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ABSTRACT 

Biopolymers have become suitable alternatives to petro-chemical polymers as 

they can biodegrade and are considered environmentally friendly. Novatein 

Thermoplastic Protein (NTP) is a newly developed plastic material using bovine 

bloodmeal. Knowledge of the rheology of NTP is required to assess processability 

and to optimise process design. The objective of this research was to use capillary 

rheometry and batch mixing to determine the rheology and processing behaviour 

of NTP. These were evaluated at constant plasticiser content, but using three 

different ratios of water to plasticiser (triethylene glycol, TEG). Each of these was 

evaluated at 115, 120 and 125 °C.  

It was shown that NTP is a non-Newtonian, shear thinning fluid with similar 

behaviour compared to linear low density polyethylene. It was found that 

viscosity is highly dependent on water content; decreasing with increasing water 

content.  At a shear rate of 15 s
-1

, the apparent viscosity for the standard 

formulation (60 parts water per hundred parts bloodmeal) was 2000 Pa.s 

compared to 7000 Pa.s for the formulation containing 30 parts water [water (30) : 

TEG (30)], measured at 115 °C.  

Viscosity decreased slightly with increasing temperature and the degree of non-

Newtonian behaviour was mostly unaffected by temperature. The flow behaviour 

index, n, was found to be in the range 0.11 to 0.17, with no discernable 

temperature dependence. In the standard formulation, the total amount of 

plasticiser and ratio water to TEG was higher, which resulted in different flow 

behaviour with respect to temperature.   
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Batch mixing was used to determine the processing window (∆t) by monitoring 

torque changes over time during mixing. Processing window for standard NTP 

decreased from 260 to 220 seconds when the mixing speed was increased from 75 

to 95 RPM.  

The processing window was shortened with reducing water content or an increase 

in temperature. At 125 °C and 95 RPM the processing window was only 67 

seconds for the formulation with 30 parts water and 30 parts TEG.  It was 

concluded that crosslinking was accelerated with an increase in shear and 

temperature or a reduction in moisture content.  Thermal or mechanical energy 

activates crosslinking, while water plasticises the polymer which decreases the 

rate of crosslinking.   

Processing NTP required a delicate balance of supplying enough mechanical and 

thermal energy for chain rearrangement and consolidation, but preventing fast 

crosslinking. Crosslinking can be retarded using larger amounts of water, but 

excessive water may lead to problems after product moulding. Replacing water 

with TEG does not prevent crosslinking, but does lower the apparent viscosity 

during processing.  
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2. CHAPTER 1: INTRODUCTION  

Polymers are very important for everyday life. Petroleum based polymers are 

most popular, widely used and commercially successful, owing to their excellent 

mechanical properties, durability, low cost and ease of processing. The major 

problem with many petroleum based polymers is their inability to degrade 

biologically, which harms the environment. In addition, there are limited 

petroleum resources available [1]. Due to these reasons biologically degradable 

and modified polymers from renewable resources (biopolymers) may be better 

alternatives. Among these, protein polymers have received greater attention 

during last couple of decades. Chemical and biological researchers are making 

rapid progress in the design and synthesis of protein plastics. Advances in 

polymer chemistry and bioengineering are converging towards the creation of 

useful bioinspired plastic materials with defined properties [2; 3]. Most of all, 

protein polymers are cost effective while meeting most of thermoplastic properties 

with degradability. 

A challenge with protein polymers is to make them more processable since they 

have a complicated intermolecular structure. Processability of a material greatly 

depends on its rheology, i.e. flow behaviour [4]. Once the material‟s complete 

flow behaviour is determined, it is possible to control processability and set a 

standard operating procedure. For Newtonian fluids viscosity is independent of 

shear rate and time, whereas for non-Newtonian fluids viscosity it is dependent on 

shear rate and time. Proteins are typically non-Newtonian and shear thinning 

fluids. 
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Novatein Thermoplastic Protein (NTP) is a newly developed material by Novatein 

Bioplastic Technologies in Hamilton, New Zealand. The material is produced 

from bovine blood protein, which is a co-product of animal processing and most 

of its properties and applications and usages are unknown. Earlier studies 

focussed on optimising its formulation for mechanical properties and processing. 

It was demonstrated that the material could be extruded, injection moulded and 

compression moulded [5; 6; 7].  

The main objective of this research was to understand and analyse the rheology of 

NTP. It will be assessed using capillary rheometry utilising combinations of water 

and plasticisers at different temperatures. Three formulations were considered in 

which the total amount of plasticiser was kept constant, but the ratio of plasticiser 

to water was varied. 

Crosslinking time with respect to temperature and shear rate was assessed by 

monitoring torque changes during batch mixing to establish an appropriate 

processing window for NTP production. Viscosity data and results from batch 

mixer experiments can be used for further optimising process parameters during 

extrusion and injection moulding [8; 9]. 
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2. CHAPTER 2: LITERATURE REVIEW 

2.1 POLYMERS 

Polymers are macromolecules formed by small monomers. There are two major 

types of polymers, synthetic (non-biodegradable) and natural polymers; a basic 

classification is shown in Figure 1.  

 

Figure 1: Classification of polymers [6; 10; 11] 
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Protein polymers, structure and property relationship 

Protein polymers are natural polymers which can be obtained from plant and 

animal sources. Proteins can be a replacement for some petroleum-based 

polymers if they have the required physical and mechanical properties. Proteins 

are polymers consisting of 20 different amino acid monomers forming a 

polypeptide chain. It has four levels of structure; primary, secondary, tertiary and 

quaternary. A protein based material could be defined as a three-dimensional 

macromolecular network stabilised and strengthened by hydrogen bonds, 

hydrophobic interaction and covalent crosslinks [7].  

Protein denaturation 

Protein denaturation is important phenomena in protein processing which may 

lead to structural changes, thereby changes in processability. 

During extrusion, proteins are denatured and transformed into a molten state. 

Denaturation is unique property of proteins and can be defined as the modification 

of secondary, tertiary or quaternary structures (Figure 2) of a protein molecule. 

The processability depends on the molecular mass and viscosity within the range 

of processing temperatures [5].  
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Figure 2: Protein structure [12] 

The complex structure of the proteins makes it difficult to process them 

thermoplastically. The properties of a material greatly depend on it internal 

structure and molecular interactions. Since proteins have intricate chemical 

structures, improving its physical and mechanical properties are challenging. A 

basic key to improve the properties of protein polymers is to analyse and 

understand their processing characteristics, i.e. flowability and rheology. 

Rheology details are discussed in the following sections [10; 13]. 

Some protein sources that have been used to make thermoplastics are listed in 

Table 1. 
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Table 1: Some protein used as thermoplastics 

Protein Reference 

Corn Gluten polymers 

 

 

 

 

[10] 

[10] 

 

Collagen-based materials [10] 

Egg albumin [10] 

Peanut protein based polymers [10] 

Corn zein polymers [14; 15] 

Caseins [16] 

Fish protein [17] 

Keratin polymers [18] 

Soy protein polymers [19; 20] 

Whey protein polymers [21] 

Wheat Gluten polymers [22; 23] 

Blood protein polymers [5; 24] 

Feathermeal [25] 

Starch [26] 

Sunflower based protein [27] 

Oats protein [28] 

2.2 POLYMER PROCESSING 

Extrusion, injection moulding and compression moulding are common methods to 

produce consumer products from plastics. Almost all thermoplastics have to be 

processed by extrusion at some stage of commercial manufacture. To improve the 

processing efficiency, understanding the flow behaviour of the material is very 

important. In principle, extrusion encompasses forcing a molten polymer through 

a shaped die by means of pressure at elevated temperature [29; 30]. Conventional 

processing methods are described below. 
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Extrusion 

During extrusion, raw thermoplastic material in the form of small beads is gravity 

fed from a top mounted hopper into the barrel of the extruder. The material enters 

through the feed throat and comes into contact with the screw. The rotating screw 

forces the plastic beads forward into the barrel which is heated to the desired melt 

temperature. In most processes, a heating profile is set for the barrel in which 

independent controlled heater zones gradually increase the temperature of the 

barrel from the rear to the front. This allows the plastic beads to melt gradually as 

they are pushed through the barrel and lowers the risk of overheating which may 

cause degradation of the polymer. Extra heat is generated by the intense pressure 

and friction inside the barrel [29]. The typical extruder design is shown in Figure 

3. 

 

Figure 3: Extruder configuration [30] 

 

http://en.wikipedia.org/wiki/Thermoplastic
http://en.wikipedia.org/wiki/Hopper
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Injection moulding 

One of the common methods of shaping polymer is injection moulding. An 

injection moulding machine comprises four zones: feed zone, heating zone, 

injection zone and moulding zone, which are referred in Figure 4. 

The mould has two halves, a fixed half and a moving half. The moving half is 

attached to the moving platen where as the fixed half is attached to the stationary 

platen (Figure 5A). A typical laboratory injection moulding machine is shown in 

Figure 5B. 

 

Figure 4: Injection moulding units [30] 

Material is fed to the machine through a hopper. Colorants are usually fed to the 

machine directly after the hopper.  Polymer enters the injection barrel by gravity 

through the feed throat. Upon entrance into the barrel, the polymer is heated to the 

appropriate melting temperature. The polymer is injected into the mould by a 

reciprocating screw or a ram injector. The reciprocating screw offers the 

advantage of being able to inject a smaller percentage of the total shot. Finally the 

material is ejected after cooling [31; 32; 33].  
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Figure 5: A) Injection mould halves [33] B) a laboratory injection moulding machine  

Compression moulding 

Compression moulding is another widely used manufacturing method. 

Compression moulding equipment consists of a matched mould, a heat source, 

and some method of exerting force on the mould halves. The polymeric material 

is placed between the mould halves, compressed under heat and then cooled. The 

compression pressure can be varied as required. Typically, compression is 

produced by a hydraulic ram. For severe moulding conditions, moulds are usually 

made of various grades of tool steel [30; 31; 34]. The typical design of the 

machine and technique are shown in Figure 6. 

           

Figure 6: Compression moulding machine and technique [30; 35] 

(A) (B) 
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Viscosity and polymer processing 

Polymer viscosity has great implications in polymer processing. Melt viscosity is 

important for efficient machine, mould and die designs [36]. Typical shear rates 

differ for each processing method and conditions. A few typical processes are 

shown in Table 2. High rates of shear are not necessarily involved in high 

processing speeds (high volume throughput). The viscosity of a polymer system is 

reliant on the processing method and is not constant; the apparent viscosity 

depends on shear rate and will be further discussed in Section 2.3.  

Table 2: Viscosity ranges for different processes [30] 

Process Shear rate (s
-1

) 

Compression moulding 1 - 10 

Calendaring 10 - 100 

Extrusion 100 - 1000 

Injection moulding 1000 – 10
5
 

Reverse roll coating 3 x 10
3
 

 

2.3 RHEOLOY FUNDAMENTALS 

Rheology is the study of flow and deformation of a material and how that flow is 

affected by stress, strain and time. The term „rheo‟ means „to flow‟ [37]. 

2.3.1 Viscosity 

A basic definition of viscosity is a material‟s resistance to flow. This is indicative 

of magnitude of forces needed for flow. Flowability or flow behaviour of fluids is 

characterised by the viscosity that describes the internal resistance of the melt to 

an externally acting load.  
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High viscosity of materials requires more energy for processing and flow through 

narrow spaces or tight corners may be difficult. It is important to know how 

viscosity changes with temperature and processing rate for efficient process and 

mould design [38]. 

Consider, a Newtonian fluid, placed between two parallel plates with separation 

distance (H), in which the top plate is moving to the right with constant velocity 

(V). Under steady state conditions, the fluid is subjected to a shear force (F), 

(Figure 7).  

A friction force will develop at the contact surface in the direction opposite to 

motion and movement will be resisted by the viscous reaction in the fluid. This 

viscous reaction is proportional to the material‟s shear viscosity [38]. 

 

Figure 7: Principle of viscosity [8] 

Shear stress can be found from the force, F, acting on the moving plate and its 

area, A.  

Shear stress  τ   
 

 
  Nm

-2
                                                                                   (1) 

The shear rate is found from the velocity „V‟ relative to distance „H‟ (Equation 2). 
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           γ  
 

 
                                                                                            (2)  

Shear rate may be expressed as the velocity gradient in the direction perpendicular 

to the shear force. 

τ    
  

  
                                                                                                               (3) 

Equation (3) states that the shear force per unit area is proportional to the negative 

of the local velocity gradient. This is known as „Newton‟s law of viscosity‟ [39]. 

In the Equation 4, η is the proportionality constant between shear stress and shear 

rate. This proportionality constant is called the viscosity of the fluid. 

τ = ηγ                                                                                                                     (4) 

Typical viscosities for a range of substances are listed in Table 3. 

Table 3: Viscosity ranges for different polymer systems [30] 

Substance or system Viscosity (MPa) Consistency 

Air 10
-5

 Gaseous 

Water 10
-3

 Fluid liquid 

Polymer latex systems 10
-3 

- 10
-1

 Liquid 

Olive oil 10
-1

 Liquid 

Paints 10
-2

 - 10
-1

 Creamy 

PVX plastisols 1-3 x 10
-1

 Paint-like 

Glycerol 10 Thick 

Resins for resin/glass 50 Syrup 

Golden syrup 10
3
 Syrup 

Liquid polyurethanes 10
2
 – 10

3
 Syrup 

Polymer melts 10
2 
– 10

6
 Toffee 

Rubber before cure 10
2
 – 10

6
 Stiff plasticine 

SMC, DMC (moulding 

compounds) 
10

2
 Dough 

Pitch 10
9
 Flowing solid 

Glass 10
21

 Rigid solid 
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Tensile viscosity 

Sometimes polymer materials are deformed not in shear, but in tension, such as in 

blow moulding of plastic bottles. For these situations, the tensile viscosity is 

defined as [30]: 

                       
                 

                       
                                                                         

2.3.2 Newtonian and non-Newtonian behaviour 

It was shown in the previous section that for a flowing fluid the shear stress is 

proportional to the shear rate. When this relationship is linear, the fluid is called a 

Newtonian fluid and the viscosity was defined by Equation (4). For a non-

Newtonian fluid, shear stress versus shear rate is non-linear where the apparent 

viscosity is not constant at a given temperature and pressure but it is dependent on 

flow geometry, shear rate and time. 

Apparent viscosity is the ratio of shear stress (τ) and shear rate (γ  as given by 

Equation (6): 

                    η   
             τ 

            γ 
 

                             η    
τ 

γ
                                                                          (6) 

The flow behaviour of most thermoplastics does not follow Newton‟s law of 

viscosity. These materials are conventionally grouped into three types: 

 Fluids whose properties are not reliant on time under shear are called 

„time-independent fluids‟. 
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 Fluids whose properties are time dependent under constant shear are called 

„time-dependent fluids‟. 

 Fluids exhibiting characteristics of both ideal fluid and elastic solids and 

showing partial elastic recovery, after deformation are categorised as 

„visco-elastic fluids‟ [36; 39]. 

2.3.3 Time-independent behaviour 

For time-independent fluids, viscosity is not a function of time, but dependent on 

the shear rate. Most complex substances, like polymers, are likely non-Newtonian, 

for which viscosity is not constant and the flow behaviour must be characterised 

by measurements of apparent viscosity at different shear rates. 

These fluids are further divided into three classes: 

 Shear thinning or pseudoplastic 

 Shear thickening or dilatant 

 Visco-plastic 

Shear thinning or pseudoplastic 

The most common type of time-independent non-Newtonian fluid behaviour 

observed is pseudo-plasticity or shear–thinning, characterised by an apparent 

viscosity which decreases with increasing shear rate (Figure 8). 
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Figure 8: Viscosity vs. shear rate and shear stress vs. shear rate (Shear thinning)  

Both at very low and at very high shear rates, most shear-thinning polymer 

solutions and melts exhibit Newtonian behaviour, as shown in Figure 9 [38]. 

 

Figure 9: Viscosity regions for a shear thinning fluid [40] 

Shear thickening or dilatant fluids 

Dilatant fluids are similar to pseudoplastic systems, but their apparent viscosity 

increases with increasing shear rate. This type of fluid behaviour was originally 

observed in concentrated suspensions [30; 36]. A typical shear rate vs. shear stress 

diagram is shown in Figure 10. 
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Figure 10: Viscosity vs. shear rate and shear stress vs. shear rate (Shear thickening) 

Visco-plastic  

This type of fluids behaviour is characterised by the existence of a yield stress (τ0) 

which must be exceeded before the fluid will deform of flow [11]. This kind of 

material will deform elastically when the externally applied stress is smaller than 

the yield stress. These materials also called Bingham plastics and its flow curve is 

shown in Figure 11. 

 

Figure 11 Bingham or viscoplastic behaviour [37] 
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2.3.4 Time- dependent behaviour 

In practice, apparent viscosities may not only depend on the rate of shear, but also 

on the time the fluid has been subjected to shear [36]. These are further classified 

as thixotropic and rheopectic fluids. 

Thixotropic fluids 

A material is said to exhibit thixotropy if, when it is sheared at a constant rate, its 

apparent viscosity (or equivalent shear stress) decreases with time. 

Rheopectic fluids  

The relatively few fluids for which the apparent viscosity increases with time of 

shearing are said to display rheopexy or negative thixotropy. Figure 12 shows 

typical representation of time-dependent fluid behaviour [41]. 

 

Figure 12: Viscosity vs. time at constant shear rate for rheopectic and thixotropic fluids [41] 

2.3.5 Visco-elastic fluids 

Substances exhibiting characteristics of both ideal fluids and elastic solids and 

showing partial elastic recovery, after deformation, are categorised as visco-elastic 

fluids [36].  
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2.4 RHEOLOGY MEASUREMENT 

The relationship between shear stress and shear rate for describing the flow 

behaviour of a polymer melt can be measured by the following rheometry setups 

[37; 38]: 

 Rotational rheometers 

 Capillary rheometers 

 Falling-sphere viscometers and 

 Extensional rheometers  

2.4.1 Rotational rheometry 

Rotational rheometers generally have two rotational-symmetric components 

mounted on a common axis, with the fluid to be characterised between them. The 

measuring principle of the rotational rheometers is standardised in ISO 3219. For 

determining flow characteristics, there are two ways to make use of the geometry 

on which the rotational rheometers are based: 

 CS-rheometers (CS=Controlled Stress): Shear stress is specified and the 

velocity gradient is determined proportional to viscosity.  

 CR-rheometers (CR=Controlled Rate): Shear rate is specified and the 

resulting shear stress is determined [38]. 

Rotational rheometers are classified based on the geometry of the setup. 

 Cone-plate rheometers 

 Plate-plate rheometers 

 Coaxial cylinder rheometers 
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Cone-plate rheometers 

Cone-plate rheometers consist of a horizontal base plate on which the polymer is 

placed and allowed to reach the required test temperature. The cone, having a 

vertical axis, is lowered into the centre of the polymer melt until its tip just 

contacts the metal plate. The cone is then made to rotate either at fixed torque or 

fixed speed of rotation. The angle, α, that the cone makes with the plate is usually 

less than 5°, to ensure uniform and simple shear (shown in Figure 13).  

 

Figure 13: Cone plate rheometry [36] 

If the rate of rotation of the cone is dθ/dt, and torque ( ), angular speed (Ω), 

aperture (α) and radius of the cone (Rc) are known then shear stress (τ) and shear 

rate (γ) is given by Equations 7, 8 and 9 [37; 38], 

              τ  
 
 θ
  
 

α
  

Ω

α
  (s

-1
)                                                                      (7) 

                
  

    
                                                                (8) 

           η  
     

    Ω
                                                                                    (9) 
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Coaxial cylinder rheometers 

These rheometers involve two coaxial cylinders, the outer one being fixed (vessel 

like), and the inner one being rotated at constant rotational speed, or at constant 

torque. The cylindrical vessel has a radius Ra and the internal cylinder has radius 

Ri. Torque and rotational speed can be related to shear stress and shear rate 

(Method-DIN 53 018).  Shear stress can be generated by rotating either the 

external (Couette type) or the internal (Searle type) cylinder. Schematic 

representation of a coaxial rheometry is shown in Figure 14.  

 

Figure 14: Coaxial (Couette & Searle) type rheometers [38] 

The basic mathematical equations for this rheometry are as follows [38]. The 

known parameters, angular velocity of internal cylinder (Ωi = 0), angular velocity 

of external cylinder (Ωa), radius of both internal and external cylinders and height 

of the cylinder (H) are combined with measured torque (symbols are defined in 

Figure 13): 

              τ  
 

  R2 
                                                                               (10) 
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   (s-1

)                                                   (11) 

           η   
           

    H       Ω
  (Pa.s)                                                  (12) 

Plate-plate rheometers 

These rheometers are characterised by two plane parallel plates with radius R at a 

distance H between them. In this arrangement, the velocity gradient depends on 

the radius of the rotating upper plate and the height of the gap. The shear rate in a 

plate-plate arrangement can be varied by changing the distance between plates or 

the angular velocity over a very large area. In contrast to cone-plate type 

rheometry, the shear rate in plate-plate rheometers varies with varying radii [37]. 

In Figure 15, the equipment is illustrated and parameters are indicated, where   is 

torque, R is the radius of plates, H is the distance between the two plates and Ω is 

the angular velocity.  

 

Figure 15: Plate-plate rheometry [38] 

The equations for the determination of flow properties are: 

              τ  
2г

 R
3 (Pa)                                                                               (13) 
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 Ω

 
 (s-1

)                                                                                   (14) 

           η   
  

 R
4
Ω
 (Pa.s)                                                                              (15) 

2.4.2 Capillary rheometry 

Capillary rheometry is an effective engineering tool for real time viscosity 

measurement and control for polymer melts during processing. Many rheological 

measurements have been made with capillary rheometry as its accuracy is better 

compared to cone-plate and strain controlled rheometric techniques. Moreover, 

capillary rheometry can predict sensitive changes in viscosity through temperature 

and strain changes. 

Capillary rheometers can be divided into the following types:  

1. Low pressure capillary rheometers. 

 Ostwald type 

 Ubbelohde type 

 Cannon-Fenske type 

2. High pressure capillary rheometers  

 Intermittent (Cylinder-Piston system) with variable piston force 

 Intermittent (Cylinder-Piston system) with variable piston speed 

 Continuous (Cylinder-Screw system) [38]. 

This study focussed a high pressure capillary type which is most relevant to 

polymer melts. 
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Screw driven capillary rheometry 

Capillary rheometry is characterised by the fact that the fluid to be investigated 

flows through a capillary having circular cross section, a heating barrel (cylinder) 

to heat the polymer and a piston or plunger to push the polymer melt through the 

capillary. Capillary rheometers can be used with low or high viscosity polymer 

melts, solutions or dispersions [42; 43].  

A screw driven capillary rheometry can either be a single or twin screw extruder. 

The reservoir or barrel is connected to heating elements for temperature control. 

At the die, a removable capillary is fixed. A pressure sensor is mounted at the 

entrance of the die, in order to calculate the pressure drop across the capillary 

[19]. Volumetric flow rate (Q) can easily be varied by varying the RPM. A typical 

laboratory capillary rheometry is shown in Figure 16. 

 

Figure 16: Capillary rheometer 

When pressure (P) is applied to the polymer melt at the entrance of the capillary, 

there will be an energy loss (owing to friction) while the melt travels through the 

capillary length (L) (Figure 17). The frictional energy loss is directly proportional 
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to the viscosity of the fluid. By the time the end of the capillary has been reached, 

the pressure corresponds to atmospheric pressure. Viscosity can be determined if 

pressure drop, length, radius of the capillary and volumetric flow rate are known 

[38].  

 

Figure 17: Mechanism of capillary rheometry [37] 

Advantages of capillary rheometry [22; 44; 45] 

 Low cost 

 Accurate prediction of viscosity 

 Simple configuration 

 Easy to relate results to the properties of the studied material 

 Suitable for operation at high temperature 

 Suitable for polymer melts  
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Shear rate, shear stress and apparent viscosity 

The main objective in rheometry is to measure the relationship between the 

applied force and flow rate for a given polymer melt at the required temperature. 

These measurements provide data for design of standard operating procedures 

during processing and may also describe a fundamental property of the polymer 

which may relate to its macromolecular structure [46].  

Assuming, no end effects at the capillary die, shear rate and shear stress for fully 

developed Newtonian flow could be calculated as [38; 47]: 

              τ    
     

    
 

                             
            

      
  

                      τ   
    

  
                                                                                 (16) 

Where; 

R→ Radius of the capillary (mm) 

L→ Length of the capillary (mm) 

∆P → Pressure drop (Pa) 

(∆P) = (Pressure at exit – Pressure at entrance) 

Hence, ∆P = P2-P1 (Pressure at exit corresponds to atmospheric pressure) 

If the velocity distribution is fully developed and parabolic (Figure 18), the shear 

rate can be calculated by Equation 17 [48], 

                
  

    
                                                                                    (17) 
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Where;  

Q→ Volumetric flow rate (mm
3
/sec) 

 R→ Radius of the capillary (mm) 

In Figure 18, the region of flow in which the effects of the viscous shear forces 

caused by fluid viscosity are manifested is called the “velocity boundary layer or 

boundary layer”. These layers also cause the fluid particles in the adjacent layers 

to slow down gradually as a result of friction. The initial region at the entrance is 

called “irrotational flow” [42]. 

The region from the pipe inlet to the point at which the boundary layer merges at 

the centreline is called the “hydrodynamic entrance region”. The region beyond 

the entrance region in which the velocity profile is fully developed and remains 

unchanged is called the hydrodynamically fully developed region [36].  

 

Figure 18: Development of the boundary layer and velocity profile for laminar flow in the 

entrance region of a pipe [36; 42] 

Knowing the shear rate and shear stress, the apparent viscosity (η) for non-

Newtonian fluids can be calculated using Equation (18).  
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                                                         (18) 

                                  
  

 
          

                                  = 
            

           
 

                                η = 
          

     
      

The above equation forms the basis of capillary rheometry, which is known as the 

Hagen Poiseuille‟s equation for determining viscosity of a fluid when channel 

dimensions are known [36; 38; 39].  

The apparent shear viscosity (η) of a non-Newtonian fluid can also be described 

as a function of the shear rate in terms of a power law model: 

ηa = K γa
n-1 

                                                                                                        (19) 

or shear stress as a function of shear rate: 

τa = K γa
n
                                                                                                            (20) 

Usually the Power law model is expressing in logarithmic form as [51]: 

Log ηa = n Log γa + Log K                                                                                  (21) 

Where; 

K→ Flow consistency index. 

n→ Flow behaviour index (n=1 for Newtonian and n<1 for non-Newtonian)  
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Exit and entrance effects   

Exit and entrance effects are consequences of the fact that near the entry to the 

capillary tube, the flow is not fully developed and the pressure drop is increased. 

The magnitude is dependent on the type of non-Newtonian fluid [36]. According 

to Bagley [49], there will be some energy loss when a polymer melt is forced from 

large extruder or barrel diameter to a relatively small diameter of the capillary. 

This makes it difficult to measure true shear rate and true viscosity. The pressure 

drop occurs at the entrance to the capillary section mainly because the cross 

section of a capillary is generally much smaller than that of a reservoir [50; 51], 

which is illustrated in Figure 19.  These effects also depend on length of the 

capillary. However, the contribution to the exit effect is usually negligible as long 

as the length-to-radius ratio (L/R) of the capillary of the order 100-120. 

There are three types of corrections used in capillary rheometry: 

 Bagley correction corrects entrance and exit effects by compensating 

energy losses 

 Rabinowitsch correction corrects shear rate at the wall 

 Mooney analysis corrects shear rate as a result of wall slip  
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Figure 19: Flow effects in capillary [52] 

Energy losses can be corrected by the following procedures proposed by Bagley 

and Rabinowitsch [19; 49]. For non-Newtonian fluids those corrections can be 

applied if they obey the power law model for apparent viscosity [19; 47; 53].  

The Bagley correction predicts an effective shear stress by assuming an effective 

capillary length, (L+λR), greater than the actual capillary length. The greater or 

extra length corresponds to the overall energy loss at the entrance of the capillary 

when calculating pressure drop (∆P) (Figure 20). Hence, measurements using 

more than two capillary lengths should be made. 
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Figure 20: Pressure drop for capillary rheometry 

The true shear stress can then be calculated from the Equation 22 as, 

        
   

   
 

 
    

                                                                                            (22) 

At a constant shear rate the pressure drop (∆P) required to produce this shear rate 

should be a linear function of length to radius (L/R). By extrapolating to ∆P = 0, 

the value of „λ‟ can be obtained from the slope at the particular shear rate [49; 54; 

55].  

Rabinowitsch has proposed a correction to account for the error between the 

apparent shear rate, i.e. shear rate obtained from experimental observation and the 

true shear rate. The power law model is used to determine the flow behaviour 

index „n‟, which is then used to correct the experimental shear rate values using 

Equation 23. The equation is called the Rabinowitsch correction [19].  

        
    
  

                                                                                                                              (23) 

Where; 

γtrue = True shear rate 

γapparent = Shear rate from experimental observation 
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n = Flow behaviour index, calculated from power law model (Equation 21)  

In capillary rheometry, homogeneous shear is difficult to achieve due to wall slip. 

Wall slip occurs due to flow instabilities that lead to distortions at wall surface 

and it reduces shear rate at the wall. Prior studies linked these instabilities to slip 

of the polymer melt relative to the solid surfaces of the extruder. This leads to 

velocity profile rearrangement, thereby errors in interpreting experimental 

measurements may occur.  

In capillary rheology, wall slip is likely to give rise to a situation when the data 

for wall shear stress (τw) and wall shear rate (γw = V/R) obtained with capillaries 

of different diameters appear to be inconsistent even after the results have been 

corrected for all other known effects. Wall shear rate is a function of wall shear 

stress and it is given by: 

 
 

  
 

 

  
 

    

   
 

 

     
   
                                                                            (24) 

Where; 

Q→ Volumetric flow rate 

τw→ Wall shear stress 

V→ Actual velocity 

Vs→ Slip velocity 

R→ Radius of the capillary 

It is customary to quantify the effect of wall slip by assuming a slip velocity, Vs at 

the wall (Figure 21). Slip velocity can be obtained from the slope of (V/R) versus 

(1/R) for different capillary diameters. This implies that at the wall of the channel 
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fluid velocity Vz = Vs. Finally, wall shear rate can be calculated from Equation 

(26). This analysis is called Mooney analysis [52; 56; 57; 58; 59; 60]. 

 wall  
       

 
                                                                                        (25) 

Where; 

V→ Velocity without slip 

Vs→ Velocity with slip 

 

Figure 21: Mooney Analysis A) without slip B) with slip [36; 52] 

Dissipative heating  

Melt flow in a capillary leads to dissipative heating (due to friction), which is 

proportional to the local shear stress and the square of shear rate. Dissipative 

heating causes small changes in flow properties of plastic materials, hence, extra 

care should be taken to balance heat input to output. Therefore it is important to 

keep the temperature profile constant in a particular temperature range [56; 61].  
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2.5 RHEOLOGY OF PROTEIN BASED BIOPLASTICS  

During the past few decades, efforts have been made around the world in the 

development of protein based bioplastics from renewable resources including 

plant and animal by-products. Proteins are natural polymers and are hard to 

process and convert into shaped articles. Improving processability is a challenge 

which requires an understanding of protein rheology.  

The rheological behaviour of some common synthetic polymers is shown in 

Figure 22, to serve as a comparison to some protein based thermoplastics, 

discussed later. 

 

Figure 22: Apparent viscosity vs. shear rate for some common polymers [30] 

2.5.1 Protein rheology and processing 

Viscosity of soy protein plastics was determined using screw driven capillary 

rheometry [19]. In Figure 23 and Figure 24, the apparent viscosity is shown with 

respect to temperature and different additives. From these diagrams it can be 

observed that soy protein blended with corn starch exhibited shear thinning 

behaviour and the viscosity reduced with an increase in temperature. The material 
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showed similar behaviour for the different compositions tested, such as the 

addition of Na2 So3, and titanate.  Soy protein without sodium sulfite (reducing 

agent) had comparatively higher viscosity than other compositions.  The baseline 

composition had the lowest viscosity compared to high and low SPI to starch ratio 

blends. The compositions tested to analyse viscosity changes are listed in Table 4. 

Table 4: Components of five different formulation of soy protein studied [19] 

Batch label 
Parts by weight (dry basis) 

SPI:Corn starch Sodium sulfite Titanate 

Baseline 1.5 1.4 0 

High SPI:CS 4 1.4 0 

Low SPI:CS 0.667 1.4 0 

No Na2 So3 1.5 0 0 

Titanate 1.5 1.4 0.3 

 

  

Figure 23: Comparison of soy protein viscosity           Figure 24: Viscosity of soy protein                                   

with other material [19]                         plastic and at different temperatures [19]                   

In another study, the rheological behaviour of gluten based bioplastics was 

determined using torque rheometry. The amount of water absorption by the 

protein depended on the nature of plasticisers and operating conditions. It was 
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shown that gluten bioplastics exhibited linear-visco-elastic behaviour when 

prepared by compression moulding. It was found that temperature greatly affected 

flowability and mechanical properties of the material [62]. Since proteins absorb 

water which leads to lower mechanical and physical properties after processing, it 

was found that choosing a appropriate plasticiser was important to reduce water 

content which may improve their mechanical properties during and after 

processing.  

Rheology of whey protein isolated (WPI) and modified pectin complexes were 

determined by controlled strain rheometry [39]. Shear thinning behaviour was 

observed and a clear influence of particle size on rheology of samples during 

steady shear analysis was noticed, with the suspensions composed of the smaller 

diameter particles having the highest viscosity (Figure 25). It was also shown that 

altering the pH of the system will alter the flow properties [21].  

 

Figure 25: Viscosity of WPI with different particle sizes [21] 

A rheomax single screw extruder equipped with a capillary die with L/D ratio of 

10 and a diameter of 10 mm was used to measure the viscosity of sunflower 

protein isolate (SFPI). Trials were conducted at two different die temperatures. 
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The screw speed (RPM) ranged from 20 to 200 and the resulted shear rate was 

between 20- 150 s
-1 

[27]. In Figure 26 viscosity changes of SFPI with respect to 

temperature are shown. 

 

Figure 26: Apparent Viscosity vs. Shear rate for Sunflower Protein Isolate [27] 

The effect moisture content, plasticiser content, temperature and addition of a 

reducing agent on the rheological behaviour of SFPI were investigated. Figure 27 

shows the rheological behaviour of SFPI/glycerol/water mixtures at different 

ratios. It was shown that SFPI exhibited thermoplastic behaviour and is suitable 

for convention manufacturing processes, like injection moulding and extrusion 

[27]. Higher glycerol and water content had relatively lower viscosity and higher 

temperature reduced the viscosity of the polymer system. 

 

Figure 27: Effect of plasticisers (SFPI/glycerol/water) [27] 
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A study on rheology of soy protein blends used a Haake torque rheometry and 

high pressure capillary rheometry for viscosity measurement. The flowability of 

the soy protein was found to increase greatly when blended with poly (butylene 

succinate). Enhanced compatibility facilitated flow behaviour of soy protein. It 

was said that stronger molecular interaction should lead to better processability 

[9]. In Figure 28, viscosities at various temperatures for soy protein isolate (SPI) 

and soy protein isolate/poly (bultylene) succinate (SPI/PBS) are shown.  

 

Figure 28: Effect of temperature on (a) SPI (b) SPI/PBS [28] 

Rheological measurements of oats protein isolate were carried out by using stain-

controlled fluid rheometry. This study was conducted in an enclosed chamber to 

avoid moisture loss. The measurement was based on storage modulus and loss 

modulus, since the loss modulus represents the dissipative component of 

mechanical properties and is characteristic of viscous flow. The shear rate ranged 

from 0.01 to 300 s
-1

. Prior to rheological experiments, the material was subjected 

to different chemical processes such as acetylation and succinylaion and viscosity 

changes had been analysed. 
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It was found that the material displayed viscoelastic behaviour (non-linear and 

shear thinning) as all moduli curves exhibited a plateau at higher frequency. 

Figure 29 shows viscoelastic behaviour of a) 20% suspension of acetylated oat 

protein crosslinked with transglutaminase, b) 20% suspension of acid precipitated 

oats protein and c) 20% suspension of succinylated oat protein. Crosslinking of 

oats protein isolate appeared to stiffen the backbone of the polymer, reduced their 

mobility and solubility, thus viscosity was higher. The effect of crosslinking 

varied when the material went through different chemical processes [28].  

 

Figure 29:  Non-linear steady shear viscosities for the 20% OPI suspension [28] 

A summary of rheological studies for protein-based polymers are listed in the  

 

Table 5.  
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Table 5: Summary of viscosity measurements for different proteins [16; 19; 22; 27; 62; 28; 64] 

Author Year Material 
Shear rate 

range (s
-1

) 

Temperature 

range (°C) 
Rheometry Type Model Correction 

Hermansson 1975 SPI 0.01-1142 25 Co-Axial 
Power law + yield 

stress 
Not applicable 

Jao, et. al. 1978 Soy flour 50-1000 100-160 
Screw extrusion 

capillary 
Power law 

Bagley + 

Rabinowitsch 

Luxen burg et. al. 1986 
Defatted Soy 

flour 
2-200 25-110 

Piston extrusion 

capillary 

Power + Exponential 

moisture 

Large L/D so end 

effects neglected + 

Rabinowitsch 

Battacharya et. al. 1989 
CGM/SPC 

Blend 
200-7400 145 

Screw extrusion 

capillary 

Power + Exponential 

moisture 

Bagley + 

Rabinowitsch 

Olivr et. al. 2003 
Sunflower 

protein 
1-150 100-150 

Single screw 

extrusion capillary 
Power law Not applicable 

Jerez et. al. 2005 Gluten plastic 10-1000 25-170 Torque rheometry - Not applicable 

Daubert et. al. 2006 Whey protein 2-140 25 Stress Rheometry - Not applicable 

Osswalt et. al. 2008 Soy protein 100-1500 170 
Screw extrusion -

capillary 
Power law 

Bagley + 

Rabinowitsch 

Abdellatif et. al. 2009 Oats protein 0.001-1000 10-42 
Strain controlled 

Cone-Cone 
- Not applicable 
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2.5.2 Effect of processing parameters on viscosity of polymers 

Control of processing parameters is important to ensure a consistent product. The 

most important factors influencing the viscosity of polymers are: molecular mass, 

pressure, filler content, crosslinking, additives, plasticisers, moisture content and 

temperature [65]. The effect of these parameters are summarised in Figure 30. 

 

Figure 30: Influence of increasing various parameters on polymer viscosity [65] 

Molecular mass 

The molecular mass of a polymer is the most important factor affecting rheology. 

For most polymers the zero shear viscosity is approximately proportional to the 

mass-average-molecular mass of (Mm) below the critical molecular mass (Mc) and 

to the power 3.5 at molecular mass above Mc. (Equation 26 and 26a, Figure 31)    

η= K1 Mm    Mm < Mc                                                                                                                                          

and                                                                                                                                                                                   (26) 

η= K2 Mm 
3.5  

  Mm > Mc                                                                                                                                  

A high molecular mass is required to attain good mechanical properties. The 

molecular mass distribution of a polymer also influences its rheology. In general, 
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a broader range leads to a lower shear rate at which shears thinning starts. Highly 

branched polymers also have higher viscosities [37; 46]. 

 

Figure 31: Dependence of polymer viscosity on molecular weight (M) [37] 

Pressure 

While temperature rises at constant pressure cause a decrease in viscosity, 

pressure rises at constant temperature cause an increase in viscosity, because of a 

decrease in free volume (free volume is defined as space between polymer 

molecules [5]). In other words, if the volume is kept constant by increasing 

pressure as temperature is increased, the viscosity also remains constant. It was 

found that within the normal processing temperature range for a polymer it is 

possible to consider an increase in pressure as equivalent, in its effect on 

viscosity, to a decrease in temperature [37]. 

Fillers 

Fillers such carbon black, precipitated silica and calcium carbonates are usually 

added to the polymers during processing having some advantages such as cost 

reduction and control of density but it influences viscosity negatively, i.e. they 
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tend to increase viscosity of polymer systems as contrast to plasticisers [31]. A 

schematic representation of the effect of fillers is shown in Figure 32. 

 

Figure 32: Effect of fillers and plasticisers on viscosity of polymers [66] 

Crosslinking 

The term crosslinking in polymers refers to inter and intra molecular covalent 

crosslinks between functional groups and restrain chain movement [5]. Formation 

of covalent crosslinks in proteins during extrusion may lead to increase in 

viscosity and changes in aggregation and solubility, making processing difficult. 

Furthermore, proteins containing lysine and cysteine amino acids may form 

additional crosslinks and it is necessary to control. Proteins, such as bloodmeal 

and feather keratin contain a large amount of cysteine and lysine [5]. These 

crosslinks can be controlled and cleaved by the addition of reducing agents such 

as sodium sulfite (Na2 So3).   

Moisture content and plasticisers 

Free volume of a polymer increases with increasing temperature, up to a point 

where it has enough space for movement. This point is called as glass transition, 

where large segments of the chain start moving [66]. The Tg signifies a major 
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transition for many polymers, as physical and mechanical properties change 

drastically as the material goes from a glassy to a rubbery state. Tg is useful to 

identify the degree of plasticisation in thermoplastics and also important in terms 

of viscosity measurements. Usually, the Tg must be low to for a polymer to have a 

low viscosity, thereby good flowability. Tg of a material can be analysed using 

different techniques such as, dynamic mechanical analysis (DMA), differential 

scanning calorimeter (DSC) and pulse thermal analysis (PTA) [7]. 

Tg of proteins varies based on protein source, moisture content and additives. 

Water has very low Tg of -135°C which makes it a effective plasticiser during 

extrusion. The effect of moisture content on some protein polymers is listed in 

Table 6 [6; 7; 67]. The effect of moisture content on viscosity is expressed in an 

extended Arrhenius equation (Equation 27). 

To control or reduce Tg in polymers, plasticisers (e.g. glycerol) are added during 

processing [7]. Plasticisers are typically high boiling substances and are good 

solvents for polymers. The chemical structure of a plasticiser also influences its 

efficiency. Features such as polarity, hydrogen bonding capability and density will 

determine how it functions and make a polymer more processable. For protein 

polymers, water is a good plasticiser which greatly increases free volume, thereby 

reducing viscosity and also facilitating the action of other additives [5]. 
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Table 6: Effect of moisture content on Tg for different protein polymers [7] 

Protein 

source 

Glass transition temperature at % water (°C) 
Analysis 

technique 
0 5 10 15 20 25 30 

CGM 178 100 70 55 45 40 30 MDSC 

Zein 139 70 40 10 <0 - - DSC 

Casein 210 140 90 70 50 40 25 

DMTA, 

PTA, 

DSC 

Soya 172 105 80 60 45 35 35 DMA 

Wheat gluten 162 110 65 40 20 18 <18 
MDSC 

[31] 

Another common group of plasticisers for proteins are polyols. Water and polyols 

do not interact with hydrophobic areas in protein chains which enhances the 

tendency to absorb water. Many studies have focussed on finding other 

plasticisers, but they were found to be incompatible with proteins [7].  

Hydrophilic and Hydrophobicity 

Proteins are hydrophilic and are therefore sensitive to water, that is, they tend to 

absorb water and can be water soluble. These terms have much to do with the 

structure of water (Figure 33). Water consists of two hydrogen atoms joined to 

one oxygen atom, all in a triangular pattern and it is polar. The oxygen is 

negatively charged whilst the hydrogen end is positively charged. Thus, water 

molecules are actually attracted to each other and form hydrogen bonds. Proteins 

contain variety of functional groups that can form hydrogen bonds with water and 

makes proteins highly hydrophilic [68; 69]. In addition, polyols such as 

triethylene glycol is also hydrophilic in nature, which makes proteins more water 

sensitive. The structure of TEG is shown in Figure 33. 
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Figure 33: Chemical structure of A) water [70] and B) TEG [71] 

As a result, the mechanical properties and processability of protein polymers are 

highly dependent on water. On the other hand, materials such as polyethylene are 

hydrophobic and are insensitive to water, i.e. they would not absorb water and are 

insoluble in water [13]. 

Temperature 

The viscoelasticity of polymers change with temperature; for protein polymers, 

temperature highly affects protein-protein interactions which will affect their 

viscosity [31]. As temperature increases, both rigidity and yield strength decrease, 

where as elongation generally increases, hence the mobility of the material 

increases [41].  

An Arrhenius relationship (extended with moisture content, Cm) is often used to 

describe the temperature dependence of the viscosity of polymers: 

η = k1γ
n-1 

       
         

                                                                                            (27) 

Where; k1, k2 and k3 are constants, Cm is % moisture and T is temperature (in 

Kelvin) [19]. In Equation (27), when replacing (k1-k2T-k3Cm) with ln K yields the 

standard power law model.  

(B) (A) 
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The WLF equation also explains why viscosity is more temperature sensitive with 

materials processed closer to their Tg. One interpretation of Tg is that it is a 

temperature below which the free volume is too small for significant molecular 

movement while above the Tg, molecules have sufficient energy for movement 

[37] (Figure 34).  

 

 

Figure 34: Free volume-temperature relationship [5] 

Proteins are amorphous polymers and undergo a glass transition similar to 

synthetic polymers. In other words, a larger temperature gap between Tg and the 

operating temperature results in more the free volume available for movement [5]. 

η  
          

          
                                                                                             (28) 

Where, C1 and C2 are material constants [36; 37; 41]. 
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2.6 ASSESSING PROCESSABILITY 

2.6.1 Batch mixing 

Batch mixing is a process of mixing polymers by the action of shear in which they 

are consolidated and sometimes crosslinked. Batch mixers require a small 

quantity of material and give a preliminary testing analysis of a material.  

Polymer, in powder form, is fed into the heated mixing chamber, in which it gets 

milled by two rotating kneaders at a fixed rotor speed. Torque is recorded as a 

function of time to monitor polymer viscosity. As the time progresses there is 

some volume shrinkage of the material at which torque increases due to steady-

state consolidation, followed by crosslinking or degradation [9]. The following 

stages may occur during mixing (Figure 35): 

i. When the polymer is introduced in the mixing chamber, the solid powder 

offers a certain resistance to the free rotation of the blades and therefore 

the torque increases.  

ii. When the resistance is overcome, the torque required to rotate the blades 

at the fixed speed decreases and reaches a short steady state.  

iii. The torque increases again due to the melting of the material. 

iv. Consequently, the torque decreases and reaches a steady state region (v) 

and increases or decreases depending whether crosslinking or degradation 

takes place (vi) [9]. 
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Figure 35: Typical variation of measured torque as a function of time [9] 

2.6.2 Processing window  

The processing window is the steady state interval between consolidation and 

crosslinking of a plastic material corresponding to the region (v) in Figure 35. 

During extrusion, a material should travel in the barrel for a particular time at a 

given temperature for the material to consolidate, but not crosslink. Once an 

appropriate window has been established it can be used for process design. The 

processing window can be predicted by the use of a batch mixer, by monitoring 

the time between consolidation and crosslinking as indicated by changes in 

torque.  

The torque changes through time for gluten based bioplastic was characterised in 

a mixer chamber by monitoring the evolution of torque and temperature with 

time. Three regions were observed, as shown in Figure 36. 
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Figure 36: Torque changes in gluten bioplastic with respect to temperature and onset to 

consolidation [22] 

In the first region, no increase in torque was observed and corresponded to an 

induction period. The length of the induction period decreased with increased 

mixing speed. In the second region, the torque increased to a maximum as the 

material consolidated. A sudden drop in torque was observed in the final region. 

The time to reach the peak torque decreased with temperature [22]. 

In a study of wheat gluten-based bioplastic blends, three torque regions were also 

observed during batch mixing (Figure 37) [62]. The three regions were similar to 

gluten bioplastic discussed earlier. The final decay of the torque was associated 

with plasticiser content. The maximum torque was reached faster when the 

plasticiser amount was reduced, while high water content increased the mixing 

time, and maximum torque was reached slower compared to other plasticisers 

[62]. 
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Figure 37: Evolution of torque during the mixing process of wheat gluten with different 

blends [62] 

Plasticisation of wheat gluten with fatty acids in a counter rotating batch mixer 

enabled the assessment of the process window for that material [23]. The study 

showed possible plasticising effects through torque vs. mixing time and the results 

were supported by DSC measurements. It was found that torque increased faster 

at lower plasticiser content, higher temperature and shear. The time to reach the 

maximum, as a function of plasticiser content, increased exponentially at a given 

regulation temperature. In Figure 38, torque vs. time curves is shown for gluten 

plasticised with different fatty acids. It was shown that longer hydrocarbon chain 

fatty acids prolonged the processing window [23]. 
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Figure 38: Torque evaluation of wheat gluten plastic with different fatty acid [23] 

2.6.3 Rheology 

A general torque vs. time analysis allows determination of shear rate and viscosity 

from batch mixing data [9]. For the purpose of analysis, the mixing elements 

could be represented by two concentric cylinders exerting the same torque as the 

mixing heads, as shown in Figure 39 and a couette analogy (a technique to 

illustrate dimensions) is shown in Figure 40 . 

    

Front view                                         Lateral view 

Figure 39: Design of batch mixer [9] 

 



52 

 

 

                           

Couette Analogy 

Figure 40: Schematic illustration of twin rotor batch mixer [9] 

In the study of Bousmina et al. an effective internal radius (Ri) was determined for 

different polymers and processing conditions. It was found that Ri is a universal 

quantity practically insensitive to the nature and rheology behaviour of the melt. 

The concept was to convert torque-rotor speed data into viscosity and shear rate 

data. Fluid flow in the batch mixer was modelled by equivalent flow generated 

between two concentric cylinders rotating at constant speed, exerting same torque 

as batch mixer elements.  

A calibration procedure was used to calculate the effective internal radius, using a 

polymer of which the power law constants are known and can be calculated using 

the following expression: 

   
  

   
   
 
       

    
   

 
 

 
 
 

 
 
                                                                           (29) 

The shear rate at the position, (Ri- Re)/ Ri, is given by: 
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                                                     (31) 

              
  

    
 
         

                                                                     (32) 

Where; 

β→ (Re/Ri) 

Re→ External cylinder radius (mm) 

Ri → Internal cylinder radius (mm) 

M→ Polymer melt consistency 

N→ Speed of cylinder rotation 

n→ Flow behaviour index (from Power law) 

L→ Length of the cylinder (mm) 

G→ Gear ratio between two rotors 

г→ Torque obtained from batch mixer (Nm) 

(R1/2) → r = (Re/Ri)/2 

In these expressions the torque is measured in the steady state region, as indicated 

by Figure 35. 

Viscosity data from batch mixing was found to be in reasonable agreement with 

the data obtained from capillary rheometry as shown in Figure 41 [9].  
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Figure 41: Comparison of viscosity data of HDPE measured using capillary rheometry and 

batch mixing [9] 

In summary, batch mixer data can be useful to identify the processing window 

which will be useful to assess processability of protein-based plastics. The effects 

of temperature and shear as well as the addition of plasticisers are important 

parameters and strongly influence the obtainable processing window. 

2.7 NOVATEIN THERMOPLASTIC PROTEIN (NTP) 

Due to advances in protein polymer engineering, bovine blood is used as a source 

to produce biodegradable bloodmeal plastics. Bloodmeal is a reddish-brown 

powder derived from bovine blood after drying. Raw blood contains about ~80% 

water and ~18% protein [6]. The chemical composition of commercial bloodmeal 

is listed in Table 7 [72]. 
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Table 7: Chemical composition of blood meal (wt% in dry matter) [72] 

 

Component 

 

 

Bloodmeal 

Mean 

 

Variation 

 Organic matter 

 
92.9 73. 8 - 97.8 

Crude protein 92.5 72.3 - 96.6 

N-free extracts 3.3 0 - 10.7 

Crude fat 1.2 0 - 5.9 

Crude ash 5.3 2.0 - 15.6 

2.7.1 Bloodmeal production 

Soon after collection, blood tend to coagulate (coagulation is the formation of 

insoluble complexes in proteins). To restrain coagulation, anticoagulants (e.g. 

oxalic acid) are added to blood. Coagulation affects thermal and oxidative 

(putrefactive deterioration) degradation of proteins. To avoid putrefaction during 

transportation, formic acid, sodium chloride, unslaked lime and 3% sulphuric acid 

are added to blood during collection [73].  

There are many ways to produce bloodmeal: commonly, before dewatering, whole 

blood is filtered to remove fragments and coagulated using stream injection at 

90°C [74]. The coagulant is separated using a centrifuge. The coagulant is dried in 

a rotating drum at the temperature between 120°C and 175°C to a final moisture 

content of 2-4 wt%. After drying, bloodmeal is powdered a using hammer mill 

[73; 74]. 
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2.7.2 Processing of NTP 

NTP is prepared from bloodmeal using water, sodium dodecyl sulfate (SDS), 

sodium sulfite (SS) and triethylene glycol (TEG). Additives are primarily used to 

ensure sufficient inter and intra molecular interactions between polymer chains. 

Water 

Water is required for processing mainly to facilitate the action of additives and 

ensures uniform dispersion of additives in bloodmeal. It also acts as a plasticiser 

and reduces the denaturing temperature of the proteins [6]. 

Sodium Sulfite 

Sodium sulfite is a reducing agent which is mainly used to break disulfide 

crosslinks. These crosslinks are heat resistant and prevent the formation of a 

flowable melt [6]. 

Urea 

Water molecules surround protein chains in their native state ad may protect it 

from denaturation. Urea preferentially binds to the protein surface, disrupting the 

interaction between proteins and water, resulting in partially unfolded and flexible 

protein chains. The denatured protein may form entanglements and crosslinks 

during the moulding process, resulting in plastics with a high tensile strength, 

greater elongation and reduced water absorption [6]. 

Sodium Dodecyl Sulfate (SDS) 

SDS is an anionic detergent known to produce considerable conformational 

changes in proteins at concentrations in the order of 0.02 mol/L. SDS does not 
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cleave disulfide bonds, but prevents hydrophobic and electrostatic interactions 

between protein chains, leading to an ordered denatured state [6; 75]. 

Triethylene Glycol (TEG) 

Plasticisers are needed in polymer processing for effective processing. Plasticisers 

improve processability by interposing itself between polymer chains and alter the 

forces holding chains together [7]. 

Novatein Thermoplastic Protein (NTP) is extruded and granulated for further 

processing, such as injection moulding or compression moulding. In Figure 42, 

NTP is shown at its various stages of production; A) after synthesis B) extrusion 

C) granulation D) injection moulding respectively. 

 

Figure 42: Bloodmeal (NTP)

(A) (B) (C) (D) 
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3. CHAPTER 3: EXPERIMENTAL 

3.1 MATERIALS 

The materials used in the preparation of NTP are shown in Table 8. 

Table 8: Chemicals needed for formulation of NTP [7] 

Chemical Supplier Grade 

Bloodmeal (BM) Wallace Corporation ρ= 1300 kg/m
3
 

Sodium dodecyl sulphate (SDS) Bio lab Technical 

Sodium sulphite (SS) BDH lab Supplies Analytical 

Tri Ethylene Glycol (TEG) Sigma Aldrich Technical 

Urea Balance Agrinutrients Agricultural 

LLDPE Borstar- FB2310 

ρ= 931 kg/m
3
  

MFI= 0.9 g/10 

min 

 

 Distilled water Laboratory use 

3.1.1 Equipment 

Extruder and capillary rheometry 

All experiments were carried out using a twin screw extruder (TSE 16 TC 25:1), 

shown in Figure 43, with specifications listed in Table 9. The extruder was 

equipped with a capillary die for rheological measurements and it was connected 

with cooling system to control barrel temperature (Figure 44). The capillary had 

an inside diameter of 2.88 and length of 24.57 mm (L/D = 8.54). 
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Figure 43: Extruder setup 

 

Figure 44: Capillary setup 

In Figure 45, the screw design is shown as well as the temperature profile used for 

extrusion. The temperature of the die was varied according to the experimental 

plan followed.  
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Figure 45: Extruder temperature profile and screw configuration 

Table 9: Specification of the extruder used 

Term Specification Term Specification 

Twin Bore (Ø) 16mm Max Operating 

pressure 
100 Bar 

Screw (Ø) 15.60mm Pressure Transducer 200 Bar 

Channel Depth 3.30mm Centres/Radius Ratio 1.5625 

Die Length 16mm (1D) Temperature Control 3 Term P.I.D 

Control 

Barrel Length 384mm (24D) Barrel Heating D.C. Thyristor 

Max Screw 

Speed 
500 RPM Overall Enclosure 

rating 
I.P.44 
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Material was fed through a feeder (Hunter- Screw driven feed mechanism), which 

was capable of vary feed rate from 10 g to 100 g per minute. The feeder is shown 

in Figure 46. 

 

Figure 46: Feeder with control 

Batch Mixer 

A batch mixer was modified to provide the required experimental data. An 

ordinary batch mixer was equipped with a Kistler Torque Sensor. This allowed 

torque to be recovered as a function of time. The batch mixer configured of two 

counter-rotating shafts with a turning ratio of 3:1 (Figure 47). A top view of the 

batch mixer is shown in Figure 48.  The complete setup is shown in Figure 49. 

 

Figure 47 : Batch mixer head    
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Figure 48: Top view of batch mixer 

 

Figure 49: Batch mixer equipped with torque sensor 

Dynamic Mechanical Analyser (DMA) 

NTP was scanned through Dynamic Mechanical Analysis (DMA) to relate the 

rheological characteristics obtained by both capillary and batch mixer.  

A Perkin Elmer dynamic mechanical analyser (Model DMA 8000- shown in 

Figure 50) with rotating analysis head (both vertical and horizontal) was used to 
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analyse dynamic properties of NTP. A powder pocket method was used, where 

powder material is analysed in a metal envelope that is several orders of 

magnitude stiffer than the test sample. This allows evaluation of the polymer‟s 

thermal properties, as described by the ratio of the loss modulus (E”) and storage 

modulus (E‟) or tan    
  

  
 . In powder pocket analysis, only tan    is of 

relevance, since the measured moduli would incorporate that of the pocket 

material. A frequency of 1 Hz was used and temperature ranged from room 

temperature to 250°C. Samples were tested using a single cantilever clamp and at 

a maximum strain of 0.002. 

 

Figure 50: Dynamic Mechanical Analyser 

3.2 METHODS AND EXPERIMENTAL DESIGN 

3.2.1 Preparation of NTP 

Standard NTP was prepared according to the method shown in Figure 51. The 

required amounts of urea, sodium sulfite (SS) and sodium dodecyl sulphate (SDS) 

were dissolved in water and heated to 60°C. The solution was mixed with 
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bloodmeal in a high speed mixer until the protein has absorbed all the water. 

Following denaturing, plasticiser (TEG) was added and the mixture was 

homogenised prior to extrusion. 

In Table 10, the standard formulation is shown as well as the three other 

formulations used in this study. In formulations 1, 2 and 3, the total amount of 

plasticiser (water + TEG) was kept constant, but the ratio between water and TEG 

was varied.  

Figure 51: Basic preparation of NTP [76] 
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Bloodmeal  
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high RPM 

for 5 min 

Mixed at 

high RPM 

for 5 min 

Dissolved solids 

by heating 

solution to 60°C 

 

 

Extrusion 
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Table 10: Ratio of chemicals used for experiments 

Material 

Parts per hundred parts bloodmeal (pphBM) 

Standard Formulation 1 Formulation 2 Formulation 3 

Sodium Sulfite 3 3 3 3 

Sodium dodecyl 

sulfate 
3 3 3 3 

Urea 10 10 10 10 

Triethylene glycol 10 10 20 30 

Water 60 50 40 30 

3.2.2 Capillary Rheometry 

The effect of three different ratios of water:TEG on the rheology of NTP at three 

different die temperatures. Table 11 shows the experimental design. 

Table 11: Capillary rheometry experimental design 

                Die temperature  

Formulation 
115°C 120°C 125°C 

Standard Exp. 1 Exp. 2 Exp. 3 

Formulation 1 (Water 50: 

TEG 10) 
Exp. 4 Exp. 5 Exp. 6 

Formulation 2 (Water 40: 

TEG 20) 
Exp. 7 Exp. 8 Exp. 9 

Formulation 3 (Water 30: 

TEG 30) 
Exp. 10 Exp. 11 Exp. 12 
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Method 

1. The extruder die was equipped with a capillary die, pressure transducer 

and a temperature sensor. 

2. The experimental temperature was set, and the equipment was allowed to 

equilibrate. 

3. The material was extruded through a capillary at a set screw speed. 

4. Mass flow rate was controlled by adjusting screw speed and feed rate of 

the extruder. 

5. The volumetric flow rate (Q) was calculated by weighing material 

collected over 2 minutes. A constant density of 0.85 g/cm
3
 was assumed

.
 

6. The pressure at the capillary inlet was recorded for each selected screw 

speed. RPM was increased stepwise from 25 to 250 in increments of 25. 

7. The temperature of capillary was periodically monitored using a 

thermocouple. 

8. The torque was maintained between 40 and 50 Nm by adjusting the 

material feed to the extruder.  

9. Each experiment was repeated in triplicate. 

10. From pressure drop and volumetric flow rate the required rheological data 

could be calculated using Equations (16), (17) and (18). 
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3.2.3 Batch mixer 

The processing window of the same four NTP formulations was assessed using a 

batch mixer. The process window is defined as the time it takes for the 

formulation to crosslink. The effect of temperature and shear rate (RPM) on 

processability was investigated according to the outline in  

 

 

Table 12. 

Method 

1. Before each experiment, the mixing head and kneaders were cleaned to 

avoid cross contamination. 

2. The required temperature was selected and the equipment was allowed to 

equilibrate. 

3. The mixing chamber was filled with 65 g of NPT, which corresponded to 

about 85% of the mixing chamber‟s volume to allow for effective 

distribution of the material. 

4. Mixing proceeded until the material crosslinked, as evident from a sudden 

rise in torque. 

5. Each experiment was done in triplicate and average was taken for analysis. 

Analysis 

In Figure 52, a typical torque vs. time graph is shown. Form these graphs, the time 

to reach crosslinking (tmax) and maximum torque ( max) can be obtained. The onset 
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to consolidation (tr) was taken as the intercept of the tangents to each section of 

the torque vs. time graph as shown in  

 

Figure 52. ∆t represents the processing window and is defined as the time from 

the onset to consolidation to crosslinking (∆t = tmax-tr). 

Results were analysed by fitting a moving average trend line to the recorded data. 

The onset to consolidation (tr) and time to maximum torque (tmax) were measured 

using the fitted curve. 

 

 

 

Figure 52: Data analysis technique for batch mixer results
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Table 12: Batch mixer experimental design 

              Die temperature 

 

Formulation 

115°C 

 

120°C 

 

125°C 

 

 

Standard 

RPM 

50 

RPM 

75 

RPM 

85 

RPM 

95 

RPM 

50 

RPM 

75 

RPM 

85 

RPM 

95 

RPM 

50 

RPM 

75 

RPM 

85 

RPM 

95 

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9 Exp.10 Exp.11 Exp.12 

Formulation 1 (Water 50: 

TEG 10) 
Exp.13 Exp.14 Exp.15 Exp.16 Exp.17 Exp.18 Exp.19 Exp.20 Exp.21 Exp.22 Exp.23 Exp.24 

Formulation 2 (Water 40: 

TEG 20) 
Exp.25 Exp.26 Exp.27 Exp.28 Exp.29 Exp.30 Exp.31 Exp.32 Exp.33 Exp.34 Exp.35 Exp.36 

Formulation 3 (Water 30: 

TEG 30) 
Exp.37 Exp.38 Exp.39 Exp.40 Exp.41 Exp.42 Exp.43 Exp.44 Exp.45 Exp.46 Exp.47 Exp.48 
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4. CHAPTER 4: RESULTS AND DISSCUSSION 

In this chapter, the rheology of NTP was analysed using results obtained from 

capillary and batch mixer experiments. Analysis was based on the effect of 

temperature and water to plasticiser ratio.  

Proteins are hydrophilic in nature and tend to absorb water which affects their 

physical and mechanical properties when they are converted into usable polymer 

products. In addition, water is generally used as a plasticiser in proteins during 

extrusion, but water loss after extrusion leads to a reduction in mechanical 

properties. Reducing the amount of water may lead to processing difficulties, but 

could be offset by using other plasticisers.  

Viscosity of LLDPE 

In Figure 53, the apparent viscosity (apparent) vs. shear rate () for linear low 

density polyethylene (LLDPE) is shown. The material was tested at three different 

die temperatures (130 °C, 135 °C and 140 °C). The material flowed continuously 

and homogenously in the extruder barrel as well as the capillary. As expected, 

LLDPE showed non-Newtonian, shear thinning behaviour and the viscosity 

decreased with an increase in temperature. It was found that the rheology could be 

modelled as a power law fluid, for which the constants are shown in Table 13. 

Table 13: Power law constants for LLDPE 

Temperature 

(°C) 

Flow behaviour index (n) 

(Dimensionless) 

K 

(Pa.s) 

130  0.34 5568 

135 0.36 4350 

140 0.44 2977 
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Figure 53: Apparent viscosity vs. shear rate for LLDPE [at 130°C, 135 °C and 140 °C] 

The results obtained here, was also compared to published data for blends of 

LLDPE and LDPE (Figure 54 and Figure 56) with melt flow index (MFI) of 1 and 

4 g/10min respectively [77]. (LLDPE used in this study had a MFI of 0.9 

g/10min). The observed apparent viscosity in this study was very similar to that 

shown in Figure 54.  

 

Figure 54: Apparent viscosity vs. shear rate for LLDPE/LDPE blends [77] 
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A discontinuity in a shear rate vs. shear stress curve is commonly used to identify 

the existence of melt fracture or wall slip. Melt fracture did not occur during 

LLDPE processing, suggesting continuous melt flow, without disturbance over 

the range of shear rates studied (Figure 55).  

 

Figure 55: Log shear rate vs. log shear stress for LLDPE [at 130°C, 135 °C and 140 °C] 

 

Figure 56: Log shear rate vs. log shear stress LDPE/LLDPE blends at different ratios [77] 
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Based on these results, it was concluded that the experimental setup was 

appropriate and was consistent with that observed from literature. The same 

conditions were used to compare the various NTP formulations, using LLDPE at 

130°C as a reference. 

4.1 RHEOLOGY OF NTP 

The apparent viscosity vs. shear rate curves for the various formulations tested are 

shown in Figure 57, Figure 58 and Figure 59. It can be seen that NTP displayed 

non-Newtonian, shear thinning behaviour at all the temperatures tested. The 

rheology of NTP is similar to other thermoplastic proteins, such as soy protein 

[29] and sunflower protein isolate [42] (see section 2.5.1).  

From these figures, it can be observed that the viscosity of NTP is considerably 

higher than that of LLDPE, especially at low shear rates. It does, however, follow 

similar shear thinning behaviour.  

 

Figure 57: Apparent viscosity vs. shear rate for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 115°C 
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Figure 58: Apparent viscosity vs. shear rate for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 120°C 

 

Figure 59: Apparent viscosity vs. shear rate for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 125°C 

In Figure 60, Figure 61 and Figure 62, shear rate vs. shear stress curves are shown 
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Figure 60: Log shear stress vs. log shear rate for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 115°C 

 

Figure 61: Log shear stress vs. log shear rate for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 120°C 
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Figure 62: Log shear stress vs. log shear rate for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 125°C 

Table 14: Temperature dependency of NTP (flow behaviour index (slope) and zero shear 

viscosity values obtained using the power law model) 

Temperature  

(°C) 

Flow behaviour index, n  

(Dimensionless) 
K (Pa.s)  

Standard 

115 0.38 23824 

120 0.20 13455 

125 0.09 4968 

Formulation 1 [Water (50) : TEG (10)] 

115 0.17 23739 

120 0.18 22357 

125 0.17 21725 

Formulation 2 [Water (40) : TEG (20)] 

115 0.17 30913 

120 0.18 29462 

125 0.17 28426 

Formulation 3 [Water (30) : TEG (30)] 

115 0.13 40648 

120 0.11 39483 

125 0.11 32293 
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Moisture and plasticiser content 

Standard NTP was used as a reference and contained a total of 70 pphBM 

plasticiser of which 60 parts were water and 10 parts TEG. In formulations 1, 2 

and 3 the total plasticiser content was kept constant at 60 pphBM, but the ratio of 

water to TEG was varied.  

The results shown in the previous figures showed a clear increase in viscosity as 

the ratio of water to plasticiser was reduced. Of the formulations tested, the 

standard formulation not only had the highest water to plasticiser ratio, but also 

contained the highest overall plasticiser content.  

Water serves as an effective plasticiser for NTP by forming hydrogen bonding 

with protein chains and reducing protein-protein interaction. It also increases free 

volume of the protein molecules, thereby increasing chain mobility which in turn 

facilitates flowability of the material. Water also facilitates the denaturing action 

of urea and disulphide bond reduction of sodium sulphite; both of which will 

improve the flowability of the material. It was therefore not surprising to observe 

a decrease in viscosity with an increase in water content.  

It is important to note that between formulations 1, 2 and 3 the total amount of 

plasticiser was constant. Despite this, a considerable rise in viscosity was 

observed when changing the ratio of water to plasticiser. It would appear that 

water is either a more efficient plasticiser, or that its presence facilitates other 

mechanisms, as mentioned above. In the absence of sufficient denaturing and 

crosslink reduction, one would expect a higher viscosity, as evident from the 

rheology presented here. Although TEG can plasticise NTP, it cannot facilitate 
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these processes and relies mostly on increasing free volume of the protein 

network.  

The differences between these formulations are more apparent when the shear 

stress vs. shear rate graphs were considered (Figure 60, 61 and 62). From these 

graphs it is apparent that the slopes of these curves are very similar, for each 

temperature tested, with the exception of the standard formulation. This would 

suggest that the flow behaviour, or degree of non-Newtonian behaviour, is 

unaffected by the ratio of water to plasticiser. The observed change in viscosity is 

therefore mostly due to the plasticization effect of water. However, as can be seen 

from Table 14, the flow behaviour index (n) for the standard formulation was 

significantly different to the other formulations, suggesting that the higher water 

content changed the nature of the fluid. 

In Equation (27), viscosity was said to follow an exponential relationship with 

respect to moisture content (Cm). 

                                                                                (27) 

The flow consistency index from the power law model, K (Pa.s) is therefore equal 

to                        .                   

At a given temperature, the slope of a ln (η) vs. ln (γ) graph should therefore be 

independent of moisture content, but the flow consistency index, K, would be.  A 

plot of ln (K) vs. moisture content, Cm, should therefore be linear, with a slope, k3.  

From Figure 63, a linear relationship can be observed between the three 

formulations tested, but the same relationship is not valid for the standard 

formulation, for reasons explained earlier.  
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Figure 63: Effect of moisture content 

Temperature  

The formulations used in this study showed very little temperature dependence, 

except for the standard formulation. If Equation (33) is used to analyse the 
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from changes in the flow behaviour index, n. At low temperature, the standard 

formulation had the lowest viscosity, probably due to the absence of crosslinking 

and also a higher overall plasticiser content. 

 

Figure 64: Temperature vs. zero shear stress of shear rate vs. shear stress curves obtained 

from the Power law model 
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According to the WLF equation (Equation 28), the temperature dependence of 

viscosity is determined by the difference between the operating temperature and 

its Tg. Only minor changes in Tg were observed for the formulations tested here, 

explaining the material‟s insensitivity to changes in temperature. Again the 

exception is the standard formulation, which contained more water and its 

behaviour was dominated by other effects. 

 

Figure 65: DMA results showing Tg of four different NTP formulations with raw bloodmeal 
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Comparing the behaviour at 115 C with 120 and 125 C, the difference between 

the standard and other formulations is again highlighted. It was observed that the 

difference between these formulations became less severe with increase in 

temperature, presumably due to crosslinking becoming more prominent in the 

standard formulation.  

Changing the water to plasticiser ratio leads to increased pressure drop required 

for the same shear rate. This was mainly due to the effect water which is required 

for denaturing and efficient chain mobility.   

 

Figure 66: Log shear rate vs. log pressure drop for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 115°C 
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Figure 67: Log shear rate vs. log pressure drop for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 120°C 

 

Figure 68: Log shear rate vs. log pressure drop for four different formulations [Std., 50:10, 

40:20, 30:30 & LLDPE] at 125°C 
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Rabinowitsch (for shear rate) and Mooney analysis (wall slip) were not 

considered. However Rabinowitsch correction could be used to calculate true 

shear rate, but using this in combination with apparent shear stress would lead to 

wrong results. 

In conclusion to this section: 

 NTP behaved like a shear thinning, non-Newtonian fluid. 

 The amount of water in NTP had a significant effect on viscosity; a 

reduction in water content increased viscosity of the material.  

 By replacing water with TEG did not fully mitigate the loss of 

plasticization by water. 

 The viscosity of NTP was found to be mostly temperature independent, 

except for the standard formulation which contained more water.  

(Collected data from experiment and sample calculations for LLDPE are given in 

Appendix 1). 

4.2 BATCH MIXER 

The processing window for NTP was assessed using a batch mixer equipped with 

a torque sensor. The same formulations used for capillary rheometry were used 

here in order to analyse effect of plasticiser, moisture content and temperature.   

LLDPE was tested in batch mixer and the results compared to NTP. Figure 69 

shows the batch mixer data for LLDPE. When the material was charged in the 

mixing chamber a sudden rise in torque was observed followed by steady state 

mixing. Within the maximum time as allowed for NTP (discussed later), the 

torque did not show any further changes. 
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Figure 69: Torque vs. time for LLDPE at 130°C with four RPMs studied (50, 75, 85, 95) 

Consolidation of modified bloodmeal powder relies on the application of 

sufficient shear at high enough temperatures to allow chain movement.  

It was found that formulation 3 [water (30):TEG (30)] could not be consolidated 
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insufficient shear. At 115°C, the other formulations only consolidated at 75 RPM 

and above. This implied that as temperature was reduced more shear was required 

for consolidation. 
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results were obtained in many other protein polymers as discussed in Section 

2.6.2. 
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Figure 70: Torque vs. time for three NTP formulations at 75 RPM and 115°C [standard, 

formulation 1 (50:10), formulation 2 (40:20)] 

It was noticed that, the maximum torque was always in the range of 40 to 50 Nm 
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further analysis. It would also indicate that all the materials crosslinked to the 
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Figure 71: Processing window vs.  RPM            Figure 72: Processing window vs. RPM for             

                         for standard NTP                                               NTP formulation 1 

  

 

Figure 73: Processing window vs. RPM for NTP formulation 2 
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They way in which ∆t decreases with an increase in RPM is not dependent on 

temperature, i.e. the slope of the curves shown in the figures are almost same. 

This means temperature and moisture content are independent It can also be 

observed that the processing window did not change much between different 

formulations, except for the standard formulation. The processing window was 

insensitive to the amount of water, but was slightly longer for the standard 

formulation that contained an overall larger amount of plasticisers. (Processing 

window for each formulation at different processing conditions is given in 

Appendix 4, Table 19). 

4.2.2 Onset to consolidation 

In Figure 74, Figure 75 and Figure 76 onset to consolidation vs. RPM is shown 

for the formulations tested. It can be observed that the onset to consolidation 

decreased with an increase in RPM and temperature. The same mechanisms are 

important in this case: Sufficient energy is required for chain rearrangement 

which leads to consolidation. Energy can be supplied either as thermal or 

mechanical energy. 

Very little difference in onset between the various formulations were observed, 

suggesting that the ratio of water to TEG is not as important during mixing as it 

was to determining viscosity. 

It can be concluded that temperature and shear are the most significant factors 

influencing the time to consolidation. Alternatively, reducing the total amount of 

plasticisers (water + TEG) the time to consolidation can also be reduced. 
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Furthermore, time to consolidation and the processing window cannot be adjusted 

independently. The time to consolidation was always about 40-50% (Appendix 4, 

Table 20) of the time to reach maximum torque, when the processing window was 

reduced, so was the time to consolidation. The manner, in which these changes 

was constant suggesting same mechanism affect both. (Complete batch mixing 

data is given in Appendix 2 and maximum time to torque graphs are shown in 

Appendix 3).  

  

Figure 74: Onset to consolidation                      Figure 75: Onset to consolidation                        

vs. RPM for standard NTP                                 vs. RPM for formulation 1 

  

Figure 76: Onset to consolidation vs. RPM for formulation 2 
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When comparing with LLDPE results, similar behaviour could not be seen with 

NTP. There was a long steady state region observed in LLDPE, but not with NTP. 

In protein thermoplastics, crosslinking occurs during mixing thereby leading to a 

continuously changing viscosity. In capillary rheometry, measurements 

correspond to a very small period of time, compared to batch mixing since the 

residence time in the capillary was very short. If a very long capillary were used, 

the degree of crosslinking will change as the material flow through the capillary. 

The observed flow behaviour may not be a true fluid property, but rather an effect 

of chemical reactions. 
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5. CHAPTER 5: CONCLUSIONS AND   

RECOMMONDATIONS 
 

The objective of this research was to assess the processability of Novatein 

Thermoplastic Protein (NTP) by characterising its rheology using capillary 

rheometry and batch mixing. From literature, it was shown that most protein-

based thermoplastics displayed non-Newtonian, shear thinning behaviour and 

their viscosity changed with moisture content, temperature and plasticiser content.   

In this study, the viscosity of NTP at different water to plasticiser ratios was 

studied and the following conclusions were made using the results obtained from 

capillary rheometry: 

 Flow behaviour was non–Newtonian and shear thinning.  

 The glass transition temperatures of all the formulations (prior to 

extrusion) were similar, suggesting that the overall plasticiser content was 

more important than the ratio of water to TEG.  

 Viscosity was strongly dependent on moisture content; increasing with 

decreasing moisture content.  

 Viscosity reduced slightly with increasing temperature. 

 The degree of non-Newtonian behaviour (n) was not influenced by 

temperature or moisture content, except for the standard formulation 

which contained a larger amount of plasticiser.  

Torque vs. time data from batch mixing was used to determine time to 

consolidation and time to crosslinking and the following conclusions were made: 
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 The processing window decreased with reducing moisture because of 

increased shear that promotes crosslinking.  

 Crosslinking is temperature dependent leading to shorter processing 

windows with increasing temperature. 

 The processing window reduced linearly with RPM because higher shear 

rates promotes crosslinking. 

 Increased mechanical or thermal energy leads to faster consolidation and 

crosslinking.  

 Time to consolidation and the processing window cannot be varied 

independently and time to consolidation was always about 40 - 50% of the 

total processing time. 

When comparing capillary and batch mixer results, it can be concluded that 

NTP‟s viscosity is a function of temperature and moisture content. Processing is 

dependent on the degree of crosslinking, which changes during processing. The 

processing window defines the rate of crosslinking, which is faster at lower 

moisture content and higher temperature and shear. 

It is recommended that experiments be performed using capillaries of different 

length to diameter (L/D) ratios in order to assess entrance and exit effects. 

Furthermore, longer capillaries my also reveal aspects of protein crosslinking, not 

observed in this study.  

Performing capillary experiments at higher shear rates may also enable a deeper 

understanding of the rheology of proteins, but much larger pressures are needed 

and require more specialised equipment.  
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Blending NTP with other polymers may decrease the viscosity further and may 

assist in reducing the water dependence of processesability. 
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7. CHAPTER 7: APPENDIX 

Appendix-1 

Method of calculation (Capillary sample calculation for LLDPE) 

Step 1: Observed data from experiments; 

Diameter of capillary = 4.34 mm 

Length of the capillary = 130.2 mm 

Time =120 seconds 

Mass collected = 17.63g 

Pressure (P1) = 20000000 (Pa) 

Atmospheric pressure (P2) = 101325 (Pa) 

Density of LLDPE studied = 0.00092 g/mm
3
 

Mass flow rate = Mass/Time = 17.63/120 = 0.15  

Volumetric flow rate (Q) = Mass flow rate/ Density = 0.15/0.00092 = 159.69 mm
3
/sec 

Step 2:  

                
  

    
         

        

           
  = 19.91 s

-1
 

Step 3:     

Pressure drop (∆p) = (P1- P2) = 1898675 (Pa) 

Step 4: 

              τ    
    

  
         

        
    
 

       
 = 15822.29 Pa                         

Step 5: 

                       
            

          
      

         
    
 

     
 = 749.75 Pa. s 
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Table 15:Data obtained (Capillary rheometry- LLDPE) 

Temperature -130°C 

Time (sec) Mass(g) 

Density 

(g/mm3) 

Mass 

flow rate 

(g/sec) 

Q 

(mm3/sec) 

Shear 

Rate 

(1/sec) P2 (Pa) P1 (Pa) (∆P) P2-P1 

Shear Stress 

(Pa) 

Viscosity 

(Pa.s) RPM 

Torque 

(%) 

120.00 17.63 0.00 0.15 159.69 19.91 2000000.00 101325.00 1898675.00 15822.29 794.76 25 43 

120.00 24.98 0.00 0.21 226.27 28.21 2300000.00 101325.00 2198675.00 18322.29 649.54 50 44 

120.00 31.88 0.00 0.27 288.77 36.00 2400000.00 101325.00 2298675.00 19155.63 532.10 75 45 

120.00 39.17 0.00 0.33 354.80 44.23 2600000.00 101325.00 2498675.00 20822.29 470.75 100 43 

120.00 46.98 0.00 0.39 425.54 53.05 2800000.00 101325.00 2698675.00 22488.96 423.91 125 43 

120.00 58.88 0.00 0.49 533.33 66.49 3000000.00 101325.00 2898675.00 24155.63 363.30 150 44 

120.00 69.91 0.00 0.58 633.24 78.94 3300000.00 101325.00 3198675.00 26655.63 337.65 175 46 

120.00 85.68 0.00 0.71 776.09 96.75 3500000.00 101325.00 3398675.00 28322.29 292.73 200 45 

120.00 103.78 0.00 0.86 940.04 117.19 3600000.00 101325.00 3498675.00 29155.63 248.79 225 46 

120.00 118.99 0.00 0.99 1077.81 134.37 3800000.00 101325.00 3698675.00 30822.29 229.39 250 44 
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Appendix-2 

Table 16: Batch mixer data for standard NTP 

RPM  

↓ гmax (Nm) гr (Nm) tmax (s) tr (s) 

Rep's  

→ 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 

115°C 

50 Material did not consolidate and crosslink at these conditions 

75 44 44 51 46.33 4.04 10 8 7 8.33 1.53 510 510 508 509.33 1.15 240 248 256 248.00 8.00 

85 42 39 40 40.33 1.53 10 13 11 11.33 1.53 495 488 490 491.00 3.61 238 230 225 231.00 6.56 

95 41 42 40 41.00 1.00 14 14 12 13.33 1.15 430 420 422 424.00 5.29 190 212 200 200.67 11.02 

120°C 

50 46 44 45 45.00 1.00 12 13 14 13.00 1.00 410 408 425 414.33 9.29 220 210 226 218.67 8.08 

75 50 44 46 46.67 3.06 14 11 10 11.67 2.08 290 315 305 303.33 12.58 140 150 138 142.67 6.43 

85 42 46 37 41.67 4.51 14 14 15 14.33 0.58 240 250 255 248.33 7.64 130 90 104 108.00 20.30 

95 41 45 51 45.67 5.03 10 11 10 10.33 0.58 218 200 204 207.33 9.45 85 100 92 92.33 7.51 

125°C 

50 46 44 41 43.67 2.52 9 8 7 8.00 1.00 270 286 282 279.33 8.33 165 148 152 116.25 8.89 

75 40 39 46 41.67 3.79 10 6 12 9.33 3.06 260 255 248 254.33 6.03 138 128 135 100.25 5.13 

85 43 40 40 41.00 1.73 16 9 10 11.67 3.79 208 215 222 215.00 7.00 100 105 112 79.25 6.03 

95 40 44 44 42.67 2.31 11 10 11 10.67 0.58 160 156 165 160.33 4.51 75 66 70 52.75 4.51 
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Table 17: Batch mixer data for NTP formulation 1 [Water (50) : TEG (10)] 

RPM  

↓ гmax (Nm) гr (Nm) tmax (s) tr (s) 

Rep's  

→ 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 

115°C 

50 Material did not consolidate and crosslink at these conditions 

75 44 40 37 40.33 3.51 14 13 14 13.67 0.58 350 358 265 324.33 51.54 135 155 140 143.33 10.41 

85 42 40 44 42.00 2.00 15 11 11 12.33 2.31 260 276 255 263.67 10.97 100 112 120 110.67 10.07 

95 40 45 44 43.00 2.65 13 10 13 12.00 1.73 240 244 254 246.00 7.21 96 94 108 99.33 7.57 

120°C 

50 44 50 41 45.00 4.58 12 11 11 11.33 0.58 340 344 350 344.67 5.03 158 118 135 137.00 20.07 

75 40 36 40 38.67 2.31 10 15 14 13.00 2.65 265 260 271 265.33 5.51 120 125 140 128.33 10.41 

85 42 45 38 41.67 3.51 13 14 12 13.00 1.00 225 220 236 227.00 8.19 100 112 80 97.33 16.17 

95 43 40 40 41.00 1.73 14 11 10 11.67 2.08 185 190 200 191.67 7.64 80 86 100 88.67 10.26 

125°C 

50 46 44 35 41.67 5.86 16 15 13 14.67 1.53 260 285 256 267.00 15.72 110 126 132 122.67 11.37 

75 42 42 40 41.33 1.15 12 12 15 13.00 1.73 190 195 202 195.67 6.03 100 115 102 105.67 8.14 

85 40 44 41 41.67 2.08 12 11 11 11.33 0.58 180 176 172 176.00 4.00 90 85 100 91.67 7.64 

95 39 42 35 38.67 3.51 10 10 11 10.33 0.58 115 140 132 129.00 12.77 50 60 58 56.00 5.29 
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Table 18: Batch mixer data for NTP formulation 1 [Water (40) : TEG (20)] 

RPM  

↓ гmax (Nm) гr (Nm) tmax (s) tr (s) 

Rep's  

→ 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 
1 2 3 Avg. 

Std. 

Deviation 

115°C 

50 Material did not consolidate and crosslink at these conditions 

75 41 42 41 41.33 0.58 14 13 15 14.00 1.00 320 325 318 321.00 3.61 140 138 162 146.67 13.32 

85 41 42 43 42.00 1.00 14 11 14 13.00 1.73 260 265 258 261.00 3.61 135 142 138 138.33 3.51 

95 40 38 40 39.33 1.15 11 16 11 12.67 2.89 240 244 238 240.67 3.06 135 128 125 129.33 5.13 

120°C 

50 44 42 43 43.00 1.00 11 12 13 12.00 1.00 330 333 328 330.33 2.52 125 146 130 133.67 10.97 

75 40 40 40 40.00 0.00 10 12 14 12.00 2.00 200 220 212 210.67 10.07 100 86 102 96.00 8.72 

85 40 40 44 41.33 2.31 10 14 14 12.67 2.31 180 190 172 180.67 9.02 70 98 71 79.67 15.89 

95 39 37 42 39.33 2.52 10 12 13 11.67 1.53 165 160 162 162.33 2.52 95 62 58 71.67 20.31 

125°C 

50 44 43 41 42.67 1.53 10 11 12 11.00 1.00 230 245 252 242.33 11.24 110 100 92 100.67 9.02 

75 40 40 44 41.33 2.31 10 11 14 11.67 2.08 175 180 174 176.33 3.21 80 85 80 81.67 2.89 

85 41 40 40 40.33 0.58 12 16 12 13.33 2.31 145 152 148 148.33 3.51 60 64 66 63.33 3.06 

95 50 38 40 42.67 6.43 10 11 15 12.00 2.65 110 112 98 106.67 7.57 40 38 41 39.67 1.53 
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Appendix-3 

 

 

Figure 77: Maximum time to torque for standard NTP 

 

Figure 78: Maximum time to torque for formulation 1 

 

Figure 79: Maximum time to torque for formulation 2 
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Appendix-4 

Table 19: Processing window 

Processing window, ∆t (s) 

RPM Std Formulation 1 Formulation 2 

115°C 

50 No action observed 

75 261.33 181.00 174.33 

85 260.00 153.00 122.67 

95 223.33 146.67 111.33 

120°C 

50 195.67 207.67 196.67 

75 160.67 137.00 114.67 

85 140.33 129.67 101.00 

95 115.00 103.00 90.67 

125°C 

50 163.08 144.33 141.67 

75 154.08 90.00 94.67 

85 135.75 84.33 85.00 

95 107.58 73.00 67.00 

Table 20: Time to consolidation 

Time to consolidation, [ (
   

     
      ] (s) 

RPM Std Formulation 1 Formulation 2 

115°C 

50 No action observed 

75 48.69 44.19 45.49 

85 47.05 41.97 53.00 

95 47.33 40.38 53.74 

120°C 

50 52.77 39.75 40.46 

75 47.03 48.37 45.57 

85 43.49 42.88 44.10 

95 44.53 46.26 44.15 

125°C 

50 41.61 45.94 41.54 

75 39.41 54.00 46.31 

85 36.90 52.08 42.69 

95 32.90 43.41 37.18 
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