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Abstract

In the globalization era, cryptography becomes more popular and powerful; in

fact it is very important in many areas (i.e. mathematics, computer science,

networks, etc). This thesis provides an overview and comparison between the

RSA cryptosystem and elliptic curve cryptography, which both focus on send-

ing and receiving messages. The basic theories of the RSA cryptosystem and

elliptic curve cryptography are explored. The RSA cryptosystem and elliptic

curve cryptography theories are quite similar but elliptic curve cryptography

is more complicated. The idea of the RSA cryptosystem is based on three

popular theorems which are Euler’s Theorem, Fermat’s Little Theorem and

the Chinese Remainder Theorem. This discussion shows that the reliability

and strong security of the RSA cryptosystem depends on the degree of dif-

ficulty of integer factorization. Therefore, methods for integer factorization

are discussed. In addition I show how the security of elliptic curve cryptog-

raphy depends on the apparent difficulty of solving the elliptic curve discrete

logarithm problem (ECDLP).
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Chapter 1

Introduction

Cryptography is the area of mathematics that disguises the information or

data of communications. The purpose of cryptography is to secure the mes-

sage between two persons so another person or adversary cannot understand

the enciphered message. Only the recipient can decipher the message. For

instance, military, government and diplomatic communications are suitable

applications for cryptography.

The objective of this thesis is to compare the encryption and decryption

between the RSA cryptosystem and elliptic curve cryptography. I also describe

some examples of their applications.

The RSA cryptosystem is the best known and most commonly used cryp-

tosystem. It is often called the public key cryptosystem. Elliptic curve cryp-

tography is the other cryptosystem which is included in this thesis. It involves

solving the discrete logarithm problem for elliptic curves over a finite field.

Chapter 1 outlines the literature review, history of cryptography and some

basic theorems and algorithms. Then a description of the Diffie-Hellman key

exchange method and the El-Gamal public key cryptosystem are provided.

In Chapter 2 I discuss the RSA cryptosystem. The chapter begins with

the Euler’s formula and integer factorization that are significant for RSA. The
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RSA algorithm and primality testing are introduced. Further, the theory of

discrete logarithm in a finite field (Fp) and some applications of RSA are also

provided.

Chapter 3 is about elliptic curves and the associated elliptic curve cryptog-

raphy method. Further, a description of the elliptic curve discrete logarithm

problem is provided. I also present some applications of elliptic curve cryp-

tography in the real life.

Chapter 4 includes a comparison between the RSA cryptosystem and ellip-

tic curve cryptography, using Mathematica software. This also includes some

examples to show how the encryption and decryption works in each case.

In Chapter 5 some conclusions will be made.

1.1 Literature review

The following are the literature I consulted:

1. Books

(a) Title: An Introduction to Mathematical Cryptography.

Authors: Jeffrey H., Jill P., Joseph H.S.

Publication: Springer, 2008.

Chapters used: 1, 2, 3 and 5.

(b) Title: Elliptic curves (Number theory and Cryptography).

Author: Lawrence C.Washington.

Publication: Chapman & Hall / CRC, 2003.

Chapters used: 2, 4, 5 and 6.

(c) Title: A classical introduction to cryptography exercise book.

Authors: Thomas Baignères, Pascal Junad, Yi Lu and Serge Vau-

denay.
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Publication: Springer Science + Business Media Incorporation, 2006.

Chapters used: 1 and 9.

(d) Title: Cryptoclub: Using mathematics to make and break secret

codes, workbook.

Authors: Beissinger, Janet, Pless and Vera.

Publication: AK Peters Limited, 2006.

Units used: 1, 2, 3, 6 and 7.

(e) Title: Basics of contemporary cryptography for IT practitioners.

Authors: Ryabko, Boris, Fionov and Andrey.

Publication: World Scientific Publishing Company Incorporated,

2005.

Chapters used: 2, 3 and 6.

(f) Title: Elliptic curves, A computational approach.

Authors: Susan Schmit and Horst G. Zimmer.

Publication: Berlin, Germany, 2003.

Chapters used: 1 and 3.

(g) Title: Rational points on elliptic curves.

Author: Joseph H. Silverman.

Publication: Springer-Verlag, New York Incorporation, 1992.

Chapters used: 1, 2 and 4.

(h) Title: An introduction to cryptography.

Author: Richard A. Mollin.

Publication: Chapman & Hall, 2001.

Pages used: 1 - 251.

2. Lecture notes

(a) Title: INFO412 - Mathematical and Cryptography.
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Authors: Associate Professor Peter Nickolas & Professor Martin

Bunder.

Publication: School of Mathematics & Applied Statistics, Univer-

sity of Wollongong,Australia.

Sections used: 4, 6, 7, 8, 9, 10 and 11.

(b) Title: RSA crptosystem.

Author: Xin Guo.

Publication: Department of Industrial Engineering and Operations

Research.

Section used: Introduction.

(c) Title: Lecture 22: Cryptology.

Author: R. Sedgewick.

Publication: Department of Computer Science, Princeton Univer-

sity.

Pages used: 1 - 7.

(d) Title: Lecture 14 - Elliptic curve cryptography.

Author: Avinash Kak.

Publication: Computer and Network Security, Purdue University.

Pages used: 1 - 48.

(e) Title: Online number theory lecture notes and teaching materials.

Author: Keith Matthews.

Publication: Brisbane, Australia. Topics used: 22, 23 and 43.

(f) Title: Chapter 6 - RSA cryptosystem.

Author: Jozef Gruska.

Publication: Faculty of Informatics, Masaryk University.

Pages used: 1 - 15.

(g) Title: Lecture 12 - Non-secret key cryptosystems (How Euclid, Fer-
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mat and Euler created E-Commerce).

Author: David Evans.

Publication: Department of Computer Science, University of Vir-

ginia.

Address: http://www.cs.virginia.edu/cs588/lectures/lecture12.ppt

Pages used: 1 - 34.

(h) Title: Security.

Authors: Kevin Wayne and Robert.

Publication: Department of Computer Science, Princeton Univer-

sity.

Address: http://www.cs.duke.edu/courses/spring04/cps001/notes/Security-

4up.pdf

(i) Title: The RSA public key cryptosystem.

Author: Kevin Jeffay.

Publication: Department of Computer Science, University of North

Carolina.

Pages used: 1 - 11.

(j) Title: Number theory lecture notes.

Author: Broughan, K.A.

Publication: Department of Mathematics, University of Waikato.

Chapters used: 1, 2, 5, 6, 9, 10, 11, 12 and 14.

3. Web sources

(a) Title: Overview of Elliptic Curve Cryptosystems.

Address: www.rsa.com/rsalabs/node.asp?id=2013.

Publication: RSA Laboratories.

(b) Title: Elliptic curve cryptography, An introduction.

Author: Dr. F. Vercauteren.
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Publication: Katholieke Universiteit Leuven.

Address: www.cosic.esat.kuleuven.be/publications/talk-95.pdf

Content used: Introduction.

(c) Title: Elliptic curve cryptography.

Publication: Wikipedia.

Address: http://en.wikipedia.org/wiki/Elliptic curve cryptography

(d) Title: Securing the web with elliptic curve cryptography.

Publication: Sun Microsystems Incorporation.

Address: http://research.sun.com/projects/crypto/

Section used: Introduction.

(e) Title: Elliptic curve cryptography.

Author: Steven Galbraith.

Publication: Department of Mathematics, University of Auckland,

New Zealand.

Address: www.isg.rhul.ac.uk/∼sdg/ecc.html

Section used: Summary.

(f) Title: An introduction to the RSA cryptosystem.

Author: Marcus Griep.

Address: www.devhood.com/Tutorials/tutorial details.aspx?tutorial id =

544

4. Journals, papers and book chapter

(a) Title: Elliptic curve cryptography and smart card.

Author: Ahmed Khaled M. Al-Kayali.

Publication: SANS Institute InfoSec Reading Room.

Pages used: 1 - 15.

(b) Title: The advantages of elliptic curve cryptography.
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Author: Kristin Lauter.

Publication: Microsoft Corporation.

Pages used: 62 - 67.

(c) Title: Elliptic curve cryptosystem and its application.

Authors: G.V.S Raju and Rehan Akbani.

Publication: Proceedings of the IEEE International Conference on

Systems, Man & Cybernetics (IEEE-SMC), 2003.

Pages used: 1 - 4.

(d) Title: Efficient implementation of elliptic curve cryptography and

personal digital assistance (PDAs).

Authors: Amol Dabholkal and Kin Choong Yow.

Publication: Nanyang Technological University, Singapore.

Sections used: Abstract, introduction and elliptic curve cryptogra-

phy.

(e) Title: Overview of elliptic curve cryptography.

Authors: Kiyomichi Araki, Takakazu Satoh and Shinji Miura.

Publication: Springer-Verlag Berlin Heidelberg.

Sections used: Introduction, discrete logarithm problem and the

ElGamal system.

(f) Title: RSA cryptosystem.

Author: Weihu Hong.

Publication: Department of Mathematics, Clayton College & State

University.

Pages used: 1 - 6.

(g) Title: RSA cryptosystem.

Author: Silvia Robles.

Publication: Massachusetts Institute of Technology.
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Pages used: 1 - 10.

(h) Title: Securing telecommunication based on speaker voice as the

public key.

Authors: Monther Rateb Enayah and Azman Samsudin.

Publication: IJCSNS International Journal of Computer Science

and Network Security, VOL. 7 No. 3.

Pages used: 1 - 9.

(i) Title: Introduction to elliptic curve cryptography.

Author: Elisabeth Oswald.

Publication: Institute of Applied Information Processing and Com-

munication, Austria.

Contents used: Abstract and section 1.

(j) Title: Introduction to cryptography.

Author: Johannes Buchman.

Publication: Springer 2004.

Chapter used: 7.

5. History

(a) Title: Public key cryptography (PKC) History.

Address: www.livinginternet.com/i/is crypt pkc inv.htm

(b) Title: Cryptography.

Publication: Cryptography portal.

Address: en.wikipedia.org/wiki/Cryptography

(c) Title: History of cryptography.

Author: David Terr.

Address: www.davidterr.com/science-articles/cryptography.html

(d) Title: RSA.
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Publication: Wikipedia.

Address: en.wikipedia.org/wiki/RSA

(e) Title: A brief history - The origins of public key cryptography and

ECC.

Address: www.certicom.com/index.php/a-brief-history

(f) Title: A brief history of cryptography.

Authors: Charles Edge, Wlliam Barker and Zack Smith.

Publication: Foundation of Mac OS X Security.

1.2 A brief history of cryptography

1.2.1 Introduction and terminology of cryptography

Both cryptography and cryptology are mathematics and computer science ar-

eas that focus on security of information, particularly encryption and verifica-

tion. Nowadays, cryptography makes frequent use of mathematics, especially

discrete mathematics (i.e. number theory, information theory, computational

complexity, statistics and combinatorics). Recently, cryptography has become

an important part of computer and network security. This is to protect the

communication between computers (i.e. to protect data in the computer and

to protect data when it is being transferred), [58, 63].

Cryptography is from the Greek language where ‘kryptos’ means “hidden”

and ‘graphein’ means “to write”. So, generally cryptography means “secret writing”.

Cryptology means “the study of secret writing” and cryptanalysis means “code breaking”.

Basically, cryptography is concerned with encryption which is the process of

converting plaintext (i.e. the original message) into ciphertext (i.e. the dis-

guised message). The reverse process of encryption is called decryption (i.e.
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transforming the ciphertext into plaintext), [63, 58].

1.2.2 Types of cryptosystems

1. Caesar’s cipher

Caesar’s cipher was invented by Julius Caesar around 100 B.C. - 44 B.C.,

and used during his military campaigns. This cipher is one of the earliest

and simplest substitutions. The message (or plaintext) is encrypted by

changing each letter into a fixed number and then replacing each number

with a new letter which is also in the alphabet. The problem with this

method is that Caesar’s ciphers are very easy to break. Caesar’s cipher

is an instance of a substitution cipher, where each letter is substituted

with a different letter from the alphabet. By using the frequency of

occurrence of letters in the languages (i.e. English or others), these

substitution ciphers are very easy to break, [59, 58].

2. Vignere cipher

The Vignere cipher was created by Giovan Batista Belaso in 1553. This

cipher uses a secret keyword to encrypt the plaintext (i.e. the original

message). First, each letter in the plaintext is converted into a number.

Then this numerical value for each letter of the plaintext is added to the

numerical value of each letter of a secret keyword to get the ciphertext.

The Vignere cipher is harder to break than a substitution cipher, [59].

3. One-Time Pad

The one-time pad was invented in 1917. It is a very secure cryptosystem.

This cryptosystem works like the Vignere cipher, but this cipher uses a

secret keyword which is as long as the original text. Unfortunately, this

one-time pad might only be used once as the name implies, [59].
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4. Enigma

The Enigma machine was used during World War II by the German

Army to encrypt messages. The Enigma machine was like a typewriter

and applied a 4-letter secret code that was set by a user. The encrypted

message was considered to be impossible to break. The Allies tried to

break and analyze the code and did so near the end of the war, [59, 58].

5. Symmetric-key cryptography

Symmetric-key cryptography is where both senders and receivers share

the same keys. So those keys are used for both encryption and decryp-

tion. They are used mainly with block ciphers and stream ciphers. The

block cipher is an alphabetic form of cipher in which a block of plaintext

data and a key is taken, then ciphertext of the same size is output. In

contrast, stream ciphers works by creating randomly a long stream of

key material, which is combined with plaintext. It works like a one-time

pad encryption technique. Unfortunately, the key for decryption is eas-

ily calculated from the key used for encryption. The reason for this is

the key is hard to hide during transport (or passing). Besides, the key

and the method of decryption must be sent to the correct receiver. The

following cryptosystem solves this problem, [59, 58, 63].

6. Public-key cryptography

Public-key cryptography is also known as asymmetric key cryptography

because it uses two different keys. The following are the types of public-

key cryptography:
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(a) Diffie-Hellman cryptosystem

This is the first public-key cryptosystem that was invented by Whit-

field Diffie and Martin Hellman, working in collaboration with Ralph

Merkle in 1976. This cryptosystem uses two different keys, but they

are related: a public key and a private key. Both keys are secretly

generated. Basically, the public key is used for encryption while

the private key is used for decryption. The Diffie-Hellman algo-

rithm is based on the difficulty of the discrete logarithm problem.

Even though Diffie achieved the concept of an asymmetric cipher,

he did not really get the precise function that met his requirements.

This only solved the key distribution. However, he inspired other

mathematicians and scientists to discover another cipher, the RSA

cryptosystem which is discussed next, [58, 63, 59, 47, 62, 61].

(b) RSA cryptosystem

RSA cryptosystem was developed by Ronald Rivest, Adi Shamir

and Leonard Adleman in 1978. It has become a standard public-

key cryptography used to encrypt private data, and it was the first

published public key system. The high level of security of RSA de-

pends on the difficulty of factoring large numbers which are prod-

ucts of large primes. Around the 1980s, scientists noticed that even

though this difficulty occurred, it still did not achieve sufficient

security. Therefore, they developed a strong method for security

which created a hypothesis about the weaknesses of an adversary.

This method is used with specific computational algorithms to meet

the requirements of security. In 1984 the ElGamal public-key en-

cryption appeared. It was based on the discrete logarithm problem

and competed with the RSA cryptosystem. A year later, elliptic

curve cryptography appeared which was also based on the discrete
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logarithm problem, [47, 58, 62, 63, 61, 60].

(c) Elliptic curve cryptography

Elliptic curve cryptography was invented by Neal Koblitz and Vic-

tor S. Miller in 1985. This is an efficient algorithm because it is

based on the discrete logarithm problem, which is apparently harder

to solve than other algorithms, particularly algorithms for factoring,

[62, 63, 39].

1.3 Basic theorems

The following results are standard propositions in elementary number theory.

Theorem 1.1 (Euler’s Theorem).

Let φ(n) be Euler’s phi function (i.e. φ(n) = ♯{j : 1 ≤ j ≤ n, gcd(j, n) = 1}).

If gcd(a, n) = 1 then aφ(n) ≡ 1 (mod n).

Proof. Let k1, k2, . . . , kφ(n) be a complete set of residues prime to n. Since

gcd(a, n) = 1, then ak1, ak2, . . . , akφ(n) is also a complete set of residues prime

to n. Then,

k1k2 . . . kφ(n) ≡ ak1ak2 . . . akφ(n) (mod n)

≡ aφ(n)k1k2 . . . kφ(n) (mod n)

Since gcd(ki, n) = 1, we can cancel ki from each side which gives

1 ≡ aφ(n) (mod n).

�

Theorem 1.2 (Fermat’s Little Theorem).

If p is prime then ap ≡ a (mod p) and if p ∤ a then ap−1 ≡ 1 (mod p).
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Proof. p ∤ a implies that gcd(a, p) = 1. Also, φ(p) = p − 1 and so ap−1 ≡

1 (mod p). Multiplying by a proves the first result in the case p ∤ a. If p|a

then a ≡ 0 (mod p) and so both sides are 0 (mod p). �

Theorem 1.3 (Chinese Remainder Theorem).

Let m1, m2, . . . , mk be a collection of pairwise relatively prime integers. This

means that

gcd(mi, mj) = 1 for all i 6= j.

Let a1, a2, . . . , ak be arbitrary integers. Then the system of simultaneous con-

gruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ak (mod mk) (1.1)

has a solution x = c. Further, if x = c and x = c′ are both solutions, then

c ≡ c′ (mod m1m2 . . .mk). (1.2)

Proof. (See [1, Theorem 2.25, p83]) �

1.4 Basic algorithms

Theorem 1.4 (Division Algorithm), [52].

Given any strictly positive integer d and any integer a, then there exist unique

integers q and r such that

a = qd + r and 0 ≤ r < d.

Proof. To prove this algorithm, we need to look at the existence and unique-

ness which are to be proved separately.

Lemma: If a − qd ≥ d for a certain value of q, then we can replace q by

q′ = q + 1 and still satisfy the condition a − q′d ≥ 0.
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Proof: If a− qd ≥ d and q′ = q + 1, then a− q′d = a− (q + 1)d = a− qd− d ≥

d − d = 0. QED (Lemma).

Proof for existence:

Consider the set of all numbers of the form a − qd, such that q is an integer

and a − qd ≥ 0. There do exist numbers in the set: for instance, if a is

positive, then a is in the set (i.e. choose q = 0), and if a is negative then

a − ad = −a(d − 1) = |a|(d − 1) is in the set (i.e. choose q = a) since by

assumption d is strictly positive and so d − 1 ≥ 0.

Since we have seen that the set of integers of the form a − qd such that

a − qd ≥ 0 is not empty, this set has a smallest number a − qd. Then by

assumption a − qd ≥ 0. We claim that for this particular q, a − qd < d. In

fact, if a − qd ≥ d, then by the lemma above we can replace q by q′ = q + 1

and still have a − q′d ≥ 0. But if q′ = q + 1 then a − q′d is smaller than

q − qd (because q′ < q and d > 0, so a − q′d < q − qd), so if a − q′d ≥ 0 this

would contradict the fact that we have already chosen the smallest possible

non-negative number of the form a−qd. This proves the claim that a−qd < d,

and that proves the existence part of the Division algorithm theorem.

Proof for uniqueness:

Note first that since r is uniquely determined by q (i.e. since it is required that

r = a− qd), what we need to show is that there exist a unique value of q such

that 0 ≤ a− qd < d. Now suppose that q and q′ are satisfy this condition, i.e.

0 ≤ a − qd < d and 0 ≤ a − q′d < d as well. Then by subtraction we see that

since a − q′d ≥ 0,

(q′ − q)d = (a − qd) − (a − q′d) ≤ a − qd < d,

and likewise
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(q′ − q)d = (a − qd) − (a − q′d) ≥ 0 − (a − q′d) = −(a − q′d) > −d

since a − q′d < d. Together, these two inequalities says that (q′ − q)d is an

integer strictly between −d and d. Since d > 0, one can divide through by d

to get

−1 < q′ − q < 1.

Since q′−q is an integer, this implies that q′−q = 0, (i.e. q′ = q). This finishes

the proof that q is unique and as previously noted it follows automatically that

r must also be unique. �

Theorem 1.5 (The Euclidean Algorithm).

Let a and b be positive integers with a ≥ b. The following algorithm computes

the gcd(a, b) in a finite number of steps.

1. Let r0 = a and r1 = b.

2. Set i = 1.

3. Divide ri−1 by ri to get a quotient qi and reminder ri+1,

ri−1 = ri · qi + ri+1 with 0 ≥ ri+1 < ri.

4. If the remainder ri+1 = 0, then ri = gcd(a, b) and the algorithm termi-

nates.

5. Otherwise, ri+1 > 0, so set i = i + 1 and go to Step 3. The division step

(Step 3) is executed at most

2 log2(b) + 1 times.

Proof. (See [1, Theorem 1.7, p13]). �
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It is easy to understand the algorithm of Theorem 1.5 if we use an example.

Example 1.1 Finding the gcd of 97 and 56 by the Euclidean Algorithm:

97 = 1(56) + 41

56 = 1(41) + 15

41 = 2(15) + 11

15 = 1(11) + 4

11 = 2(4) + 3

4 = 1(3) + 1

3 = 1(3) + 0

Thus, gcd(81, 57) = 1.

Theorem 1.6 (Extended Euclidean Algorithm).

Let a and b be positive integers. Then the equation

au + bv = gcd(a, b)

always has a solution in integers u and v.

Instead of a complete proof we give an example of a special case which illus-

trates the main idea of a complete proof.

Proof. Given gcd(a, b) = au + bv = z. Let c1 = a, c2 = b, u1 = 1, u2 = 0, v1 =

0, v2 = 1. Then,

c1 = c2q2 + c3

c2 = c3q3 + c4

c3 = c4q4 + c5

c4 = c5q5 + c6

c5 = c6q6 + 0.
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So, gcd(a, b) = c6 = z = au6 + bv6. The backward recurrence is

c6 = c4 − c5q5

= c4 − q5(c3 − c4q4) = c4 − c3q5 + c4q4q5

= c4(1 + q4q5) − c3q5

= (c2 − c3q3)(1 + q4q5) − c3q5

= c2 + c2q4q5 − c3q3 − c3q3q4q5 − c3q5

= c2(1 + q4q5) + c3(−q3 − q3q4q5 − q5)

= c2(1 + q4q5) + (c1 − c2q2)(−q3 − q3q4q5 − q5)

= c2(1 + q4q5) − c1q3 − c1q3q4q5 − c1q5 + c2q2q3 + c2q2q3q4q5 + c2q5

= c1(−q3 − q3q4q5 − q5) + c2(1 + q4q5 + q2q3 + q2q3q4q5 + q5)

= c1u5 + c2v5.

Thus, u5 = −q3 − q3q4q5 − q5 and v5 = 1 + q4q5 + q2q3 + q2q3q4q5 + q5. �

For the Extended Euclidean algorithm, it is easy to understand if we give

an example to show how it works.

Example 1.2 Take a = 987, b = 543. Apply the Euclidean Algorithm:

• Step 1: a1 = 987, b1 = 543.

987 = 543 · 1 + 444

• Step 2: a2 = 543, b2 = 444.

543 = 444 · 1 + 99

• Step 3: a3 = 444, b3 = 99.

444 = 99 · 4 + 48

• Step 4: a4 = 99, b4 = 48.
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99 = 48 · 2 + 3

• Step 5: a5 = 48, b5 = 3.

48 = 3 · 16 + 0

So,

gcd(987, 543) = 3.

Reversing the steps enables us to write the greatest common divisor as a mul-

tiple of 987 added to a multiple of 543:

3 = 99 − 48 · 2

= 99 − ((444 − 99 · 4) · 2)

= 99 − (2 · 444 − 99 · 8)

= 99 · 9 − 2 · 444

= 9 · (543 − 444) − (2 · 444)

= 9 · 543 − 7 · 444

= 9 · 543 − 7(987 − 543)

= 2 · 543 − 7 · 987.

So,

gcd(987, 543) = 3 = (−7) · 987 + 2 · 543

and we can take u = −7 and v = 3.
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1.5 The Diffie-Hellman key exchange method.

Here I give the steps in the well-known Diffie-Hellman key exchange method.

1. Alice and Bob are agree to use the large prime p with nonzero integer g

modulo p. Then they make the values of p and g available as public

knowledge. If possible, g is chosen such that its order (i.e., the order g

of is the smallest natural number n such that gn ≡ 1 (mod p)) in F∗

p

(the multiplicative group of the finite field of prime order p) is a large

prime.

2. Alice has to pick a secret integer known to her only, say a, (i.e. she

does not tell anyone the value of a). At the same time, Bob also picks

an integer b that he keeps secret. Then Alice and Bob use their secret

integers to compute A ≡ ga (mod p) and B ≡ gb (mod p) respectively.

3. Then Alice sends A to Bob and Bob sends B to Alice. Notice that a

third person, might be able to observe the values of A and B.

4. Lastly, Alice and Bob use their secret integers to calculate as follows:

Alice computes : A′ ≡ Ba (mod p) and

Bob computes : B′ ≡ Ab (mod p).

Note that A′ ≡ Ba ≡ (gb)a ≡ (ga)b ≡ Ab ≡ B′ (mod p), so

A′ ≡ B′ (mod p). This common value A′ and B′ is their exchange key.

Example 1.3 1. Alice and Bob agree to use the prime p = 937 and the

primitive root g = 610.

2. Alice chooses the secret key a = 345 and computes

A ≡ ga (mod p) ≡ 610345 (mod 937) ≡ 872 (mod 937).
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Similarly, Bob chooses the secret key b = 789 and computes

B ≡ gb (mod p) ≡ 610789 (mod 937) ≡ 223 (mod 937).

3. Alice sends Bob the number 872 and Bob sends Alice the number 223.

These transmission are done over an insecure channel, so both A = 872

and B = 223 is considered as a public knowledge. But the private keys

a = 345 and b = 789 are remain secret.

4. Suppose that an eavesdropper, say Eve, sees this entire exchange. So

she can reconstitute Alice’s and Bob’s shared secret if she can solve

either of the congruences:

A′ ≡ Ba (mod p) ≡ 223a (mod 937) ≡ 520 (mod 937) or

B′ ≡ Ab (mod p) ≡ 872b (mod 937) ≡ 520 (mod 937),

for a and b, since then she will know one of their secret exponents.

As far as is known, this is the only way for Eve to find the secret shared

value without Alice’s or Bob’s assistance.

1.6 The El-Gamal public key cryptosystem

The El-Gamal public key cryptosystem was invented by Taher ElGamal in

1985, [64]. This cryptosystem is based on the discrete logarithm problem

which is also connected to the Diffie-Hellman key exchange. Even though

Diffie-Hellman gives a method of transporting a secret key, it does not attain

all the objectives of public key cryptosystems. The Diffie-Hellman method

only provides a solution for the key distribution problem while the El-Gamal

public key cryptosystem solves the entire problem. A summary of El-Gamal

public key cryptosystem is given below.
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Public Parameter Creation

A trusted party chooses and publishes a large prime p

and an element g(mod p)of large (prime) order.

Alice Bob

Key creation

Choose a private key 1 ≤ a ≤ p − 1,

compute A ≡ ga(mod p),

publish the public key A.

Encryption

Choose a plaintext number m,

encode as a number m̂,

choose a random ephemeral key k,

use Alice’s public key A to compute

c1 ≡ gk(mod p) and

c2 ≡ m̂Ak(mod p),

Send the ciphertext (c1, c2) to Alice.

Decryption

Compute (ca
1)

−1 ∗ c2(mod p),

This quantity is equal to m̂.

Table 1.1: El-Gamal key creation, encryption and decryption, [1, Table 2.3,

p70].
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The following is an example using the El-Gamal public key cryptosystem.

Example 1.4 Bob chooses a prime p = 107 and primitive element g = 2.

Alice chooses a = 99 to be her private key. Then she computes and publishes

her public key A:

A ≡ ga (mod p) ≡ 299 (mod 107) ≡ 51 (mod 107).

Bob decides to send Alice the message encoded by m = 55. He chooses an

ephemeral key k = 197 and computes two quantities

c1 ≡ 2197 ≡ 70 (mod 107) and

c2 ≡ 55 · 51197 ≡ 81 (mod 107).

The pair (c1, c2) = (70, 81) is the ciphertext that Bob sends to Alice. Alice,

using her private key a = 99, first computes

(c1)
a ≡ 7099 ≡ 54 (mod 107) and then

((c1)
a)−1 ≡ 2 (mod 107).

Finally, Alice computes

((c1)
a)−1 · c2 (mod p) ≡ 2 · 81 ≡ 55 (mod 107),

and recovers the plaintext message m = 55.



Chapter 2

The RSA cryptosystem

Introduction: The RSA algorithm was developed by three reseachers,

Rivest, Shamir and Adleman in 1978, [60]. It is one of the most world famous

public-key cryptosystems. Its purpose is to secure communication via

networks by using public keys to encrypt and decrypt messages, where a

private key is kept secret.

In this chapter I describe the theories that are related to the RSA

cryptosystem. These are integer factorization, the RSA algorithm, primality

testing and solving the discrete logarithm problem in finite field. Also, I give

some applications of the RSA cryptosystem in the real world. Basically the

RSA cryptosystem is based on modular exponentiation. The modulus N is

the product of two large primes N = pq. I start with Euler’s formula which is

the fundamental formula for RSA cryptosystems.

2.1 Euler’s formula and roots modulo pq

Theorem 2.1 (Euler’s Formula for pq). [1, Theorem 3.1, p114]

Let p and q be distinct odd primes and let g = gcd(p − 1, q − 1). Then,

a(p−1)(q−1)/g ≡ 1(mod pq), for all a satisfying gcd(a, pq) = 1.
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Proof. By assumption, we know that p does not divide a and that g divides

q − 1, so we can compute

a(p−1)(q−1)/g = (a(p−1))(q−1)/g, ((q − 1)/g, is an integer)

≡ 1(q−1)/g (mod p), (ap−1 ≡ 1 (mod p), from Fermat Little Theorem)

≡ 1(mod p).

The exact same computation, reversing the roles p and q, shows that

a(p−1)(q−1)/g ≡ 1 (mod q). This proves that a(p−1)(q−1)/g − 1 is divisible by

both p and q. Hence, it is divisible by pq. �

The difficulty of finding eth roots modulo N (i.e. solving equations of the

form xe ≡ c (mod N)) makes the RSA cryptosystem very secure. The next

proposition is to take eth roots modulo N, where the modulus N is prime.

Proposition 2.2 [1, Proposition 3.2, p115]

Let p be a prime and let e ≥ 1 be an integer satisfying gcd(e, p − 1) = 1.

Then e has an inverse d modulo p − 1, de ≡ 1 (mod p − 1), and the

congruence xe ≡ c (mod p) has the unique modulo p solution x ≡ cd (mod p).

Proof. Let c ≡ 0 (mod p). Then we set x = 0 and we are done. Let

c 6≡ 0 (mod p). Then, there exist an integer d such that de ≡ 1 (mod p − 1)

i.e. de = 1 + k(p − 1) where k is a positive integer.
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We need to check that xe ≡ c (mod p):

xe ≡ (cd)e

≡ cde (mod p)

≡ c1+k(p−1) (mod p), (since de = 1 + k(p − 1))

≡ c1 · ck(p−1) (mod p)

≡ c · (cp−1)k (mod p)

≡ c · 1k (mod p), (by Fermat’s Little Theorem)

≡ c (mod p).

This shows that cd is the solution for xe ≡ c (mod p), (i.e. x = cd).

We need to show the solution is unique. Let x1 and x2 are the solutions to

xe ≡ c (mod p). Then

x1 ≡ xde
1 ≡ (xe

1)
d ≡ cd ≡ (xe

2)
d ≡ xde

2 ≡ x2 (mod p).

Thus, x1 ≡ x2 (mod p) and xe ≡ c (mod p) has an unique solution modulo p.

�

Example 2.1 Let p = 127, q = 131, n = 127 ∗ 131 = 16637 and d = 157.

Then, ϕ(16637) = 126 ∗ 130 = 16380. The Extended Euclidean algorithm

(Theorem 1.6) is a procedure to find α, β, and c where α ∗ a + β ∗ b = c, for

integers a, b, and c such that gcd(a, b) = c. If we compute e using the

Extended Euclidean algorithm we can set a = ϕ(n), b = d and we know that,

since ϕ(n) and d are relatively prime, at the end of the algorithm we will

obtain c = 1. However, we will also obtain α and β where

α ∗ ϕ(n) + β ∗ d = 1, and β will be the multiplicative inverse of d (mod ϕ(n)).

Using this procedure we arrive at e = 157−1 (mod 126) = 61. Suppose we

have a message

m = MY BEST FRIEND.
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Then, we can set each letter in the alphabet equal to a two-digit number. This

will ensure that there is no ambiguity when encoding and decoding. If

A = 1, B = 2, . . . , then 12 could mean AB or L. Therefore we set

blank = 00, A = 01, B = 02, . . . , Z = 26. The encoded message becomes

m = 1325 0002 0519 2000 0618 0905 1404.

Note that the message has is broken into 7 blocks of two letters each. If we

put it in blocks of three letters, they would not necessarily each be less than

n − 1 = 16636. Let m1 be the first block of the message. Then to encipher m1

we calculate

E(m1) ≡ (m1)
e ≡ (1325)61 ≡ 3164 (mod 16637).

E(m2) ≡ (m2)
e ≡ (2)61 ≡ 6509 (mod 16637).

E(m3) ≡ (m3)
e ≡ (519)61 ≡ 6371 (mod 16637).

E(m4) ≡ (m4)
e ≡ (2000)61 ≡ 1762 (mod 16637).

E(m5) ≡ (m5)
e ≡ (618)61 ≡ 9046 (mod 16637).

E(m6) ≡ (m6)
e ≡ (905)61 ≡ 5271 (mod 16637).

E(m7) ≡ (m7)
e ≡ (1404)61 ≡ 9963 (mod 16637).

Let c denote the ciphertext for the entire message, then

c = 3164 6509 6371 1762 9046 5271 9963.

It is easy to check that the deciphering method works. For example for m1,

3164157 ≡ 1325 (mod 16637).

The next proposition is quite similar to Proposition 2.2, but this proposition

describes what to do if N = pq, where p and q are primes.

Proposition 2.3 (Modulo pq) [1, Proposition 3.4, p116] Let p and q be

distinct primes and let e ≥ 1 satisfy gcd(e, (p − 1)(q − 1)) = 1, so e has an
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inverse modulo (p − 1)(q − 1), say de ≡ 1 (mod(p − 1)(q − 1)). Then, the

congruence, xe ≡ c (mod pq) has the unique solution x ≡ cd (mod pq).

Proof. We assume that gcd(c, pq) = 1. The congruence

de ≡ 1 (mod (p − 1)(q − 1)) means that there is an integer k such that

de ≡ 1 + k(p − 1)(q − 1). Now, we check that cd is a solution to

xe ≡ c (mod pq):

(cd)e ≡ cde (mod pq)

≡ c1+k(p−1)(q−1) (mod pq)

≡ c(c(p−1)(q−1))k (mod pq)

≡ c · 1k (mod pq)

≡ c (mod pq).

This completes the proof that x ≡ cd is a solution to the congruence

xe ≡ c (mod pq). I need to show that the solution is unique. Suppose that

x = u is a solution to the congruence, then

u ≡ ude−k(p−1)(q−1) (mod pq), since de = 1 + k(p − 1)(q − 1)

≡ (ue)d · (u(p−1)(q−1))−k (mod pq)

≡ (ue)d · 1−k (mod pq)

≡ cd (mod pq).

Thus, every solution to the congruence is equal to cd (mod pq), so this is the

unique solution. �

Example 2.2 We solve the congruence,

x18761 ≡ 32198 (mod 27221)

where the modulus N = 27221 = 163 · 167 is the product of the two primes

p = 163 and q = 167. The first step is to solve the congruence



29

18761 · d ≡ 1 (mod 26892)

where 26892 = (p − 1)(q − 1) = 162 · 166. The solution for d is

d ≡ 10901 (mod 26892). Then, x ≡ 3219810901 ≡ 13619 (mod 27221) is the

solution to x18761 ≡ 32198 (mod 27221) or we have

g = gcd(p − 1, q − 1) = gcd(162, 166) = 2,

so (p − 1)(q − 1)/g = (162)(166)/2 = 13446, means we can find a value of d.

Solving the congruence, 18761 · d ≡ 1 (mod 13446). The solution is

d ≡ 10901 (mod 13446),

then x ≡ 3219810901 ≡ 13619 (mod 27221) is the solution to

x18761 ≡ 32198 (mod 27221).

2.2 Integer Factorization

Introduction: The security of the RSA cryptosystem and elliptic curve

cryptography depends on large prime numbers (i.e. the factors of the

modulus N). To break a system, we simply need to factor N = pq to discover

p and q. This section describes four methods for factorization. If N is very

large, this problem is difficult, especially if p and q are themselves also large.

Here four of the early methods used to factor integers are given. There is no

attempt here to be comprehensive. We describe the difference of two squares

factorization, the trial division method, the Pollard’s p − 1 factorization

method and conclude with Lenstra’s elliptic curve factorization method.

2.2.1 Difference of two squares factorization.

This factorization is sometimes known as a quadratic sieve. We start with

the simple factorization,
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X2 − Y 2 = (X + Y )(X − Y ).

Suppose we need to factor a number N , where N + b2, for some integer b, is a

perfect square, say a2. Then, N + b2 = a2, so

N = a2 − b2 = (a + b)(a − b),

and we have a factorization of N .

Example 2.3 We factor N = 34571 by looking for an integer b making

N + b2 a perfect square:

34571 + 12 = 34572, Not a square,

34571 + 22 = 34575, Not a square,

34571 + 32 = 34580, Not a square,

34571 + 42 = 34587, Not a square,

34571 + 52 = 34596 = 1862, A square.

Then we compute

34571 = 1862 − 52 = (186 + 5)(186 − 5) = 191 · 181.

The numbers 191 and 181 are primes, so the factorization of N is

34571 = 191 · 181.

2.2.2 Trial Division.

The trial division method seeks to find a factor of N by checking all possible

prime factors of N . Trial division algorithm checks for all prime numbers p

that are less than or equal to
√

N , whether they divide N . If the algorithm

fails (i.e. none of the prime numbers p divides N), then it shows that N is

prime. Trial division is an inefficient algorithm for large numbers N with

large prime factors. In factorization, trial division is usually applied to find
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any small prime factors. This leads us to the following definition and

theorem.

Definition 2.1 Given a composite integer N (i.e. N can be factored), then

trial division consists of trial-dividing N by every prime number less than or

equal to
√

N .

Theorem 2.4 [57, Theorem 7.1.1, p152] If N is a composite positive

integer, then N has a prime divisor p which is less than or equal to
√

N .

Proof. Since N is composite, we can write N = ab with a > 1 and b > 1.

Now we have a ≤
√

N or b ≤
√

N , since otherwise

N = ab >
√

N
√

N = N .

Suppose that a ≤
√

N . Then, a has a prime divisor p which also divides N .

Thus, p ≤ a ≤
√

N . �

Example 2.4 We use trial division to factor 584. The first prime divisor

that we find is 2 and 584
2

= 292. The next prime factor is again 2 and

292
2

= 146. Similarly, the next factor is also 2 and 146
2

= 73. The number 73

is prime. Hence, the prime factorization of 584 is

584 = 23 · 73.

Trial division also can be used to decide whether a number N is prime. This

leads us to the following example.

Example 2.5 Let N = 120643 is prime. We have

⌊
√

N⌋ = ⌊
√

120643⌋ = 347.

Hence, we must test whether one of the prime numbers p ≤ 347 divides N .

The primes p ≤ 347 are
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2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,

191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,

277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347.

The primes which divide N are 223 and 541. Therefore, N is a not prime.

Example 2.6 We use trial division to factor N = 1549. So we have

⌊
√

N⌋ = ⌊
√

1549⌋ = 39.

So, we must test whether one of the prime numbers p ≤ 39 divides N . The

primes p ≤ 39 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

By observation, none of the 12 primes divides N evenly. Thus, N is a prime

number.

2.2.3 Pollard’s p − 1 factorization algorithm.

Pollard’s p − 1 algorithm was invented by John Pollard in 1974, [65]. This

algorithm finds, a factor of N ∈ N. Following are the steps of the algorithm.

1. Given a number N = pq and we need to find the prime factors p and q.

Suppose that we search for an integer L such that

p − 1|L and q − 1 6 |L.

This means that there are integers i, j and k with k 6= 0 satisfying

L = i(p − 1) and L = j(q − 1) + k.

2. Choose an integer a (i.e. by assuming p 6 |a and q 6 |a) and compute aL.

Fermat’s Little Theorem (Theorem 1.2) tells that

aL = ai(p−1) = a(p−1)i ≡ 1i ≡ 1 (mod p),

aL = aj(q−1)+k = ak · a(q−1)j ≡ ak · 1j ≡ ak (mod q).
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3. The exponent k 6= 0, so ak 6≡ 1 (mod q).

4. So for the given value of a, we find that

p|aL − 1 and q 6 |aL − 1.

This implies that p = gcd(aL − 1, N).

5. If p − 1 is a product of small primes, then p − 1|n! for some n (i.e. Let

n = 2, 3, . . . , then compute p = gcd(an! − 1, N)).

6. If gcd(an! − 1, N) = 1, then go on to the next value of n. Otherwise, we

have a nontrivial factor of N . But if p = N , then this algorithm is fails.

Example 2.7 We use Pollard’s p − 1 algorithm to factor N = 220459.

gcd(22! − 1, 220459) = 1

gcd(23! − 1, 220459) = 1

gcd(24! − 1, 220459) = 1

gcd(25! − 1, 220459) = 1

gcd(26! − 1, 220459) = 1

gcd(27! − 1, 220459) = 1

gcd(28! − 1, 220459) = 449

The final line gives us a nontrivial factor p = 449 of N . This factor is prime,

and the other factor q = N
p

= 220459
449

= 491 is also prime. The reason that an

exponent of 8! worked in this instance is that p − 1 factors into a product of

small primes,

p − 1 = 448 = 26 · 7|8! = 90.

The other factor satisfies

q − 1 = 490 = 2 · 5 · 72 6 |8! = 576
7

,

which also a product of a small primes.
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2.2.4 Lenstra’s factorization algorithm using elliptic

curves.

Lenstra’s elliptic curve method was invented by Hendrik Lenstra to solve the

problems of factoring integers into a product of two primes, [75].

Pollard’s method presented in the previous section is based on the non-zero

elements of Z/pZ form a multiplicative group (Z/pZ)∗ of order p − 1.

However, Lenstra’s method replaces the multiplicative group (Z/pZ)∗ = F∗

p

by the group of points on an elliptic curve E(Fp), and an integer a by a point

P ∈ E(Fp). By choosing an integer k as a product of small primes, so the

number of elements of E(Fp)|k, which implies kP = O ∈ E(Fp). Using this

idea we can get a non-trivial factor of N .

Pollard’s method fails if N = pq then both p − 1 and q − 1 have large prime

factors. However Lenstra’s method is flexible. If it fails using a particular

elliptic curve, we can choose a new curve and start over again.

Note that these are unclear explanations but consider it as an algorithm.

Note that

#E(Fp) = p − 1 − εp with |εp| ≤ 2
√

p, [72, p133].

As the curve E varies over all such curves, the numbers εp are reasonably

uniformly distributed over an interval of length 4
√

p. Thus, we can find a

curve E with the number of elements of E(Fp) equal to a product of small

primes.

There is some basic information about elliptic curve and the group structure

in Chapter 3.

Lenstra’s elliptic curve factorization algorithm: [72, 56]

Choose a composite integer N ≥ 2.

1. Check gcd(N, 6) = 1 so that N 6= mr for any r ≥ 2.
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2. Choose any integers A, x1 and y1 such that 1 < A, x1, y1 < N .

3. Let E be an elliptic curve, E : y2 = x3 + Ax + B.

Let B = y2
1 − x2

1 − Ax1 and point P = (x1, y1) ∈ E.

4. Check that a = gcd(4A3 + 27B2, N) = 1.

If a = N , then return to step 2 and choose a new integer A.

If 1 < a < N , then a is a non-trivial factor of N and we are done.

5. Choose an integer k such that

k = LCM{1, 2, 3, . . . , K} for some K ∈ N.

6. Compute

kP = (
ak

d2
k

,
bk

d3
k

)

= 1P + 2P + 22P + 23P + . . . + 2rP, for some r ∈ N

= P0 + P1 + P2 + P3 + . . . + Pr, for some r ∈ N

=

r∑

ki=1

Pi.

7. Calculate D = gcd(dk, N).

If 1 < D < N , then D is a non-trial factor of N and we are done.

If D = 1, then return to step 2 and choose a new integer A.

If D = N , then return to step 5 and decrease the value of k.
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Example 2.8 Let N = 1999843247, a point P = (2, 1) and elliptic curve

E : y2 = x3 + Ax + B. Note that gcd(N, 6) = 1. Let A = 6 implies

B = y2 − x3 − Ax = −19. So, E : y2 = x3 + 6x − 19 and a point

P = (2, 1) ∈ E.

Now, choose

k = LCM{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

= 232792560

= 24 + 25 + 26 + 27 + 28 + 213 + 221 + 222 + 223 + 224 + 226 + 227.

So,

r 2rP (mod 1999843247)

0 (2, 1)

1 (77, 1999842571)

2 (1010023132, 416202416)

3 (1821315272, 1927904597)

4 (672263808, 912268394)

5 (1937039248, 1450774960)

6 (995387252, 445795708)

7 (1963543744, 228429936)

8 (213910635, 1203300646)
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r 2rP (mod 1999843247)

9 (1925178367, 1096237088)

10 (1031420139, 455919973)

11 (1369870593, 830431437)

12 (1061855853, 264657833)

13 (758379778, 916045511)

14 (568842154, 1701729891)

15 (1343153277, 600645524)

16 (1053104612, 438503062)

17 (1060705278, 1183122481)

18 (434698066, 1218407806)

19 (614705915, 351047729)

20 (418567986, 241447683)

21 (1745194563, 793504621)

22 (777079984, 1688813810)

23 (1766760042, 1954188834)

24 (266756875, 696952738)

25 (1771573042, 1664186057)

26 (1658585264, 842158092)

27 (998323914, 274099838)



38

I then compute kP = 232792560P ,

24P = 16P = (1053104612, 438503062)

(24 + 25)P = 48P = (689737312, 766476874)

(24 + 25 + 26)P = 112P = (326736690, 931029681)

(previous partial sum) + 27P = 240P = (392582429, 1939553715)

(previous partial sum) + 28P = 496P = (582646364, 295105563)

(previous partial sum) + 213P = 8688P = (1055413349, 1526098803)

(previous partial sum) + 221P = 2105840P = (1985478926, 1966774618)

(previous partial sum) + 222P = 6300144P = (1852388958, 510710323)

(previous partial sum) + 223P = 14688752P = (896131026, 1237386275)

(previous partial sum) + 224P = 31465968P = (1774327685, 1451569673)

(previous partial sum) + 226P = 98574832P = (1634636045, 1074342536)

(previous partial sum) + 227P = 232792560P = The addition law breaks here.

The addition law breaks when we want to find the inverse modulo N of the

difference of x-coordinates between 98574832P and 227P . We obtain the

gcd(1634636045− 998323914, N) = 569 6= 1 which gives us the factor of

N = 569 · 6514663.

2.2.5 State of the art of integer factorization

Several factorization algorithms have been discovered which factor an integer

N which is a product of two primes faster than the 4 methods given above.

On 9 May 2005, the factorization of RSA-200 (i.e. a 663 bit number of 200

decimal numbers) was announced by the German Federal Agency’s team.

This algorithm was designed using general number field sieve (i.e. for

factoring numbers which have between 100 and 200 digits) with efficiency

which is
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O(exp((64 n
9

)
1

3 (logn)
2

3 )).

On 4 November 2005, the same team announced the factorization of RSA-640

which is 640 bits long (i.e. 193 decimal digits). These factorizations need a

few months using ordinary computer time, [68]. In August 1999, the largest

semiprime (i.e numbers with two prime factors) factored was RSA-155 (155

bits) using general number field sieve algorithms on 300 workstations and

personal computers. This factorization required 7.4 months, [70].

For a quantum computer, Shor’s algorithm solves the problem in polynomial

time. It was discovered by Peter Shor in 1994. Shor’s algorithm requires only

O(n3) time and O(n) space on n-bit number inputs. The first 7-qubit

quantum computer ran Shor’s algorithm in 2001 and factored the number 15,

[69].

2.3 The RSA Algorithm

Suppose Alice wants to send a message to Bob over an insecure

communication line, but has a problem sending sensitive information.

The RSA algorithm is based on the following idea: [1, Section 3.2, p119]

1. Setup

• Let p and q be large primes, let N = pq and let e and c be integers.

2. Problem

• Solve the congruence xe ≡ c (mod N) for the unknown x.

3. Easy

• Bob, who knows the values of p and q can easily solve for x.

4. Hard
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• Eve, who does not know the values of p and q, cannot easily find x.

5. Dichotomy

• Solving xe ≡ c (mod N) is easy for a person who possesses certain

extra information, but it is apparently hard for all other people.

Example 2.9 We illustrate the RSA public key cryptosystem with a small

numerical example:

1. RSA Key Creation

• Bob chooses two secret primes p = 1597 and q = 1481.

Bob computes his public modulus, N = pq = 1597 · 1481 = 2365157.

• Bob chooses a public encryption exponent e = 25637 with the

property that gcd(e, (p − 1)(q − 1)) = gcd(25637, 2362080) = 1.

2. RSA Encryption

• Alice converts her plaintext into an integer m = 1987654 satisfying

1 ≤ m < N .

• Alice uses Bob’s public key (N, e) = (2365157, 25637) to compute

c ≡ me (mod N), c ≡ 198765425637 ≡ 1563057 (mod 2365157)

• Alice sends the ciphertext c = 1563057 to Bob.

3. RSA Decryption

• Bob knows (p − 1)(q − 1) = 1596 · 1480 = 2362080. So he can

solve, ed ≡ 1 (mod (p − 1)(q − 1)) implies

25637 · d = 1 (mod 2362080) for d and find that d = 984653.
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• Bob takes the ciphertext c = 1563057 and computes cd (mod N),

1563057984653 ≡ 1987654 (mod 2365157). The value that he

computes is Alice’s message m = 1987654.

We summarized the RSA cryptosystem in the table:

Bob Alice

Key creation

Choose secret primes p and q,

choose encryption exponent e

with gcd(e, (p− 1)(q − 1)) = 1.

Publish N = pq and e.

Encryption

Chooses plaintext m.

Use Bob’s public key (N ,e) to compute

c ≡ me (mod N).

Sends ciphertext c to Bob.

Decryption

Compute d satisfying

ed ≡ 1 (mod (p − 1)(q − 1)).

Compute m′ ≡ cd (mod N).

Then, m′ equals the plaintext m.

Table 2.1: RSA key creation, encryption and decryption, [1, Table 3.1, p119]
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2.4 Primality testing

The purpose of this section is to describe the primality tests, i.e. algorithms

which determine whether a number is prime or not with probability 1.

The situation is as follows: Bob uses his RSA public/private key pair to

communicate with Alice. So, Bob needs to choose primes p and q that are

very large to form a RSA key pair. If p and q are small primes, then the

eavesdropper, say Eve, can find the factors p and q and break Bob’s system.

Assume Bob knows how to distinguish prime and composite numbers. Then

he can choose large random numbers until he finds one that is prime.

Fermat’s Little theorem says if p is prime then ap−1 ≡ 1 (mod p). We state a

suitable version of Fermat’s Little theorem that puts no restriction on a.

Theorem 2.5 (Fermat’s Little Theorem, Version 2)

Let p be a prime number. Then

ap ≡ a (mod p),

for every integer a.

Proof. If p 6 |a, then the first version of Fermat’s Little Theorem (Theorem

1.2) implies that

ap−1 ≡ 1 (mod p).

Multiplying both sides by a proves that ap ≡ a (mod p) is true. On the other

hand, if p|a, then both sides of ap ≡ a (mod p) are 0 modulo p. �

The compositeness test given below shows that a number is composite with a

probability 1 or prime with probability 1. We need to check whether n is

composite. This leads us to make the following definition.

Definition 2.2 Fix an integer n. We say that an integer a is a witness for

(the compositeness of) n if an 6≡ a (mod n).
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The next proposition is used to formulate the so-called Miller-Rabin test

which is used to test whether a number is (probably) prime.

Proposition 2.6 [1, Proposition 3.16, p126]

Let p be an odd prime and write

p − 1 = 2kq, with q an odd integer.

Let a be any number not divisible by p. Then one of the following two

conditions is true:

(i) aq is congruent to 1 modulo p.

(ii) One of aq, a2q, a4q, . . . , a2k−1q is congruent to −1 modulo p.

Proof. Fermat’s Little Theorem (Theorem 1.2) tells us that

ap−1 ≡ 1 (mod p). This means that when we look at the list of numbers

aq, a2q, a4q, . . . , a2k−1q, a2kq,

we know that the last number in the list, which equals ap−1, is congruent to 1

modulo p. Further, each number in the list is the square of the previous

number. Therefore one of the following two possibilities must occur:

(i) The first number in the list is congruent to 1 modulo p.

(ii) Some number in the list is not congruent to 1 modulo p, but when it

squared, it becomes congruent to 1 modulo p. But the only number

satisfying both

b 6≡ 1 (mod p) and b2 ≡ 1 (mod p)

is −1, so one of the numbers in the list is congruent to −1 modulo p. �

If the number n is definitely composite number then it can be said that a is a

Miller-Rabin witness for n. This is given more precisely by the following

definition.



44

Definition 2.3 Let n be an odd number and write n − 1 = 2kq with q an odd

integer. An integer a satisfying gcd(a, n) = 1 is called a Miller-Rabin witness

for (the compositeness of) n if both of the following conditions are true:

(a) aq 6≡ 1 (mod n).

(b) a2iq 6≡ −1 (mod n) for all i = 0, 1, 2, . . . , k − 1.

Note: A Carmichael number is a composite positive integer n which satisfies

the congruence bn−1 ≡ 1 (mod n) for all integers b which are relatively prime

to n.

Example 2.10 We illustrate the Miller-Rabin test with a = 4 and the

number n = 561, which you may recall, is Carmichael number. We factor

n − 1 = 560 = 24 · 35

and compute

435 ≡ 166 (mod 561),

42·35 ≡ 1662 ≡ 67 (mod 561),

44·35 ≡ 672 ≡ 1 (mod 561).

The first number 435 (mod 561) is neither 1 nor −1, and the other numbers

in the list are not congruent to −1, so 4 is the Miller-Rabin witness to the

fact that 561 is composite.

2.5 The discrete logarithm problem (DLP) in

a finite field (Fp)

Introduction: The discrete logarithm problem can be solved using ideas

from the “index calculus”. We use an example to understand easily how the

DLP works.
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Example 2.11 Let p be the prime p = 18757 and use the index calculus to

solve the discrete logarithm problem

2x ≡ 211 (mod 18757).

We note that g = 2 is a primitive root modulo p = 18757. We take B = 5, so

our so-called factor base is the set of primes {2, 3, 5}. We start by taking

random powers of g = 2 modulo 18757 and pick out the values that are

B-smooth, (i.e. gn = 2e13e25e3 (mod p), ei ≥ 0). After several hundred

attempts we obtain four equations/congruences:

g6819 ≡ 22 · 32 · 5 (mod 18757), g8612 ≡ 23 · 33 · 5 (mod 18757),

g10053 ≡ 23 · 32 · 52 (mod 18757), g12934 ≡ 22 · 54 (mod 18757).

These in turn give linear relations for the discrete logarithms of 2, 3 and 5 to

base g. For example, the first one says that

6819 ≡ 2 · logg(2) + 2 · logg(3) + logg(5) (mod p − 1),

where logg(a)is the discrete logarithm value.To ease notation, we let

x2 = logg(2), x3 = logg(3), x5 = logg(5).

Then, the four congruences become the following four linear relations:

6819 = 2x2 + 2x3 + x5 (mod 18756)

8612 = 3x2 + 3x3 + x5 (mod 18756)

10053 = 3x2 + 2x3 + 2x5 (mod 18756)

12934 = 2x2 + 4x5 (mod 18756)

Note that the formulas above are congruences modulo

p − 1 = 18756 = 36 · 521,

since discrete logarithms are defined only modulo p − 1. The number 521 is

prime, so we need to solve the system of linear equations modulo 36 and
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modulo 521. This is easily accomplished by Gaussian elimination, (i.e. by

adding multiples of one equation to another to eliminate variables). The

solutions are

(x2, x3, x5) ≡ (1, 28, 29) (mod 36),

(x2, x3, x5) ≡ (1, 229, 107) (mod 521).

Combining these solutions yields

(x2, x3, x5) ≡ (1, 1792, 3233) (mod 18756).

We check the solutions by computing

21 ≡ 2 (mod 18757), 21792 ≡ 3 (mod 18757), 23233 ≡ 5 (mod 18757).

Recall that our ultimate goal is to solve the discrete logarithm problem

2x ≡ 223 (mod 18757).

We compute the value of 223 · 2−k (mod 18757) for random values of k until

we find that is B-smooth. After a few attempts we find that

223 · 2−12380 ≡ 24 · 33 · 52 (mod 18757).

Using the values of the discrete logs of 2,3 and 5 from above, this yields

logg(223) = 12380 + 4logg(2) + 3logg(3) + 2logg(5)

= 12380 + 4 · 1 + 3 · 1792 + 2 · 3233

≡ 5470 (mod 18756).

Finally, we check our answer logg(223) = 5470 by computing

25470 ≡ 223 (mod 18757).
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2.6 Applications of the RSA cryptosystems

1. Smart card

• The use of RSA keys on smart cards is a significant development

because smart cards are time constrained and algorithms can

generate the keys quickly.

• The cost of generating the keys is low. Since the private keys are

kept secret by the end user, the cards are more secure and have

more memory, [74].

2. Mobile phone conversation

• Mobile devices are very important in the modern world. So the

RSA cryptosystem, Diffie-Hellman (DH) key exchange and RC4

(“Rivest Cipher 4” designed by Ron Rivest, 1987) have been used

to generate a public cryptographic key from a user’s voice so that

a speaker’s voice can be identified. This generated key is used to

encrypt and decrypt the information sent via an open

communication channel.

• The encryption/decryption prevents eavesdroppers listening or

interrupting voice calls. Furthermore, it eliminates the need for a

trusted third party in a communication (e.g. a telephone

company).

• Generated keys are divided into public keys and private keys. The

public key is generated from the speaker’s voice and the

corresponding private key will be considered as the DH private

key. A shared secret will be calculated to generate the input key

for the RC4. The RC4 algorithm will generate a key-stream to

complete the encryption and decryption process, [32].
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3. Automatic Teller Machines (ATM)

• An ATM card is one kind of smart card. Conventionally, when a

customer attempts to withdraw money from a bank, the bank

officer will ask for account holder identification (e.g. a driving

license) in order to verify an individual’s identity. The ATM

machines, however, use cryptography for identification, [76, 50].

• Every ATM card is holds a “secret” Personal Identification

Number (PIN), which gives the card holders more secure access to

their account. As soon as an ATM card is inserted into the ATM

machine, the cardholder is immediately asked for the PIN. If the

correct PIN is entered, the machine identifies that person as the

rightful owner and grants access, [76].



Chapter 3

Elliptic curve cryptography

Introduction: This chapter will describe the basic theory of elliptic curves,

the way elliptic curves work in cryptography (i.e. for encryption and

decryption) and the applications of elliptic curves to cryptography in the real

world, [1, Chapter 5, p279].

3.1 Elliptic curves

Introduction: The equation of an elliptic curve can be written in the form

Y 2 = X3 + AX + B

where A and B are integers with discriminant ∆ = 16(4A3 − 27B2) 6= 0. This

condition ensures the curve does not have a cusp or double point on the real

axis. This is also called a Weierstrass equation. It is a special type of elliptic

curve but is all that we need here. Two examples of elliptic curves are

Y 2 = X3 − 3X + 3,

Y 2 = X3 − 6X + 5.

In the figures 3.1 and 3.2, I give plots of the points in (x, y) ∈ R2 which

satisfy these equations. Note that for the first equation the cubic

X3 − 3X + 3 has 1 real root and the second has 3 real roots.
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In[191]:= E1 = ContourPlot@y^2 - x^3 + 3*x - 3, 8x, -10, 10<,

8y, -10, 10<, ContourShading ® False, Contours ® 80<, PlotPoints ® 200D

Out[191]=
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Figure 3.1: E : Y 2 = X3 + 3X − 3 and ∆ = 16(4(33) − 27(−32)) > 0.

In[192]:= E2 = ContourPlot@y^2 - x^3 + 6*x - 5, 8x, -10, 10<,

8y, -10, 10<, ContourShading ® False, Contours ® 80<, PlotPoints ® 200D

Out[192]=
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Figure 3.2: E : Y 2 = X3 − 6X + 5 and ∆ = 16(4(−63) − 27(52)) < 0.
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The very important property of elliptic curves is that we are able to define an

operation + of addition for points which are on the curve, to produce a third

point which is also on the curve. This operation makes the curve, and various

subsets of points on the curve, into a finitely generated abelian group.

Example 3.1 Here the operation + is illustrated.

Let E be the elliptic curve, Y 2 = X3 − 7X + 10. The points P = (−3,−2)

and Q = (1, 2) are on the curve E. The line L connecting them is

L : Y = X + 1. To find the points where E and L intersect: Y = X + 1 and

Y 2 = X3 − 7X + 10. Then,

Y 2 = (X + 1)2 = X3 − 7X + 10

= X2 + 2X + 1 = X3 − 7X + 10

= X3 − X2 − 7X − 2X + 10 − 1 = 0

= X3 − X2 − 9X + 9 = 0

So, X1 = −3, X2 = 3, X3 = 1. P and Q are in the intersection E ∩ L, so

X3 − X2 − 9X + 9 = (X + 3)(X − 3)(X − 1)

So, the third point (R) of intersection of L and E is X = 3. Thus,

Y = X + 1 = 1(3) + 1 = 4.

So, R = (3, 4). Finally, we reflect through the X-axis to obtain

P + Q = (3,−4) = R′. The three points P , Q and R on the elliptic curve E

are illustrated in Figure 3.3.
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Figure 3.3: E : Y 2 = X3 − 7X + 10 with line L : Y = X + 1

3.1.1 Elliptic curve addition

Here is the formal definition.

Definition 3.1 Let A and B be integers with the discriminant

∆ = 16(4A3 − 27B2). An elliptic curve E is the set of solutions to a

Weierstrass equation

E : Y 2 = X3 + AX + B,

together with an extra point O, where the constants A and B must satisfy

∆ 6= 0.

The extra point O can be taken as the “point at infinity” in the equivalence

class representing the common point at infinity for all lines in R2 parallel to

the Y-axis.

Definition 3.2 The operation multiplication (i.e. known as scalar
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multiplication) on an elliptic curve defined by kP where k is a positive

integer and point P ∈ E(Q). This operation shows the process of adding P to

itself k times.

Definition 3.3 The point P ′ = (x,−y) is a reflection of point P = (x, y) on

X-axis and elliptic curve.

Definition 3.4 The point P ∗ Q denoted as the third point of intersection of

the line through an elliptic curve and point P and Q. See the figure below.

Figure 3.4: The point P ∗ Q
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Definition 3.5 The operation addition or ‘+’ on an elliptic curve is defined

by geometry and is represented by the addition sign,

+ : E(Q) × E(Q) → E(Q).

Theorem 3.1 (Geometric Elliptic Curve Addition Algorithm) [1, Theorem

5.6, p285]

The operation + on E(Q) make the set of points with rational coordinates on

E ∪ {O} into an abelian group. Let E : Y 2 = X3 + AX + B be an elliptic

curve and let P and Q be points on E.

(a) If P = O, then P + Q = Q.

(b) Otherwise, if Q = O, then P + Q = P .

(c) Otherwise, write P = (x1, y1) and Q = (x2, y2), with x1, x2, x3, x4 ∈ Q.

(d) Define λ by

If P 6= Q and x1 6= x2 then λ = y2−y1

x2−x1

, and

if P = Q then λ =
3x2

1
+A

2y1

,

and let x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1. Then, P + Q = (x3, y3).

(e) If P ∈ E then P ′ ∈ E.

(f) If P = Q′, then O = P + Q.

(g) P ′′ = P .

Proof. (a) Let P = O, then Q + O = Q. If Q = (x2, y2), to obtain Q + O

draw a line through Q parallel to the Y-axis, then the reflection of point Q

denoted as −Q implies Q + (−Q) = O.

(b) Similar to (a).

(c) If P 6= Q, then x1 6= x2 and y1 6= y2, where x1, x2, y1, y2 ∈ R.

(d) If x1 6= x2, then λ is the slope of the line through P and Q.

If P = Q, then λ is the slope of the tangent line at P = Q.

Either case the line L : Y = λX + c with c = y1 − λx1, where c is a constant.
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Substituting L into E gives:

(λX + c)2 = X3 + AX + B

λ2X2 + 2λXc + c2 = X3 + AX + B

X3 − λ2X2 + X(A − 2λc) + (B − c2) = 0

So this cubic has roots x1 and x2. For the third root x3, we have the equation

X3 − λ2X2 + X(A − 2λc) + (B − c2) = (X − x1)(X − x2)(X − x3) =

X3 + X2(−x1 − x2 − x3) + X(x1x2 + x1x3) − x1x2x3.

So, −λ2X2 = X2(−x1 − x2 − x3), implies that −λ2 = −x1 − x2 − x3. Then,

x3 = λ2 − x1 − x3.

Thus, Y coordinate of the third intersection point is λx3 + c and

P1 + P2 = −λx3 − c.

(e) Let P = (x, y) on the elliptic curve E. Then, to reflect the point P across

the x-axis multiply y-coordinate (i.e. y) by −1. So we obtain a new point

−P = P ′ = (x,−y) which is also on the elliptic curve E as illustrated in

Figure 3.5.
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Figure 3.5: The point P ∈ E implies P ′ ∈ E.

(f) Let P = (x1, y1) and Q = (x2, y2) where x1 = x2 and y1 = −y2. Then

Q′ = (x2,−y2) for the curve y2 = x3 + Ax + B. If P = Q′, this means the line

through P and Q′ is vertical, so the third point of intersection is O where

x1 = x2 and y1 = −y2. Thus, P + Q = Q′ + Q = O as illustrated in Figure

3.6.
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Figure 3.6: When P = Q′ implies P + Q = O.

(g) Let P = (x1, y1). To get negative of P , we reflect the point P in the

x-axis, so P ′ = −P = (x1,−y1). Similarly, the negative of (P ′) is the

reflected point on the x-axis, so

P ′′ = −(−P ) = (x1,−(−y1)) = (x1, y1) = P .

�

Theorem 3.2 (Algebraic Elliptic Curve Addition Algorithm) The following

algebraic formulas for the sum of two points and double of a point are derived

from the geometric description.

(a) If P = (x1, y1) and Q = (x2, y2), then R′ = P + Q = (x3, y3) where

x1 6= x2. This implies

x3 = ( y2−y1

x2−x1

)2 − x1 − x2 and y3 = −( y2−y1

x2−x1

)x3 − (y1x2−y2x1

x2−x1

).

(b) If P = Q, then P + Q = R′. This implies
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x3 = (
3x2

1
−A

2y1

)2 − x1 − x2 and y3 =
3x2

1
−A

2y1

(x1 − x3) − y1.

Proof. (a) Let P = (x1, y1), Q = (x2, y2) and R′ = P + Q = (x3, y3) where

x1 6= x2 and y1 6= y2. Here we want to find the point R′ = (x3, y3). First, we

put the line joining P and Q. The equation for this line L,

y = λx + c where λ = y2−y1

x2−x1

and c = y1 − λx1 = y2 − λx2 is constant.

This line is intersect the curve at the points P = (x1, y1) and Q = (x2, y2).

Let the equation Y 2 = X3 + A1X
2 + A2X + A3 be a general (Weierstrass)

form. To eliminate the quadratic term, we substitute Y = y and X = x − a1

3
.

y2 = (x − A1

3
)3 + A1(x − A1

3
)2 + A2(x − A1

3
) + A3

= x3 + A2x +
2A3

1

27
+

A1A2

3
+ A3 −

A3
1x

3

= x3 + Ax + B.

where A = A2 − A2

1

3
and B =

2A3

1

27
− A1A2

3
+ A3. This is a general equation of

an elliptic curve which is also known as cubic equation in x.

To obtain the third point R′ = (x3, y3), we substitute the line equation into

an elliptic curve equation above,

y2 = (λx + c)2 = x3 + Ax + B, where A, B and c are constants.

By putting all in one side yields,

λ2x2 − 2λxc + c2 = x3 + Ax + B

x3λ2x2 + (A − 2λc)x + (B − c2) = 0.

Its roots are x1, x2 and x3 which leads us to give the x-coordinates of the

three intersections on the elliptic curve. Thus,

x3 + (−λ2)x2 + (A − 2λc)x + (B − c2) = (x − x1)(x − x2)(x − x3)

= x3 − x2x3 − x2x2 + xx2x3

− x2x1 + xx1x3 − x1x2x3.
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By collecting the coefficients of the x2, we get

−λ2x2 = −x2x3 − x2x2 − x2x1

λ2 = x1 + x2 + x3.

So, the point −R = R′ = (x3, y3) is the reflection of the point R on the x-axis

(i.e. by taking the negative of the y-coordinate, see Figure 3.7), we get

x′

3 = λ2 − x1x2

x3 = (
y2 − y1

x2 − x1
) − x1 − x2, and

y′

3 = λx3 + c

y3 = −(
y2 − y1

x2 − x1
)x3 − (y1 − λx1)

y3 = −(
y2 − y1

x2 − x1
)x3 − (

y1x2 − y2x1

x2 − x1
).

Figure 3.7: The point R′ = P + Q.
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(b) Let the two points be the same,(i.e. P = Q ⇒ (x1, y1) = (x2, y2)).

Suppose that we have P 6= −P . We need to find P + P = 2P . By adding

these point together, we will get the tangent line at P where this line is

joining P to P . First, we need to find the line that joining them. Since

x1 = x2 and y1 = y2, so we cannot use the same formula for λ like above. Let

elliptic curve be E : y2 = x3 + Ax + B, where A and B are constant. If

P = Q = (x1, y1) and P 6= −Q, then the slope of the tangent line at P is

λ =
dy

dx
=

1

2
(x3 + Ax + B)−1/2(3x2 + A)

= 2yy′ = 3x2 + A

= y′ =
3x2

1 + A

2y1
, where y1 6= 0.

Same like proof above (i.e. in part P + Q = R′), after we collecting the

coefficients of x2, we get

λ2 = x1 + x2 + x3.

So, the point 2P = P + P = Q + Q = R′ = (x3, y3) is the reflection of the

point R on the x-axis (i.e. by taking the negative of the y-coordinate, see

Figure 3.8), we get

x′

3 = λ2 − x1 − x2

x3 = (
3x2

1 + A

2y1

)2 − x1 − x2, and

y′

3 = λ(x3 − x1) + y1

y3 = (
3x2

1 + A

2y1
)(x1 − x3) − y1.

�
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Figure 3.8: The points P = Q implies P + Q = R′.

Note: The following properties of the group law of +.

1. + takes a point with rational coordinate to a point with rational

coordinates,

+ : E(Q) × E(Q) → E(Q) (3.1)

Proof. Let P = (x1, y1) and Q = (x2, y2) be the rational coordinates.

We apply three conditions of definition of +.

• If x1 6= x2, then third point R = (x3, y3) = P + Q is a rational

coordinate since P and Q are rational coordinates by equation

(3.1). Then reflect the point R on the x-axis to give R′ = (x3,−y3)

also with rational coordinates.

• If x1 = x2 and y1 = y2, then P + Q = 2P = 2Q = R, the third
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point, which has rational coordinates. When reflected in x-axis,

we also get a point with rational coordinates.

• Similarly, if x1 = x2 and y1 6= y2, then the third point also has

rational coordinates.

�

2. Write 2P instead of P + P .

Proof. When we defined the addition of two points, we can also define

a multiplication kP where k is a positive integer and P is a point as

the sum of k copies of P . Thus, 2P = P + P . �

3. For n ≥ 2, define nP as P + (n − 1)P .

Proof. For n ≥ 2. Then for all n, m ∈ Z, (n + m)P = nP + mP . Thus,

P + (n − 1)P = P + nP − P

= nP.

�

4. Define −P = P ′, −2P = −P + (−P ) etc.

Proof. Similar to (2). �

5. Commutativity, Q + P = P + Q.

Proof. Let P = (x1, y1) and Q = (x2, y2). First, we solve for Q + P .

The line that joining Q + P = R is

L : y = λx + c where λ = y1−y2

x1−x2

and c = y1 − λx1 = y2 − λx2 is constant.
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So the coordinate for the third point R = (x3, y3) as illustrated in

Figure 3.9 is

x3 = λ2 − x1 − x2

= (
y1 − y2

x1 − x2
)2 − x1 − x2

y3 = λx3 + c

= −(
y1 − y2

x1 − x2

)x3 − (y1 − λx1)

= −(
y1 − y2

x1 − x2
)x3 − (y1 − (

y1 − y2

x1 − x2
)x1)

= −(
y1 − y2

x1 − x2
)x3 − (

y2x1 − y1x2

x1 − x2
).

Figure 3.9: Q + P = R.

Next, we solve for P + Q = R. The equation of the line joining P and

Q is

y = λx + c where λ = y2−y2

x2−x1

and c = y1 − λx1 = y2 − λx2 is constant.
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The third point R = (x3, y3) as illustrated in Figure 3.10, we reflected

on x-axis which is

x3 = λ2 − x1 − x2

= (
y2 − y1

x2 − x1

)2 − x1 − x2

y3 = λx3 + c

= −(
y2 − y1

x2 − x1

)x3 − (y1 − λx1)

= −(
y2 − y1

x2 − x1
)x3 − (y1 − (

y2 − y1

x2 − x1
)x1)

= −(
y2 − y1

x2 − x1

)x3 − (
y1x2 − y2x1

x2 − x1

)

Thus,

Q + P = ((
y1 − y2

x1 − x2
)2 − x1 − x2,−(

y1 − y2

x1 − x2
)x3 − (

y2x1 − y1x2

x1 − x2
))

= ((
y2 − y1

x2 − x1
)2 − x1 − x2,−(

y2 − y1

x2 − x1
)x3 − (

y1x2 − y2x1

x2 − x1
))

= P + Q.

Therefore, commutativity holds.

�
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Figure 3.10: P + Q = R.

6. Associativity, (P + Q) + R = P + (Q + R).

Proof. It is enough to show that (P + Q) ∗ R = P ∗ (Q + R) where

P, Q and R are finite points on an elliptic curve E.

(a) To get P + Q, we form P ∗Q and take the third intersection of the

line connecting it to O.

(b) To add (P + Q) to R, we draw a line from R through (P + Q) and

that meets the curve at (P + Q) ∗R. To get (P + Q) + R, join the

line between point (P + Q) ∗ R to O and take the third

intersection.

(c) Next, to get P ∗ (Q + R), first we need to find (Q ∗ R) and then

joining them to O and take the third intersection on elliptic curve

E which is point Q + R.
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(d) To get the point P ∗ (Q + R), joining the point P to Q + R, which

leads us to get the same as (P + Q) ∗ R.

Thus, the associativity holds. �

We might have nP = O and P 6= 0 for some n > 1 which leads us to describe

in the next section.

3.1.2 Torsion points

The point P is a torsion point if nP = O and P 6= 0. Each point on an

elliptic curve is based of two kinds of order:

1. a point of finite order.

2. a point of infinite order.

If P is a point of finite order, then there exists a smallest integer n such that

nP = O. If no such n exists, then P is a point of infinite order (i.e. we can

never find the point at infinity by adding P to itself).

Definition 3.6 A point P ∈ E(Q) is called a torsion point of order n if P

has order n.

E(Q)tors = {P ∈ E(Q)| there exist n ∈ N such that nP = O} ⊆ E(Q).

E(Q)tors is the set of all torsion points.

If A and B are large in the elliptic curve equation (i.e. E : y2 = x3 +Ax+B),

then there could be many such points. However, Mazur showed that the size

and structure of such a torsion subgroup is very limited. Mazur’s theorem,

created by Barry Charles Mazur in 1976, [84] describes what torsion

subgroups that are possible for an elliptic curve over Q.
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Theorem 3.3 (Mazur’s Theorem)[80, Theorem 4.1, p11]

Let E(Q) be an elliptic curve. Then the torsion subgroup must be one of the

following 15 groups:

(i) Z/nZ, for n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12},

(ii) Z/2Z × Z/nZ, for n ∈ {2, 4, 6, 8}.

Theorem 3.3 tells us that there are no rational torsion points of order greater

than 12, (i.e. all other points are of infinite order).

The following theorem was proved by E. Lutz and T. Nagell in 1930s, [85]. It

gives an efficient method to compute the torsion subgroup of an elliptic curve

E over Q, (i.e. E(Q)tors).

Theorem 3.4 (Nagell-Lutz Theorem) [80, Theorem 5.1, p12]

Let E be an elliptic curve over Q with Weierstrass equation

E : y2 = x3 + Ax + B where A, B ∈ Z.

Then, the coordinates of a non-zero torsion point P = (x, y) ∈ E(Q) are in

Z. Furthermore, a torsion point P is either of order 2 (i.e. if y = 0) or else

y2|D where D = 4A3 + 27B2.

Example 3.2 Let an elliptic curve E : y2 = x3 + 4 and suppose that a point

P = (x, y) ∈ E(Q) has finite order. By the Nagell-Lutz theorem, we know

that either y = 0 or y2|4A3 + 27B2 = 24 · 33 = 432. Thus, the possibilities for

y occur in the following list:

0,±1,±2,±3,±4,±6,±12.
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Consider the following values of y in the rightmost column below:

0 ⇒ 0 = x3 + 4 ⇒ −4 = x3 ⇒ x /∈ Z ⇒ no points with y = 0,

±1 ⇒ 1 = x3 + 4 ⇒ −3 = x3 ⇒ x /∈ Z ⇒ no points with y = ±1,

±2 ⇒ 4 = x3 + 4 ⇒ 0 = x3 ⇒ x = 0 ∈ Z ⇒ (0, 2) and (0,−2) ∈ E,

±3 ⇒ 9 = x3 + 4 ⇒ 5 = x3 ⇒ x /∈ Z ⇒ no points with y = ±3,

±4 ⇒ 16 = x3 + 4 ⇒ 12 = x3 ⇒ x /∈ Z ⇒ no points with y = ±4,

±6 ⇒ 36 = x3 + 4 ⇒ 32 = x3 ⇒ x /∈ Z ⇒ no points with y = ±6,

±12 ⇒ 144 = x3 + 4 ⇒ 140 = x3 ⇒ x /∈ Z ⇒ no points with y = ±12.

Trial and error shows that only y = ±2 gives x to be an integer. Hence the

only possible points here that need to be checked are (0,±2). Since

(0,−2) = −(0, 2), it is suffices to check only one of the P, P ′ points, say,

P = (0, 2). By the addition algorithm, it can be checked that

2P = P + P = (0, 2) + (0, 2) = (0,−2) = −P ,

hence 3P = 2P + P = −P + P = O.

Thus, P and −P have order 3. Therefore the torsion subgroup of E(Q) is

{O, (0, 2), (0,−2)},

which is isomorphic to the additive group Z/3Z.

3.2 Elliptic curves over finite fields

Introduction: Elliptic curve cryptography (ECC) is a form of public-key

cryptography where the coordinates are in a finite field, Fp. ECC was

developed by Neal Koblitz and Victor Miller in 1985, [39]. It is based on the

difficulty of solving the Elliptic Curve Discrete Logarithm Problem. The

elliptic curve equation is defined by,
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E : Y 2 = X3 + AX + B with A, B ∈ Fp, 4A3 + 27B2 6= 0, p 6= 2, 3.

In practice we use the geometric definition of + to derive formulas for the

coordinates of P + Q in the form of rational functions with integer

coefficients. These formulas make sense in any suitable field, even a finite

field (provided the characteristic p 6= 2, 3), and we use them to define + over

such a field.

Definition 3.7 Define the equation of an elliptic curve over finite field Fp as

E : Y 2 = X3 + AX + B where A, B ∈ Fp and satisfying

∆ = 16(4A3 − 27B2) 6= 0, and the group operation + is defined by the

algebraic rules of Theorem 3.2. Therefore the set E(Fp) = {(x, y) : x, y ∈ Fp

where (x, y) satisfy Y 2 = X3 + AX + B} ∪ O is an abelian group.

Example 3.3 Elliptic curve, E : Y 2 = X3 + 4X + 9 over F13, to add points

P = (10, 8) and Q = (2, 9) in E(F13), I first compute

λ = y2−y1

x2−x1

= 9−8
2−10

≡ 8 (mod 13).

Next compute

ν = y1 − λx1 = 8 − 8(10) ≡ 6 (mod 13).

Finally, the addition algorithm tells us to compute

x3 = λ2 − x1 − x2 = 64 − 10 − 2 ≡ 0 (mod 13),

y3 = −(λx3 + ν) = −(0 + 6) ≡ 2 (mod 13)

This completes the computation of

P + Q = (10, 8) + (2, 9) = (0, 2) ∈ E(F13).

Example 3.4 Let E be the elliptic curve, E : y2 = x3 + x + 1. Compute the

number of points in the group E(Fp) when p = 5 and p = 7.
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To find the points of F5, we need to substitute all possible values

x = 0, 1, 2, 3, 4, and checking for which x value the quantity is

x3 + x + 1 = a ≡ b2 (mod 5).

x = 0 ⇒ 0 + 0 + 1 = 1 ≡ 1 (mod 5) = 12, 42.

x = 1 ⇒ 13 + 1 + 1 = 3 ≡ 3 (mod 5).

x = 2 ⇒ 23 + 2 + 1 = 11 ≡ 1 (mod 5) = 12, 42.

x = 3 ⇒ 33 + 3 + 1 = 31 ≡ 1 (mod 5) = 12, 42.

x = 4 ⇒ 43 + 4 + 1 = 69 ≡ 4 (mod 5).

Thus, E(F5) = {O, (0, 1), (0, 4), (2, 1), (2, 4), (3, 1), (3, 4)} so has 7 elements.

For E(F7), the values of x are 0, 1, 2, 3, 4, 5, 6.

x = 0 ⇒ 0 + 0 + 1 = 1 ≡ 1 (mod 7) = 12, 62.

x = 1 ⇒ 13 + 1 + 1 = 3 ≡ 3 (mod 7).

x = 2 ⇒ 23 + 2 + 1 = 11 ≡ 4 (mod 7) = 12, 52.

x = 3 ⇒ 33 + 3 + 1 = 31 ≡ 3 (mod 7).

x = 4 ⇒ 43 + 4 + 1 = 69 ≡ 6 (mod 7).

x = 5 ⇒ 53 + 5 + 1 = 131 ≡ 5 (mod 7).

x = 6 ⇒ 63 + 6 + 1 = 223 ≡ 6 (mod 7).

Thus, E(F7) = {O, (0, 1), (0, 6), (2, 1), (2, 5)} so has 5 elements.

3.3 The elliptic curve discrete logarithm

problem (ECDLP)

Introduction: The ECDLP is a variation of the discrete logarithm problem.

The ECDLP is defined over the points of an elliptic curve. The security of
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elliptic curve cryptography depends on ECDLP, which is the discrete

logarithm problem applied to elliptic curves, [8].

Definition 3.8 Let E be an elliptic curve over the finite field Fp and let P

and Q be points in E(Fp). The Elliptic Curve Discrete Logarithm Problem

(ECDLP) is the problem of finding an integer n such that Q = nP . By

analogy with the discrete logarithm problem for F∗

p, we denoted this integer n

by

n = logP (Q)

and we call n the elliptic discrete logarithm of Q with respect to P.

Example 3.5 Let E be the elliptic curve, E : y2 = x3 + x + 1 and let

P = (4, 2) and Q = (0, 1) be points on E modulo 5. I solve the elliptic curve

discrete logarithm problem for P and Q, by finding a positive integer n such

that Q = nP .

Solution:

First, we need to find 2P = P + P :

λ = 3(x(P ))2+A
2y(P )

= 49
4

= 1,

where x(P ) and y(P ) are values of x and y respectively of the point P . By

using the addition algorithm (refer to Theorem 3.1),

x(2P ) = λ2 − 2x(P ) = 12 − 2(4) = 3.

y(2P ) = λ(x(P ) − x(2P )) − y(P ) = 1(4 − 3) − 2 = 4

Thus, 2P = (3, 4).

Next, find 3P = 2P + P .

λ = y(2P )−y(P )
x(2P )−x(P )

= 4−2
3−4

= 3.

In a similar manner, we apply the addition algorithm to get the next

coordinate:
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x(3P ) = λ2 − x(2P ) − x(P ) = 32 − 3 − 4 = 2.

y(4P ) = λ(x(P ) − x(3P )) − y(P ) = 3(4 − 2) − 2 = 4.

Thus, 3P = (2, 4).

By using the same steps as above, we continue to calculate coordinates until

we find the integer n.

4P = (0, 4)

5P = (0, 1) = Q.

Therefore, the integer n is 5.

3.4 Application of elliptic curves to

cryptography

Introduction: This explains how elliptic curves are applied to

cryptography. We consider two applications, the Diffie-Hellman key exchange

and the El-Gamal public key cryptosystem.

3.4.1 Elliptic Diffie-Hellman key exchange

(a) Public parameter creation

Alice and Bob choose and publish a large prime p, an elliptic curve E over Fp

and a point P ∈ E(Fp).

(b) Private computations

Alice: chooses a secret integer nA. Then, computes the point on the curve

QA = nAP .

Bob : chooses a secret integer nB. Then, computes the point on the curve

QB = nBP .

(c) Public exchange of values
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Then, they exchange the values of QA and QB. In other words, Alice sends

QA to Bob and Bob sends QB to Alice.

(d) Further private computations

Alice then uses her secret multiplier to compute the point nAQB. While Bob

computes the corresponding, nBQA. So now, they are able to share the secret

value which is

nAQB = (nAnB)P = nBQA.

They can then use this value as a key to communicate privately.

Example 3.6 Alice and Bob decide to use elliptic Diffie-Hellman key

exchange with the following prime, curve and point.

p = 3889, E : Y 2 = X3 + 354X + 1234, P = (921, 304) ∈ E(F3889).

Alice and Bob choose respective secret values nA = 123 and nB = 456 and

then

Alice computes QA = 123P = 26P + 25P + 24P + 23P + 2P + P ∈ E(F3889)

= 64P + 32P + 16P + 8P + 2P + P ∈ E(F3889)

= (1717, 3600) + (219, 3579) + (361, 1165) + (2043, 2691)

+ (2270, 3888) + (921, 304) ∈ E(F3889)

= (721, 2157) ∈ E(F3889).

Bob computes QB = 456P = 28P + 27P + 26P + 23P ∈ E(F3889)

= 256P + 128P + 64P + 8P ∈ E(F3889)

= (1229, 2109) + (2132, 837) + (1717, 3600)

+ (2043, 2691) ∈ E(F3889)

= (1383, 936) ∈ E(F3889).

Bob and Alice have exchanged the secret point

nAQB = 123(1383, 936) = 456(721, 2157) = nBQA = (3160, 722).
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3.4.2 Elliptic El-Gamal public key cryptosystem

The direct analogue of the classical El-Gamal public key cryptosystem.

(a) Public parameter creation

A trusted people choose and publish a large prime p, an elliptic curve over Fp

and a point P in E(Fp).

(b) Key creation

Alice chooses a private key nA and publishes the point QA = nAP as a public

key.

(c) Encryption

Bob chooses plaintext encoded as M ∈ E(Fp) and chooses an integer k as a

temporary key. By using Alice’s public key QA, Bob computes

c1 = kP ∈ E(Fp) and c2 = M + kQA ∈ E(Fp).

Then he sends the two points (c1, c2) to Alice.

(d) Decryption

Alice computes

c2 − nAc1 = (M + kQA) − nA(kP )

= M + k(nAP ) − nA(kP )

= M ∈ E(Fp), which is the plaintext.

3.5 Applications of elliptic curve

cryptography

Introduction: Elliptic curve cryptography is becoming more popular

because of the small number of bits required to generate keys compared to

other cryptosystems. Thus, it has been used frequently. Here are some

examples of elliptic curve cryptography where it has been applied.



75

1. Wireless security / communication

• Wireless devices have become prevalent for communication.

Basically, these devices need less memory and low computational

power but require a high level of security, [77, 6].

• When wireless messages are sent or shared, we need to be sure

that our communications are secure and the message remains

secret. So, elliptic curve cryptography is one way to solve security

problems. Since the key size of elliptic curve cryptography is

relatively small, the encrypted/decrypted message and

computational power are small, [78, 79].

• Applying elliptic curve cryptography to wireless communication is

very efficient for large data files and encrypted files. Also, elliptic

curve cryptography involves low data rate transmissions and low

power requirements, [7].

2. Smart cards

• Smart cards such as those used for telephone calling, electronic

cash payments, health care, identification and other applications is

a plastic card with a built in microchip that can be loaded with

data/information. The advantage of a smart card is it can store

sensitive data that can be protected from unauthorized access.

• Elliptic curve cryptography is compatible for smart card because,

[5, p10].

(a) it requires less memory and shorter transmission times
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- Since the elliptic curve discrete logarithm problem

algorithm uses small keys, it requires a small amount of

memory to store those keys and to transfer data.

(b) Scalability for system resources

- A smart card would need a strong security and large

storage to keep long keys, but in contrast by using elliptic

curve cryptography which has small keys, this problem

can be solved resulting in low-cost of production and a

higher level of security.

(c) No coprocessor required

- When using elliptic curve cryptography for a smart card,

there is no additional hardware required in the CPU

(central processing unit) because elliptic curve

cryptography reduces processing times.

(d) On card key generation

- The private key on a smart card must be kept secret from

unauthorized users to ensure security. Basically, a key is

embedded into a card to be ensure it is personalized and

authenticated.

- Provided a good random number generator is available

with elliptic curve cryptography, the time required to

generate the private key is short and generation only

requires low computing power that is typically available

on of a smart card. This means that the card

personalization process can be more efficient for

applications in which nonrepudiation is important.
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3. Network security/securing the web

• Since the keys of elliptic curve cryptography are small, the effect

of its application is faster computations, lower power consumption

and memory and bandwidth savings, [10].



Chapter 4

Encryption and decryption

using the RSA cryptosystem

and elliptic curve cryptography

Introduction: In cryptography, there are many ways to send or receive

messages. In this chapter we give some examples using RSA cryptosystems

and elliptic curve cryptography to encrypt and decrypt messages.

4.1 The RSA cryptosystem

Question 1:

Alice publishes her RSA public key: modulus N = 1351500281 and exponent

e = 5441.

(a) Bob wants to send Alice the message m = 234698. What ciphertext does

Bob send to Alice?

Solution:

The public key is (N, e) = (1351500281, 5441). By the way,

p · q = N = 1351500281. We know that the ciphertext, c ≡ me (mod N). So,
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by using software we get c ≡ 2346985441 ≡ 107925960 (mod 1351500281).

Thus, the ciphertext is 107925960.

(b) Alice knows that her modulus factors into a product of two primes, one

of which is p = 124459. Find the decryption exponent d for Alice.

Solution:

We have p · q = N = 1351500281. Then 124459 · q = 1351500281. So

q = 10859.

e · d ≡ 1 (mod (p − 1)(q − 1)).

(p − 1) · (q − 1) = (124458)(10858) = 1351364964.

5441 · d ≡ 1 (mod 1351364964).

By using extended Euclidean algorithm of software, we have d = 23098133.

(c) Alice receives the ciphertext c = 107925960 from Bob and decrypt the

message.

Solution:

cd (mod N) ≡ 10792596023098133 (mod 1351500281).

≡ 234698 (mod 1351500281).

So, the message is 234698.

Question 2:

Bob’s RSA public key has modulus N = 555722767441851267329933783 and

exponent e = 738083. Alice sends Bob the ciphertext

c = 127053668429207502906717463. Unfortunately, Bob has chosen too small

a modulus. Help Eve by factoring N and decrypting Alice’s message.

Solution:

Given that N = 555722767441851267329933783 = p · q. Then, we can

factorize N :

555722767441851267329933783 = 23579273408279 · 23568273619777.
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We must check that

gcd(e, (p − 1)(q − 1)) = gcd(738083, 555722767441804119782905728) = 1. So,

c ≡ 127053668429207502906717463 (mod 555722767441851267329933783).

Bob knows (p − 1) · (q − 1) = 23579273408278 · 23568273619776 =

555722767441804119782905728.

e · d ≡ 1 (mod (p − 1)(q − 1))

738083 · d ≡ 1 (mod 555722767441804119782905728).

So, d = 174664052133905969528140427.

Then,

cd (mod N) ≡ 127053668429207502906717463174664052133905969528140427 (mod N)

≡ 234580277294629 (mod 555722767441851267329933783).

So, the message is m = 234580277294629.

Question 3:

(a) Use Alice’s RSA public encryption key

(N, e) = (931193664662420801428126247840126135129, 6283649) to encrypt

the word ’SEE YOU LATER’.

(First change the letters to numbers using

space = 00, a = 01, b = 02, c = 03, ...).

Solution:

By using software, we factorize N to get p = 23459512369369265081 and

q = 39693649637759157409 where N = p · q. Then choose e = 6283649.

φ(n) = (p − 1) · (q − 1) = 23459512369369265080 · 39693649637759157408 =

931193664662420801364973085832997712640. The encryption key is

(N, e) = (931193664662420801428126247840126135129, 6283649). We need to

change the word ’SEE YOU LATER’ to numbers: SEE YOU LATER =

19050500251521001201200518. To encrypt the message, we must use the
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encryption key (N, e).

c ≡ me (mod N)

≡ 190505002515210012012005186283649 (mod N)

≡ 52648878878742875284154191732044442509

(mod 931193664662420801428126247840126135129).

So, the encoded message is ’YJGXFFOFYCONJSTQQYI’.

(b) Bob encrypted a word with Alice’s encryption key

(N, e) = (931193664662420801428126247840126135129, 6283649). He obtains

the number 52648878878742875284154191732044442509. Use Alice’s

decryption key d = 501469130233221884785435566252401557889 to decrypt

this number and get back Bob’s message.

Solution:

m ≡ cd (mod N)

≡ 52648878878742875284154191732044442509501469130233221884785435566252401557889 (mod N)

≡ 19050500251521001201200518 (mod 931193664662420801428126247840126135129).

So the message is ’SEE YOU LATER’.

4.2 Elliptic curve cryptography

Question 1:

Alice and Bob agree to use elliptic Diffie-Hellman key exchange with the

prime, elliptic curve and point p = 2671, E : Y 2 = X3 + 171X + 853,

P = (1980, 431) ∈ E(F2671).

(a) Alice sends Bob the point QA = (2110, 543). Bob decides to use the secret

multiplier nB = 1943. What point should Bob send to Alice?

Solution:
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To answer this question, we used Mathematica software to make the job

easier.

1943 = 210 + 29 + 28 + 27 + 24 + 22 + 21 + 20. Then, Bob needs to compute

QB to send to Alice.

QB = nBP = 1943(1980, 431).

P = (1980, 431), 9P = (1124, 363)

2P = (1950, 1697), 10P = (2431, 1318)

3P = (415, 301), 11P = (1858, 644)

4P = (1894, 1829), 12P = (1490, 1078)

5P = (45, 166), 13P = (143, 27)

6P = (536, 312), 14P = (289, 578)

7P = (2288, 2333), 15P = (763, 9)

8P = (1160, 1268), 16P = (1116, 2037)

1943P = 210P + 29P + 28P + 27P + 24P + 22P + 21P + 20P

1943P = (175, 1556) + (970, 2139)+ (2142, 864) + (2006, 430) + (1116, 2037) +

(1894, 1829) + (1950, 1697) + (1980, 431). So, Bob sends point QB to Alice,

QB = 1943P = (2580, 1400).

(b) What is their secret shared value?

Solution:

Alice sends to Bob, QA = (2110, 543). Bob sends to Alice,

QB = (2580, 1400). So, Bob computes nBQA = 1943(2110, 543).

Use the same method as above to get their shared value nBQA = (656, 1205).

Question 2:

The cryptosystem parameter are E11(1, 6) and G = (2, 7). Bob’s secret key in

nB = 7.

(a) Find Bob’s public key PB.

Solution:

We know that PB = nBG = 7(2, 7). By using software, we get
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G = (2, 7)

2G = (5, 2)

3G = (8, 3)

4G = (10, 2)

5G = (3, 6)

6G = (7, 9)

7G = (7, 2)

So, the value of PB is (7, 2).

(b) Alice wishes to encrypt the message Pm = (10, 9) and chooses the random

value k = 3. Determine the ciphertext Cm.

Solution:

Bob’s public key is PB = (7, 2). We have,

3(2, 7) = (8, 3), and

(10, 9) + 3(7, 2) = (10, 9) + (3, 5).

To find addition point (10, 9) + (3, 5), λ = y2−y1

x2−x1

= 5−10
3−9

= 10.

ν = y1 − λx1 = 9 − 10(10) = 3.

x3 = λ2 − x1 − x2 = 102 − 10 − 3 = 10.

y3 = −(λx3 + ν) = −(10(10) + 3) = 7.

So, (10,9) + 3(7,2) = (10,7). Thus, Alice sends the ciphertext (8, 3), (10, 7).

Question 3:

Let E be the elliptic curve E : Y 2 = X3 + 1541x + 1335 and let

P = (2898, 439). The prime p = 3221 and n = 3211. By using the elliptic

curve addition algorithm, compute nP in E(Fp).

Solution:

The binary expansion of n is

n = 3211 = 211 + 210 + 27 + 23 + 21 + 20.
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Then we can compute

3211P = 211P + 210P + 27P + 23P + 2P + P

= 2048P + 1024P + 128P + 8P + 2P + P.

First we need to find all the values that are related to get 3211P .

P = (2898, 439)

2P = (1951, 1370)

3P = (2438, 608)

8P = (2937, 310)

128P = (2475, 2561)

1024P = (1596, 2944)

2048P = (1566, 2267)

Then, we combine all together yields

3211P = = 2048P + 1024P + 128P + 8P + 2P + P

= (1566, 2267) + (1596, 2944) + (2475, 2561) + (2937, 310)

+ (1951, 1370) + (2898, 439)

= (1388, 1990).

Thus, nP = 3211P = (1388, 1990).



Chapter 5

Conclusions

In this thesis, I studied the mathematics of the two public-key

cryptosystems, the RSA cryptosystem and elliptic curve cryptography. These

are the most well-known cryptosystems used currently throughout the world.

The RSA cryptosystem is based on elementary number theory. However,

RSA can be broken, in two cases; either a brilliant mathematician knows how

to factor large integers very quickly or this factoring can be performed by

high speed computers. Therefore, mathematicians and scientists have

designed new approaches to message encryption like elliptic curve

cryptography.

Elliptic curve cryptography is another cryptosystem that is very efficient and

is frequently used nowadays. I explained how elliptic curves can be used to

create public key systems for encryption and decryption. Since there is an

infinite set of elliptic curves, it makes it difficult for an adversary or

eavesdropper to decrypt a communication. In addition, elliptic curve

cryptosystems are efficient because they use smaller key sizes, have low

computational power requirements and give better performance than RSA

cryptosystem.
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