brought to you by 🏋 CORE

Accepted Manuscript

Short communication

Metal adsorption by quasi cellulose xanthogenates derived from aquatic and terrestrial plant materials

Wenbing Zhou, Xuan Ge, Duanwei Zhu, Alan Langdon, Li Deng, Yumei Hua, Jianwei Zhao


PII: S0960-8524(10)01837-7

DOI: 10.1016/j.biortech.2010.11.035

Reference: BITE 7814

To appear in: Bioresource Technology

Received Date: 23 May 2010
Revised Date: 4 November 2010
Accepted Date: 9 November 2010

Please cite this article as: Zhou, W., Ge, X., Zhu, D., Langdon, A., Deng, L., Hua, Y., Zhao, J., Metal adsorption by quasi cellulose xanthogenates derived from aquatic and terrestrial plant materials, *Bioresource Technology* (2010), doi: 10.1016/j.biortech.2010.11.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	1	Metal adsorption by quasi cellulose xanthogenates derived from
2 3 4	2	aquatic and terrestrial plant materials
5 6 7	3	Wenbing Zhou ^a , Xuan Ge ^a , Duanwei Zhu ^{a,*} , Alan Langdon ^b , Li Deng ^a , Yumei Hua ^a , Jianwei
8 9 10	4	Zhao ^a
11 12 13	5	^a Laboratory of Plant Nutrition and Ecological Environment Research, Microelement
14 15	6	Research Center of Huazhong Agricultural University, Key Laboratory of Subtropical
16 17 18	7	Agriculture and Environment, Ministry of Agriculture, Wuhan 430070, China
19 20 21	8	^b Department of Engineering, University of Waikato, Private Bag 3105, Hamilton, New
222324	9	Zealand
252627	10	*Corresponding author. Tel.: +86-27-87287184; fax: +86-27-87397735.
28 29 30	11	E-mail address: <u>zhudw@mail.hzau.edu.cn</u>
31 32	12	Abstract
33 34 35	13	The FTIR spectra, SEM-EDXA and copper adsorption capacities of the raw plant materials,
36 37 38	14	alkali treated straws and cellulose xanthogenate derivatives of Eichhornia crassipes shoot,
39 40 41	15	rape straw and corn stalk were investigated. FTIR spectra indicated that of the three plant
42 43 44	16	materials, the aquatic biomass of <i>Eichhornia crassipes</i> shoot contained more O-H and C=O
45 46	17	groups which accounted for the higher Cu ²⁺ adsorption capacities of the raw and alkali treated
47 48 49	18	plant material. SEM-EDXA indicated the incorporation of sulphur and magnesium in the
50 51 52	19	cellulose xanthogenate. The Cu ²⁺ adsorption capacities of the xanthogenates increased with
53 54 55	20	their magnesium and sulphur contents. However more copper was adsorbed than that can be
56 57	21	explained by exchange of copper with magnesium. Precipitation may contribute to the
58 59 60 61 62	22	enhanced uptake of copper by the cellulose xanthogenate.
63 64 65		1

ACCEPTED MANUSCRIPT

23 Keywords: Cellulose xanthogenate; Cu²⁺ adsorption capacity; Sulphur; Magnesium; Biomass

1. Introduction

Plant fiber generally has a low adsorption capacity for metal ions in aqueous solution and furthermore the fiber readily degrades. However, chemical modification of fiber has the potential to both increase adsorption capacity and improve stability of fiber (Kamel et al., 2006; O'Connell et al., 2008). Fiber may be modified by low molecular weight organic compounds such as acrylic acid (Wei et al., 2005), high molecular weight substances such as polyacrylonitrile (Okieimen et al., 2005), and many inorganic substances, including CS₂ (Tan et al., 2008). The introduction of functional groups, such as -CS-S- and carboxyl, on the cellulose backbone can enhance the heavy metal binding capacities of modified fibers. Due to their high heavy metal chelation capacity and the intrinsic advantages of low cost, availability, biodegradability and easy handling, there has been much recent research interest in adsorbents derived from biomass resources. Studies have included their preparation, application (Chakraborty and Tare, 2006; Chauhan and Sankararamakrishnan, 2008; Tan et al., 2008), structural characterization and adsorption mechanisms (Panda et al., 2008; Zhou et al., 2009). This paper focuses on differences in the structural characteristics of terrestrial and aquatic sourced plant materials, their corresponding alkali-treated straws (intermediate products) and cellulose xanthogenates (products), and the relationship between structural characteristics and heavy metal adsorption capacities of these materials. Plant straws from aquatic Eichhornia crassipes (E. crassipes) shoot were compared with terrestrial biomasses of rape straw and corn stalk. E. crassipes biomass was of particular interest because of its nuisance factor in eutrophic waters (Malik, 2007), and the relevance that chemical modification and utilization

ACCEPTED MANUSCRIPT

45	of E. crassipes biomass as a cellulose based adsorbent for water remediation or other purposes
46	would have to the economic viability of large scale harvesting of this nuisance plant.
47	Favorable results would provide a basis for its selection as an appropriate raw plant material
48	for biomass adsorbents.
49	2. Methods
50	2.1. Collection and pre-treatment of raw plant materials
51	Plant samples of E. crassipes were collected from a pond near Huazhong Agricultural
52	University (E114°23', N30°33') in Wuchang, Wuhan City of China. The shoot and the root
53	were separated. Rape straw and corn stalk were also collected from fields near Huazhong
54	Agricultural University. All of the plant materials were washed with tap water, cut into small
55	pieces (3~5 mm), air-dried, oven-dried, ground into fine powder, passed through a 40 mesh
56	sieve and kept desiccated at 25°C.
57	2.2. Preparation of cellulose xanthogenate
58	A 5 g sample of dried plant biomass was treated with 50 ml 200 g/L NaOH for 90 min,
59	and thoroughly washed with deionised water to obtain alkali-treated straw. The alkali-treated
60	straw was then esterified with 0.15 ml CS ₂ and 50 ml 100 g/L NaOH for another 90 min, and
61	finally treated with 10 ml 50 g/L MgSO ₄ for 10 min to prepare cellulose xanthogenate,
62	according to the method of Tan et al. (2008). The nine materials studied included E. crassipes
63	shoot, rape straw, corn stalk, their corresponding alkali-treated straws and cellulose
64	xanthogenates. All of the samples were oven-dried and ground into fine powder, passed
65	through a 100 mesh sieve and kept desiccated at 25°C until used.

2.3. Structural characterization

ACCEPTED MANUSCRIPT

FTIR spectra of the different materials were obtained with a FTIR spectrophotometer
(Nexus-470, USA) using KBr discs containing 2.5% finely ground sample (2.00 mg dried
sample mixed with 80.0 mg KBr). They were recorded as absorption spectra in the range
4000–400 cm ⁻¹ with an accumulation of 32 scans and a resolution of 4 cm ⁻¹ .
Surface element concentration of the samples was investigated using a JSM-6390LV
scanning electron microscope (SEM) equipped with energy dispersion X-ray spectroscopy
analysis (EDXA). The samples were coated with platinum in a JFC-1600 sputter coater before
observation.
2.4. Cu ²⁺ adsorption experiments
Cu ²⁺ was selected as a model heavy metal for the adsorption experiments. The stock
solutions of 1000 mg/L and 3000 mg/L Cu^{2+} were prepared in deionized water using the
sulphate salt. To determine the adsorption capacity of raw plant materials and alkali-treated
straws, 0.20 g samples were slurried in a 20-mL solution of 1000 mg/L Cu ²⁺ initially at pH 4.5
stirred for 24 h and filtered prior to determination of the residual concentration of Cu ²⁺ . In the
case of cellulose xanthogenate a concentration of 3000 mg/L Cu ²⁺ was used. Adsorption
studies were carried out at 25 ± 1 °C and Cu^{2+} concentration was determined by AAS.
2.5. Determination of sulphur and magnesium content of cellulose xanthogenate
Sulphur was determined by iodimetry. Magnesium was determined by EDTA titration
after samples were dry ashed, and dissolved in 1 mol/L HCl solution.
3. Results and discussion

3.1. IR functional group changes caused by chemical modification of plant materials

ACCEPTED MANUSCRIPT

The IR spectra of all the raw plant materials contained the same main absorbance bands, including bands at 3383cm⁻¹, 1643cm⁻¹ and 1027cm⁻¹ representing O-H stretching, aromatic ring C=O stretching, and symmetric C-O stretching (Viera et al., 2007), respectively. The absorbances of the three main bands were the highest for E. crassipes shoot, followed by those of rape straw with the bands for corn stalk being the lowest, indicating that the aquatic biomass of *E. crassipes* shoot contained more active O-H and C=O groups than the other two. In the alkali-treated materials, the intensity sequence of absorbances at 1504 cm⁻¹ and 1229 cm⁻¹, representative of lignin content (Viera et al., 2007), was rape straw > corn stalk > E. crassipes shoot consistent with literature reports (Tan et al., 2008). Compared with the alkali-treated straws, bands of O-H stretching in the vicinity of 3407 cm⁻¹ and C=O stretching in the vicinity of 1637 cm⁻¹ of the three cellulose xanthogenates all had diminished absorbances. The aromatic ring C=C stretching (lignin) absorbance in the vicinity of 1523 cm⁻¹ became invisible, and symmetric CH₂ bending absorbances near 1454cm⁻¹ all increased significantly. These results are consistent with the reduction or disappearance of hemicellulose and lignin, and a relative increase in cellulose content and its chemical modification by the formation of cellulose xanthogenate.

3.2. Incorporation sulphur and magnesium in modified materials

Table 1 Surface element atomic percentages determined by EDXA

Surface element atomic percentages of the nine samples determined by EDXA are shown in Table 1. The main elements of the raw plant materials and alkali-treated straws are C and O, and there are no obvious changes in elemental composition between raw plant materials and alkali-treated straws. However, the Mg and S concentrations of cellulose xanthogenates are

1	110	significantly higher indicating incorporation of Mg and S into the surfaces of the
2 3 4	111	modified materials. Of the three xanthogenates, Mg concentration of E. crassipes shoot and S
5 6 7	112	concentration of corn stalk were the highest.
8 9 10	113	3.3. The effect of chemical modification on Cu^{2+} adsorption capacities
11 12 13	114	The Cu ²⁺ adsorption capacities of the raw plant materials of <i>E. crassipes</i> shoot, rape
14 15	115	straw and corn stalk were 39.2±0.2, 31.4±0.1 and 23.6±0.1 cmol/kg, respectively. Those of
16 17 18	116	their alkali-treated straws were 62.7±0.5, 55.0±0.3 and 39.3±0.2 cmol/kg, and those of
19 20 21	117	cellulose xanthogenates were 361.0±2.5, 303.1±3.8 and 334.5±4.3 cmol/kg, respectively.
22 23 24	118	Compared to raw plant materials, alkali treatment followed by CS ₂ and Mg treatments
25 26	119	produced successive 1.67 to 1.75 fold and 9.2 to 14.2 fold enhancements of the Cu^{2+}
272829	120	adsorption capacity. The Cu^{2+} adsorption capacities of the three raw plant materials and their
30 31 32	121	alkali-treated straws follows the trend: <i>E. crassipes</i> shoot > rape straw > corn stalk. This is
33 34 35	122	also the order of the relative IR absorbances of the main functional groups, O-H and C=O, for
36 37	123	these materials. For the xanthogenates however, the sequence of absorbance intensity of main
40	124	characteristic functional groups, -O-CS ₂ - and O-H, is corn stalk $> E$. crassipes shoot $>$ rape
41 42 43	125	straw, and is not completely consistent with the sequence of copper adsorption capacities
44 45 46	126	which is <i>E. crassipes</i> shoot > corn stalk > rape straw. Other factors, such as sulphur and
47 48	127	magnesium content, are likely to be involved in the copper adsorption process.
49 50 51	128	3.4. The mechanism of Cu^{2+} adsorption
525354	129	Table 2 The sulphur and magnesium contents of cellulose xanthogenates prepared from
55 56 57	130	different raw plant straws
58 59	131	The sulphur and magnesium contents of the three cellulose xanthogenates are summarized
60 61 62		
63		6
64 65		

20 139 **151**

ACCEPTED MANUSCRIPT

with the surface sulphur and magnesium concentrations determined by EDXA given in Table 1.

in Table 2. The bulk sulphur and magnesium contents of Table 2 are not completely consistent

This indicates a non-uniform distribution of sulphur and magnesium in these materials. Comparison of surface sulphur and magnesium concentrations with copper adsorption data reveals that E. crassipes shoot derived xanthogenate with the highest surface magnesium concentration and the corn stalk derived xanthogenate with the highest surface sulphur concentration correspond to the materials with the highest and the second highest Cu²⁺ adsorption capacities. This indicates an association between surface sulphur and magnesium content of the cellulose xanthogenate and copper adsorption.

The sulphur contents of Table 2 allow calculation of the -O-CS₂- contents which are also summarized in the table. When the calculated -O-CS₂- contents are compared with the measured Mg contents, the expected stoichiometry is not observed. If, as according to Tan et al. (2008), the reaction of magnesium with sodium xanthogenate is:

145
$$2\text{Cell-OCS}_2\text{Na} + \text{Mg}^{2+} \rightarrow (\text{Cell-OCS}_2)_2\text{Mg} + 2\text{Na}^+$$
 (1)

the -O-CS₂-: Mg mole ratio should be greater than or equal to 2:1. The ratios of the data are 1.08, 2.48 and 1.28 for xanthogenates from E. crassipes shoot, rape straw and corn stalk, respectively (Table 2). Only the rape straw xanthogenate conforms. The other two samples contain more magnesium than can be accounted for by their sulphur contents. It is possible that hydrolysed magnesium species are involved in the magnesium treatment step and that magnesium reacts with sites other than sulphur sites:

152
$$\text{Cell-OCS}_2\text{Na} + \text{MgOH}^+ \rightarrow \text{Cell-OCS}_2\text{Mg}\cdot\text{OH} + \text{Na}^+$$
 (2)

Cell-ONa + MgOH⁺
$$\rightarrow$$
 Cell-OMg·OH + Na⁺ (3)

$2\text{Cell-ONa} + \text{Mg}^{2+} \rightarrow (\text{Cell-O})_2 \text{Mg} + 2\text{Na}^+$ **(4)**

ACCEPTED MANUSCRIPT

From the sulphur and magnesium contents in Table 2 and the Cu²⁺ adsorption capacities, it is clear that there is no close relationship between the sulphur contents of the xanthogenate products and their Cu²⁺ adsorption capacities. There is a better relationship between the magnesium contents of the products and their Cu²⁺ adsorption capacities but this is not consistent with stoichiometric exchange of Mg²⁺ by Cu²⁺. The greater than expected Cu retention capacities might be due to mildly alkaline conditions produced by hydrolysis of the xanthogenate products. When the xanthogenate samples were added to deionised water the pH was observed to rise to 8.0. Given that the solubility product of $Cu(OH)_2$ is 2.2×10^{-20} (mol/L)³ and the concentration of Cu²⁺ in the adsorption solution was 3000 mg/L, i.e. 0.047 mol/L, precipitation of copper hydroxide can be expected while the pH remains above approximately 5.0. Thus a further possible mechanism for the high uptake of copper by xanthogenate might be:

$$Cu^{2+} + 2OH \rightarrow Cu(OH)_2 \text{ (adsorbed)}$$
 (5)

4. Conclusion

Compared to the terrestrial rape straw and corn stalk, the aquatic *E. crassipes* shoot contain more active O-H and C=O groups. Cu²⁺ adsorption capacity of the raw and alkali-treated straw increased with the relative contents of the O-H or C=O groups, respectively. Due to the incorporation of sulphur and magnesium, the Cu²⁺ adsorption capacity of quasi-xanthogenate products increased significantly. Cu²⁺ adsorption capacity of quasi-xanthogenate products increased with magnesium and sulphur contents in products. Besides cation exchange between Mg²⁺ and Cu²⁺, copper precipitation mechanism may be

1	176	present.
2 3 4	177	Acknowledgements
5 6 7	178	The authors thank the funding provided by the National Natural Science Foundation of
8 9 10	179	China (20806032), and the Fund of Huazhong Agricultural University (52204-07105) to carry
11 12	180	out this work. We gratefully acknowledge Mrs Lihong Qin for her kindly providing laboratory
13 14 15	181	apparatus and useful discussions.
16 17 18	182	References
19 20 21	183	Chakraborty, S., Tare, V., 2006. Role of various parameters in synthesis of insoluble
22 23 24	184	agrobased xanthates for removal of copper from wastewater. Bioresour. Technol. 97,
25 26	185	2407-2413.
27 28 29	186	Chauhan, D., Sankararamakrishnan, N., 2008. Highly enhanced adsorption for
30 31 32	187	decontamination of lead ions from battery wastewaters using chitosan functionalized with
33 34 35	188	xanthate. Bioresour. Technol. 99, 9021-9024.
36 37	189	Kamel, S., Hassan, E.M., El-Sakhawy, M., 2006. Preparation and application of
38 39 40	190	acrylonitrile-grafted cyanoethyl cellulose for the removal of copper(II) ions. J. Appl. Poly.
41 42 43	191	Sci. 100, 329-334.
44 45 46	192	Malik, A., 2007. Environmental challenge vis a vis opportunity: The case of water hyacinth.
47 48	193	Environ. Int. 33(1), 122-138.
49 50 51	194	O'Connell, D.W., Birkinshaw, C., O'Dwyer, T.F., 2008. Heavy metal adsorbents prepared
525354	195	from the modification of cellulose: A review. Bioresour. Technol. 99, 6709-6724.
55 56 57	196	Okieimen, F.E., Sogbaike, C.E., Ebhoaye, J.E., 2005. Removal of cadmium and copper ions
58 59	197	from aqueous solution with cellulose graft copolymers. Sep. Purif. Technol. 44, 85-89.
60 61 62		
63		9
64 65		
_		

1	198	Panda, G.C., Das, S.K., Guha, A.K., 2008. Biosorption of cadmium and nickel by
2 3 4	199	functionalized husk of Lathyrus sativus. Colloid Surface B 62(2), 173-179.
5 6 7	200	Tan, L.F., Zhu, D.W., Zhou, W.B., Mi, W.J., Ma, L.X., He, W.T., 2008. Preferring cellulose of
8 9 10	201	Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption
11 12	202	properties on copper. Bioresour. Technol. 99, 4460-4466.
13 14 15	203	Viera, R.G.P., Filho, G.R., Assunção, R.M.N.de, Meireles, C.S., Vieira, J.G., Oliveira, G.S.de.,
16 17 18	204	2007. Synthesis and characterization of methylcellulose from sugar cane bagasse
19 20 21	205	cellulose. Carbohyd. Polym. 67(2), 182-189.
22 23	206	Wei, J.F., Wang, Z.P., Zhang, J., Wu, Y.Y., Zhang, Z.P., Xiong, C.H., 2005. The preparation
242526	207	and the application of grafted polytetrafluoroethylene fiber as a cation exchanger for
272829	208	adsorption of heavy metals. React. Funct. Polym. 65(1-2), 127-134.
30 31 32	209	Zhou, W.B., Zhu, D.W., Langdon, A., Li, L., Liao, S.J., Tan, L.F., 2009. The structure
33 34	210	characterization of cellulose xanthogenate derived from the straw of Eichhornia
35 36 37 38	211	crassipes. Bioresour. Technol. 100, 5366-5369.
39 40 41		
42 43 44		
45 46		
47 48		

Table 1
Surface element atomic percentages determined by EDXA

Element	Raw plant materials			Alkali-treated straws			Cellulose xanthogenates		
type	E. crassipes shoot	Rape straw	Corn stalk	E. crassipes shoot	Rape straw	Corn stalk	E. crassipes shoot	Rape straw	Corn stalk
С	51.85	67.07	58.37	54.30	56.92	55.88	17.79	15.37	17.99
O	43.92	29.36	40.79	44.88	41.85	43.61	61.85	65.63	60.84
Si	_		0.20	_	_	0.21	0.25	7	1.07
Na	0.52	0.44		0.33	0.11		0.27	0.61	1.16
Mg	0.30	0.13		0.23	0.22	0.16	15.69	13.65	12.72
P	0.38								
S		0.34	0.15		0.08	_	4.09	4.64	6.21
Cl	1.26	0.80							
K	1.53	1.07	0.12	—	_	4	_		
Ca	0.24	0.79	0.38	0.27	0.83	0.13	0.07	0.10	

[—] means no detection of the element.

Table 2

The sulphur and magnesium contents of cellulose xanthogenates prepared from different raw plant straws

Cellulose xanthogenate	E. crassipes shoot	Rape straw	Corn stalk
Sulfur content (%)	4.99±0.05	4.93±0.06	4.15±0.11
-OCS ₂ (cmol/kg)	77.7±1.6	76.8±2.0	64.6±2.1
Mg content (cmol/kg)	73.0±1.9	31.0±1.3	49.9±1.4
The ratio of -OCS ₂ to Mg ²⁺	1.08	2.48	1.28