
Detecting Sequential Structure

Craig G. Nevill-Manning and Ian H. Witten

University of Waikato, Hamilton, New Zealand. {cgn, ihw}@waikato.ac.nz

Abstract. Programming by demonstration requires detection and analysis of sequential patterns
in a user’s input, and the synthesis of an appropriate structural model that can be used for
prediction. This paper describes SEQUITUR, a scheme for inducing a structural description of a
sequence from a single example. SEQUITUR integrates several different inference techniques:
identification of lexical subsequences or vocabulary elements, hierarchical structuring of such
subsequences, identification of elements that have equivalent usage patterns, inference o f
programming constructs such as looping and branching, generalisation by unifying grammar
rules, and the detection of procedural substructure., Although SEQUITUR operates with abstract
sequences, a number of concrete illustrations are provided.

Key Words. PBD, sequence learning, grammatical inference

Imperative programming involves the specification of
a sequential series of elementary activities.
Consequently, one might imagine programming-by-
demonstration (PBD) to proceed by demonstrating a
sequence of actions to an agent and having it pick up
the sequence, predict its continuation, and execute the
corresponding sequence of actions automatically. It
seems that a core part of PBD is concerned with the
inference of structural descriptions of sequences from
examples, that is, the inference of intentional sequence
descriptions from extensional ones.

However, a survey of actual PBD systems—say the
ones documented in Cypher et al. (1993)—reveals a
remarkable void in the area of sequence inference.
Some that do attempt to infer sequential structure, like
TELS (Witten and Mo, 1993), embody rather trivial
models of sequence structure that break down in
realistic situations. The inference and prediction of
sequences is a key concern of text compression, but
current compression algorithms, whether macro-based
or statistically-based, attempt to capture only simple
repetitive lexical properties of sequences (Bell et al.,
1990). Work on grammatical inference is concerned
with abstracting more complex structure from
sequences, but tends to be preoccupied with the
problem of finding a grammar that covers several
independent examples from a single source (Angluin
and Smith, 1983, Berwick and Pilato, 1987), and the
methods used do not transfer to the detection of
structure in a single, undifferentiated, behaviour
sequence. Finally, the small amount of machine
learning research on the sequence inference problem
has produced systems (like SPARC/E, Dietterich and
Michalski, 1986) that do not prove useful in practice,
or ones (like TDAG, Laird and Saul, 1994) that are
naive compared with contemporary compression
models.

SEQUITUR is a scheme for inducing a structural

description for a sequence from a single example. The
sequences are abstract ones, and in the context of PBD
are intended to represent series of concrete actions.
Lacking a source of actual PBD sequences to serve as
test material, a number of other kinds of example
sequences have been used: a large sample of ordinary
English, program text, strings created from L-system
grammars, and sequences of actions generated by a
sorting program.

The first step is lexical: combining neighbouring
individual terminal symbols to produce higher-level
symbols. Unlike traditional lexical analysis, however,
this is done in a recursive manner, leading to a
potentially highly-structured, compact, description of
the sequence in terms of a hierarchical decomposition
into “rules.” This yields a sort of recursively-
structured vocabulary for the sequence. The next step
is to generalise the token sequence so generated. This
can be done in several different ways. One is to
identify symbols that are equivalent in their usage
patterns—ones that tend to be preceded and/or followed
by the same strings. Another is to locate
programming constructs such as loops and branches in
the token sequence. A third is to generalise the
hierarchical decomposition rules by seeking patterns
that allow different rules to be unified. And finally, if
the sequence is sufficiently noise-free, it may be
possible to detect procedural structure in it, and even
locate recursive procedures.

1 Hierarchically structured vocabulary

The simplest kind of sequential structure is the
repetition of a string of symbols. In natural language,
these strings include roots, affixes, words and phrases.
In programming by demonstration, they represent sub-
tasks within the overall task. Sequitur’s first step is to
identify these phrases and restate the sequence in terms

of this new vocabulary.

Finding phrases. SEQUITUR's operation is best
explained using an example. The sequence abcdbc
contains the repeated sequence bc. Figure 1a shows
how bc is replaced by a non-terminal symbol A, and a
new rule for A is added to the grammar. When repeated
sequences contain smaller repeated sequences, the rules
form a hierarchy. If the sequence abcdbc is repeated,
say in the sequence abcdbceabcdbc, a new rule is added
to the grammar, and is expressed in terms of the
existing rule A (Figure 1b). This hierarchy describes
the original sequence more compactly.

Figure 2 shows the hierarchies from several
sequences. Each bar represents a rule, and a character
represents a terminal symbol. For example, Figure 2a
represents the second sequence from Figure 1
(abcdbceabcdbc). The top line is rule S , consisting of
a black bar for each instance of B. The next line
shows how rule B consists of two instances of rule A
(dark grey bars), and the bottom line shows the
original sequence.

A similar hierarchy can be built for longer sequences.
Far from the Madding Crowd1 by Thomas Hardy
consists of 768771 characters of English text. The
grammar formed from this sequence has 26477 rules,
the first one being 131416 symbols long. Figure 2b
shows a short excerpt from the book, and illustrates

1 file book1 of the Calgary compression corpus, available from
ftp.cpsc.ucalgary.ca in directory pub/projects/text.compression

how it is represented hierarchically (tildes represent
spaces). The top row of black bars shows that the
phrase what may be called a small silver clock is
divided into words and phrases: what, may be, called, a
small, s, ilver, clock. The word called is further
divided into the root call and the suffix ed, and the
phrase may be is divided into two words. Although
the method frequently identifies words, it fails to keep
silver as one word, and a small is divided into a s and
mall.

Figure 2c shows the hierarchy for a portion of a 1487
line (39611 character) C program.2 The for statement
for (code = 255; code >= 0; code– –) is divided into
for (and the initial assignment, the loop variable,
comparison operator, 0 and the decrement operation,
and finally the closing parenthesis. On the second
row, the leftmost rule is split into for (followed by
the loop variable code, then the assignment. On the
third row, the reserved word for is separated from the
opening parenthesis. The hierarchy fails to keep the
loop variable as one rule, but instead associates the
first character c with the preceding semicolon.

Greedy phrase formation. The grammars
described so far have two important properties: no
digram appears more than once, and every rule is used
at least twice. The algorithm consists of rearranging
the grammar to ensure that these invariants are
maintained as each new symbol is added to rule S . If
the digram uniqueness constraint is violated, a new
rule is formed (as in Figure 1a). If a rule is only used
once, it is superfluous and can be expanded and
removed from the grammar. An implementation in
C++ on a Sun SparcStation 10 processes sequences at
a megabyte per minute.

Because constraints are re-satisfied after each symbol
is seen, the algorithm never waits for more symbols

2 file progc from the Calgary compression corpus.

Sequence Grammar

(a) abcdbc S ← aAdA
A ← bc

(b) abcdbceabcdbc S ← BeB
A ← bc
B ← aAdA

Figure 1: Two simple sequences
and the phrases extracted from them

(a) ----------- e -----------
a --- d --- e a --- d ---
a b c d b c e a b c d b c

(b) ------- ------------- --------------- ------------- --- --------- -----------
--- --- --------- --- --------- ----- ----- ------- ~ s --- ----- ----- -----
w h a t ----- --- b e ------- l --- ~ --- s ----- l ~ s i l --- r --- l --- k
w h a t --- a y ~ b e --- --- l e d ~ a ~ s --- l l ~ s i l v e r ~ c l o c k
w h a t ~ m a y ~ b e ~ c a l l e d ~ a ~ s m a l l ~ s i l v e r ~ c l o c k

(c) ------------------------------------- ------- ----- ----------------- -----
--------- ----------- ----- 5 5 ----- --- --- > --- 0 ----- ----- --- ~ ---
------- (--------- ~ --- 2 5 5 ; --- o d e ~ > = ~ 0 ; --- --- e - - ~) ~
----- ~ (----- --- ~ = ~ 2 5 5 ; ~ c o d e ~ > = ~ 0 ; ~ c o d e - - ~) ~
f --- ~ (--- o d e ~ = ~ 2 5 5 ; ~ c o d e ~ > = ~ 0 ; ~ c o d e - - ~) ~
f o r ~ (~ c o d e ~ = ~ 2 5 5 ; ~ c o d e ~ > = ~ 0 ; ~ c o d e - - ~) ~

Figure 2: Hierarchies for: (a) the sequence abcdbceabcdb
(b) a phrase from Far from the Madding Crowd by Thomas Hardy
(c) excerpt from a C program

to complete a longer match: it forms rules based on
the symbols it has seen and extends them later on if
necessary. This on-line processing makes it suitable
for interactive applications such as PBD. However, it
also means that phrases are formed greedily—a rule is
always extended if doing so will reduce the overall size
of the grammar.

These greedy decisions make the algorithm sensitive
to the presentation order of the sequence, and local
decisions are often suboptimal in the long run.
Figure 3a shows the sequence bcdbcdbcefacef, which
when processed left-to-right yields the grammar in
Figure 3b. This has four rules and seven symbols in
rule S. However, when the original string is processed
from right to left, the resulting grammar has only
three rules and six symbols in rule S (Figure 3c).

In Figure 2, greedy processing is responsible for
grouping the s in small with the preceding a, rather
than with the rest of the word, and for grouping the
letter c in the variable code with the preceding
semicolon.

Generous processing. Finding the set of phrases
that minimises the size of a sequence is NP-hard
(Storer, 1988). Furthermore, finding this set requires
the complete sequence at one time. In PBD,
predictions must be made as symbols are available; it
is not possible to choose the presentation order of the

sequence.

Nevertheless, it is possible to improve the
performance of the basic algorithm. If all predecessors
of a non-terminal symbol have the same suffix, the
rule headed by the non-terminal can be extended. For
example, in Figure 3b the symbols that precede C are
B and c. The last symbol in B is c, so by expanding
B, both instances of C are preceded by c. Now c can
be prepended to the contents of rule C , yielding the
rule C → cef. B is now used once only, and is
expanded to produce the rule A → bcd. This grammar
is equivalent to Figure 3c.

Rules can also be extended forward if their successors
share a common prefix. Extending rules in this way
retrospectively corrects some bad decisions made by
greedy phrase formation, so we refer to it as “generous
processing.” Generous processing is most effective on
well-structured sequences. Consider the grammar in
Figure 4a. When the first rule is evaluated recursively
to a depth of three, the sequence shown in Figure 4b
is produced. The grammar formed from this sequence
is shown in 4c. Although it is more compact than the
original sequence, it fails to capture the regularity of
the source grammar.

Figure 4d shows the grammar obtained with generous
processing. Not only is it smaller than Figure 4c, but
it more closely resembles the original grammar. The

(a) bcdbcdbcefacef (b) S ← AABCacC
A ← Bd
B ← bc
C ← ef

(c) S ← BBbAaA
A ← cef
B ← bcd

Figure 3: (a) A sequence , (b) processed left to right, (c) processed right to left

(a) S ← S[+S]S[–S]S
S ← f

(b) f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]f]f[+f]f[-f
]f[+f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]f]f[+f]
f[-f]f]f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]f]f[
+f]f[-f]f[-f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]
f]f[+f]f[-f]f]f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-
-f]f]f[+f]f[-f]f

(c) S ← C E I K J K D f
A ← f [
B ← D A
C ← H F
D ← f]
E ← B +
F ← B –
G ← C D
H ← A +
I ← G N
J ← E F
K ← E G
L ← F G
M ← H I D J K N
N ← J L J

(d)

(e)

S ← B F A G A
A ← B] B
B ← D F C G C
C ← D] D
D ← f F E G E
E ← f] f
F ← [+
G ← [–

S ← B [+ B] B [– B] B
B ← D [+ D] D [– D] D
D ← f [+ f] f [– f] f

Figure 4: (a) a recursive grammar,
(b) part of the sequence produced by (a),
(c) the grammar induced from (b),
(d) the grammar induced with generous parsing,
(e) 4d with rules B, C, E, F and G expanded

source grammar could be compressed by making a rule
for the repeating S]S pattern, and this is what rules A ,
C and E in Figure 4d represent. If rules A, C, E, F
and G are expanded and removed, the result is
Figure 5e, which is a non-recursive version of the
original grammar. This grammar is an example of an
L-system, and is discussed further in the section on
recursion.

Figure 5 shows the hierarchies for the sequences of
Figures 2a and 2b when generous processing is
applied to the entire sequence. In Figure 2a the word
silver is now one rule, and a small is divided correctly
into a and small. The word called is divided differently
due to the appearance of walled later in the sequence,
but the suffix ed remains. The entire grammar
contains 20% more complete words than the grammar
without generous processing. In Figure 2b, the
complete for statement is identified as a repeating
pattern, and the variable code appears as a single
group. Both these hierarchies are more plausible
descriptions of the sequence structure than the
hierarchies without generous processing.

Background knowledge. The algorithm described
so far does not take advantage of any domain-specific
knowledge to enhance its performance. Certain kinds
of knowledge can be used in a fairly simple way. For
example, the brackets in Figure 4b are correctly
nested, and this information can be used to construct
the correct grammar without the extra overhead of
generous processing.

When a new digram is formed, the grammar is
searched for an identical one. If the search is
successful, a new rule is formed. Otherwise, no further
processing occurs, because the digram uniqueness
constraint is not violated. Background knowledge can
be used to influence the success of the digram search,
and therefore whether a particular rule is formed. In the
bracket matching example, if the sequence represented
by the digram is incorrectly nested the search returns
false, and a rule is not formed for that digram. This
forces the greedy algorithm to wait for further
symbols before forming rules, and avoids retrospective
modifications to the grammar, resulting in greater

efficiency. Background knowledge from other domains
can be added in a similar way, e.g. forbidding rules to
cross white space in English text.

Compression. It is interesting to look at
SEQUITUR’s performance as a data compression
technique. Occam’s razor suggests that simple theories
should be preferred over more complex ones. In
machine learning, this is formalised by the minimum
description length (MDL) principle, which prefers
theories that minimise the sum of the size of the
theory and the size of the observations given the
theory. SEQUITUR’s algorithm can be viewed as
compressing the sequence by removing repetitions,
deleting infrequent rules, and extending rules
retrospectively.

A key issue in the application of MDL is the language
in which the theory and the observations are
expressed. For two theories to be fairly compared, the
language should be as efficient as possible. Treating
SEQUITUR as a compression scheme opens up the
possibility of using existing compression techniques
as efficiency benchmarks.

Representing the grammar textually does not yield any
compression for non-trivial sequences, because non-
terminals need to be expressed as multi-digit numbers
when the number of rules grow. Instead of text, the
grammar can be encoded using a statistical model and
an arithmetic coder, which encodes frequent symbols
with short codes and uncommon symbols with long
ones. Far from the Madding Crowd is 768771
symbols long, but encoding the grammar in this way
results in a file size of 327458 bytes; 42.6% of its
original size. UNIX COMPRESS compresses the book
to 332056 bytes, or 43.2%, but more sophisticated
compression techniques perform even better, for
example GZIP (40.1%).

In the grammar representation, we encode the theory
(all the rules except S) separately from the
observations given the theory (rule S). It is possible
to improve compression by encoding the theory
(rules) and observations (sequence) simultaneously,
and have the decoder build the rules adaptively. This
method operates as follows: the first time a rule is

(a) ------- ------------- --------------- --------------- ----------- -----------
--- --- --------- --- --- ----------- --- ----------- ----- ----- ~ ---------
w h a t ------- ~ b e ~ c ----- ----- a ~ --------- ~ --- l --- r ~ ----- ---
w h a t --- --- ~ b e ~ c --- l --- ~ a ~ --- ----- ~ s i l v e r ~ --- o c k
w h a t ~ m a y ~ b e ~ c a l l e d ~ a ~ s m --- l ~ s i l v e r ~ c l o c k
w h a t ~ m a y ~ b e ~ c a l l e d ~ a ~ s m a l l ~ s i l v e r ~ c l o c k

(b) ---
--------- ----------- ----- 5 5 ----------- --------- ----------- -------
----- --- --------- ~ --- 2 5 5 --- ------- ------- 0 --- ------- --- ---
f --- ~ (--- ----- ~ = ~ 2 5 5 ; ~ --- --- --- --- 0 ; ~ --- --- - - ~)
f o r ~ (~ c --- e ~ = ~ 2 5 5 ; ~ c o d e ~ > = ~ 0 ; ~ c o d e - - ~)
f o r ~ (~ c o d e ~ = ~ 2 5 5 ; ~ c o d e ~ > = ~ 0 ; ~ c o d e - - ~)

Figure 5: (a) The hierarchy which results from applying generous processing to the
sequence in Figure 2b. (b) Figure 2c processed as in 5a.

used, its contents are encoded. The second time it is
used, it is sufficient to encode a pointer to the first
occurrence. At this juncture the decoder forms a new
rule, and each time the rule occurs again, it can be
referenced with the appropriate non-terminal symbol.
This scheme compresses Far from the Madding Crowd
to 35.3% of its original size, outperforming all other
dictionary compression schemes—at the expense of
longer computation time. This compression
performance is consistent across the whole Calgary
compression corpus, which includes text, binary data
and images (Nevill-Manning et al., 1994).

This example demonstrates that finding an efficient
representation is not a straightforward task. The
textual representation implies that the structure that
the algorithm finds is much worse than no structure at
all. The probability-based encoding indicates that it
captures some structure, but the adaptive scheme
shows it to be better than the theories found by any
other dictionary compression scheme. The implication
is two-fold: finding an efficient representation for the
purpose of applying MDL is difficult, and adaptive
transmission of the model along with the sequence is
a useful approach in finding efficient representations.

2 Analysing branching structure

The hierarchical decomposition produced by the
algorithm described so far has three shortcomings as a
description of the structure of the sequence:

• It describes the vocabulary of the sequence, but
fails to capture any non-linear structure, such as
loops or branches.

• It is expressed as a grammar, but can only produce
one sentence—the original sequence.

• It has limited predictive power. While it can
predict the completion of a partially matched rule,
it cannot predict the sequence of symbols in the
first rule.

The next step involves generalising the grammar to
make it more descriptive, more productive, and more
predictive. For the discussion below, it is helpful to
represent the sequence as a transition network by
creating a state for each unique symbol in the first rule
and inserting transitions between states whose
symbols are adjacent in the sequence (Figure 6). This
network can be traversed to reproduce the original
sequence, but can also produce many other sequences.
The transition network is too general, because all
context information is forgotten when a transition is
made, and considerable extra information is required to
reproduce the original sequence. The true structure of
the sequence is likely to be a compromise between the
grammar and the transition network, a compromise
that minimises the size of the structure and the extra
information required to recreate the sequence given the

structure.

The goal of the generalisation is not to capture every
conceivable structure that may be present in an
arbitrary sequence, but instead to recognise certain
structures that are likely to be produced by the
particular source process. For grammar-based
sequences, we look for subsequences that occur in the
same contexts and infer that they are equivalent. For
the purposes of programming by demonstration,
where the source is (presumably) a program, the likely
structures are branches, loops, procedure calls and
recursion. These five structures are discussed in turn.

Equivalent symbols. If two symbols often occur
in the same contexts, the grammar can be generalised
and simplified by treating them as the same. That is,
if the set of the predecessors of one symbol is similar
to the set of predecessors of the other, then the
symbols are deemed equivalent.

(a) S ← …DE…DF…HE…HF…
D ← dd
H ← hh
E ← ee
F ← ff

(b) S ← …D'…D'…H'…H'…
D'← ddJ
H'← hhJ
J ← ee
J ← ff

Figure 7: Merging equivalent symbols E and F

In Figure 6b, nodes E and F are both preceded by
nodes D and H. Figure 7a shows part of the grammar
which gives rise to rule S in Figure 6a. Figure 7b
shows how E and F are generalised to form a new rule
G, reducing the number of symbols in the grammar
from 16 to 14. To reproduce the original sequence, it
is necessary to supply extra information to select the
correct right hand side for G. In this case, one bit has
to be supplied each time D' or H' is used, so four bits

(a) S ← ABDEACDFGCHEHFI

(b)

A

B C

D

E F

I

G

H

(c)

A

B C

I

C'

G

D'

H'

Figure 6: (a) the first rule of a grammar,
(b) the transition network representing
the sequence, (c) the transition network
after recognition of a branch and
equivalent symbols.

should be added to the size of the grammar.

We would expect to find such symbols when they are
alternative right-hand sides for the same rule in a non-
deterministic grammar, e.g. they are both verbs in a
sequence of English text, or variables in a program.

Branches. Nodes A, B, C and D in Figure 6b typify
a branch structure that could be generated by an
if...then...else or case construct in a program. Because
B and C share only one common predecessor,
combining them into one node in the same way as E
and F does not reduce the size of the grammar. In the
absence of G and H, the structure would prove
useful—D follows A after an intervening symbol, so
D can be predicted, making it less costly to encode.
However, the presence of G and H in this example
makes some further processing necessary.

The transition network implies that D may follow G
with the intervening node C . Similarly, H appears to
follow A . However, recall that the network was
formed from the sequence in Figure 6a, where, in fact,
neither GCD nor ACH occur. C is used in two
different structures: ACD and GCH, but appears in the
network as one node. To correct this, C is cloned to
produce C', resulting in Figure 6c, which illustrates
how the ABCD branch has been isolated from H and
G.

After recognising the equivalent symbols E and F and
the ABCD branch, the network has one fewer nodes
and four fewer transitions. Furthermore, to reproduce
the original sequence from Figure 6b takes 12 bits,
while to reproduce it from Figure 6c takes only 9 bits.

Loops. There are two ways in which loops might
appear in the transition network. First, if the sequence
repeats exactly, a rule will be formed for all of the
symbols in the loop, and there will be a transition
from a node to itself.

Second, if the loop includes branches, then there will
be no exact repetition, but there will be a transition
from the last node in the loop to a previously visited
node, which is the first node in the loop. All nodes
reachable from the first node without going through
the last node belong within the loop. Borrowing from
structured programming constraints, we require that
loops do not overlap, which means that there must be
no transitions from states in the loop to states outside
the loop or vice versa. However, the first node may
have incoming transitions from other nodes, and the
last node may have outgoing transitions to other
nodes.

For example, in Figure 6c there are two candidate
loops: from D' to A, and from H' to itself. Neither of
these violate the constraint on internal nodes, so no
further processing is required. These loops were not
possible in Figure 6b—they only appear after the
equivalent symbols and branch have been recognised.

3 Procedures and recursion

Procedures are an essential part of the structure of real
programs, and SEQUITUR is capable of recognising
procedures in a sequence, including recursive ones.
Unlike the recognition algorithms described so far, the
techniques in this section require a very regular, noise-
free sequence, such as an execution trace of an actual
program.

Procedure calls. If a procedure is repeated
verbatim, or the repetitions are generalised to the same
sequence, then a rule will be formed for it. In this
case, the rule is exactly equivalent to the procedure:
using the non-terminal symbol that heads the rule is
just the same as calling the procedure.

However, if the body of the procedure is not identical
in every invocation, it must be recognised in some
other way. As with a loop, there must be no direct
transitions from states in the procedure to states
outside the loop, or vice versa. It is possible to
recognise procedures by searching the transition
network for such a group of nodes.

The search traverses the network, treating each node as
a candidate for the first node in a procedure, and
searches the network for a descendant d, such that the
set of nodes reachable from the first node without
going through d are only connected to other nodes in
the set. For a network with n nodes, this search takes
O(n2) time.

The problem with this algorithm is that as the
transition network is cyclic, a node’s descendant may
also be its ancestor. The solution is to identify loops
when the automaton is created, making use of the
order in which states are created. If an edge is added
which connects a state to one of its ancestors, this
edge is marked as a loop. Ignoring the loops makes
the graph acyclic, and the procedure definition above
becomes useful. This algorithm is described more
fully in Nevill-Manning (1993).

Recursion. Recursion can appear in two different
ways: as sub-graphs in the transition network, or as
similar rules in the grammar.

If the procedure does not repeat verbatim, and the
algorithm described in the last section is applied,
recursion results in a transition from a node within the
procedure to the node that begins it. Nevill-Manning
(1993) describes how this kind of recursion can be
recognised.

If the procedure does repeat exactly, recursion appears
as similar rules in the grammar. As noted
previously, Figure 5a is a recursive grammar.
Evaluating it and performing generous phrase
recognition on the resulting sequences yields the non-
recursive grammar in Figure 5d, which is reproduced
in a more readable form in Figure 5e. All of the rules
in the non-recursive grammar are similar; in fact, they

unify using standard pattern matching procedure.
Unifying the bodies of the rules yields B≡D≡f, and
unifying the heads of the rules yields S≡B≡D.
Replacing B and D with S produces the recursive rule
S[+S]S[–S]S, and unifying S with f results in the
new rule S → f. The unification can be performed by
a short Prolog program and yields the original
recursive grammar in Figure 5a.

The original grammar is an example of a Lindenmayer
system, or L-system (Prusinkiewicz, 1990).
Interpreting the sequence in Figure 5b as turtle
commands (Figure 8a), produces the plant form in
Figure 8. The procedure just described takes the
primitive graphics operation used to draw the plant,
and produces the correct description of the rules
governing its growth.

4 Putting it all together

We have described techniques for efficiently forming a
vocabulary from a sequence, and recognising
equivalent symbols, branches, loops, procedure calls
and recursion in a sequence. Now let us put these
techniques together to make inferences.

SEQUITUR implements each of the generalisation
techniques described so far. Each technique is applied
incrementally, rather than as a post-processing step,
so that maximum benefit can be gained in terms of
on-line prediction and explanation. As each new
symbol is observed, the vocabulary is updated,
generous processing is performed, and then the
grammar is examined to see whether it is possible to
apply any of the transformations. Because only parts
related to the last symbol in the sequence will have

(a)
f = draw a line forward
– = turn left
+ = turn right
[= save state
] = restore state

(b)

Figure 8:
(a) interpretation of turtle commands in Figure 5b,
(b) plant represented by the sequence in Figure 5b.

(a) {
 switch (getchar()) {
 case 'f':value = 1;
 case 'h':mark = 2;
 case 'e':mark = 8;
 case 'i':value = 7;
 }

 switch (n) {
 case 4 : mark = 45;
 case 30: value = 6;
 case 3 : value = 38;
 case 5 : mark = 3;
 }
}

(c)

65

b

43

}7 82

;

1=

d

:f

’

)

r ae

g

(

h

ct

i

w

s

•

\n

{

(b) S ← { I H g e G C () J ' f E
1 B h D 2 B e D 8 B i E 7 T F H
n J 4 R 4 5 P 0 N O 6 P Q O 3 8
M 5 R 3 T U
A ← ' : ':
B ← M ' ;\n case '
C ← a r ar
D ← A L ':mark =
E ← A O ':value =
F ← \n \n
G ← t c h tch
H ← s w i G (switch (
I ← F \n
J ←) { K) {\n case
K ← I c a s e \n case
L ← m C k S mark =
M ← ; K ;\n case
N ← : :
O ← v a l u e S value =
P ← M 3 ;\n case 3
Q ← N :
R ← Q L : mark =
S ← = =
T ← ; I U ;\n }\n
U ← } \n }\n

(d)

swit ch (get char() | ch) {

case '

' : value | mark =

}

}

{

;

1 2 8 7 45 6 38 3

e f i 3 4 5 h 30

Figure 9: (a) fragment of C code, (b) the vocabulary, (c) structure recognition
without vocabulary (d) vocabulary and structure recognition

changed, this check can be performed efficiently.

For generality, the heuristics used to recognise
structure in the sequence do not involve arbitrary
constants: a conscious design decision was made to
use only the numbers 0 and 1 in any computations.
This provides a simple system which is not tailored
toward any particular domain, but to which domain-
dependent heuristics can be added.

For example, Figure 9a shows a portion of a C
program. The vocabulary derived from this sequence is
shown in Figure 9b. It captures the reserved words,
variable names and delimiters, but by itself does not
recognise the overall structure because of the different
variable names, switch values, case labels and values.
Figure 9c shows the structure recognition techniques
without the vocabulary formation part. As it must
find structure between the individual characters, it is
not able to give particularly useful insights. However,
when the two parts are combined, they produce the
structure in Figure 9d, which captures much of the
desired structure.

The lexical analysis part of SEQUITUR is robust, and
has been applied to a wide variety of sequences. The
structural inference part is still experimental, and
while it is successful on several test examples, is still
being refined to deal with more complex and noisy
sequences. By incorporating a number of techniques
for recognising structure, SEQUITUR is capable of
modelling a range of sequences, from noise-free,
highly regular L-system sequences, to noisy action
sequences containing branches, loops and procedure
calls. It is also capable of inferring the structure of
natural language, program code, and semi-structured
textual databases like bibliographies. The crucial test,
of course, will be to apply it to PBD sequences. To
this end, it is planned to integrate SEQUITUR into a
PBD system to complement Dave Maulsby’s CIMA
data description learner.

Acknowledgements

Thanks to Dave Maulsby, who proposed the idea of
forming a hierarchical vocabulary, and to Przemyslaw
Prusinkiewicz, who suggested the L-system
application. This work is supported by the New
Zealand Foundation for Research in Science and
Technology.

5 References

Angluin, D. and Smith, C.H., “Inductive inference:
theory and methods” (1983) Computing Surveys
15(3), 237-269.

Bell, T.C., Cleary, J.G., Witten, I.H., Text compression
(1990), Prentice Hall, Englewood Cliffs, NJ.

Berwick, R.C., Pilato, S. (1987), Learning syntax by
automata induction, Machine Learning 2(1), 9-38.

Cypher, A. (Editor) (1993) Watch what I do:
programming by demonstration, MIT Press,
Cambridge, Massachusetts.

Dietterich, T.G, Michalski, R.S. (1986), “Learning to
predict sequences”, Machine learning: an artificial
intelligence approach II, R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell (Eds.), Morgan
Kaufmann, Los Altos, CA.

Laird, P. and Saul, R (1994), “Discrete Sequence
Prediction and its Applications”, Machine
Learning 15(1), 43-68.

Nevill-Manning, C.G. (1993), “Programming by
Demonstration”, New Zealand Journal o f
Computing 4(2), 15-24.

Nevill-Manning, C.G., Witten, I.H., & Maulsby, D.L.,
(1994) “Compression by Induction of Hierarchical
Grammars” Proceedings of the Data Compression
Conference 1994, IEEE Computer Society Press.

Prusinkiewicz, P. & Lindenmayer, A. (1990) The
algorithmic beauty of plants, Springer-Verlag.

Storer, J.A.. (1988) Data Compression—methods and
theory, Computer Science Press.

Witten, I.H., Mo, D. (1993), “TELS: Learning text
editing tasks from examples”, In Cypher (1993),
182-203.

