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Abstract 

 The formation of free radicals by the iron-catalysed Fenton reaction is a major cause of oxidative 

damage in the body. Here a common assay of antioxidant capacity, inhibition of the β-carotene-linoleic 

acid model of lipid peroxidation, has been modified by the addition of ferrous iron (final concentration 

36 µmol/l), which makes the rate of oxidation of the lipids occur twenty-five times faster. Such an assay 

can simulate the oxidative damage to membrane lipids and low density lipoproteins occurring in the 

body in the presence of free iron. It thus may be nutritionally more relevant than traditional chemical 

assays of antioxidant capacity, as it measures pre-emptive antioxidant activity, i.e. activity which 

prevents free radicals being formed in the first place. Pre-empting their formation is likely to be more 

protective than scavenging of free radicals. The relative antioxidant activity of some food products 

found using this new assay was very different from that found using a radical-scavenging assay. 

Vitamin C, at 280 mg/l, was found to be sixty times better than blackcurrant puree in scavenging free 

radicals, but only one eighth as good as the blackcurrant puree in preventing iron-catalysed lipid 

peroxidation. 

 

1. Introduction  

 Free radicals and reactive oxygen species (ROS) are involved in aging and major diseases such 

as neurodegenerative diseases, diabetes, atherosclerosis and cancer (Ames, Shigenaga & Hagen, 1993; 

Halliwell, 1987; Van Campenhout, Van Campenhout, Lagrou, Moorkens, De Block & Manuel-y-

Keenoy, 2006). Through its catalysis of the formation of free radicals from hydrogen peroxide (the 

Fenton reaction) iron in excess is believed to generate oxidative stress, and to induce and amplify lipid 

peroxidation reactions, leading to extensive oxidative damage to biomolecules (Lim, 2000; Puntarulo, 

2005; Van Campenhout et al., 2006). Clinical conditions due to the oxidative effects of iron overload 

have been observed in cardiomyopathy, atherosclerosis, neoplasia and chronic disease such as liver 

disease, hematochromatosis, obesity and type II diabetes (Lim, 2000; Puntarulo, 2005; Van Campenhout 

et al., 2006). From a review of the widely dispersed literature it has been concluded that the role of 
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poorly liganded iron has been rather underappreciated in the past, and that its activity is involved in the 

degradation of a great many physiological processes that is seen to occur over time (Kell, 2009). Thus 

supplementation of the diet with bioavailable antioxidants that not only scavenge free radicals but also 

have iron-sequestering activity that prevents the Fenton reaction from occurring would give the best 

protection to the body from oxidative damage. Hässig, Liang, Schwabl, & Stampfli (1999) have pointed 

out that it has been shown that, depending on the iron status of the recipient, pharmacological doses of 

β-carotene and vitamins C and E sometimes have beneficial effects, but often also have no effect or 

harmful effects. They have argued that for a more reliable antioxidative action an adequate dietary 

supply of a mixture of flavonoids and tannins seems preferable, as these bind and inactivate iron. 

 Various in vitro assays such as the DDPH, ABTS or ORAC have been used to detect new potent 

free radical scavengers (Becker, Nissen & Skibsted, 2004; Sanchez-Moreno, 2002). However these tests 

are just based on chemical reactions between scavengers and artificial free radicals and have no 

similarity with biological systems (Huang, Ou & Prior, 2005). Nor do these tests measure the 

contribution made by the binding and inactivation of iron which prevents formation of free radicals, an 

antioxidant activity which biologically may be far more important than scavenging of free radicals. 

Directly measuring the ability of food products to sequester iron would not provide biologically useful 

information because chelation of iron does not always make it incapable of catalysing the Fenton 

reaction (Devanur, Neubert & Hider, 2008). 

 Jayaprakasha, Singh & Sakariah (2001) have developed an assay of antioxidant capacity using a 

β-carotene-linoleic acid model system which simulates the oxidative damage to cell membranes and low 

density lipoproteins caused by free radical chain reactions. The chemical reaction occurring in this 

system starts by the abstraction of a hydrogen atom from a diallylic methylene group of the linoleic 

acid. The resulting free radical oxidizes the double bonds of the β-carotene which is a chromophore 

characterized by an orange colour which can be measured. Antioxidant activity is determined as 

protection of the β-carotene from bleaching by oxidative damage. We have modified this assay to allow 

measurement of iron-sequestering antioxidant activity by addition of ferrous ions to catalyse the lipid 
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peroxidation. Using this modified assay we have measured the inhibition of iron-catalysed lipid 

peroxidation by some food products reputed to have good antioxidant activity, and compared this with 

their antioxidant capacity assayed by the more usual measurement of free radical scavenging. 

 

2. Materials and Methods 

2.1 Chemicals 

 β-carotene, linoleic acid, Tween-40 (Polyoxyethylenesorbitan monopalmitate), Ferrozine
®

 (3-(2-

Pyridyl)-5,6-diphenyl-1,2,4-triazine-4’,4”-disulfonic acid sodium salt), Trolox
®

 ((±)-6-Hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid), ABTS
®

 reagent (2,2'-azino-bis(3-ethylbenzthiazoline-6-

sulphonic acid), potassium persulphate and Vitamin C (ascorbic acid) were purchased from Sigma 

Aldrich (St Louis, MO, USA). Ferrous chloride was from BDH Chemicals Ltd (Poole, England). All 

reagents or solvents used were analytical grade.  

 

2.2. Food samples  

 Honeydew (Nothofagus solandri) honey was from the West Coast, New Zealand. Thyme 

(Thymus vulgaris) honey was from the Central Otago region, New Zealand. Rewarewa (Knightia 

excelsa) honey was from the Bay of Plenty, New Zealand. The samples were collected as freshly 

produced honey and had been stored (for five years) at 4ºC in the dark since collection. The red wine 

was a Breakneck Shiraz 2004 and was three years old when used. The blackcurrant puree (seedless) was 

manufactured by New Zealand Blackcurrant Co-operative Ltd, and had been stored (for one year) at 

-20ºC since production. The orange juice was freshly squeezed product from Simply Fresh Orange Juice 

Ltd, Kerikeri, New Zealand. 

 

2.3. Antioxidant activity using the β-carotene-linoleic acid model system 

 The antioxidant activity of the samples was investigated using the β-carotene-linoleic acid model 

system of Jayaprakasha et al. (2001), with some modifications. In the method we used, a reaction 
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mixture containing 100 mg of Tween-40 and 10 mg of linoleic acid was mixed with 1 ml of β-carotene 

solution (4 mg/ml in chloroform). The chloroform was then removed, completely, at 40°C with a rotary 

evaporator and then 25 ml of deionised purified purified water added, with thorough stirring, to form an 

emulsion. This emulsion was prepared just before use each time because the β-carotene loses its colour 

over a period of a few hours. For use as a reaction blank an emulsion was prepared in the same way but 

without any β-carotene in the chloroform. 

 A solution of FeCl2 at 0.25 mmol/l was freshly prepared in deionised purified water for catalysis 

of the system. A Ferrozine
®

 standard solution at 1.5 mmol/l was prepared in deionised purified water, 

and a dilution series (0.3 – 1.5 mmol/l) from this was used to obtain a standard curve. 

 The food samples were diluted to an appropriate degree with deionised purified water so that the 

measured inhibition of decolourising of β-carotene was in the linear range of inhibition (0 – 95%) seen 

in the Ferrozine
®

 standard curve, and ideally was in the range of 50 – 80% inhibition of decolourising. 

 A 96-well flat-bottomed microtitre plate was loaded with 30 µl of sample (solution of food 

product or Ferrozine
®

 standard, or water as a control) and with 30 µl of deionised purified water which 

was substituted by 30 µl of FeCl2 solution (250 µmol/l, to give 36 µmol/l as final concentration) when 

the catalytic effect of Fe
2+

 on the system was studied. The absorbance of the reaction mixture was 

measured at 450 nm after injecting 150 µl of β-carotene emulsion into each well, using a Fluostar 

Optima microtitre plate reader (BMG Labtechnologies GmbH, Offenburg, Germany) operated at 37°C. 

The plate was shaken for 5 seconds immediately before injections were started, and for 2 seconds 

immediately before the measurements of absorbance which were at the beginning and end of the 10 

minute or 180 minute period of reaction for each well. The first measurement (t=0 min) for each well 

was made 4.5 seconds after injecting the emulsion. 

 The same sample was put in each of the eight wells in a row on the plate and the mean values of 

the absorbance readings from these eight replicates was taken for calculation of the antioxidant activity 

of the samples. A reaction blank was also prepared in a second row of each sample by adding 150 µl of 

blank emulsion into each well instead of injecting the β-carotene emulsion. The absorbance due to the β-
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carotene was calculated by subtracting the absorbance for each sample to which the blank emulsion had 

been added. The damage (%), measured as bleaching of the β-carotene, was calculated according to the 

equation: 

Damage %=100 * [1 - (At/Ao)] 

where At and Ao were respectively the absorbance due to β-carotene at a determined time t (10 minutes 

for the catalysed system and 180 minutes for the non-catalysed system) and the starting absorbance at 

t=0 minutes. 

 The antioxidant activity (protective effect) of the samples was calculated according to the 

equation: 

Protective effect % = [(DC - DS)/DC] * 100 

where DC and DS were respectively the damage observed in the control and in the sample. 

 The protective effect (%) obtained with the Ferrozine
®
 standard was plotted against the 

Ferrozine
®

 concentration. The linear regression from the standard curve gave the equation to convert the 

protective effect of the samples into the equivalent protective effect of Ferrozine
®

 in mmol Ferrozine
® 

per kg of food product. 

 

2.4. Free radical scavenging capacity using the ABTS assay 

 The free radical scavenging capacity of the samples was determined according to the method of 

Baltrušaitytė, Venskutonis & Ceksterytė (2007) with some modifications. This method measures the 

decrease in absorbance at 645 nm when the blue-coloured stable free radical ABTS
.
 is scavenged by 

antioxidants. In the method we used, the ABTS free radical was prepared by dissolving 38 mg of ABTS 

reagent in 10 ml of deionised purified water (final concentration was 7.0 mmol/l). Then 6.5 mg of 

potassium persulphate was added (final concentration was 2.45 mmol/l) to the ABTS solution and 

allowed to react for 16 hours to form the stable ABTS
.+

 radical cation. The ABTS
.+

 solution was further 

diluted with deionised purified water to get a final absorbance value between 2.0 and 2.4 at 645 nm 
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when 100 µl of this solution plus 100 µl of water was mixed in a well of the microtitre plate and 

measured in the plate reader as described below. 

 A standard Trolox
®

 solution was prepared at 0.2 mmol/l in absolute ethanol. The food samples 

were diluted to an appropriate degree with deionised purified water prior to analysis so that the 

measured decrease in absorbance values due to scavenging was in the linear response range of the 

decolourising of the radical solution (i.e. a decrease of 0 – 1.8).  

 A 96-well flat-bottomed microtitre plate was loaded with 100 µl of sample (solution of food 

product or Trolox
®

 standard or water blank) and the absorbance was measured at 645 nm both before 

and 4.5 seconds after injecting into each well 100 µl of ABTS
.+

 solution, using a Fluostar Optima 

microtitre plate reader (BMG Labtechnologies GmbH, Offenburg, Germany) operated at 25°C. The 

microtitre plate was shaken for 2 seconds after each injection before the absorbance was measured. The 

measurement in such a short period of time after mixing the ABTS
.+

 and the antioxidants avoided the 

error in the assay which can occur from the slow reaction between ABTS
.+

 and phenolic compounds 

(Osman, Wong, Hill & Fernyhough, 2006). 

 The same sample was put in each of the eight wells in a row on the plate and the mean values of 

the absorbance readings from these eight replicates was taken for calculation of the antioxidant activity 

of the samples. 

 To allow for absorbance due to components of the food samples, the absorbance due to the 

ABTS
.+

 in each well was calculated by subtracting the absorbance measured before injection of the 

ABTS
.+

 solution from the absorbance measured after injection. 

 Using these corrected values for absorbance, the scavenging capacity of each sample was 

calculated according to the equation: 

Scavenging capacitysample = Acontrol – Asample 
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where Acontrol is the absorbance value of the ABTS
.+

 solution after injecting it into wells with the water 

blank added instead of an antioxidant sample, and Asample is the absorbance due to the residual (i.e. un-

scavenged) ABTS
.+

 after injecting it into the wells containing antioxidant sample. 

 The free radical scavenging antioxidant activity was expressed as Trolox
®

-equivalent antioxidant 

capacity (TEAC), in mmol of Trolox
®

per kg of food product calculated according to the equation: 

TEAC = (scavenging of sample / scavenging of Trolox
®

) * Trolox
®

 final concentration 

  * (1 / Dilution factor of the sample) 

 

3. Results and discussion 

 In the control (no antioxidants added) the rate of reaction (observed as % damage to the β-

carotene per minute) was twenty-five times greater with the ferrous ions added to catalyse the oxidative 

breakdown of lipid peroxides than without the addition of iron. The concentration of ferrous ions used 

had to have a substantial catalytic effect on the system but be low enough to give rates of bleaching of 

the β-carotene that were slow enough to be accurately measured. The concentration chosen, 36 µmol/l, 

gave 70 – 80% bleaching in ten minutes. The period of 180 minutes used for the measurement of 

bleaching without iron added was a compromise between taking an excessively long period for the 

measurement and getting sufficient bleaching (55 – 60%) to measure reliably. 

 Ferrozine
®

, a molecule known for efficiently sequestering ferrous iron, gave a linear relationship 

between inhibition vs concentration in the iron-catalysed system. That made it a good standard against 

which to rate the iron-sequestering antioxidant activity of food samples in this model system. 

 Table 1 presents the data obtained on the antioxidant activity of food samples (expressed as 

Ferrozine
®

 equivalent) measured as inhibition of the bleaching of β-carotene catalysed by ferrous ions. 

The orange juice and thyme honey samples gave no protection at all from oxidative damage resulting 

from the Fenton reaction. However, the results from the assay of scavenging activity (also shown in 

Table 1) showed that these substances were efficient as free radical scavengers, the thyme honey being 
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more than three times more active than the other honeys. These results proved that these commonly 

acknowledged antioxidants were not protecting against the damaging Fenton reaction. Big differences 

are seen in the other food products as well when their relative antioxidant activities are compared for the 

two types of assay. The red wine was found to be more than three times better than the Honeydew 

honey in scavenging free radicals, but only half as good as the Honeydew honey in protecting against 

damage from the Fenton reaction. Likewise, vitamin C, at a concentration of 280 mg/l, was sixty times 

more effective than the blackcurrant puree in scavenging activity but had only one eighth of the capacity 

of the blackcurrant puree in protecting against damage from the Fenton reaction. 

 Bast, Haeneh & Doelman (1991) reported that ferrous iron ions cause mild oxidation of 

polyunsaturated fatty acids, but the combination of vitamin C with either ferric or ferrous iron ions 

causes intense oxidation of polyunsaturated fatty acids: vitamin C up to a concentration of 35 mg/l 

potentiated peroxidation of lipids by 10 µmol/l ferrous iron, although vitamin C levels above this 

showed an antioxidant effect. Addition of a reducing agent, such as vitamin C, to the Fenton reaction 

leads to a cycle which increases the damage to biological molecules, though recycling the ferric ions 

back to ferrous ions which are what drive the Fenton reaction (McNaught & Wilkinson, 2003): 

(i) Fe
2+

 + H2O2 → Fe
3+

 + OH
.
 + OH

– 

(ii) Fe
3+

 + reducing agent → Fe
2+ 

 Vitamin C, however, can be advantageous nutritionally in preventing iron deficiency. Iron is 

essential as a constituent of haemoglobin and proteins involved in energy-yielding metabolism in the 

body. In his review of the literature on recommended dietary intake of iron, Herbert (1987) discusses the 

implications of the presence of iron-binding substances and vitamin C with respect to obtaining an 

adequate nutritional intake of iron. He points out that regular daily consumption of iron-binding 

substances such as tannins and flavonoids should be avoided when the iron status of an individual is 

compromised, as in cases of anaemia and in pregnancy, because these substances can decrease 

substantially the absorption of iron. He refers to vitamin C in the diet increasing the proportion of non-



 

10 

haem iron absorbed from food not containing animal material; however, he cites a finding that 

enhancing the absorbability of non-haem dietary iron with as much as 2 g of vitamin C daily for 2 years 

had little effect on iron status when the diet contained substantial amounts of meat. 

 Herbert (1987) also discusses the issue of iron toxicity, and quotes the tolerable upper intake 

levels of iron as being 40 – 45 mg per day. Although stating that deleterious effects of daily intakes of 

several times the recommended daily allowance are unknown in healthy persons, he points out that of 

ostensibly normal individuals, 3 – 8 of each 1000 may be homozygous for haemochromatosis and at 

definite risk of iron overload even at normal levels of intake of dietary iron. 

 With the concentrations of hydroperoxidases low in plasma under normal conditions (Halliwell 

& Gutteridge, 1985; Halliwell & Gutteridge, 1986), the release of metal ions which participate in the 

formation of harmful free radicals from hydrogen peroxide becomes particularly important (Cross et al., 

1987). Although free iron that is available to participate in these reactions is apparently no higher than 

the µmol/l range (Halliwell et al., 1986), the concentration of free iron is increased at sites of injury 

(Sadrzadeh, Anderson, Panter, Hallaway & Eaton, 1987). This is at least partly because of the 

mobilisation of iron from ferritin in the presence of superoxide (produced by phagocytes) or vitamin C, 

as these reduce Fe
3+

 to Fe
2+

 which is not bound by the protein: as well as this, cellular destruction causes 

the release of cellular iron “transit pools” and also lysosomal hydrolases which in turn degrade metallo-

proteins (Cross et al., 1987; Halliwell et al., 1986). Additionally, the superoxide leaking from 

mitochondrial respiration causes release of iron from iron-sulphur proteins (Keyer & Imlay, 1996). Iron 

is also released in erythrocytes subjected to oxidative stress, where it leads to haemolysis (Bracci, 

Perrone & Buonocore, 2002). Another instance in which the concentration of free iron is increased is in 

alcoholics (De Feo et al., 2001). It has therefore been argued that the major antioxidant defense in 

extracellular fluids is the sequestration of metal ions into forms unable to participate in reactions 

forming free radicals (Halliwell & Gutteridge, 1990; Halliwell et al., 1986; Halliwell & Gutteridge, 

1989). 
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 Relative to the sample of red wine, the Honeydew honey, Rewarewa honey and blackcurrant 

puree samples gave proportionally much better antioxidant activity measured as protection from 

oxidative damage in the iron-catalysed system compared with their activity in the radical scavenging 

system. The substances responsible for the antioxidant properties in these food samples may be the 

flavonoids. Flavonoids are known to be powerful antioxidants through free radical scavenging and 

transition metal chelating activities. These molecules are said to be poorly absorbed through the gut. 

However a study on mice fed with an excess of iron showed that the flavonoids quercetin and baicalin 

were reducing the oxidative damage to the iron-overloaded mouse livers and even helped clear the iron 

excess from the organism (Gao, Zhao, Li & Zhang, 2006). 

 There are several mechanisms for non-enzymatic antioxidants to protect biomolecules. They can 

scavenge free radicals, sequester transition metal ions, inhibit oxidative enzymes or be a cofactor for 

antioxidant enzymes (Huang et al., 2005). A recent study on honey has proved that this food product 

may combine transition metal ion chelation and free radical scavenging activities (Hegazi & Abdel-

Hady, 2009). A study carried out by Al-Waili (2003) on the effects of daily consumption of honey on 

blood levels in normal individuals showed that honey was increasing the serum iron level but decreasing 

the content of ferritin, an iron storage protein. Those results indicate that the iron-sequestering 

substances in honey are bioavailable. 

 It has been found by van Acker et al. (1996) that different types of flavonoids vary markedly in 

their ability to sequester iron and render it inactive as a catalyst of the Fenton reaction. They report that 

some flavonoids are actually pro-oxidant in their action in the presence of iron because they can reduce 

Fe
3+

 to Fe
2+

 (which will then take part in the Fenton reaction). They also report that the ability to 

sequester iron is not related to the ability to suppress catalysis of the Fenton reaction, and that in some 

flavonoids the scavenging of free radicals is more important than the suppression of catalysis of the 

Fenton reaction, and vice versa. Furthermore they report that the lipophilicity of flavonoids is a very 

important factor in their inhibition of lipid peroxidation. The assay we report here, which allows for 

scavenging, lipophilicity and inhibition of catalysis, is thus far more likely than the commonly used 
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assays of antioxidant activity to indicate the potential of flavonoid-containing foods to give protection in 

the body. 

 Another consideration is that very reactive free radicals have very short half-lives, so scavenging 

antioxidants give limited protection. The half-life of the hydroxyl radical is 10
–9

 seconds, so its reactions 

are diffusion limited, i.e. they take place practically at the site of generation (Sies, 1993). At the 

concentration of scavenging antioxidant molecules likely to be present in the tissues of the body, the 

probability of a scavenging antioxidant rather than a component of the body’s tissues being at the site of 

generation of a hydroxyl radical is low, so damage to tissues will probably occur. However, an iron-

binding antioxidant, if it can efficiently sequester iron in a non-catalytic form, is likely to be more 

effective by pre-empting the formation of the damaging hydroxyl radicals. This is another reason why 

the inhibition of iron-catalysed lipid peroxidation used in the present study is likely to be of more 

relevance to health protection when assessing antioxidant foods than are the more commonly used 

assays which measure scavenging of free radicals. 
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Table 1. Antioxidant capacity of food samples measured by inhibition of the Fenton reaction (expressed 

as the equivalent concentration of Ferrozine
® 

with the same capacity) and by free-radical scavenging 

(expressed as the equivalent concentration of Trolox
® 

with the same capacity). Values are expressed as 

means ± standard deviation (n=3). 

 

Sample 
Ferrozine

®
 equivalent 

(in mmol/kg of sample) 

Trolox
®

 equivalent 

(in mmol/kg of sample) 

Honeydew honey 9.6 ± 0.3 3.2 ± 0.2 a 

Rewarewa honey 4.4 ± 0.4 a 3.0 ± 0.2 a 

Thyme honey 0 11.2 ± 0.6 b 

Red wine 4.8 ± 0.2 a 10.1 ± 0.7 b 

Blackcurrant 58.8 ± 10.3 45.0 ± 5.9 

Orange juice 0 5.1 ± 0.4 

Vitamin C 7.1 ± 1.0 2723.3 ± 93.2 

 

 


