
ACTIVE TEMPLATES:
MANIPULATING POINTERS WITH PICTURES

P.J. Lyons
(P.Lyons@massey.ac.nz)

M.D. Apperley
(M.Apperley@waikato.ac.nz)

A.G. Bishop
(A.G.Bishop@massey.ac.nz)

G.S. Moretti
(G.Moretti@massey.ac.nz)

Computer Science Dept. Computer Science Dept Computing Services Computer Science Dept.
Massey University Waikato University Massey University Massey University
Private Bag 11-222 Private Bag 3105 Private Bag 11-222 Private Bag 11-222
Palmerston North Hamilton Palmerston North Palmerston North

New Zealand New Zealand New Zealand New Zealand

ABSTRACT

Active templates are a semi-automatic visual
mechanism for generating algorithms for
manipulating pointer-based data structures. The
programmer creates a picture showing the
affected part of a data structure before and after a
general-case manipulation. Code for the opera-
tion is compiled directly from the picture, which
also provides the development environment with
enough information to generate, automatically, a
series of templates for other similar pictures, each
describing a different configuration which the
data structure may possess. The programmer
completes the algorithm by creating matching
after-pictures for each of these cases.

At every stage, most of the picture-generation is
automatic. Much of the tedious detail of conven-
tional pointer-based data-structure manipulation,
such as maintenance of current pointers, is un-
necessary in a system based on active templates.

KEYWORDS

Active templates, visual programming
language, HyperPascal, data structures

INTRODUCTION

Active templates are the interface to a graphical represent-
ation for algorithms to manipulate pointer-based data struc-
tures, and to a system for generating the algorithms semi-
automatically. The algorithms comprise a set of "before-
pictures" of possible configurations of the data structure and
corresponding "after-pictures" showing them after they
have been altered appropriately. The pictures provide a
more abstract representation than textual algorithms. The
programmer draws a picture of the general case first, and
the structure of this picture enables the system to draw most
of the other before-pictures automatically. This
considerably reduces the labour involved in generating a
complete algorithm, and the probability of logic errors.

Active template are applicable, or at least adaptable, to a
variety of languages; the particular syntax presented here
was designed for HyperPascal [7]. To give focus to the
discussion, we start with an overview of HyperPascal.

This general-purpose visual programming language has
semantics broadly equivalent to Pascal's. Its development
has been fuelled by a desire to exploit the capabilities of
common computer technology to improve representations
of conventional programming operations.

Many systems exploit Graphic User Interfaces, and the
high-speed processing now available in any PC, to provide
the programmer with browsers, debuggers and so forth.
Others [1], [4], [8] have used the technology to support new
programming paradigms. HyperPascal, by contrast, has
been developed as a testbed for refining ideas about better
representations for conventional programming constructs,
with a view to their future use in other languages.

HyperPascal uses three types of picture (cf. [9], [10]):

The scope of variables is represented in the Scope
Tree, a simple tree in which each node contains the
declarations of a subprogram, its variables and
types.

The manipulation of data is represented in the
Action Tree, in which flow of control is mapped
onto a tree whose leaf nodes contain specifications
of assignment sequences. Each subprogram has its
own Action Tree which occupies its own window.

The appearance of I/O is specified in the Forms
Windows. These simple WYSIWYG editors are
linked to I/O assignments in the Action Tree. The
use of I/O assignments is one area in which
HyperPascal's semantics depart somewhat from
those of Pascal.

Flow of control in HyperPascal is specified in the Action
Tree by a diagrammatic syntax developed from Doran and
Tate's [2], [3] structure diagram notation.

The tree's root is a subprogram header; intermediate nodes
are flow of control icons, and leaf nodes specify data
manipulations (assignments, i/o, and subprogram calls).

Figure 1 shows a coathanger-shaped flow-of-control icon
with four children representing arbitrary subtrees.
Execution follows one of the paths through the icon; a child
attached to it by a simple connection (no diamond) is
executed unconditionally if the flow of control reaches its
attachment point; a child attached by a conditional attach-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29198589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ment (a diamond) is conditionally executed. If the test fails,
execution continues along the bottom path through the
loop; if it succeeds, the alternative path (exit from the flow
icon, via the exit diamond, or premature start of the next

iteration, via the go-back diamond, and respectively)

is chosen. Thus, in Figure 1, the first and fourth children
will cause the loop to terminate immediately if they suc-
ceed; the second will execute if the flow of control reaches
it. The third, if successful, will jump to the next iteration.

flow icon

Figure 1: Flow-of-control icon with four children

The pointer-manipulation mechanisms available via the
Action Trees of our preliminary version of HyperPascal
were semantically similar to those in Pascal. This has been
a cause of frustration, not least amongst the language's
designers, whose initial goals in developing HyperPascal
included allowing programmers to specify dynamic data
structure manipulations by drawing pictures like the
general-case illustrations so often included in text books.
Figure 2 shows a typical example, the insertion of a node
containing a new value, x, into L, an ordered list. The
dashed pointer indicates that the pictured part of the data
structure need not be at the head of the list.

Figure 2: Inserting x, a new value, into L, an ordered list

Implementing these intuitively obvious pictures as a
conventional program involves writing code to check that
the data structure is in the configuration shown in the
before-picture, and to convert it to the configuration shown
in the after-picture. The complete insertion algorithm
involves a number of other cases. Coding these individually
is painstaking and error-prone work. However, the
difficulties derive not from nature of data structures, but
from the low level of abstraction of the textual tools for
manipulating them.

Personal experience suggests that most expert programmers
develop a mental library of stereotypes for such algorithms
to circumvent the programming tools' close focus. However
novice programmers easily lose sight of "the big picture"
when coding pointer manipulations. Fix, Wiedenbeck, and
Scholtz[5] have identified this (they call it "labelling
complex code segments with a plan label") as a significant
difference between novice and expert programmers.

GENERAL ASPECTS OF ACTIVE TEMPLATES

The Active Template system, a semi-automatic generator
for pictures defining data structure manipulations, has been
added to the definition of HyperPascal.

A data structure manipulation generated using active
templates comprises a set of before/after-picture pairs
executed in a loop. The list insertion operation shown in
Figure 2 would be represented by the pictures in Figure 3.
The labels B-P1 and A-P1 have been added to Before-
Picture-1 and After-Picture-1 to facilitate discussion. (The
white node disposal arrow is described below.)

Figure 3: Before/after-picture for list insertion

Semantics

Each pair of pictures is compiled into code which could be
rendered informally as: "if the data structure matches the
before-picture, then make it match the after-picture".

Differentiation between templates

A before-picture has a broad arrowhead on the boundary
adjacent to the after-picture, pointing at the after-picture.

Template editing

Pointer fields initially contain an undifferentiated pointer (a
pointer tail, with no arrowhead,), which may or may
not be nil . However, the programmer may extend the shaft
of the pointer, whereupon a node of the type it references
appears at its head. Deleting the node makes the pointer nil.

As a type-check, an undifferentiated pointer appears beside
any pointer variables in a HyperPascal program. Dragging
an arrowhead out of such a pointer fires up the active-
template editor, and the templates can then be constructed.

Figure 4 shows how the value of pointer B can be copied
into A. The programmer effects this by dragging an
arrowhead from A onto the tail of B, so that A ends up
pointing at wherever B was pointing. The diagrammatic
syntax for the copy operation is identical whether B is
undifferentiated, nil, or pointing at a node.

before insertion

after insertion

<x >=x

<x x

L

L >=x

A B A B

Figure 4: Making A point to the same place as B
generates "A := B"

Pictorial declarations

The system knows how to draw the node at the end of a
differentiated pointer because records are declared
diagrammatically, with a drawing tool. Figure 5 shows
declarations of linked list and binary tree nodes. The
dashed arrows are "pointers-to-more-of-the-same". In an
earlier version of the system, we represented a node which
points to another of the same type using arrows pointing
back at the parent node, but the declarations looked like
instantiations of a structure in which a node points to itself.
The current version, while it needs to be explained, seems
clearer thereafter. As Graf [6] has pointed out, visual
language designers should avoid developing a visual
metaphor for every possible language component.

data

Figure 5: Pictorial declarations

Windows in templates, and structure traversal

A template need not show all of a data structure. The white
areas surrounded by grey are windows onto parts of the
data structure, and the grey area represents the parts of the
data structure which are not relevant to the current
operation. In textual programming languages, temporary
pointers are used for keeping track of the nodes of interest,
and to traverse a structure, new values are assigned to the
temporary pointers. Figure 6 shows how updating a
window in an after-picture achieves this more intuitively.

Figure 6: Moving a window to traverse a structure

Of course, a traversal step can include alterations to data
fields. This would be necessary if, for example, all the data
fields in a structure were to be set to zero. The after-
pictures would show an updated data-field assignment as
well as an updated window.

Connections between windows

A dashed arrow crossing a grey area represents sequence of
one or more pointers between two parts of the data
structure via parts of the data structure which are not

currently of interest. The programmer can drag a section of
the surrounding grey border across a white window to
create such a representation, whereas dragging one window
till it abuts another indicates that no intermediate pointers
exist between them.

Template linking

All nodes in a before-picture also appear in the associated
after-picture. Repositioning a node in the after-picture
automatically moves it the same amount in the before-
picture. This allows an association-by-position so
temporary pointers are not required. Nodes added to an
after-picture are not added to its associated before-picture.

Node disposal

It was mentioned earlier that the white arrow shown in
Figure 3 is a node-disposal tool. Clones of the arrow can be
dragged into the after-picture and attached to nodes. This
causes the compiler to emit code to dispose of those
nodes after the other manipulations specified in the after-
picture have been performed.

Field testing and assignment

Any data field in a before-picture may be labelled with a
value range; the system generates code to test that the field
has a value in the specified range as part of the state test
associated with the before-picture. Unlabelled fields are not
tested. Expressions may be included in the fields of after-
pictures, and the code for evaluating them and for storing
the result in the field is generated as part of the code for
generating the configuration shown in the after-picture.

Multiple structure references

The pictures may contain more than one data structure.

Automatic generation of before-pictures

The static system described so far could be used for
programming data structure manipulations, and would be a
modest improvement on the simple textual representation
of conventional Pascal pointer-based algorithms. The
programmer would construct a complete set of before-after-
picture-pairs composed of self-drawing nodes and pointers.
No previous_node, current_node or next_node pointers
would have to be maintained. The compiler would generate
code for a loop in which, in general, the structure-traversal
case would repeatedly match until a configuration occurred
in which the desired operation could take place; that
manipulation would then be performed, and the loop would
terminate.

However, it is feasible to provide active support for the
generation of both before- and after-pictures, automating a
large proportion of their production. Consider a Pascal
version of the code which the system would generate for
the first general-case before-picture (Figure 3). It maintains
this, a pointer to the top node in the picture. The code
checks for the existence of the nodes in the diagram, and
for the data values specified in the fields. It needs to
perform the tests in a strict order, from the node closest to
the entry pointer to the node furthest from it, to avoid
invalid pointer references. Specifically, it should be:

if this <> nil then
if this^.data < x then

if this^.next <> nil then
if this^.next^.data >= x

then terminate(A_P1)

Note that the procedure terminate changes the data struc-
ture to look like A-P1, and it also sets a housekeeping
variable, searching, to false in order to terminate the
data structure traversal.

The series of ifs in this algorithm can be matched to a
series of elses, each corresponding to a possible
configuration of the data structure. Furthermore, the system
has enough information to draw pictures of these cases.
Consider the innermost else clause. It would be executed
if this <> nil and this^.data < x and this^.next
<> nil and this^.next^.data < x. The editor can
automatically construct the template shown in Figure 7 for
a before-picture incorporating this whole test.

Figure 7: This system-drawn template for a
Before-Picture needs specialisation

The programmer needs to do very little editing to turn this
into a before-picture representing one of the other cases
which have to be tested for. If the data structure has the
configuration shown in Figure 7, the operation to be
performed on it depends on the value of the
undifferentiated pointer in the lower node. If it is nil, the
new data value just needs to be added after that node. If it is
non-nil, more of the data structure must be examined, to
locate the insertion point for the new data value. The
programmer therefore edits the template by extending the
undifferentiated pointer to point to a node. Note that this
doesn't alter the data structure; it only specifies a more
extensive test. The editor then automatically generates a
template for the after-picture, which the programmer also
edits to show the desired alteration to the data structure.
Figure 8 shows the result.

Figure 8: Updating the window before the next
iteration

In fact, the after-picture shows the data structure unchang-
ed with respect to the before-picture, because the before-
picture shows a configuration in which the location for the
new data item has not yet been found, so another iteration
of the search loop is necessary. However, the window has
been updated to show which part of the data structure will
be examined next time round the loop. The development
environment software only has to retain a pointer to the
first node in the window in order to keep track of the part
of the data structure in view. On the next iteration of the
loop, it will use this, in conjunction with the before-pictures
in the program, to generate the necessary tests.

As a result of completion of the active templates shown in
Figure 7, the algorithm which the system has been generat-
ing has been augmented by a nested if-statement. The
system can therefore automatically generate templates for
the before- and after-pictures, corresponding to the else
of the nested if, before continuing with the surrounding
if. The programmer only needs to add a new node to
complete the after-picture shown in Figure 9.

Figure 9: Completing the nested case

Figure 10: Complete specification of the insertion of a new value into an ordered list

At this stage, the system has enough information to gener-
ate code for the following part of the search algorithm:

if this <> nil then
if thiŝ .data < x then

if thiŝ .next <> nil then
if thiŝ .next̂ .data >= x

then terminate(A_P1)
else if thiŝ .next̂ .next <> nil

then continue(A_P2a)
else terminate(A_P2b)

The process of building up the cases continues, with the
system supplying most of the pictures. Of the remaining
four before-pictures included in Figure 10, (the complete
pictorial algorithm), three are completely automatically
drawn by the development environment software, and one
(B-P4a) needs a minor specialisation similar to the one
described above. The automatically-drawn templates for
the after-pictures also require very little modification to
prepare the algorithm shown in Figure 10, which also

includes the parent loop icon (which has been omitted so
far).

The algorithm which is generated for the whole list inser-
tion becomes:

this := L;
searching := true;
while searching do
if this <> nil

then if thiŝ .data < x
then if thiŝ .next <> nil

then if thiŝ .next̂ .data >= x
then terminate(A_P1)
else if thiŝ .next̂ .next <> nil

then continue(A_P2a)
else terminate(A_P2b)

else terminate (A_P3)
else if thiŝ .data = x

then terminate(A_P4a)
else terminate(A_P4b)

else terminate (A_P5);

The automatic generation of cases works most satisfactorily
if the first before-picture the programmer draws is
complex, because a complex before-picture produces a
skeleton traversal algorithm containing a large number of
ifs, and a correspondingly large number of elses. Even if
the programmer has to specialise some of those elses, the
complex initial case will have automated much of the work
of generating the other before-pictures in the algorithm.

Although generating programs for structure manipulations
using this sort of diagrammatic notation seems, at first
blush, prone to run into screen space problems, consider the
type of diagrammatic notation contained in Figure 1. This
was presented as an instantly recognisable representation
of an insertion into a linked list. The programmer can,
having produced the complete algorithm, stack the pictures
it contains so that only the evocative general case is visible
at the top of the stack. In this way, space is saved, and
detail is suppressed, without any comprehensibility penalty.

Conclusion

Active Templates are a visual language component for
programming data structure manipulations. Although
specifying an operation such as insertion of a new value
into an ordered list (see Figure 10) may involve a number
of different cases, each with its own before- and after-
picture, it has been shown that once the first picture has
been produced, most of the other before-pictures can be
generated automatically, and each of the after-pictures can
be produced by editing the before-picture with which it is
associated.

Such an approach allows programmers to keep sight of the
wood in spite of the trees. It frees them from much of the
detail usually involved in constructing data structure
manipulations such as maintaining pointers to nodes of
interest, and ensuring that all configurations of the data
structure have been allowed for.

The practical effects of programming using Active
Templates will be investigated by incorporating them into
HyperPascal. However, in common with most other aspects
of HyperPascal, the active template paradigm is applicable
to a wide variety of current programming languages.

REFERENCES

[1] Cox, P.T., and Pietrzykowski, T. 'Using a Pictorial
Representation to Combine Dataflow and Object-
orientation in a Language-independent
Programming Mechanism', Proc. Intl. Comp. Sci.
Conf., 1988, 695-704.

[2] Doran, B., and Tate, G, 1972a 'An Approach to
Structured Programming, Part I', Massey University
Department of Computer Science Publication no 6.

[3] Doran, B., and Tate, G, 1972b, 'An Approach to
Structured Programming, Part II', Massey University
Department of Computer Science Publication no 9.

[4] Edel, M. 'The TinkerToy Graphical Programming
Environment', IEEE proceedings COMPSAC , 1986,
466-471.

[5] Fix, V., Wiedenbeck, S., and Scholtz, J., 1993:
'Mental Representations of Programs by Novices
and Experts', INTERCHI '93.

[6] Graf, M., 1990: 'Visual Programming and Visual
Languages: Lessons learned in the Trenches', in
Visual Programming Environments: Applications
and Issues, ed. Ephraim P. Glinert, 452-455.

[7] Lyons, P., Simmons, C., and Apperley. M.
'HyperPascal: A Visual Language to Model Idea
Space', Proc. 13th NZ Computer Society
Conference 2, August 1993, 492-508.

[8] Reiss, S.P., 1985 'PECAN: Program Development
Systems that Support Multiple Views', IEEE TRANS
Softw. Eng, SE-11, 3, 1985, 276-285.

[9] Shu, N.C., 1986 'Visual Programming Languages: A
Perspective and a Dimensional Analysis', in Visual
Languages, ed. Shi-Kuo Chang, Plenum Publishing,
NY 1986.

[10] Williams, C.C., and Rasure, J.R., 1990 'A Visual
Language for Image Processing', 1990 IEEE
Computer Society Workshop on Visual Languages.

