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Abstract 

 

In recent publications, the validity of using positive and negative inertial penalty parameters 
and the advantage of this approach over the conventional positive penalty function 
approach have been established for linear eigenvalue problems. This paper shows how this 
method may be applied to solve a boundary value problem. A steady state 2-D heat transfer 
problem is used to demonstrate the method. First, the governing partial differential equation 
is modified by adding a pseudo inertial term which results in an equation which is 
mathematically identical to the equation governing the free vibration of a membrane. The 
essential boundary conditions of zero temperature along a specified line are imposed using 
inertial penalty parameters. The characteristic vibration modes found in this way are used to 
generate the complementary function to the heat transfer problem. This solution satisfies all 
natural boundary conditions (adiabatic) and zero temperature conditions using the inertial 
penalty parameter. To satisfy any additional temperature distribution imposed on the 
system, two sets of corrector terms are superimposed resulting in the final solution. The 
results are compared with constrained solutions obtained using the Lagrangian multiplier 
method and the ordinary penalty method. 
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1. Introduction 
 

   The penalty method, also known as the artificial spring method in vibration research, is a 
widely used approach for applying constraints [1-9]. As the accuracy of the solution depends 
on the magnitude of the penalty parameter, it has been a common practice to select a suitable 
magnitude by conducting a convergence study [10]. The difficulty in determining an 
appropriate magnitude for a penalty parameter is that it needs to be sufficiently large to effect 
a constraint, however, small enough to avoid numerical problems [11-13].  This has been the 
subject of several recent publications [14-22]. It has been shown that for linear boundary 
value problems, the use of positive and negative penalty parameters enables the 
determination of any error due to constraint violation and that it is possible to obtain good 
approximations to the constrained solution using interpolation of the penalised solutions with 
respect to inverse penalty parameters. In using negative penalty parameters, one limitation is 
that the magnitude of the penalty parameter must be larger than the highest critical penalty 
parameter. For vibration problems this limitation has also been overcome by using positive 
and negative inertial type penalty parameters instead of the ordinary stiffness type penalty 
parameters [17, 21]. This was recently extended to include any linear eigenvalue problem 
through the use of a generic eigenpenalty parameter [22]. The possibility of using the inertial 
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penalty functions in static stress analysis by introducing a virtual inertia was also explored by 
Ilanko and Kreuzer [23]. In this work, the stiffness of a structure was determined by finding 
the natural frequency of an equivalent vibratory system. Although a distribution of mass is 
not needed for static analysis, in order to determine the natural frequencies, a virtual inertia 
was introduced to create a vibratory system and a large artificial mass was applied to 
suppress the motion corresponding to a constraint. The terms virtual and artificial inertia are 
used to indicate the difference in the purpose of the introduced mass. Virtual inertia is used to 
obtain the vibration mode(s) of an otherwise non-vibratory system while the artificial inertia 
is used to enforce a constraint. Using a large value for the artificial mass helps to prevent its 
movement effectively constraining the corresponding degree of freedom, and vibration 
analysis of the system with the vibrating virtual mass gives the required mode. The method 
proved successful but when attempting to apply this approach to solve a heat transfer problem 
after introducing a distribution of pseudo mass (unlike a structural system where an actual 
mass or inertia makes it a vibratory system, for a heat transfer problem since the term mass 
has no physical meaning, instead of virtual mass we use the term pseudo mass), effectively 
creating a membrane vibration problem, the following challenges emerged. 
 
It was found that while eigenpenalty functions can be successfully used to effect 
homogeneous Dirichlet boundary conditions (constraints such as zero temperature in a heat 
transfer problem or zero displacement in a vibration problem), imposition of inhomogeneous 
Dirichlet conditions (prescribing temperature distribution along a boundary or imposing a 
displacement profile in a structure) was not straightforward. The reason for this is the fact 
that the vibratory characteristics of a linear system depends only on the constraints during 
vibration and not on any existing static displacements. Thus the non-homogeneous Dirichlet 
type boundary conditions cannot be satisfied merely by superposition of the natural modes. 
This meant the inhomogeneous conditions had to be met by adding corrector terms which 
only changed the boundary values without affecting the governing equations throughout the 
domain of interest. However, the addition of a suitable temperature distribution throughout 
the plate domain to match the prescribed distribution at a boundary caused a violation of the 
governing equation effectively resulting in an additional distribution of heat input. 
Application of an equal and opposite heat input to correct this resulted in violation of the 
adiabatic conditions (but the conditions at the boundary subject to an imposed temperature 
distribution remained unchanged due to the presence of the penalty terms). Therefore a final 
correction had to be made by applying heat input at the insulated boundaries. Thus the 
procedure consisted of four major steps. These were as follows: 
 

1.) First a set of orthogonal functions that satisfied adiabatic conditions along some 
edges, and zero temperature along an edge which was to be subject to a prescribed 
temperature distribution was generated. 

2.) In order to correct the temperature distribution at the boundary where the non-zero 
prescribed distribution was to be imposed, an extra temperature distribution was 
introduced over the full domain in the form of a low order polynomial. This had the 
effect of an imposed heat input distribution. This was removed by applying an equal 
and opposite heat distribution. Violations to the adiabatic boundary conditions were 
additionally corrected by applying an equal and opposite heat flow distribution along 
the relevant edges.  

3.) The overall PDE was solved using the characteristic functions generated in step 1, 
taking into account the corrector heat generation terms obtained in step 2.  



4.) Finally the low order polynomial chosen as part of step 2 was superimposed to 
produce the final solution.  

 
It should be noted here that once the orthogonal characteristic temperature modes were 
determined, solving the PDEs meant summing the coefficients of a series only and did not 
require a significant effort.  

 
It is useful to compare the procedure we propose with an enhanced version of the method of 
eigenfunction expansions (MME) presented by Shankar [24] in which solutions to boundary 
value problems were generated using eigenfunctions. In [24] eigenfunctions corresponding to 
a larger embedding domain were used to generate the solution to a given boundary value 
problem, thus removing the limitation of the type of geometries that could be solved using the 
MME. In the present work, eigenfunctions are generated for the actual domain but the 
boundary conditions are satisfied by using the procedure described above. 
 

2. Theoretical Derivations 
 

(a) Solving a 2-D steady-state heat transfer problem with prescribed temperature distribution 
along one edge using the vibration modes of an equivalent membrane  

The governing partial differential equation for steady-state two dimensional heat transfer in a 
rectangular plate with constant thermal conductivity is  
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where  represents the net heat generation in the plate and  is the conductivity vector. 
Using Galerkin’s method, for a suitable choice of a series approximation for the temperature 
T, this may be discretised to obtain a matrix equation of the form 

Gq& condk
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Here D is the derived conducivity matrix, H is the heat generation vector, [19] and C is the 
undetermined weighting coefficients.  It is useful to point out at this stage that equations (2.1) 
and (2.2) are analagous to those used in solving a two-dimensional membrane deflection 
problem; where conductivity matrix, D, is analogous to the membrane stiffness matrix and H 
is analogous to an applied pressure at the membrane’s surface. The field variable T which 
represents the temperature distribution in a heat transfer problem would represent the 
deflection in the membrane problem. 

We will consider a general two dimensional heat transfer case where a prescribed 
temperature distribution, ζ(y) is applied along one of the edges and adiabatic boundary 
conditions are imposed along the remaining three.  

Before solving Eq. (2.2), a pseudo vibration problem is constructed that will produce mode 
shapes with zero values of the field variable at the edge where the temperature distribution is 
to be applied. These mode shapes will later be used as admissible functions in Eq. (2.1). 
Mode shapes are assumed to be the form 
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where functions f and g are continuous over the domain of the plate. The corresponding 
eigenvalue problem is of the form 
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Eq. (2.4) is now analogous to a membrane vibration problem, where the conductivity matrix, 
D, is identical to that used in equation Eq. (2.2). The M matrix is derived assuming a uniform 
pseudo mass density over the  area of the plate. For convenience this has been taken as unity. 
We additionally include a penalty mass term in the M matrix entries such that a distributed 
penalty mass of γ magnitude is applied along one of the four edges. As has already been 
demonstrated by Ilanko and Tucker [19]. the conductivity matrix  D may be given by 
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The pseudo mass matrix for a unifrom plate may be expressed as 
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Eq. (2.4) can now be solved to produce the desired mode shapes, each with zero temperature 
at the required edge, (x = a in this case). 

In order to bring the temperature at the edge x = a up to the required temperature distribution, 
ζ(y), a suitable additive function must be selected which can be superimposed onto the final 
solution. An obvious choice is simply ζ(y). However the effects of adding such a function 
must be taken into consideration such that the overall partial differential equation can still be 
satisfied. A suitable ‘heat generation’ corrector term can be generated by applying Eq. (2.1) 
to ζ(y), as shown below 
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In addition to this, a second ‘heat flow’ corrector term must be created to ensure that any 
required adiabatic conditions are satisfied. At such edges the first partial derivative in the 
normal direction must be zero. Such corrector terms are required along edges y = 0 and y = b 
for the case discussed. These are equated as follows 
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Eq. (2.2) can now be solved using the D matrix defined in Eq. (2.5) and the heat generation 
vector, H, shown below, where once again nijr )1( −+= .  
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It is worth noting that since the same D matrix was used in the solution of the eigenvalue 
equation (2.4) computational procedures such as LU decomposition need not be repeated. 
Once the C vector has been obtained, the final steady-state temperature distribution of the 
plate can be expressed in the form 

                                      ∑ ∑= =
+=

nn

s

nn

r jisrs yygxfCCyxT
1 1 , )()()(ˆ),( ζ                               (2.10) 

 

(b) Alternative solutions 
 
Lagrangian multipliers provide a relatively simple means of imposing constraints in a 
variational problem. This method however requires line constraints to be approximated as a 
series of points, each point requiring an additional row and column in the overall system 
matrix. The additional equations required to impose each prescribed point are of the form 
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An additional energy term must also be included into Galerkin’s formulation for each 
constraint added.  This is shown below 
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where Amn+u is the Lagrangian multiplier corresponding to the uth constraint. Unlike the 
pseudo vibration technique described in (a), the Lagrangian method allows the steady-state 
temperature distribution to be determined upon solving a single set of simultaneous 
equations. The overall matrix equation is of the form 
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The  entries are identical to those described in Eq. (2.5) for r and s terms less than n2, 
rearranging (2.12) produces the additional  required terms as follows 
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Additional terms are also required in the A and H vectors, these are  
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Solving Eq. (2.13) gives a solution of the form 
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Another alternative is the conventional penalty parameter technique, which also allows a 
solution to be obtained without solving an eigenvalue problem. Once again the governing 
matrix equation is of the form shown in Eq. (2.13). However, in this case, a penalty is 
imposed on any deviation from the prescribed temperature distribution, ζ(y), at the edge x = 
a. This penalty is incorporated into the overall conductivity and heat generation terms as a 
potential energy term. This is analogous to the potential energy stored in a spring of large 
stiffness in a membrane deflection problem and is given as follows,  
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where α is a penalty parameter of sufficiently large magnitude. Unlike the Lagrangian 
multiplier technique, the penalty parameter technique does not require additional rows or 
columns in the system matrices. Eq. (2.17) is simply included in the overall partial 
differential equation, resulting in an additional term which must be included in the 
conductivity entries equated in Eq. (2.5). This is shown below 
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Incorporating Eq. (2.18) into the overall partial differential equation also produces a heat 
generation vector with entries of the form 
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The penalty parameter technique once again produces a solution of the form shown in Eq. 
(2.17). 
 
 

3. Results and Discussion 

As an illustrative example, a simple two dimenional steady-state heat transfer problem will be 
considered with a prescribed parabolic temperature distribution along the edge x = a. ζ(y) will 
arbitrarily be taken as  

                                        ⎟
⎠
⎞

⎜
⎝
⎛ −=

b
y

b
yTy 1ˆ4)(ζ   where = 100ºC                                     (3.1) T̂

The reamaining three sides will be taken as adiabatic. Plate dimensions will be taken as  unity 
for ease of calculation. Polynomial shape functions of the following form will be used 
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This is the same problem considered by Ilanko and Tucker [19], in which the use of positive 
and negative values for the conventional penalty parameter was advocated. This example 
provides a relatively difficult case to model as the prescribed boundary conditions create 
singularities at two of the corners. At points (1,0) and (1,1) the slope imposed by ζ(y) directly 
conflicts with the adiabatic conditions along edges y = 0 and y = 1. Analytical solutions are 
readily available for this situation [25], and will be used to assess the accuracy of the results 
obtained using the inertial penalty technique. 

Combining equations (3.2a) and (3.2b) with equations (2.5) and (2.6) gives the conductivity 
and pseudo mass matrices for this case. Carrying out the required integration gives 
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Equating equations (2.7), (2.8a) and (2.8b) and combining with Eq. (2.9) gives the heat 
generation vector 
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where 
bi
a

=β for j = 0, and 0=β  for j > 1 

Equations (2.2) and (2.4) can now be solved using matrix algebra. Figure 1 shows  the 
steady-state temperature distribution predicted using n = 7, and γ = 50. 

As demonstrated by Carslaw and Jaeger [25], standard procedures yield an analytical solution 
for this problem of the form 
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The inertial penalty solution, (shown in figure 1) compares well with the analytical solution 
which has been evaluated in a recent publication [19]; it also behaves correctly about the two 
singularities, (as mentioned earlier these occur at (1,0) and (1,1)). Some deviation can 
however be seen along the edges y = 0 and y = 1. This deviation was also seen in the 
Lagrangian multiplier solution obtained using n = 7 and is most likely due to the relatively 
low number of terms being used in both cases,  (the analytical solution shown in Figure 2 was 
constructed using 1500 shapes whereas penalty inertial solution was obtained using only 49 



(n x n)). In terms of computational power both the Lagrangian multiplier method and the 
penalty inertia technique have slight advantages over the analytical solution. The predictions 
obtained using 49 terms for both penalty techniques were slightly more accurate than those 
obtained when the analytical solution is truncated to the same size. The Lagrangian multiplier 
method allowed more terms to be used than the inertial penalty technique before numerical 
instabilities arose and, for this example, modelled the prescribed temperature distribution 
extremely well.  

The results obtained using the inertial penalty method are compared to those obtained using 
both the ordinary penalty method and the Lagrangian multiplier method in Table 1. To ensure 
a fair comparison, n was taken as 5 in all three cases; this allowed a range of penalty 
magnitudes to be trialled without introducing numerical overflow in the inertial penalty 
solutions. As has already been discussed, solutions were obtained with the inertial penalty 
method using up to 7 terms, however with n = 7 the magnitude of γ was limited to 50 and less. 
The same polynomial shape functions were used in each case. Eleven equally spaced points 
were used to approximate ζ(y) in the Lagrangian multiplier solution. 

Table 1 shows that both the inertial penalty, and ordinary penalty methods produce results 
which converge towards the equivalent Lagrangian multiplier solution. Table 1 also suggests 
that the inertial penalty parameters of only one-tenth the magnitude are required to obtain 
results similar to those produced using the conventional penalty parameter technique.  

Although increases in magnitude of the inertial penalty parameter were observed to produce 
more accurate results, upper limits were seen above which results no longer converged due to 
large round-off errors. For n = 5, inertial penalty magnitudes greater than 1000 were found to 
produce complex mode shapes and inaccurate temperature predictions. As the number of 
mode shapes used was increased the upper limit was found to decrease; when n was increased 
to 7 the maximum magnitude was reduced to 50 and with n = 8 the maximum was only 12. 
Similar problems were also observed when using the ordinary penalty parameter method. For 
this problem a maximum penalty parameter magnitude of 105 was observed for n = 5. A more 
effective way of obtaining accurate solutions is shown in the second column of table 1. 
Instead of using increasingly large penalty values a combination of positive and negative 
penalty values is used to predict the constrained solution as recommended in two recent 
publications [20, 21]. 

Figure 2 illustrates the convergence and bounding nature of the results obtained using the 
inertial penalty method. It also shows how positive and negative inertially penalised solutions 
approach the corresponding Lagrangian solution from opposite sides. This bracketing effect 
has obvious benefits as it allows the maximum tolerance in any prediction to be determined, 
(as shown by the |Τ+γ − Τ−γ|/2 and |Τ+α − Τ−α|/2 columns in Table 1). 

One interesting observation which can be made regarding Table 1 and Figure 2 is that, for n = 
5, neither the inertial penalty method nor the ordinary penalty parameter method bracket the 
analytical solution calculated using equation (3.6). Table 2 however shows that increasing the 
number of terms used in the series produces results which converge to the analytical value.  

It may be noted that n = 7 produces results which bracket the analytical solution within 
±0.0001K. Results could not be obtained for n values greater than 8, even when low 
magnitude inertial penalty parameters were used. At higher n values numerical overflow 
problems were once again encountered. These issues were most likely due to the increasing 



order of the polynomial shape functions used. It may be possible to overcome this problem by 
selecting alternative shape functions, which are less likely to produce excessively large or 
small numbers.  

The results presented in this paper show that, pseudo inertial terms can be used to solve a 
steady state heat transfer problem. However, in relation to the conventional penalty parameter 
method, the authors found the technique to be somewhat laborious. Nevertheless, there is a 
slight advantage in using the inertial penalty method. Unlike the ordinary penalty parameter 
method, the inertial penalty technique does not exhibit any critical penalty values, [16, 19]. In 
the ordinary penalty parameter technique, if the magnitude of the negative penalty parameter 
used is less than the critical penalty values, the results may be unreliable. It is also possible to 
obtain bracketing solutions to the constrained problem by using a combination of positive 
ordinary penalty terms and positive inertial penalty terms. Additionally it must be noted that 
mode shapes need only be generated once and can be used to solve a range of different 
problems without the need to repeatedly solve the eigenvalue problem. The orthogonality 
conditions used enable relatively fast computation times once the mode shapes have been 
generated.  

 
4. Concluding Remarks 

 
A two dimensional steady state heat transfer problem involving adiabatic conditions and 
prescribed temperature distributions along boundaries has been solved using a penalty 
method. A pseudo inertia distribution was introduced to the system to obtain characteristic 
orthogonal functions that satisfy zero temperature along boundaries which are to be subject to 
a prescribed temperature distribution. The zero temperature distribution was effected by 
adding large inertial type penalty terms. Further temperature distributions were imposed on 
the system in the form of low order polynomials to satisfy the boundary conditions. The new 
heat flow distribution generated by the added temperature distribution was cancelled by the 
application of an equal and opposite distribution for which the resulting temperature profile 
was determined. The final temperature distribution found by superposition agreed well with 
results generated from alternative methods. The results show that the solution obtained in this 
way converges towards the constrained solution as the magnitude of the inertial penalty 
parameter increases irrespective of the sign of the penalty term. Furthermore, the constrained 
solution was found to be bounded by results obtained using positive and negative inertial 
penalty terms.  
 
This shows that the inertial penalty method can be applied to generate the characteristic 
orthogonal modes of a system defined by boundary value problems if a distribution of pseudo 
inertia and inertial penalty terms are introduced. Depending on the nature of the boundary 
value problems, several steps are needed to obtain the final solution. While this appears to be 
a disadvantage, it should be noted here that once the orthogonal functions are found, all 
remaining calculations require only basic matrix algebra and the solution is generated by 
computing the terms in a series. 
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Table 1: Temperature at the Centre of the Plate using Inertial and Ordinary Penalty 
Parameter Methods (n = 5) 

Penalty 
Magnitude 

Penalty Inertia Technique Penalty Parameter 
Technique 

ΤLagrangian ΤAnalytical ( )
2

γγ −+ + TT
 

2
γγ −+ − TT

 
( )

2
αα −+ + TT

 
2

αα −+ − TT
 

105 --- --- 68.2528K 0.0002K 68.253K 68.402K

104 --- --- 68.253K 0.0006K 68.253K 68.402K

103 68.253K 0.0005K 68.2757K 0.0288K 68.253K 68.402K

102 68.253K 0.0053K 68.2468K 0.0577K 68.253K 68.402K

101 68.2537K 0.0533K 69.7589K 2.0472K 68.253K 68.402K

100 68.3237K 0.5357K --- --- 68.253K 68.402K

 



Table 2: Convergence of Inertially Penalised Solution at Plate Centre towards the Analytical 
Solution,    (γ = 50) 

n ( )
2

γγ −+ + TT
 

ΤLagrangian ΤAnalytical 

3 65.2778K --- 68.402K 

4 65.5261K 65.5260K 68.402K 

5 68.2531K 68.2530K 68.402K 

6 68.2725K 68.2725K 68.402K 

7 68.4028K 68.3796K 68.402K 

 

 



 

Figure 1: Steady-State Temperature Distribution Predicted Using n = 7 and γ = 50 

 



 

Figure 2: Temperature at Centre of Plate Predicted Using Various Magnitudes of Inertial 
Penalty Parameter, (n = 5) 

 


