells is accomplished by using 

eight building blocks whose edges are all simply supported with shear 

diaphragm in-plane conditions, as shown in Fig. 3. 2. The boundary conditions 

of a simply supported shallow shell with shear diaphragm in-plane conditions 

are given by Eq. (3.4).  
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Fig. 3. 2 Building blocks used for the free vibration analysis of the shell 

 

                         (            )

                         (            )
-           (   ) 

 

First let us consider the first two building blocks. The first and second building 

blocks are subjected to bending moments, M, and an in-plane force parallel to 

η-axis, N, respectively on its driving edges. These moment and in-plane force 

terms are expressed in a series form (Eq. (3.5)). 
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The in-plane displacements U and V, and out-of-plane displacement W are 

expressed by Eq. (3.6). The specific set of functions that satisfy the governing 

differential equations and the boundary conditions approximately for building 

blocks 1 and 2 are given by Eqs. (3.7) and (3.8), respectively.  
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Eqs.(3.6) and (3.7) are substituted into Eq. (3.1) and differentiated term-by-

term. This creates an algebraic equation relating the 3×K Fourier unknowns, 

Ami, Amj, Aml and driving coefficient Em, which is given as follows.  
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By following the Galerkin method, these equations are expanded in an 

appropriate trigonometric function of K terms, which gives a set of 3×K 

simultaneous non-homogeneous algebraic equations [11,12]. These Fourier 

unknowns are obtained by solving the algebraic equations, and thus a solution 

for the first building blocks is expressed in terms of Em. A schematic 

explanation of the algebraic equations in a matrix form is shown in Fig. 3. 3. 

The short bars depict non-zero elements. It is noted that it is advantageous to 

use sine functions for out-of-plane and tangential displacements, and cosine 

functions for perpendicular displacements because of their simplicity and 

orthogonality. A solution for the second block is obtained similarly and 

expressed in term of Fm. 
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 Ami   Amj   Aml    Em  

1 2 3 1 2 3 1 2 3     

━    ━  ━     ━  

 ━    ━  ━    ━  

  ━      ━   ━  

   ━        ━  

━    ━  ━   =  ━  

 ━    ━  ━    ━  

━    ━  ━     ━  

 ━    ━  ━    ━  

  ━      ━   ━  

Fig. 3. 3 A Schematic explanation of the algebraic equations given by 

Galerkin method in matrix form 

 

The solution for the third and fourth building block will be obtained by 

interchanging η and ξ, as well as X and Y of Eqs (3.7) and (3.8), and 

substituting into Eq.(3.1) followed by Galerkin’s procedure used to solve the 

first two building blocks. Once the solutions to the first four building blocks 

are available, solutions for the other building blocks can be generated from the 

first four building blocks by simply replacing η in the first two building block 

solution to 1-η, ξ in the third and fourth building block solution to 1-ξ, and 

changing subscripts from m to p and n to q respectively. The solution for Xp, Zp, 

Yq and Zq should be preceded with negative sign, i.e. 
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Once the solutions for all building blocks are obtained, these building 

blocks are superimposed and the coefficients in the solutions of building blocks 

are adjusted so as to satisfy the boundary conditions of the original clamped 

shell. In other words, the flexional rotation and in-plane displacement 

perpendicular to edges of the superimposed set of building blocks should 

vanish. The boundary conditions of fully clamped shell are given by the 

following equations.  

 

             
  

  
        (            )

             
  

  
        (            )
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       (    ) 

 

These flexional rotation and in-plane displacement contributions are expanded 

in an appropriate trigonometric series and this yields a set of 8k homogeneous 

algebraic equations relating 8k coefficients, E’s and F’s which can be 

expressed in matrix form as follows:  

 

, - {
 
 
}  * +                                               (    ) 

 

where [A] is 8k×8k matrix, {
 
 
} is 8k×1 column vector of coefficients, E’s and 

F’s. 

 

A schematic representation of the matrix [A] of Eq. (3.15) when k=3 is 

given in Fig. 3. 4. The dots in the figure depict non-zero components. The 

matrix is divided into 8×8 segments, and each column and row the segment 

denote the building block and its contribution to the boundary condition at the 

edge respectively. The natural frequencies are determined by searching for the 

Ω values for which the determinant of the system vanishes by trial and error. 

Once the Ω values are found, the coefficients, E’s, and F’s are found by 

substituting into Eq.(3.15) and these give the natural modes. 
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 1   2   3   4   5   6   7   8   

▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪  
 ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪ W’η=1 

  ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪  

▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪  

 ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪ Vη=1 

  ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪  

▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪    

▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  W’ξ=1 

▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪  

▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪    

▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  Uξ=1 

▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪  

▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪  

 ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪ W’η=0 

  ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪  

▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪  

 ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪ Vη=0 

  ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪  

▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪    

▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  W’ξ=0 

▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪  

▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪    

▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  ▪ ▪ ▪ ▪ ▪ ▪  ▪   ▪  Uξ=0 

▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪   ▪   ▪  

Fig. 3. 4 A schematic representation of matrix [A] for k = 3. 

 

The preceding paragraphs explain how to obtain the natural frequency 

parameters of fully clamped shallow shells using eight building blocks whose 

edges are all simply-supported with in-plane shear diaphragm. However, shells 

with any combination of boundary conditions of simply-supported and 

clamped in the out-of-plane case, and shear diaphragm or fully constrained in 

the in-plane case, can be solved using the same building blocks employed here. 

In other words, each edge of a shell is imposed four different boundary 

conditions, depending on whether or not the out-of-plane rotation and/or the in-

plane displacement normal to the edge are prohibited. As mentioned earlier, 

this leads to 55 possible different combinations of boundary conditions. 

Solutions for shells with any of these combinations can be obtained by simply 

eliminating certain building blocks and corresponding sub-matrices from the 

matrix [A]. For example, a shell whose edges are simply supported and on 

shear diaphragm at ξ = 1 and 0, and others are clamped can solved by removing 
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the building blocks 3, 4, 7, and 8, namely third, forth, seventh and eighth 

columns and rows of segments of the matrix [A]. This shows the versatility of 

the Superposition Method. 

 

 

3.3 Result and discussion 

 

The numerical results are presented for three type of shallow shells, 

which are cylindrical (Rx/Ry = 0), spherical (Rx/Ry = 1), and hyperbolic-

paraboloidal (Rx/Ry = -1) shells and for three different sets of boundary 

conditions. The results are compared to the results in earlier literature and those 

obtained using an FEA package, Abaqus. The natural frequencies are given in a 

dimensionless form, which will be referred to as the natural frequency 

parameter. The Poisson’s ratio and the ratio of planform dimension to thickness 

(a/h) are set to 0.3 and 100 respectively for all calculations in this thesis. All 

natural frequency parameters were obtained for the curvature ratios (a/Rx) of 

0.1 to 0.5. A shell, in general, is considered as thin and shallow if the ratio of 

thickness to radius of curvature is less than    ⁄  [36] and a subtended angle is 

not more than 40° [37], which means the curvature ratio is less than 0.68, 

respectively. Since all shells studied here are in the above criteria, the thin 

shallow shells theory is valid for this study. The present results were calculated 

by using the software MATLAB in default double precision. The spec of the 

computer used for this study is that Intel
®
 Pentium

®
 D CPU 2.80GHz 2.79GHz 

and 1.00 GB of RAM. 

 

Convergence tests were carried out to determine the number of terms 

which are used in the series expansions. The Superposition-Galerkin method 

requires two numbers for the series summations. One is the number of terms 

for the series expansions in Eqs. (3.7) and (3.8), which is “K” and the other is 

the number of terms for the driving coefficients E’s and F’s, which is “k”. 

Table 3. 1 shows that computed fundamental natural frequency parameters of 

the fully clamped cylindrical shallow shell on the square planform for various 

number of K. There is no change in four significant digits beyond 11 terms. 
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Table 3. 2 presents the fundamental natural frequency parameters of the same 

type of shell for various values of k. No change in fourth digit is found after 

using more than five terms. It may be seen that there is no difference in the 

parameters for the number of k between 1 and 2, and also 3 and 4. This is 

because the solution includes both symmetrical and anti-symmetrical terms but 

Table 3. 2 presents results for a mode which is symmetrical and therefore not 

influenced when adding an anti-symmetrical term. After convergence tests for 

other modes and other shells with different curvature ratios, the values of k = 

10 and K = 20 are chosen. These numbers could be considered large enough to 

obtain four significant digits in the natural frequency parameters although 

using more terms gives results which converged to more significant digits. The 

work also shows that the Superposition-Galerkin method gives excellent 

convergence in its results for the fundamental natural frequency parameters. 

 

In Table 3. 3, the frequency parameters obtained using the Superposition 

- Galerkin method for cylindrical shallow shells having an aspect ratio of 1.0 

and a curvature ratio of 0.1 are compared with those in the reference published 

by Monterrubio [38]. He uses the Rayleigh-Ritz method and the penalty 

function method to obtained true upperbound results [39]. There is an excellent 

agreement between the results but the present results are lower. This is 

reasonable since the present results seem to be lowerbound as can be seen from 

Table 3. 2. However, it may not possible to declare that the Superposition-

Galerkin Method gives lowerbounds for the results obtained for the fully 

clamped shell because of the following reason. If one were to use exact modes 

of the building blocks, one would expect the Superposition Method to yield 

lowerbound results, but if the modes of the building blocks are approximate 

this is not guaranteed. In the present case the Superposition Method gives 

higher values if fewer terms were used for K. For example, using three terms 

only for K gives the higher value than that of published upperbound frequency 

parameters.  
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Table 3. 1 The fundamental frequency parameter of the fully clamped 

square cylindrical shallow shell for various number of K (a/Rx = 0.1). 

K 3 4 5 6 7 8 9 10 11 

Ω1 46.86 46.26 46.33 46.26 46.29 46.27 46.28 46.27 46.28 

K 12 13 14 15 16 17 18 19 20 

Ω1 46.28 46.28 46.28 46.28 46.28 46.28 46.28 46.28 46.28 

 

Table 3. 2 The fundamental frequency parameter of the fully clamped 

square cylindrical shallow shell for various number of k (a/Rx = 0.1). 

k 1 2 3 4 5 6 

Ω1 45.84 45.84 46.26 46.26 46.28 46.28 

k 7 8 9 10 11 12 

Ω1 46.28 46.28 46.28 46.28 46.28 46.28 

 

Table 3. 3 Comparison of present results and those in the reference [38] 

for fundamental frequency parameter of the fully clamped square 

spherical shallow shell 

 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

Ref. [38] 46.292 74.748 79.376 110.58 132.78 135.78 166.28 167.42 

Present 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 

 

Fig. 3. 5, 3. 6 and 3. 7 show the first natural frequency parameter of shallow 

shells for K = 10, 15 and 20 with boundary conditions of CCCC (all edges are 

clamped out-of and in-plane), SCSC (simply supported out-of-plane and shear 

diaphragm in-plane at ξ = 0, 1 and clamped at η = 0, 1), and CCSS respectively. 

As can be seen from these figures, the natural frequency parameters increase 

with number of driving coefficients, k. This has been confirmed for all shells 

studied. However, since the Galerkin’s solution is an upperbound it is not 

possible to assure lowerboundedness for the final solution to the original 

problem. For a given number of driving coefficients k, increasing the number 

of terms in the Galerkin’s series K generally shows upperbound behaviour but 

it is not consistent. On the boundedness, it should be noted here that even for 

plates, Superposition Method gives bounded solutions only for some boundary 

conditions. It is not possible to get bounded solutions for CFCF plates for 
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example, as any usable building block would have some boundaries that are 

stiffer and others that are more flexible compared to the final solution. 

 

 

Fig. 3. 5 First frequency parameter of CCCC shallow shell (Φ = 1.0, a/Rx = 

0.1, Rx/Ry = 0) 

 

 

Fig. 3. 6 First frequency parameter of SCSC shallow shell (Φ = 1.0, a/Rx = 

0.1, Rx/Ry = 1) 

 

 

Fig. 3. 7 First frequency parameter of CCSS shallow shell (Φ = 1.0, a/Rx = 

0.1, Rx/Ry = -1) 
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Tables 3. 4 and 3. 5 give the first 12 natural frequency parameters of 

SCSC and CCSS shallow shell on the square planform respectively. Those 

values are compared with the results obtained using Abaqus as the results for 

the shells having the same combination of boundary conditions were not found 

in published literature. The Abaqus results were calculated using 10000 

quadric elements. The element used is the doubly curved, reduced integration, 

thin shell element with five degree of freedom at each node, (S8R5). 

 

Table 3. 6 shows the first 12 natural frequencies parameters of fully 

clamped shallow shells with the aspect ratio of 1.0 and curvature ratios of 0 

(flat plate) to 0.5. Table 3. 7 gives results for the shallow shells having the 

aspect ratio of 2.0. The obtained results are compared with the natural 

frequency parameters available in reference [40] and [41]. The results in 

reference [40] are based on the pb-2 Ritz method and those in reference [41] 

were computed using the Ritz method with the displacement functions 

expressed by polynomials in Eqs. (3.16) and (3.17) [42].   
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where      ⁄       ⁄ , and Pij, Qkl and Rmn are unknown coefficients. Brs 

(r = u, v, w; s = 1, 2, 3 ,4) is called the boundary index. 

These polynomials satisfy arbitrary kinematic boundary condition by changing 

the boundary index [42]. For a fully clamped shell, the boundary indices are as 

follows: 

 

                                              (    ) 

 

From the results it may be noted that for the fully clamped shells, the 

agreement between the Superposition-Galerkin Method and the Rayleigh-Ritz 

method is excellent. However, the Superposition Method is more efficient than 

the Rayleigh-Ritz method in term of matrix size. Once the steady state 

solutions of building blocks are obtained, the Superposition Method requires a 

smaller size of eigenmatrix than that required by the Rayleigh-Ritz method. For 

example, the Superposition Method using 10 terms raises a matrix of 8×10 

rows and columns while the Rayleigh-Ritz method raises 3×10×10 rows and 

columns. In addition, it should be noted that the same procedure and functions 

can be used to solve shell problems with any combination of clamped or 

simply-supported (out-of-plane), and shear diaphragm or fully constrained (in-

plane) edge conditions by only eliminating building blocks which are not 

necessary. 

 

For the same boundary conditions, there exists some noticeable 

discrepancy between the Abaqus results and the present results. This may be 

partly due to the difference between the Abaqus model which is based on the 

classical thin shell theory and the present results which are based on the thin 

shallow shell theory (DMV theory). The shallow shell theory, neglecting in-

plane displacements in bending and twisting, leads to a stiffer condition. It may 

be seen that the differences generally increase as the curvature ratio, a/Rx, and 

aspect ratio increase [37]. 

 

While we acknowledge that the application of the Superposition Method 

for doubly curved shells requires approximate solutions for another set of 

boundary conditions, this chapter illustrates how the solution for different 
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boundary conditions may be generated without the need to go through a 

procedure that requires satisfying the governing equations of motion for the 

entire shell. Instead, only the boundary conditions are used to compose the 

final solution from functions that already satisfy the governing differential 

equations of motion. 

 

 

 

 

 



 

Table 3. 4 Natural frequency parameters of the SCSC shallow shell (Φ= 1.0) 

 a/Rx Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12  

Ry/Rx = 0 0.1 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 Present 

  34.01 55.43 74.15 95.94 102.1 132.1 140.2 156.0 169.8 199.7 206.0 209.8 Abaqus 

 0.3 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 Present 

  60.77 61.13 102.8 105.7 107.6 143.4 156.5 169.0 169.1 205.0 206.2 227.4 Abaqus 

 0.5 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 Present 

  71.20 93.27 104.1 127.9 149.6 150.4 167.7 192.6 196.8 206.8 215.4 252.8 Abaqus 

Ry/Rx = 1 0.1 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 Present 

  47.41 64.39 77.39 100.5 107.3 133.4 143.8 158.0 173.0 201.8 208.5 210.1 Abaqus 

 0.3 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 Present 

  114.7 115.2 123.8 138.9 141.5 165.7 171.0 184.2 194.0 221.3 226.2 229.0 Abaqus 

 0.5 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 Present 

  176.4 180.9 181.1 192.0 192.5 214.3 217.4 226.2 229.9 254.8 257.1 260.8 Abaqus 

Ry/Rx = -1 0.1 41.52 61.49 73.03 96.18 106.3 132.3 141.6 156.0 173.0 200.3 208.0 210.5 Present 

  41.48 61.39 72.84 95.88 106.0 131.8 141.1 155.3 172.4 199.3 207.1 209.3 Abaqus 

 0.3 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 Present 

  92.04 97.06 98.24 107.6 133.9 152.1 155.3 165.3 193.2 203.8 217.6 224.3 Abaqus 

 0.5 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 Present 

  127.5 132.0 135.8 142.7 171.8 172.3 190.9 197.5 216.5 229.1 237.8 251.6 Abaqus 
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Table 3. 5 Natural frequency parameters of the CCSS shallow shell (Φ= 1.0) 

 a/Rx Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12  

Ry/Rx = 0 0.1 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 Present 

  34.44 61.90 66.63 94.66 114.6 118.3 146.1 147.5 187.8 190.4 198.1 218.5 Abaqus 

 0.3 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 Present 

  59.31 78.51 99.79 111.4 117.4 145.5 151.1 162.4 187.5 204.4 209.9 219.4 Abaqus 

 0.5 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 Present 

  72.24 104.1 127.1 132.4 146.6 167.4 184.4 187.8 191.3 217.5 222.0 243.9 Abaqus 

Ry/Rx = 1 0.1 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7 Present 

  45.17 69.47 70.26 98.85 119.1 119.4 149.2 149.6 190.6 190.8 200.2 220.8 Abaqus 

 0.3 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 Present 

  108.0 118.3 122.7 137.9 151.3 153.5 175.8 176.9 210.0 211.7 219.8 237.7 Abaqus 

 0.5 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 Present 

  170.9 177.9 184.0 192.7 199.7 208.2 219.9 222.0 243.6 246.7 253.4 267.3 Abaqus 

Ry/Rx = -1 0.1 35.59 65.72 65.83 94.61 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 Present 

  35.57 65.60 65.71 94.34 117.7 117.8 146.5 146.8 190.0 190.1 197.7 219.3 Abaqus 

 0.3 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.8 229.8 Present 

  69.49 92.08 97.30 112.1 141.0 141.2 156.7 156.9 201.4 206.8 206.9 227.2 Abaqus 

 0.5 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 Present 

  94.36 122.0 136.4 148.5 170.9 172.7 181.4 185.7 212.6 235.4 235.9 243.4 Abaqus 
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Table 3. 6 Natural frequency parameters of the fully clamped shallow shell (Φ= 1.0) 

 a/Rx Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12  

 0 35.98 73.38 73.38 108.2 131.6 132.2 164.9 164.9 210.5 210.5 219.8 242.0  

Ry/Rx = 0 0.1 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 Present 
  46.28 74.66 79.29 110.4 132.5 135.6 165.8 167.0     Ref. [40] 

  46.24 74.46 79.14 110.0 132.0 135.1 165.1 166.3 209.5 211.9 219.8 241.4 Abaqus 

 0.3 83.92 90.39 115.0 125.9 140.5 161.2 172.8 181.8 211.7 228.3 230.8 245.5 Present 

  83.92 90.40 115.1 125.9 140.5 161.3 172.8 181.8     Ref. [40] 

  83.42 90.20 114.9 125.3 139.3 160.8 171.4 180.9 209.2 226.6 229.9 242.8 Abaqus 

 0.5 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 Present 

  99.26 119.0 151.1 156.4 172.5 192.4 201.7 207.8     Ref. [40] 

  98.48 117.2 150.3 155.5 171.3 190.4 201.2 206.6 208.8 240.6 246.0 261.9 Abaqus 

Ry/Rx = 1 0.1 58.30 81.75 81.75 114.1 136.0 137.7 168.7 168.7 213.2 213.2 222.7 244.5 Present 
  58.30 81.76 81.76 114.2 136.0 137.7 168.8 168.8     Ref. [40] 

  58.24 81.55 81.55 113.8 135.4 137.2 167.9 167.9 212.0 212.0 221.4 243.0 Abaqus 

 0.3 130.2 130.2 134.0 153.4 167.2 181.2 196.3 196.3 234.0 234.0 244.0 262.9 Present 

  130.2 130.2 134.0 153.4 167.2 181.2 196.4 196.4     Ref. [40] 

  129.0 129.4 133.2 152.1 165.8 179.8 194.4 194.5 231.2 231.5 241.3 260.1 Abaqus 

 0.5 192.0 192.0 196.9 210.0 216.2 242.2 242.2 257.4 270.7 270.7 282.4 296.4 Present 

  192.0 192.0 196.9 210.0 216.2 242.2 242.2 257.4     Ref. [40] 

  187.4 189.5 193.3 206.2 212.3 237.1 237.9 253.2 263.6 265.9 276.6 290.1 Abaqus 

Ry/Rx = -1 0.1 50.75 79.14 79.14 110.7 135.2 135.7 166.7 166.7 212.7 212.7 220.8 243.4 Present 
  50.75 79.15 79.15 110.7 135.3 135.7 166.8 166.8     Ref. [40] 

  50.70 78.95 78.95 110.3 134.7 135.2 165.9 166.0 211.6 211.6 219.6 242.0 Abaqus 

 0.3 110.8 114.1 114.1 128.6 161.6 162.0 180.6 180.6 228.7 229.7 229.7 254.1 Present 

  110.8 114.1 114.1 128.6 161.6 162.0 180.7 180.7     Ref. [40] 

  111.0 113.7 113.7 127.7 160.5 160.9 179.0 179.0 226.1 227.4 227.5 251.0 Abaqus 

 0.5 157.3 157.3 157.4 166.5 204.0 208.7 208.7 208.9 247.1 259.7 259.7 272.8 Present 

  157.4 157.4 157.4 166.5 204.0 208.7 208.7 208.8     Ref. [40] 

  156.4 156.9 157.0 166.8 202.8 206.1 206.2 208.0 242.7 255.3 255.9 267.6 Abaqus 

5
2
 



 

Table 3. 7 Natural frequency parameters of the fully clamped shallow shell (Φ= 2.0) 

 a/Rx Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12  

 0 24.58 31.82 44.76 63.31 63.98 71.06 83.23 87.22 100.7 116.3 123.2 123.6  

Ry/Rx = 0 0.1 37.75 42.97 53.53 64.34 70.02 72.27 85.16 92.38 103.0 120.4 123.9 125.8 Present 
  37.75 42.97 53.54 64.35 70.05 72.29 

 
     Ref. [41] 

  37.72 42.93 53.48 64.18 69.94 72.10 84.98 92.25 102.8 120.1 123.5 125.6 Abaqus 

 0.3 67.15 81.13 83.64 88.20 96.35 98.99 108.6 119.2 125.7 132.7 138.5 142.5 Present 

  67.15 81.14 83.65 88.21 96.37 99.03 
 

     Ref. [41] 

  66.58 80.64 83.39 88.00 96.21 98.53 108.4 118.7 125.5 131.6 137.4 141.9 Abaqus 

 0.5 72.27 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 170.0 170.0 170.3 Present 

  72.28 95.8 106.4 116.4 121.0 132.1 
 

     Ref. [41] 

  71.07 94.99 104.4 114.6 120.3 130.7 144.5 149.8 167.4 169.0 169.2 169.5 Abaqus 

Ry/Rx = 1 0.1 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.09 106.8 121.3 128.4 128.6 Present 
  51.11 51.54 59.38 72.41 72.95 79.33 

 
     Ref. [41] 

  51.05 51.50 59.27 72.24 72.58 79.12 90.29 93.73 106.4 120.8 128.0 128.1 Abaqus 

 0.3 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1 Present 

  115.5 116.7 119.8 127.0 129.2 130.7 
 

     Ref. [41] 

  114.9 115.8 118.5 125.7 127.2 128.8 133.7 140.3 144.4 153.1 159.7 168.4 Abaqus 

 0.5 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5 Present 

  179.4 180.2 180.6 187.9 190.8 194.5 
 

     Ref. [41] 

  173.6 177.4 178.0 182.9 185.7 188.3 190.0 195.1 197.5 202.1 207.9 216.5 Abaqus 

Ry/Rx = -1 0.1 43.58 44.85 54.15 69.80 70.94 75.61 86.18 92.12 102.9 120.1 125.4 127.6 Present 
  43.55 44.80 54.03 69.57 70.78 75.40 85.91 91.73 102.5 119.5 124.9 127.1 Abaqus 

 0.3 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1 Present 

  94.79 96.02 101.8 102.0 108.4 111.4 113.8 119.4 124.8 138.2 144.7 157.0 Abaqus 

 0.5 131.0 131.2 139.2 139.9 154.4 155.5 158.4 159.0 175.1 183.5 186.1 189.9 Present 

  130.4 130.5 139.0 139.1 153.0 153.5 157.3 158.6 173.8 183.1 184.6 184.9 Abaqus 
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3.4 Concluding Remarks 

 

The applicability of the Superposition Method for free vibration analysis of 

doubly curved thin shallow shells has been demonstrated. In addition, the natural 

frequencies of thin shallow shells with various curvature ratios and aspect ratios 

were computed for three different sets of boundary conditions using the 

Superposition-Galerkin method. The procedure described here and the code 

developed for this study could be used to generate any of the 55 different 

combinations of in-plane/out-of-plane boundary conditions. This is achieved 

simply by removing appropriate rows and columns from the eigenmatrix of the 

shell with all four edges fully clamped. Displacements of the shells were 

represented by series of sine and cosine functions, generated using the Galerkin 

method. These functions are simple, orthogonal and the final series approximately 

satisfy the governing equations but correspond to a different set of boundary 

conditions. The prescribed boundary conditions are then satisfied using the 

Superposition Method. 

 

There is an excellent agreement between the results obtained by the 

Superposition-Galerkin Method and the values found in earlier literature for the 

fully clamped shell. For the other two boundary conditions, the results showed 

reasonable agreement with FEA results obtained using Abaqus. The Superposition 

- Galerkin Method shows very good convergence for the fundamental natural 

frequencies with only five terms.  
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CONCLUSIONS 

 

 

4.1 General Conclusions 

 

The applicability of the Superposition Method for the transient vibration 

analysis of the plates and the free vibration analysis of the doubly curved shells 

has been investigated. It has been shown that the use of the natural frequencies 

and the modes obtained using the Superposition Method can provide accurate and 

efficient predictions of the transient response of an undamped plate. The results 

based on the Superposition Method require a smaller size of matrix to converge 

than that of the matrix which is required for the results based on the natural 

frequencies and the modes determined using the Rayleigh-Ritz method with either 

the ordinary or the degenerated beam functions. The values obtained using the 

natural frequencies and modes given by the Superposition Method are more 

accurate and reliable, and may be considered as benchmark data for the transient 

response of completely free plates. 

 

More interestingly, it is the first time that the Superposition Method is 

employed to determine the natural frequencies of thin doubly curved shallow 

shells. The approximate modes given by the Galerkin method are used for the 

building blocks since an exact solution is not available for doubly curved shells. 

The work shows that the present method gives a fast convergence rate in its 

results. The obtained results have an excellent agreement with those in the 

literature published earlier and a reasonable agreement with FEA results obtained 

using Abaqus.  
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4.2 Future Research 

 

It has been shown so far that the Superposition Method is an accurate and 

efficient method for vibration analyses of plates, including steady states and 

transient analyses of plates with various boundary conditions, and free vibration 

analysis of the open cylindrical shells and thin doubly curved shallow shell. The 

Superposition Method may be able to be applied for free vibration analysis of thin 

shallow shells having more complicated geometry, or other combinations of 

boundary conditions such as completely free, elastically supported, and various 

types of shells such as orthotropic, and composite shells. Transient and steady 

state vibration analyses of those shells are also a worthwhile area for research. 

The Superposition Method could also be applied for any other linear eigenvalue 

problem, such as buckling or aeroelastic analysis of the plates and shells.  

 

The Superposition Method will not be limited to only two-dimensional 

vibration problems. Three-dimensional problems can also be solved. In the thin 

plate theory, the effects of shear deformation and/or rotatory inertia are neglected, 

and therefore the obtained solution will be inaccurate when the plates become 

thicker. Since the three-dimensional theory provides more reliable and accurate 

results for thick plates, the three-dimensional solutions attract many researchers’ 

attention. A literature review on the vibration analysis of thick plates was 

published by Liew, Xiang and Kitipornchai [43]. 

 

Mindlin assumed that a shear stress distribution is constant through the 

thickness and took account of both the shear deformation and rotatory inertia in an 

analysis of thick plates [44]. Gorman successfully applied the Superposition 

Method for the Mindlin plates with some boundary conditions [45-47]. Srinivas, 

Joga Rao, and Rao used a three-dimensional linear, small deformation theory to 

investigate the free vibration of simply-supported, homogeneous, isotropic thick 

plates as shown in Fig. 4. 1. and obtained an exact solution by solving the 

characteristic equations that are derived from a double trigonometric series of 

displacement functions [48]. Liew, Hung and Lim predicted the vibration 

behaviours of the thick plates based on the same theory for various boundary 
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conditions, namely a combination of simply-supported, clamped and free 

conditions, using the Ritz method with a set of orthogonal polynomial functions 

[49]. The boundary conditions on simply-supported, clamped and free straight 

edges, x = constant, are expressed as Eqs (4.1), (4.2) and (4.3) respectively [49]. 

These boundary conditions are effectively the same as the boundary conditions of 

the shells studied in this thesis. Filipich, Rosales and Belles considered 

rectangular plates as tridimensional solids and analysed the case where the plates 

are simply-supported using the variational method developed by the authors, 

which is named Whole Element Method (WEM) [50]. WEM was extended for the 

clamped thick plates by Rosales, Filipich and Andreu Torras [51]. 

 

w = 0, v = 0, and ζx = 0    (4. 1) 

u = 0, v = 0 and w = 0    (4. 2) 

ζx = 0, ηxy = 0, and ηxz = 0   (4. 3) 

 

To the author’s knowledge, however, the Superposition Method has not 

been utilised for thick plates with basis of the three-dimensional theory. 

Considering the rapid rate of convergence shown by the Superposition Method for 

all the problems studied so far, it is believed that accurate results for thick plates 

based on exact three-dimensional theory could be obtained more efficiently using 

the Superposition Method. 

 

Fig. 4. 1 Reference coordinates and dimension of thick rectangular plate 
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Appendix I: Theory of Thin shallow shell 

 

Ventsel and Krauthammer explain the thin shallow shell theory in terms of 

out-of-plane displacement and the Airy stress function [36]. Suzuki et al. take a 

different approach and describe the thin shallow shell theory in terms of out-of-

plane and in-plane displacements in their book [52]. For convenience and 

completeness, the relevant parts in the derivations for thin shallow shells based on 

Donnell-Mushtari-Vlasov (DMV) Theory are presented here. The key 

assumptions are listed below, in which (a) and (b) are the Kirchhoff-Love 

hypotheses and (c) and (d) are additional assumptions in the DMV theory [36] 

(a) “Normals to the undeformed middle surface remain straight and normal to 

the deformed middle surface and undergo no extension, i.e. all the strain 

components (normal and shear) in the direction of the normal to the 

middle surface vanish.” 

(b) “The transverse normal stress is small compared with other normal stress 

components and may be neglected.” 

(c) “The effect of the transverse shear in the in-plane is negligible.” 

(d) “The influence of the out-plane deflections, w, will predominate over the 

influences of the in-plane displacements u and v in the bending response of 

the shell.” 

 

Consider the case of a thin shallow shell on a rectangular planform shown as 

Fig. A1. 1. The shape of the middle surface of the shell is defined by Eq. (A1. 1). 

 

   
 

 
(
  

  
 

  

  
)                                      (    ) 

 

It is assumed that the radii of curvature, Rx and Ry are constant in the x and y 

directions respectively.  
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Fig. A1. 1 A shallow shell on rectangular planform 

 

The stresses on a surface at the distance of z from the middle surface, neglecting 

the stresses in z-direction, are given by the Eq. (A1. 2). 
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The normal forces per unit length are given by integrating Eq. (A1. 2) through the 

thickness of shell, which are expressed in Eq. (A1. 3). 
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εx, εy and ηxy are strains and u, v, and w are displacements at the middle surface. 
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Similarly, the moments per unit length are given by integrating the relevant 

stresses in Eq. (A1. 4) multiplied by z and infinitesimal thickness dz (Eq. (A1. 5)). 
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Next, let us consider the equilibrium of the forces and moments acting on 

the middle surface of the shell. Fig. A1. 2 (a) shows an element δx × δy of the 

shell on which normal forces per unit length are working. The bending and 

twisting moments, and out-of-plane shear forces, Qx and Qy, acting on the element 

are also shown in Fig. A1. 2 (b). Normal forces, N’s and moments, M’s are given 

by Eqs. (A1. 3) and (A1. 5) respectively. From Fig. A1. 2 (a), the sum of normal 

forces in x-direction is  
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Applying Newton’s 2
nd

 law in the x-direction gives 
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Similarly in the y-direction, we get 
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Fig. A1. 2 Equilibrium of (a) in-plane forces, (b) out-of-plane forces and 

moments 

 

By applying Newton’s second law in the z-direction to the element in Fig. A1. 2 

(b) gives 

 

z 

y 

x 

Mxy 

Mxy 

Mxx 

Myy 

    
    

  
   

    
    

  
   

    
    

  
   

    
    

  
   

Qy 

Qx 

   
   

  
   

   
   

  
   

(b) 

z 

y 

x 

Nxx 

Nyy 

Nxy 

Nxy 

    
    

  
   

    
    

  
   

    
    

  
   

    
    

  
   

(a) 



67 

 

   

  
 

   

  
   

   

   
                                    (     ) 

 

By applying Newton’s second law in the about the x- and y-axes and neglecting 

the rotary inertia gives Eq. (A1. 12) and (A1. 13) respectively. 
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If substituting Qx and Qy obtained from Eqs (A1. 12) and (A1. 13) into Eq. (A1. 

11) one will get the following equation. 
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These derived equations of motion in x-, y- and z-direction do not include 

terms counting the curvatures of the shell. In DMV theory, the terms for 

transverse shear in the in–plane, which should be included in Eqs. (A1. 9) and 

(A1.10) in general shell theory, are neglected (Assumption (c)). However, the 

relationship of between the in-plane strains (i.e. in-plane forces) and the out-of-

plane deflections, as expressed in Eq. (A1. 4), need to be counted in Eq. (A1. 14). 

The components of normal forces in z-direction as shown in Fig. A1. 3 are given 

by Eq. (A1. 15). 
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When dθ is small the following approximation is valid. 
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Fig. A1. 3 The components of normal forces in z-direction 

 

Then, Eq. (A1. 15) is rearranged, neglecting the third order infinitesimal 

component, dxdydθ, as 
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Similarly in y-direction, 
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Including terms expressed by Eqs. (A1. 17) and (A1. 18) in Eq. (A1. 14) gives, 
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Now, let the displacement, u, v and w, be the following functions. 
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Then, the derivatives of these functions in terms of time, t, would be given by Eq. 

(A1. 21). 
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Finally, by substituting Eqs. (A1. 3) ~ (A1. 6), and (A1. 21) into Eqs. (A1. 9), 

(A1.10), and (A1. 19), the governing equations of vibration of thin shallow shell 

are expressed by Eq. (A1. 22) and (A1. 23). 
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The dimensionless forms of the governing equations are also given as follows.  

 



70 

 

[

  
    

    
  

  
    

    
  

  
    

    
  

] {
 
 
 

}  
 

    
[
    
    
     

] {
 
 
 

}       (     ) 

 

  
    

  

   
 

 ̅

  

  

   

  
   

(   ̅)

 

  

    

  
    (    )

 

  

  
     ̅

  

   
 

 

  

  

   

  
   

 

 
(   )

 

  

  
   

 

    
(

  

   
 

 

  

  

      
 

 

  

  

   
)    (        )

}
 
 
 
 
 
 

 
 
 
 
 
 

 (     ) 

 

where      √   ⁄ . 

 

 

 

  



71 

 

Appendix II: The results for transient responses of the completely free plates 

 

Fig. A2. 1 The transient response of the completely free square plate at the 

centre, based on the natural frequencies and modes given by the 

Superposition Method at the time of (a) 0 to 1.5 and (b) 98 to 100. 

 

 

 

 

 

 

  

-0.1

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5

D
is

p
la

c
e

m
e

n
t

Time

SM(4) SM(6) SM(10) SM(15)

-0.1

0

0.1

0.2

0.3

0.4

98 98.5 99 99.5 100

D
is

p
la

c
e

m
e

n
t

Time

SM(4) SM(6) SM(10) SM(15)

(a)

(b)



72 

 

Fig. A2. 2 The transient response of the completely free square plate at the 

centre, based on the natural frequencies and modes given by the Rayleigh-

Ritz method with the ordinary beam functions at the time of (a) 0 to 1.5 and 

(b) 98 to 100. 
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Fig. A2. 3 The transient response of the completely free square plate at the 

centre, based on the natural frequencies and modes given by the Rayleigh-

Ritz method with the degenerated beam functions at the time of (a) 0 to 1.5 

and (b) 98 to 100. 
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Fig. A2. 4 The transient response of the completely free rectangular plate  (Φ 

= 1.5) at the centre, based on the Superposition Method at the time of (a) 0 to 

1.5 and (b) 98 to 100. 
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Fig. A2. 5The transient response of the completely free rectangular plate  (Φ 

= 1.5) at the centre, based on the Rayleigh-Ritz method with the ordinary 

beam functions at the time of (a) 0 to 1.5 and (b) 98 to 100. 
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Fig. A2. 6 The transient response of the completely free rectangular plate  (Φ 

= 1.5) at the centre, based on the Rayleigh-Ritz method with the degenerated 

beam functions at the time of (a) 0 to 1.5 and (b) 98 to 100. 
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Fig. A2. 7 The transient response of the completely free rectangular plate  (Φ 

= 2.0) at the centre, based on the Superposition Method at the time of (a) 0 to 

1.5 and (b) 98 to 100. 
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Fig. A2. 8 The transient response of the completely free rectangular plate  (Φ 

= 2.0) at the centre, based on t the Rayleigh-Ritz method with the ordinary 

beam functions at the time of (a) 0 to 1.5 and (b) 98 to 100. 
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Fig. A2. 9 The transient response of the completely free rectangular plate  (Φ 

= 2.0) at the centre, based on by the Rayleigh-Ritz method with the 

degenerated beam functions at the time of (a) 0 to 1.5 and (b) 98 to 100. 
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Fig. A2. 10 The transient response of the completely free square plate at (a) 

the centre, (b) the point x=0.75a y=0.75b and (c) the corner, for the duration 

of 0 to 2.0.  
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Fig. A2. 11 The transient response of the completely free square plate at (a) 

the centre, (b) the point x=0.75a y=0.75b and (c) for the duration of 98 to 100. 
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Fig. A2. 12 The transient response of the completely free rectangular plate 

(Φ = 1.5) at (a) the centre, (b) the point x=0.75a y=0.75b and (c) the corner, 

for the duration of 0 to 1.5. 
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Fig. A2. 13 The transient response of the completely free rectangular plate 

(Φ = 1.5) at (a) the centre, (b) the point x=0.75a y=0.75b and (c) for the 

duration of 98 to 100. 
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Fig. A2. 14 The transient response of the completely free rectangular plate  

(Φ = 2.0) at (a) the centre, (b) the point x=0.75a y=0.75b and (c) the corner, 

for the duration of 0 to 1.5. 
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Fig. A2. 15 The transient response of the completely free rectangular plate  

(Φ = 1.5) at (a) the centre, (b) the point x=0.75a y=0.75b and (c) for the 

duration of 98 to 100. 
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Appendix III: Convergence study for the natural frequency parameters of 

the shallow shells 

 

 

 

 

 

 

 

 



 

Table A3. 1 Convergence study for the natural frequency parameters of the CSCS cylindrical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 0) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 
 

200.5  210.7 

 
4 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
5 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
6 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
7 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
8 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
9 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
10 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
11 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

 
12 34.03 55.51 74.27 96.14 102.3 132.5 140.6 156.5 170.4 200.5 206.8 210.7 

a/Rx = 0.3 3 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 
 

206.2  228.2 

 
4 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
5 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
6 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
7 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
8 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
9 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
10 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
11 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 
12 60.66 61.31 103.5 105.7 107.9 144.3 156.9 169.6 170.6 206.2 208.0 228.2 

 

  

8
7
 



 

Table A3. 2 Convergence study for the natural frequency parameters of the CSCS cylindrical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 0) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 71.32 92.63 105.7 127.9 149.8 151.3 193.1 196.9 
  

217.2 259.8 

 
4 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 259.8 

 
5 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
6 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
7 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
8 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
9 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
10 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
11 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 
12 71.32 92.63 105.7 127.9 149.8 151.3 171.1 193.1 196.9 210.3 217.2 258.8 

 

 

  

8
8
 



 

Table A3. 3 Convergence study for the natural frequency parameters of the CSCS spherical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 
 

202.6  211.1 

 
4 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
5 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
6 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
7 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
8 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
9 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
10 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
11 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

 
12 47.43 64.47 77.54 100.7 107.5 133.8 144.2 158.5 173.5 202.6 209.3 211.1 

a/Rx = 0.3 3 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 
 

224.2  231.8 

 
4 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
5 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
6 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
7 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
8 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
9 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
10 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
11 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 

 
12 114.9 115.7 125.0 140.1 143.0 167.3 173.0 186.2 197.2 224.2 229.6 231.8 
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Table A3. 4 Convergence study for the natural frequency parameters of the CSCS spherical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 
 

262.1  268.2 

 
4 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
5 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
6 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
7 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
8 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
9 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
10 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
11 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 
12 177.6 182.8 185.8 195.2 196.1 219.2 221.7 231.8 237.5 262.1 265.6 268.2 

 

 

  

9
0
 



 

Table A3. 5 Convergence study for the natural frequency parameters of the CSCS hyperbolic-paraboloidal shallow shell on the square 

planform (Φ= 1.0, Ry/Rx = -1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 
 

200.3  210.5 

 
4 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
5 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
6 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
7 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
8 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
9 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
10 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
11 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

 
12 41.52 61.49 73.03 96.18 106.27 132.3 141.6 156.0 173.0 200.3 208.0 210.5 

a/Rx = 0.3 3 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 
 

205.2  226.4 

 
4 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
5 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
6 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
7 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
8 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
9 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
10 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
11 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 

 
12 92.02 97.58 98.13 108.0 133.6 152.5 156.4 166.5 192.8 205.2 218.1 226.4 
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Table A3. 6 Convergence study for the natural frequency parameters of the CSCS hyperbolic-paraboloidal shallow shell on the square 

planform (Φ= 1.0, Ry/Rx = -1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 
 

 255.3 

 
4 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
5 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
6 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
7 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
8 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
9 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
10 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
11 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 

 
12 127.9 133.3 135.9 142.7 170.7 171.0 192.8 199.0 218.4 226.0 236.3 255.3 
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Table A3. 7 Convergence study for the natural frequency parameters of the CCSS cylindrical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 0) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 34.45 62.00 66.69 94.75 114.8 118.4 146.1 147.5 187.5 190.0 197.7 215.3 

 
4 34.45 62.01 66.71 94.83 114.9 118.5 146.5 147.8 188.5 191.0 198.7 219.2 

 
5 34.45 62.02 66.71 94.85 114.9 118.5 146.5 147.9 188.6 191.1 198.8 219.4 

 
6 34.45 62.02 66.71 94.85 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

 
7 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

 
8 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

 
9 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

 
10 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

 
11 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

 
12 34.45 62.02 66.71 94.86 114.9 118.5 146.5 147.9 188.6 191.1 198.9 219.5 

a/Rx = 0.3 3 59.36 78.76 99.85 111.7 118.1 145.7 151.5 162.5 188.4 204.2 209.5 217.6 

 
4 59.37 78.77 99.85 111.8 118.2 145.7 152.0 162.9 189.4 205.6 210.4 221.1 

 
5 59.37 78.77 99.85 111.8 118.3 145.7 152.1 162.9 189.5 205.7 210.5 221.5 

 
6 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 

 
7 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 

 
8 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 

 
9 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 

 
10 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 

 
11 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 

 
12 59.37 78.78 99.86 111.8 118.3 145.7 152.1 163.0 189.5 205.8 210.5 221.5 
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Table A3. 8 Convergence study for the natural frequency parameters of the CCSS cylindrical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 0) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 72.35 105.5 127.2 132.8 147.4 167.7 184.6 190.9 191.7 217.4 222.6 243.6 

 
4 72.37 105.5 127.2 133.0 147.5 168.5 184.6 191.8 192.0 219.4 225.7 244.5 

 
5 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.6 226.1 244.5 

 
6 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.6 226.2 244.5 

 
7 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 

 
8 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 

 
9 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 

 
10 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 

 
11 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 

 
12 72.37 105.5 127.2 133.0 147.5 168.6 184.6 191.9 192.1 219.7 226.2 244.5 
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Table A3. 9 Convergence study for the natural frequency parameters of the CCSS spherical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 45.18 69.57 70.34 98.96 119.4 119.6 149.2 149.6 190.2 190.6 199.8 217.3 

 
4 45.19 69.57 70.37 99.03 119.4 119.7 149.7 149.9 191.4 191.4 200.7 221.4 

 
5 45.19 69.57 70.38 99.05 119.4 119.7 149.7 150.0 191.4 191.5 200.9 221.7 

 
6 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7 

 
7 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7 

 
8 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7 

 
9 45.19 69.57 70.38 99.05 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7 

 
10 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.0 191.4 191.6 200.9 221.7 

 
11 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.1 191.4 191.6 200.9 221.7 

 
12 45.19 69.57 70.38 99.06 119.4 119.8 149.7 150.1 191.4 191.6 200.9 221.7 

a/Rx = 0.3 3 108.3 119.1 123.6 139.1 153.0 154.7 177.7 178.1 212.5 213.4 221.5 237.1 

 
4 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.8 213.6 214.2 222.6 241.3 

 
5 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.8 213.6 214.3 222.7 241.4 

 
6 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.7 241.4 

 
7 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.7 241.4 

 
8 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 

 
9 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 

 
10 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 

 
11 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 

 
12 108.3 119.1 123.6 139.1 153.0 154.9 177.8 178.9 213.6 214.3 222.8 241.4 
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Table A3. 10 Convergence study for the natural frequency parameters of the CCSS spherical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 171.6 180.3 187.0 195.3 204.0 210.0 223.4 225.1 251.0 253.4 259.6 272.3 

 
4 171.6 180.3 187.0 195.3 204.0 210.1 223.5 225.9 252.1 254.1 260.7 276.4 

 
5 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.4 

 
6 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 

 
7 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 

 
8 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 

 
9 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 

 
10 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 

 
11 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 

 
12 171.6 180.3 187.0 195.3 204.1 210.1 223.5 226.0 252.1 254.2 260.9 276.5 
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Table A3. 11 Convergence study for the natural frequency parameters of the CCSS hyperbolic-paraboloidal shallow shell on the square 

planform (Φ= 1.0, Ry/Rx = -1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 35.59 65.68 65.83 94.49 117.9 118.0 146.5 147.0 189.6 189.9 197.4 215.7 

 
4 35.59 65.71 65.83 94.58 118.0 118.1 147.1 147.2 190.7 190.8 198.4 220.3 

 
5 35.59 65.72 65.83 94.60 118.0 118.1 147.1 147.3 190.8 190.9 198.5 220.4 

 
6 35.59 65.72 65.83 94.60 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

 
7 35.59 65.72 65.83 94.60 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

 
8 35.59 65.72 65.83 94.60 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

 
9 35.59 65.72 65.83 94.60 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

 
10 35.59 65.72 65.83 94.61 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

 
11 35.59 65.72 65.83 94.61 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

 
12 35.59 65.72 65.83 94.61 118.0 118.1 147.1 147.3 190.8 190.9 198.6 220.4 

a/Rx = 0.3 3 69.31 92.45 97.59 112.5 141.6 142.1 156.6 158.1 201.1 207.1 207.9 223.9 

 
4 69.31 92.45 97.59 112.7 141.6 142.1 157.7 158.2 203.2 208.5 208.7 229.1 

 
5 69.31 92.45 97.60 112.7 141.7 142.1 157.8 158.2 203.4 208.6 208.7 229.7 

 
6 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.7 229.8 

 
7 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.7 229.8 

 
8 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.7 229.8 

 
9 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.8 229.8 

 
10 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.8 229.8 

 
11 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.8 229.8 

 
12 69.31 92.45 97.60 112.7 141.7 142.1 157.9 158.2 203.4 208.7 208.8 229.8 
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Table A3. 12 Convergence study for the natural frequency parameters of the CCSS hyperbolic-paraboloidal shallow shell on the square 

planform (Φ= 1.0, Ry/Rx = -1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 94.15 122.4 136.9 149.2 172.9 173.0 182.2 187.0 211.5 238.0 238.8 240.0 

 
4 94.17 122.4 137.0 149.2 173.0 173.6 183.1 187.1 215.8 239.0 239.3 247.1 

 
5 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.2 239.0 239.3 247.7 

 
6 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.2 239.0 239.3 247.8 

 
7 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 

 
8 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 

 
9 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 

 
10 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 

 
11 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 

 
12 94.18 122.4 137.0 149.2 173.0 173.6 183.1 187.1 216.3 239.0 239.3 247.8 
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Table A3. 13 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the square planform 

(Φ= 1.0, Ry/Rx = 0) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 46.26 74.44 79.10 109.2 132.3 135.3 164.3 165.5 208.6 210.8 218.9 232.9 

 
4 46.26 74.61 79.25 110.2 132.3 135.3 165.1 166.3 210.4 212.6 218.9 242.2 

 
5 46.28 74.63 79.27 110.2 132.5 135.5 165.6 166.8 210.5 212.7 220.6 242.2 

 
6 46.28 74.64 79.28 110.3 132.5 135.5 165.7 166.8 210.6 212.8 220.6 242.7 

 
7 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.8 220.8 242.7 

 
8 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
9 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
10 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
11 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7 

 
12 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7 

a/Rx = 0.3 3 67.67 78.06 94.46 134.8 145.5 166.8 171.1 208.9 217.6 221.6 234.6 241.8 

 
4 67.67 78.25 94.57 116.3 134.8 145.5 167.6 172.1 210.8 219.6 221.6 243.2 

 
5 67.68 78.27 94.60 116.3 135.0 145.7 168.1 172.5 210.9 219.6 223.4 243.2 

 
6 67.68 78.28 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.4 243.7 

 
7 67.68 78.29 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.6 243.7 

 
8 67.68 78.29 94.61 116.4 135.0 145.7 168.3 172.6 211.0 219.8 223.6 243.8 

 
9 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
10 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
11 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
12 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 

  

9
9
 



 

Table A3. 14 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the square planform 

(Φ= 1.0, Ry/Rx = 0) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 98.89 118.9 149.4 156.2 172.3 190.7 201.6 205.4 211.7 240.9 242.6 260.2 

 
4 99.22 118.9 151.1 156.2 172.3 191.6 201.6 207.3 213.7 240.9 250.4 262.7 

 
5 99.25 119.0 151.1 156.3 172.5 192.3 201.7 207.6 213.8 243.2 250.4 262.8 

 
6 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.7 213.9 243.2 251.0 262.9 

 
7 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.0 262.9 

 
8 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
9 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
10 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
11 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
12 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 

 

  

1
0
0
 



 

Table A3. 15 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 46.26 74.44 79.10 109.2 132.3 135.3 164.3 165.5 208.6 210.8 218.9 232.9 

 
4 46.26 74.61 79.25 110.2 132.3 135.3 165.1 166.3 210.4 212.6 218.9 242.2 

 
5 46.28 74.63 79.27 110.2 132.5 135.5 165.6 166.8 210.5 212.7 220.6 242.2 

 
6 46.28 74.64 79.28 110.3 132.5 135.5 165.7 166.8 210.6 212.8 220.6 242.7 

 
7 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.8 220.8 242.7 

 
8 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
9 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
10 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
11 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7 

 
12 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7 

a/Rx = 0.3 3 67.67 78.06 94.46 134.8 145.5 166.8 171.1 208.9 217.6 221.6 234.6 241.8 

 
4 67.67 78.25 94.57 116.3 134.8 145.5 167.6 172.1 210.8 219.6 221.6 243.2 

 
5 67.68 78.27 94.60 116.3 135.0 145.7 168.1 172.5 210.9 219.6 223.4 243.2 

 
6 67.68 78.28 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.4 243.7 

 
7 67.68 78.29 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.6 243.7 

 
8 67.68 78.29 94.61 116.4 135.0 145.7 168.3 172.6 211.0 219.8 223.6 243.8 

 
9 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
10 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
11 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
12 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 

  

1
0
1
 



 

Table A3. 16 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the square planform (Φ= 

1.0, Ry/Rx = 1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 98.89 118.9 149.4 156.2 172.3 190.7 201.6 205.4 211.7 240.9 242.6 260.2 

 
4 99.22 118.9 151.1 156.2 172.3 191.6 201.6 207.3 213.7 240.9 250.4 262.7 

 
5 99.25 119.0 151.1 156.3 172.5 192.3 201.7 207.6 213.8 243.2 250.4 262.8 

 
6 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.7 213.9 243.2 251.0 262.9 

 
7 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.0 262.9 

 
8 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
9 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
10 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
11 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
12 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 

 

  

1
0
2
 



 

Table A3. 17 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the square 

planform (Φ= 1.0, Ry/Rx = -1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 46.26 74.44 79.10 109.2 132.3 135.3 164.3 165.5 208.6 210.8 218.9 232.9 

 
4 46.26 74.61 79.25 110.2 132.3 135.3 165.1 166.3 210.4 212.6 218.9 242.2 

 
5 46.28 74.63 79.27 110.2 132.5 135.5 165.6 166.8 210.5 212.7 220.6 242.2 

 
6 46.28 74.64 79.28 110.3 132.5 135.5 165.7 166.8 210.6 212.8 220.6 242.7 

 
7 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.8 220.8 242.7 

 
8 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
9 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
10 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9 210.6 212.9 220.8 242.7 

 
11 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7 

 
12 46.28 74.65 79.28 110.3 132.5 135.5 165.8 166.9 210.6 212.9 220.8 242.7 

a/Rx = 0.3 3 67.67 78.06 94.46 134.8 145.5 166.8 171.1 208.9 217.6 221.6 234.6 241.8 

 
4 67.67 78.25 94.57 116.3 134.8 145.5 167.6 172.1 210.8 219.6 221.6 243.2 

 
5 67.68 78.27 94.60 116.3 135.0 145.7 168.1 172.5 210.9 219.6 223.4 243.2 

 
6 67.68 78.28 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.4 243.7 

 
7 67.68 78.29 94.60 116.4 135.0 145.7 168.2 172.6 211.0 219.8 223.6 243.7 

 
8 67.68 78.29 94.61 116.4 135.0 145.7 168.3 172.6 211.0 219.8 223.6 243.8 

 
9 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
10 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
11 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 
12 67.68 78.29 94.61 116.4 135.0 145.8 168.3 172.7 211.0 219.8 223.6 243.8 

 

  

1
0
3
 



 

Table A3. 18 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the square 

planform (Φ= 1.0, Ry/Rx = -1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 98.89 118.9 149.4 156.2 172.3 190.7 201.6 205.4 211.7 240.9 242.6 260.2 

 
4 99.22 118.9 151.1 156.2 172.3 191.6 201.6 207.3 213.7 240.9 250.4 262.7 

 
5 99.25 119.0 151.1 156.3 172.5 192.3 201.7 207.6 213.8 243.2 250.4 262.8 

 
6 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.7 213.9 243.2 251.0 262.9 

 
7 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.0 262.9 

 
8 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
9 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
10 99.26 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
11 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 
12 99.27 119.0 151.1 156.3 172.5 192.4 201.7 207.8 213.9 243.4 251.1 262.9 

 

 

  

1
0
4
 



 

Table A3. 19 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the rectangular 

planform (Φ= 2.0, Ry/Rx = 0) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 37.74 42.69 53.25 64.28 64.53 71.58 84.28 88.06 88.33 117.0 123.8 129.6 

 
4 37.74 42.94 53.25 64.31 69.75 72.19 84.52 88.33 102.3 113.1 117.1 117.1 

 
5 37.75 42.95 53.50 64.33 69.78 72.19 85.06 92.16 102.3 117.1 117.1 123.9 

 
6 37.75 42.96 53.50 64.34 70.00 72.25 85.07 92.16 102.9 120.2 123.9 125.2 

 
7 37.75 42.96 53.52 64.34 70.00 72.25 85.14 92.36 102.9 120.2 123.9 125.7 

 
8 37.75 42.97 53.52 64.34 70.02 72.26 85.14 92.36 103.0 120.3 123.9 125.7 

 
9 37.75 42.97 53.53 64.34 70.02 72.26 85.15 92.38 103.0 120.3 123.9 125.8 

 
10 37.75 42.97 53.53 64.34 70.02 72.27 85.16 92.38 103.0 120.4 123.9 125.8 

 
11 37.75 42.97 53.53 64.34 70.02 72.27 85.16 92.39 103.0 120.4 123.9 125.8 

 
12 37.75 42.97 53.53 64.34 70.03 72.27 85.16 92.39 103.0 120.4 123.9 125.8 

a/Rx = 0.3 3 67.06 80.40 83.64 87.96 96.18 98.07 99.13 100.3 119.7 127.0 132.7 135.4 

 
4 67.09 81.04 83.64 88.19 96.18 98.37 108.4 118.6 119.7 127.0 132.7 138.2 

 
5 67.13 81.04 83.64 88.19 96.35 98.89 108.4 118.6 125.5 132.7 138.3 141.8 

 
6 67.13 81.11 83.64 88.20 96.35 98.91 108.6 119.1 125.5 132.7 138.5 141.9 

 
7 67.14 81.11 83.64 88.20 96.35 98.97 108.6 119.1 125.7 132.7 138.5 142.4 

 
8 67.14 81.12 83.64 88.20 96.35 98.98 108.6 119.2 125.7 132.7 138.5 142.4 

 
9 67.15 81.12 83.64 88.20 96.35 98.99 108.6 119.2 125.7 132.7 138.5 142.5 

 
10 67.15 81.13 83.64 88.20 96.35 98.99 108.6 119.2 125.7 132.7 138.5 142.5 

 
11 67.15 81.13 83.64 88.20 96.35 99.00 108.6 119.2 125.7 132.7 138.5 142.5 

 
12 67.15 81.13 83.64 88.20 96.35 99.00 108.6 119.2 125.7 132.7 138.6 142.5 

 

  

1
0
5
 



 

Table A3. 20 Convergence study for the natural frequency parameters of the CCCC cylindrical shallow shell on the rectangular 

planform (Φ= 2.0, Ry/Rx = 0) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 72.15 95.00 106.4 116.2 119.9 120.9 131.8 144.0 144.8 150.8 164.3 168.7 

 
4 72.19 95.68 106.4 116.3 120.4 131.8 144.7 150.5 150.8 164.3 168.7 170.1 

 
5 72.24 95.68 106.4 116.3 120.8 131.9 144.7 150.5 168.5 169.5 170.0 170.2 

 
6 72.25 95.76 106.4 116.4 120.9 131.9 145.1 150.6 168.5 169.5 170.0 170.3 

 
7 72.26 95.76 106.4 116.4 120.9 132.0 145.1 150.6 168.5 169.9 170.0 170.3 

 
8 72.26 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 169.9 170.0 170.3 

 
9 72.27 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 170.0 170.0 170.3 

 
10 72.27 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 170.0 170.0 170.3 

 
11 72.27 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 170.0 170.0 170.3 

 
12 72.27 95.78 106.4 116.4 120.9 132.0 145.2 150.6 168.5 170.0 170.0 170.3 

 

 

  

1
0
6
 



 

Table A3. 21 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the rectangular planform 

(Φ= 2.0, Ry/Rx = 1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 50.73 51.52 59.06 68.40 72.35 78.61 89.67 90.51 92.86 116.3 118.2 128.5 

 
4 51.09 51.52 59.06 72.38 72.53 79.26 89.89 90.51 106.1 116.3 118.3 128.5 

 
5 51.09 51.53 59.36 72.40 72.55 79.26 90.45 93.86 106.1 118.3 127.7 128.6 

 
6 51.11 51.53 59.36 72.40 72.78 79.31 90.46 93.86 106.7 121.1 127.8 128.6 

 
7 51.11 51.54 59.38 72.41 72.79 79.31 90.52 94.07 106.7 121.1 128.3 128.6 

 
8 51.11 51.54 59.38 72.41 72.81 79.32 90.52 94.07 106.8 121.3 128.4 128.6 

 
9 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.09 106.8 121.3 128.4 128.6 

 
10 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.09 106.8 121.3 128.4 128.6 

 
11 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.10 106.8 121.3 128.4 128.6 

 
12 51.11 51.54 59.38 72.41 72.81 79.32 90.54 94.10 106.8 121.3 128.4 128.6 

a/Rx = 0.3 3 113.4 115.2 119.8 125.6 126.2 127.9 133.9 134.0 140.4 151.1 152.7 165.7 

 
4 115.2 116.6 119.8 126.9 127.9 127.9 134.1 140.4 145.4 151.2 153.1 170.0 

 
5 115.5 116.6 119.8 126.9 127.9 130.1 135.1 141.7 145.4 153.1 161.4 170.1 

 
6 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.7 146.2 155.7 161.5 170.1 

 
7 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.7 162.1 170.1 

 
8 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.1 170.1 

 
9 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1 

 
10 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1 

 
11 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1 

 
12 115.5 116.6 119.8 127.0 128.3 130.1 135.1 141.8 146.2 155.9 162.2 170.1 

 

  

1
0
7
 



 

Table A3. 22 Convergence study for the natural frequency parameters of the CCCC spherical shallow shell on the rectangular planform 

(Φ= 2.0, Ry/Rx = 1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 175.1 179.3 179.4 184.6 187.4 191.0 192.0 192.1 199.5 204.2 204.9 213.3 

 
4 179.3 179.4 179.8 187.4 187.8 191.5 192.3 199.5 201.0 204.3 205.9 221.4 

 
5 179.4 179.8 180.5 187.8 189.5 191.5 194.5 200.2 201.0 205.9 212.9 221.4 

 
6 179.4 179.9 180.5 187.9 189.5 192.4 194.5 200.2 202.4 208.0 213.0 222.2 

 
7 179.4 179.9 180.5 187.9 189.6 192.4 194.5 200.4 202.4 208.0 213.9 224.4 

 
8 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 213.9 224.4 

 
9 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5 

 
10 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5 

 
11 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5 

 
12 179.4 179.9 180.5 187.9 189.6 192.5 194.5 200.4 202.5 208.1 214.0 224.5 

 

 

  

1
0
8
 



 

Table A3. 23 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the 

rectangular planform (Φ= 2.0, Ry/Rx = -1) 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.1 3 43.56 44.14 53.69 63.19 70.88 74.33 85.01 87.48 87.83 112.2 116.4 127.5 

 
4 43.56 44.82 53.69 69.47 70.89 75.51 85.26 87.48 102.1 112.3 116.5 127.5 

 
5 43.58 44.83 54.12 69.50 70.93 75.51 86.06 91.87 102.1 116.5 124.6 127.6 

 
6 43.58 44.85 54.12 69.77 70.93 75.59 86.08 91.87 102.8 119.9 124.7 127.6 

 
7 43.58 44.85 54.15 69.78 70.94 75.59 86.16 92.09 102.8 119.9 125.3 127.6 

 
8 43.58 44.85 54.15 69.80 70.94 75.60 86.16 92.09 102.9 120.1 125.3 127.6 

 
9 43.58 44.85 54.15 69.80 70.94 75.60 86.18 92.12 102.9 120.1 125.4 127.6 

 
10 43.58 44.85 54.15 69.80 70.94 75.61 86.18 92.12 102.9 120.1 125.4 127.6 

 
11 43.58 44.85 54.16 69.80 70.94 75.61 86.19 92.12 102.91 120.1 125.4 127.6 

 
12 43.58 44.86 54.16 69.81 70.94 75.61 86.19 92.12 102.92 120.1 125.4 127.6 

a/Rx = 0.3 3 83.66 87.04 94.21 99.67 102.5 106.8 109.1 109.3 120.1 125.1 139.6 141.0 

 
4 94.21 96.03 99.93 102.2 106.8 108.1 109.3 117.7 120.1 125.3 140.2 151.0 

 
5 94.89 96.03 102.2 102.5 108.1 111.4 114.1 117.7 125.2 138.4 140.2 151.0 

 
6 94.89 96.03 102.2 102.5 108.7 111.4 114.1 120.4 125.2 138.5 146.2 158.1 

 
7 94.90 96.03 102.2 102.6 108.7 111.4 114.2 120.4 125.6 139.9 146.2 158.1 

 
8 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.5 125.6 139.9 146.4 158.1 

 
9 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.5 125.6 140.0 146.4 158.1 

 
10 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1 

 
11 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1 

 
12 94.90 96.03 102.3 102.6 108.8 111.4 114.2 120.6 125.6 140.0 146.4 158.1 

 

  

1
0
9
 



 

Table A3. 24 Convergence study for the natural frequency parameters of the CCCC hyperbolic-paraboloidal shallow shell on the 

rectangular planform (Φ= 2.0, Ry/Rx = -1) -continued 

 
k Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 

a/Rx = 0.5 3 95.54 114.1 119.1 137.6 140.0 142.1 149.1 150.0 157.9 164.6 169.8 171.9 

 
4 114.3 130.7 137.6 139.8 140.3 142.8 149.1 157.5 164.6 169.9 174.7 176.8 

 
5 130.7 130.9 139.2 139.8 142.8 154.6 157.6 159.0 171.0 174.7 176.8 183.2 

 
6 130.9 131.2 139.2 139.9 154.1 154.7 158.4 159.0 171.0 183.2 186.0 187.9 

 
7 131.0 131.2 139.2 139.9 154.1 155.5 158.4 159.0 175.0 183.5 186.0 187.9 

 
8 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.0 183.5 186.1 189.7 

 
9 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.1 183.5 186.1 189.7 

 
10 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.1 183.5 186.1 189.9 

 
11 131.0 131.2 139.2 139.9 154.3 155.5 158.4 159.0 175.1 183.5 186.1 189.9 

 
12 131.0 131.2 139.2 139.9 154.4 155.5 158.4 159.0 175.1 183.5 186.1 189.9 

 

 

 

 

 

 

1
1
0
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Appendix IV Matlab code 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This programme is to calculate the natural frequency parameters of doubly           % 

% curved fully clamped thin shells on a rectangular planform using the            % 

% Superposition-Galerkin Method for different curvature ratios and aspect ratios.           % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

clear all 

 

k=input('Please enter the value for k=');  % No. of terms for driving coefficient 

PHI=input('Please enter the value for b/a=');  % aspect ratio 

beta=input('Please enter the value for a/Rx=');  % ratio of planform  

                                    % dimension to the radius of curvature 

delta=input('Please enter the value for a/h=');  % thickness ratio 

gamma=input('Please enter the value for Rx/Ry='); % Gaussian curvature  

% 0:cylindrical 1:spherical -1:hyperbolic paraboloidal 

almds=input('Please enter the trial value of Lambda to be begun almds='); 

del0=input('Please enter the increment of Lambda del='); 

 

 

BC=[1 1 1 1 1 1 1 1; 1 2 3 4 5 6 7 8]; % boundary condition matrix 

                                % BC(2,m) stands for the mth building block 

                                % 1:clamped  

    % 0: simply-supported or shear-diagraph (in-plane) 

                                 % at the its driving edge 

 

 

PHIS = PHI^2; 

POI = 0.3; % Poisson's ratio 

POIS = 2-POI; 

POIb = (1-POI)/2; 

kk = 20; % No. of terms for series expansion  

del = del0; 

 

Ls = almds+del; 

h = 1; 

Dc = 1; 

r = 1; 

d1 = 0; 

d2 = 0; 

counter0 = 0; 

l = 1; 

 

ML=12; % No. of frequency parameter to be obtained 

 

 

% Solving vibration problem of the building blocks in terms of E's using Galerkin  

% method.  
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while h <= ML 

 

% First building block  

    a = zeros(3); 

    b = zeros(3,1); 

    c = zeros(3,1); 

 

    for m = 1:k 

        emp = m*pi; 

 

        for s = 1:kk 

            esp = s*pi; 

 

            a(1,1) = -12*delta^2*emp^2 - 12*delta^2*POIb/PHIS*esp^2 + Ls^2; 

            a(1,2) = -12*delta^2*(1+POI)/2/PHI*emp*esp; 

            a(1,3) = 12*delta^2*beta*(1+POI*gamma)*emp; 

            a(2,1) = -12*delta^2*(1+POI)/2/PHI*emp*esp; 

            a(2,2) = -12*delta^2*POIb*emp^2 - 12*delta^2/PHIS*esp^2 + Ls^2; 

            a(2,3) = 12*delta^2*beta/PHI*(POI+gamma)*esp; 

            a(3,1) = -12*delta^2*beta*(1+POI*gamma)*emp; 

            a(3,2) = -12*delta^2*beta/PHI*(POI+gamma)*esp; 

            a(3,3) = (emp^4 + 2/PHIS*emp^2*esp^2 + esp^4/PHIS^2)... 

                + 12*delta^2*beta^2*(1+2*POI*gamma+gamma^2) - Ls^2; 

 

            b(1,1) = -2*12*delta^2*beta*(1+POI*gamma)*emp*(-cos(esp)/esp^3); 

            b(2,1) = -2*12*delta^2*beta/PHI*(POI+gamma)*(-cos(esp)/esp^2); 

            b(3,1) = -2*(2/PHIS*emp^2*(-cos(esp)/esp)... 

         + (emp^4 + 12*delta^2*beta^2*(1+2*POI*gamma+gamma^2) - Ls^2)... 

         *(-cos(esp)/esp^3)); 

 

            c(1,1) = -2*6*(1+POI)*delta^2/PHI*emp*(-cos(esp)/esp); 

            c(2,1) = -2*(-12*delta^2*POIb*emp^2 + Ls^2)*(cos(esp)/esp^2); 

            c(3,1) = -2*12*delta^2*beta/PHI*(gamma+POI)*(-cos(esp)/esp); 

 

            Em(:,s,m) = a\b; 

            Fm(:,s,m) = a\c;             

        end 

        Em(2,2:kk,m) = Em(2,1:kk-1,m); 

        Em(2,1,m) = 0; 

        Fm(2,2:kk,m) = Fm(2,1:kk-1,m); 

        Fm(2,1,m) = ((12*delta^2*POIb*emp^2 - Ls^2)/6 - 12*delta^2/PHIS)... 

                        /(-12*delta^2*POIb*emp^2 + Ls^2); 

    end 

 

 

% Second building block  

    a = zeros(3); 

    b = zeros(3,1); 

    c = zeros(3,1); 

 

    for n = 1:k 

        enp = n*pi; 

 

        for t = 1:kk 

            etp = t*pi; 
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            a(1,1) = -12*delta^2*etp^2 - 12*delta^2*POIb/PHIS*enp^2 + Ls^2; 

            a(1,2) = -12*delta^2*(1+POI)/2/PHI*etp*enp; 

            a(1,3) = 12*delta^2*beta*(1+POI*gamma)*etp; 

            a(2,1) = -12*delta^2*(1+POI)/2/PHI*etp*enp; 

            a(2,2) = -12*delta^2*POIb*etp^2 - 12*delta^2/PHIS*enp^2 + Ls^2; 

            a(2,3) = 12*delta^2*beta/PHI*(POI+gamma)*enp; 

            a(3,1) = -12*delta^2*beta*(1+POI*gamma)*etp; 

            a(3,2) = -12*delta^2*beta/PHI*(POI+gamma)*enp; 

            a(3,3) = (etp^4 + 2/PHIS*etp^2*enp^2 + enp^4/PHIS^2)... 

                + 12*delta^2*beta^2*(1+2*POI*gamma+gamma^2) - Ls^2; 

 

            b(1,1)=-2*12*delta^2*beta*(1+POI*gamma)*(-cos(etp)/etp^2); 

            b(2,1)=-2*12*delta^2*beta/PHI*(POI+gamma)*enp*(-cos(etp)/etp^3); 

            b(3,1)=-2*(2/PHIS*enp^2*(-cos(etp)/etp) + (enp^4/PHIS^2 ... 

                 + 12*delta^2*beta^2*(1+2*POI*gamma+gamma^2) - Ls^2)... 

                 *(-cos(etp)/etp^3)); 

 

            c(1,1)=-2*(-12*delta^2*POIb/PHIS*enp^2+ Ls^2)*(cos(etp)/etp^2); 

            c(2,1)=-2*(6*(1+POI)*delta^2/PHI*enp)*(-cos(etp)/etp); 

            c(3,1)=-2*(12*delta^2*beta*(1+gamma*POI))*(-cos(etp)/etp); 

 

            En(:,t,n) = a\b; 

            Fn(:,t,n) = a\c; 

        end 

        En(1,2:kk,n) = En(1,1:kk-1,n); 

        En(1,1,n) = 0; 

        Fn(1,2:kk,n) = Fn(1,1:kk-1,n); 

        Fn(1,1,n) = ((12*delta^2*POIb/PHIS*enp^2 - Ls^2)/6 - 12*delta^2)... 

            /(-12*delta^2*POIb/PHIS*enp^2 + Ls^2); 

    end 

 

    Ep = Em; 

    Eq = En; 

    Fp = Fm; 

    Fq = Fn; 

 

 

% Generating a coefficient matrix "A"  

    A = zeros(8*k,8*k);  

 

for m = 1:k 

        emp = m*pi; 

  

        for s = 1:kk 

            esp = s*pi; 

            espc = (s-1)*pi; 

  

            A(m,m) = A(m,m)+Em(3,s,m)*esp*cos(esp); 

            A(k+m,k+m) = A(k+m,k+m)+Fm(2,s,m)*cos(espc); 

            A(4*k+m,4*k+m) = A(4*k+m,4*k+m)+Ep(3,s,m)*esp*cos(esp);  

            A(5*k+m,5*k+m) = A(5*k+m,5*k+m)+Fp(2,s,m)*cos(espc); 

  

            A(m,k+m) = A(m,k+m)+Fm(3,s,m)*esp*cos(esp); 

            A(m,4*k+m) = A(m,4*k+m)+Ep(3,s,m)*esp; 
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            A(m,5*k+m) = A(m,5*k+m)+Fp(3,s,m)*esp; 

  

            A(k+m,m) = A(k+m,m)+Em(2,s,m)*cos(espc); 

            A(k+m,4*k+m) = A(k+m,4*k+m)+Ep(2,s,m); 

            A(k+m,5*k+m) = A(k+m,5*k+m)+Fp(2,s,m); 

  

            A(4*k+m,m) = A(4*k+m,m)+Em(3,s,m)*esp; 

            A(4*k+m,k+m) = A(4*k+m,k+m)+Fm(3,s,m)*esp; 

            A(4*k+m,5*k+m) = A(4*k+m,5*k+m)+Fp(3,s,m)*esp*cos(esp); 

  

            A(5*k+m,m) = A(5*k+m,m)+Em(2,s,m); 

            A(5*k+m,k+m) = A(5*k+m,k+m)+Fm(2,s,m); 

            A(5*k+m,4*k+m) = A(5*k+m,4*k+m)+Ep(2,s,m)*cos(espc); 

        end 

  

        A(m,m) = (A(m,m)-1/3); 

        A(k+m,k+m) = (A(k+m,k+m)+1/2); 

        A(4*k+m,4*k+m) = (A(4*k+m,4*k+m)-1/3); 

        A(5*k+m,5*k+m) = (A(5*k+m,5*k+m)+1/2); 

  

        A(m,4*k+m) = (A(m,4*k+m)+1/6); 

        A(4*k+m,m) = (A(4*k+m,m)+1/6); 

    end 

  

    for n = 1:k 

        enp = n*pi;                 

  

        for t = 1:kk 

            etp = t*pi; 

            etpc = (t-1)*pi; 

  

            A(2*k+n,2*k+n) = A(2*k+n,2*k+n)+En(3,t,n)*etp*cos(etp); 

            A(3*k+n,3*k+n) = A(3*k+n,3*k+n)+Fn(1,t,n)*cos(etpc); 

            A(6*k+n,6*k+n) = A(6*k+n,6*k+n)+Eq(3,t,n)*etp*cos(etp); 

            A(7*k+n,7*k+n) = A(7*k+n,7*k+n)+Fq(1,t,n)*cos(etpc); 

  

            A(2*k+n,3*k+n) = A(2*k+n,3*k+n)+Fn(3,t,n)*etp*cos(etp); 

            A(2*k+n,6*k+n) = A(2*k+n,6*k+n)+Eq(3,t,n)*etp; 

            A(2*k+n,7*k+n) = A(2*k+n,7*k+n)+Fq(3,t,n)*etp; 

  

            A(3*k+n,2*k+n) = A(3*k+n,2*k+n)+En(1,t,n)*cos(etpc); 

            A(3*k+n,6*k+n) = A(3*k+n,6*k+n)+Eq(1,t,n); 

            A(3*k+n,7*k+n) = A(3*k+n,7*k+n)+Fq(1,t,n); 

  

            A(6*k+n,2*k+n) = A(6*k+n,2*k+n)+En(3,t,n)*etp; 

            A(6*k+n,3*k+n) = A(6*k+n,3*k+n)+Fn(3,t,n)*etp; 

            A(6*k+n,7*k+n) = A(6*k+n,7*k+n)+Fq(3,t,n)*etp*cos(etp); 

  

            A(7*k+n,2*k+n) = A(7*k+n,2*k+n)+En(1,t,n); 

            A(7*k+n,3*k+n) = A(7*k+n,3*k+n)+Fn(1,t,n); 

            A(7*k+n,6*k+n) = A(7*k+n,6*k+n)+Eq(1,t,n)*cos(etpc); 

        end 

  

        A(2*k+n,2*k+n) = (A(2*k+n,2*k+n)-1/3); 

        A(3*k+n,3*k+n) = (A(3*k+n,3*k+n)+1/2); 
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        A(6*k+n,6*k+n) = (A(6*k+n,6*k+n)-1/3); 

        A(7*k+n,7*k+n) = (A(7*k+n,7*k+n)+1/2); 

  

        A(2*k+n,6*k+n) = (A(2*k+n,6*k+n)+1/6); 

        A(6*k+n,2*k+n) = (A(6*k+n,2*k+n)+1/6); 

    end 

 

 

    for m = 1:k 

        for n = 1:k 

            p = m; 

            q = n; 

 

            if m > kk 

                En3 = 0; 

                Eq3 = 0; 

                Fn3 = 0; 

                Fq3 = 0; 

 

                En2 = 0; 

                Eq2 = 0; 

                Fn2 = 0; 

                Fq2 = 0; 

            else 

                En3 = En(3,m,n); 

                Eq3 = Eq(3,m,q); 

                Fn3 = Fn(3,m,n); 

                Fq3 = Fq(3,m,q); 

 

                En2 = En(2,m,n); 

                Eq2 = Eq(2,m,q); 

                Fn2 = Fn(2,m,n); 

                Fq2 = Fq(2,m,q); 

            end 

 

            if n > kk 

                Em3 = 0; 

                Ep3 = 0; 

                Fm3 = 0; 

                Fp3 = 0; 

 

                Em1 = 0; 

                Ep1 = 0; 

                Fm1 = 0; 

                Fp1 = 0; 

            else 

                Em3 = Em(3,n,m); 

                Ep3 = Ep(3,n,p); 

                Fm3 = Fm(3,n,m); 

                Fp3 = Fp(3,n,p); 

 

                Em1 = Em(1,n,m); 

                Ep1 = Ep(1,n,p); 

                Fm1 = Fm(1,n,m); 

                Fp1 = Fp(1,n,p); 
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            end 

 

            emp = m*pi; 

            enp = n*pi; 

            epp = p*pi; 

            eqp = q*pi; 

 

            A(m,2*k+n) = 2*enp*cos(enp)*(1/2*En3-cos(emp)/emp^3); 

            A(m,3*k+n) = 2*enp*cos(enp)*(1/2*Fn3); 

            A(m,6*k+q) = -2*eqp*cos(eqp)*(-1/2*Eq3*cos(emp)+1/emp^3);  

            A(m,7*k+q) = -2*eqp*cos(eqp)*(-1/2*Fq3*cos(emp)); 

  

            A(k+m,2*k+n) = 2*cos(enp)*(1/2*En2); 

            A(k+m,3*k+n) = 2*cos(enp)*(1/2*Fn2); 

            A(k+m,6*k+q) = -2*cos(eqp)*(-1/2*Eq2*cos(emp));  

            A(k+m,7*k+q) = -2*cos(eqp)*(-1/2*Fq2*cos(emp)); 

  

            A(2*k+n,m) = 2*emp*cos(emp)*(1/2*Em3-cos(enp)/enp^3); 

            A(2*k+n,k+m) = 2*emp*cos(emp)*(1/2*Fm3); 

            A(2*k+n,4*k+p) = -2*epp*cos(epp)*(-1/2*Ep3*cos(enp)+1/enp^3); 

            A(2*k+n,5*k+p) = -2*epp*cos(epp)*(-1/2*Fp3*cos(enp)); 

  

            A(3*k+n,m) = 2*cos(emp)*(1/2*Em1); 

            A(3*k+n,k+m) = 2*cos(emp)*(1/2*Fm1); 

            A(3*k+n,4*k+p) = -2*cos(epp)*(-1/2*Ep1*cos(enp)); 

            A(3*k+n,5*k+p) = -2*cos(epp)*(-1/2*Fp1*cos(enp)); 

  

            A(4*k+p,2*k+n) = 2*enp*(1/2*En3-cos(epp)/epp^3); 

            A(4*k+p,3*k+n) = 2*enp*(1/2*Fn3); 

            A(4*k+p,6*k+q) = -2*eqp*(-1/2*Eq3*cos(epp)+1/epp^3);  

            A(4*k+p,7*k+q) = -2*eqp*(-1/2*Fq3*cos(epp));  

  

            A(5*k+p,2*k+n) = 2*(1/2*En2); 

            A(5*k+p,3*k+n) = 2*(1/2*Fn2); 

            A(5*k+p,6*k+q) = -2*(-1/2*Eq2*cos(epp));  

            A(5*k+p,7*k+q) = -2*(-1/2*Fq2*cos(epp)); 

  

            A(6*k+q,m) = 2*emp*(1/2*Em3-cos(eqp)/eqp^3); 

            A(6*k+q,k+m) = 2*emp*(1/2*Fm3); 

            A(6*k+q,4*k+p) = -2*epp*(-1/2*Ep3*cos(eqp)+1/eqp^3); 

            A(6*k+q,5*k+p) = -2*epp*(-1/2*Fp3*cos(eqp)); 

  

            A(7*k+q,m) = 2*(1/2*Em1); 

            A(7*k+q,k+m) = 2*(1/2*Fm1); 

            A(7*k+q,4*k+p) = -2*(-1/2*Ep1*cos(eqp)); 

            A(7*k+q,5*k+p) = -2*(-1/2*Fp1*cos(eqp)); 

        end 

    end 

 

    AA = A; 

 

 

% if the driving edge of a building block is simply-supported (out of plane) or  

% shear diaphragm (in-plane) the corresponding row and column are removed. 

    bm = 0; 
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    for m = 1:8 

        if BC(1,m) == 0 

            bc = BC(2,m)-bm; 

            A((bc-1)*k+1:bc*k,:) = []; 

            A(:,(bc-1)*k+1:bc*k) = []; 

            bm = bm+1; 

        end 

    end 

  

  

% Gaussian elimination  

    bn = 8-bm; 

    for p = 1:bn*k 

        for m = p+1:bn*k 

            if A(m,p)~=0 

                alp=A(m,p)/A(p,p); 

                for n = p:bn*k  

                    A(m,n)=A(m,n)-A(p,n)*alp;   

                end 

            end 

        end 

    end 

 

 

% Counting the negatives in diagonal and determining natural frequency parameters  

    da=1; 

    DA = diag(A); 

    counter = 0; 

    for m = 1: bn*k 

        if DA(m)<0 

           counter = counter+1; 

        end 

    end 

 

    d = det(A)*10^6; 

    D(l) = d; 

    L(l) = Ls; 

    C(l) = counter; 

    l = l+1; 

 

    if counter0 == 2 

            if d1*d > 0 

                if (abs(d3) > abs(d2)) && (abs(d) > abs(d1)) 

                    LA(h,k) = Ls-1.5*Dc*del; 

                    LA(h+1,k) = Ls-1.5*Dc*del; 

                    h = h+2; 

                    Ls = Ls+Dc*del; 

                else 

                    Ls = Ls+Dc*del; 

                end 

            elseif ((d1*d< 0) && (abs(d2) > abs(d1))) 

                LA(h,k) = Ls-Dc*del/2; 

                h = h+1; 

                Ls = Ls+Dc*del; 

            else 
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                Ls = Ls+Dc*del; 

            end 

            counter0 = 1; 

 

    elseif ((d1*d< 0) && (abs(d2) > abs(d1))) 

        LA(h,k) = Ls-Dc*del/2; 

        h = h+1; 

        Ls = Ls+Dc*del; 

    else 

        Ls = Ls+Dc*del; 

    end          

 

 

    if counter0 == 0 

        counter0 = 1; 

        counter1 = counter; 

        d2 = d1; 

        d1 = d; 

 

    elseif PHI == 1 && abs(counter1-counter) == 2 

        counter0 = 2; 

        counter1 = counter; 

        d3 = d2; 

        d2 = d1; 

        d1 = d; 

    else 

        counter1 = counter; 

        d2 = d1; 

        d1 = d; 

    end 

 

    if Ls > (10^(r+1)-Dc*del); 

        Dc = 10^r; 

        r = r+1; 

    end 

end 

 

Eigenvalues = LA 

 

 

 

 

 


