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The New Zealand fish fauna contains species that are affected not only by river system
connectivity, but also by catchment and local-scale changes in landcover, water quality and
habitat quality. Consequently, native fish have potential as multi-scale bioindicators of human
pressure on stream ecosystems, yet no standardised, repeatable and scientifically defensible
methods currently exist for effectively quantifying their abundance or diversity in New Zealand
stream reaches. Here we report on the testing of a back-pack electrofishing method, modified
from that used by the United States Environmental Protection Agency, on a wide variety of
wadeable stream reaches throughout New Zealand. Seventy-three first- to third-order stream
reaches were fished with a single pass over 150�345m length. Time taken to sample a reach using
single-pass electrofishing ranged from 1�8 h. Species accumulation curves indicated that,
irrespective of location, continuous sampling of 150 stream metres is required to accurately
describe reach-scale fish species richness using this approach. Additional species detection
beyond 150m was rare (B10%) with a single additional species detected at only two out of the 17
reaches sampled beyond this distance. A positive relationship was also evident between species
detection and area fished, although stream length rather than area appeared to be the better
predictor. The method tested provides a standardised and repeatable approach for regional and/
or national reporting on the state of New Zealand’s freshwater fish communities and trends in
richness and abundance over time.

Keywords: standard methods; fish communities; electrofishing; wadeable streams

Introduction

With increasing human induced impacts being
manifested in freshwater environments globally,
the imperative for standardised sampling
protocols for consistent monitoring of physical,
chemical and biological elements over larger
spatial scales is becoming increasingly urgent
(Peck et al. 2006). For freshwater environments,
development of initiatives such as the Environ-
mental Monitoring and Assessment Programme
(EMAP) for surface waters by the United

States Environmental Protection Agency (US

EPA 1998), the European Water Frame-

work Directive (WFD2000/60/EC; European

Commission, 2000) and the River InVerte-

brate Prediction and Classification System

(RIVPACS; Wright 1995) have set precedents

for co-ordination and integration of ecosystem

information over large areas.
In New Zealand, although integrated

approaches to standardised data collection are

less advanced, a variety of biotic and abiotic
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metrics have been developed or tested for use
in national State of the Environment (SoE)
reporting on aquatic ecosystems (Ward & Pyle
1997; Young et al. 2004; Gray 2009). For
example, the Trophic Level Index (TLI) has
been developed by Burns et al. (2000) to assess
lake water quality, LakeSPI has been developed
to assess lake ecological condition (Clayton &
Edwards 2006), and various macroinvertebrate
indices have been applied to represent stream
condition (Suren et al. 1998; Stark et al. 2001;
Collier 2008, 2009). Such indices are frequently
used by various agencies (e.g. regional councils,
environmental consultants, crown research
institutes) not only for SoE monitoring but
also for Assessment of Environmental Effects
(AEEs), compliance monitoring or to evaluate
stream rehabilitation initiatives.
Nationally, freshwater fish form an impor-

tant and widespread component in aquatic
systems and have significant cultural, recrea-
tional, conservation and economic value, yet
thus far they have been under-utilised as
potential indicators for various reasons (but
see Joy & Death 2003). Many native fish species
exhibit diadromous life histories, whereby they
often use the ocean at some point in their
lifecycle (McDowall 1990), and consequently
many of the same species occur around
New Zealand where habitat and connectivity
are suitable (McDowall 1993; McDowall &
Richardson 1983; Jowett & Richardson 1996).
Because of their high mobility within and
between these environments, fish (as opposed
to many other freshwater organisms) have the
potential to integrate or reflect environmental
conditions at multiple spatial scales (i.e. from
freshwater to marine environments both locally
and nationally).
Despite the value of the ichthyofauna

and its widespread coastal distribution, no
standardised methods have been developed in
New Zealand to enable consistent and effective
national reporting on their current status (Gray
2009; Joy 2009). The New Zealand Fresh-
water Fish Database (NZFFD, McDowall &
Richardson 1983) is a national repository for

fish survey information collected by different
agencies for differing purposes. While this
database is a useful tool for assessing and
modelling the distribution of fish species
throughout New Zealand (e.g. Joy & Death
2002, 2004; Leathwick et al. 2009), the variable
methodologies used to collect fish mean that
only presence�absence data can be used to
assess broad-scale improvements or declines in
waterway health (Joy 2009).
Recent development of an Index of Biotic

Integrity (IBI) for stream fish has led to
attempts to use the NZFFD to model expected
diversity at a reach-scale (Joy & Death 2004).
However, the greatest need (at least for
national reporting) is for a standardised
and quantitative survey methodology for fish
communities so that changes not only
in diversity, but also measures of relative
abundance, can be compared both regionally
and nationally (Joy 2009). The ability to detect
trends in population metrics provides greater
sensitivity to change and ultimately improves
opportunities for effective management inter-
vention before species disappear (Nicholson
& Jennings 2004; Jennings 2005). Rapid
acquisition of quantitative information (and
associated metrics) for fish is becoming increas-
ingly critical given that a recent evaluation
of historical records in the NZFFD has
shown concerning national declines at a coarse
presence/absence level of assessment (Joy 2009).
In contrast to New Zealand, development

and testing of methods for describing the
relative abundance and diversity of fish com-
munities has received significant attention over-
seas. For instance, it has previously been
established that fish species richness increases
with the number of geomorphic units sampled
(Gorman & Karr 1978; Angermeier & Schlosser
1989) and that effort, stream length, and stream
area can all influence species richness
and relative abundance at the reach-segment
scale (e.g. Lyons 1992; Simonson & Lyons
1995; Patton et al. 2000; Hughes et al. 2002;
Blocksom et al. 2009; Fischer & Paukert
2009). Additionally, the level of effort required
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to effectively describe riverine fish species
composition at larger watershed scales has
also been investigated (Smith & Jones 2005).
Information from such studies has been incor-
porated into methodologies to improve the
quality and accuracy of data collected and,
because these data are often used for manage-
ment or conservation decisions, confidence in
their accuracy and quality is paramount
(Fischer & Paukert 2009).
The EMAP protocols for aquatic verte-

brates (Peck et al. 2006) use 40�the stream
wetted width as a standard for setting the
stream sampling distance (minimum 150 m).
This is based on the likelihood of detecting
90% of the fish (and other aquatic vertebrate)
species present using single pass back-pack
electrofishing (Patton et al. 2000; Cao et al.
2001, 2002; Reynolds et al. 2003). The consis-
tency of data collection across the Western
US using the EMAP vertebrate methods has
enabled robust assessment of the state of
native and exotic fish communities over a
wide geographic area (�205,000 km2).
In New Zealand, there is currently no

knowledge on the level of effort or sampling
distance required to effectively describe reach-
scale fish diversity in wadeable streams.
Furthermore, fish distribution and diversity is
influenced by the wide range of stream types
that vary greatly with respect to geology,
climate and hydrology (Leathwick et al.
2008). The frequently steep topography and
a highly variable maritime climate (Mosely
& Pearson 1997) can cause frequent natural
disturbance at the reach-scale in many systems
and cause substantial alterations to local
habitat conditions. For instance, floods causing
major changes to local habitat have been shown
to affect fish distributions and abundance
and disrupt local movement patterns (Jowett
& Richardson 1989; David & Closs 2002;
McEwan 2009).
Thus an important consideration for devel-

oping a national protocol is to ensure that the
range of natural physical (fluvial) processes
driving habitat variability (and fish distribution

and abundance) within any given reach (Reid
et al. 2008) is encompassed by the metho-
dology. An assessment of single-pass backpack
electrofishing entries in the NZFFD (up to 30
September 2009) indicates that the average
stream length sampled by researchers is 45m
(n�4616 records). This distance is less than
one third of the distance recommended in the
EMAP protocols for characterising reach-scale
fish diversity in US streams. While not all
data from fish surveys entered into the NZFFD
aim to characterise reach-scale diversity (e.g.
targeted single species surveys), in many cases
it is the primary objective (e.g. data collected
for AEEs).
In this investigation, we used a slightly

modified version of the EMAP aquatic verte-
brates sampling protocol across a variety
of New Zealand streams to obtain relative
abundance estimates for fish, and to determine
what length or area of stream should
be sampled before asymptotic species richness
occurs. Since New Zealand fish communities
are less diverse (38 freshwater species of which
approximately one third are diadromous and
widely distributed), we predict that the frame-
work on which the EMAP methods are based
should be sufficient to characterise fish assem-
blages here. We anticipate that the results of
this project will facilitate the development of
standardised reach-scale metrics for long-term
assessment of New Zealand’s fish communities.

Methods

Preliminary testing of the EMAP methods
was undertaken in the Waikato region of
New Zealand by Environment Waikato staff
in December 2008. Some modifications were
made to the EMAP field collection sheets
for specific testing of the procedure and to
make them more applicable for data collection
in New Zealand (for specific details, see
David & Hamer 2010). Modifications included
allowance for New Zealand specific data-
base information (e.g. River Environment
Classification*stream segment identification
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number; Snelder et al. 2004), and provisions to
enable the evaluation of these methods in
greater spatial detail within a reach.
In accordance with EMAP methods,

electrofishing machine settings (voltage, pulse
width, pulse rate) were standardised based
on the conductivity of the water in the reach
being sampled. However, different electro-
fishing machines may use different units of
measurement and have different operating
capacities. In New Zealand, only one type of
backpack electrofishing machine is currently
used by different organisations, the ‘Kainga
EFM300’ (NIWA Instrument Systems,
Christchurch, New Zealand). When using
this model, the following slightly modified
procedure was applied for the stated condi-
tions: initial voltage setting 1�4 (�100V) for
high conductivity [�300 mS/cm]; 2�5 (�100V)
for medium conductivity [100�300 mS/cm]; 3�6
(�100V) for low conductivity [B100mS/cm]
waters. Pulse width was set at 2ms and pulse
rate between 60 and 70Hz. These settings were
tested immediately below the selected site. If
these settings resulted in all six lights showing
on the wand, the voltage was lowered until five
lights or less appeared.
All reaches fished using this machine were

undertaken in the same systematic manner,
whereby the electrofisher would fish a rectan-
gular ‘lane’ (approximately 3�2m L�W) in a
downstream direction (towards a pole netter)
commencing from one bank at the downstream
end of the reach. The cathode (‘tail’) was
always positioned between the fisher and the
pole netter to concentrate the field to the area
being fished. Once a ‘lane’ was fished, the team
would move one pole net width across the
channel and repeat the process until the other
side of the channel was reached. The pole netter
and electrofishing operator would then move
an equivalent ‘lane’ length distance upstream
(3m) to repeat the process until the complete
area of the subreach was fished. Stream wetted
width was recorded at the end of each subreach
(Fig. 1) so that area fished and ultimately fish
density (fish/100m2) could be determined for

each sampled reach. Fish were then identified,

recorded and released at least one pool riffle

sequence downstream prior to commencement

of the next subreach. To evaluate species

distribution and accumulation with stream

distance and area sampled, fish species

were tallied within each of the 10 equidistant

(continuous) subreaches. As per EMAP meth-

ods, stop nets were not used.
To ensure that data were collected and

recorded in a comparable manner, the modi-

fied procedures were demonstrated under field

conditions to all parties that later contributed

data to this project. Other than testing the

Fig. 1 General reach layout (150m). Sampling
begins from the bottom end at sub-reach ‘A’ denoted
by a Global Positioning System (GPS) coordinate.
Once all of sub-reach A is fished (15-m segment), the
stream width is measured and fish captured are
identified, measured and released downstream. This
pattern is repeated until all sub-reaches have been
fished.
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utility of the method for evaluating reach-scale

fish diversity and relative abundance, there

were no other specific hypotheses driving site
selection. In effect, sites were chosen opportu-

nistically, with the sampling methodology
substituted into various existing research

projects and monitoring programmes where
possible. These included projects related to

topics such as flow allocation and stream

rehabilitation, SoE monitoring and reference
site benchmarking. Consequently, a range of

organisations sampled a range of streams that
provided a range of conditions with respect

to mean wetted width, conductivity, altitude,

distance to the coast, landuse and geographic
position (Table 1).
Fish community richness across New

Zealand is strongly influenced by stream
gradient, altitude and distance inland (Jowett

& Richardson 1996). In general, high altitude
inland sites have fewer species than sites at low

elevation that are close to the coast. Thus, to
evaluate species accumulation with distance

sampled consistently for all sites, the number

of fish species detected within each subreach
was standardised to a common index value of

between 0 and 1 (1�100% of the total richness
detected for the entire distance sampled). These

data were then plotted in 15-m intervals (each

15-m value being the mean index from
n�73 sites, 9SD) up to 150m (the minimum

sampling distance for all sites).
All organisations were required to sample

40�the mean wetted width (minimum of 150m
for streams with mean wetted widths B3.75m),

via one pass electrofishing unless time and or
operator fatigue precluded site completion
(n�3 occasions). Total shock (‘button’) time
was recorded to provide an accurate measure of
electrofishing effort expended at a site (exclud-
ing the time taken to count and process fish).

Results

Between December 2008 and April 2009,
73 first- to third (Strahler)-order streams
were sampled by backpack electrofishing by
five regional councils (Auckland, Waikato,
Horizons, Wellington and Otago), the Depart-
ment of Conservation (Waikato Conservancy)
and two consultancies*National Institute of
Water and Atmospheric research (NIWA) and
Kessels and Associates (both under contract to
Environment Waikato). The streams spanned
five regions of New Zealand, four in the
North Island (Auckland, Waikato, Manawatu,
Wellington), and one in the South Island
(Otago) (Table 2). Sampled streams varied in
mean wetted width from 0.58 to 12.68m (mean
of 10 width measurements/sampled reach) and
conductivity (60�640 mS/cm, spot measurement
at the time of sampling) (Table 1). Streams also
covered a broad altitudinal range (B10�350m
asl), were B0.5 km to 170 km inland, and had
adjacent landcover ranging from pasture to
tall-growing species providing complete canopy
cover.
Of the 73 reaches fished, 17 (23%) were

sampled beyond 150m. The length of stream
fished ranged up to 345m, and fishing area

Table 1 Range, mean and standard deviation of various parameters measured at 73 sites across
New Zealand.

Area (m2)
Distance
(m)

Sample
time (min)

Shock
time (min) Fish/100m2

Cond.
(mS/cm)

Wet
width (m)

Range 121�3151 150�345 72�480 22�155 0.15�248 30�640 0.58�12.68
Mean 640.4 160 204 67.9 29.7 140.6 3.9
SD 525.2 23.22 99 30.5 35.58 112.8 2.5

Area, area fished; Distance, stream distance sampled; Sample time, total time taken to collect sample; Shock time, shock
‘button’ time; Fish/100m2, fish per 100m2; Cond., stream conductivity; Wet width, stream wetted width.
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varied over an order of magnitude (121�
3151m2; Table 1). Relative fish abundance

derived from single pass electrofishing varied

from 0.15 to 248 fish/100m2 (Table 1) and

reach-scale richness ranged from one to nine

species (Table 2).
Time to sample a reach ranged from just

over an hour up to a maximum of 8 h (Table 1).

Sampling time was primarily influenced by the

total area sampled and the number of fish

captured. In effect long, wide reaches combined

with high fish densities took the longest to

complete. There was a positive linear relation-

ship between the shock time (button) and
the area fished indicating that, in general,

different operators expended similar effort in

proportion to the area sampled using these

methods (Fig. 2; R2�0.48).
The distance at which maximum species

richness was detected varied substantially

between different streams. In some streams,

full reach-scale species detection was achieved
within 15m, whereas in other streams addi-

tional species were still being detected

beyond 100m (Fig. 3). Irrespective of location

or stream size, however, the likelihood of

detecting new species within any reach declined

markedly beyond 120m. Of the 17 sites that

were sampled beyond 150m, additional species

were only recorded at two sites (12%) where a
single additional species was detected in each

case (Fig. 3).
Reach-scale fish community richness for

stream area sampled was also investigated

(Fig. 4). Although a weak positive relationship

was evident (i.e. greater richness tended to

be detected if a larger area was sampled

R2�0.22), length fished appeared to be a

more accurate predictor of species detection
than area sampled.

Discussion

Meaningful estimates of fish species richness in
streams can be only be achieved if the length
of each stream segment sampled approaches
or exceeds the length at which the cumula-
tive species number becomes asymptotic
(Lyons 1992; Paller 1995; Blocksom et al.
2009). If the primary goal of the monitoring is
to report on reach-scale diversity in wadeable
New Zealand streams, our data indicate that
single pass electrofishing of at least 150m is
likely to be required to be confident of
detecting �90% of the species likely to be
present. The asymptotic pattern describing
accumulation of species richness for distance
sampled was generally consistent across sites
irrespective of stream channel width (up to
12.7m). This pattern suggests a standard
minimum reach length is appropriate for fish

Table 2 Range, mean and standard deviation of fish diversity for each of the five regions sampled.

Auckland (12) Waikato (39) Manawatu (4) Wellington (4) Otago (14)

Range 2�5 1�9 2�9 3�4 1�8
Mean 3.42 5 5 3.25 3.29
SD 1.08 2.11 2.94 0.5 2.13

Numbers in brackets refer to the number of sites sampled within each region.

Fig. 2 Relationship between shock time and area
fished for 73 sites across New Zealand. A positive
linear trend indicates that irrespective of operator
that effort expended was generally proportional to
the area fished.
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biomonitoring in New Zealand wadeable

streams where the fauna is substantially less

diverse than Northern Hemisphere countries

(McDowall 1990). Our data indicated little or

no increase in reach scale richness with sam-

pling lengths greater than this (up to 345m). In

accordance with other studies (e.g. Lyons 1992;

Angermeier & Smogor 1995), our results
showed that rates of species accumulation
varied among streams. Others have indicated
that this variability is a function of probability
of individual capture, which is influenced by
sampling method, fish size, local physical
habitat conditions and number of individuals
present in a given area (Bayley & Peterson
2001). Consequently, no single method can
meet every need, and comparing relative results
within reaches over time, rather than between
reaches, is likely to be more appropriate and
informative.
Some species in New Zealand often respond

better to capture after one or more electrofish-
ing passes (e.g. eels and lamprey, particularly
juveniles) or are easier to detect with other
methods when present but in low densities (e.g.
spotlighting of kokopu species, B. David,
unpublished data). Although our data for
reach-scale richness were close to asymptotic
by 150m, the possibility that not all species
may have been detected at every reach cannot
be discounted. Nevertheless, with the metho-
dology employed, and the wide range of
streams sampled (excluding large braided river
systems), additional species detection beyond
this distance in other comparable streams is
likely to be low.
Because many of New Zealand’s native fish

species have evolved to occupy and utilise
specific habitats (McDowall 1990), our reason-
ing for low species detection beyond 150m is
that the majority of general habitat unit types
available to fish at the reach-scale (e.g. pool,
riffle, run, backwaters, rapids, woody debris
etc.) were more than likely sampled within
this distance (authors’ personal observation).
A distance of 100�150m is generally consistent
with other standardised biological and physical
reach-scale assessments in New Zealand wade-
able streams (e.g. Macroinvertebrate sampling
protocols; Stark et al. 2001; Collier & Kelly
2005; Standard Habitat Assessment Protocols;
Harding et al. 2009). Data held in the NZFFD
indicate that 45m is the average length of
stream sampled by single-pass backpack

Fig. 3 Species richness index curve (species accumu-
lation standardised to a common value of between
0 and 1 for every 15m sampled, 1�100% of the
richness detected for the total distance sampled).
Data points up to 150m (dashed line) are means
derived from n�73 sites across New Zealand.
Numbers to the right of the dashed line represent
the number of sites where more than 150m was
sampled. Likelihood of detecting previously unde-
tected species becomes lower with increasing stream
distance sampled. Error bars are expressed as (91
SD around the mean).

Fig. 4 Relationship between fish species diversity
and area at which maximum species was detected
for 73 sites across New Zealand. A weak positive
relationship is evident.

Robust assessment of reach-scale fish community diversity 183

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
W
a
i
k
a
t
o
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
2
:
5
6
 
2
9
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



electrofishing with less than 10% of entries

indicating a sampling distance of 100m or

more. Consequently we caution that reach-scale

community richness (as is often inferred from

presence�absence records in the NZFFD)

may be underrepresented at many localities

(particularly where short distances have been

fished), simply because sufficient habitat may

not have been sampled.
We consider the additional investment of

time to sample a longer reach is justifiable

particularly at previously unsampled localities

and when assessing long-term changes to fish

communities. Knowledge of how variable

the species richness and abundance of fish

communities are over time (at the reach-scale)

is virtually non-existent in New Zealand. An

important consideration to obtain these data is

to ensure that sample reaches are of sufficient

length to encompass the range and frequency

of physical processes shaping local habitat

(Reid et al. 2008). As with any assessment of

the state of biotic communities, a core set of

reference sites should be monitored to evaluate

natural variability of fish metrics against the

variability caused by human induced stressors.

Additionally, caution needs to be exercised

when calculating fish densities after bed-

moving flows, which may disrupt habitat and

influence catchability of fish. For SoE sampling

we recommend sampling is conducted during

warmer seasonal months (early December to

late April) when fish are most active and that

a stand-down period should be considered

following any bed moving flow to allow faunal

recovery (e.g. Collier and Kelly 2005; David &

Hamer 2010).
Where possible, information from these

methods would be greatly enhanced by

the compilation of other biotic and abiotic

information collected using other standard

procedures such as macro-invertebrate proto-

cols (e.g. Stark et al. 2001; Collier 2008, 2009)

and the Stream Habitat Assessment Protocols

(SHAP) for wadeable rivers and streams of

New Zealand (Harding et al. 2009).

Various extensions to the method used here
are possible depending on the purpose of the
investigation. For instance, better estimates of
fish abundance could be examined by under-
taking multiple pass depletion within a number
of subreaches within a reach. Additionally, if
detailed information on recruitment potential
of fish is of interest, more detailed information
on their size structure could be recorded for
specific reaches. As a minimum, the EMAP
methods (as followed in this investigation)
typically record the maximum and minimum
size range for individual species as opposed to
measuring all fish. As part of a separate but
related study, we are using the same methodo-
logical framework and datasheets to investigate
and compare the use of spotlighting as a
less invasive and more effective method for
detecting species known to respond poorly to
electrofishing.

Conclusions

Our results suggest that sampling at least 150m
of stream (irrespective of width up to 12.7 m)
is required to confidently establish reach-scale
fish species richness in New Zealand wadeable
streams using one pass backpack electrofishing.
Reduced sampling effort in terms of length can
greatly increase the likelihood of not detecting
species that may be present at the reach-scale,
and sampling more may result in substantially
greater effort for little gain. Based on the use of
these methods in New Zealand, each site should
take on average about 2�3 h to complete using
the minimum sampling requirements but may
take longer particularly in wider streams and
if high densities of fish are encountered.
With sufficient national coverage, use of a
consistent and comparable method will enable
a more realistic assessment of the state of fish
communities across New Zealand. In time,
identification of any trends (e.g. local or
national recruitment failure/decline) should be
possible at relevant spatial and temporal scales,
particularly if repeated annual sampling were to
occur in conjunction with a core set of national
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‘reference’ sites. It is also likely that emerging
data will assist in the ongoing development of
useful metrics to evaluate current and future
impacts on fish in New Zealand wadeable
streams.
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