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INTRODUCTION

Cellulose is the most abundant biopolymer on earth,

and is the major component of urban waste. Thus

cellulose must be seen as a very significant renewable

source of chemical foodstocks when fossil fuels be

come restricted.

Cellulose is a 1-4 - linked glucose polymer with a

complex secondary and tertiary structure.1 The glucose

molecules exhibit alternating orientation so that the

basic repeating unit is cellobiose.

The polyglucose chains align to form microfibrils.

These are ordered structures so that about 70% of their

length can be termed "crystalline".1 In these areas the

polyglucose chains are cross-linked by one hydrogen
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bond per glucose. In addition, there are two intra-chairi
hydrogen bonds per glucose. The gaps between adja
cent polyglucose chains are too smalito allow enzymes
to penetrate the crystal, and even the exposed exterior
chains are difficult to break up. This is because several
bonds must be broken simultaneously; the 1-4 gIuco-
sidic bond, and also three hydrogen bonds, if a glucose
molecule is to be removed to create a "nick" in the chain.
Thus the intervening amorphous regions, where some

irregularities opening the structure may already exist,
are initially the targets for hydrolytic enzymes.

Most cellulose occurs naturally in a lignin-cellulose -
hemicellulose complex which is often extremely resis
tant to hydrolysis. Lignin is the plant's equivalent of
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concrete, and cellulose fibres act as the internal rein
forcing. Woody materials generally require some pre
treatment to open up the lignin-cellulose-hemicellulose

complex sufficiently for effective enzymic hydrolysis of
the cellulose. We have centred our studies on the
enzymic hydrolysis of pure cellulose as an initial step in
understanding cellulose hydrolysis in the natural lignin
cellulose-hemicellulose complex.

SOURCES OF CELLULASE

Most of the cellulolytic enzymes available for com
mercial purposes are of fungal origin. More recently a
thermophi I ic anaerobic bacterium Clostridium therinocellum

growth optimum 60-65°C has been shown by overseas
groups 28 to produce cellulases capable of completely

hydrolysing crystalline cellulose. Since these enzymes
possess specific activities which are similar to those of
the best fungal cellulases but are more heat-stable, 67

they are potentially of commercial interest. This being
so, it seemed worthwhile to look for a source of even
more thermostable cellulases, in extreme thermophiles

i.e. organisms with growth optima above 65°C.

ENZYMIC DEGRADATION OF CELLULOSE

No single enzyme has yet been discovered that alone
is capable of hydrolysing crystalline cellulose to any
great extent. Fungal systems have been most intensive

ly studied, and they are often based upon the concerted

action of two or three types of enzyme, endocellulase,
exocellulase probably physically associated and

glucosidase. 8-10 Many fungi have been shown to pro
duce several different enzymes vithin each of these
basic types, 910 so the term `cellulase" refers to an
enzyme complex, not a single enzyme.

HOT POOLS SCREENED FOR CELLULOLYTIC

BACTERIA

The first step in our study was to find extremely

thermophilic bacteria that produce cellulases. We were

particularly interested in cellulases with high thermal

stability and high specific activity. The level of cellulase

production was notcorisideredto be so importantatthis

stage since the yield of enzyme bythe bacterium qan be

genetically raised. Thermal stability and specific activ

ity, being characteristics of the enzyme itself, will be

extremely difficult to improve.
Water and sediments were collected from about 50

natural thermal sites and bacteria from them were

grown at 75°C in cellulose-containing enrichment media,

both aerobically and anaerobically. After six and 21

days growth we subjected the cultures to the first

screening step. This involved assay of the cell-free

supernatants for endocellulases. Only eight cultures

fulfilled this requirement. All were anaerobic.

The second screening tested forthe abilityto degrade

crystalline cellulose, since the ultimate objective was to

find bacteria capable of degrading natural cellulosic

materials with a minimum of pretreatment. Two of the

cultures, 1P8 and TP1O, could be seen to consume

crystalline cellulose from their growth media, and as

says on the cell-free culture supernatants confirmed

that they were producing cellulases capable of hydroly

sing crystalline cellulose to reducing sugars.

Specific activities of the cellulases of both crude

culture supernatants compared well with that of the

cellulase we obtained from C. ther,nocellum. We included

C. thermocellu,n as a reference in most of our comparisons,
although it had to be grown at 60°C whereas our
bacteria grew at 75°C.
Apart from TP8 and TP1 0, none of the other cultures

produced enzymes that would release significant q uan
ties of reducing sugar from crystalline cellulose.
Stage 3 of the screening involved a comparison of the

thermal stabilities of the supernatant endocellulase
activities Figs 1.. These exhibited half-lives at 85°C of
five hours, 20 minutes and less than five minutes from
TP8, TP1Q and C. therniocellum respectively. Thus TP8
was selected for further study.
Some of the bacteria which we rejected after stage 2

of the screen subsequently proved to have extremely
stable endocellulases, with half-lives at 85°C In excess
of 20 hours. Unfortunatelythese bacteria are not able to
attack crystalline cellulose by themselves.

Fig 1 Thermal stabilities of endocellulases

Culture supernatants were incubated at 85°C andsamples taken at

the times indicated were assayed at 75°Cfor remaining endocellulase

CMCase.'3

ISOLATION OF BACTERIA IN PURE CULTURE

In order to study the cellulases of TP8 further, it was

necessary to isolate the celluloytic bacteria in pure

culture. Cellulolytic anaerobes are renowned for the

difficulties they present in the face of any effort made to

isolatethem and thosefrom the TP8 culture proved to

be no exceptions. We had additional problems in deal

ing with extreme thermophiles in that agar dries out or

melts at their growth temperatures. Eventually we de

veloped a system which allowed isolation and cultiva

tion from individual colonies, each of which originated

from a single bacterium. Two different celluloytic strains

were isolated from TP8. The more stable endocellulase

was produced by a strain which didn't attack crystalline

cellulose to any extent. The other strain was considered

more worthy offurtherstudy since it produced enzymes

capable of hydrolysing crystalline cellulose to reducing

sugars.

SEPARATION AND CHARACTERISATION OF

CELLULASE COMPONENTS

Purification and study of the cellulases from this

isolate has only just begun, and so far we have prelim

inary information only.

Enzymes from the supernatant of 80 litres of culture

Hours at 85°C
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were concentrated by ammonium sulphate precipitation,

redissolved and washed over a 10,000 M.W. cut-off

ultra-filter. The concentrate was then applied to a G-1 00

Sephadex column and the fractions collected were

subjected to four different assays Fig. 2.

"CMCase" and A vicelase' One nmol.glucose equivalents.min."

B-glucosidase: 130 pinol. p-nitrophenoLmin'

Plate-clearing assay. Units arbitraiy, based on antilog, of cleared

diameter around wells in C'MC-agar.'4

Optical density at 280 nm was measured to roughly
monitor protein concentration, and showed two major
peaks. The first contained proteins of the void volume,
and the second appeared much later and tailed consid

erably.

-glucosidase12 eluted as a single sharp peak of
activity. Endocellulase activity was measured by two
methods. The first, denoted the "CMCase" assay, involv
ed incubation of column fractions with sodium carboxy
methyl cellulose and measurement of the reducing
sugars produced.13 The second was a plate-clearing

assay, presumably dependent upon shortening of the
carboxymethyl cellulose molecules14. The plate-clearing
assay was therefore more sensitive to centrally-acting

endocellulase than was the "CMCase" reducing sugar
assay. Both assays produced two broad peaks of activ

ity, but the relative magnitudes of the first and second
peaks were reversed, suggesting that the endocellu

lase in the second peak was the more centrally-acting.
The fractions were also incubated with Avicel, which is

crystalline cellulose, and the reducing sugars produced
were measured;'5 This resulted in a single peak. There
was °Avicelase" activity only in the first "CMCase" peak.
Thus it appears that there are at least three different

enzymes involved in cellulose hydrolysis bythis bacter
ium. One has 13-glucosidase activity, and has a molecular
weight of about 55,000.

There may be a single enzyme or group of enzymes,
each exhibiting both exo- and endocellulase activity,
since crystalline cellulose and CMC hydrolysis peaked

in the same fractions. Alternatively, each of these activi

ties may be due to separate enzymes of similar molecular

weights.

The second protein peak had endocellulase but no

exocellulase activity. Its late appearance from the column

could suggest an extremely low molecular weight <

2000, but more probably it was retarded by binding to

Sephadex. Such binding was expected since at 75°C

the enzyme concentrate had been shown to hydrolyse

Sephadex G-1 00 which is a dextran almost as efficiently

as it hydrolysed crystalline cellulose. However, no de

tectable release of reducing sugars from Sephadex

occurred during incubation at room temperature over

night. In preliminary work with a Biogel acrylamide

packed column the second endocellulase peak was

absent, which may suggest that its molecular weight is

actually quite similar to that of the first endocellulase,

and that their differing affinities for Sephadex allowed

their separation.

FUTURE WORK

Further fractionation techniques such as affinity and

ion exchange chromatography and isoelectric focussing

should allow purification of the individual components

of the cellulase complex. The components will then be

characterized independently and investigated for their

possible co-operative action.
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Fig 2 Elution profile for cellulases and

-glucosidase on a Sephadex G-100 column

All assays at 75°C, with units as follows:
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