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FLAT PRIMES AND THIN PRIMES
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Abstract

A number is called upper (lower) flat if its shift by +1 (−1) is a power of 2 times a squarefree number.
If the squarefree number is 1 or a single odd prime then the original number is called upper (lower) thin.
Upper flat numbers which are primes arise in the study of multi-perfect numbers. Here we show that the
lower or upper flat primes have asymptotic density relative to that of the full set of primes given by twice
Artin’s constant, that more than 53% of the primes are both lower and upper flat, and that the series of
reciprocals of the lower or the upper thin primes converges.
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1. Introduction

Some interesting subclasses of primes have been identified and actively considered.
These include Mersenne primes (of the form 2p

− 1), Sophie Germain primes (of
the form 2p + 1), Fermat primes (of the form 22n

+ 1), Cullen’s primes (of the form
p2p
+ 1), Wieferich primes (which are primes p such that p2

| 2p−1
− 1), primes of

the form n2
+ 1, of the form n! ± 1, and so on; see, for example, [10, Ch. 5] and

the references therein. For any one of these classes, determining whether or not it is
infinite has proved to be a very difficult problem.

In this paper we explore two classes of primes, the so-called lower or upper flat
primes and the lower or upper thin primes. They have simple representations, and we
are able to get an idea of their densities relative to the full set of primes.

These primes are similar to primes of the form k · 2e
+ 1 considered by Erdős

and Odlyzko, Chen and Sierpiński among others [3, 5, 12]. There the focus is
mainly on the admissible values of odd integers k with k ≤ x , rather on the density
of primes themselves having that structure. Erdős showed [5, Theorem 1] that the
number N (x) of odd numbers less than or equal to x of the form (p + 1)/2e satisfies
c1x ≤ N (x)≤ c2x, where c1 and c2 are positive absolute constants. In the opposite
direction, a simple modification of the derivation of Sierpiński [12] gives an infinite
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number of integers n (including an infinite set of primes) such that n · 2e
− 1 is

composite for every e = 1, 2, 3, . . . .

DEFINITION 1. We say that a natural number n is an upper flat number if n + 1= 2e

or n + 1= 2eq1 . . . qm where e ≥ 1 and the qi are distinct odd primes. If a prime p
is an upper flat number we say that p is an upper flat prime. Let F(x) := #{p ≤ x :
p is an upper flat prime}.

There are corresponding definitions of the terms lower flat number and lower flat
prime obtained by replacing a shift by +1 with a shift by −1.

DEFINITION 2. We say that a natural number n is a lower flat number if n − 1= 2e

or n − 1= 2eq1 . . . qm where e ≥ 1 and the qi ’s are distinct odd primes. If a prime p
is a lower flat number we say that p is a lower flat prime.

It is straightforward to show that the density of upper flat or lower flat numbers is
the same as that of the odd squarefree numbers, that is, the number up to x is given by
4x/π2

+ O(
√

x) [13].

DEFINITION 3. We say that a natural number n is an upper thin number if n +
1= 2eq or n + 1= 2e where e ≥ 1 and q is an odd prime. If a prime p is an
upper thin number we say that p is an upper thin prime. Let T (x) := #{p ≤ x :
p is an upper thin prime}.

DEFINITION 4. We say that a natural number n is a lower thin number if n − 1=
2eq or n − 1= 2e where e ≥ 1 and q is an odd prime. If a prime p is a lower thin
number we say that p is a lower thin prime.

For example, among the first 100 primes, 75 primes are upper flat and among the
first 1000 primes, 742 are upper flat. For upper thin primes the corresponding numbers
are 38 and 213, respectively. The first 10 upper flat primes are 3, 5, 7, 11, 13, 19, 23,
29, 31, and 37. The first 10 upper thin primes are 3, 5, 7, 11, 13, 19, 23, 31, 37 and 43.

If M(x) is the number of Mersenne primes up to x , then clearly, for all x ≥ 1,
M(x)≤ T (x)≤ F(x)≤ π(x), where for each x > 0, π(x) is the number of primes up
to x .

These types of number arise frequently in the context of multi-perfect numbers,
that is, numbers that satisfy σ(n)= kn, (k ≥ 2), where σ(n) is the sum of the positive
divisors of n. For example, when k = 3 all of the known examples of so-called
3-perfect numbers are

c1 = 23
· 3 · 5,

c2 = 25
· 3 · 7,

c3 = 29
· 3 · 11 · 31,

c4 = 28
· 5 · 7 · 19 · 37 · 73,

c5 = 213
· 3 · 11 · 43 · 127,

c6 = 214
· 5 · 7 · 19 · 31 · 151.
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Each ci − 1 is an upper flat number and each odd prime appearing on the right-hand
side is upper thin.

This paper is organized as follows. In Section 2 we first show that the asymptotic
density of upper thin numbers up to x , as x→∞, is equal to that of the primes up
to x . In Section 3 we show that the density of upper flat primes up to x , relative to the
density of all primes, is given by 2A where A is Artin’s constant. A corollary to this
is that there is an upper flat prime in every interval [x, (1+ ε)x], for any ε > 0 and
sufficiently large x . This is followed by a demonstration that primes which are both
lower and upper flat have an asymptotic density and constitute more than half of all
primes. In Section 4 we then show that the upper thin primes are sufficiently sparse
that the sum of their reciprocals converges.

We use Landau’s O , o, and � notation. The symbols p, q are restricted to be
rational primes.

2. Upper or lower thin numbers

THEOREM 5. As x→∞, the asymptotic density of upper or lower thin numbers up
to x is the same as that of the primes up to x.

PROOF. Firstly, the number of upper or lower thin numbers up to x , N (x), is given by

N (x)=
blog x/log 2c∑

n=1

π

(
x

2n

)
.

Next we will show that limx→∞N (x)/π(x)= 1. To this end first consider a single
term in the sum. By [11], there is a positive real absolute constant α such that for x
sufficiently large,

x

log x + α
< π(x) <

x

log x − α
.

Therefore, for all n ∈ N such that 1≤ n ≤ blog x/log 2c (which makes the numerators
and denominators of the ratios below positive for sufficiently large x),

lb :=
1− α

log x

1+ α
log x −

n log 2
log x

<
2nπ( x

2n )

π(x)
<

1+ α
log x

1− α
log x −

n log 2
log x

=: ub.

Clearly lb and ub tend to 1 as x→∞ uniformly for n in the range 1≤ n ≤
log x/log log x =: b. The difference between the upper and lower bounds is

ub − lb =
1
d

(
4α

log x
−

2αn log 2

log2x

)
≤

4α
d log x

,

where

d =

(
1−

α

log x
−

n log 2
log x

)(
1+

α

log x
−

n log 2
log x

)
= 1−

α2

log2x
+

n2 log2 2

log2x
−

2n log 2
log x

≥
1
4
,
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so

ub − lb ≤
16α
log x

,

for all n in the given range and x sufficiently large.
Now ensure that x is sufficiently large so that log 2/log log x < 0.5 and

|1− lb| ≤
2α

log x −
n log 2
log x

1+ α
log x −

n log 2
log x

≤

2α
log x

1
2 +

α
log x

≤
4α

log x
.

This implies, for x sufficiently large and 1≤ n ≤ b, that∣∣∣∣2nπ( x
2n )

π(x)
− 1

∣∣∣∣ ≤ ∣∣∣∣2nπ( x
2n )

π(x)
− lb

∣∣∣∣+ |lb − 1|

≤ |ub − lb| + |lb − 1|<
20α
log x

.

Using this bound we derive∣∣∣∣∑
n≤b

π( x
2n )

π(x)
− 1

∣∣∣∣ ≤ ∣∣∣∣
∑

n≤b π(
x
2n )

π(x)
−

∑
n≤b

π(x)
2n

π(x)

∣∣∣∣+∑
n>b

1
2n

≤

∑
n≤b

1
2n

∣∣∣∣2nπ( x
2n )

π(x)
− 1

∣∣∣∣+ o(1)

≤

∑
1≤n

20α
2n log x

+ o(1)= o(1)

as x→∞.
For the remaining part of the summation range for N (x), namely for b < n ≤

blog x/log 2c, note that this corresponds to values of x and n which satisfy

x

2n ≤ x1−log 2/log log x .

Using π(x)≤ x and defining

S(x) :=
blog x/log 2c∑

n=b

π

(
x

2n

)
� log x · x1−log 2/log log x ,

it follows (using, say, l’Hôpital’s rule) that S(x)/π(x)→ 0 as x→∞. Hence
N (x)/π(x)→ 1. 2
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From this we have consequences such as that an infinite number of successive
primes are separated by a thin number and vice versa.

3. Upper or lower flat primes

Define the so-called logarithmic integral for x ≥ 2:

Li(x) :=
∫ x

2

dt

log t
.

THEOREM 6. For all H > 0,

F(x)= 2
∏

p

(
1−

1
p(p − 1)

)
Li(x)+ O

(
x

logH x

)
,

that is, the relative density of upper or lower flat primes is 2A = 0.7480 . . . where A
is Artin’s constant.

PROOF. Fix e ≥ 1 and let x and y satisfy 1< y < x and be sufficiently large. Let
H > 0 be the given positive constant. Define

Fe(x) := #{p ≤ x : p is prime and m squarefree such that 2em = p + 1}.

If µ(n) is the Möbius function and µ2(n) the characteristic function of the squarefree
numbers, we can write

µ2(n)=
∑
d2|n

µ(d).

Then

Fe(x) =
∑
p≤x

p+1=2em

µ2(m)=
∑
p≤x

∑
a:a≥1

a2b2e
=p+1

µ(a)

= 61 +62,

where
61 :=

∑
p≤x

∑
a:1≤a≤y

a2b2e
=p+1

µ(a) and 62 :=
∑
p≤x

∑
a>y

a2b2e
=p+1

µ(a).

Now using the Bombieri–Vinogradov theorem [4, Section 28] for the number of
primes in an arithmetic progression, which is valid with a uniform error bound for the
values of e which will be needed,

61 =
∑
a≤y

µ(a)
∑

p:p≤x
p≡−1 mod 2ea2

1

=

∑
a≤y

µ(a)

(
Li(x)

φ(2ea2)
+ O

(
x

log2H+1x

))
=

(∑
a≥1

µ(a)

φ(2ea2)

)
Li(x)+ O

(
x

log x

∑
a>y

1

φ(2ea2)

)
+ O

(
xy

log2H+1x

)
.
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Note that the function g(n) := 21−eφ(2en2) is multiplicative, and the series
in the sum below is absolutely convergent, so the coefficient of Li(x) may be
rewritten

1

2e−1

∑
a≥1

2e−1µ(a)

φ(2ea2)
=

1

2e−1

∏
p

(
1−

2e−1

φ(2e p2)

)
=

1

2e−1

3
4

∏
p odd

(
1−

1

p2 − p

)
=

3A

2e .

Now consider the sum in the first error term for 61:∑
a>y

1

φ(2ea2)
�

∑
a>y

1

2eφ(a2)
�

1
2e

∑
a>y

log log a

a2 .

Therefore

O

(
x

log x

∑
a>y

1

φ(2ea2)

)
= O

(
x log log y

2e y log x

)
.

For the second sum,

|62| ≤
∑
p<x

∑
a>y

p+1=2ea2b

1≤
∑
a>y

2ea2b≤x

1= O

(
x

2e y

)
,

and therefore

Fe(x)=
3A

2e Li(x)+ O

(
x log log y

2e y log x

)
+ O

(
x

2e y

)
+ O

(
xy

log2H+1x

)
.

If we choose y = logH x , then

Fe(x)=
3A

2e Li(x)+ O

(
x

logH+1x

)
.

Now let

De(x) := #{p ≤ x : p is prime, p + 1= 2em, with m squarefree and odd}.

By [8, Theorem 2],

D1(x)= A · Li(x)+ O(x/logH+1x).

Considering the even and odd cases, for all e ≥ 1, we have Fe(x)= De(x)+ De+1(x)
so

F1(x)+ F2(x)+ · · · = D1(x)+ 2(D2(x)+ D3(x)+ · · ·)
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and therefore

F(x) =
blog x/log 2c∑

e=1

De(x)+ O(log x)

=
1
2
(D1(x)+ F1(x)+ F2(x)+ · · ·)+ O(log x)

=
A

2

(
1+

3

21 +
3

22 + · · ·

)
Li(x)+ O

(
x

logH+1x

)
= 2ALi(x)+ O

(
x

logH x

)
and this completes the proof for upper flat primes. The proof for lower flat primes is
similar. 2

Since 2A > 0.74, the relative density of either lower flat or upper flat primes is
greater than 74%. Thus, in the worst possible case the density of primes which are
neither lower nor upper flat would be less than 26%+ 26%= 52%, leading to a lower
bound of 48% for the density of the set of primes which are both upper flat and
lower flat. However, this figure underestimates the proportion of such primes—see
Theorem 8 and its corollary below.

COROLLARY 7. For all ε > 0 and x ≥ xε there exist an upper flat prime and a lower
flat prime in the interval [x, (1+ ε)x].

PROOF. Since F(x)= 2Ax/logx + O(x/log2x), for fixed ε > 0 we have

F(x + εx)− F(x)=
2Aεx

log x
+ O

(
x

log2x

)
,

which is strictly positive for all x sufficiently large. 2

Note also that it would be possible to adapt the method of Adleman et al. [1,
Proposition 9] to count lower or upper flat primes in arithmetic progressions.

THEOREM 8. Let the constant H > 0 and the real variable x be sufficiently large. Let
the set of primes which are both lower and upper flat and which are less than x be
given by

B(x) = {p ≤ x : ∃e ≥ 1, f ≥ 1 and odd squarefree u, v so p − 1= 2ev,

p + 1= 2 f u}.

Then

B(x)= A2Li(x)+ O

(
x

logH x

)
where

A2 =
∏
p odd

(
1−

2

p2 − p

)
= 0.53511 . . . .
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PROOF. Let e, f ≥ 1 and define the sets

Le := {p ≤ x : ∃ odd squarefree v so p − 1= 2ev},

U f := {p ≤ x : ∃ odd squarefree u so p + 1= 2 f u}.

Then L1 ∩U1 = ∅ and Le ∩U f = ∅ for all e ≥ 2, f ≥ 2, so we can write

B(x)=

{⋃
f≥2

L1 ∩U f

}
∪

{⋃
e≥2

U1 ∩ Le

}
where all of the unions are disjoint.

Now fix e ≥ 2. We will first estimate the size of U1 ∩ Le, where

U1 ∩ Le = {p ≤ x : ∃ odd squarefree u, v so p + 1= 2u, p − 1= 2ev}.

Then

#U1 ∩ Le =
∑
p≤x

∑
p+1=2u,
p−1=2ev,

u,v odd and squarefree

1

=

∑
p≤x

∑
a,b odd,(a,b)=1,

p≡−1 mod a2,a2
≤x/2

p≡1 mod b2,b2
≤x/2e

p≡1+2e mod 2e+1

µ(a)µ(b)

=

∑
p≤x

∑
a,b odd,(a,b)=1,a2b2

≤x22−e−1,

p≡u mod 2e+1a2b2

µ(a)µ(b)

=

∑
p≤x

∑
d odd,d2

≤x22−e−1,

p≡u mod 2e+1d2

τ ∗(d)µ(d)

where u, the residue obtained through an application of the Chinese remainder
algorithm, is dependent on d and e, and τ ∗(d) is the number of unitary divisors of d , a
multiplicative function with τ ∗(p)= 2. This function arises because for fixed d ≥ 1,
the number of decompositions d = ab with (a, b)= 1 is τ ∗(d).

We then split and reverse the sum in a similar manner to the proof of Theorem 6 to
arrive at

#U1 ∩ Le =

( ∑
d≥1,d odd

τ ∗(d)µ(d)

φ(2e+1d2)

)
Li(x)+ O

(
x

logH+1x

)
=

1
2e

∏
p odd

(
1−

2

p2 − p

)
Li(x)+ O

(
x

logH+1x

)
.

Summing over e ≥ 2 and, noticing that the sizes for each corresponding L1 ∩Ue
are the same, we obtain the stated value of B(x). 2
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FIGURE 1. The ratio B(x)/π(x) for 1≤ x ≤ 8 · 104.

Figure 1 compares the number of primes up to 80 000 with the number of primes
up to 80 000 which are both lower and upper flat.

COROLLARY 9. It follows from Theorems 6 and 8 that the set of rational primes may
be divided into four disjoint classes: those both lower and upper flat (about 54%),
those either lower or upper flat but not both (each about 21%), and those neither
upper nor lower flat (4%).

COROLLARY 10. It follows that primes which are both upper and lower flat and
congruent to 1 modulo 4 (3 modulo 4) are a positive relative proportion of all primes.
These must therefore be of the form p = 2s − 1 (p = 2s + 1) where s is odd and
squarefree.

Comment. Note that not both p + 1 and p − 1 can be squarefree for odd primes p, and
that the same applies to p ± h for odd shifts h. It appears, numerically, that for fixed
odd h, the proportion of primes p with both p + h and p − h flat is always over 50%,
with smaller proportions for h ≡±1 mod 6 and larger for h ≡ 3 mod 6. The larger
proportions appear to be all significantly larger than the smaller. This warrants further
investigation.

4. Upper and lower thin primes

Using the method of Chen, Heath-Brown [7, Lemma 1] showed that if H(x) is the
number of primes such that p ≤ x and either p + 1= 2p1 or p + 1= 2p1 p2, with
the pi being odd primes, then H(x)� x/log2x . Based on this evidence, the Hardy–
Littlewood–Bateman–Horn conjecture [2, 6], and numerical evidence, we are led to
the following conjecture.

CONJECTURE. The number of upper thin primes up to x satisfies T (x)� x/log2x
and has the same asymptotic density as the number of twin primes up to x , and the
same is true for the lower thin primes.
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The order of difficulty of this conjecture appears to be similar to showing that there
are an infinite number of twin primes or Sophie–Germain primes. As usual, upper
bounds are much easier to work with and we obtain the following theorem.

THEOREM 11. As x→∞, T (x)� x/log2x.

PROOF. First let e ≥ 1 be fixed and apply the sieve of Brun in the same manner
as for the classical twin primes problem (for example, [14, Theorem 4]) to count
Je(x) := #{p ≤ x : 2ep − 1 is prime}. Note that if A= {m(2em − 1) : m ≤ x} and
ρ(d) is the number of solutions modulo d which satisfy m(2em − 1)≡ 0 mod
d , then ρ is a multiplicative function. Also ρ(2)= 1 and ρ(p)= 2 for odd
primes p, leading to the same bound as in the twin primes problem, namely
Je(x)� x/log2x .

Now we use the fact that, for all m ≥ 1,

m∑
n=1

2n

n2 < 5
2m

m2 . (1)

Finally, let x be large and choose m ∈ N so that 2m
≤ x < 2m+1. Then

T (x) =
blog x/log 2c∑

e=1

(
Je

(
x

2e

)
+ O(1)

)

�

blog x/log 2c−1∑
e=1

x

2e

1

log2 x
2e

+ O(log x)

≤

blog 2m+1/log 2c−1∑
e=0

2m+1

2e

1

log2 2m+1

2e

+ O(log x)

=
1

log22

m+1∑
n=1

2n

n2 + O(log x)

< 5
1

log22

2m+1

(m + 1)2
+ O(log x) by (1)

�
x

log2x
,

completing the proof of the theorem. 2

So the asymptotic bound is the same as that for twin primes. In the same manner as
originally derived by Brun for the sum of reciprocals of the twin primes (for example,
[9, Theorem 6.12]) we obtain the following corollary.

COROLLARY 12. The sum of the reciprocals of the upper or lower thin primes is finite.
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