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A direct method for finding similarity reductions of partial differential equations is applied to a
specific case of the Grad–Shafranov equation. As an illustration of the method, the frequently used
Solov’ev equilibrium is derived. The method is employed to obtain a new family of exact analytical
solutions, which contain both the classical and nonclassical group-invariant solutions of the Grad–
Shafranov equation and thus greatly extends the range of the available analytical solutions. All the
group-invariant solutions based on the classical Lie symmetries are shown to be particular cases in
the new family of solutions. © 2010 American Institute of Physics. �doi:10.1063/1.3456519�

The analysis of similarity reductions of partial differen-
tial equations plays an important role in many physical ap-
plications. Self-similar reductions not only solve problems
with specific initial or boundary conditions1 but also serve as
intermediate asymptotic solutions to a much wider class of
problems.2

The classical method for finding a similarity reduction of
a given partial differential equation is to use the Lie group
method to determine a one-parameter group, admitted by the
equation, and the corresponding group-invariant solution.3

Recently White and Hazeltine4 have used this approach to
calculate the complete symmetry group admitted by the
Grad–Shafranov equation5,6 for the poloidal magnetic flux
u�r ,z�,

urr + uzz −
1

r
ur + r2F + G = 0, �1�

in the particular case of constants F and G. The equation
describes ideal magnetohydrodynamic tokamak equilibria in
which both the pressure and the square of the poloidal elec-
tric current are linear functions of u�r ,z�. Here and in what
follows, the same notation as in Ref. 4 is adopted, although
��r ,z� is more often used in literature to denote the poloidal
magnetic flux.

White and Hazeltine4 used the symmetry group to gen-
erate some new solutions from available solutions and de-
rived three new group-invariant solutions to the Grad–
Shafranov equation. Not all interesting similarity reductions
can be obtained using the standard Lie group method for
finding group-invariant solutions. The well-known Solov’ev7

equilibrium, for instance, is not among the Lie group-
invariant solutions to Eq. �1�. A nonclassical method of
group-invariant solutions8,9 generalizes the classical Lie
method by analyzing group transformations that do not nec-
essarily map a given partial differential equation into itself.
The nonclassical method can lead to additional similarity
reductions.

A direct method for finding similarity reductions was
proposed by Clarkson and Kruskal.10 The method is rela-
tively simple to implement because it does not use group
theory. The resulting similarity reductions, however, have

been shown to be of both classical and nonclassical symme-
try types.11

The literature on exact solutions to the Grad–Shafranov
equation is extensive. Exact solutions in terms of special
functions have been derived for the case of a linear inhomo-
geneous equation,12–15 and series expansion solutions to the
homogeneous equation have been developed.16 Yet interest
in new techniques for solving the equation remains strong.
Recent examples include modeling tokamaks and field rever-
sal configurations,17 developing axially symmetric magneto-
hydrodynamic models for astrophysical jets,18 and construct-
ing counterexamples to Parker’s hypothesis in astrophysics.19

Hence it appears useful to present some similarity reductions
derived with the direct method10 and to compare them with
the group-invariant solutions obtained with the classical Lie
method.4 This is the purpose of this brief communication.

The idea of the direct method is to seek a similarity
reduction using the very flexible ansatz10

u�r,z� = ��r,z� + ��r,z�w�x�r,z�� . �2�

Substituting this form into the original equation and demand-
ing that the result be an ordinary differential equation for
w�x� leads to a set of constraints that are used to solve for the
functions ��r ,z�, ��r ,z�, x�r ,z�, and w�x�r ,z��. In the case of
Eq. �1�, the substitution of Eq. �2� leads to

��xr
2 + xz

2�w� + ��2�r −
1

r
��xr + 2�zxz + ��xrr + xzz�	w�

+ ��rr + �zz −
1

r
�r�w

+ ��rr + �zz −
1

r
�r + Fr2 + G� = 0. �3�

As an illustration, consider first the case �=��r�,
�=��r�, and x=x�z�. Choosing w�x�=x gives

�xzz + ��rr −
1

r
�r�x + ��rr −

1

r
�r + Fr2 + G� = 0. �4�

The equation can be satisfied by choosing x�z�=z2 /2, in
which case � and � must satisfy
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�rr −
1

r
�r = 0, �5�

� + �rr −
1

r
�r + Fr2 + G = 0. �6�

The last two equations are solved to give

��r� = �0 + �2r2, �7�

��r� = �0 + ��2 + 1
4 ��0 + G��r2 − 1

8 ��2 + F�r4

− 1
2 ��0 + G�r2 ln r . �8�

A particular choice of the remaining integration constants �i

and �i leads to the well-known Solov’ev7 solution,

u�r,z� =
1

2
�r2 − G�z2 −

1

8
�1 + F��r2 +

G

b
�2

. �9�

Now return to Eq. �3� and choose

x =
z

r
. �10�

Assume that �=��r ,z� and �=��r�. Then Eq. �3� is simpli-
fied as follows:

��1 + x2�w� + �3� − 2r�r�xw� + �r2�rr − r�r�w

+ r2��rr + �zz −
1

r
�r + Fr2 + G� = 0. �11�

This equation is satisfied by

��r� = r� �12�

for any value of the parameter � and by any solutions w�x�
and ��r ,z� of the following two equations:

�1 + x2�w� + �3 − 2��xw� + ��� − 2�w = 0, �13�

�rr + �zz −
1

r
�r + Fr2 + G = 0. �14�

Equations �13� and �14� constitute a new similarity re-
duction of the Grad–Shafranov equation. For example,

w�x� = c1�x + 
1 + x2�−
3/2 + c2�x + 
1 + x2�
3/2 �15�

is obtained for �=1 /2, whereas

w�x� = c1�x2
1 + x2 + 3x sinh−1�x� − 2
1 + x2� + c2x

�16�

is obtained for �=3. Here and in what follows c1 and c2 are
integration constants. The general solution w�x� for an arbi-
trary � can be expressed in terms of the associated Legendre
functions,

w�x� = c1�1 + x2��2�−1�/4P1/2
�1−2��/2�ix�

+ c2�1 + x2��2�−1�/4Q1/2
�1−2��/2�ix� . �17�

Clearly ��r ,z�, defined by Eq. �14�, already satisfies the
original partial differential Eq. �1�. The key point, however,

is that new nontrivial solutions to the Grad–Shafranov equa-
tion can be generated from any solution to Eq. �14�. For
example, specifying

��r,z� = − 1
8Fr4 − 1

2Gz2 �18�

leads to the following solution in the case �=3:

u�r,z� = c1��z2 − 2r2�
r2 + z2 + 3r2z sinh−1� z

r
�	

+ c2r2z −
1

8
Fr4 −

1

2
Gz2. �19�

Another simple way to generate new solutions is to use
�=��r�, in which case Eq. �14� is solved to give

��r� = c1r2 + c2 − 1
8Fr4 − 1

2Gr2 ln r . �20�

Moreover, if u�r ,z� is a solution of the Grad–Shafranov
equation, then u�r ,z�+�w�x�r ,z�� is also a solution, which
makes it possible to combine solutions with different �.

The family of solutions above contains both the classical
and nonclassical group-invariant solutions of the Grad–
Shafranov equation and thus greatly extends the range of the
available analytical solutions. It may be of particular impor-
tance that all the group-invariant solutions based on the clas-
sical Lie symmetries4 are in fact particular cases in the new
similarity reduction.

Indeed, Eq. �13� with �=0 is solved to give

w�x� = c1
x


1 + x2
+ c2. �21�

Now taking a particular ��r� from Eq. �20� leads to

u�r,z� = c1
z


r2 + z2
+ c2 +

1

2
Gr2�1 − ln r� −

1

8
Fr4. �22�

This is the group-invariant solution U�3��r ,z� presented by
White and Hazeltine.4

Similarly, Eq. �13� with �=1 is solved to give

w�x� = c1

1 + x2 + c2x , �23�

whereas the same equation with �=−1 is solved to give

w�x� =
c1

�1 + x2�3/2 + c2� x

1 + x2 +
sinh−1�x�
�1 + x2�3/2	 . �24�

Now taking a linear combination of the two solutions,

w�x� = c1

1 + x2 +

c2

�1 + x2�3/2 , �25�

and using a particular ��r� from Eq. �20� leads to

u�r,z� = c1

r2 + z2 + c2

r2

�r2 + z2�3/2

+
1

3
Gr2 −

1

8
Fr4 −

1

2
Gr2 ln r . �26�

This is the group-invariant solution U�1��r ,z� presented by
White and Hazeltine.4

Finally, Eq. �13� with �=2 is solved to give

074502-2 Yuri E. Litvinenko Phys. Plasmas 17, 074502 �2010�

Downloaded 30 Nov 2010 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



w�x� = c1x
1 + x2 + c1 sinh−1�x� + c2. �27�

Now using ��r ,z� from Eq. �18� leads to

u�r,z� = c1z
r2 + z2 + c1r2 sinh−1� z

r
�

+ c2r2 −
1

8
Fr4 −

1

2
Gz2. �28�

This is the group-invariant solution U�2��r ,z� presented by
White and Hazeltine.4 Note for clarity that the expressions
for U�1� and U�3� in the paper by White and Hazeltine4 con-
tain several misprints.

To summarize, all the group-invariant solutions to a lin-
ear Grad–Shafranov equation, derived using the classical Lie
method4 are, in fact, particular cases in a new family of
solutions, obtained by a direct method for finding similarity
reductions of partial differential equations. As demonstrated
above, other exact analytical solutions are available, which
evidently correspond to nonclassical symmetries.

The focus of this brief communication is on the cases
F=const and G=const analyzed by White and Hazeltine.4 It
should be pointed out, however, that exact analytical solu-
tions can be obtained by the method of separation of vari-
ables when F�u� and G�u� are general linear functions of u,
say F=F0+F1u and G=G0+G1u.13,14 The direct method,10

unfortunately, does not result in new solutions when either
F1�0 or G1�0, at least for the types of similarity reduc-
tions considered in this brief communication. Specifically,
using x=x�z� in Eq. �3� leads to a solution that is equivalent
to that obtained by the separation of variables, whereas using
x=z /r in Eq. �3� does not result in any solutions.

By contrast, the direct method10 should be expected to
be effective in studies of the nonlinear Grad–Shafranov
equation. As a simple illustration, note that the same choice
of x=z /r, together with �=0 and ��r�=r�, leads to a simi-
larity reduction for u�r ,z�=��r�w�x� if F�u�=F0u1−4/� and
G�u�=G0u1−2/�. Specifically, Eq. �11� for w�x� is reduced to

�1 + x2�w� + �3 − 2��xw� + ��� − 2�w + F0w1−4/�

+ G0w1−2/� = 0. �29�

While the resulting similarity reduction turns out to corre-
spond to a classical group invariance,20 it illustrates the sim-
plicity and potential usefulness of the present method. Its
application to the Grad–Shafranov equation with nonlinear
profiles of the pressure and squared poloidal current may
result in exact solutions that fit realistic experimental
configurations.
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