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“Unlike fair-weather friends, the land does not desert us in times of 

greatest need, for it is indifferent yet different from day to day.” 

         - Brian Turner 

 

 

 

 

 
 

The view looking towards Courejoles Point and Isle de Jeanette Marie 

from high above Northwest Bay, Campbell Island.  A day of rare perfection 

in the midst of the Southern Ocean.  

(Photo by Chris Mace, 2009) 
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ABSTRACT 
 

Throughout the Late Cretaceous to Eocene, sedimentation in gradually 

subsiding basins on the passive eastern margin of the micro-continent of 

Zealandia recorded climatic and paleoceanographic changes in a 

greenhouse world.  One such fundamental change in Southern Ocean 

circulation is hypothesised to be recorded in a regionally extensive 

unconformity surface and short-lived lithofacies changes contained within 

Late Paleocene to Early Eocene sedimentary successions at key sections 

throughout New Zealand, and investigated here on Campbell Island and in 

southeastern Marlborough. 

 

On Campbell Island, this oceanographic event is represented by an 

unconformity between the Late Cretaceous to Late Paleocene Garden 

Cove Formation and the Early Eocene to Oligocene Tucker Cove 

Limestone.  This unconformity signifies a major lithofacies change from 

Garden Cove Formation which consists of siliceous mudstone containing 

fine sand to coarse silt sized siliciclastic grains, pelletal glaucony grains 

and rare quartz pebbles, to a nannofossil and foraminiferal limestone 

containing little to no siliciclastic grains comprising the Tucker Cove 

Limestone.  Geochemically this lithofacies change is characterised by a 

dramatic decrease in terrigenous supply and a shift from siliceous to 

calcareous productivity, along with a significant concentration of Zr and 

rare earth elements.  Lithofacies at this site are inferred to record possible 

episodes of ice rafting and eventual unconformity formation by invigorated 

intermediate depth ocean currents which resulted in winnowing of sea-

floor sediments and concentration of heavy minerals.  

 

At the distal Mead Stream site in southeastern Marlborough, deposition of 

bio-siliceous sediments of the Mead Hill Formation and Amuri Limestone 

was locally disrupted by deposition of the Waipawa Formation, the lateral 

equivalent of an important hydrocarbon source rock identified in several of 

New Zealand‟s sedimentary basins.  In outcrop, the Waipawa Formation at 

Mead Stream is characterised by a very distinctive „rusty‟ brown fissile 

appearance, while in thin section, though radiolarians and sponge spicules 

are common, the overall fine grained nature of the unit makes 

identification of other components difficult.  Geochemical proxies show a 

significant increase in terrigenous supply in the Waipawa Formation, along 

with an increase in siliceous productivity concomitant with a decrease in 

oxygenation at the site.  Lithofacies changes through the Late Paleocene 

at Mead Stream suggest the site lay under a zone of upwelling which 

resulted in an increase in siliceous productivity during the Late Paleocene.  
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At the more proximal sites of Muzzle Stream and Kaikoura wharf in 

southeastern Marlborough, Mead Hill Formation and Amuri Limestone are 

separated by an unconformity, overlain by Teredo Limestone.  The Teredo 

Limestone is considered to be a lateral equivalent of the Waipawa 

Formation, but both the base and top of the Teredo Limestone are time-

transgressive.  This means that at Muzzle Stream the unit is 

contemporaneous with the Waipawa Formation (Late Paleocene), while at 

Kaikoura wharf the unit is entirely Early Eocene in age.  At these sites, the 

Teredo Limestone Member of the Amuri Limestone is a calcareous 

greensand sometimes containing phosphatised limestone clasts and 

sharks teeth.  In thin sections, the unit consists of well sorted, fine to very 

fine sand sized siliciclastic grains and fine sand sized pelletal and 

vermicular glaucony set in a calcareous matrix that shows evidence of 

secondary silicification.  Unconformity formation and the subsequent 

deposition of the overlying Teredo Limestone record a period of 

invigorated intermediate depth ocean currents that resulted in the 

transport of siliciclastic grains and glaucony to these bathyal sites.  This 

interpretation is supported by a palinspastic map of the Teredo Limestone 

that suggests the unit was deposited under different conditions than those 

responsible for the deposition of the bounding Mead Hill Formation and 

Amuri Limestone.  This map also suggests the Teredo Limestone was 

deposited as a „skin drift‟, here named the Clarence Drift, possibly under 

the influence of contour currents. 

 

Based on similarities between unconformities and lithofacies changes in 

Late Paleocene to Early Eocene sedimentary sections and an earlier, well 

documented event at the Cretaceous/Tertiary boundary in southeastern 

Marlborough, evidence for a period of enhanced siliceous productivity, 

invigorated ocean currents and possible episodes of ice rafting is 

suggested to be consistent with a brief period of Antarctic ice sheet growth 

during a phase of global cooling in the Late Paleocene.   

 

The possible identification of Antarctic ice sheets, ephemeral though they 

may have been, not only challenges long held beliefs that the Antarctic 

continent remained ice free during the early Paleogene greenhouse world 

but also questions the suggested mechanisms responsible for Antarctic 

ice sheet growth.  The lack of ocean gateways in the Southern Ocean 

during this time effectively rules out thermal isolation of the Antarctic 

continent as a driver.  Given that this period of ice sheet growth is 

contemporaneous with a documented period of enhanced global ocean 

productivity and terrestrial carbon accumulation and related draw down in 

atmospheric CO2, it is suggested this may represent the driver responsible 

for brief Antarctic glaciation during this period, though the postulated link 

requires further investigation. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 THE PALEOGENE GREENHOUSE 

The Paleogene is a period of time between 65 and 23.8 Ma which 

encompasses the Paleocene, Eocene and Oligocene epochs. On the 

broadest scale, the Paleogene can be divided into two separate climatic 

periods termed the ‘greenhouse world’ that transitioned into the ‘icehouse 

world’ (Figure 1.1).  The ‘greenhouse world’ is a term given by Fischer 

(1984) to periods of time in the Earth’s history when global temperatures 

were much warmer than present and it is presumed that the poles 

remained ice free (Miller et al. 2005).  The early Paleogene (65 – 40 Ma) is 

considered to be one of these times and it is generally accepted that this 

period was characterised by much warmer temperatures when compared 

to present day conditions.  Deep-sea temperatures ranged between 10 

and 12°C during the early Paleogene (Wing et al. 2003), while sea-surface 

temperatures in high latitudes reached ~30°C (Bijl et al. 2009; Hollis et al. 

2009a) and as high as ~40°C in the tropics (Pearson et al. 2007; Huber 

2008).  Long held beliefs suggested that along with high temperatures, the 

Paleogene (outside the Oligocene) was characterised by low latitudinal 

temperature gradients and stable temperature, however recent studies 

have shown this may not be the case in all regions (Crouch et al. 2009).  

For example, based on Mg/Ca ratios of planktic foraminifera and archeal 

membrane lipids in bathyal sediments from Canterbury, New Zealand, 

Hollis et al. (2009b) demonstrated a dramatic shift in both sea-floor and 

sea-surface temperatures during the Late Paleocene to Early Eocene.  To 

explain such high temperatures, modellers invoke CO2 concentrations >2-

4 times present day levels (Miller et al. 2005).  It is some New Zealand 

deposits that formed during the early Paleogene ‘greenhouse world’ that 

are the focus of this study. 

 

The textbook history of Cenozoic climate has Antarctic ice sheets forming 

around  the Eocene/Oligocene boundary (Zachos et al. 2001; Coxhall & 

Pearson 2007) and an Arctic ice sheet forming much later in the Neogene 
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(Shackleton et al. 1984).  However, recent sedimentologic and 

geochemical evidence suggests that Arctic ice sheets may have formed as 

early as the Eocene (Spielhagen & Tripati 2009), while evidence of 

Milankovitch scale sea level oscillations from the New Jersey and Russian 

platforms suggest glacio-eustatically driven sea level change as far back 

as the Late Cretaceous (Miller et al. 2005).  Climatic and oceanographic 

events that occurred within the early Paleogene ‘greenhouse world’ are 

the focus of this study. 

 

Figure 1.1 Global temperature record for the last 80 Myrs (after Barrett 2003) in 

comparison to the present situation showing some major Cenozoic climatic events (after 

Zachos et al. 2001). K/T boundary: Cretaceous-Tertiary boundary; PCIM: Paleocene 

carbon isotope maximum; PETM: Paleocene-Eocene thermal maximum; EECO: early 

Eocene climatic optimum; MECO: middle Eocene climatic optimum. 

 

Though the late Paleogene (Oligocene) can be considered to be an 

‘icehouse world’ under the definition of Fischer (1984), it realistically 

represents a period of transition between the early Paleogene 

‘greenhouse’ and true ‘icehouse’ that formed in the Neogene (Figure 1.1). 

The period saw a general decrease in temperatures and atmospheric CO2 

concentrations associated with major rapid and oscillatory glaciation on 
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Antarctica (Barrett 2003; DeConto & Pollard 2003; Pagani et al. 2005).  

While this period is important globally, it is not considered within this study. 

 

1.2 CLIMATIC VARIATION AND DRIVERS 

Evidence from sedimentary records has long shown the continuously 

changing nature of the Earth’s climate through the Cenozoic, which at the 

broadest scale, is characterised by the shift from greenhouse to icehouse 

conditions.  However, the greater availability of high quality sediment 

cores recovered by scientific drilling programs, such as the Ocean Drilling 

Program (ODP) and Deep Sea Drilling Project (DSDP), has led to the 

identification of superimposed geologically abrupt and transient climatic 

events punctuating this Cenozoic climate record (Figure 1.1).  Zachos et 

al. (2001) suggest that shifts and trends in global climate throughout the 

Cenozoic can be attributed to a combination of two driving forces which 

operate over differing time scales.  The first driver, plate tectonics, is 

considered to be responsible for the long term global mean climate over 

periods from 105 – 107 years.  These processes affect global climate by 

driving gradual but continual changes in the Earth’s boundary conditions 

which include geography, topography, ocean gateway locations, 

bathymetry and concentrations of atmospheric greenhouse gases.  

Examples of major changes in the Earth’s boundary conditions during the 

Paleogene include the opening the Tasmanian Gateway between 

Tasmania and Antarctic and Drake Passage between South America and 

Antarctica during the late Eocene to Oligocene, emplacement of the North 

Atlantic Igneous Province around the Paleocene-Eocene boundary and 

the collision of India with Asia during the Eocene (Zachos et al. 2001).   

 

The second driver is considered to be changes in the Earth’s orbital 

parameters of eccentricity, obliquity and precession (Figure 1.2), which 

tend to act over shorter time periods between 104 and 106 years.  

Eccentricity, the longest of these cycles, has a periodicity of 400 and 100 

k.y. and is a measure of the departure of the Earth’s orbit from a perfect 

circle to a more elliptical shape.  Changes in the eccentricity of the Earth’s 

orbit are driven by torques exerted on the Earth-Sun system by other 

planets, specifically Jupiter and Venus due to their size and proximity, 



 

4 CHAPTER 1 
 

respectively (Muller & MacDonald 2000).  Obliquity is the angle of tilt of the 

Earth’s axis of rotation with respect to the plane of the elliptic.  The angle 

of obliquity varies between 22.1˚ and 24.5˚ with a periodicity of about 40 

k.y. (Zachos et al. 2001). Precession is the wobble of the Earth’s axis of 

rotation due to the torque of the Sun and Moon on the Earth’s equatorial 

bulge.  This wobble can be compared to a tilted spinning top which 

wobbles due to the torque of gravity (Muller & MacDonald 2000; Zachos et 

al. 2001).  Though the axis of Earth’s rotation precesses with a period of 

26 k.y., the modulating affect of orbital eccentricity means that the period 

of the precessional signal observed in the geological record is actually 19 

and 23 k.y. 

 

Figure 1.2 Primary orbital components controlling the amount and distribution of 

incoming solar radiation on Earth (Muller & MacDonald 2000).  

 

Milankovitch theory states that changes in these orbital parameters will 

affect the amount of solar radiation that reaches the Earth’s surface, 

referred to as insolation, at various times and therefore have a direct affect 

on global climate.  Though eccentricity is important in determining total 

insolation, it plays only an indirect role in determining the global 

distribution.  It is for this reason that Zachos et al. (2001) state that 

eccentricity alone cannot account for changes in the Earth’s climate in the 
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past.  It does, however, as stated previously, modulate precession by 

affecting movement of the perihelion, the point at which the Earth passes 

closest to the sun.  The perihelion moves most rapidly when eccentricity is 

greatest (Muller & MacDonald 2000).  Precession affects global climate by 

determining where in the orbit around the sun seasons occur with respect 

to perihelion and aphelion (Zachos et al. 2001).  Presently, perihelion 

occurs on the 4th of January, meaning the Earth is closest to the sun 

during the Northern winter, limiting the development of large scale 

northern ice sheets (Muller & MacDonald 2000).  Obliquity is suggested by 

Muller and MacDonald (2000) to be the only orbital parameter to affect 

total yearly insolation at the poles.  Increased obliquity means more 

insolation at the poles and leads to higher seasonal contrast with colder 

winters and hotter summers in both hemispheres. 

 

1.3  THE IMPORTANCE OF THE GREENHOUSE WORLD 

Zachos et al. (2008) state that if fossil-fuel emissions continue unabated, 

as they have since the beginning of the industrial revolution, 5000 gt of 

carbon will be released by the year 2400.  Prior to the eventual 

sequestration of this anthropogenic carbon to the geosphere through 

deposition of calcium carbonate and organic carbon, most of this will be 

accumulated in the atmosphere and oceans.  Zachos et al. (2008) suggest 

that if only 60% of this carbon is accumulated in the atmosphere, this will 

result in an increase in pCO2 to 1800 ppm.  Similar pCO2 values to these 

have not been present on Earth for ~50 m.y. during the early Paleogene 

greenhouse, when boron-isotope ratios suggest pCO2 was greater than 

2000 ppm (Pearson & Palmer 2000; Pagani et al. 2005). 

 

As a realisation of this problem, a large proportion of research from the 

last 20 years has focussed on relationships and possible tipping points 

leading to extreme climates (Williams et al. 2007), especially focussing on 

hyperthermals of which the Paleocene-Eocene Thermal Maximum, 

abridged to PETM, is the most prominent and best studied.  However, very 

few studies have investigated periods of comparative cooling that appear 

to be more anomalous in the early Paleogene, given the general 

characteristics of the greenhouse world.   
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One example of this is a ~2-3 m.y period of cooling that occurred in the 

Late Paleocene associated with the highest δ13C values of the entire 

Cenozoic carbon isotope record, known as the ‘Paleocene carbon isotope 

maximum’, or PCIM (Thompson & Schmitz 1997; Zachos et al. 2001; Kurtz 

et al. 2003; Hollis et al. 2005b).  This excursion is interpreted to reflect a 

period of increased rates of organic carbon (Corg) burial, either as a result 

of enhanced surface ocean productivity (Schmitz et al. 1997; Thompson & 

Schmitz 1997) and/or accumulation of terrestrial carbon (Kurtz et al. 

2003). 

 

1.4 RECORDS OF CLIMATIC AND OCEANOGRAPHIC CHANGE 

FROM ZEALANDIA 

1.4.1 Passive Margin Records 

Continental margins can broadly be divided into active or passive margins.  

Active margins lie converging along plate boundaries and are affected to 

varying degrees by plate tectonic movements.  Passive continental 

margins are divergent ones, within the interior of a lithospheric plate and 

are generally ‘rafted’ away from active margins as a result of sea-floor 

spreading (Pratson et al. 2007). 

 

Passive margins accumulate large volumes of sediment, in typically 

tectonically stable but continuously subsiding environments (Kennett 

1982).  Initially, subsidence of passive margins is driven by thermal 

subsidence as a result of cooling of the adjacent oceanic lithosphere 

following rifting (Pratson et al. 2007).  Thermal subsidence tapers off over 

time according to the relationship 1/√age (Parson & Sclater 1977), 

meaning subsidence in young margins ranges between 40 and 100 

m/m.y., while in mature margins, rates are generally <3 m/m.y. (Pratson et 

al. 2007).  As sediment accumulates on passive margins, isostatic 

subsidence and sediment compaction as a result of sediment loading 

begin to also influence subsidence rates (Pratson et al. 2007).   

 

The distribution of depositional paleoenvironments and their lithofacies is 

controlled by sediment supply, climate, eustacy, and subsidence, and 



 

Introduction 7 
 

more importantly the complex interrelations between these factors (Figure 

1.3) (Mountain et al. 2007).  If the complex interactions can be understood 

and interpreted, passive margin records have the ability to provide long 

term records of paleoenvironmental change.  The long term nature of 

passive margin records is important for a number of reasons (Mountain et 

al. 2007).  First, they record the complex behaviour of the Earth system 

under boundary conditions greatly different to those of the present today.  

Second, they provide a good chance to evaluate numerical models over 

longer time-scales.  And third, the fundamental processes that drive the 

Earth system act on time-scales far longer than the short term (~20 k.y.). 

 

Figure 1.3  The four main factors controlling sedimentation on passive margins, namely 

sediment supply, climate, eustacy and subsidence (Vail & Sangree 1988). 

 

The New Jersey margin on the eastern coast of North America is an 

example of a classical long-lived passive margin, with initiation of rifting 

occurring in the Late Triassic, followed by sea-floor spreading by the 

Middle Jurassic.  This plate setting has not changed to the present 

(Mountain et al. 2007).  The long-lived nature, combined with a relatively 

simple tectonic history dominated by thermal subsidence, sediment 

loading and flexure, has meant that the New Jersey margin sequences 

have played a critical role in our understanding of Late Cretaceous to 

Recent global eustatic and climatic changes (e.g. Miller et al. 1998, 2005; 

Van Sickel et al. 2004; John et al. 2008). 
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1.4.2 Development of Passive Margin Sedimentation 

In New Zealand, a passive margin was developed within a 1st order 

tectonic megacycle represented by supra-basement Cretaceous-Cenozoic 

sedimentary successions (Figure 1.4) (King et al. 1999).  This ~100 m.y 

transgressive-regressive megasequence is divided into seven 2nd order 

depositional cycles, of which those deposited within the transgressive 

phase of this megasequence will be discussed here.  

 

Deposition of the 1st order tectonic megasequence was initiated ~100 Ma 

with the deposition of Cycle 1 (Figure 1.4) during cessation of subduction 

of the Phoenix plate beneath the eastern margin of Gondwana and an 

abrupt shift from a convergent to extensional tectonic setting (Laird & 

Bradshaw 2004; Mortimer 2004).  Until this period, the eastern margin of 

Gondwana had undergone progressive Pacific-ward growth by terrane 

accretion and batholith intrusion through the Late Paleozoic to Mesozoic 

(Mortimer 2004).  This rapid shift in tectonic regimes was initially proposed 

by Bradshaw (1989) to have occurred as a result of oblique subduction of 

the Phoenix-Pacific spreading ridge eliminating the subduction zone.  

Luyendyk (1995) modified this by suggesting the shift occurred as a result 

of subducted slab capture, whereby the Phoenix plate became too small to 

subduct beneath the eastern margin of Gondwana as the Phoenix-Pacific 

spreading ridge approached the subduction zone.  As subduction ceased, 

the spreading ridge stalled and areas of New Zealand, the Chatham Rise, 

Campbell Plateau and Lord Howe Rise, collectively referred to as 

Zealandia by Luyendyk (1995) (Figure 1.5A), and Marie Byrd Land were 

captured by the northward moving Pacific plate.  In what is presently the 

northeastern portions of the North Island and South Island, New Zealand 

(i.e. Raukumara and Marlborough regions, respectively) compressional 

tectonics continued through to the late Early Cretaceous before the onset 

of extension (King et al. 1999; Crampton et al. 2003).  Crustal thickening 

and regional uplift as a consequence of a number of events, such as 

prolonged convergence along the eastern margin of Zealandia, meant that 

as the micro-continent rifted from Gondwana it was subject to rapid 

erosion, accompanied by spectacular crustal thinning and thermal
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Figure 1.4 Schematic diagram showing generalised depositional patterns, unconformities and important tectonic and oceanographic events set within the broad 

framework of the 1
st
 order tectonic megacycle represented by supra-basement Cretaceous-Cenozoic sedimentary successions from New Zealand (from King et al. 

1999). New Zealand stages are defined in Appendix A. 
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relaxation (Ballance 1993).  During this initial period of crustal extension 

prior to Tasman Sea spreading, sedimentation was generally within 

normal fault controlled grabens, where Early to Late Cretaceous syn-rift 

deposits were widely developed throughout many sedimentary basins. 

  

The onset of Tasman Sea spreading demarcating the western side of 

Zealandia during the Late Cretaceous was concomitant with initiation of 

passive margin thermal subsidence and marine transgression in the 

eastern basins (Field et al. 1997; Cook et al. 1999; King et al. 1999; 

Crampton et al. 2003).  This period corresponds to Cycle 2 of King et al. 

(1999) (Figure 1.4) and is generally characterised by fining upward 

sequences of the Taratu Formation (Great South Basin), Broken River 

Formation (Canterbury Basin) and Paton Formation (Marlborough) which 

were deposited in coastal plains and transgressive shallow marine 

sedimentary environments.  Sedimentation in the East Coast Basin during 

this period was characterised by shallow marine to bathyal sandstones, 

flysch and shales of the Tahora and Glenburn Formations.  By the latest 

Cretaceous, deposition of siliceous mudstone of the Whangai Formation 

and correlatives (Conway Formation and Ngatuturi Claystone) occurred 

throughout the East Coast Basin in a region extending from New 

Caledonia to the Great South Basin (Beggs 1976, 1978; Crampton 1988; 

Field et al. 1989; Ballance 1993; Field et al. 1997; Cook et al. 1999).  The 

widespread nature of the Whangai facies is interpreted by Moore (1988) to 

reflect increased siliceous productivity and a decrease in coarse 

terrigenous material, expressed not only by a decrease in grain size but 

also the amount of sediment, as a result of continued thermal subsidence.  

In the Marlborough region of northeastern South Island, the decrease in 

terrigenous supply was rapid in comparison to other basins, leading to 

deposition of micro-bioclastic sediments of the Muzzle Group by the latest 

Cretaceous.  Given that the base of the Muzzle Group was deposited in 

inner-mid shelf depth waters (Strong et al. 1995), Crampton et al. (2003) 

interpreted the paucity of siliciclastics as reflecting negligible subaerial or 

submarine erosion on, or transport from, the crest of the Chatham Rise as 

a result of low relief (Figure 1.5A).  Extension continued in western basins 

through this period (King et al. 1999). 
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The boundary between Cycles 2 and 3 corresponds to the cessation of 

Tasman Sea spreading and by this time the entire region of Zealandia was 

tectonically quiescent.  Within Cycle 3, Eocene sedimentation throughout 

Zealandia occurred on a gently subsiding continental margin characterised 

by subdued topography and broad coastal plains.  Continued post-rift 

cooling and passive margin subsidence in the east led to the widespread 

development of calcilutites of the Amuri carbonate megafacies (Nelson 

1978; Hood & Nelson 1996).  Towards the end of Cycle 3, spreading 

began in the Emerald Basin to the south of New Zealand, resulting in the 

propagation of continental rifting through southwestern New Zealand (King 

et al. 1999). 

 

Passive margin thermal subsidence culminated in the Oligocene, 

corresponding to Cycle 4 of King et al. (1999), with development of the 

maximum marine flooding surface of the 1st order tectonic megacycle, as 

evidenced by carbonate dominated, condensed sections in almost all 

basins (Figure 1.4). It has been recently suggested that the continent of 

Zealandia may have been entirely submerged during this period (Landis et 

al. 2008).  This cycle also signals the cessation of passive margin 

subsidence in eastern regions and extension in western regions and a 

shift to transpression followed by the initiation of subduction at the 

Hikurangi and Puysegur margins to the north and south, respectively, by 

~20-25 Ma (King et al. 1999; Furlong & Kamp 2009).  The end of Cycle 4 

represents the end of the transgressive phase of the 1st order tectonic 

megasequence and a transition to highstand/regressive systems tracts 

(King et al. 1999).   

 

1.4.3 The Importance of Paleogene Climatic Records from Zealandia 

Strata of importance to this study were deposited within Cycles 2 and 3 of 

the 2nd order depositional cycles of King et al. (1999).  During the Late 

Cretaceous to early Paleogene period of relative tectonic quiescence 

along the eastern margin of Zealandia, the micro-continent lay at a 

paleolatitude of 55-60°S (Crampton et al. 2003).  Hollis et al. (2005b) state 

that Paleogene circulation models show that the continent of Zealandia lay



 

 

 In
tro

d
u

c
tio

n
 

 
 

 
 

 
 

 
 

        1
3
 

Figure 1.5 (A) Outline of the micro-continent of Zealandia 

during the Late Paleocene involving New Zealand (as known 

today) and the submarine highs of Chatham Rise, Campbell 

Plateau and Lord Howe Rise (Luyendyk 1995). The modern-

day New Zealand coastline is shown as a bold line. TB: 

Taranaki Basin; ECB: East Coast Basin; CB: Canterbury 

Basin; GSB: Great South Basin; CP: Campbell Plateau. (B) 

Map of modern-day New Zealand showing the location of 

sites in southeastern Marlborough (CV and KP) and 

Campbell Island (CA) investigated as part of this study, along 

with other key Paleocene sedimentary successions 

elsewhere in New Zealand. 2000 m depth contour represents 

the outline of the micro-continent of Zealandia.  
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in a transition zone between a cool cyclonic gyre to the south and a warm 

anticyclonic gyre to the north.  This is supported by Nelson & Cooke 

(2001) who showed a similar transition between cool and warm subtropical 

water masses based on lithological, paleontological and geochemical data 

from Deep Sea Drilling Project (DSDP) cores in the southwest Pacific.  

During this period, the Marlborough region of northeastern South Island 

was ideally located to record the latitudinal migration of this transition zone 

through lithologic changes in micro-bioclastic sediments of the Muzzle 

Group (Killops et al. 2000; Hollis et al. 2005b).  

 

Hollis et al. (2005b) considered high latitude Pacific climate records from 

the passive margin of Zealandia crucial for the establishment of 

temperature gradients and the identification of areas of deep-water 

formation and other water mass and climatic features.  However, the 

majority of climatic records for the early Paleogene are from the Atlantic 

and Indian Oceans, leaving the climate evolution of the Pacific Ocean 

poorly resolved during this period (Hollis et al. 2005b; Bijl et al. 2009).  

This matter is important to address because Eocene circulation models 

show that 80% of ocean heat transport occurred in the Pacific (Huber & 

Sloan 2001). 

 

1.5 AIMS  

Records of extreme climatic events under greenhouse conditions 

experienced during the early Paleogene are seen to be critical to 

furthering our understanding of climatic responses to changes in 

atmospheric CO2 concentrations.  In 2008 a project titled ‘Ice in the 

Greenhouse: a Paleocene record of Antarctic deep-water flow’ led by GNS 

Science and supported by the Royal Society of New Zealand Marsden 

Fund, began in earnest to investigate New Zealand records.  The project 

involves collaboration with other research institutions, including the 

University of Waikato, the University of Otago and the University of Bristol.  

The central hypothesis of this project is that a significant Paleocene 

unconformity (or unconformities) in sedimentary successions from around 

New Zealand record a prolonged episode of deep-sea erosion that is 

linked to Antarctic cooling and ice-sheet growth, intensification of a 



 

 

Introduction 15 
 

southern-sourced deep-water flow, and a fall in global sea level.  This 

hypothesis is critical in evaluating the validity of two suggested models for 

Antarctic ice sheet growth.  The previously accepted view is that the 

presence of Antarctic ice sheets is dependent on thermal isolation of the 

continent by the Antarctic Circumpolar Current (ACC).  This is based on 

oxygen isotope records (Miller et al. 1987; Zachos et al. 2001) and 

sedimentological evidence (Zachos et al. 1992) which suggested that a 

marked increase in Antarctic ice volume and a decrease in ocean 

temperatures during the Oligocene was coincident with the opening of the 

Tasmanian Gateway.  However, recent climate models (DeConto & 

Pollard 2003; DeConto et al. 2008) suggest that Antarctic glaciation occurs 

when atmospheric CO2 falls below a certain threshold.  Identification of 

unconformity surfaces related to an episode of Antarctic deep-water flow 

during the Paleocene, prior to the opening of either the Drake Passage or 

the Tasmanian Gateway, would imply that the latter model was more 

appropriate and that the stability of Antarctic ice sheets was primarily 

dependent on atmospheric CO2 concentrations. 

 

The collaborative nature of this project was brought about by the need for 

an integrated approach to the problem, making it necessary to bring 

together biostratigraphic, sedimentologic, seismic, geochemical and 

paleomagnetic studies.  The University of Waikato is responsible for 

reporting the sedimentology and selective geochemistry of several key 

Paleocene sections in eastern New Zealand (Figure 1.5B).  This thesis 

study investigates sites at Clarence Valley and Kaikoura Peninsula in 

southeastern Marlborough, as well as sections from Campbell Island south 

of the New Zealand mainland.  A companion thesis (Michael Tayler, in 

prep.) is underway studying some of the key sections in eastern North 

Island. 

 

The main aims of the present study are: 

 

i) Undertake a detailed sedimentologic investigation of key 

Paleocene sections containing unconformities in southeastern 

Marlborough and on Campbell Island (Figure 1.5B). 
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ii) Undertake detailed petrographic and mineralogical studies to 

characterise lithofacies identified at key section in southeastern 

Marlborough and on Campbell Island. 

 

iii) Document trends in both the stable oxygen and carbon isotope 

and inorganic elemental composition through these sections.  

 

iv) Determine the origin and paleoenvironmental significance of 

lithofacies changes and unconformities recorded in the Late 

Cretaceous to Early Eocene sedimentary strata at the study 

sites. 

 

1.6 THESIS STRUCTURE 

CHAPTER 1 - Introduction 

This chapter provides brief background on the Paleogene greenhouse 

world and the development and importance of New Zealand’s passive 

margin during the Late Cretaceous to Oligocene, as well as noting the 

main study aims. 

 

CHAPTER 2 – Methods  

This chapter outlines both field and laboratory techniques used throughout 

this study, as well as defining certain terms regarded to be of importance. 

 

CHAPTER 3 – Sedimentary Successions of Campbell Island 

Chapter 3 first provides a physical description of Campbell Island and a 

review of the lithostratigraphy of the Late Cretaceous to Oligocene 

Campbell Island Group.  The field and petrographic characteristics of the 

lithofacies identified on Campbell Island are documented.  The chapter 

then presents geochemical results, including major and minor trace 

element concentrations characterising the various lithofacies, 

compositional plots, inorganic geochemical proxies and stable isotopes. 
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CHAPTER 4 – Sedimentary Successions of Southeastern 

Marlborough 

Chapter 4 follows a similar format to the preceding chapter, discussing the 

physical setting of southeastern Marlborough and the lithostratigraphy of 

the Late Cretaceous to Middle Eocene Muzzle Group.  Subsequently, field 

and petrographic descriptions, as well as geochemical results are 

discussed for the three main study sites from this region, Mead Stream, 

Muzzle Stream and Kaikoura wharf. 

 

CHAPTER 5 – Discussion  

This chapter begins by suggesting some future revisions for the early 

Paleogene lithostratigraphic nomenclature in southeastern Marlborough.  

This is followed by a discussion of the origin, significance and relationship 

between the various lithofacies identified in the course of this study.  A 

series of isopach and paleolithofacies maps are also presented in this 

chapter to aid in the discussion of the spatial and temporal evolution of 

sedimentation in southeastern Marlborough through the Late Cretaceous 

to Early Eocene.  Finally, this chapter discusses the sedimentary/ 

oceanographic/climatic conditions occurring in the Late Paleocene that 

gave rise to the lithologic successions observed in outcrop in southeastern 

Marlborough and on Campbell Island. 

 

CHAPTER 6 – Conclusions  

This chapter enumerates the main outcomes of this study and links them 

back to the original aims set out in Chapter 1. 

 

APPENDIX A – Geological Timescales 

APPENDIX B – Sample Catalogue 

APPENDIX C – Petrographic Data 

APPENDIX D – Geochemical Data 

APPENDIX E – Stratigraphic Data for Paleodistribution Maps 

 

ENCLOSURE 1 – Stratigraphic columns and geochemical proxies 

from Mead Stream, Muzzle Stream, Kaikoura wharf 

and Campbell Island 
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CHAPTER 2 
METHODS 

 

2.1 SAMPLING AND FIELD MEASUREMENTS 

Field data and samples were collected from sections shown in Figure 1.5.  

Collection of field data was carried out following procedures described by 

Andrews (1982).  Firstly, a brief site description was recorded, including 

aspects such as a field sketch, noting the location of the logged section 

with respect to important features at the site, as well as determining the 

exact location of logged sections using GPS.  Co-ordinates for logged 

sections in southeastern Marlborough were recorded in terms of the New 

Zealand Map Grid (NZMG), while co-ordinates for logged sections from 

Campbell Island are recorded in terms of latitude and longitude.  Following 

this, descriptions of attributes such as stratification, colour, weathering, 

hardness, texture, lithology, sedimentary structures and fossils were 

made, aiding in the establishment of a number of lithofacies.  Broad 

characteristics were used to define lithofacies, allowing for identification of 

similar facies at different sites and comparison not only between sites, but 

also regions. 

 

Stratigraphic thicknesses were then determined using a tape measure 

held perpendicular to bedding or a tape and compass survey where this 

was not possible.  At this stage, samples were collected using a small 

sledge hammer and cold chisel and sample positions were recorded with 

respect to their location within the stratigraphic column.  Samples were 

then placed in two, labelled, air tight sample bags.  Labels consist of a 

location prefix followed by a sample number (e.g. MD01 for the first 

sample collected from Mead Stream). 

 

2.2 DEFINITIONS AND USAGE 

Micrite is used as a non-genetic description for very fine grained, highly 

calcareous rock observed in the field.  Micrites with abundant silica that 

commonly show a high degree of induration and conchoidal fracture are 

termed siliceous micrites following Lawrence (1989).  Chert is used as 
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defined by Lawrence (1989) and is “dense hard, vitreous rock, with 

conchoidal fracture, which consists of one or several forms of 

microcrystalline or cryptocrystalline authigenic silica.”  The term glaucony 

is used as the name for the facies of green grains following Odin & Matter 

(1981).  The term is preferred here due to the lack of geochemical data 

required to confidently identify the grains as the minerals glauconitic 

smectite or glauconitic mica.  In many cases in this study, glaucony is 

closely associated with the term perigenic, which is used here following 

Lewis (1964).  Lewis (1964) proposed the term perigenic to fill a gap 

between allogenic and authigenic, implying an origin of constituents 

contemporaneous with the sediment, followed by short transport and final 

incorporation in the sediment.  Lewis (1964) states that the connotation of 

short transport is important to the definition of the term, meaning that 

perigenic grains are not transported into an environment significantly 

different to that in which they were formed. 

 

Ages of all New Zealand stages mentioned in this study along with their 

correlation to international ages, foraminiferal and calcareous 

nannoplankton zonations, as well as the South Pacific radiolarian zonation 

are defined within the Paleogene and Cretaceous geological timescales in 

Appendix A. 

 

2.3 ANALYTICAL METHODS 

The experimental pathways used in this study are shown as a logic flow 

chart in Figure 2.1. 

 

2.3.1 Sample Preparation 

All rock samples were initially photographed and catalogued and then 

brushed with a wire brush to remove any contaminants such as moss, 

lichen or barnacles.  Following this, samples were cut into slabs and 

unpolished, damp slabs scans were made using a flat bed scanner to 

capture large scale features within samples.  At this stage, areas 

considered to be representative of the facies described in the field, as well 

as features of particular interest, were identified; petrographic thin sections 

were marked out and re-scanned as a record of where thin sections were 
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Figure 2.1 Flow diagram showing experimental pathways. Bold boxes denote end product analysis.
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taken.  Subsequently, blocks were cut and petrographic thin sections were 

made. 

 

Samples collected from sites in Marlborough were prepared using 

standard petrographic thin section techniques.  However, due to their 

relatively poor induration, samples collected from sites on Campbell Island 

required surface impregnation with araldite K142 prior to mounting on 

glass slides as part of the petrographic thin section making process.  From 

the thin sections made, 25 were selected for cathodoluminesence (CL) 

petrography which required slides to be polished.  Polishing was carried 

out initially with 500 grit polishing paper on a lap wheel.  As the polishing 

process progresses, the texture of the paper is naturally reduced which 

negates the need to change to a finer grit paper.  Final thin section 

polishing was conducted using polishing a cloth with fine alumina powder 

to produce the desired surface for further analysis.  During this process, 

the condition of the sample surface is continually checked using a 

reflective light microscope to ensure damage is not being done to the 

sample.   

 

Slabs that were not selected for petrographic analysis, as well as samples 

that had not been slabbed, were subject to sledge hammer pounding and 

the subsequent rock fragments were dried in an oven at 40°C for 24 

hours.  Once dry, these rock fragments were then placed in a tungsten 

head ring mill for 30 seconds, producing a fine powder.  Powders were 

then placed in labelled plastic bags using a stainless steel spatula.  To 

minimise cross-contamination, all contact surfaces were thoroughly 

cleaned between samples.  As elemental analysis of Fe concentrations 

was carried out, the use of a tungsten head for the ring mill was seen to be 

of critical importance to minimise contamination from the usual iron head. 

 

2.3.2 Petrographic Analysis 

Petrographic analysis was carried out using an Olympus AX70 

petrographic microscope, with digital images being captured by a Nikon 

Digital Camera DXM1200 used in conjunction with Nikon ACT-1 Version 
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2.63 software.  Descriptions of grain size, sorting and roundness were 

based on descriptions and comparison charts from Andrews (1982).  

Percentage abundance of siliciclastic and bioclastic components was 

determined with reference to comparison charts from Terry and Chilingar 

(1955) and recorded in petrographic data sheets using the semi-

quantitative  abundance limits shown in Table 2.1. 

Table 2.1 Semi-quantitative abundance limits used during petrographic analysis. 

Abbreviation Term % Abundance 

VA Very abundant >75 
A Abundant 50-75 

VC Very common 25-50 
C Common 15-25 
M Many 5-15 
S Some 1-5 
R Rare <1 
- Absent 0 

 

CL petrography was carried using a Nikon Eclipse E400 microscope with a 

CITL Cathodoluminesence MK5-1 unit.  The electron gun was fired using 

a voltage of 16-18 kV and a current of 400 μA.  Photomicrographs of both 

plane polarised light and CL images were captured using a Nikon Digital 

Camera DXM1200, used in conjunction with Nikon NIS Elements Version 

3.03 digital image software. 

 

2.3.3 Mineralogical Determination 

Mineralogical determination was carried out using a Philips (XPERT) X-ray 

diffraction (XRD) machine using nickel-filtered copper radiation.   

 

Bulk mineralogy was determined for all samples using unorientated 

samples which were back-packed into sample holders to avoid direct 

pressure or handling of the powder face (Hume & Nelson 1982).  These 

samples were scanned between 1° and 42° 2θ.   

 

Data were initially interpreted using the computer software program 

XPertHighscore.  This was used to process data files, identify and label x-

ray diffraction peaks and identify common minerals such as calcite and 

quartz.  For peaks that could not be associated with common rock forming 

minerals by the software, the mineral powder diffraction data book (JCPDS 
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1980) was used, while peaks for opal C/T were indentified based on the 

description of Hesse (1990). 

 

Scanning electron microscopy (SEM) was carried out on un-etched chips 

of fresh sample that had simply been cleaned using distilled water.  Once 

cleaned and dried, samples were coated in platinum using a Hitachi E-

1030 Ion Sputter Coater prior to viewing using a Hitachi S-4700 Field 

Emission SEM.  Elemental maps of SEM images were created using 

Noran System Six Electron Dispersive Spectroscopy (EDS), which 

assisted in fine mineral identification.  Images were saved as jpeg files for 

later use. 

 

2.3.4 X-Ray Fluorescence  

Bulk elemental geochemistry of all samples was determined using a 

Spectro X-Lab 2000 fully automated X-ray Fluorescence (XRF) 

spectrometer on pressed briquettes.  Briquettes were prepared using ~5 g 

of sample and ~15 drops of PVA binder which was pressed in aluminium 

cups. The use of pressed briquettes for determining major element 

abundances is less precise than fused glass beads, leading to over 

estimation of major elements and weight percentages that sum to greater 

than 100% (Appendix D).  However, this method is a better one for 

determining trace element contents. 

 

As biogenic, authigenic and diagenetic components such as carbonate, 

silica and pyrite are common in samples analysed as part of this study, the 

variations in elemental concentrations are inherently tied to these 

components.  Normalisation of elemental concentrations to some element 

that is only associated with the aluminosilicate component of a sample is a 

simple method of negating the dilution effects of both biogenic and 

authigenic components, without having to remove these fractions by 

methods such as acid leaching (Schmitz et al. 1991).  This process allows 

for the investigation of significant variations in the chemistry of the clay 

fraction of sediments using bulk analytical techniques.  Elements 

commonly associated with the aluminosilicate component of sediments 
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include Al, Sc (Schmitz et al. 1991) and Ti (Schroeder et al. 1997).  All 

have been commonly employed in numerous studies of sediments from 

different environments (Schmitz 1987b; Thompson & Schmitz 1997; Hollis 

et al. 2003c; Turgeon & Brumsack 2006).   

 

Three forms of normalising equations were used in the interpretation of 

bulk element data.  Al normalised values were calculated using the 

equation adapted by Hollis et al. (2003a) from Schmitz et al. (1991), 

shown below. 

 

Element* = Element[sample] / Al2O3[sample] x Al2O3[background] 

 

„Element*‟ represents the concentration of selected element in the sample 

if Al2O3 is equal to an average background level calculated for each region 

(Table 2.2) and allows for comparison of elemental data between different 

geological materials (Schmitz et al. 1991).   

 

Table 2.2 Estimated background concentrations of Al2O3, TiO2, CaCO3, SiO2, and Ba for 

samples from Marlborough and Campbell Island (after Hollis et al. 2003a, b).  

 

Element Background Concentrations† 
 Marlborough Campbell Island 

Al2O3 12 16.7‡ 
TiO2 0.70 0.88 

CaCO3 0.2 0.2 
SiO2 70 75.41 
Ba 550 205.2 

 

†
Oxides are reported in wt%, while Ba is reported in ppm, 

‡
Al2O3 value for Campbell 

Island is AS value from Wedepohl (1971). 

 

Enrichment factors (EF) relative to average shale (AS) of Wedepohl (1971) 

were calculated using the equation described by Turgeon and Brumsack 

(2006), shown below. 

 

EFelement = (element/Al)sample ÷ (element/Al)AS 
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Elements having a similar Al normalised ratio to AS will have an EF of one, 

while Turgeon and Brumsack (2006) consider an element to be „enriched‟ 

when EFelement ≥ 5 and „depleted‟ when EFelement ≤ 0.5. 

 

Terrigenous sediment (TRG), excess silica (Si[exc]), calcium carbonate 

(Ca[exc]) and barium (Ba[exc]) were calculated using equations adapted 

from Hollis et al. (2003b), shown below.  Excess values represent 

elemental concentrations above „normal‟ detrital background and can 

therefore be seen as proxies for biogenic productivity. 

 

TRG = TiO2[sample] / TiO2[Background] x 100 

 

Ca[exc] = CaO[sample] x 100/56 – (TiO2[sample] x 

(CaCO3[Background]/TiO2[Background])) 

 

Si[exc] = SiO2[sample] - (TiO2
[sample] x (SiO2[Background]/TiO2[Background])) 

 

Ba[exc] = Ba[sample] - (TiO2[sample] x (Ba[Background]/TiO2[Background])) 

  

Background values for Marlborough are taken from Hollis et al. (2003).  

While these values represent detrital background levels for the 

Marlborough paleo-embayment (MPE) around the K/T boundary, it was 

decided to use these values as opposed to developing new values for the 

Late Paleocene for three reasons.  Firstly, Hollis et al. (2003b) state that 

terrigenous source sediments for the southeastern Marlborough around 

the K/T boundary are higher in TiO2 and SiO2, and lower in CaCO3 in 

comparison to regional or global averages used in other studies.  This 

means that the use of average shale (AS) values of Wedepohl (1971) or 

average crustal values as suggested by Schmitz (1987a), would lead to 

overestimation of normalised values.  Secondly, it is assumed in this study 

that terrigenous sources within the MPE would not have changed greatly 

over the period of the Paleocene due to the passive margin tectonic 

setting of the area at the time.  Thirdly, this allows for direct comparison 

between the two studies. 
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Background values for Campbell Island were calculated on a CaCO3-free 

basis using the methods of Hollis et al (2003b). 

 

2.3.5 Carbonate Percentage 

The carbonate percentage for samples was calculated from CaO values 

using the oxide conversion factor of 1.786 after Hollis et al. (2003).   

 

To gauge to the accuracy of this method, carbonate percentages from 10 

samples of varying lithologies were determined using other two different 

methods (Table 2.3).   

 

The first method used a LECO TruSpec CN Carbon/Nitrogen Determinator 

to measure the total carbon (TC) within the sample, which is used to 

approximate the percentage of carbonate.  This approximation of 

carbonate percentage is based on the assumption that Total Organic 

Carbon (TOC) makes up <0.1 wt% of TC in pelagic limestones, and that 

the remaining carbon is held as Total Inorganic Carbon (TIC) in the form of 

carbonate.   

 

250 mg of dried, powdered sample was measured into tinfoil cups before 

being placed in a loading head.  Samples are then combusted at 950°C in 

a temporary oxygen enriched atmosphere to convert carbon in the solid 

sample to gas form CO2.  The combustion gases are passed through a 

secondary furnace at 850°C for further oxidation and particulate removal 

before then being passed through an additional furnace filter and two-

stage thermoelectric cooler, removing moisture, into a collection vessel 

known as the ballast.  Carbon is then measured in the combustion gases 

as carbon dioxide by the CO2 infrared detector. 

 

Five reference standards were run at the same time to allow the 

preparation of a calibration curve (Figure 2.2) to calculate the carbonate 

percentage based on TC of the sample. 
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Figure 2.2 Calibration curve for determining carbonate percentage based on total carbon 

values, determined using the LECO TruSpec CN Carbon/Nitrogen Determinator. 

 

Acid digestion was the other method used to determine the carbonate 

percentage of the 10 selected samples.  The method of acid digestion 

used is adapted from Barber (1974), treating 5 g of sample with 50 ml of 

25% v/v acetic acid at room temperature for 12 hours.  The insoluble 

residue is then washed into a Whatman No. 42 size 150 mm filter paper 

which has been dried at 40°C and weighed.  The insoluble residue and 

filter paper are then dried at 40° C for 24 hours before re-weighing.  The 

percentage carbonate is determined by calculating the percentage 

difference between the total sample and the insoluble fraction. 

 

Table 2.3 Comparison of carbonate percentage results from 10 samples, determined 

using three methods, X-ray Flouresence (XRF), LECO TruSpec CN Carbon/Nitrogen 

Determinator (LECO) and acid digestion. 

  CaCO3 (wt.%) 

  XRF LECO Acid digestion 

MD01 36.7 34.0 28.2 

MD24 59.7 56.2 47.5 

MZ04 39.5 24.4 22.8 

MZ08 85.5 74.3 63.9 

KK01 30.6 26.7 23.9 

KK14 2.5 1.9 4.3 

KK27 76.2 72.4 54.0 

CC02 78.2 72.0 53.4 

LP02 77.2 74.0 57.2 

SB01 83.4 77.9 62.0 

 

Carbonate values calculated based on CaO determined by XRF are 

consistently higher than values determined using the other two methods 
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described, suggesting a possible over estimation using this method.  

However, close agreement between values determined using this method 

and LECO would suggest XRF values provide a reasonable estimate of 

carbonate percentage.  Consistently lower carbonate percentages 

determined using the acid digestion method may result from incomplete 

digestion, even though this method followed that set out by Barber (1974). 

 

2.3.6 Stable Isotope Analysis 

δ13C and δ18O analysis was carried out at the University of Waikato.  

Samples containing sufficient carbonate are loaded into individual reaction 

vessels, which in turn are placed in a 24-position carousel housed in an 

oven kept at 70ºC.  Samples are then reacted using a predetermined dose 

of 105% orthophosphoric acid for 10 minutes in a Europa CAPS 

(Carbonate Automatic Preparation System) using an acid dosing or „drip‟ 

method.  As the sample is reacting, water is removed by passing the CO2 

through a loop that is maintained at -90C, before it is frozen in a 

dedicated cold finger positioned close to the inlet to the mass 

spectrometer to minimise transfer time. 

  

Once the reaction is complete, CO2 is introduced into the Europa Geo 

20/20 isotope ratio mass spectrometer where gas pressures are balanced 

and sample gas is run against an internal reference gas.  This reference 

gas is calibrated daily by running it against an internal standard, WCS. 

WCS was calibrated against NBS-19, and cross-checked against NBS-20. 

External precision for replicate analyses of WCS is better than 0.05 ‰ for 

both carbon and oxygen. 

 

Carbon and oxygen isotope values are presented in the usual delta (δ) 

notation, normalised, and expressed in per mille (‰) relative to Vienna 

Peedee belemnite, VPDB (Coplen 1988, 1994). 

 

δ13Corg was analysed using a Dumas elemental analyser (Europa Scientific 

ANCA-SL) interfaced to an isotope mass spectrometer Europa Scientific 

20-20 Stable Isotope Analyser.   10-70 mg of sample was weighed into tin 
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foil capsules, depending on Total Organic Carbon (TOC) of the sample.  

These cups were then closed and pressed into a spherical shape.  

Weighed samples were loaded into the carousel of the autosampler 

attached to the Europa Scientific ANCA-SL.  Samples were combusted at 

1020°C in a temporary oxygen enriched atmosphere to convert carbon in 

the solid sample to gas form CO2.  The resulting combustion gases were 

swept through a reduction reactor, a water filter and onto a gas 

chromatograph (GC) column using helium as a carrier gas.  As CO2 was 

separated from other gases in the gas chromatograph column, a sub-

sample of CO2 was transformed into the mass spectrometer ion source for 

the measurement of 13C abundance. 

 

Samples were analysed against a laboratory sucrose standard which has 

a δ13Corg value of -10.80 ‰. The sucrose had been standardised against a 

certified standard (calibrated relative to PDB) from CSIRO, Canberra, 

Australia. When analysing samples, sucrose standards are analysed after 

every 12 samples. Internal reference checks are also done at these 

regular intervals. Instrument error is about ±0.3 ‰.  

 

Carbon isotope values are presented in the usual delta (δ) notation, 

normalised, and expressed in per mille (‰), relative to Peedee belemnite, 

PDB. 

 

Limestones investigated as part of this study are part of the Amuri Mega 

Facies which is considered part of Diagenetic Class IV within Hood and 

Nelson‟s (1996) diagenetic classification scheme for New Zealand 

limestones.  Deep burial is a key characteristic of class IV limestones, and 

leads to a negative shift in δ18O as a result of temperature-dependant 

fractionations accompanying burial pressures and tectonic stresses 

(Nelson & Smith 1996).  δ18O values measured as part of this study 

ranging between -6.9 and -1.5 ‰ are consistent with values for New 

Zealand micrites (mean, -4.08) as the result of alteration of carbonate 

oozes (0-2 ‰)  by burial diagenesis (Nelson & Smith 1996).   
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Diagenetic alteration of the δ18O signal in bulk carbonate samples is 

shown significant covariance between δ18O and δ13C in samples from all 

sites.  For this reason, δ18O is not considered to provide a guide to 

paleotemperature in this study. 

 

Hollis et al. (2003b) suggests that δ13C is less prone to diagenetic 

alteration than δ18O and are considered to be reliable when the source of 

carbon is in sufficient abundance to counter diagenetic effects. 

 

2.3.7 Micropaleontologic Analysis  

Micropaleontologic analysis was carried out by GNS Science.  Samples 

were processed for radiolarians and dinoflagellate cysts (referred to as 

dinoflagellates herein) in order to develop an integrated biostratigraphy for 

measured sections, as well as carrying out paleoenvironmental analysis.   

 

Radiolarian microfossil extraction was carried out using standard acid-

leaching and chemical cleaning procedures set out in Hollis (2006).  This 

process involved treatment of crushed chips, 5-10 mm in size, with 15% 

hydrochloric acid (HCl) until the reaction has ceased.  For siliceous 

samples which show weak reactions with HCl, samples are rinsed then 

reacted in 5% hydrofluoric acid (HF) for 2-4 hours.  Samples are 

subsequently washed through a 63 μm screen, with residues finally being 

cleaned by gently heating in a 1:1 solution of 10% hydrogen peroxide and 

calgon (NaPO3)6 (Hollis 2006).  

 

Samples were processed for dinoflagellates using HF digestion, followed 

by brief oxidation and sieving over a 6 μm screen (Hollis et al. 2005c). 
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CHAPTER 3 
SEDIMENTARY SUCCESSIONS OF CAMPBELL 

ISLAND 

 

3.1 PHYSICAL SETTING 

Campbell Island is the southernmost of New Zealand‟s subantarctic 

islands and therefore New Zealand‟s southernmost sovereign territory.  It 

is situated approximately 700 km south of the South Island at latitude 52˚ 

30‟ S, in the vast Southern Ocean (Dingwall & Gregory 2004) (Figure 1.5).  

Campbell Island has an area of 114 km2, being up to 14 km wide and 14 

km long, with an average breadth of about 6.5 km.  The island lies at the 

southern margin of the Campbell Plateau, a prominent structural feature of 

the New Zealand region composed of continental crust, about 20 km thick, 

that lies 500 to 2000 m below sea level (Adams 1962). 

 

A period of Miocene alkali basaltic volcanism (7.5-6.6 Ma) (Hoernle et al. 

2006) led to doming of basement schist and Cretaceous-Paleogene cover 

rocks (Oliver et al. 1950), as well as the development of a large composite 

volcanic cone, with the edifice being centred in the area that is now 

Northwest Bay (Figure 3.1).  Subsequent subsidence and coastal erosion 

of the northwest sector of this complex, combined with further coastal and 

glacial erosion, has led to the development of the island‟s present day 

shape (Figure 3.1).  The southern and western coastlines are dominated 

by cliffs, some rising to 300 m in height, and here there is no safe 

anchorage except in Northwest Bay and Monument and Southeast 

Harbours in good weather (Kerr 1976).  The eastern coast is less rugged, 

with two large, glacially carved inlets, Perseverance and Northeast 

Harbours, both providing safe anchorage.  Perseverance Harbour, the 

southernmost and largest of the two, is of comparable size to Otago 

Harbour and extends westward ~6.5 km from its entrance.  Garden, Camp 

and Tucker Coves are situated at the head of the harbour and have been 

the centre for much of the habitation since the island was discovered in 

1810. 
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Figure 3.1 Map of Campbell Island showing the distribution of the Late Cretaceous-

Paleogene Campbell Island Group (black) (adapted from Oliver et al. 1950).  Boxed area 

is enlarged in Figure 3.3 and shows the main sites (red dots) where work was conducted 

in this study. LP: Limestone Point; CC: Camp Cove (adapted from Fell 2002). 

 

The latitude of Campbell Island is south of the forest zone, so that tussock, 

shrubland and herbfields dominate the landscape (Moore 2004).  The 

monotony of brown tussock is broken in places by areas of head height 

Dracophyllum and low Coprosma which make for difficulty when traversing 

the island.  The most notableflora are the mega-herbs such as the lily, 

Chrysobactron rossi, and the famous „blue sunflower‟, Pleurophyllum 

speciosum.  The island supports small breeding populations of the three 

main seal species in the New Zealand region – New Zealand fur seal, 

southern elephant seal and the New Zealand (Hooker‟s) sea lion (Moore 

2004).  The latter resides in large numbers in the area surrounding the 

meteorological station at the foot of Beeman Hill and on the sandy beach 

to the east of Complex Point (Figure 3.1), making foot passage hazardous 
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at times.  Campbell Island is world renowned for its bird life, leading to 

recognition of the area as a UNESCO world heritage area in 1998 as part 

of New Zealand‟s subantarctic islands.  The island is not only the breeding 

ground for no less than six species of albatross and the rare yellow-eyed 

penguin (Moore 2004), but also home to seabirds such as giant petrels, 

skua gulls and Antarctic turns (Kerr 1976), as well as important endemic 

species such as the Campbell Island Shag and the Campbell Island Teal. 

 

Campbell Island‟s geographical location in the high latitude Southern 

Ocean is the major control on the climate of the island, which is typically 

cloudy, wet and windy.  The maritime effect of the surrounding oceans 

means that air arriving at Campbell Island is moisture laden and when it is 

forced to rise over the island leads to the formation of an overcast cloud 

cap.  This cloud cover is so persistent that the island receives only 659 

hours of sunshine each year on average, equating to 16% of the total 

sunlight hours available if Campbell Island were cloud free (Brenstrum 

2004).  To emphasise this point, a comparison may be drawn with 

Auckland which receives 2101 hours of sunshine, or 50% of the possible 

sunshine.  On average, 130 sunless days occur per year, with June 1970 

receiving the unenviable record of one and a half hours of sunshine for the 

entire month.   

 

Precipitation is common, with rain being recorded 320 days per year.  

However, it is generally never heavy, with the mean annual rainfall being 

1425 mm (Brenstrum 2004), a little less than New Plymouth (Kerr 1976).  

This can be compared to Hokitika which receives 2874 mm of rainfall 

spread over only 208 days. 

 

Campbell Island‟s location also places it within the „Furious Fifties‟, a zone 

of persistent and often strong westerly winds.  This occurs as a result of 

strong pressure gradients between mobile anticyclones that pass mostly to 

the north of Campbell Island and depressions moving eastwards in the 

circumpolar trough near the edge of the Antarctic continent (Brenstrum 

2004).  Meteorological records from the island show that winds gusts of 

gale force or stronger are experienced 280 times a year on average, with 
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the wind blowing from the northwest, west or southwest approximately 

70% of year.  As wind speeds are measured from a location in Tucker 

Cove at the head of Perseverance Harbour (Figure 3.1), they are not 

considered to be representative of the island as a whole.  Benstrum (2004) 

suggested that limited measurements from surrounding higher terrain, 

such as Beeman Hill and Col Peak (Figure 3.3), are typically twice those 

observed at sea-level.   

 

Although Campbell Island‟s location means it has a wet, windy climate, it 

also means that there is little variation in temperature, both diurnally and 

seasonally.  Average daily temperatures range from 9.3˚C in January to 

4.7˚C in July in comparison to the rest of New Zealand where average 

daily temperatures tend to vary by more than 10˚C between February and 

July (Brenstrum 2004). 

 

3.2 LATE CRETACEOUS-OLIGOCENE LITHOSTRATIGRAPHY OF 

CAMPBELL ISLAND GROUP 

While the first observations of the geology of Campbell Island were made 

during the late nineteenth century, it was not until 1944 that the first 

detailed geological investigation was undertaken.  This was carried out by 

R. L. Oliver (Oliver et al. 1950) while he was stationed on the island as a 

“coast-watcher” during World War II, and included production of a 

geological map (Hollis et al. 1997).  Oliver et al. (1950) established four 

formations, the Complex Point Formation, Garden Cove Formation, Tucker 

Cove Limestone and Shoal Point Formation, along with a number of 

igneous units.  Beggs (1978) modified the stratigraphy of Oliver et al. 

(1950) by elevating the Complex Point Formation to group level, 

establishing the Campbell Island Group  to include the Garden Cove 

Formation and Tucker Cove Limestone and retaining the Shoal Point 

Formation.  Beggs‟ (1978) study was the last detailed investigation of the 

Cretaceous-Paleogene sedimentary deposits on Campbell Island prior to 

work by Hollis et al. (1997) who carried out a comprehensive 

biostratigraphic investigation of samples made available from previous 

work, retaining the stratigraphic subdivisions developed by Oliver et al. 

(1950) and Beggs (1978) (Figure 3.2).  While the Campbell Island Group 
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is the of main focus of the present study, the importance of the underlying 

Complex Point Group as a sediment source for the Garden Cove 

Formation means it will also be discussed briefly. 

 

 

Figure 3.2 Composite stratigraphic columns for (A) the Garden Cove Formation from the 

head of Perseverance Harbour and (B) the Tucker Cove Limestone from the western side 

of Campbell Island (adapted from Hollis et al. 1997).  Units are defined in Tables 3.1 and 

3.2. CPF: Complex Point Formation; SPF: Shoal Point Formation.  New Zealand Stages 

are defined in Appendix A. 

 

3.2.1 Complex Point Group 

Low grade metamorphic rocks of the Complex Point Group make up the 

basement rock exposed on Campbell Island (Oliver et al. 1950).  These 

strata vary in lithology from grey pelitic semischist to dark brown 

metagreywacke (Cook et al. 1999).  Petrographically, the Complex Point 

Group is dominated by subrounded detrital quartz grains showing 

undulose extinction and minor granulation, with much less common 

plagioclase and rare microcline (Beggs 1978).  The matrix shows 

strongfoliation of very fine authigenic muscovite and minor chlorite.  Beggs 

(1978) states that along with pale brown biotite and white mica, sphene 
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and siderite, heavy minerals include tourmaline, clinozoisite, rutile, apatite, 

zircon and brookite.   

 

With the exception of K-feldspar, the Complex Point Group appears to be 

mineralogically similar to the Greenland Group of the South Island (Cook 

et al. 1999).  This affinity with the Western Province tectonic terranes is 

further supported by geochronologic evidence from a sample of schist 

collected at Complex Point which has a K/Ar total-rock age of 443 Ma 

(Adams et al. 1979).  Though this can only be considered a minimum age 

due to possible overprinting as a result of later intrusions on the island, it is 

nonetheless similar to K/Ar total-ages of slates from the Greenland Group 

(300-438 Ma) and K/Ar total-rock ages of the Swanson Group (410-450 

Ma) in Marie Byrd Land, West Antarctica (Cook et al. 1999). 

 

3.2.2 Garden Cove Formation 

The Garden Cove Formation, the lower formation of the Campbell Island 

Group, was initially described by Oliver et al. (1950) as consisting of 

approximately 15 m of “quartz sandstone and conglomerate, and 

carbonaceous mudstone...”.  Quartz pebbles and rare schist fragments are 

concentrated at the base of the formation, being overlain by quartz 

sandstone which fines upwards into carbonaceous mudstone (Oliver et al. 

1950).  Beggs (1978) further subdivided this formation into five units based 

on lithology and environmental significance (Table 3.1).  These units were 

subsequently used by Hollis et al. (1997). 

 

Table 3.1 Lithologic characteristics of units in stratigraphic order from the Garden Cove 

Formation established by Beggs (1978) (after Hollis et al. 1997). 

Ge Hard dark fissile siliceous mudstone 

Gd Hard dark massive bioturbated mudstone 

Gc Fine to medium sandstone with carbonaceous laminae 

Gb Poorly-sorted coarse sandstone 

Ga Cross-bedded coarse sandstone and basal conglomerate 
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Beggs‟ (1978) descriptions are based on observations made from a 

measured section west of Complex Point which is stated to be 30 m thick.  

Though the lithostratigraphic units observed in Camp and Garden Coves 

at the head of Perseverance Harbour are similar, their thickness is greatly 

increased.  Measurements by Dr Ian Turnbull (Hollis et al. 1997) 

suggested a thickness of ~70 m, which is comparable to that measured 

during this study.  Hollis et al. (1997) suggested that some of this increase 

may be related to inflation as a result of igneous intrusions, resulting in as 

much as a 20% increase around Duris Point where there is a high 

concentration of basaltic dykes (Figure 3.3). 

 

The Garden Cove Formation is interpreted by Beggs (1978) as 

representing a transgressive sedimentary sequence.  At the base of the 

sequence, Unit Ga is considered to represent non-marine, fluvial channel 

or point-bar deposits.  Unit Gb was interpreted as being coastal flood plain 

deposits, in turn overlain by estuarine channel and mud deposits of Units 

Gc and Gd.  Unit Ge was suggested to be fully marine due to the presence 

of planktic microfauna and a high proportion of clay-size material.  These 

paleoenvironmental interpretations were supported by the 

micropaleontologic analyses carried out by Hollis et al. (1997).  Both 

foraminifera and radiolarians are absent in the lower units of the Garden 

Cove Formation due to the non to marginal-marine nature of the formation.  

Palynomorph assemblages show strong terrestrial influences to within ~5 

m of the contact with the overlying Tucker Cove Limestone, with plant 

cuticles and pollen being abundant in lower units but decreasing upsection 

in accordance with Beggs‟ (1978) interpretation.  Deposition of the upper 

units of the Garden Cove Formation is considered to have occurred in an 

inner shelf to brackish setting based on limited foraminiferal evidence from 

one sample collected from the top of Unit Gd and dinoflagellates which 

suggest a fully marine setting (Hollis et al. 1997). 

 

Due to the paucity of foraminifera and radiolarians in samples processed, 

dinoflagellate biostratigraphy provides the best opportunity for a relatively 

complete subdivision of the Cretaceous-Paleogene sedimentary strata on 

Campbell Island (Hollis et al. 1997).  Based on dinoflagellates in samples 
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collected from Unit Ga, the base of the Garden Cove Formation is latest 

Cretaceous (Maastrichtian, late Haumurian, Alterbidinium acutulum 

dinoflagellate zone) in age.  The top of the Garden Cove Formation is 

Paleocene (Teurian, Paleoeocystodinium glozowense dinoflagellate zone).  

Palynomorph assemblages suggest that the K/T boundary lies ~9 m below 

the contact with the overlying Tucker Cove Limestone at Camp Cove. 

 

3.2.3 Tucker Cove Limestone 

The Garden Cove Formation is unconformably overlain by the Tucker 

Cove Limestone (Hollis et al. 1997).  Oliver et al. (1950) described the 

Tucker Cove Limestone as 90-150 m of “... white, fine grained, 

foraminiferal limestone...” containing common “... flint concretionary 

nodules ...” which average ~100 mm in size.  Beggs (1978) goes further to 

describe the lowest few centimetres of the formation as consisting of 

cream to pale yellow, glauconite bearing porcellanite.  The rest of the 

formation was described as “... monotonous, moderately to well lithified, 

white fine-grained limestone ...” with the “flint concretionary nodules” of 

Oliver et al. (1950) being identified as chert nodules.  Hollis et al. (1997) 

further subdivided the Tucker Cove Limestone into seven units based on 

the descriptions by Beggs (1976) from a number of sections (Table 3.2). 

 

Table 3.2 Lithologic characteristics of units in stratigraphic order from the Tucker Cove 

Limestone (Hollis et al. 1997). 

Tg White micritic limestone 

Tf Scaly white micritic limestone with isolated horizons of small chert nodules in 

upper part 

Te White micritic limestone with horizons of large chert nodules in lower part and 

scattered small chert nodules in upper part 

Td White micritic limestone with numerous large chert nodules near the base, 

numerous small nodules below an angular uniformity with unit Te 

Tc Light grey stylolitised micritic limestone 

Tb White massive micritic limestone with occasional chert horizons 

Ta Yellow-cream glauconitic porcellanite 
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Based on these descriptions, the Tucker Cove Limestone can be 

considered to be part of the Amuri carbonate megafacies of Hood & 

Nelson (1996) which was widely deposited within eastern basins of 

Zealandia during the late Cretaceous to Eocene. 

 

Beggs (1978) suggested the Tucker Cove Limestone was deposited as a 

pelagic ooze, remote from sources of siliciclastic material.  A depositional 

depth of from 250-4000 m was initially suggested based on comparisons 

with European chalk and the present day depth of the carbonate 

compensation depth in the southwest Pacific (Beggs 1976).  This initial 

interpretation is supported by palynomorph assemblages showing a fully 

marine environment with relatively little terrestrial influences at the base of 

the Tucker Cove Limestone (Hollis et al. 1997).  Both foraminifera and 

radiolarian assemblages reflect the high latitude nature of the location 

during the period of deposition.  Evidence provided by benthic foraminifera 

suggest the Tucker Cove Limestone was deposited at lower bathyal 

depths (>1500 m) under fully oceanic conditions (Hollis et al. 1997).  This 

is not suggested to have changed greatly throughout the period of 

deposition. 

 

The basal unit (Ta) of the Tucker Cove Limestone has been dated as 

Early to Middle Eocene, definitely of Mangaorapan (Dm) age at Camp 

Cove based on nannofossils and Mangaorapan to Heretaungan (Dm-Dh) 

based on foraminifera at Complex Point (Hollis et al. 1997).  The Tucker 

Cove Limestone is suggested to contain relatively complete Mangaorapan 

to Porangan (Dm-Dp) and Bortonian to Duntroonian (Ab-Ld) intervals 

which are separated by an angular unconformity. 

 

3.3 LITHOFACIES AT CAMPBELL ISLAND 

3.3.1 Site Description 

The present study is based on field work carried out by myself and others 

as part of the University of Otago 2009 Campbell Island Expedition.  The 

expedition travelled to Campbell Island aboard the University of Otago 

research vessel RV Polaris II, leaving Bluff on 16 February, 2009 and 

returning to Bluff on 1 March, 2009.  Work conducted as part of the
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Figure 3.3 Map of the central portion of Campbell Island showing the main study locations at Capstan Cove (Limestone Point) and the head of Perserverance 

Harbour. Contours and spots heights in metres.  Red dotted line denotes walking track. 
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expedition included a seafloor survey utilising sidescan and multibeam 

sonar, seafloor sampling including dredging and piston coring, kelp 

sampling and, relevant to this study, land based geological section logging 

and sampling.   

 

 

Figure 3.4 Composite stratigraphic column for the Paleocene and bounding strata on 

Campbell Island in relation to the Paleocene-Eocene boundary (PEB). Age control after 

Hollis et al. (1997).  Lithostratigraphy after Beggs (1976, 1978).  Lithology, lithofacies and 

samples (this study). 

 

Samples and descriptions of the contact between the Garden Cove 

Formation and Tucker Cove Limestone were collected from two sites on 

Campbell Island, at Capstan Cove on Limestone Point (LP) and at Camp 

Cove (CC) (Figure 3.3).  Due to lithologic similarities of the contact 
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between the Garden Cove Formation and Tucker Cove Limestone at both 

sites, the information obtained is combined to create a composite 

stratigraphic column (Figure 3.4). 

 

Figure 3.5 Logged sections from Campbell Island containing the contact between 

Garden Cove Formation and Tucker Cove Limestone, (A) eastern shoreline of Capstan 

Cove and Limestone Point with locations (B) and (C) marked; (B) contact at Capstan 

Cove (Photo: J. Crampton); (C) contact at Limestone Point; (D) contact in Camp Cove. 
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The low angle nature of the contact between the Garden Cove Formation 

and Tucker Cove Limestone at Capstan Cove (177/08° NW) means that it 

crops out in low cliffs along the entirety of the eastern shoreline where not 

obscured (Figure 3.5A).  The location of the stratigraphic column from 

Capstan Cove is S 52°33'02.5", E 169°05'30.1” (Figure 3.5B), where the 

majority of samples were also collected.  However, due to accessibility, a 

sample from directly below the contact was also collected from Limestone 

Point (S 52°32'54.8", E 169°05'27.2”) (Figure 3.5C).   

 

The contact between the Garden Cove Formation and Tucker Cove 

Limestone in Camp Cove is exposed in low cliffs near the head of the inlet 

(Figure 3.5D) at S 52°33'24.5", E 169°08'04.9".  The dip of beds within the 

Tucker Cove Limestone (059/14° NW) meant a tape and compass survey 

could be undertaken along the length of the southwestern shoreline from 

the head of Camp Cove to Duris Point.  This stratigraphic section is 

intersected by a number of basaltic dykes, which are particularly 

concentrated around Duris Point. 

 

3.3.2 Field Descriptions 

Within the Garden Cove Formation and Tucker Cove Limestone, three 

lithofacies have been identified as part of the wider study, namely: fine 

sandy mudstone facies (F6), calcareous glauconitic mudstone facies (F5) 

and micrite facies (F3d) (Figure 3.4). 

 

Fine sandy mudstone facies (F6) 

The fine sandy mudstone facies can generally be described as a dark 

brown, micaceous, non-calcareous, fine sandy mudstone.  Within 1.4 m of 

the overlying contact, this facies has a more massive, sandy character and 

is moderately weathered with greater induration than the lower portion, 

resulting in the prominent unit shown in Figure 3.5c.  Even though this 

interval of F6 is sandier in nature, it is correlated with unit Ge, the hard 

dark fissile siliceous mudstone of Beggs (1976).  It contains conspicuous 

dark green, subangular to subrounded, fine to medium sand sized 

glaucony grains which reach a maximum concentration of ~5% directly 
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below the overlying contact.  The glaucony grains are disseminated 

throughout the unit but are more concentrated within burrows.  Rare 

subangular to rounded quartz pebbles occur „floating‟ within the uppermost 

30 cm of the unit (Figure 3.6) along with white, non-calcareous, elliptical 

burrow structures. 

 

Figure 3.6 Subangular quartz pebble set within F6 at Limestone Point (S 52°33'02.5", E 

169°05'30.1”). 

 

1.4 m below the contact between the Garden Cove Formation and the 

Tucker Cove Limestone, F6 can be considered a true fine sandy 

mudstone with extensive bioturbation.  This interval is moderately to highly 

weathered with limonite staining of joint surfaces and a jarositic 

appearance (Figure 3.7).  It is correlated with unit Gd, the hard dark 

massive bioturbated mudstone of Beggs (1976). 

 

Figure 3.7 Fissile, highly weathered, jarositic lower interval of F6 at Camp Cove (S 

52°33'24.5", E 169°08'04.9"). 
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Sulphide nodules, <50 mm in size, are common throughout the upper 10 

m of F6.  Weathering results in limonite staining around the nodules.  

When exposed the centre of the nodules reveals brassy yellow pyrite.  

Bioturbation by an unidentified ichnotaxa is also common throughout F6 

as well as possible rare Zoophycus and Chondrites trace fossils lower in 

F6 (James Crampton pers. commun. 2009).  If this is the case, this would 

bring into question the validity of the Beggs‟ (1976) initial „estuarine‟ 

paleoenvironmental interpretation. 

 

Calcareous glauconitic mudstone facies (F5) 

F5 sits directly above the boundary between the Garden Cove Formation 

and Tucker Cove Limestone and consists of 80 mm of light to dark greyish 

green, calcareous, glauconitic mudstone (Figure 3.4).  This facies is highly 

weathered, preserving little to no original structure and is soft to very soft.  

This weathered nature means that F5 forms a thin recessive unit atop the 

Garden Cove Formation wherever the contact between the two formations 

is preserved.  Glaucony, making up ~7% of the facies in hand sample, 

consists of dark green to black, subangular to rounded, fine to medium 

sand sized grains. 

 

F5 can be divided into three separate sub-facies on the basis of a number 

of key characteristics such as weathering, and colour and the sharpness 

of boundaries observed between the three sub-facies in the field (Figure 

3.8).  F5a is dark greenish grey, highly weathered and very soft.  

Weathering of this sub-facies has occurred to such a degree that no 

original structure is preserved, including glaucony grains.  The underlying 

contact with the Garden Cove Formation also shows extensive limonite 

staining, suggesting weathering of Fe rich glaucony has occurred.  F5b is 

less weathered, being greenish grey with identifiable glaucony grains 

which constitute 7-10% of the total sub-facies, while the light greyish 

cream, F5c, is less weathered again with <5% glaucony.  The upper two 

sub-facies of F5 are sandier than F5a and induration increases rapidly 

away from the contact with the underlying F6.  It is likely that the extreme 

weathering of this facies has occurred as a result of development of a 

preferential groundwater flow path between the more highly indurated, low 
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porosity units bounding the F5 unit.  The similarities between both the 

Limestone Point and Camp Cove sections, ~3 km apart, would suggest 

that such a process has not been restricted to one location but has 

occurred wherever this stratigraphy occurs on Campbell Island. 

 

Figure 3.8 Sub-facies identified within F5 on the basis of colour, glaucony content and 

degree of weathering at Camp Cove (S 52°33'24.5", E 169°08'04.9"). 

 

Micrite facies (F3d) 

 

Figure 3.9 Characteristic features of the Tucker Cove Limestone. (A) Wavy discontinuous 

stylolitic beds. (B) Zoophycus trace fossil in the bedding plane of a fallen block at 

Limestone Point (S 52°33'02.5", E 169°05'30.1”). 

 

The micrite facies on Campbell Island consists of 30-50 mm thick, strongly 

developed stylolitic beds of light grey micrite (Figure 3.9a).  These beds 

are wavy in places and can only be traced ~3 m laterally before beds 

pinch.  F3d is slightly to moderately weathered which is reflected in the 

induration of the facies.  Glaucony consist of dark green to black, 

subangular to rounded, fine sand size grains and decreases from ~5% at 
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the underlying contact with F5 to 0% 1.5 m above the base of the facies.  

F3d contains abundant Zoophycus and Chondrites trace fossils, visible 

both in cross-section and along the surface of bedding planes (Figure 

3.9b). 

 

3.3.3 Petrography and Mineralogy 

Fine sandy mudstone facies (F6) 

In thin section, F6 is characterised by very fine sand to coarse silt sized 

quartz grains with less common K feldspar set in a siliceous/argillaceous 

and carbonaceous matrix which makes up to 50-65% of the total rock.  

Cathodoluminesence light was used to differentiate quartz grains from K 

feldspar, with quartz exhibiting characteristic dull dark blue and rare 

reddish brown luminescence, while K feldspars show bright pale blue 

luminescence under the same excitation conditions (Figure 3.10A, B). 

Quartz grains are generally angular to subangular and moderately to 

poorly sorted and include rare, coarse to very coarse sand sized grains 

(Figure 3.10A, B).  Quartz grains commonly show a „shattered‟ internal 

structure (possibly an artefact of resin impreganation for thin section 

preparation) with rare grains showing undulose extinction.  F6 contains 

some authigenic pyrite as well as muscovite and rare zircon.  

 

As with field observations of lithofacies characteristics, the petrographic 

characteristics within F6 also change upsection.  Thin sections from the 

uppermost two samples (CC07, CC08) contain the quartz and feldspar 

grains and appear petrographically similar.  Burrows identified in the field 

contain concentrations of clean, very fine sand to silt sized quartz grains 

and glaucony.  Glaucony within these two samples is dominated by bright 

green, pelletal, very fine sand sized grains with a microcrystalline internal 

structure.  Rare grains show brownish green to reddish brown oxidation 

rims, along with dehydration cracks.  A small number of glauconitised 

biotite grains were identified on the basis of well developed cleavage, 

pleochroism in plane polarised light and high order interference colours 

under cross polarised light.  Glaucony grains are poorly sorted, suggesting 

possible fragmentation.  The upper two samples also contain rounded 

brownish orange phosphatic grains that exhibit near isotropic extinction 
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behaviour under cross polarised light, making up ~3% of the sample in thin 

section. 

 

CC09 from Camp Cove is the muddiest of the thin sections examined from 

F6, with the matrix making up ~65% of the total sample.  This includes up 

to 5% muscovite and appears extensively bioturbated which has 

concentrated siliciclasts separated into discontinuous bands. Glaucony is 

dominated by brownish green, well rounded, very fine sand size, 

microcrystalline pelletal grains with less common vermicular grains of 

glauconitised biotite.  These grains exhibit subtle, light to dark green 

pleochroism under plane polarised light and 3rd to 4th order interference 

colours under cross polarised light. Brownish orange, phosphatic grains 

are far less common in CC09, making up less than 1% of the total sample. 

 

Figure 3.10 Photomicrograph pairs under plane polarised light (left) and 

cathodoluminesence light (right) of selected thin sections from Campbell Island.  (a) & (b) 

Characteristic image of the fine sandy mudstone facies of the Garden Cove Formation 

(CC08).  Note the abundance of bright blue K feldspar grains in (b) and the subrounded 

quartz granule, q, in both images. (c) & (d) Medium sand sized microcrystalline glaucony 

grains, G, and coarse silt sized siliciclastics of the calcareous glauconitic mudstone facies 

(F5) set in a calcareous matrix (LP03).  
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Rare radiolarians were observed in thin sections of samples collected from 

near the top of the Garden Cove Formation.  This appears to be 

inconsistent with observations made by Beggs (1976, 1978), who noted a 

large number of radiolarian tests as well as silicified foraminifera at a 

similar stratigraphic horizon.  However, it supports observations made by 

Hollis et al. (1997), who stated that of the 23 samples examined as part of 

their investigation into the Cretaceous to Paleogene strata of Campbell 

Island, only one sample from the Garden Cove Formation yielded 

radiolarians. 

 

An XRD trace for a bulk, unoriented sample mount of CC09 shows a 

doublet peak around 4.1 - 4.2  Å corresponding to quartz and opal C/T, 

suggesting that even though radiolarians are rare, biogenic silica may be 

an important source of SiO2 near the top of F6 (Appendix C). 

 

Calcareous glauconitic mudstone facies (F5) 

Due to the highly weathered nature of this facies, only one sample 

collected from this facies was suitable for the making of a petrographic thin 

section, LP03.  The sample consists of subrounded to rounded, very fine 

sand to silt sized quartz and K feldspar grains and fine to medium sand 

sized, well rounded, pelletal glaucony (Figure 3.10C, D).  Quartz grains 

show a similar „shattered‟ internal structure as well as undulose extinction.  

Glaucony grains are light green with a microcrystalline internal structure.  

LP03 also contains common phosphatised grains that, unlike the 

underlying facies, are generally not rounded but lath shaped.  These 

grains are set in an argillaceous matrix which also contains rare 

muscovite.  Lamination in this sample is shown by parallel seams of 

opaque limonite, concentration of glaucony grains in discontinuous lenses 

and alignment of muscovite and phosphatic grains.   

 

Unoriented bulk XRD traces show quartz and low-Mg calcite are present in 

F5.  This facies also contains phyllosilicates identified by a non-basal peak 

around 4.5 Å as well as a peak at 14.65 Å representing smectite clays 

(Appendix C). 
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Micrite facies (F3d) 

In thin section, F3d is characterised by foraminifera supported in a clotted 

micrite matrix.  SEM analysis shows that the micrite facies from Campbell 

Island is dominated by detrital carbonate grains in the form of coccolith 

debris and secondary recrystallised calcite spar (Figure 3.11a). Grain 

sizes ranges from 0.1 – 5 μm. 

 

Microfossils in F3d are dominated by planktic forams, making up ~90% of 

the visible microfossils identified, while less numbers of benthic forams 

and rare radiolarians were also observed.  Foraminiferal tests are poorly 

preserved, showing extensive calcite recrystallisation and in some cases 

replacement by silica (Figure 3.11b).  Tests are mainly infilled with 

microcrystalline, spary calcite cement.  

 

Figure 3.11 (A) SEM image of the micrite facies (F3d) from Campbell Island (CC02). C: 

Coccolith debris; M: Recrystallised microcrystalline spar. (B) Highly recrystallised and 

fragmented foraminifera set in a micritic matrix (LP01). Note uniserial benthic foraminifera 

(arrowed) (XPL).  Interference colours suggest foraminiferal tests have been replaced 

with silica.  

 

F3d contains rare authigenic pyrite identified by the brassy yellow colour 

under reflected light.  Bright green to brownish yellow green, very fine 

sand to coarse silt sized, microcrystalline pelletal glaucony is also present 

near the base of F3d, but decreases to <1% between CC01 and LP01.  

Rare grains have reddish brown, limonitised rims. 

 

The mineralogy of F3d is dominated by low-Mg calcite along with varying 

amounts of silica which decreases upsection.  This silica is assumed to be 

biogenic in origin due to the lack of detrital quartz in thin section and the 
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presence of radiolarians (Hollis et al. 1997) and silicified foraminiferal 

tests. 

 

 

3.3.4 Geochemistry 

Inorganic Geochemistry 

Ernst (1970) suggested that the geochemical composition of a facies is 

influenced by a number factors including climate, sediment origin and type 

and tectonic and diagenetic processes.  With this in mind, this section 

discusses the major and trace element abundances for the facies 

described for Section 3.3.2, as well as discussing the composition of 

samples collected from the Campbell Island Group as a whole.  Elemental 

abundances will be compared with average shale values (AS) of 

Wedepohl (1971) which will allow comparison of similar facies between 

different geographic regions (Campbell Island and Marlborough).  As the 

underlying Complex Point Group can be considered an important source 

of terrigenous sediment which would greatly affect the geochemical 

characteristics of the overlying Campbell Island Group deposits, it is 

relevant to compare elemental concentrations from the three facies 

identified in the field with values representative of the elemental 

concentrations in the basement rocks.  However, there is a lack of 

geochemical data for the Complex Point Group and so instead it was 

decided to use average values from the Greenland Group, West Coast, 

South Island (Roser et al. 1996) based on age correlations between the 

two groups made by Adams (1979) as well as petrographic similarities 

described by Beggs (1976) and Beggs et al. (1990).  The influence of 

grain size on geochemical composition is recognised here by comparing 

Facies 6 with average elemental values of sandstone units from the 

Greenland Group and Facies 5 and 3d with average elemental values of 

argillaceous units from the Greenland Group.  Bulk geochemical data are 

recorded in Appendix D. 
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Major Elements 

Fine sandy mudstone facies (F6) 

Major elemental concentrations for average shale (Wedepohl 1971) and 

average sandstone of the Greenland Group (Roser et al. 1996) 

consistently fall within the range of the Al normalised major elemental 

concentration for samples from F6 (Figure 3.12A).  Given this, the average 

Al normalised concentration for CaO is considerably lower than both 

average shale concentrations and average sandstone concentrations from 

the Greenland Group and Na2O shows a very large range. 

 

Figure 3.12 Al normalised major element concentrations (range and mean values) for the 

three facies identified during field work on Campbell Island compared against average 

shale (Wedepohl 1971) and average sandstone of the Greenland Group, West Coast, 

South Island (Roser et al. 1996).  (a) Fine sandy mudstone facies (F6); (b) Calcareous 

glauconitic mudstone facies (F5); (c) Micrite facies (F3d). Vertical bar indicates range of 

values. 

 

Calcareous glauconitic mudstone facies (F5) 

Al normalised major elemental concentrations from samples of F5 show 

significant enrichment in SiO2, TiO2, Fe2O3, MgO and CaO (Figure 3.12B).  

Na2O is the only major element that is depleted in F5, with three of four 

samples from this facies having Na2O concentrations below detectable 

limits.  TiO2 and K2O are normal with respect to concentrations of both 

average argillite of the Greenland Group and average shale. 
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Micrite facies (F3d) 

Samples from the micrite facies on Campbell Island show significantly 

higher concentrations of SiO2 and CaO with respect to both average major 

elemental concentrations in argillite of the Greenland Group and average 

shale, while K2O is lower (Figure 3.12C).  Other Al normalised major 

elemental concentration in samples from this facies are „normal‟, with 

average argillite and average shale values falling within the range of 

measured values for these elements. 

 

Discussion 

High Al normalised values for SiO2 and CaO (>100 wt%) in F5 and F3d 

reflect the large biogenic component of the primary sediments.  Low CaO 

and Na2O values in F6 possibly reflect the absence of feldspar and calcite 

in the Complex Point Group  with respect to the Greenland Group (Beggs 

et al. 1990).  Enrichment of Fe2O3 and MgO in the calcareous glauconitic 

mudstone facies with respect to average argillite concentrations of the 

Greenland Group and average shale concentration is inferred here to be 

related to the presence of glaucony in the facies.  This is supported by the 

significant positive correlation between these elements and the 

geochemical proxy for clays in the sample, TRG (Appendix D). 

 

Trace Elements 

Fine sandy mudstone facies (F6) 

As with major elemental concentrations for F6, the majority of Al 

normalised trace elemental concentrations are „normal‟ with respect to 

trace elemental concentrations in average argillite of the Greenland Group 

and average shale (Figure 3.13A).  Only U and Co have ranges that fall 

above both average shale and average argillite, while the range of 

measured values for Cu in samples from F6 is lower. 

 

Calcareous glauconitic mudstone facies (F5) 

Al normalised trace elemental concentrations in samples from F5 are 

consistently higher than both concentrations in average argillite of the 

Greenland Group and average shale (Figure 3.13B).  Nb, Pb, Cu, Rb and
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Figure 3.13 Trace element concentrations (range and mean values) for the three facies 

identified during field work on Campbell Island compared against average shale 

(Wedepohl 1971) and average sandstone of the Greenland Group, West Coast, South 

Island (Roser et al. 1996).  (A) Fine sandy mudstone facies (F6); (B) Calcareous 

glauconitic mudstone facies (F5); (C) Micrite facies (F3d). Vertical bar indicates range of 

values. 
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Ba are the only elements that are „normal‟, with average shale and 

average argillite trace elemental concentrations falling within the range of 

measured values, while all other elements are higher. 

 

Micrite facies (F3d) 

F3d shows similar trends to F6, with the majority of Al normalised trace 

elemental concentrations considered „normal‟ with respect to 

concentrations in average argillite of the Greenland Group and average 

shale (Figure 3.13C). U, Th, La, Y, and Cr are all enriched, with the range 

of measured values higher than average argillite and average shale 

concentration.  Sr is significantly enriched in samples from F3d, with Al 

normalised concentrations almost two orders of magnitude higher than 

those observed in average argillite of the Greenland Group of Westland. 

 

Discussion 

Enrichment of U in F6 may be associated with organic matter (Moore 

1988), while enrichment of Co could be attributed to the presence of pyrite 

(Ernst 1970), which is common in F6 and even occurs in large nodules in 

outcrop.  Co, along with Cr, is also associated with clay minerals (Moore 

1988).   

 

Figure 3.14 The relationship between valency and ionic radius in Rare Earth Elements 

and a number of other geochemically important species (Taylor & McLennan 1988). 

 

Figure 3.14 aids in an initial explanation of the enrichment pattern 

observed in F5.  Enrichment of the transition elements, Cr, V and Zn, can 

be attributed to replacement of Fe3+, Fe2+ and Mg2+ at octahedral sites in 
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the glaucony lattice due to similarities in ionic radius and charge 

(McConchie 1978).   

 

Taylor and McLennan (1988) suggest that elemental properties such as 

ionic radius frequently override traditional behaviour expected on the basis 

of valency in geochemical processes.  Based on this suggestion and the 

difference in ionic radius shown in Figure 3.14, the enrichment pattern of 

REEs  (La, Y and Ce) in F5 (Figure 3.15) cannot be attributed to the same 

processes responsible for the enrichment of transition elements described 

above.  For this reason, sediment transport and weathering processes are 

considered here to be two possible mechanisms explaining the REE 

enrichment pattern in F5.   

 

Figure 3.15 Chondrite normalised Rare Earth Element patterns from F3d, F5 and F6 

showing enrichment of REEs in F5 and depletion of Ce in F3d. Average shale (AS) 

values from Wedepohl (1971). 

 

Nesbitt (1979) documented progressive enrichment of up to twice the 

parent rock values in the weathering profile of the Torrongo granodiorite in 

southeastern Australia.  It is suggested that mobilisation of REEs occurs 

as a result of changes in groundwater pH (Nesbitt 1979).  This assumption 

is supported by the highly weathered nature of F5 observed in the field.   

 

However this does not explain the enrichment of Zr in this facies, which is 

an immobile element and is concentrated in heavy minerals, especially 

zircon (Moore 1988).  Sediment transport can lead to the physical 
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separation of heavy minerals, especially zircon, resulting in the enrichment 

of heavy REEs (Taylor & McLennan 1988). 

 

Enrichment of Sr in F5 and F3d is associated with CaCO3 in the facies as 

Sr tends to substitute for Ca in the crystal lattice due to their similar ionic 

charge and radius (Figure 3.14). 

 

Compositional Plots 

The strong correlation between TiO2 and Al2O3 in Figure 3.16 suggests 

that the majority of TiO2 is associated with clay minerals, supporting the 

assumption that TiO2 can be used as a proxy for terrigenous supply.  This 

would also suggest that the source of terrigenous material remained 

relatively constant across the contact between the Garden Cove 

Formation and Tucker Cove Limestone.   

 

Figure 3.16 Relationship between Al2O3 and TiO2 in the Garden Cove Formation and 

Tucker Cove Limestone. 

 

In Figure 3.17, the three axes are considered to represent the three major 

chemical components of sedimentary rocks, Al2O3, SiO2 and CaCO3, 

representing clays, quartz and/or biogenic silica and calcium carbonate, 

respectively (Moore 1988; Turgeon & Brumsack 2006).  When plotted on 

this ternary diagram, it is clear that the three facies identified in the field on 

Campbell Island possess distinct geochemical compositions.   
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Samples from F6 plot along the axis between Al2O3 and SiO2 poles, 

suggesting simple, two component mixing between end members, with 

little or no carbonate.  One of these end members would have had a 

similar composition to argillites of the Greenland Group, while the other 

would have higher concentrations of quartz and lower clay concentrations.  

Both F5 and F3d contain decreasing concentrations of Al2O3 and SiO2, 

while CaCO3 increases.  These facies appear to be distributed along a 

carbonate dilution line, once again suggesting a continued source of 

terrigenous sediment similar to that which supplied F5, with increasing 

dilution by carbonates.  

 

Figure 3.17 Ternary diagram of relative proportions of Al2O3 (x5), SiO2 and CaCO3 in the 

fine sandy mudstone facies (F6), calcareous glauconitic greensand facies (F5) and 

micrite facies (F3d) at Campbell Island. An arbitrary multiplier of 5 is used for Al2O3 in 

order to better distribute the data points within the graph (after Turgeon & Brumsack 

2006). „Average shale‟ (AS) (Wedepohl 1971) and Greenland Group sandstone and 

argillite compositions (Roser et al. 1996) are also shown. 
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Proxies 

Geochemical proxies show distinct trends throughout the measured 

sections from Capstan Cove and Camp Cove (Figure 3.18).  Terrigenous 

sediment input (TRG), a proxy for clays based on the concentration of 

TiO2 in the sample, remains relatively high, ~70 wt%, throughout the 

majority of F6 but drops to ~40 wt% directly below the contact with the 

overlying Tucker Cove Limestone (Figure 3.18D).  TRG spikes through the 

lowest 8 cm of the Tucker Cove Limestone, corresponding to F5, then 

drops to 10 wt% by the beginning of F3d.  From 10 cm above the contact 

with the Garden Cove Formation, TRG values remain stable at ~10 wt% 

for the rest of the measured section.  TRG shows a significant negative 

correlation with both Ca[exc] and Ba[exc] (Appendix D). 

 

Figure 3.18 Variations in (A) δ
13

Corg and δ
13

Ccarb, (B) terrigenous sediment (TRG), (C) 

excess silica and excess carbonate (Si[exc], Ca[exc]), and (D) barium (total and excess 

Ba, Ba[exc]) in Campbell Island sections. 

 

Proxies for paleoproductivity also show dramatic shifts across the contact 

between the Garden Cove Formation and Tucker Cove Limestone.  Both 

excess silica (Si[exc]) and total silica (SiO2[tot]) remain relatively stable 
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throughout most of the F6, at ~30 and ~90 wt% respectively, only 

increasing markedly in the sample collected directly below the contact 

(Figure 3.18C).  The separation between SiO2[tot] and Si[exc] is related to 

the large input of terrigenous material.  Values for SiO2[tot] decrease by as 

much as 70 wt% across the contact between the Garden Cove Formation 

and the Tucker Cove Limestone.  Si[exc] and SiO2[tot] remain relatively 

stable through F3d and show far less separation in comparison to F6.  

Excess calcium (Ca[exc]) is low throughout F6, generally below 1 wt%, but 

increases rapidly through F5.  Throughout F3d, Ca[exc] values remain 

relatively stable and high at ~80 wt%.  Values for excess barium (Ba[exc]) 

from F6 remain similar between 136 and 367 ppm throughout the 

measured section and show separation between Ba[exc] and total barium 

(Ba[tot]).  Ba[exc] and Ba[tot] become far more variable throughout the 

Tucker Cove Limestone (Figure 3.18D).  Values reach as high as 1731 

ppm near the base of F3d before decreasing to 92 ppm at the top of the 

measured section.  

 

Stable Isotope Geochemistry 

Even though it is stated by Hollis et al. (2003c) that δ13C is less prone to 

diagenetic alteration than δ18O, an average offset of ~0.5‰ is also 

observed in δ13C between Capstan Cove and Camp Cove.  For this reason 

the δ13C values will not be considered within a composite stratigraphic 

column like the other inorganic geochemical data.  δ13Corg values (Figure 

13.18A) range between -27.3 and -25.4‰, falling within values suggested 

for sedimentary organic carbon by Nelson & Smith (1996).  δ13Corg 

remains relatively stable through the majority of the Garden Cove 

Formation with a 1.5‰ positive shift occurring at the top of the section.  

δ13C of bulk carbonate from the Tucker Cove Limestone shows a 0.1‰ 

positive shift within the first 8 cm of the underlying contact with the Garden 

Cove Formation, before dropping by ~0.3‰ over the rest of the sampled 

interval (Figure 13.18A). 
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CHAPTER 4 
SEDIMENTARY SUCCESSIONS  

OF SOUTHEASTERN MARLBOROUGH 

 

4.1 PHYSICAL SETTING 

Southeastern Marlborough is situated in the northeast corner of the South 

Island of New Zealand (Figure 4.1).  The study area lies between Cape 

Campbell in the north and Haumuri Bluff to the south and is bordered to 

the southwest by the Inland Kaikoura Range.  The area lies at the 

southern end of the East Coast Deformed Belt of Spörli (1980) and within 

the Marlborough Fault System (MFS) of Van Dissen & Yeats (1991).  The 

MFS consists of four major northeast-striking, dextral strike-slip faults: the 

Wairau, Awatere, Clarence and Hope Faults, as well as numerous 

subsidiary faults, and represents the transition zone between oblique 

subduction along the Hikurangi margin to the north and oblique, continent-

continent collision along the Alpine Fault to the south (Crampton et al. 

2003).  From 16-35 km of dextral strike-slip displacement is inferred along 

the Clarence fault by Crampton et al. (2003) with current right-lateral 

strike-slip rates of c. 5 mm/yr (Hollis et al. 2005a), while Jordan Stream 

Thrust/Kekerengu Fault and Hope Faults are shown to accommodate 5-15 

km and 20 km of dextral strike-slip displacement, respectively.  Through a 

complex interplay of major dextral strike-slip faults, minor thrust faults and 

folds (Ota et al. 1996), the MFS is responsible for the major topographic 

features which dominate the region, such as the Inland and Seaward 

Kaikoura Ranges, Clarence Valley and the Kaikoura Peninsula, as well as 

the present day distribution of Late Cretaceous-Cenozoic cover rocks.   

 

The Clarence Valley is an asymmetric, northeast trending valley which is 

structurally controlled by the MFS and bordered on either side by the 

Inland and Seaward Kaikoura Ranges.  These ranges rise to their greatest 

elevation in Tapuae-o-Uenuku (2885 m) and Manakau (2608 m), 

respectively (Rattenbury et al. 2006).  Elevation and tilting of two major 

fault blocks within the MFS are responsible for uplift of both ranges and 

means that the geology of the Clarence Valley is dominated by Mesozoic
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Figure 4.1 Map of southeastern Marlborough showing the distribution of the Late 

Cretaceous-Paleogene Muzzle Group (dark grey) and main sites (red dots) where work 

was carried out in this study: MD, Mead Stream; MZ, Muzzle Stream; KK, Kaikoura Wharf 

(adapted from Rattenbury et al. 2006).  Inset: Map showing the location of southeastern 

Marlborough within New Zealand. 

 

basement rocks of the Pahau Terrane (Reay 1993). Late Cretaceous to 

Cenozoic sedimentary rocks are typically only preserved in narrow, down 

faulted and deformed belts to the southeast of each fault, excluding the 

Wairau Valley (Figure 4.2) (Reay 1993; Rattenbury et al. 2006).  In the 

Clarence Valley this Neogene deformation means that the down-faulted 

Late Cretaceous to Cenozoic sedimentary succession to the southeast of 
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the Clarence Fault forms a 35 km strike ridge along the northwestern side 

of the valley (Strong et al. 1995).  A number of tributary streams cut across 

this ridge, providing world renowned exposures of Late Cretaceous to 

Miocene strata, of which two, Mead Stream and Muzzle Stream, have 

been investigated as part of this study. 

 

Figure 4.2 Schematic cross section across the Inland and Seaward Kaikoura Ranges 

(from Reay 1993). 

 

Ota et al. (1996) suggest that the Kaikoura Peninsula is recently 

emergent, with uplift occurring at a rate of 1.1 m/ka, based on ages 

determined for coastal terraces.  Uplift has occurred as a result of block 

tilting towards the northwest, related to a west dipping reverse fault, 

situated 5 km southeast of the peninsula (Ota et al. 1996).  The 

distribution of the Late Cretaceous-Miocene sediments on the Kaikoura 

Peninsula has been influenced by a period of compressional tectonics in 

the early Neogene (Rattenbury et al. 2006).  This period resulted in gentle 

folding of strata and the formation of a series of anticlinal and synclinal 

structures perpendicular to the long axis of the Kaikoura Peninsula (Figure 

4.3). 

 

North of the Kaikoura Peninsula, the continental shelf is broad, being up to 

50 km wide, but decreases to 10 km in width near Kaikoura.  Directly 

south of the peninsula, the spectacular Kaikoura Canyon at the southern 

end of the Hikurangi Trench, approaches within ~500 m of the shoreline, 

with water depths at the head of the canyon reaching ~1000 m only 4 km 

offshore.  Offshore southeast Marlborough, the continental shelf and slope 
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are incised by numerous canyons and small basins, one of which is the 

Conway Trough, a steep walled tributary on the south side of the Kaikoura 

Canyon.  The geological history of the area has been strongly influenced 

by the initial development of mid and Late Cenozoic precursors of these 

fault controlled structures. 

 

Figure 4.3 Geological map and cross section of the Kaikoura Peninsula. The area has 

been uplifted and gently folded (from Rattenbury et al. 2006). 

 

Nearly all the unforested area in the southeastern Marlborough region is 

now grazed by sheep or cattle in gentler country (Warren 1995).  Within 

the Clarence Valley, introduced grasses such as Cock‟s Foot (Dactylis 

glomerata), rye-grass (Lolium perenne) and sterile bromes (Bromus sterilis 

& B. tectorum) dominate, however native tussock Festuca novae-

zealandia and Poa cita [“caespitose”] and Kanuka (Kunzea 

[Leptospermum] ericoides) persist in areas throughout the valley.  At 

higher altitudes Matagouri (Discaria toumatou), mountain flax (Phorium 

cookianum), Spaniards (Achiphylla spp.) and a species of snow grass 

(Chionochloa spp.) are common (Reay 1993).  Both the native 
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Marlborough Daisy (Pachystegia insignis) and Marlborough Lilac (Hebe 

hulkeana) are common on rock faces (Reay 1993).  Sweet briar rose 

poses a problem on river terraces and lower slopes, smothering grazing 

land, along with widespread and abundant Black Medick (Medicago 

falcate), Blue Borage (Echium vulgare) and the invasive Mouse-ear 

Hawkweed (Hieracium pilosella) (Reay 1993). 

 

The climate of southeastern Marlborough can generally be characterised 

as sunny and mild.  The area is well known for its long sunny days, with 

the town of Blenheim in the north receiving 2,470 sunshine hours per year, 

the highest of any main centre in New Zealand (New Zealand - A regional 

profile: Marlborough  1999).  The region can be considered dry, receiving 

an annual mean rainfall of 650-700 mm, with summer or autumn drought 

being not uncommon (Warren 1995).  This is typical of conditions 

experienced on the east coast of both islands.  Orographic effects of the 

Inland and Seaward Kaikoura Ranges mean that the Clarence Valley is 

protected from moisture bearing winds, resulting in a dry climate and low 

rainfall (Reay 1993), leading to one area in the Clarence Valley being 

given the name „The Desert‟.  Maximum daily average temperatures in 

summer range from 20°C-23°C (New Zealand - A regional report: 

Canterbury  1999), with a diurnal range of 12.1°C (Reay 1993).  Jordan, in 

the Awatere Valley (along with Rangiora) holds the record for the highest 

recorded temperature in New Zealand, 42°C on 7 February 1973.  The 

minimum mid-winter daily average temperature is 1.6°C with a diurnal 

range of 9.7°C, with deep and persistent snow cover in the Clarence 

Valley and the surrounding ranges (Reay 1993). 

 

4.2 LATE CRETACEOUS-LATE EOCENE LITHOSTRATIGRAPHY 

OF MUZZLE GROUP 

Micritic limestone of the Amuri carbonate megafacies (Hood & Nelson 

1996) is conspicuous within sedimentary successions throughout the 

South Island‟s east coast.  Description of these limestones from the 

Marlborough region was initially  made by Hutton (1874) at Haumuri Bluff.   

Warren and Speden (1978) and Morris (1987) made important 

contributions to the stratigraphy of these Late Cretaceous to Cenozoic 
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sedimentary successions.  However, the currently accepted stratigraphic 

nomenclature was developed by Reay (1993) (Figure 4.4) who established 

the Muzzle Group for the “sequence of calcareous, glauconitic, clastic and 

igneous lithologies which overlie the Seymour Group.”  The Muzzle Group 

was initially divided into three formations - the Mead Hill Formation, Amuri 

Limestone Formation and Grass Seed Volcanics.  Reay (1993) further 

recognised two members and four informal lithotypes within the Amuri 

Limestone - Teredo Limestone Member, Fells Greensand Member and the 

Lower Limestone, Lower Marl, Upper Limestone and Upper Marl 

lithotypes.  Work by Killops et al. (2000) and Hollis et al. (2000) led Hollis 

et al. (2005b) to emend this by including the Waipawa Formation, a 

correlative of the Teredo Limestone, at the base of the Amuri Limestone, 

as well as establishing the Dee Marl Member. 

 

Figure 4.4 Simplified lithostratigraphy for Late Cretaceous and Paleogene units of 

southeastern Marlborough (after Reay 1993; Browne 1995; Strong et al. 1995; Warren 

1995; Hollis et al. 2005b). 

 

4.2.1 Mead Hill Formation 

Reay (1993) states that the first published reference to the Mead Hill 

Formation was by Webb (1966) who introduced the term for “greensands, 
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interbedded greensand and flint, bedded flint and flint and thin interbedded 

limestone”.  Reay (1993) suggests this description arose from the 

misidentification of dolomite, which is common within the Mead Hill 

Formation.  He noted that that before this the formation was known by 

numerous names including “flint-beds” (McKay 1886), “Chert Member (of 

the) Amuri Limestone Group” (MacPherson 1948) and “chert beds” 

(Kingma 1960).  Reay (1993) describes the Mead Hill Formation as 

consisting of dm-bedded, greenish grey, muddy foraminiferal limestone 

interbedded with mm-bedded, medium to dark grey, calcareous, smectite 

mudstone or calcareous mudstone.  While not considered to be a defining 

characteristic by Reay (1993), chert is present in varying quantities (5-

95%) and is commonly associated with dolomite rhombs <1 mm in size 

(Lawrence 1993).  Chert occurs as dark grey to black, small, circular (in 

plan), elliptical nodules that lead to a hummocky appearance on bedding 

surfaces.  At several horizons, the superficial appearance of ribbon chert 

is observed as a result of coalescence of chert nodules (Reay 1993).  

 

The Mead Hill Formation sits conformably either on Branch Sandstone or 

on Herring Formation (Figure 4.4).  The basal contact is typically sharp, 

though locally gradational over several metres as a result of chertification 

extending down from the base of the Mead Hill Formation (Reay 1993).  

Although the contact between the Mead Hill Formation and underlying 

units is upper Haumurian throughout eastern Marlborough, Reay (1993) 

suggests that time transgressive relationships (younging southwards) can 

be inferred.  As the Mead Hill Formation is overlain by an unconformity 

throughout much of eastern Marlborough, the top of the formation is also 

time transgressive, though in contrast to the base this youngs toward the 

northeast.  At Mead Stream where the formation is thickest (~250 m), the 

top of the formation is upper Teurian (Strong et al. 1995) and is 

conformably overlain by the Amuri Limestone, as is common in northern 

sites.  At Branch Stream in the middle Clarence Valley, the Mead Hill 

Formation is 120 m thick (Reay 1993) with the upper contact being upper 

Haumurian in age (Hollis et al. 2005c), while the formation is not 

preserved at Seymour Stream.  Crampton et al. (2003) show that 

Paleocene aged Mead Hill Formation is only preserved in the northern 
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Clarence Valley and coastal sections north of Kaikoura Peninsula.  

Differences in thickness are attributed to both truncation beneath a low-

angle unconformity and primary depositional thinning (Crampton et al. 

2003). 

 

The Mead Hill Formation was deposited as a hemipelagic siliceous-

carbonate ooze on a terrigenous sediment-starved continental margin 

(Hollis et al. 2003c; 2005c).  Foraminiferal and radiolarian evidence shows 

that the Mead Hill Formation was deposited in outer shelf to mid bathyal 

water depths (Strong et al. 1995; Hollis et al. 2005c) and that both water 

depth and oceanicity increased throughout the deposition of the formation 

with continuing subsidence of the Marlborough paleo-platform (Crampton 

et al. 2003).  This is supported by consistently small amounts of 

terrestrially derived palynomorphs and organic matter found in the Mead 

Stream section (Strong et al. 1995), indicating the site was distant from a 

shoreline at the time and that no part of the section can be considered to 

represent a marginal marine environment. 

 

4.2.2 Waipawa Formation 

Named the Upper Chert Member of the Lower Limestone Formation by 

Morris (1987),  Strong et al. (1995) drew comparisons with the Waipawa 

Formation from the North Island based on biostratigraphic and lithologic 

similarities, but did not go so far as  to give the unit the same name.  

Instead, the Black Siltstone was established as an informal unit at the 

base of the Amuri Limestone.  Killops et al. (2000) and Hollis et al. (2000) 

both make reference to the Waipawa Formation at Mead Stream, 

considering it a correlative of similar units distributed throughout many of 

New Zealand‟s Late Cretaceous-Cenozoic sedimentary basins.  However, 

this was not formalised until the Muzzle Group was emended by Hollis et 

al. (2005b) to include the Waipawa Formation at the base of the Amuri 

Limestone at Mead Stream.  The Waipawa Formation at Mead Stream 

consists of a thin pair of dark grey, siliceous mudstone units, which show 

rusty weathering and are separated by 4.8 m of siliceous limestone 

(Strong et al. 1995; Hollis et al. 2005b).  These two units are 2.4 m and 0.3 

m thick and termed Mudstone A and Mudstone B respectively, with 
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Mudstone A the lower of the two representing the „Black Siltstone‟ of 

Strong et al. (1995). 

 

Strong et al. (1995) suggested a possible unconformable contact between 

the Mead Hill and Waipawa Formations on the basis of the sharp lithologic 

change.  However, it was also stated that the break is so small that it 

appears paleontologically irresolvable.  Hollis et al. (2005b, c) consider the 

Waipawa Formation to sit conformably on Mead Hill Formation at Mead 

Stream.  In Marlborough, the Waipawa Formation has only been described 

at Mead Stream, as the formation has either not been confidently located 

elsewhere (Hancock et al. 2003) or is not present due to the unconformity 

underlying the Amuri Limestone, as is the case in southern sites (Hollis et 

al. 2005b).  Given this, Strong et al. (1995) state that paleontological 

evidence indicates the Waipawa Formation can be considered a lateral 

(more basinward) equivalent of the Teredo Limestone Member of the 

Amuri Limestone.  Biostratigraphic evidence shows that the Waipawa 

Formation at Mead Stream was deposited during the upper Teurian, later 

than the base of nannofossil zone NP6 (58.4 Ma) but earlier than the base 

of zone NP8 (57.3 Ma) (Hollis et al. 2000), leading to the inference that the 

formation was deposited over ~500 k.y. between 58 and 57.5 Ma. 

 

Strong et al. (1995) showed that the Waipawa Formation was deposited at 

bathyal depths at Mead Stream and that throughout the Teurian any 

paleobathymetric changes had relative minor effects in this environment. 

 

Microfaunal assemblages, dominated by the agglutinated benthic 

foraminifera Haplophragmoides, are interpreted by Strong et al. (1995) to 

indicate environmental stress such as low oxygen/high organic matter 

during deposition of the Waipawa Formation at Mead Stream.  This was 

supported by Killops et al. (2000), who inferred strong positive correlations 

between δ13Ckerogen values, total organic carbon (TOC) content and 24-n-

propylcholestane abundance to be consistent with enhanced productivity 

resulting in an expanded oxygen minimum zone during the period of 

deposition of the Waipawa Formation throughout New Zealand. 
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4.2.3 Amuri Limestone 

Hutton (1874) used the name Amuri Limestone for “white to pale grey, 

argillaceous limestone always in thin beds, which are often broken up” at 

Haumuri Bluff (Reay 1993).  Since then, the name has become 

synonymous with calcilutites deposited in eastern basins of Zealandia 

during the Late Cretaceous-Paleogene (e.g. Nelson 1978; Browne 1987; 

Field et al. 1989; Field et al. 1997).  To the south of the Kaikoura 

Peninsula, the Amuri Limestone is part of the Eyre Group (Rattenbury et 

al. 2006) and youngs into the Canterbury Basin.  At the Waipara River, the 

formation is entirely Oligocene (Field et al. 1989).  While to the north, the 

Amuri Limestone is not recognised in coastal sections between Woodside 

Creek and Cape Campbell (Hollis et al. 2005a). 

 

The Amuri Limestone in southeastern Marlborough contains three 

members: Teredo Limestone, Dee Marl and Fell Greensand, as well as 

four informal lithotypes: Lower Limestone, Lower Marl, Upper Limestone 

and Upper Marl (Reay 1993; Hollis et al. 2005b).  Following the convention 

of Strong et al. (1995), the first letters of the lithotype names are 

capitalised to distinguish them from generic lithologies.  In the following 

section, only the Teredo Limestone and informal lithotypes will be 

discussed, with the major focus on the Teredo Limestone.  Full 

descriptions of members and lithotypes are covered in Reay (1993) and 

Hollis et al. (2005b).  

 

Teredo Limestone Member 

Teredo Limestone was first introduced by Hector (1874) and redefined by 

Warren and Speden (1978) as the uppermost calcareous member of the 

Claverley Sandstone at Haumuri Bluff.  Morris (1987) stated that Teredo 

Limestone be given separate formation rank in its own right due to 

stratigraphic significance, regional extent and lack of lithologic affinity.  

However, this was not accepted by Reay (1993), who suggested that as a 

result of the major unconformity underlying the Teredo Limestone and the 

fact that the Claverley Sandstone is not present in the Clarence Valley, the 

unit should be reassigned to the Amuri Limestone because of greater 

stratigraphic and lithologic affinities.  This stratigraphic nomenclature has 
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been accepted by subsequent authors (e.g. Strong et al. 1995; Hollis et al. 

2005b, c; Rattenbury et al. 2006).  Reay (1993) defines the Teredo 

Limestone as containing two informal lithotypes, a basal unit consisting of 

“cream to grey, massive, slightly calcareous sandstone” and an upper unit 

consisting of “green, glauconitic, highly calcareous sandstone” considered 

to be the Teredo Limestone sensu stricto.  The Teredo Limestone is 

distributed widely throughout eastern Marlborough and North Canterbury, 

extending from Dart Stream in the middle Clarence Valley, as far south as 

the mouth of the Waiau River (~70 km) (Reay 1993; Warren 1995).  The 

erosional unconformity underlying the Teredo Limestone means that the 

member overlies progressively younger strata towards the northeast (Reay 

1993).  In the north of the middle Clarence Valley, the Teredo Limestone 

overlies Mead Hill Formation.  Further south, around Seymour Stream, the 

unit overlies Herring Formation (Reay 1993), while at Haumuri Bluff and 

the Conway River mouth the unit overlies Claverley Sandstone (Warren 

1995).   

 

The unit thickens towards the southwest, ranging from 27 cm at Dart 

Stream to ~25 m at Seymour Stream (Morris 1987; Reay 1993).  In the 

middle Clarence Valley, the age of the Teredo Limestone is upper 

Haumurian to Waipawan, while further south the top of the unit is as young 

as Mangaorapan (Reay 1993).  These age ranges can only be considered 

maximum age constraints as they are inferred from the age of the 

overlying and underlying sediments (Morris 1987).  Hollis et al. (2005c) 

confirmed evidence of a southwestward increase in the time gap 

represented by the sub-Teredo unconformity presented by Reay (1993) by 

showing that the Teredo Limestone at Muzzle Stream is Teurian while at 

Bluff Stream the unit is earliest Waipawan.   

 

Reay (1993) suggested a shallow marine, inner shelf environment for 

deposition of the Teredo Limestone based on microfaunal ecology.  

However, Warren (1995) inferred a bathyal to near bathyal depth of 

deposition based on foraminiferal evidence, despite the sandy texture and 

glauconite content.  This is supported by Hollis et al. (2005c) who stated 

that both Muzzle and Bluff Streams lay at mid-bathyal depths (800-1200) 
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during the deposition of the Teredo Limestone.  All authors (e.g. Reay 

1993; Warren 1995; Hollis et al. 2005c) agree that abundant glaucony, 

extensive bioturbation and the local presence of phosphatic nodules 

suggest slow, or at time nil, sedimentation rates.  

 

Amuri Limestone Lithotypes 

At the type area of Haumuri Bluff, the Amuri Limestone consists of ~100 m 

of hard white, micritic limestone interbedded with thin pale grey marly 

interbeds (Warren 1995).  In the Clarence Valley where the Amuri 

Limestone reaches its greatest thickness of ~400 m at Mead Stream, four 

lithotypes are identified.  The Lower Limestone consists of “dm bedded, 

light greenish grey, well indurated, foraminiferal micritic limestone and 

interbedded calcareous mudstone”, with an average CaCO3 content of 

~78% (Reay 1993). The distribution of this unit is very similar to the Mead 

Hill Formation.  However, Reay (1993) suggests that the lithotype does not 

occur southeast of the Clarence River. The Lower Limestone conformably 

overlies the Mead Hill and Waipawa Formations in the northern Clarence 

Valley (Hancock et al. 2003; Hollis et al. 2005b), while the unit 

conformably overlies the Teredo Limestone through the middle Clarence 

Valley (Reay 1993; Hollis et al. 2005b,c).  Sandy detritus persists from the 

Teredo Limestone into the basal part of the Lower Limestone above the 

generally sharp contact (Reay et al. 1993).   

 

The Lower Marl is characterised by a dominance of cm-m thick, 

moderately indurated smectitic calcareous mudstone, interbedded with 

subordinate cm, well indurated, micritic limestone beds (Reay 1993).  

CaCO3 concentrations in the Lower Marl decrease in comparison to the 

Lower Limestone, with values ranging from 42-73% and 68-75% in 

calcareous mudstone and limestone beds, respectively, the lowest values 

occurring near the middle of the unit (Reay 1993).  The Lower Marl occurs 

throughout southeastern Marlborough wherever the Amuri Limestone is 

preserved, conformably overlying Lower Limestone in the northern and 

middle Clarence Valley and Teredo Limestone to the southeast, including 

on Kaikoura Peninsula (Reay 1993; Browne et al. 2005a). 
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The Upper Limestone is generally considered to be similar to the Lower 

Limestone, the major distinguishing features between it and the rest of the 

Amuri Limestone being the presence of stylobedding and the rarity of 

interbedded calcareous mudstone (Reay 1993). The Upper Limestone 

conformably overlies the Lower Marl and is preserved everywhere 

Cenozoic rocks are preserved (Reay 1993), reaching a maximum 

thickness of ~140 m at Dart Stream from where it thins rapidly to the 

southeast. 

 

The Upper Marl consists of “massive or fissile, light greenish or bluish-

grey, moderately indurated, smectitic, calcareous mudstone containing 

subordinate cm to dm-bedded, light grey or greenish cream, well 

indurated, micrite” (Reay 1993).  The Upper Marl conformably overlies the 

Upper Limestone where Cenozoic rocks are preserved.  The lower contact 

is gradational, with Reay (1993) arbitrarily setting the base of the Upper 

Marl at the “highest intercalated calcareous mudstone” in the Upper 

Limestone. 

 

At Mead Stream, the Lower Limestone, Lower Marl, Upper Limestone and 

Upper Marl were deposited during the upper Teurian to Bortonian (Strong 

et al. 1995), while at Haumuri Bluff in the south the Amuri Limestone was 

deposited during the Waipawan and Runangan (Warren 1995).   

 

Decreases in CaCO3 and dominance of calcareous mud beds within the 

Lower Marl and Upper Marl are suggested to be the result of increased 

influxes of terrigenous mud related to weathering during periods of global 

warming (Hollis et al. 2005a, b).  

 

4.3 LITHOFACIES AT MEAD STREAM 

4.3.1 Site Description 

Field work at Mead Stream in the northern Clarence Valley was carried out 

from 15/1/2008 to 18/1/2008.  Access to the Mead Stream section is by 

private 4WD track through Bluff Station via Kekerengu and Coverham. 
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Figure 4.5 Logged section from Mead Stream (NZMS 260 P30 758160). 

 

Beds dip steeply (202/52°NW), allowing a stratigraphic column to be 

constructed from the true right of the stream at NZMS 260 P30 758160.  

The particular interval of interest in this study was the Waipawa Formation, 

as well as the Mead Hill Formation and Lower Limestone lithotype of the 

Amuri Limestone immediately adjacent to the Waipawa Formation.  This 

interval occurs at approximately ~108 m stratigraphically above the 

Cretaceous-Tertiary (K/T) boundary at Mead Stream.   

 

Due to an accumulation of debris at the base of the Waipawa Formation 

(Figure 4.5), measurements through the unit were made ~3 m above the 

stream bed.  The presence or absence of this debris is dependent on 

rainfall and stream condition at the time, as on a return visit to the site in 

January 2009, the formation could be observed down to the stream bed.  

This is important because the thickness of Mudstone A measured during 

this study was 30 cm greater than measurements for the same unit by 

Hollis et al. (2005b).  Based on measurements from a laterally continuous 

marker bed within Mudstone A, thickness variations occur mainly within 

the lower part of this unit, suggesting a possible degree of unconformity. 
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4.3.2 Field Description 

Two lithofacies have been identified at Mead Stream, the siliceous micrite 

and chert facies (F1a) and the organic mudstone facies (F2) (Figure 4.6). 

 

Figure 4.6 Stratigraphic column for Late Paleocene strata at Mead Stream in relation to 

the Cretaceous/Tertiary boundary (KTB).  Age control after Hollis et al. (2005).  

Lithostratigraphy after Reay (1993) and Hollis et al. (2005b), italics denotes informal 

lithotype. Lithology, lithofacies and samples (this study). 
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Siliceous micrite and chert facies (F1a) 

F1a consists of pale grey to cream, siliceous micrite containing dark grey 

to black, vitreous, elongate, generally oval chert nodules (Figure 4.7).  

Slight weathering commonly results in colour changes from light grey to 

cream that is most pronounced around chert nodules (Figure 4.7).  F1a is 

hard to very hard and displays conchoidal fracturing as a result of the high 

silica content. The facies shows wavy bedding, with bed thicknesses from 

10-30 cm, due to the distortion of beds by chert nodules.  Bed thicknesses 

in F1a above Mudstone B decrease to more commonly <20 cm.  

 

Chert nodules generally form elongate, oval shapes running parallel within 

beds.  However, some are irregular, appearing to branch into adjacent 

beds and coalesce with surrounding nodules (Figure 4.7).  Chert makes 

up less than 40% of F1a and decreases in abundance above the upper 

contact with Mudstone B. 

 

Figure 4.7 Irregular, coalescing chert nodules in F1a of the Waipawa Formation from 

Mead Stream (NZMS 260 P30 758160).  Note zones of cream weathering around chert 

nodules.  Geological hammer rests at the upper contact of Mudstone A. 

 

Bioturbation is ubiquitous throughout F1a, with trace fossils being 

dominated by Zoophycus and Chondrites (Figure 4.8).  The facies also 
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contains numerous fine, calcite healed joints, up to 8 mm in thick, running 

perpendicular to bedding.  

 

Figure 4.8 Bioturbation in the siliceous micrite and chert facies (F1a) at Mead Stream 

(NZMS 260 P30 758160). C: Chondrites; P: Planolites; Z: Zoophycus. 

 

Organic mudstone facies (F2) 

The organic mudstone facies at Mead Stream consists of cm bedded, 

weakly laminated, grey, siliceous mudstone interbedded with fissile, 

laminated, dark grey to dark brown, argillaceous mudstone (Figure 4.9).  

F2 is soft to moderately hard and moderately weathered, resulting in a 

jarositic appearance and limonite staining of joint surfaces.  Beds 

generally tend to be continuous along the length of the outcrop but 

variable in thickness, with some beds bifurcating, resulting in a boudinage 

appearance in localised areas. 

 

F2 forms two distinct units, 2.7 m and 0.26 m thick, corresponding to 

Mudstone A and Mudstone B of Hollis et al. (2005b) respectively, 

separated by 4.8 m of F1a.  The basal contact of both units with the 

underlying F1a is sharp, with irregular relief as the result of wavy bedding 

within F1a.  Pyritised burrows were identified extending from the base of 

Mudstone A into underlying F1a of the Mead Hill Formation. 
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The fissile nature of much of F2 meant that few large, coherent samples 

were collected.  Given this, those that were able to be slabbed showed 

extensive bioturbation structures (see Figure 4.10d).  Fine, calcite healed 

veins perpendicular to bedding are also common throughout F2. 

 

Figure 4.9 Siliceous mudstone and argillaceous mudstone interbeds of the organic 

mudstone facies (F2) in the Waipawa Formation at Mead Stream showing characteristic 

brownish orange limonite staining of joint surfaces. A, argillaceous mudstone; S, siliceous 

mudstone. 

 

4.3.3 Petrography and Mineralogy 

Siliceous micrite and chert facies (F1a) 

In thin section, F1a is characterised by light grey, clotted micrite and light 

brown chert consisting of microcrystalline silica.  The boundary between 

these two components is generally very sharp (Figure 4.10a).  Under CL, 

a clear distinction is evident between the chert and micrite, the latter 

showing an orange colour characteristic of calcite and the former a dark 

reddish brown (Figure 4.10b).  Scanning electron microscope (SEM) 

studies of F1a show that the micrite is primarily composed of detrital 

carbonate grains in the form of coccolith debris (Figure 4.11a) along with 

secondary microcrystalline carbonate cement and authigenic silica (Figure 

4.10).  Grain size ranges from 0.5 μm to 5 μm.  These components were
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Figure 4.10 Photomicrograph pairs under plane polarised light (A) and 

cathodoluminesence light (B) of the siliceous micrite and chert facies (F1a) (MD18). 

Distinct boundary between micrite and chert with late stage calcite veins (arrowed).  

Micrite shows the characteristic orange colour of calcite under CL light while chert shows 

a dark reddish brown. (C) Siliceous micrite and chert facies from above the Waipawa 

Formation (MD24) containing planktic foraminifera and authigenic pyrite (arrowed) (PPL). 

(D) Organic mudstone facies from Mudstone B (MD23) which is much finer than 

Mudstone A in (E) (XPL).  Note the prominent colour contrasts due to bioturbation, 

possible compressed Planolites. (E) Organic mudstone facies from Mudstone A (MD13). 

R: Recrystallised spumellarian radiolarians; S: sponge spicules. (F) Burrow containing 

large blocky, pleochroic, calcite crystals rich in pyrite in organic mudstone facies (MD13) 

(PPL). 
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 identified using energy dispersive spectroscopy (EDS) to create elemental 

maps of SEM images (Figure 4.11b, c, d).  Ca is attributed to calcite, Si is 

attributed to silica and Al is attributed to clays. 

 

Figure 4.11 (A) SEM image of siliceous micrite and chert facies (MD24). C: coccolith 

debris; M: microcrystalline carbonate cement; S: authigenic silica. Zones of calcium 

carbonate and authigenic silica are identified by producing elemental maps of calcium 

(B), silica (C) and aluminium (D) overlaid over the original SEM image.  Intensity of colour 

denotes concentration of element. Note that Al is ubiquitous throughout the image and 

not concentrated in any one location, unlike Ca and Si. 

 

Rare siliciclastics, visibly making up <1%, occur in F1a, and include 

subrounded silt sized quartz grains as well as mica grains.  However, any 

argillaceous (clay) component is impossible to clearly resolve. 

 

Microfossils identified in thin sections of samples from F1a of the Mead Hill 

Formation were mainly spumellarian radiolarians (~3%), with rare 
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nassellarian radiolarians and sponge spicules. Only rare, poorly preserved 

benthic foraminifera were observed in samples collected from below the 

Waipawa Formation, as well as in the F1a unit between Mudstone A and 

B.  Above the Waipawa Formation, planktic foraminifera dominate, making 

up 5-10% of the total sample, with spumellarian radiolarians and sponge 

spicules being less common (~1%) (Figure 4.10C).  Microfossil 

preservation in F1a is moderate to poor, with radiolarians tending to show 

recrystallised textures that obscure structural features, as well as infilling 

of the surface pores of their test with microcrystalline silica.  The planktic 

foraminiferal tests in samples of F1a from the Amuri Limestone are infilled 

with micritic cement. 

 

Veins identified in the field consist of dusty calcite spar crystals up to 3 mm 

across in thin section.  Vein thickness varies considerably but is generally 

<100 μm, with veins running parallel to each other and cutting both chert 

and micrite.  Under CL, these veins show very bright yellow-orange 

colours (Figure 4.10b)  

 

XRD of bulk, unoriented powdered samples indicates that the micrite 

consists of low-Mg calcite and that the silica in chert nodules consists of 

quartz (Appendix C). 

 

Organic mudstone facies (F2) 

In thin section, F2 is generally characterised by fine grained, brown 

(probably organic matter) matrix containing siliciclastics, perigenic 

glaucony and phosphastic grains as well as abundant authigenic pyrite 

identified in thin section by its pale gold colour under reflected light. 

 

This facies also contains some medium silt sized, subrounded quartz 

grains (~2%) as well as rare glaucony, phosphatised grains and 

plagioclase feldspar.  Glaucony grains are dominated by bright green, 

microcrystalline, pelletal forms but also include rare vermicular grains of 

glauconitised biotite which show pleochroism and high order interference 

colours under cross polarised light.  Phosphatic grains are generally 

subrounded to rounded, and identified by their yellow-brown colour and 
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nearly isotropic extinction behaviour under cross polarised light.  

Mudstone B differs from Mudstone A in being finer grained (cf. Figure 

4.10d, e) and containing conspicuous muscovite (~5%).  These grains are 

generally aligned with each other and are parallel to laminations observed 

in thin section. 

 

Microfossils in Mudstone A are dominated by spumellarian radiolarians 

(~20%) (Figure 4.10e).  Preservation of these microfossils varies, with 

some tests only preserved as fragments, while others remain whole, with 

varying degrees of cementation within pores on the surface of the test. In 

contrast to this, Mudstone B is poor in microfossils as a whole, containing 

only rare radiolarians which are highly recrystallised and infilled with 

microcrystalline silica as well as silicified benthic foraminifera. 

 

Bioturbation is common throughout F2, resulting in some significant 

variations in the concentrations of organic matter and siliciclastic grains in 

samples (Figure 4.10d).  One unusual burrow observed in MD13 appears 

to have been infilled with large blocky, pleochroic, calcite crystals rich in 

pyrite (Figure 4.10f). 

 

4.3.4 Geochemistry 

Inorganic Geochemistry 

The elemental concentrations in F1a and F2 are compared with average 

shale values of Wedepohl (1971) for both major and trace elements to 

allow for comparability between sites.  The major elemental concentrations 

for F2 are also compared with values from the Waipawa Formation of 

Moore (1988).  Compositional plots and geochemical proxies were created 

using an expanded dataset including unpublished geochemical data made 

available by Dr Chris Hollis (GNS, Lower Hutt) (Appendix D). 

 

Major Elements 

Siliceous micrite and chert (F1a) 

Excluding SiO2, CaO and Na2O, all Al normalised major elemental 

concentrations in samples from the siliceous micrite and chert facies (F1a) 

are „normal‟ with respect to concentrations observed in average shale
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(Wedepohl 1971) (Figure 4.12A).  SiO2 and CaO are significantly higher 

than values for average shale, while concentrations of Na2O are lower. 

 
 
Figure 4.12 Al normalised major element concentrations (range and mean values) for the 

two facies identified during field work at Mead Stream compared against average shale 

(Wedepohl 1971) and Waipawa Formation concentrations (Moore 1988). (A) Siliceous 

micrite and chert facies (F1a); (B) Organic mudstone facies (F2).  Vertical bars indicate 

range of values. 

 

Organic mudstone facies (F2) 

Al normalised major elemental concentrations in samples from the organic 

mudstone facies (F2) at Mead Stream are „normal‟ with respect to average 

shale concentrations (Figure 4.12B).  However, samples of F2 at Mead 

Stream have significantly enriched Al normalised CaO concentrations 
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when compared with average values from the Waipawa Formation from 

the east coast of the North Island (Moore 1988).   

 

Discussion 

Consistently high Al normalised values for SiO2 and CaO (>100 wt%) in 

the siliceous micrite and chert facies (F1a) at Mead Stream reflect the 

large biogenic component of the primary sediments.  High CaO 

concentrations in the organic mudstone facies (F2) can be considered a 

characteristic feature of the Waipawa Formation at Mead Stream (Killops 

et al. 2000). 

 

Trace Elements 

Siliceous micrite and chert facies (F1a) 

Al normalised trace elemental concentrations of samples from the 

siliceous micrite and chert facies (F1a) are consistently higher than values 

from average shale, with Sr and Ba being enriched by over two orders of 

magnitude (Figure 4.13A).  Only Rb and Zr can be considered „normal‟. 

 

Organic mudstone facies (F2) 

Al normalised trace elemental concentrations in samples of the organic 

mudstone facies (F2) are also consistently higher than values of the 

average shale (Figure 4.13B). This pattern is similar to that observed in 

F1a, but occurs to a lesser degree, with only U, Th, La, Y, Cr, Sr, and Ba 

having ranges above average shale values, while the range of 

concentration for Nb and Rb are both lower than average shale. 

 

Discussion 

Samples from both F1a and F2 show almost identical trends their Al 

normalised elemental concentrations.  This would suggest that the source 

of terrigenous material for both the siliceous micrite and chert facies (F1a) 

and the organic mudstone facies (F2) at Mead Stream remained constant 

through the deposition of both facies.  It is possible that the consistently 

high trace elemental concentrations observed in F1a are the result of Al 

normalisation.  Overestimation of all trace elements could have occurred 
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as a result of overestimation of background Al2O3 values (12% after Hollis 

et al. 2003b) used in the normalising equation. 

 

Low Al2O3 concentrations in this facies, combined with the affect of 

assuming an average background Al2O3 of 12% (after Hollis et al. 2003c) 

could have lead to consistent over estimation of all trace elements.  

 
 
Figure 4.13 Al normalised trace element concentrations (range and mean values) for the 

two facies identified during field work at Mead Stream compared against average shale 

concentrations (Wedepohl 1971). (A) Siliceous micrite and chert facies (F1a); (B) Organic 

mudstone facies (F2).  Vertical bars indicate range of values. 

 

Compositional Plots 

On a ternary plot of the three major chemical components of sedimentary 

rocks, Al2O3, SiO2 and CaCO3, representing clays, quartz and/or biogenic
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silica and calcium carbonate, it is clear that the two facies identified at 

Mead Stream possess distinct geochemical compositions (Figure 4.14A). 

 
 
Figure 4.14 (A) Ternary diagram of relative proportions of Al2O3 (x5), SiO2 and CaCO3 in 

the siliceous micrite and chert facies (F1a) and organic mudstone facies (F2) from Mead 

Stream.  An arbitrary multiplier of 5 is used for Al2O3 in order to better distribute the data 

points within the graph (after Turgeon & Brumsack 2006). (B) Comparative ternary 

diagram of relative proportions of Al2O3 (x5), SiO2 and CaO from the Furlo section, 

Umbria-Marche Basin, Italy (Turgeon & Brumsack 2006). Average shale plot (Wedepohl 

1971) is shown. 

 

F1a falls in an arching trend along the axis between the SiO2 and CaCO3 

poles.  This ternary plot shows that F1a ranges between highly siliceous 

and highly calcareous sediments.  F2 falls along the axis between Al2O3 

and SiO2 below the composition of average shale.  Rare samples are 

more calcareous in nature; however the majority of samples are siliceous 

with varying quantities of clay.  

 

Turgeon & Brumsack (2006) described similar compositional trends from 

the Furlo section in the Umbria-Marche Basin of central Italy (Figure 

4.14B).  The Scaglia Bianca is a siliceous carbonate unit and is 
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comparable to the siliceous micrite and chert facies identified at Mead 

Stream. The Livello Bonarelli is a Corg rich black shale comparable to the 

Waipawa Formation, deposited during an ocean anoxic event at the 

Cenomanian/Turonian boundary (OAE2) during the Late Cretaceous 

(Turgeon & Brumsack 2006). 

 

Proxies 

Geochemical proxies show distinct trends throughout the measured 

section from Mead Stream (Figure 4.15). Terrigenous sediment input 

(TRG), a proxy for clay content of the sample based on TiO2 

concentration, is low (~5%) throughout F1a, both below and above the 

Waipawa Formation (Figure 4.15B).  TRG increases markedly through 

both units of F2, with values fluctuating from a maximum of ~75% to as 

low as ~20%.  Elevated TRG is associated with argillaceous mudstone 

interbeds while siliceous mudstone beds tend to have lower TRG values.   

 

Paleoproductivity proxies (Si[exc], Ca[exc] and Ba[exc]) show dramatic 

shifts through the Waipawa Formation (Figure 4.15C, D, E).  Excess silica 

(Si[exc]) and total silica (SiO2[tot]) start at ~10 wt% and increase though 

the basal F1a unit.  Si[exc] and SiO2[tot] remain very close to one another, 

a trend that is consistent throughout F1a, suggesting that silica in this 

facies is mostly biogenic in origin.  Both SiO2[tot] and Si[exc] decrease to 

~30 wt% in the period separating Mudstone A and B before increasing to 

~90 wt% in Mudstone B.  Si[exc] increases through both F2 units, 

signifying an increase in siliceous productivity during the deposition of 

these units.  Divergence between Si[exc] and SiO2[tot] signifies that high 

SiO2 values in F2 are a result of influx of both biogenic and detrital silica. 

 

Excess calcium (Ca[exc]), a proxy for calcareous productivity (Hollis et al. 

2003c), shows that throughout the deposition of the siliceous micrite and 

chert facies (F1a), calcareous productivity was high and remained 

relatively constant (~80 wt%), only decreasing in the metre of sediment 

underlying the base of the Waipawa Formation.  However, throughout the



 

 
 

 9
0
 

 
 

 
 

 
 

 
 

C
H

A
P

T
E

R
 4

 

 

Figure 4.15 Variations in (A) δ
13

Corg and δ
13

Ccarb, (B) terrigenous sediment (TRG), (C) excess silica (Si[exc]), (D) excess calcium carbonate (Ca[exc]), (E) excess 

barium (Ba[exc]), and (F) enrichment factor of manganese (EFMn) at Mead Stream. 
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deposition of F2, Ca[exc] is very low, ~1 wt%, indicating a dramatic 

decrease in calcareous productivity through this period. 

 

The siliceous micrite and chert facies (F1a) shows relatively constant 

excess barium (Ba[exc]) concentrations, between ~1000 ppm and ~2000 

ppm (Figure 4.15E).  Ba[exc] increases markedly through both F2 units, 

reaching a maximum of ~12000 ppm in Mudstone B, but generally 

fluctuating between ~4000 ppm and ~6000 ppm.  Ba[exc] is significantly 

correlated with SiO2, further supporting the suggestion of increased 

siliceous productivity through the Waipawa Formation. 

 

Enrichment factor of manganese (EFMn) is used here as a proxy for paleo-

redox conditions.  Soluble Mn2+ will diffuse from sediments into oxygen-

depleted bottom waters under reducing conditions at the sediment/water 

interface, leading to depletion of Mn with respect to concentrations 

observed in average shale (Turgeon & Brumsack 2006) (discussed 

Chapter 5).  Therefore, sediments significantly depleted in Mn (EFMn < 0.5) 

are inferred to be deposited under dysoxic or anoxic conditions. 

 

Figure 4.15F shows that EFMn in F1a is consistently above 1, with samples 

from the Mead Hill Formation and Amuri Limestone both showing EFMn 

above 5.  F2 shows depletion of Mn below a level of 0.5.  

 

Stable Isotope Geochemistry 

The δ13C of bulk carbonate through the measured section at Mead Stream 

is consistently high (~3‰) in F1a, with two negative carbon isotope 

excursions occurring within the organic mudstone facies (F2) units.  The 

first carbon isotope excursion starts ~1 m below the base of Mudstone A, 

with δ13C values within Mudstone A ranging between 2.20‰ and -1.51‰.  

δ13C values from Mudstone B range between 1.67‰ and 2.57‰. 

 

δ13Corg values at Mead Stream were only determined for Mudstone A with 

values at the top of the Mead Hill Formation and siliceous micrite unit 

separating Mudstone A and B being -25.3‰ and -24.6‰ respectively.  

δ13Corg values from -21.5 to -18.4‰ are consistent with values reported 
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from the Tartan Formation, a Waipawa Formation equivalent from the 

Great South Basin (Schiøler et al. 2010 and references there in).  This 

positive carbon isotope excursion of ~7‰ through Mudstone A agrees with 

the results of Killops et al. (2000) and Schiøler et al. (2010). 

 

4.4 LITHOFACIES AT MUZZLE STREAM 

4.4.1 Site Description 

Field work at Muzzle Stream in the middle Clarence Valley was carried out 

on 16/1/2008.  Access to Muzzle Stream is by private 4WD track through 

Bluff and Muzzle stations via Kekerengu and Coverham. 

 

Figure 4.16 Logged section from Muzzle Stream showing the relationship between the 

Mead Hill Formation and overlying Amuri Limestone (NZMS 260 O30 613025). 

 

Isoclinal folding related to strike-slip faults results in three or more 

repeated sections at Muzzle Stream (Reay 1993; Hollis et al. 2005c).  The 

section studied was the second repeated section in the west branch of 

Muzzle Stream (NZMS 260 O30 613025), above the confluence with 

Muzzle Stream proper.  Beds at this location dip steeply (212/64° NW) and 

although the interval of interest crops out on both sides of the stream, it 

was chosen to log and collect samples from the true left bank only (Figure 

4.16). 
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4.4.2 Field Descriptions 

Two formations are identified in the Muzzle Stream section, the Mead Hill 

Formation and the Amuri Limestone which contains the Teredo Limestone 

Member and Lower Limestone lithotype.  Within these formations, three 

lithofacies have been identified as part of this study: the siliceous micrite 

and chert facies (F1b), greensand facies (F4a) and micrite facies (F3a) 

(Figure 4.17). 

 

Figure 4.17 Stratigraphic column of Late Cretaceous-Late Paleocene strata at Muzzle 

Stream. Age control after Hollis et al. (2005).  Lithostratigraphy after Reay (1993), italics 

denotes informal lithotype. Lithology, lithofacies and samples (this study). 
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Siliceous micrite and chert facies (F1b) 

F1b at Muzzle Stream consists of cream siliceous micrite interbedded with 

mm argillaceous beds.  This facies is wavy bedded, leading to a lozenge-

like or pinch-and-swell appearance of beds, with maximum bed 

thicknesses between 8 and 18 cm thick (Figure 4.16).  F1b is slightly 

weathered but, because of its silica content as shown by a conchoidal 

fracture, results in F1b being hard to very hard. 

 

F1b at Muzzle Stream contains some chert nodules which are dark grey to 

black in colour and generally possess an elliptical shape in cross section.  

 

Bioturbation is common throughout F1b.  Zoophycus trace fossils are 

ubiquitous; while Thalassinoides burrows extend down into the uppermost 

siliceous micrite and chert facies from the overlying greensand facies 

(Figure 4.18).  F1b also contains prominent joints and calcite healed veins 

running perpendicular to bedding. 

 

Figure 4.18 Thalassinoides burrows infilled with greensand facies in a hand sample 

(MZ03) of the siliceous micrite and chert facies (F1b) from Muzzle Stream.  
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Greensand facies (F4a) 

F4a consists of grey green, calcareous, glauconitic, massive sandstone.  

The majority of the facies is sandy, but F4a becomes more argillaceous in 

its uppermost 5 cm (Figure 4.17).  F4a is slightly to moderately weathered 

and hard to moderately hard, although in the argillaceous layer the 

induration decreases resulting in a recessive appearance.  At Muzzle 

Stream, the greensand facies is 15-28 cm thick, the large variation in 

thickness resulting from the wavy nature of the topmost beds of the 

underlying siliceous micrite and chert facies.  Glaucony consists of green 

to dark green, subangular to rounded, fine to medium sand grains.  

Glaucony is concentrated (~10%) in the sandy basal zone and decreases 

upsection to ~5% in the upper argillaceous layer.  

 

As stated above, Thalassinoides burrows, up to 5 cm in diameter, extend 

down ~25 cm from the base of the greensand facies into the underlying 

siliceous micrite and chert facies.  Burrows run both perpendicular and 

parallel to bedding and are infilled with F4a from the overlying unit (Figure 

4.18). 

 

It is suggested here that this unit represents a significant unconformity, 

based on the identification of extensive Thallassinoides burrowing at the 

base of the unit, the thickness variations of the unit and the presence of 

glaucony.  This is consistent with previous interpretations made by Reay 

(1993) and Hollis et al. (2005c). 

 

Micrite facies (F3a) 

The micrite facies at Muzzle Stream consists of cream, indurated micrite 

beds, 15 to 30 cm thick interbedded with thin (2-10 mm) marl beds.  F3a 

beds generally show a more tabular geometry and increased bed 

thickness in comparison to the siliceous micrite facies (Figure 4.16).  F3a 

is slightly weathered and hard to moderately hard.  Brownish green to dark 

green, subangular to rounded, fine sand sized glaucony is present within 

the basal 40 cm of the facies, making up <2% of the total rock.  Glaucony 

is concentrated along bioturbation structures.  40 cm above the lower 

contact with F4a, glaucony appears to absent. 
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Bioturbation is widespread throughout F3a, Zoophycus and Chondrites 

being the most commonly identified trace fossils.  This facies also contains 

raised, ring like structures (Figure 4.19).  These structures were originally 

suggested to be related to bioturbation, however in thin section they are 

light brown and are similar in appearance to chert nodules.  The possibility 

that these ring structures represent the early stages of chert formation is 

supported by their non-luminescence observed under CL light, a 

characteristic of authigenic silica, as well as the concentration of silica 

measured by energy dispersive spectroscopy (EDS). 

 

Figure 4.19 Raised irregular, ring structures in the micrite facies (F3a) at Muzzle Stream. 

 

4.4.3 Petrography and Mineralogy 

Siliceous micrite and chert facies (F1b) 

The siliceous micrite and chert facies at Muzzle Stream consists of light 

grey to brownish grey, clotted micrite (Figure 4.20A).  It includes some 

siliciclastic grains (~5%), dominated by coarse silt sized, subrounded to 

subangular quartz grains.  Rare authigenic pyrite, identified by the pale 
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bronze colour under reflected light, is present both as grains and as infills 

within radiolarian tests throughout F1b. 

 

Visible microfossils are not abundant (~5%) and poorly preserved, 

showing recrystallised textures that obscure structural features, with tests 

tending to be silicified and infilled with microcrystalline silica so that 

identification is difficult.  Overall, F1b appears to predominantly contain 

radiolarians and siliceous sponge spicules as well as less common 

planktic foraminifera and fragmented tests.  Sponge spicules in MZ03 

exhibit parallel alignment, suggesting the influence of bottom currents 

(Flügel 2004). 

 

Veins identified in the field are generally infilled with dusty, calcite spar 

cement in thin section.  Veins are variable in thickness, ranging from ~0.01 

mm to ~1.0 mm, and generally run parallel to each other.  Occasionally the 

veins have multiple stages of vein infill, with an initial siliceous infill 

followed by a subsequent period of calcite cement infill (Figure 4.20A, B).   

 

Greensand facies (F4a) 

In thin section, the greensand facies is characterised by a mixture of 

detrital, perigenic and biogenic grains set in a matrix of microcrystalline 

carbonate.  Matrix makes up ~45% of the total sample in the majority of 

the facies resulting in a grain supported fabric.  In the upper, more 

argillaceous portion of the greensand facies at Muzzle Stream, the 

proportion of matrix in the sample increases to 60% and grains appear to 

be mud supported. 

 

Visible siliciclastics are dominated by well sorted, subangular to 

subrounded, fine to very fine sand sized quartz grains (~25%), along with 

some K feldspar (~5%) and rare plagioclase feldspar and muscovite.  

Differentiation between quartz and feldspar grains was difficult due to a 

lack of distinctive optical features.  Morris (1987) encountered similar 

problems and therefore relied on the degree of alteration of feldspar grains 

to distinguish feldspar grains from quartz.  In this study, feldspars were 

identified under CL light, with K feldspars and plagioclase tending to 
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exhibit bright blue and yellowish green luminescence, respectively, while 

detrital quartz tends to exhibit dull blue colours for the same excitation 

conditions (Marshall 1988) (Figure 4.20D).  Authigenic pyrite is rare but 

ubiquitous in F4a and is identified by the brassy yellow colour under 

reflected light.  Rare lithics identified in thin section of the uppermost 

sample collected from the greensand facies consist of well rounded 

microcrystalline chert fragments.  

 

Perigenic grains observed in the greensand facies from Muzzle Stream 

consist of glaucony and phosphatic grains.  Glaucony grains are 

dominated by bright green, microcrystalline, pelletal forms inferred to 

represent glauconitised faecal pellets.  Some grains have brownish red 

rims as a result of limonite staining, with the majority of glaucony grains 

exhibiting dehydration fractures.  Vermicular grains of glauconitised biotite 

are relatively common (3-5%), identified by light to dark green pleochroism 

and high order interference colours under cross polarised light (Figure 

4.20E, F).  Glaucony grains are moderately to well sorted, with a modal

 Figure 4.20  Photomicrograph pairs under plane polarised light (left) and 

cathodoluminesence light (right) of selected samples from Muzzle Stream. (A) & (B) Vein 

cutting siliceous micrite from Muzzle Stream (F1c) (MZ01). Outer edges of vein shows 

dark reddish brown colours characteristic of authigenic silica while infill of the vein is 

orange, characteristic of calcite.  (C) & (D) Multiple phases of burrow infill recorded in the 

greensand facies (F4a) from Muzzle Stream (MZ04).  Note that the brown siliceous 

burrow running from the top middle of the image to bottom left of image, shows dark 

reddish brown luminescence characteristic of authigenic silica, while the dark brown 

micrite filled burrow in the middle right of the image shows bright orange luminescence 

characteristic of calcite.  Siliciclastic grains are dominated by dull brownish red and blue 

quartz grains with some bright blue K feldspar grains.  Photomicrograph pairs under 

plane polarised light (E) and cross polarised light (F) of the greensand facies (F4a) 

(MZ04).  Characteristic grains of the greensand facies (F4a) from Muzzle Stream. q: 

detrital quartz; m: microcrystalline carbonate cement; p: pyrite; gp: microcrystalline pelletal 

glaucony; gv: vermicular glauconitised biotite grain.  Note the 3
rd

 and 4
th

 order 

interference colours of the vermicular glaucony grain, retaining optical properties of 

parent the biotite crystal.  (G) A radiolarian with well preserved ornate structural features 

(arrowed) surrounded by siliciclastic grains from the base of the micrite facies (F3a) at 

Muzzle Stream (MZ06) (PPL). (H) Intersecting calcitic veins in the micrite facies from 

Muzzle Stream (MZ06) (PPL).  Note the low proportion of visible foraminiferal tests and 

micro-shell fragments. 
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 size of 0.2 mm.  Phosphatic grains are generally subangular to rounded, 

make up approximately 2% of the total sample in thin section, and range in 

size from 0.025 mm to 0.3 mm.  These grains are identified by their 

orange-brown colour and nearly isotropic extinction behaviour under cross 

polarised light. 

 

Microfossils observed in F4a include rare planktic foraminifera, 

spumellarian radiolarians and sponge spicules, making up less than 1% of 

the total sample in thin section.  Microfossils are concentrated in micritic 

burrows with few or no siliciclastics and their tests are generally infilled 

with micrite or rarely sparry calcite cement, showing better preservation 

than those observed in the underlying siliceous micrite and chert facies. 

 

Bioturbation is common throughout, resulting in the relative concentration 

or depletion of siliciclastic grains in certain areas.  Multiple phases of 

burrow infill are preserved, possibly recording lithologies present prior to 

mixing as a result of bioturbation (Figure 4.20C, D).  A large, elliptical 

pyritised burrow containing a small number of angular to subrounded 

siliciclastic grains was also observed in MZ04. 

 

Micrite facies (F3a) 

In thin section, F3a is generally characterised by light grey, clotted micrite 

containing up to 10% planktic foraminifera.  SEM analysis of F3a shows 

that this facies is dominated by recrystallised microcrystalline spar with 

less commonly identifiable detrital carbonate grains in the form of coccolith 

debris. Grain size ranges from 0.5 to ~3 μm. 

 

Siliciclastic grains in the form of moderately sorted, subangular to 

subrounded, very fine sand to silt sized, detrital quartz, feldspar and 

muscovite, along with authigenic pyrite, perigenic glaucony and 

phosphatised grains, make up to 5% of the lowermost sample collected 

from the base of F3a (Figure 4.20G).  Grains are concentrated within 

bioturbation structures. The abundance of these grains decreases rapidly 

away from the contact with the underlying greensand facies, making up 
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less than 1% in the three uppermost samples collected from this section 

(MZ07, MZ08 and MZ09). 

 

Microfossils identified in thin sections from F3a are dominated by planktic 

foraminifera, with a few benthic foraminifera, radiolarians and other micro-

shell fragments (Figure 4.20G, H).  These increase from 10% at the base 

of the facies to 15% at the top of the measured section.  Preservation of 

microfossil tests varies, although the majority of tests and shell fragments 

show significant recrystallisation with tests being predominantly infilled 

with micrite, while rare tests are infilled with sparry calcite cement or 

microcrystalline silica. 

 

Veins identified in the field range in thickness from 0.025 mm to 30 mm 

and are infilled with dusty calcite spar cement, with crystals reaching 1.25 

mm in size (Figure 4.20H).   

 

4.4.4 Geochemistry 

Inorganic Geochemistry 

The elemental concentrations of F1b, F4a and F3a are compared with 

average shale values of Wedepohl (1971) for both major and trace 

elemental concentrations so as to allow for comparisons between sites.  

The bulk geochemical data are recorded in Appendix D. 

 

Major Elements 

Siliceous micrite and chert facies (F1b) 

The siliceous micrite and chert facies (F1b) at Muzzle Stream have 

„normal‟ concentrations of TiO2 and K2O with respect to average shale 

(Figure 4.21A).  SiO2, MgO and CaO are all significantly higher than 

average shale concentrations while Fe2O3 and Na2O are lower.  Depletion 

of Na2O is so great that no samples from this facies had concentrations 

above detectable limits. 
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Greensand facies (F4a) 

The greensand facies (F4a) at Muzzle Stream is characterised by high Al 

normalised concentrations of SiO2, Fe2O3, MgO, CaO and K2O and low 

concentrations of TiO2 (Figure 4.21B). 

 

Micrite facies (F3a) 

Excluding SiO2, TiO2, CaO and Na2O, Al normalised major elemental 

concentrations in samples from the micrite facies at Muzzle Stream can be 

considered „normal‟ with respect to average shale values (Figure 4.21C). 

SiO2 and CaO are significantly higher while TiO2 and Na2O are lower.  As 

with F1b, Na2O concentrations are consistently below detectable limits. 

 

Figure 4.21  Al normalised major element concentrations (range and mean values) for 

the three facies identified during field work at Muzzle Stream compared against average 

shale (Wedepohl 1971). (A) Siliceous micrite and chert facies (F1b); (B) Greensand 

facies (F4a); (C) Micrite facies (F3a).  Vertical bars indicate range of values. 

 

Discussion 

Consistently high Al normalised values for SiO2 and CaO (>100 wt%) in 

samples from F1b and F3a at Muzzle Stream reflect the large biogenic 

component of the primary sediments.  High concentrations of Fe2O3, MgO 

and K2O in the greensand facies (F4a) are likely to be related to the 

glaucony within this facies.  
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Trace Elements 

Siliceous micrite and chert facies (F1b) 

Samples from the siliceous micrite and chert facies (F1b) are 

characterised by high Al normalised trace elemental concentrations with 

respect to values in average shale (Figure 4.22A). U, Co, Y, Sr and Ba are 

significantly higher than average shale, while no trace elements are 

depleted with respect to average shale concentrations. 

 

Figure 4.22 Al normalised trace element concentrations (range and mean values) for the 

three facies identified during field work at Muzzle Stream compared against average 

shale concentrations (Wedepohl 1971). (A) Siliceous micrite and chert facies (F1b); (B) 

Greensand facies (F4a); (C) Micrite facies (F3a).  Vertical bars indicate range of values. 



 

 

104  CHAPTER 4 
 

Greensand facies (F4a) 

The greensand facies (F4a) at Muzzle Stream is characterised by 

consistently high Al normalised trace elemental concentrations, as only 

Cu, Ni, Ce and Zr can be considered „normal‟ with respect to 

concentrations in average shale (Figure 4.22B).  Excluding Nb and Pb, all 

other trace elements are high, with the range of measured values falling 

above their concentration in average shale. 

 

Micrite facies (F3a) 

Al normalised trace elemental concentrations in samples from the micrite 

facies (F3a) at Muzzle Stream are consistently high with respect to trace 

elemental concentrations in average shale (Figure 4.22C).  Only the range 

of measured values for Cu, V and Rb fall below values for average shale. 

 

Discussion 

Trends in trace elemental concentrations in F3a are similar to those 

observed in F1b, but tend to be exaggerated suggesting a similar source 

of terrigenous sediment throughout the deposition of both facies.  These 

trends are almost identical to those observed at Mead Stream (Figure 

4.13), further supporting a continuous source of terrigenous sediment 

throughout Late Cretaceous to Late Paleocene in southeastern 

Marlborough. 

  

Enrichment of the transition elements Cr, V and Zn can be attributed to 

replacement of Fe3+, Fe2+ and Mg2+ at octahedral sites in the glaucony 

lattice due to similarities in ionic radius and charge (McConchie 1978).  

This is consistent with enrichment of Fe2O3, MgO and K2O in this facies 

(Figure 4.21B). 

 

Compositional Plots 

On a ternary plot of the three major chemical components of sedimentary 

rocks, Al2O3, SiO2 and CaCO3, representing clays, quartz and/or biogenic 

silica and calcium carbonate, it appears that the three facies identified at 

Muzzle Stream possess rather similar geochemical compositions (Figure 

4.23). 
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Both F1b and F3a fall along the axis between the SiO2 and CaCO3, with 

the siliceous micrite and chert facies plotting towards the SiO2 pole, the 

micrite facies plotting near the CaCO3 pole and both facies having low 

Al2O3 values.  This compositional distribution is similar to that observed for 

the siliceous micrite and chert facies at Mead Stream (F1a), supporting the 

observation of similarities between the two sites (Figure 4.14).  F4a has a 

similar composition to F1b, with one sample in particular having very high 

silica values.     

 

 

Figure 4.23 Ternary diagram of relative proportions of Al2O3 (x5), SiO2 and CaCO3 in the 

siliceous micrite and chert facies (F1b), greensand facies (F4a) and micrite facies (F3a) 

from Muzzle Stream. An arbitrary multiplier of 5 is used for Al2O3 in order to better 

distribute the data points within the graph (after Turgeon & Brumsack 2006). “Average 

shale” (AS) (Wedepohl 1971) is also shown. 
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Proxies 

Geochemical proxies show distinct trends throughout the measured 

section from Muzzle Stream (Figure 4.24). Terrigenous sediment input 

(TRG), a proxy for clay content of the sample based on TiO2 

concentration, is relatively constant, between 8.5% and 19.6% throughout 

F1b (Figure 4.24B).  TRG then increases to ~30 wt% through the 

greensand facies, before decreasing steadily through F3a to almost 0 wt% 

at the top of the measured section.   

 

Figure 4.24  Variations in (A) δ
13

Ccarb, (B) terrigenous sediment (TRG), (C) excess silica 

and excess carbonate (Si[exc], Ca[exc]), and (d.) barium (total and excess Ba, Ba[exc]) 

at Muzzle Stream. 

 

Paleoproductivity proxies (Si[exc] and Ca[exc]) show a shift from siliceous 

to calcareous productivity through the Late Cretaceous to Late Paleocene 

at Muzzle Stream (Figure 4.24C).  Both total silica (SiO2[tot]) and excess 

silica (Si[exc]) are high throughout the siliceous micrite and chert facies 

(F1b), reaching a maximum of 93.2 wt% and 87.3 wt% in the uppermost 



 

 

Sedimentary Successions of Southeastern Marlborough 107 
 

sample, respectively.  Si[exc] is highest (59.4 wt%) in a sample of a 

burrow infilled with F4a collected from the top of F1b and decreases 

rapidly to remain constant around ~25 wt% throughout both the greensand 

facies and micrite facies. 

 

Excess calcium (Ca[exc]) decreases through the siliceous micrite and 

chert facies (F1b), reaching a minimum for the section of 15.9 wt% in the 

uppermost sample collected from the facies (Figure 4.24C).  Ca[exc] then 

increases steadily through both F4a and F3a from 26.5 wt% in burrows at 

the top of F1b, through to 85.5 wt% at the top of measured section. 

 

Total barium (Ba[tot]) and excess barium (Ba[exc]) are relatively constant 

at ~700 ppm throughout the siliceous micrite and chert facies (F1b) at 

Muzzle Stream (Figure 4.24D).  Ba[exc] decreases to ~300 ppm through 

the greensand facies (F4a), before increasing to between 386 ppm and 

485 ppm for the remaining micrite facies (F3a).  

 

Stable Isotopes 

δ13C of bulk carbonate from the siliceous micrite and chert facies (F1a) at 

Muzzle Stream is constant throughout the measured section, remaining at 

~1.5‰ (Figure 4.24A).  Bulk carbonate δ13C decreases through the 

greensand facies (F4a), from 1.71‰ in a burrow infilled with F4a in the 

underlying siliceous micrite facies to 1.08‰ at the base of F4a before 

returning to 1.78‰ near the upper contact of this facies.  δ13C continues to 

become more enriched in heavy 13C into the base of F3a, reaching 2.39‰ 

and remaining constant throughout the rest of the measured section. 

 

4.5 LITHOFACIES AT KAIKOURA WHARF 

4.5.1 Site Description 

Field work at Kaikoura wharf on the northern side of the Kaikoura 

Peninsula was carried out between 19/12/2008 and 21/12/2008.  The site 

is located on the southeastern side of the Kaikoura wharf, on the 

Esplanade (NZMS 260 O30 678657).  The rock outcrops are accessible 

throughout the tide, but best access is between half and low tide. 
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Figure 4.25 Geological sketch map of the Kaikoura wharf section identifying major lithologic and structural features.  Location of maps is identified by white box on aerial photograph. 
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The contact between the Mead Hill Formation and Amuri Limestone is 

exposed in an ~80 m (along strike) section along the side of the wharf 

(Figure 4.25).  The length of the exposure allows for observation and 

description of some significant lateral variations in the deposits.  Two 

distinct levels of bioturbated greensand beds can be used as easily 

identified marker beds to show that beds are not continuous along the 

length of the outcrop.  Browne et al. (2005a) suggested that the upper 

greensand unit is complex and that in places (e.g. block 4, Figure 4.25) it 

is represented by several distinct bioturbated intervals.  However, 

investigation of this site in this study has shown that there are not two 

burrowed surfaces, but repetition of the same burrowed surface as a result 

of low angle thrust faulting that strikes parallel to bedding (Figure 4.26).  

Directly above block 4, beds within the Lower Limestone lithotype of the 

Amuri Limestone appear to be continuous, placing some constraint on the 

timing of this deformation.  The section is intersected by a number of minor 

normal faults with offsets of 0.2-0.5 m that cut the section at a high angle 

to bedding.  These faults generally can be traced through the stratigraphy 

from the base of the wharf and be seen offsetting beds in the overlying 

Lower Limestone and Lower Marl when the tide is low.   

 

Figure 4.26 Low angle to bedding thrust fault identified at the Kaikoura wharf (block 4, 

Figure 4.25), resulting in repetition of the lower micrite facies (F3b) unit and upper 

greensand facies (F4b) unit. (A) Interpretive sketch of (A), identifying repeated sequence.  

Direction of movement on this surface is inferred from possible fault drag structures in the 

overlying F3b unit. 

 

The orientation of beds changes along the length of the section, from 

040/50° SE in blocks at the southwestern end of the site, to 044/86° SW in 

blocks through the central part of the section, while the sedimentary 
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sequence at the northeastern end of the outcrop is overturned, with beds 

striking 062° and dipping between 45° and 82° to the northwest.  Further 

to the northeast, inaccessible blocks return to dipping toward the 

southeast.  

 

Numerous sedimentary dykes are also present within the Late 

Cretaceous-Early Eocene strata of the Kaikoura wharf section.  Features 

such as lithologic similarities, deformation of bedding planes (Figure 4.27) 

and termination of dykes show that all sedimentary dykes observed in the 

Kaikoura wharf section, excluding one, are injected downward from the 

upper greensand unit.  The upward intruded dyke is lithologically identical 

to the lower greensand unit and the dip and strike of this dyke differs 

significantly from others observed at this site. 

 

Figure 4.27.  (A)Sedimentary dykes intersecting the Kaikoura wharf section. Note down-

warping of beds adjacent to the downward injected dyke identifying the direction of 

injection. (B) Large clastic dyke (~10 cm wide) injected down from the upper greensand 

facies (F4b) unit at Kaikoura wharf which bifurcates away from source. 

 

4.5.2 Field Descriptions 

Morris (1987) identified three formations at the Kaikoura wharf section, 

which under the revised classification of Reay (1993) are the Mead Hill 

Formation and the Teredo Limestone Member and Lower Limestone 

lithotype of the Amuri Limestone (Figure 4.28).  As part of this study, three 

lithofacies have been identified at Kaikoura wharf: siliceous micrite and 

chert facies (F1c); greensand facies (F4b); and micrite facies (F3b). 
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Figure 4.28 Stratigraphic column of Late Cretaceous-Early Eocene strata at Kaikoura 

wharf. Age control and radiolarian events after Chris Hollis (pers. comm. 2010).  

Lithostratigraphy after Reay (1993) and Browne et al (2005a); italics denote informal 

lithotype. Lithology, lithofacies and samples (this study). 

 

Siliceous micrite and chert facies (F1c) 

At the Kaikoura wharf the siliceous micrite and chert facies involves a 

lower and upper unit, separated by 0.5 m of greensand (Figure 4.29A).  

The lower unit of F1c, which corresponds with the Mead Hill Formation, 

consists of light brownish grey siliceous micrite.  This unit is wavy bedded 

which results in a pinch-and-swell appearance, with beds reaching a 
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maximum thickness of ~10 cm.  This unit is slightly weathered and hard to 

very hard, with the high silica content resulting in conchoidal fracture when 

fresh samples are broken from the outcrop.   

 

Bioturbation is common in the lower unit of F1c at the Kaikoura wharf, with 

Thalassinoides burrows extending 30 cm into the unit from the overlying 

greensand facies.  Other characteristic features of this facies include 

prominent calcite healed veins roughly perpendicular to bedding and pyrite 

nodules ranging in size from 1 to 10 cm.  Pyrite nodules are easily 

identified in outcrop due to limonite staining as a result of weathering.  

When broken open, these nodules reveal brass yellow, very fine grained 

pyrite.  Lawrence (1993, 1994) noted that pyrite is commonly associated 

with chert and dolomite in the Muzzle Group throughout southeastern 

Marlborough. 

 

Figure 4.29 (A) Upper and lower siliceous micrite and chert facies (F1c) units separated 

by the lower greensand facies (F4b) unit at Kaikoura wharf. Note the knobbly appearance 

of the lower F1c unit. (B) Prominent chert nodules (arrowed) in the upper siliceous micrite 

and chert facies (F1c) unit. 

 

The F1c above the lower greensand consists of light greenish grey, 

glauconitic, fine sandy, siliceous micrite.  This upper unit of F1c is coarsely 

bedded with a knobbly appearance.  Beds are ~30 cm thick and contain 

elliptical concretionary shapes that are assumed to be chert nodules 

(Figure 4.29B).  This unit is slightly weathered, with common limonite 

staining and is moderately hard to hard.  Glaucony makes up 2-3% of the 

unit and consists of green to dark green, subangular to rounded, fine sand 

size grains.  In the uppermost metre of this unit, the concentration of 

glaucony grains gives the facies a mm laminated appearance which is 
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more likely to be the result of concentration by bioturbation than primary 

sedimentary structures.  The contact with the underlying greensand unit is 

abruptly gradational over 2 cm, suggesting that this contact is 

conformable. 

 

Greensand facies (F4b) 

The greensand facies consists of two separate units at the Kaikoura wharf 

section (Figure 4.28). 

 

The lower F4b unit is characterised by ~50 cm of dark greenish grey, 

massive, calcareous, glauconitic sandstone.  The unit is relatively hard 

and slightly to moderately weathered with limonite stained patches.  

Glaucony consists of green to dark green, subangular to rounded, fine 

sand sized grains making up ~5% of the total facies in hand sample.  Fine 

scale bioturbation results in a mm laminated appearance of the unit due to 

unknown ichnotaxa, while large (~7 cm) elliptical and circular burrows 

observed in outcrop are tentatively identified as Scolicia (Figure 4.30).  As 

stated above, the lower contact of F4b with underlying F1c is highly 

bioturbated, with Thalassinoides burrows infilled with calcareous 

glauconitic sandstone extending down ~30 cm into the underlying siliceous 

micrite.   

 

Figure 4.30 Scolicia burrows in the lower greensand facies units (F4b) at Kaikoura wharf. 

 

It is suggested here that this lower F4b unit represents a significant 

unconformity, based on the identification of extensive Thalassinoides 

burrowing at the base of the unit, the presence of glaucony and the 
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thickness of the unit.  This is supported by biostratigraphy (Figure 4.28) 

which shows that F1c below this greensand unit at the Kaikoura wharf 

section is upper Haumurian while F1c above the unit is lower Teurian 

(RP3-4) (Chris Hollis pers. comm. 2009). 

 

The upper F4b unit at Kaikoura wharf has a very distinct appearance in 

comparison to lower greensand unit, with intense bioturbation, a lighter 

greenish grey colour and the presence of ubiquitous phosphatic clasts.  It 

is a light greenish, grey speckled black, highly bioturbated, calcareous, 

glauconitic sandstone.  This unit is slightly to moderately weathered and 

well indurated, resulting in the unit generally forming a prominent feature 

along the entirety of the outcrop (Figure 4.25).  Black to dark brown, 

angular to subrounded phosphatic clasts ~1 cm in size are common 

throughout the unit (Figure 4.31A), along with less common shark teeth, 

~1 cm in length.  Glaucony in the unit consists of dark green to black, fine 

to medium sand sized grains and makes up ~10% of the facies. 

 

Figure 4.31 (A) Distinctive subrounded phosphatic clast set in light greenish grey, highly 

bioturbated greensand of the upper F4b unit at Kaikoura wharf. (B) Extensive bioturbation 

at the base of the upper greensand facies (F4b) unit at Kaikoura wharf with 

Thalassinoides burrows extending down into the underlying micrite facies (F3b). B, 

Extensive Thalassinoides burrows at the base of the unit; C, Central area of F4b with 

indistinctive ichnotaxa, phosphatic clasts and shark teeth. 

 

Bioturbation is extensive throughout the upper greensand facies unit and 

can be considered a characteristic feature identifying the unit along the 

length of the outcrop.  Thalassinoides burrows are concentrated at the 

upper and lower contacts of the unit.  The lower contact consists of a 10-

20 cm zone of intense bioturbation with burrows extending a further 20-25 
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cm into the underlying micrite facies (Figure 4.31B).  The upper contact 

consists of a 5-10 cm zone of intense bioturbation similar to the lower 

contact.  Burrows range in size between ~1 and ~5 cm and are aligned 

roughly parallel to bedding. Within the centre of the unit, burrows are small 

and irregular, making identification difficult.   

 

It is suggested here that the base of this unit represents a significant 

unconformity, based on the identification of extensive Thalassinoides 

burrowing, and that the top of the unit may be also unconformable.  

However, this intense bioturbation may just reflect the highly condensed 

nature of this unit as a whole.  This is supported by biostratigraphy (Figure 

4.28) which shows that F3b below this greensand unit at the Kaikoura 

wharf section is lower Teurian, probably early RP4, while upper F4b and 

F3b units are lower and upper Waipawan, respectively, based on 

foraminiferal evidence (Chris Hollis pers. comm. 2009). 

 

Micrite facies (F3b) 

The micrite facies consists of two separate units at the Kaikoura wharf 

section separated by the upper greensand deposit (Figure 4.28). 

 

The lower micrite unit is characterised by dm bedded, light grey to cream, 

micrite interbedded with dm bedded, light grey, marl.  One prominent, 

laterally continuous bed within this facies contains elliptical, light grey chert 

nodules that weather to an orange brown colour, suggesting that silica 

content is still high in portions of this lower micrite facies unit (Figure 

4.32A).  The chert nodules are very hard, show conchoidal fracture when 

a fresh sample is collected from the outcrop and tend to contain small (~5 

cm in diameter), dark green to black, circular cores.  Lawrence (1989) did 

not document any similar features within chert nodules from the Muzzle 

Group anywhere else in southeastern Marlborough.  It is assumed here 

that this is a localised phenomenon and these black cores may represent 

the nucleus for the chert nodule as a whole. 
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Figure 4.32 (A) Upper and lower micrite facies (F3b) units separated by the upper 

greensand facies (F4b) unit at Kaikoura wharf. Note continuous bed of chert nodules 

(arrowed). (B) Flaggy appearance of the upper micrite facies (F3b) unit with thin 

glauconitic interbeds.  Section youngs in direction of arrow. 

 

The upper F3b unit consists of light grey to light blue grey micrite.  Within 

2.4 m of the contact with the underlying upper F4b unit, F3b has a flaggy 

appearance with maximum bed thicknesses reaching ~10 cm (Figure 

4.32B).  This portion of the upper micrite facies at the Kaikoura wharf is 

also glauconitic, with green to dark green, subangular to rounded, fine to 

medium sand sized glaucony grains disseminated throughout.  Glaucony 

is also concentrated in discontinuous thin interbeds between limestone 

flags.  2.4 m above the contact, glaucony appears to be absent and bed 

thicknesses increase and generally show a more tabular geometry.  This 

upper portion of the upper micrite facies unit at Kaikoura has a marly 

appearance and possibly shows closer lithologic association with the 

Lower Marl lithotype of the Amuri Limestone than the Lower Limestone. 

 

4.5.3 Petrography and Mineralogy 

Siliceous micrite and chert facies (F1c) 

The lower siliceous micrite and chert facies at Kaikoura wharf consists of 

light grey to brownish grey, clotted micrite.  Siliciclastic grains, dominated 

by coarse silt sized, well sorted, angular to subangular detrital quartz and 

feldspars as well as rare muscovite, make up ~5% of samples in thin 

section and are concentrated up to 20% in burrows.  Authigenic pyrite is 

ubiquitous throughout this unit, both as grains and infilling radiolarian and 

foraminiferal tests.  Rare subangular to subrounded, bright green to dark 

green, microcrystalline pelletal glaucony grains tend to be concentrated in 
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burrows along with rare subangular to rounded, light brownish orange 

phosphatic grains. 

 

In the upper F1c unit, well sorted, very fine sand sized, angular to 

subrounded, detrital grains of quartz, K feldspar, plagioclase and 

muscovite increase to ~10%.  Glaucony grains are dominated by 

subrounded to rounded, microcrystalline pelletal forms but also include 

vermicular glauconitised biotite that exhibits faint, light green to dark green 

pleochroism and 3rd and 4th order interference colours under cross 

polarised light.  This form of glaucony becomes less common upsection 

and is not observed at all in a thin section from sample KK08.  Very fine 

grain authigenic pyrite is ubiquitous throughout the upper F1c unit.  Rare 

shark teeth were also observed in thin sections of samples from this facies 

(Figure 4.33A) 

 

Figure 4.33 (A) Shark tooth set in foraminiferal micrite from the upper siliceous micrite 

and chert facies (F1c) unit at Kaikoura wharf (XPL). (B) Thin walled, unornamented 

globigerinid planktic foraminifera infilled with light brown, isotropic silica from the lower 

siliceous micrite and chert facies (F1c) at Kaikoura wharf. 

 

Below sample KK08, visible microfossils in F1c are dominated by thin 

walled, unornamented globigerinid planktic foraminifers (Figure 4.33B) and 

spumellarian radiolarians, making up ~5% of the total sample in thin 

section.  Rare benthic foraminifera and siliceous sponge spicules are also 

present in F1c.  The majority of microfossil tests tend to be recrystallised 

and infilled with light brown, isotropic silica or rarely light brownish grey 

micrite.  In KK08, planktic foraminifera dominate (~25%), with subordinate 

spumellarian radiolarians making up 1% of the sample in thin section 
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(Figure 4.33A).  Foraminiferal tests show recrystallised carbonate fabrics 

but retain evidence of pore structure and possible ornamentation and are 

infilled with microcrystalline carbonate cement. 

 

Veins in F1c range in thickness up to ~1 mm and are generally oriented 

perpendicular to bedding.  Vein infill is dominated by dusty calcite spar 

cement, though occasional veins have a thin lining of silica as well, 

suggesting multiple phases of vein infilling. 

 

Greensand facies (F4b) 

The lower greensand facies unit at Kaikoura wharf has a characteristic 

appearance in thin section that allows it to be differentiated from the upper 

greensand facies unit.  Grain supported, angular to subangular, very fine 

sand sized quartz and less common K feldspar grains make up ~60% of 

the sample in thin section, with subordinate muscovite (3%) and rare 

plagioclase. Even though bioturbation is observed in hand samples of the 

lower F4b unit, the facies appears relatively homogenous in thin section, 

displaying grain supported fabrics set in adjacent zones of siliceous and 

calcareous matrix (Figure 4.34A, B).  Glaucony makes up 7% of the lower 

F4b unit in thin section and is dominated by bright to dark green, 

microcrystalline pelletal glaucony grains with less common vermicular 

 

Figure 4.34 Photomicrograph pairs under plane polarised light (a) and 

cathodoluminesence light (b) of the lower greensand facies (F4b) unit (KK03).  Very fine 

sand sized detrital quartz and K feldspar grains identified by dull blue to reddish brown 

and bright blue luminescence, respectively, set in adjacent zones of siliceous and 

calcareous matrix.  These differing zones are easily identified under CL light, with 

calcareous matrix showing bright orange luminescence and siliceous matrix showing dull 

reddish brown luminescence. 
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forms.  Some grains exhibit hydration fractures and limonite staining of 

rims.  Fine-grained authigenic pyrite is common throughout this lower F4b 

unit and appears to have an association with glaucony grains. The low 

percentage of glaucony in the lower greensand facies (F4b) unit at 

Kaikoura wharf means the unit should be classified as a glauconitic 

sandstone and makes it difficult to reconcile the dark green to black colour 

of the unit in outcrop.  However it is chosen here to retain this unit in F4b 

due to genetic similarities between the two units at Kaikoura wharf 

(discussed in Chapter 5). 

 

No microfossils, siliceous or calcareous, were observed in thin sections of 

samples collected from the lower F4b unit.  

 

The upper greensand facies unit is characterised by a highly bioturbated 

fabric which preserves multiple phases of burrow infill (Figure 4.35A).  

Siliciclastic grains in this unit are dominated by moderately to well sorted, 

subangular to subrounded, fine sand sized detrital quartz grains (35%) 

and K feldspar (5%), as well as rare plagioclase and muscovite.  

Differentiation between quartz and K feldspar grains was made utilising CL 

light, with quartz grains exhibiting dull blue and brownish red 

luminescence, while K feldspars show characteristic bright blue 

luminescence under identical excitation conditions (Figure 4.35B, C).   

Glaucony consists mainly of bright green to brownish green, 

microcrystalline, subrounded to rounded pelletal grains, with less common 

vermicular, glauconitised biotite.  Some grains exhibit limonitised rims and 

dehydration cracking. 

 

Detrital, perigenic and bioclastic grains are all set in patches of siliceous 

and calcareous matrix, as in the lower F4b unit (Figure 4.34A, B), and 

exhibit grain supported fabrics. 

 

Burrows tend to have sharp boundaries and are generally well defined by 

the proportion of siliciclastic and bioclastic grains.  One phase of burrow 

infill is dominated by detrital quartz and feldspar grains, with no bioclasts 

observed.  While in a second phase of burrow infill, planktic foraminifera
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Figure 4.35 (A) Scan of thin section (KK18) showing the location of (B) and (D).  

Photomicrograph pairs under plane polarised light (left) and cathodoluminesence light 

(right) of the upper greensand greensand facies (F4b) unit (KK18). (B) & (C) Siliciclastic 

rich burrows set in a micrite host.  (D) & (E) Siliciclastic rich burrows set in a micrite host. 

F, bright blue luminescent detrital K feldspar grains; G, non-luminescent microcrystalline 

pelletal glaucony grains; M, micritic host sediment; Q, dull blue to reddish brown 

luminescent detrital quartz grains; P, abundant framboidal pyrite confined to micritic host. 
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make up to 25% of the clasts observed.  Areas of relatively pure micrite, 

containing rare siliciclastics, planktic foraminifera and spumellarian 

radiolarians are inferred here to represent the remnants of the host 

sediment into which burrowing occurred.  Some areas of micrite contain 

high concentrations of authigenic framboidal pyrite (Figure 4.35D, E), 

identified by its brassy yellow colour under reflected light. 

 

Micrite facies (F3b) 

In thin section, F3b at Kaikoura wharf has a similar appearance to F1c.  

F3b is generally characterised by light grey, clotted micrite containing up 

to 15% planktic foraminifera as well as varying concentrations of 

siliciclastic and perigenic grains.  SEM analysis of F3b shows that this 

facies is dominated by detrital carbonate grains in the form of coccolith 

debris and recrystallised calcite spar. Grain size ranges from 0.5 to ~3 μm. 

 

Siliciclastic grains are dominated by angular to subrounded, coarse silt 

sized grains of quartz, with less common K feldspar and rare muscovite 

grains.  The proportion of these grains in thin section decreases from ~7% 

in the lower F3b unit to 2% in the uppermost sample (KK27) collected from 

the Kaikoura wharf section.  Perigenic grains in the form of bright green, 

microcrystalline pelletal glaucony and subangular to rounded, brownish 

orange phosphatic grains are observed in this facies but decrease to <1% 

2.4 m above the contact with the upper F4b unit (Figure 4.36A) 

 

Figure 4.36 (a) Sample of micrite facies (F3b) from Kaikoura wharf (KK23), with 

abundant very fine sand sized detrital siliciclastic grains, planktic foraminifera and 

microcrystalline, pelletal glaucony grains (PPL).  (b) Possible compressed tiny 

echinoderm test from the upper micrite facies (F3b) unit at Kaikoura wharf (KK27) (PPL). 
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Microfossils identified in thin sections from F3b are dominated by planktic 

foraminifera, making up to 25% of samples.  Much less common are 

benthic foraminifera, radiolarians and a large (~5 mm) unidentified, 

calcareous fossil, possibly a deformed echinoderm test (Figure 4.36B).  

Preservation of microfossil tests varies, though the majority of tests and 

shell fragments show significant recrystallisation; they are predominantly 

infilled with micrite, while rare tests are infilled with spary calcite cement or 

microcrystalline silica. 

 

Sample KK14 was from a chert nodule collected from within the lower 

micrite facies unit at Kaikoura wharf.  This sample consists of light brown, 

isotropic microcrystalline silica containing well preserved spumellarian and 

nassellarian radiolarians, oriented sponge spicules and very rare, silicified 

benthic foraminifera.  Under CL light, this sample shows an orange 

luminescence more typical of calcite (Figure 4.37A), even though energy 

dispersive spectroscopy and bulk X-ray fluorescence analysis show the 

sample is ~100 wt% SiO2.  This is also in stark contrast to the dull blue 

luminescence characteristic of silica (Figure 4.37B), exhibited in a thin 

section of a black „core‟ from a chert nodule which has a similar SiO2 

content.  This shows that CL colours are mainly dependent on included 

trace elements as opposed to the mineral itself. 

 

Figure 4.37 (a)  Dull orange luminescence of chert (KK14) from Kaikoura wharf. (b)  Dull 

blue luminescence observed in the „core‟ of a chert nodule (KK39) from Kaikoura wharf.  

Note the difference in CL colour even though the two images are almost identical.  
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4.5.4 Geochemistry 

Inorganic Geochemistry 

The Al normalised elemental concentrations in samples of F1c, F4b and 

F3b are compared with average shale values of Wedepohl (1971) for both 

major and trace elemental concentrations to allow for comparison between 

sites.  The bulk geochemical data are recorded in Appendix D. 

 

Major Elements 

Siliceous micrite and chert facies (F1c) 

Excluding SiO2, CaO, MgO and Na2O, Al normalised major elemental 

concentrations in samples collected from F1c at Kaikoura wharf are 

„normal‟ when compared with average shale concentrations of Wedepohl 

(1971) (Figure 4.38A).     

 

Figure 4.38 Al normalised major element concentrations (range and mean values) for the 

three facies identified during field work at Kaikoura wharf compared against average 

shale (Wedepohl 1971). (a) Siliceous micrite and chert facies (F1c); (b) Greensand facies 

(F4b); (c) Micrite facies (F3b).  Vertical bars indicate range of values. 

 

Greensand facies (F4b) 

As for F1c, all Al normalised major elemental concentrations excluding 

SiO2, CaO and MgO are „normal‟ when compared with average shale 

values of Wedepohl (1971) (Figure 4.38B).  While F4b contains, on 
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average, the lowest concentrations of SiO2 and CaO of all the facies 

identified at the Kaikoura wharf section, it also contains the highest 

concentration of Fe2O3 and K2O. 

 

 

Micrite facies (F3b) 

Samples from F3b show similar trends in Al normalised major element 

concentrations to both F1c and F4b (Figure 4.38C).  SiO2, CaCO3 and 

MgO concentrations in samples from this facies are all higher than 

concentrations in average shale of Wedepohl (1971), while other major 

element concentrations are „normal‟.  Due to the extremely low 

concentration of Al2O3 in the sample of chert (0.42 wt%), and the effect 

this had on average Al normalised elemental concentrations, this sample 

was not considered within geochemical plots of this facies. 

 

Discussion 

Consistently high Al normalised values for SiO2 and CaO (>100 wt%) 

throughout all facies identified at Kaikoura wharf reflect the large biogenic 

component of the primary sediments.  Fe2O3 and K2O show a significant 

positive correlation with terrigenous supply (TRG) (Appendix D) and high 

concentrations of these elements in the greensand facies are inferred to 

be associated with the glaucony in this facies. 

 

Trace Elements 

Siliceous micrite and chert facies (F1c) 

The siliceous micrite and chert facies at Kaikoura wharf is generally 

characterised by Al normalised trace elemental concentrations that are 

„normal‟ with respect to average shale values (Figure 4.39A).  U, Cr, Zn 

and Zr are enriched to the point where the range of measured values is 

higher than average shale values. 

 

Greensand facies (F4b) 

Samples from the greensand facies at Kaikoura wharf show significant 

enrichment in U and Co as well as the transition elements Cr, V and Zn, 

with the ranges of measured values falling above the elemental 



 

 

Sedimentary Successions of Southeastern Marlborough 127 
 

concentration in the average shale (Figure 4.39B).  Nb, Pb, Ni and Ce are 

depleted, with the range of measured values falling below elemental 

concentrations of average shale. 

 

Figure 4.39 Al normalised trace element concentrations (range and mean values) for the 

three facies identified during field work at Kaikoura wharf compared against average 

shale concentrations (Wedepohl 1971). (a) Siliceous micrite and chert facies (F1c); (b) 

Greensand facies (F4b); (c) Micrite facies (F3b).  Vertical bars indicate range of values. 
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Micrite facies (F3b) 

Al normalised trace element concentrations of samples from the micrite 

facies at Kaikoura wharf show similar trends to F1c and F4b (Figure 

4.39C).  U, Nb, Th, Pb, Co, Y and Sr are all significantly enriched, while 

Rb is significantly depleted, with average shale concentrations falling 

outside the range of measured values for these elements.   

 

Discussion 

Ernst (1970) stated that Co maybe concentrated in pyrite, which may 

explain the enrichment of Co in F4b and F3b.  This explanation is 

considered plausible, based on the ubiquitous nature of pyrite in thin 

sections of samples from all facies at Kaikoura wharf and from the Muzzle 

Group as a whole (Lawrence 1989).  Nb, Pb and Rb all show significant 

positive correlations with terrigenous supply through the measured section 

at Kaikoura wharf, suggesting these elements can be attributed to clays.  

Though this explains the depletion of Nb and Pb in F4b, it does not explain 

enrichment of these same elements in F3b, the facies with the lowest 

average terrigenous input (Figure 4.42B), suggesting Nb and Pb may be 

associated with an unidentified authigenic phase.  Transition elements Cr, 

V and Zn are probably associated with glaucony, explaining their 

enrichment in the greensand facies.  These elements have the ability to 

substitute for Fe3+, Fe2+ and Mg2+ at octahedral sites in the glaucony 

lattice due to similarities in ionic radius and charge (McConchie 1978) 

(Figure 3.14).  Enrichment of Sr in the micrite facies is associated with 

CaCO3 in the facies as Sr tends to substitute for Ca in the crystal lattice. 

 

Compositional Plots 

A strong correlation (R2 = 0.9555) between TiO2 and Al2O3 in Figure 4.40 

suggests that the majority of TiO2 is associated with clays, supporting the 

assumption that TiO2 can be used as a proxy for terrigenous supply.  It 

can also be inferred from this graph that the source of terrigenous 

sediment appears to have remained constant through the Late Cretaceous 

to Early Eocene. 



 

 

Sedimentary Successions of Southeastern Marlborough 129 
 

 

Figure 4.40 Relationship between Al2O3 and TiO2 in Mead Hill Formation and Amuri 

Limestone at Kaikoura wharf. 

 

On a ternary plot of the three major chemical components of sedimentary 

rocks, Al2O3, SiO2 and CaCO3, representing clays, quartz and/or biogenic 

silica and calcium carbonate, it appears that the three lithofacies identified 

at Kaikoura wharf cannot be considered geochemically distinct (Figure 

4.41).  All three fields overlap within this plot, reflecting the complicated 

nature of the Kaikoura wharf section as a whole and issues with 

simplifications made when applying a broad facies model to this section. 

 

Samples from F1c plot broadly near the SiO2 pole of the ternary diagram, 

reflecting the siliceous nature of this facies.  F4b plots near the axis 

between the SiO2 and Al2O3 poles, with only one sample having a high 

proportion of CaCO3.  Samples from F3b plot in an arching trend along the 

axis between the SiO2 and CaCO3 poles, showing a distribution that is 

more characteristic of the siliceous micrite and chert facies at other sites 

(e.g. Mead Stream).  All facies identified at Kaikoura wharf contain low 

proportions of clays in comparison to average shale, shown by low Al2O3 

values.  This is a strong reflection of the biogenic nature of these 

sediments. 
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Figure 4.41 Ternary diagram of relative proportions of Al2O3 (x5), SiO2 and CaCO3 in the 

siliceous micrite and chert facies (F1c), greensand facies (F4b) and micrite facies (F3b) 

from Kaikoura wharf. An arbitrary multiplier of 5 is used for Al2O3 in order to better 

distribute the data points within the graph (after Turgeon & Brumsack 2006). “Average 

shale” (AS) (Wedepohl 1971) is also shown. 

 

Proxies 

Terrigenous sediment input (TRG), a proxy for clay content of samples 

based on TiO2 concentration, is relatively constant throughout the entire 

measured section with the largest increase occurring through the 

greensand unit directly above the Cretaceous-Tertiary boundary (Figure 

4.42B).  TRG increases from ~15 wt% in the Late Cretaceous Mead Hill 

Formation to a maximum of 46.0 wt% in the lower greensand unit before 

returning to ~15 wt% through the majority of the rest the section. 
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 Figure 4.42 Variations in (a) δ
13

Ccarb, (b) terrigenous sediment (TRG), (c) excess silica 

and excess carbonate (Si[exc], Ca[exc]), and (d) barium (total and excess Ba, Ba[exc]) at 

Kaikoura wharf. 

 

Paleoproductivity proxies, excess silica and excess calcium (Si[exc] and 

Ca[exc]), are variable throughout the measured section, but show a 

general trend from siliceous to calcareous productivity through the Late 

Cretaceous to Early Eocene at the Kaikoura wharf (Figure 4.42C).  Si[exc] 

values decrease from ~60 wt% through F1c but remain relatively high (~40 

wt%) through the lower micrite facies (F3b) unit, reaching a maximum of 

~100 wt% in the bed of chert nodules within this facies.  Si[exc] then 

decreases to an average of 19.3 wt% in the upper unit of F3b.   

 

Ca[exc] shows the opposite trend to Si[exc], increasing from the Late 

Cretaceous to the Early Eocene (Figure 4.42C).  Ca[exc] values are low, 

~20 wt%, through the siliceous micrite and chert facies (F1c), reaching a 

minimum for the measured section of 1.8 wt% in the lower greensand 
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facies unit (F4b). Ca[exc] increases to ~35 wt% through the lower micrite 

facies unit (F3b), before increasing further to ~75 wt% in the upper micrite 

facies unit.  Ca[exc] reaches a maximum for the measured section of 88 

wt% approximately 1.7 m above the contact between the upper greensand 

and micrite facies units. 

 

Total barium (Ba[tot]) and excess barium (Ba[exc]) are variable but low 

through the majority of the section (Figure 4.42D).  Ba[exc] averages ~130 

ppm, reaching 715 ppm and 552 ppm in the upper siliceous micrite and 

chert unit and lower micrite unit, respectively.  Ba[exc] increases rapidly in 

the marly portion of the upper F3b unit, reaching a maximum of 6805 ppm 

in the uppermost sample collected from the top of micrite facies at the 

Kaikoura wharf. 

 

Stable Isotopes 

The δ13C of bulk carbonate varies little through the Kaikoura wharf section 

(Figure 4.42a).  Values through the measured section only vary by 0.76‰, 

ranging between 0.18‰ and 0.94‰.  The important fact that no 

discernible trends or carbon isotope excursions are detected at the 

Kaikoura wharf section will be discussed further in Chapter 5. 
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CHAPTER 5 
DISCUSSION 

 

This chapter is broken into four major sections that are considered to 

represent areas of significant interest and importance to this study.  First, it 

discusses some aspects of the nomenclature for the Paleocene-Eocene 

stratigraphy in southeastern Marlborough and reinterprets the stratigraphic 

succession at Kaikoura wharf.  Second, the key characteristics and 

paleoenvironmental significance of the lithofacies identified as part of this 

investigation are discussed.  Third, a number of paleodistribution maps are 

presented to allow for discussion about the distribution of the Teredo 

Limestone and processes responsible for its deposition, as well as 

discussing the evolution of lithofacies in southeastern Marlborough 

through the Paleocene to Early Eocene.  Finally, this chapter discusses 

possible ocean circulation patterns responsible for the development of 

lithofacies and unconformities identified in the Late Cretaceous to Early 

Eocene sections from southeastern Marlborough and Campbell Island. 

 

5.1 REVISION OF EARLY PALEOGENE STRATIGRAPHIC 

NOMENCLATURE OF SOUTHEASTERN MARLBOROUGH 

During the Late Cretaceous to Early Eocene, strata now exposed onland 

in Marlborough were deposited on a broad terrigenous starved margin 

named the Marlborough paleo-platform which formed the eastern side of a 

large embayment referred to as the Marlborough paleo-embayment 

(Figure 5.1) (Crampton et al. 2003).  The passive margin nature and high 

latitude position (~55°S; Lawver et al. 1992; King et al. 1999) of the region 

during this period mean that sedimentary sections provide some of the 

most complete onland records for studying climatic change through this 

period in the world (Field & Hollis 2003; Hollis 2003, 2006; Hollis et al. 

2005b; Nicolo et al. 2007).  Given this global significance, there is a need 

to ensure a robust stratigraphic nomenclature exists for the sedimentary 

sections that can be readily correlated throughout the region with little 

room for confusion.  An extensive history of geological study, culminating 

with the study by Reay (1993), has led to the establishment of a generally 



 

134 CHAPTER 5 
 

robust lithostratigraphic framework for the Late Cretaceous to Early 

Paleogene strata in southeastern Marlborough (Enclosure 1).  However, it 

is suggested here that stratigraphic matters could benefit from some 

further refinement.  

 

Figure 5.1 Palinspastic reconstruction of central New Zealand at about the K/T boundary 

showing major features discussed in text (after Crampton et al. 2003; Hollis 2003). The 

generalised outlines of the modern coastline of eastern North Island and eastern South 

Island are shown as bold black lines for reference. HB: Haumuri Bluff; KK: Kaikoura 

wharf; MW: Mid-Waipara. 

 

5.1.1 Reinterpretation of Lithostratigraphy at Kaikoura Wharf 

The Teredo Limestone at Kaikoura wharf was described by Morris (1987) 

as consisting of two greensand units separated by ~3 m of micritic 

limestone.  Nowhere else in southeastern Marlborough is this couplet of 

greensand units described (Morris 1987; Reay 1993; Warren 1995), 

suggesting that the Kaikoura wharf section is unique within the region.  

Based on lithologic similarities between the Teredo Limestone at Muzzle 

Stream and the upper greensand unit at Kaikoura wharf, such as the 
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abundance of glaucony and grain size (Figure 4.20C, D and 4.35D, E), it is 

suggested here that only the upper greensand unit at the wharf site can be 

considered to be the Teredo Limestone (Figure 4.28 and Table 5.1).  This 

is confirmed by micropaleontologic investigations carried out as part of this 

study which show that though the Kaikoura wharf section is greatly 

condensed, the two greensand units here were deposited as a result of 

completely separate oceanographic events.  Consequently, combining 

both units into the Teredo Limestone based on lithology alone affects the 

production of isopach maps for the unit and their subsequent 

interpretations.  Since the Teredo Limestone Member occupies the basal 

part of the Amuri Limestone, this means that the lower greensand unit and 

capping thin limestone at Kaikoura wharf are the uppermost units within 

the underlying Mead Hill Formation, whose top would then become the 

base of the upper greensand (or Teredo Limestone) unit (Table 5.1). 

 

Table 5.1 Comparison between previously published lithostratigraphy of Browne et al. 

(2005a) for Kaikoura wharf and the reinterpreted lithostratigraphy from this study. 

 

 

5.1.2 Suggested Future Stratigraphic Nomenclature 

Amuri Limestone 

There have been few studies of the Muzzle Group outside the Clarence 

Valley following establishment of the name by Reay (1993), giving little 

opportunity to apply the new nomenclature in coastal areas such as 

Kaikoura Peninsula and Haumuri Bluff.  Warren (1995) extended Reay‟s 

(1993) lithostratigraphic framework outside the Clarence Valley by 
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including the Amuri Limestone within the Muzzle Group around Haumuri 

Bluff.  However, Rattenbury et al. (2006) confused the situation by stating 

that while the Amuri Limestone was assigned to the Muzzle Group in the 

north of the Kaikoura QMap area, this was not the case south of Kaikoura, 

where the formation was not assigned to a group at all (without making 

reference to Warren (1995)).  Following Forsyth (2001), Rattenbury et al. 

(2006) assigned the Amuri Limestone to the Eyre Group.   

 

Though assigning the Amuri Limestone to the Eyre Group may be 

applicable for the unit around Waipara in the Canterbury Basin, it is 

suggested here that this is not the case in the vicinity of Haumuri Bluff that 

lie to the north of the Hurunui High (Figure 5.1).  The Hurunui High is a 

NW-SE trending structural high that was emergent through the latest 

Cretaceous-Paleocene and separated marine deposition of mudstone in 

the south from micritic limestone facies in the north (Figure 5.1) (Field et 

al. 1989).  This high remained emergent through the early Paleocene and 

Field et al. (1989) inferred from seismic data that the high was onlapped in 

the Early Eocene, although King et al. (1999) suggest the area was 

submerged by the latest Paleocene.  While its shape and size are poorly 

constrained, this structural high is inferred to have formed the southern 

boundary of the Marlborough paleo-embayment of Crampton et al. (2003) 

and therefore the boundary between the East Coast Basin and Canterbury 

Basin at this time (Figure 5.1).  It is therefore suggested here that the 

Amuri Limestone in the Parnassus area be retained within the Muzzle 

Group, following convention from elsewhere in the East Coast Basin, and 

not based solely on present day geographic location within the north 

Canterbury region alone (Table 5.2). 

 

Teredo Limestone 

It appears that the name „Teredo Limestone‟ is a misleading relic of early 

geological study in the area.  The name „Teredo‟ implies a relationship 

with the wood boring bivalve of the same name, even though wood and 

the bivalve Teredo are arguably not present in the unit at all (Warren & 

Speden 1978).  Warren and Speden (1978) showed that calcitic tubes 

identified as Teredo by Hector (1874) at Haumuri Bluff, were probably 
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clavagellid bivalve tubes (Figure 5.2).  Subsequently, Beu & Maxwell 

(1990) suggest that Warren & Speden (1978) may have also misidentified 

these fossils and that the tubes may actually be those of a sediment 

burrowing member of the Teredinidae.  Nevertheless, similar tubes also 

occur in the overlying Lower Limestone (Morris 1987; Crampton 1988) and 

Lower Marl lithotypes of the Amuri Limestone (Reay 1993) and so are not 

a uniquely distinguishing feature of the Teredo Limestone.  Moreover, the 

name Teredo does not follow stratigraphic convention because it is a fossil 

name rather than some appropriate geographical name.  And finally, to 

compound this confusion further, the Teredo Limestone Member is, by 

definition, not a limestone, but rather a slightly to highly calcareous 

sandstone with varying quantities of glaucony (Reay 1993).  For this 

reason, Field et al. (1997) referred to the unit simply as the Teredo 

Member. 

 

Figure 5.2 Problematic calcitic bivalve tubes on the uppermost contact of the Teredo 

Limestone at Haumuri Bluff. Once identified as Teredo tubes by early geological workers, 

Warren & Speden (1978) suggested they were formed by another bivalve group, possibly 

the Clavagellidae.  However, Beu & Maxwell (1990) subsequently suggested that, based 

on appearance, the tubes were probably a sediment burrowing member of the 

Teredinidae. 

 

It is proposed here that the present Teredo unit be elevated to formation 

rank following the suggestion of Browne et al. (2005b) and that the name 
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„Teredo Limestone Member‟ be discontinued altogether (Table 5.2).  

Instead, in future work, it is suggested that the unit be renamed the ‘South 

Bay Formation’ in recognition of the accessible outcrops of the unit at 

South Bay on the Kaikoura Peninsula (NZMS 260 O31 661646).  

Moreover, it is advocated here that the South Bay Formation be divided 

into two formal members based on the identification of two informal 

lithofacies within the Teredo Limestone by Reay (1993) (Table 5.2).  The 

suggested name for the basal cream to grey, massive, slightly calcareous 

sandstone facies is the „Hundalee Sandstone Member’, with reference to 

the easily accessible outcrop of this member in a railway cutting on 

Claverley Road near Hundalee (NZMS 260 O32 469444) (Enclosure 1). 

The upper green, glauconitic, highly calcareous sandstone name is 

suggested to be the ‘Dart Greensand Member’, with reference to the 

northernmost outcrop of this unit in the Clarence Valley (NZMS 260 O30 

674047).  It is chosen here to retain the hypostratotype for the Teredo 

Limestone Member nominated by Reay (1993) at The Fell for the newly 

designated South Bay Formation, as this locality exposes both members 

and clearly shows their relationship. 

 

Table 5.2 Current Paleocene to Middle Eocene lithostratigraphic nomenclature in 

southeastern Marlborough (after Reay 1993; Hollis et al. 2005b) along with suggested 

future stratigraphic nomenclature for the region. 
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Amuri Limestone Lithotypes 

One further weakness of the lithostratigraphic nomenclature developed by 

Reay (1993) is the establishment of informal lithotypes within the Amuri 

Limestone.  In studies following Reay (1993), the use of these units has 

required the establishment of conventions such as capitalising unit names 

to distinguish them from simple generic lithologies (Strong et al. 1995).  

However, this has not always been strictly adhered to (e.g. Field et al. 

1997) and in some cases these units are not referred to at all (e.g. 

Rattenbury et al. 2006).  Crampton et al. (2003) even used these unit 

names as formal members of the Amuri Limestone, which is contrary to 

guidelines for stratigraphic nomenclature that state that terms such as 

lower, middle and upper should not be used in formal subdivision of 

lithostratigraphic units (Hedberg 1976).  As these changes in lithology are 

likely to reflect significant paleoclimatic events (Hollis et al. 2005a, b), and 

are therefore globally important, it is recommended that in an effort to 

avoid any further confusion that these units should be elevated to formal 

member rank within the Amuri Limestone in the future (Table 5.2).  New 

names are not suggested here because of the limited scope of this study. 

 

5.2 PALEOENVIRONMENTAL SIGNIFICANCE OF LITHOFACIES  

This section discusses the key characteristics of the six lithofacies 

identified as part of field work undertaken in southeastern Marlborough 

and on Campbell Island (Table 5.3).  The inferred environment of 

deposition for each lithofacies is then discussed, utilising field, 

petrographic and geochemical data, before addressing the broad 

relationships between the identified lithofacies. 

   

5.2.1 Siliceous Micrite and Chert Facies (F1) 

General Characteristics 

The siliceous micrite and chert facies (F1) is represented by the Late 

Cretaceous-Late Paleocene Mead Hill Formation and lower part of the 

Amuri Limestone at some locations in southeastern Marlborough.  In 

outcrop, this facies is characterised by light grey to cream, highly 

indurated siliceous micrite with wavy bedding.  Lawrence (1993, 1994) 

suggests that this pinch-and-swell morphology is results from differential
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Table 5.3 Key characteristics of the six lithofacies identified in southeastern Marlborough and at Campbell Island as part of this study. 

Lithofacies Location NZ 
Stage

1
 

Environment Trace fossils Siliciclastic 
grains 

Glaucony TRG
2
 Si[exc]

3
 Ca[exc]

4
 Ba[exc]

5
 

Siliceous micrite and 
chert facies (F1) 

Mead Stream Mh-uDt Bathyal Zoophycus No No Low High Low Mod 
Muzzle Stream Chondrites 

Kaikoura wharf Planolites 

Organic mudstone 
facies (F2) 

Mead Stream uDt Bathyal Chondrites No Yes High High Low High 
   ?Planolites       

Micrite facies (F3) Muzzle Stream uDt-Dm Bathyal Zoophycus No No Low Low High Low 
Kaikoura wharf Chondrites 
Campbell Island Planolites 

Greensand facies (F4) Muzzle Stream lDt-Dw Bathyal Thalassinoides Yes Yes Mod-Low Mod Mod Low 
Kaikoura wharf Scolicia 

Calcareous glauconitic 
mudstone (F5) 

Campbell Island Dm Bathyal N/A Yes Yes Mod Mod Mod Mod 

Fine sandy mudstone 
facies (F6) 

Campbell Island Mh-uDt Inner Shelf ?Zoophycus Yes Yes High Mod Low Low 

      ?Chondrites             

 

1
 New Zealand Stage abbreviations are defined in Appendix A; l: lower, u: upper.

 

2
 TRG – Terrigenous supply, a geochemical proxy for clays based on the elemental concentration of TiO2 in samples 

3
 Si[exc] – Silica excess, a geochemical proxy for biogenic silica based on the elemental concentration of SiO2 in samples  

4
 Ca[exc] – Calcium excess, a geochemical proxy for biogenic carbonate based on the elemental concentration of CaO in samples 

5
 Ba[exc] – Barium excess, a geochemical proxy for productivity based on the elemental concentration of Ba in samples 
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compaction of relatively chert-free limestone around chert nodules.  

Petrographically, this facies consists of visible microfossils, especially 

radiolarians and silicified foraminifera.  SEM reveals coccolith debris 

recrystalised microcrystalline spar and authigenic silica (Figure 4.11).  

Directly above and below any interbedded units of the greensand facies 

(F4), F1 contains both glaucony and fine to very fine sand sized quartz 

and feldspar grains.  These are not considered to be characteristic of this 

facies as a whole but rather a result of vertical reworking of unlithified 

sediment through bioturbation.  Most importantly, the siliceous micrite and 

chert facies is characterised by a low terrigenous component (otherwise 

dominantly clay minerals) and high concentrations of biogenic silica, 

evidenced by ternary plots from Mead Stream, Muzzle Stream and 

Kaikoura wharf (Figure 4.14, 4.23, 4.41) and geochemical proxies for 

terrigenous supply (TRG) and excess silica (Si[exc]), (Table 5.3 and 

Enclosure 1). 

 

Inferred Environment of Deposition 

As the siliceous micrite and chert facies (F1) corresponds to upper 

portions of the Mead Hill Formation and parts of the Lower Limestone 

lithotype of the Amuri Limestone, depositional environments suggested for 

these units by previous authors (e.g. Reay 1993; Field et al. 1997; Hollis et 

al. 2005b) are applicable for this facies.  The siliceous micrite facies was 

deposited at bathyal depths (Strong et al. 1995),  as a pelagic rain of sand 

to clay sized planktonic debris many kilometres from paleoshorelines in 

southeastern Marlborough during the Late Paleocene.  Extensive 

bioturbation throughout F1 suggests that the upper few metres of this 

facies was deposited as soupy to soft sediment, under well oxygenated 

conditions (Ekdale et al. 1984).  Both the geochemical and petrographic 

evidence from F1 are consistent with the suggestions of Hollis et al. 

(2005b) that the siliceous deposits formed during periods of relatively cool 

climate, with low precipitation and terrigenous input as well as increased 

bio-siliceous and -calcareous productivity in the southeastern Marlborough 

region through the Late Cretaceous to Paleogene.   
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5.2.2 Organic Mudstone Facies (F2) 

General Characteristics 

The organic mudstone facies (F2) is only identified at Mead Stream and 

corresponds to the Waipawa Formation of Hollis et al. (2005b).  This facies 

is characterised by a very distinctive „rusty‟ dark brown, fissile appearance 

in outcrop (Figure 4.5).  The organic mudstone facies has a reduced 

diversity of trace fossils in comparison to both the siliceous micrite and 

chert facies (F1) and micrite facies (F3).  The very fine grained nature of 

F2 renders poor petrographic resolution apart from discernible increases 

in the abundance of radiolarians and sponge spicules (Figure 4.10E, F).  

Geochemically, the organic mudstone facies is characterised by high 

terrigenous supply (TRG), excess silica (Si[exc]) and excess barium 

(Ba[exc]), as well by significant depletion in manganese (Table 5.3 and 

Enclosure 1). 

 

Inferred Environment of Deposition 

At Mead Stream, the organic mudstone facies (F2) was deposited at 

bathyal depths (Strong et al. 1995) at a time of increased terrigenous 

supply as well as greatly enhanced productivity leading to the expansion 

or intensification of the Oxygen minimum zone (OMZ) during a period of 

invigorated ocean currents.  This inferred environment of deposition is 

consistent with suggestions made elsewhere for the Waipawa Formation 

and lateral equivalents as a whole (Isaac et al. 1994; Strong et al. 1995; 

Field et al. 1997; Killops et al. 2000; Hollis et al. 2005b). 

 

Increased Terrigenous Supply 

The increase in terrigenous supply is evidenced firstly by the position the 

organic mudstone facies (F2) occupies when plotted on a ternary plot of 

the three major chemical components of sedimentary rocks (Figure 

4.14A).  The position along the axis between the SiO2 and Al2O3 poles 

infers that this facies is composed of a mixture of silica (mainly biogenic) 

and clays with negligible amounts of carbonate.  The only other facies to 

plot near this position on the ternary plot is the fine sandy mudstone facies 

(F6) from Campbell Island (Figure 3.17) which was deposited in an inner 

shelf to brackish environment (Hollis et al. 1997).  Second, the inorganic 
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geochemical proxy for terrigenous supply based on the concentration of 

TiO2 in the sample (TRG) is much higher through the organic mudstone 

facies (F2) when compared with the bounding siliceous micrite and chert 

facies (F1) at Mead Stream (Table 5.3 and Enclosure 1). 

 

This observation of increased terrigenous supply is supported by an 

increase in the percentage of total phytoclasts (higher land plant tissue 

debris) and decrease in the ratio of black to brown phytoclasts in F2 at 

Mead Stream (Poul Schiøler pers. comm. 2009). High percentages of 

phytoclasts indicate proximal settings, while high ratios of black to brown 

phytoclasts generally indicate more distal depositional settings. Increases 

in these non-marine proxies through the Tartan Formation at distal sites in 

the Great South Basin and in the Waipawa Formation at Te Hoe Stream in 

northern Hawkes Bay are interpreted by Schiøler (2010) to represent a 

eustatically driven fall in sea-level.  Taking into consideration the fact that 

Mead Stream lay at bathyal depths during the upper Teurian (Strong et al. 

1995; Hollis et al. 2005b), it is suggested here that the palynofacies 

changes at this site are more a response to enhanced sediment transport 

conditions due to invigorated ocean currents than to simple eustatic sea-

level fall. 

 

Enhanced Siliceous Productivity 

Ba, in the form of barite, is strongly correlated with biological productivity in 

modern day ocean surface waters (Dymond et al. 1992) and is widely 

used as a proxy for paleo-productivity on this basis (Schmitz 1987a; 

Schmitz et al. 1997; Schroeder et al. 1997; Thompson & Schmitz 1997).  

Large increases in Ba[exc] through the organic mudstone facies (F2) 

(Enclosure 1) are therefore interpreted here to reflect a sudden and rapid 

increase in productivity in the southeastern Marlborough sector of the 

Marlborough paleo-embayment.  This is supported by the associated 

increase in Si[exc], an inorganic geochemical proxy for siliceous 

productivity, as well as the observed increase in abundance of radiolarians 

when compared with the bounding siliceous micrite and chert facies. 
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Reduced Oxygen Conditions 

Following Killops et al. (2000) and Hollis et al. (2005b), it is suggested 

here that this period of enhanced productivity resulted in the expansion or 

intensification of the OMZ due to degradation of large amounts of organic 

debris sinking through the water column.  Indications of low oxygen 

provided by microfossil assemblages dominated by agglutinated 

foraminifera (Strong et al. 1995) are supported here by depletion of Mn 

through both Mudstone A and B (Enclosure 1), as well as increases in 

redox sensitive metals.  Depletion of Mn in the organic mudstone facies 

(F2) is interpreted here to primarily reflect the redistribution of Mn within 

the water column and/or at the sediment-water interface because of 

oxygen deficiency.  Reducing conditions above the Mead Stream site 

during the deposition of this facies would have dissolved soluble Mn2+ ions 

within the water column and at the sediment/water interface so that Mn 

flux was greatly reduced (Dickens & Owen 1994).  Following this, Mn2+ 

would have been transported through the OMZ and deposited at sites 

below the redox boundary.  If redirection of Mn has occurred during the 

deposition of the Waipawa Formation in the upper Teurian, this model 

could be confirmed by enrichment of Mn in sediments at deeper sites to 

the p-north during this period.  This process only occurs when dissolved 

oxygen drops below 2.0 ml/l, placing an upper limit on dissolved 

concentrations at Mead Stream during this period.  Given all this, 

diagenetic remobilisation of Mn within the sediment column and lowered 

carbonate accumulation rates (Dickens & Owen 1994) cannot be 

discounted as playing a part in the process of Mn depletion.   

 

Mo is also a useful paleo-redox proxy as it forms stable oxyanions (MoO2
4-

) under oxic conditions but is efficiently accumulated in sulphides under 

anoxic conditions or in sulphur-rich organic matter under high H2S 

concentrations and reactive iron limited systems (Turgeon & Brumsack 

2006, and references therein).  Mo concentrations measured from the 

organic mudstone facies (F2) (Appendix D) are consistent with values from 

a range of dysoxic depositional environments reported by Lyons et al. 

(2009). 
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A reduction in the diversity of trace fossils further supports the inference of 

reduced oxygen conditions during the deposition of the organic mudstone 

facies (F2) at Mead Stream, while also suggesting that oxygen levels were 

not sufficiently low to entirely prevent colonisation or bioturbation. The 

possible identification of Planolites in thin sections of samples from this 

facies is questionable (Figure 4.10D), while the identification of Chondrites 

is consistent with poorly oxygenated conditions (Ekdale et al. 1984). 

 

5.2.3 Micrite Facies (F3) 

General Characteristics 

The micrite facies (F3) corresponds to the uppermost beds of the Early 

Paleocene Mead Hill Formation and the Late Paleocene to Eocene Amuri 

Limestone in Marlborough, and also to the Eocene Tucker Cove 

Formation on Campbell Island.  In outcrop, the micrite facies is 

characterised by light grey to cream, moderately hard to hard micrite, with 

varying bedding styles between regions.  In southeastern Marlborough, F3 

has a more tabular geometry, with 15-30 cm thick micrite beds 

interbedded with 2-10 mm thick marl beds, while on Campbell Island the 

facies comprises thinner (3-5 cm), strongly developed stylolitic beds.  F3 is 

extensively bioturbated and includes Zoophycus, Chondrites and 

Planolites trace fossils.  Like the siliceous micrite and chert facies (F1), the 

micrite facies is very fine grained, with SEM analysis showing a 

preponderance of recrystallised microcrystalline spar and carbonate 

detritus in the form of coccolith debris.  Visible microfossils in thin section 

are dominated by planktic foraminifera with less common benthic 

foraminifera.  Geochemically, the micrite facies (F3) can be viewed as a 

less siliceous, more calcareous equivalent of the siliceous micrite and 

chert facies (F1), as shown by the position of the micrite facies on ternary 

plots of the three major chemical components of sedimentary rocks and 

the geochemical proxies excess silica (Si[exc]) and excess calcium 

carbonate (Ca[exc]) (Table 5.3 and Enclosure 1). 

 

Inferred Environment of Deposition 

The inferred environment of deposition of the micrite facies (F3) is identical 

to that suggested in previous studies of the Amuri Limestone (e.g. Nelson 
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1968; Morris 1987; Reay 1993; Field et al. 1997; Hollis et al. 2005b).  It 

represents a nannofossil and foraminiferal ooze deposited in a low energy, 

bathyal, oceanic environment.  Though this facies has only been 

described from a handful of sections covering a relatively short period of 

geological time as part of this study, it forms part of the very widely 

distributed Amuri carbonate megafacies (Hood & Nelson 1996).  The 

Amuri carbonate megafacies was deposited throughout several of New 

Zealand‟s Cenozoic sedimentary basins from Northland to Campbell 

Island during the Paleocene to Oligocene in response to continued 

passive margin thermal subsidence.  The widespread and long lived 

nature of the Amuri carbonate megafacies implies that processes 

responsible for the deposition of F3 was not confined to southeastern 

Marlborough and Campbell Island during the Late Paleocene to Early 

Eocene. 

 

The limestone-marl bedding style of the micrite facies (F3) from 

southeastern Marlborough and Campbell Island is „micro-rhythmic‟, a 

striking feature common to many carbonate occurrences in the 

sedimentary record (Einsele & Ricken 1991).  Primarily, such limestone-

marl alternations are developed in response to fluctuations of at least one 

component of the original deposit, either the carbonate fraction or non-

carbonate fraction, or both (Westphal et al. 2004).  For this reason, this 

style of bedding is regularly interpreted to reflect periodic variations in 

orbital parameters of the Earth leading to variations in carbonate 

production, terrigenous supply and/or periodic dissolution of carbonate 

(Einsele & Ricken 1991).  Such an interpretation has been suggested for 

the Mead Hill Formation across the Cretaceous/Paleocene boundary 

(Field & Hollis 2003) and the Amuri Limestone across the 

Paleocene/Eocene boundary (Hollis et al. 2005b) in southeastern 

Marlborough. 

 

However, it is widely recognised that diagenetic overprinting can lead to 

alteration and accentuation of original rhythms within these deposits 

(Ricken & Eder 1991).  In a shallow marine burial environment, 

redistribution of calcium carbonate can occur through dissolution of 
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aragonite in marl interbeds and reprecipitation of calcite in limestone beds 

(Munnecke & Samtleben 1996; Munnecke et al. 2001), while in deeper 

burial environments there can be dissolution of calcite in marl beds and 

reprecipitation as cement in limestone beds (Ricken 1986, 1987).  Given 

the deep burial history of the Amuri carbonate megafacies as a whole 

(Hood & Nelson 1996) and the discontinuous nature of beds in the micrite 

facies (F3) at Campbell Island, it could be suggested that this facies has 

been affected by diagenetic redistribution to some degree.  Since Einsele 

& Ricken (1991) state that the chance of preserving primary limestone-

marl alternations is greatly reduced by bioturbation when primary bed 

thickness drops below a critical thickness of 5-10 cm, the identification of 

marl interbeds thinner than 1 cm further supports a degree of diagenetic 

imprint for the beds in this facies.  Consequently it is suggested that more 

investigation is needed before the significance of the bedding in the 

bathyal micrite facies (F3), and in the Amuri Limestone as a whole, is 

positively understood. 

 

5.2.4 Greensand Facies (F4) 

General Characteristics 

The greensand facies (F4) corresponds to the Late Paleocene to Early 

Eocene Teredo Limestone from southeastern Marlborough and the K/T 

boundary unconformity greensand unit at Kaikoura wharf.  In outcrop this 

facies consists of light to dark greenish grey, moderately indurated, 

calcareous greensand.  This facies is generally massive, with extensive 

bioturbation in the form of Thalassinoides and Scolicia trace fossils.  One 

key feature of the upper greensand unit in outcrop at Kaikoura wharf is the 

presence of shark teeth and phosphatised micritic limestone clasts.  In thin 

section the greensand facies is dominated by subangular to subrounded, 

moderately to well sorted, fine to very fine sand sized quartz and K 

feldspar, together with pelletal and vermicular glaucony, set in a 

predominantly (argillaceous) micritic matrix which appears siliceous in 

restricted zones.  Geochemically, F4 is characterised by moderate to low 

abundance of clays as evidenced by the geochemical proxy for 

terrigenous supply (TRG), and by low excess silica (Si[exc]) and 
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intermediate concentrations of excess calcium carbonate (Ca[exc]) (Table 

5.3 and Enclosure 1). 

 

Inferred Environment of Deposition 

The greensand facies (F4) was deposited during a period of reduced 

sedimentation and condensation, punctuated by phases of redistribution of 

siliciclastic and perigenic glaucony grains.  During periods of low 

sedimentation, extensive infaunal bioturbation resulted in homogenisation 

of sediments and destruction of primary sedimentary structures. 

 

As stated in Chapter 4, the low percentage of glaucony in the unit 

associated with the K/T boundary at Kaikoura wharf means the unit should 

be classified as a glauconitic sandstone.  However, the retention of this 

unit within the greensand facies (F4) is based on the fact that both units 

appear to have been formed as a result of similar, if not identical, 

depositional processes during separate oceanographic events. 

 

Siliciclastic Sedimentation 

One of the key features of the greensand facies (F4) is the fine to very 

sand sized siliciclastic grains, otherwise rare to absent in previously 

discussed facies(F1, F2 and F3).  The presence of this component in a 

bathyal deposit implies some it was significant sediment transport.  This 

follows the suggestion of Hollis et al. (2005c) that the bathyal depth of 

sites in the middle Clarence Valley precludes sea-level fall as a driver for 

facies changes during the Late Paleocene to Eocene.  Extensive 

bioturbation in the greensand facies (F4) has resulted in homogenisation 

of the facies and destruction of primary sedimentary structures at sites 

investigated as part of this study, making it difficult to determine the 

mechanism(s) of sediment transport.  However, identification of low angle 

cross stratification in the Teredo Limestone at Seymour Stream and The 

Fell in the middle Clarence Valley by Reay (1993), strongly suggests that 

the transport of this sediment occurred as a result of invigorated ocean 

currents (discussed further in section 5.3). 
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The well sorted, subrounded to subangular nature of siliciclastic grains in 

F4, combined with the low percentage of clays represented by the 

inorganic geochemical proxy TRG (Enclosure 1), is consistent with Morris‟ 

(1987) interpretation that the siliciclastic components in the Teredo 

Limestone represent a texturally mature sediment.  Morris (1987) inferred 

the textural maturity of siliciclastics in the Teredo Limestone to reflect 

recycling of the Late Cretaceous Claverley Sandstone provenance, with 

other extrabasinal sources playing an insignificant role (Figure 5.3).  The 

observation of fine calcareous matrix making up 40-60% of the greensand 

facies (F4), however, is inconsistent with the Teredo Limestone as a 

whole, being a texturally mature sediment. However, Reid et al. (1990) 

noted that interpretations of depositional settings based on micrite content 

can be invalidated by the internal precipitation of micrite below the 

sediment/water interface, thereby seemingly altering the ratio of the mud 

(micrite)/grain ratio of deposits.  It is possible that a combination of 

homogenisation by infaunal bioturbation and internal precipitation of fine 

carbonate could have resulted in the high proportion of micritic matrix in 

F4. 

 

 

Figure 5.3 Schematic diagram of inferred provenance relations for the siliciclastic fraction 

of the Teredo Limestone.  Width of arrows indicates relative volumetric importance of 

each source (after Morris 1987). 

 

Glauconitic Sediments 

Glaucony (glauconite) is a key characteristic of F4.  Typically such green 

grains are regarded as authigenic, forming in situ by progressive alteration 

of carbonate particles, argillaceous faecal pellets and infilling foraminiferal 

tests through the growth of crystallites in pore spaces and the uptake of 

potassium and iron (Odin & Matter 1981).  Optimal conditions for the 
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formation of glaucony require semi-confinement allowing for ionic 

exchange between the microenvironment and ambient open marine 

seawater (Odin & Matter 1981).  However, galucony can also be reworked 

(Amorosi 1997and references therein), either through recycling from 

extrabasinal sources or through redistribution of grains formed 

contemporaneously within the basin.  In the latter case, such grains are 

referred to as „perigenic‟ in origin (Lewis 1964).  While it is likely that at 

least some of the glaucony grains in the greensand facies (F4) are truly 

authigenic in origin, much of the glaucony from F4 in southeastern 

Marlborough displays features considered by Amorosi (1997) to be 

characteristic of transported glaucony.  The dominance of well sorted, 

moderately to well rounded, pelletal glaucony is consistent with the 

transport of glaucony, and is consistent with the variable thickness of the 

Teredo Limestone across southeastern Marlborough as a whole.  The 

most conclusive evidence does not come from sites investigated as part of 

this study, but from Seymour Stream and The Fell in the middle Clarence 

Valley, where glaucony is preferentially concentrated along foresets of low 

angle cross beds (Reay 1993).  This is consistent with Morris‟ (1987) 

suggestion that not all glaucony of the Teredo Limestone should be 

considered first cycle, with at least some being recycled, along with 

siliciclastic grains, from the Claverley Sandstone.  However, it is further 

suggested here that the majority, and possibly all, of the glaucony in F4 is 

perigenic rather than extrabasinal allogenic in origin, being 

contemporaneously developed on the Marlborough paleo-platform before 

transportation to deeper sites corresponding to the middle Clarence Valley 

area. 

 

Phosphatic grains and phosphatised clasts of micritic limestone observed 

in the greensand facies (F4) are also considered to have a perigenic 

origin.  These components represent rip-up clasts of mineralised and 

lithified, synsedimentary cementation horizons (hardgrounds) associated 

with hiatal surfaces (Scholle & Ulmer-Scholle 2003).  Hardgrounds and 

marine cementation surfaces in cool-water limestones generally form as a 

result of slow, arrested or negative sedimentation rates in relatively high 

energy environments (Kennedy & Garrison 1975; Nelson & James 2000; 
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Noe et al. 2006), so that the presence of these clasts in F4 is consistent 

with the above interpretations of this facies. 

 

5.2.5 Calcareous Glauconitic Mudstone Facies (F5) 

General Characteristics 

The calcareous glauconitic mudstone facies (F5) corresponds to the base 

of the Early Eocene Tucker Cove Limestone on Campbell Island.  One of 

the key characteristic of this facies in outcrop is its highly weathered 

nature, so that it is typically represented by a recessed zone wherever the 

boundary between the Garden Cove Formation and Tucker Cove 

Limestone is exposed.  Another key characteristic of this facies that 

differentiates it from the overlying micrite facies (F3), is the abundance of 

glaucony which reaches ~10% directly above the lower contact with the 

Garden Cove Formation.  The overall fine grained nature of this facies 

means the majority of components are indistinguishable in thin section, 

though some fine to medium sand sized, microcrystalline, pelletal 

glaucony and fine sand to coarse silt sized K-feldspar grains occur.  

Inorganic geochemical proxies show that this facies contains moderate 

quantities of terrigenous material (TRG), excess silica (Si[exc]) and excess 

calcium carbonate (Ca[exc]) (Table 5.3).  On a ternary plot of the three 

major chemical components of sedimentary rocks, samples from F5 plot 

along a „carbonate dilution line‟ between the underlying fine sandy 

mudstone facies (F6) and the overlying micrite facies (F3) (Figure 3.17). 

Interestingly, the calcareous glauconitic mudstone facies (F5) has high Al 

normalised concentrations of Zr (Enclosure 1) and rare earth elements 

(REEs) such as La, Nd and Y. 

 

Inferred Environment of Deposition 

The calcareous glauconitic mudstone facies (F5) was deposited at bathyal 

depths (Hollis et al. 1997) and represents the initiation of deposition of the 

Amuri carbonate megafacies at Campbell Island in the form of the Tucker 

Cove Limestone following unconformity development through the Late 

Paleocene to Early Eocene.  The high concentration of glaucony towards 

the base of this facies is consistent with the prolonged period of non-

deposition represented by the unconformity between the Garden Cove 
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Formation and overlying Tucker Cove Limestone by Hollis et al. (1997).  

Increasing dilution by carbonate up through this facies into the overlying 

micrite facies (F3) at Campbell Island is evidence of increasing isolation of 

the site from the paleoshoreline, as well as continued drowning of sources 

of terrigenous sediment during passive margin thermal subsidence of the 

area through the early Cenozoic.  Concomitant enrichment of Zr and REEs 

is consistent with the concentration of heavy minerals such as zircon, likely 

reflecting winnowing of sea-floor sediments by invigorated ocean currents 

responsible for the formation of the underlying unconformity. 

  

 

5.2.6 Fine Sandy Mudstone Facies(F6) 

General Characteristics 

The fine sandy mudstone facies (F6) corresponds to the Late Cretaceous 

to Paleocene Camp Cove Formation on Campbell Island.  In outcrop, this 

facies consists of brown, massive, highly bioturbated siliceous mudstone 

with varying amounts of fine sand.  One important characteristic of F6 is 

the presence of quartz pebbles „floating‟ within the uppermost 30 cm of the 

unit.  In thin section this facies is dominated by a siliceous/argillaceous 

and carbonaceous matrix containing abundant fine to very fine sand sized 

quartz and feldspar as well as microcrystalline pelletal glaucony and 

vermicular glauconitised biotite.  Geochemically, the fine sandy mudstone 

facies (F6) is characterised by high quantities of terrigenous material, 

evidenced by its position on a ternary plot of the three major chemical 

components of sedimentary rocks (Figure 3.17) and by the inorganic 

geochemical proxy for terrigenous supply (TRG) (Table 5.3 and Enclosure 

1).  F6 also has moderate concentrations of excess silica, and low excess 

calcium carbonate (Ca[exc]) (Enclosure 1). 

 

Inferred Environment of Deposition 

High TRG and low Ca[exc] values in the fine sandy mudstone facies (F6) 

(Enclosure 1) are consistent with an inner shelf depositional environment 

as suggested by Hollis et al. (1997).  The observation of glaucony in the 

upper 1.4 m of this facies suggests probably reduced sedimentation rates 

at Campbell Island during the Paleocene.   
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Based on the fact that the underlying basement rock of the Complex Point 

Group at Campbell Island is characterised by an absence of feldspar 

(Beggs 1976; Beggs et al. 1990), the occurrence of K feldspar detected 

under cathodoluminesent light supports Beggs‟ (1976) suggestion that the 

source area for the Garden Cove Formation contained granitic rocks.  This 

implies that Cretaceous silicic and intermediate plutonic rocks constituting 

basement rocks in areas like Auckland Island and the Great South Basin 

(Beggs et al. 1990) were exposed and actively supplying sediment in the 

form of quartz, feldspar and kaolinite (Beggs 1976) to the Campbell Island 

site during the Late Cretaceous to Paleocene.   

 

Given the relatively fine grained nature of the fine sandy mudstone facies 

(F6), the observation of quartz pebbles appears to be highly anomalous.  

However, similar pebbles have been described from time-equivalent 

formations: the Abbotsford Formation at Fairfield Quarry, Otago (Pont 

Lurcock pers. comm. 2009) and from the Whangai Formation at Angora 

Stream near Tawanui and Riversdale in southeastern North Island (Leckie 

et al. 1995) (Enclosure 1).  Based on the lack of evidence of high energy 

bed load transport mechanisms, and micropaleontologic and organic 

geochemistry, Leckie et al. (1995) interpreted lone stones from the east 

coast of the North Island to represent ice rafted debris transported by ice 

bergs or seasonal ice calving from glaciers, probably originating from 

Antarctica.  Given the paleogeographic location of Campbell Island during 

the Paleocene, and a similar lack of evidence of high energy bed load 

transport mechanisms, it is suggested that the floating quartz pebbles in 

F6 on Campbell Island are related to the same ice rafting event described 

by Leckie et al. (1995). 

 

5.2.7 Lithofacies Relationships 

A key to interpreting the paleoenvironmental importance of the lithofacies 

changes identified in this research relates to appreciating their spatial 

distribution across the study sites (Figure 5.4).  The siliceous micrite and 

chert facies (F1), micrite facies (F3) and fine sandy mudstone facies (F6) 

are considered here to represent the general „background‟ sedimentation 
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that occurred during continued passive margin thermal subsidence of the 

eastern margin of Zealandia.  As part of formal lithostratigraphic units, the 

facies were developed over a prolonged period from the Late Cretaceous 

to Late Oligocene (Enclosure 1).  Similarities in trace elemental 

concentrations of samples from F1 and F3 in southeastern Marlborough 

and F6 and F3 from Campbell Island suggest that the source of 

terrigenous material remained constant through the deposition of these 

facies.  This supports the suggestion of Reay (1993) that the Mead Hill 

Formation is essentially a chert rich facies of the Amuri Limestone 

 

Figure 5.4 Relationship between lithofacies in the study sites of this investigation at 

Mead Stream, Muzzle Stream and Kaikoura wharf, southeastern Marlborough, and on 

Campbell Island along with formal stratigraphic units of Reay (1993) and Hollis et al. 

(2005b) (Table 5.2).  Solid lines denote boundaries of lithofacies; dashed lines denote 

boundaries of formal stratigraphic units.  WF: Waipawa Formation.   

 

However, during the upper Teurian to Mangaorapan, „normal‟ background 

sedimentation was sufficiently affected by changes in oceanographic 

conditions to result in formation of a regionally extensive unconformity and 

the deposition in different places of the organic mudstone facies (F2), 

greensand facies (F4) and calcareous glauconitic mudstone facies (F5) 

(Figure 5.4).  In southeastern Marlborough, deposition of the organic 

mudstone facies (F2) reflects a temporary increase but sudden increase in 

terrigenous supply and siliceous productivity which resulted in expansion 

of the oxygen minimum zone at the distal Mead Stream site.  In more 

proximal sites, at Muzzle Stream and Kaikoura wharf, the greensand 

facies (F4) is underlain by a significant unconformity.  This facies was 
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deposited as a result of continuing reduced sedimentation rates, 

associated with previous unconformity development, punctuated by the 

periodic supply of detrital siliciclastic and perigenic glaucony and 

phosphatic grains.  The greensand facies (F4) and organic mudstone 

facies (F2) are considered to be equivalent (Strong et al. 1995), based on 

the fact that at Mead Stream and Muzzle Stream the two lithofacies were 

deposited contemporaneously (Hollis et al. 2005c).  However, both the 

basal and top contact of F4 is time-transgressive, younging towards the 

southwest (Figure 5.4).  On Campbell Island the calcareous glauconitic 

mudstone facies (F5) directly overlies a major unconformity and shows 

that winnowing of sea-floor sediments and reduced sedimentation rates, 

probably as a result of invigorated ocean currents, prevailed during its 

deposition. 

 

5.3 PALEODISTRIBUTION MAPS 

Attempts to construct paleogeographic and isopach maps for the 

Cretaceous to Paleogene strata of southeastern Marlborough have been 

hampered by pervasive Neogene tectonic deformation that has resulted 

from the propagation and subsequent development of the 

Pacific/Australian plate boundary through New Zealand (Crampton et al. 

2003).  Until the study of Crampton et al. (2003) previous reconstructions 

of basin morphology and facies relationships had simply used present day 

geographic configurations and no attempt at palinspastic maps had been 

made.   

 

Table 5.4 Deformations and adopted retro-deformations used in the retro-deformation 

models, listed in order of processing (from Crampton et al. 2003).  

Deformation Magnitude Adopted retro-deformation 

1 NW-SE shortening across Awatere block 2-6 km immediately N of  

Tapuae-o-Uenuku 

4 km extension at  

Tapuae-o-Uenuku 

2 Shortening across Flag Creeks Thrust 5 km 5 km extension 

3 Dextral strike-slip across Clarence Fault 25 ± 10 km 25 km sinistral 

4 NW-SE shortening across Clarence Fault 2-3 km 2.5 km extension 

5 Dextral strike-slip on Fidget Fault 1 km 0 km 

6 NW-SE shortening across Clarence block 17 km in NE, 10 km in centre 
and S 

Extension: 17 km in NE; 10 km in 
centre and S 

7 NW-SE shortening across London Hill Fault 1.3 km 1.3 km extension 

8 Dextral strike-slip on Jordan Stream 
Thrust/Kekerengu Fault 

5-15 km  5 km sinistral strike-slip on 

Kekerengu Fault segment 

9 NW-SE shortening across Kekerengu block 7 km in southern half 7 km extension 

10 Dextral strike-slip on Hope Fault 20 km 20 km sinistral 

11 NW-SE shortening across Kaikoura block 2 km at Kaikoura; 4 km at 

Haumuri Bluff; 5 km in S 

Extension: 2 km at Kaikoura; 4 km 

at Haumuri Bluff; 5 km in S 

12 Clockwise, vertical-axis rotation of all blocks 100° 100° anticlockwise 
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Retro-deformations carried out by Crampton et al. (2003) shown in Table 

5.4 were applied to the five major structural blocks identified in 

southeastern Marlborough (Figure 5.5).  Using the Awatere Fault as the 

northwestern boundary, retro-deformations were performed from 

northwest to southeast in the order shown in Table 5.4, resulting in the 

configuration shown in Figure 5.6.  This process is described in full in 

Crampton et al. (2003). 

 

Figure 5.5 The major structural boundaries and blocks used in the retro-deformation of 

southeastern Marlborough to establish late Early Cretaceous to Early Eocene 

configurations (from Crampton et al. 2003).  Also shown are the stratigraphic data 

localities (Table 5.5) and the 10 km New Zealand map grid. 
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Figure 5.6 Retro-deformed configuration of southeastern Marlborough, showing the 

stratigraphic data localities and 10 km New Zealand grid retained for reference.  This map 

is used for all the Cretaceous and Paleogene palinspastic maps of Crampton et al. (2003) 

and for the Teredo Limestone palinspastic map (this study). White areas between blocks 

represent areas uplifted and eroded since the Oligocene (from Crampton et al. 2003). 

 

Stratigraphic data localities shown in Figure 5.5 are summarised in Table 

5.5, while thickness data used in the creation of the palinspastic maps in 

Figures 5.7 to 5.9. is summarised in digital appendices, along with 

electronic copies of retro-deformed base maps.  Following Crampton et al. 

(2003), the same base map has been used for the Teredo Limestone as 

for all other Cretaceous and Paleogene reconstructions and assumes 

negligible deformation in the area during this period.  All compass 

bearings cited in the following text that refer to retro-deformed maps are 

prefixed by “p-”, indicating that they are paleo-bearings.  As the retro-

deformation performed by Crampton et al. (2003) involved 100° 
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anticlockwise rotation, p-north is approximately equivalent to a bearing of 

100° in present-day co-ordinates. 

 

Table 5.5 Stratigraphic data localities used for the late Early Cretaceous to Early Eocene 

palinspastic reconstructions.  The localities are numbered from northwest to southeast 

according to the present-day map NZMS 260 map of southeastern Marlborough. Note 

that grid references are approximate and may span greater stratigraphic intervals than 

those of interest here; original sources should be consulted for full details.  The data 

sources are as follows: logs held in the stratigraphic measured section file at GNS, Lower 

Hutt, are prefixed by CCP and given a map sheet and unique column (“C”) number; other 

sources can be found in the reference list or are self explanatory.  

 
Locality 
no. Locality 

Map 
sheet 

Grid ref. 
base 

Grid ref.      
top Data sources 

1 Isis R. – Awatere R.  O29 678277 673280 Crampton et al. 2003 

2 Cam R. – Awatere R.  O29 667266 663273 Crampton et al. 2003 
3 Hodder R. – Clyde Stm  O29 634242 640255 Crampton et al. 2003 
4 Limestone Stm O29 603233 603233 Crampton et al. 2003 
5 Penk Stream  P29 705304 O29/693310 CCP P29/c20 
6 Flaxbourne R. P29 * * Crampton et al. 2003 
7 Chancet Rocks P29 086286 094295 Morris 1987 
8 Butt Stm  P29 055292 057290 Crampton et al. 2003 

9 Needles Point P29 065255 065255 Crampton et al. 2003 
10 Isolation Ck  P29 916226 916228 CCP P29/c21 
11 Winterton R.  O30 581139 506104 CCP O30/c16 
12 Branch Stm, middle branch O30 693093 691094 O30/c7 
13 Dart Stm O30 674047 659059 O30/c2 

14 Muzzle Stm, W branch O30 614024 612026 This study 

15 Muzzle Stm – Dead Horse Gully O30 620011 605013 CCP O30/c9 
16 Bluff Stm upper O30 576998 576002 O30/c3 
17 Bluff Stm O30 590973 585975 O30/c1 
18 Gentle Annie Stm O30 529963 529963 O30/c13 
19 Bluff R. O30 540957 541975 O30/c5 
20 Dubious Stm O30 566950 563954 CCP O30/c18 
21 Limestone Hill O30 521902 522900 O30/c14 
22 Swale Stm P30 * * C. Hollis (unpubl. data) 
23 Kekerengu R., upper reaches P30 890192 884195 Crampton et al. 2000 

24 Ben More Stm, upper reaches P30 920186 922190 CCP P30/c14 
25 Woodside Ck P30 975188 992191 CCP P30/c5 
26 Wharanui Point  P30 * * Crampton et al. 2003 
27 Cover Stm P30 842180 845181 Crampton et al. 2003 

28 Southern flanks Whernside  P30 864183 864183 CCP P30/c7 
29 Ouse Gorge – Sawpit Gully P30 808147 828180 Crampton et al. 2003 
30 Coverham track above Wharf Stm P30 840174 840174 Crampton et al. 2003 
31 Burnt Saddle P30 867171 866174 Crampton et al. 2003 
32 S-flow tributary Ben More Stm P30 931166 932169 Crampton et al. 2000 

33 Mead Stm P30 762160 753164 Strong et al. 1995, Hollis et al. 
2005, this study 

34 Dee Stm P30 706117 704119 Hancock et al. 2003 
35 Farm track N Miller Stm  P30 794977 788977 Crampton et al. 2003 
36 Miller Stm P30 790966 783963 Crampton et al. 2003 
37 Wharekiri Stm, lower gorge P30 783942 774932 Crampton et al. 2003 
38 Wharekiri Stm, main section P30 768920 748913 CCP P30/c10 
39 Wharekiri Stm, W limb P30 747913 748912 Crampton et al. 2003 
40 Seymour Stm O31 424859 423859 O31/c8, J. Crampton (unpubl. 

data) 
41 The Fell O31 414844 415846 O31/c3, J. Crampton (unpubl. 

data) 

42 Wallow Stm O31 384831 387829 O31/c5, J. Crampton (unpubl. 
data) 

43 Bluff Dump O31 463807 458806 Crampton et al. 2003 

44 Hapuku R. O31 663794 662795 Crampton et al. 2003 

45 Monkey Face 1 O31 c. 465670 c. 465670 Crampton 1988 
46 Monkey Face 2 O31  c. 440660  c. 440660 Crampton 1988 
47 Kaikoura Peninsula, N side O31 674656 674656 This study 
48 Kaikoura Peninsula, S side O31 661646 674656 O31/c1 

49 Limestone Stm headwaters P31 766895 761896 P31/c3 

50 Mororimu Stm P31 808880 813886 Morris 1987 
51 Jordan Stm – Puhi Puhi R P31 724849 723846 P31/c4 
52 Puhi Puhi R. at Clinton confluence P31 711814 711814 P31/c5 

53 Haumuri Bluff O32 514507 525503  J. Crampton (unpubl. data) 
54 Conway R. mouth O32 469444 475442 O32/c3 
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5.3.1 Spatial Distribution of Late Cretaceous to Early Eocene Units, 

With Emphasis on the Teredo Limestone 

Urutawan-Motuan Sediments 

The initial phase of deposition in southeastern Marlborough is recorded by 

Urutawan to Motuan (late Early Cretaceous) sediments (Figure 5.7).  

These sediments directly overlie Torlesse basement rocks of the Pahau 

Terrane and thicken to the p-southwest, showing substantial local variation 

in thickness.  This distribution is inferred to result from pre-existing 

erosional topography and syndepostional tectonic activity along p-NE-SW 

trending normal faults on the Awatere block and p-NW-SW trending 

normal faults on the Clarence block during this period.  This largely 

extensional tectonic activity is related to the initial stages of crustal 

extension prior to opening of the Tasman Sea and predates the major 

phase of extension in other basins (King et al. 1999; Crampton et al. 

2003).  Paleocurrent data from these strata show that these faults greatly 

influenced gravity flows responsible for the deposits mapped by Crampton 

et al. (2003). 

 

Herring Formation 

Crampton et al. (2003) state that the Piripauan (mid-Late Cretaceous) 

signifies the cessation of rifting and onset or pronounced acceleration of 

thermal subsidence in southeastern Marlborough, resulting in a major p-

north to p-south marine transgression (Figure 5.8).  Palinspastic maps for 

the Piripauan Stage and Herring Formation show a general thickening of 

isopachs toward the p-northwest and identify a trough-shaped depocentre 

named the Kaikoura Trough by Crampton et al. (2003) (Figure 5.8).  This 

feature opened to the p-northeast and ran parallel to the paleoshoreline 

from the centre of the Clarence block.  The trough was separated from 

thicker deposits in the p-northwest by the Wharekiri Swell, the combined 

isopachs from the Piripauan Stage and Herring Formation showing 

significant thickness variations between the axes of these two features 

(Crampton et al. 2003).  These structures run roughly parallel to Motuan 

normal faults on the Awatere block (Figure 5.7) and are inferred by 

Crampton et al. (2003) to represent a graben (or grabens) related to 

earlier extension.  The persistence of this feature for ~10 My from the 
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Piripauan through to the lower Haumurian suggests that minor faulting 

continued throughout this period.   

 

Figure 5.7 Palinspastic map for the Urutawan-Motuan (late Early Cretaceous) basal 

„cover‟ coarse facies, showing thickness and facies data (from Crampton et al. 2003). 

Locality numbers refer to localities in Table 5.5. 

 

Mead Hill Formation 

The palinspastic map for the Mead Hill Formation shows very little 

evidence for any inherited topographic or structural features by upper 

Haumurian time, suggesting that they had been buried by deposits of the 

earlier Herring Formation (Figure 5.9A).  Isopachs identify a broad shelf or 

platform, named the Marlborough paleo-platform (Crampton et al. 2003), 

centred on the Kekerengu block in the p-northeast of the Marlborough 

paleo-embayment (Figure 5.1).  Isopachs show relatively uniform 

thickness trends across the Marlborough paleo-platform, with a steeper 

gradient in the p-south.  This change in gradient is interpreted by 

Crampton et al. (2003) to represent steeper topographic gradients and
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Figure 5.8 Palinspastic map for the Herring Formation, showing thickness and facies 

data (from Crampton et al. 2003). Locality numbers refer to localities in Table 5.5. 

 

possible constriction of the platform in this region, though no data are 

available for the Awatere block to constrain such interpretations.  Through 

the upper Haumurian (latest Cretaceous), the Mead Hill Formation was 

predominantly deposited in inner to mid-shelf depths, deepening to upper 

to mid-bathyal depths in the p-northwest.  Mead Hill Formation of 

Paleocene age was mainly deposited in upper bathyal depths and is only 

preserved in the p-northwest due to Paleocene erosion or non-deposition 

elsewhere. 

 

Amuri Limestone 

Crampton et al. (2003) chose to map only the distribution of the Lower 

Marl lithotype of the Amuri Limestone in an attempt to minimise the effects 

of truncation by unconformities bounding the formation (Figure 5.9B).  The 
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palinspastic map for this lithotype shows almost identical trends in 

isopachs to the underlying Mead Hill Formation, confirming the presence 

of a broad, low gradient platform to the p-north which is more constricted 

to the p-south.  Isopachs thicken from 0 m in the p-southeast to >100 m in 

the p-northwest. 

 

Teredo Limestone 

The Teredo Limestone lies between the two units mapped in Figure 5.9A 

& B and isopachs for this unit are relatively thin in comparison to the 

lithostratigraphic units and chronostratigraphic intervals mapped by 

Crampton et al. (2003).  The palinspastic map for the Teredo Limestone 

(Figure 5.9C) shows some consistencies with those for the Mead Hill 

Formation and Lower Limestone lithotype of the Amuri Limestone, but 

overall different trends are evident.  The Teredo Limestone was not widely 

deposited across the broad Marlborough paleo-platform during the Late 

Paleocene to Early Eocene.  Unlike the Mead Hill Formation and Lower 

Limestone, thicknesses for the Teredo reduce quickly from the p-south 

towards the p-northwest and the unit is not recorded to the p-north of Dart 

Stream in the Clarence Valley or p-west of Kaikoura Peninsula.  The 

distribution of isopachs is significantly affected by the absence of Teredo 

Limestone at Monkey Face (locality 46) and the Kekerengu block in 

general, resulting in the separation of two areas of comparatively thick 

deposits centred on Haumuri Bluff (locality 53) and Seymour Stream 

(locality 40).   

 

At Monkey Face, a lithology similar to the Teredo Limestone is only 

preserved in Thalassinoides burrows which extend down into the Late 

Cretaceous Conway Formation, a correlative of the Herring Formation, 

which is unconformably overlain by the Lower Limestone lithotype of the 

Amuri Limestone (Morris 1987; Crampton 1988).  In the Puhi Puhi River at 

the confluence with the Jordan Stream (locality 52), Morris (1987) 

assigned 4.6 m of 10-50 cm bedded, light to medium pinkish grey, 

glauconitic wackestone (limestone) interbedded with 1 cm thick light grey 

marl partings to the Teredo Limestone.  The thickness of this unit is 

anomalously large in comparison to surrounding sites and it also does not
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Figure 5.9 Palinspastic recreation of southeastern Marlborough during deposition of the (A) Mead Hill Formation, (B) Lower Marl lithotype of the Amuri Limestone and (C) Teredo Limestone Member, showing thickness and 

facies data. (A & B from Crampton et al. 2003).  Locality numbers refer to localities in Table 5.5.  Localities in red are those investigated as part of this study. 
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fit the definition for the Teredo Limestone sensu stricto of Reay (1993).  It 

appears that this unit at Puhi Puhi River shows a closer lithologic affinity 

with the basal portion of the Lower Limestone lithotype observed overlying 

the Teredo Limestone at Kaikoura wharf and it is therefore attributed to 

this lithotype in this study. 

 

Major differences in the distribution of the Teredo Limestone (Figure 

5.9C), when compared with bounding units (Figure 5.9A, B), suggest that 

the processes responsible for the formation of the Teredo unit were quite 

different from those that dominated throughout the majority of the Late 

Cretaceous to Middle Eocene. 

 

Even though the deposition of the Waipawa Formation and lateral 

equivalents (e.g. Tartan Formation, Great South Basin) has been inferred 

to have occurred in response to a eustatically driven sea-level fall in the 

Late Paleocene (Schiøler et al. 2010), Hollis et al. (2005c) note that the 

bathyal water depth of sites in the middle Clarence Valley precluded sea-

level change alone as being the principal driver for unconformity formation 

and lithofacies changes observed in Late Paleocene to Middle Eocene 

strata.  It is therefore suggested that sedimentation and erosion patterns in 

the Marlborough paleo-embayment during this period were more likely 

caused by variations in current intensity and sediment pathways which 

were possibly more directly linked to climate changes driving eustatic 

changes (Hollis et al. 2005c). 

 

The Clarence Drift 

Based on this interpretation, combined with the isopach trends observed in 

Figure 5.9C, it is inferred here that the Teredo Limestone was deposited 

as a skin drift across the p-south to p-southeast of the Marlborough paleo-

platform under the influence of significant seafloor currents.  Isopachs 

identify two lobes of sediment, one in the p-east centred on Haumuri Bluff 

and another in the p-south centred on Seymour Stream.  The latter 

occurrence is of particular interest and is here named the Clarence Drift.  

Despite the distribution of this drift being poorly constrained to the p-west 

and p-south due to a lack of data, it appears that the Clarence Drift has an 
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elongated shape, ~15-20 km long and ~10 km wide, and reaches ~25 m 

thick.  This fossil drift is much smaller in comparison to major present day 

drifts documented from the Eastern New Zealand Oceanic Sedimentary 

System (ENZOSS) (Figure 5.10), such as the Rekohu Drift (ODP Site 

1124) which extends ~250 km towards the Kermadec Trench from the 

northern slope of the Chatham Rise (Joseph et al. 2004).  However, these 

drifts represent deep water sediment drifts, deposited in water depths in 

excess of ~3500 m, under semi-permanent oceanic currents, the Antarctic 

Circumpolar Current (ACC) and Pacific Deep Western Boundary Current 

(DWBC) (Carter, L. et al. 2004).  Accumulation of these „modern‟ drifts has

 

Figure 5.10 Outline of the Solander, Bounty and Hikurangi channels as well as the main 

drift deposits beneath the Deep Western Boundary Current (DWBC) off southern and 

eastern New Zealand at the present day. (Inset) The Eastern New Zealand Oceanic 

Sedimentary System (ENZOSS) described by Carter L. et al. (2004) showing the main 

sediment delivery channels (small arrows) and abyssal transport directions (large arrows) 

(from Carter L. et al. 2004). 
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occurred over a much longer time period in comparison to the Clarence 

Drift, with the North Chatham Drift (ODP Site 1123) developing between 

the Early Miocene and the present  day (Carter, R. M. et al. 2004b) and 

initiation of the Campbell „Skin‟ Drift (see Figure 5.10) (ODP Site 1121) 

being at least as far back as the Middle Miocene (Graham et al. 2004). 

 

The size and depth of deposition of the Clarence Drift would suggest that it 

is more comparable to Pliocene initiated drifts identified beneath the 

present day Canterbury slope at the head of the Bounty Trough (ODP Site 

1119) (Lu et al. 2003; Carter, R. M. et al. 2004a).  These Canterbury Drifts 

reach a maximum size of 50 km long, 20 km wide and 1 km thick, while 

smaller drifts, termed sediment waves by Lu et al. (2003), are mostly no 

bigger than 10 km long, 3 km wide and 0.1 km thick (Carter, R. M. et al. 

2004a).  These drifts were deposited along the mid-slope, in 400-800 m 

water depth, as a result of northeastward-flowing currents analogous to 

the modern day Southland Current which consists of Subantarctic Mode 

Water (SAMW) and Antarctic Intermediate Water (AAIW).  Sediment was 

transported under inferred current speeds of ~5-15 cm/s.  These drifts 

aggraded to the west (upslope) under the influence of the Coriolis affect 

(Lu et al. 2003; Carter, R. M. et al. 2004a). 

 

The alignment of the axis of the Clarence Drift, as well as paleocurrent 

data from Seymour Stream and The Fell (Reay 1993), indicate that this 

drift moved from the p-southeast towards the p-northwest, running 

approximately parallel to the paleo-slope in this region of the Marlborough 

paleo-embayment (Figure 5.1).  Extensive bioturbation in the Teredo 

Limestone means that primary sedimentary structures are not preserved in 

any other sections, making identification of paleocurrent directions difficult 

outside the Seymour Stream area.  However, the direction of transport 

towards the p-northwest is supported by decreases both in grain size 

(Morris 1987) and the abundance of sand sized siliciclastic grains down 

the Clarence Valley (Figure 5.11).  The concomitant increase in 

abundance of glaucony in the Teredo Limestone could be explained by a 

number of mechanisms.  First, the decreasing abundance of siliciclastic 

sand could lead to an observed increase in the abundance of glaucony as 
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a result of decreased „dilution‟.  Second, greater condensation of the unit 

as a consequence of decreased sedimentation in more distal sites (e.g. 

Muzzle Stream) could result in an increasing abundance of glaucony.  

Third, hydraulic sorting could have led to concentration of glaucony 

towards the p-northwest.  As the hydrodynamic behaviour of glaucony is 

similar to that of lighter grains (McRae 1972; Amorosi 1997) it could have 

been transported greater distances than other comparably sized 

siliciclastics as current speeds decreased, resulting in the bimodal grain 

size distribution observed in the Teredo Limestone.  This is supported by 

the observation of glaucony grains within the Waipawa Formation at Mead 

Stream.  As glaucony generally forms at average water depths between 

about 50 m and 500 m (Amorosi 1997 and references therein), it is 

suggested here that these grains are entirely perigenic in origin (see 

section 5.2.4).  It is inferred here that a combination of all these 

mechanisms is responsible for the observed changes in the abundance of 

glaucony, supporting significant sediment transport from the p-southeast. 

 

Figure 5.11 Transect through the middle Clarence Valley showing the changing 

abundance of the major components within the Teredo Limestone (after Morris 1987, and 

this study). 

 

It is therefore inferred here, taking into consideration issues outlined in 

Stow et al. (1998), that the postulated Clarence Drift may represent a 

fossil contourite deposit.  Contourites are defined by Faugères & Stow 
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(1993) as sediments in relatively deepwater (>300 m) that have been 

deposited or significantly reworked by a stable geostrophic current. 

 

Descriptions of the Teredo Limestone from southeastern Marlborough as a 

whole are consistent with descriptions of the sandy contourite facies by 

Stow et al. (1998), though descriptions from Seymour Stream (locality 40), 

The Fell (locality 41) and Wallow Stream (locality 42) are of particular 

relevance.  Extensive bioturbation through the Teredo Limestone is 

considered to primarily reflect the condensed nature of the unit as a result 

of greatly reduced sedimentation rates during its deposition, a feature 

characteristic of many sandy contourite facies.  Stow et al. (1998) state 

that preservation of primary horizontal and cross-lamination may occur in 

rare cases where sedimentation rates are relatively high and food supply 

for burrowing benthos is limited.  This appears to have been the case at 

Seymour Stream and The Fell, where the Teredo Limestone reaches its 

maximum thickness (~25 m) and cross-lamination is evidenced by 

concentrations of glaucony and preferential weathering along foresets at 

these sites (Reay 1993).  Of particular importance is the identification of 

occasional thin horizons of well rounded quartz and greywacke grains and 

angular phosphatised micrite and sandstone granules at sites in the p-

south.  These horizons are interpreted to represent minor disconformities 

within the Teredo Limestone and are consistent with the description of 

irregular erosional contacts and coarser concentrations or lags in beds 

from sandy contourite facies (Stow et al. 1998; Viana et al. 1998). 

 

5.3.2 Temporal Lithofacies Changes 

This section records the broad distribution in southeastern Marlborough of 

the main lithofacies for four periods during the Paleocene-Early Eocene, 

namely lower Teurian (~64 Ma), upper Teurian (~58 Ma), Waipawan (~55 

Ma) and Mangaorapan (~52 Ma).  The paleo-lithofacies maps are 

necessarily highly generalised because of the scattered and sparse nature 

of control data points and lack of high resolution biostratigraphic 

information at sites other than Mead, Dee, Muzzle and Branch streams.  

Nevertheless, the ages from these sites have been extrapolated to the 



 

 

170 CHAPTER 5 
 

wider region to allow interpretation of the timing of lithofacies changes and 

paleoclimate events. 

 

Lower Teurian 

During the lower Teurian, siliceous micrite and chert of the Mead Hill 

Formation was deposited throughout the p-northwest of the Marlborough 

paleo-platform (Figure 5.12).  During the same period a greensand unit 

was deposited at the more proximal, Kaikoura wharf site (locality 47) on 

the north side of the peninsula (Figure 5.4).  These lower Teurian deposits 

reach a maximum thickness of ~108 m at Mead Stream (locality 33) (Hollis 

et al. 2005b), while the thickness at Kaikoura wharf is highly condensed, 

up to 5.5 m.  No rocks of Early Paleocene age are recorded from the p-

southwest of the Marlborough paleo-platform.  Following Morris (1987) 

and Reay (1993), it is suggested here that sedimentation either did not 

occur in this region during the lower Teurian or was subsequently removed 

during a period of erosion in the upper Teurian. 

 

Though the majority of the lower Teurian is characterised by the lithofacies 

shown in Figure 5.12, the base of the Teurian (K/T boundary) is 

represented by an unconformity contained within the Mead Hill Formation.  

Around the K/T boundary, a portion of the Marlborough paleo-platform lay 

under a zone of nutrient upwelling and high bio-siliceous productivity 

(Figure 5.1) (Hollis et al. 2003b, c).  Hollis et al. (2003b, c) investigated 

four sites representing an outer shelf to mid-bathyal depth transect 

through this zone, of which Branch Stream (locality 12) was the 

shallowest, and Flaxbourne River (locality 6) the deepest and considered 

to be the most stratigraphically complete.  This suggestion was based on 

the identification of a K/T boundary fallout layer within claystone at the 

Flaxbourne River, as shown by a large geochemical anomaly of elements 

considered to be mainly or partly of meteorite origin (e.g. Ir, Ni, Cr, and 

Zn), and the most complete earliest Paleocene foraminiferal succession in 

the South Pacific (Hollis et al. 2003c).  Woodside Creek contains a well 

documented K/T boundary fallout layer (Alvarez et al. 1980).  However, 

this is directly overlain by Zone Pα-P1a foraminifera (see Appendix A), 

suggesting a hiatus of >30 000 yr within the boundary clay at this site
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Figure 5.12 Lithofacies map of southeastern Marlborough during the lower Teurian stage 

(c. 64 Ma).  See text for references and discussion.  Locality numbers refer to localities in 

Table 5.5. 

 

(Hollis et al. 2003c).  At Mead and Branch streams in the northern 

Clarence Valley, an unconformity of similar duration is inferred by Hollis et 

al. (2003b), based on the absence of a well defined fallout layer and 

definitive Zone P0 foraminiferal assemblages.   

 

The unconformity described by Hollis et al. (2003b, c) from Branch 

Stream, Mead Stream and Woodside Creek is correlated here with the 

greensand unit and underlying unconformity contained within the top part 

of the Mead Hill Formation at Kaikoura wharf (Figure 4.28).  Though 

sedimentation rates were greatly reduced during this period, evidenced by 

the presence of glaucony in the unit, there is also evidence for a shift from 
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microbioclastic sedimentation to siliciclastic sedimentation.  This is shown 

by an increase in the abundance of detrital coarse silt sized quartz and 

feldspar grains observed in thin section, along with increases in 

terrigenous supply (TRG; Enclosure 1), and implies significant transport of 

terrigenous sediment during this period.  Consistently low excess barium 

(Ba[exc]) values throughout the Late Cretaceous to Early Paleocene strata 

at Kaikoura wharf suggest the site lay outside the zone of upwelling 

centred on the region between Branch Stream to Flaxbourne River (Figure 

5.1).  Based on the occurrence of Zone RP3 radiolarians from samples of 

the siliceous micrite and chert facies (F1c), the return to deposition of late 

Cretaceous type lithofacies probably occurred within ~2 m.y. of the K/T 

boundary at Kaikoura wharf (Chris Hollis pers. comm. 2010).  This is 

consistent with trends described by Hollis (2003), which showed that 

deeper sites (Woodside Creek and Flaxbourne River) returned to 

background sedimentation within 600 000 yr of the K/T boundary, while at 

Branch Stream the resumption of Cretaceous type facies occurred after 

~1.5 m.y. 

 

Hollis et al. (2003c) suggested that two relative sea-level falls at 64.9 Ma 

and 64.6 Ma resulted in basinward facies shifts and corresponded with 

increases in biogenic silica.  The depositional hiatus described from 

Woodside Creek, as well as Mead and Branch streams, is also attributed 

to the initial sea-level fall (Hollis 2003, Hollis et al. 2003b, c).  However, 

Hollis (2003) suggested that the magnitude of sea-level changes required 

to produce the facies shifts observed at the bathyal Flaxbourne site would 

be >200 m, but that sea-level changes of such magnitude would have 

resulted in much greater lithofacies changes in shallower sites such as at 

Branch Stream, Tora (Laird et al. 2003) and mid-Waipara (Hollis & Strong 

2003) than are actually observed.  It was therefore suggested by Hollis et 

al. (2003a) that Antarctic sourced deep water supplying nutrients to the 

coastal upwelling zone could have also played a role in unconformity 

formation during this period. 
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Upper Teurian 

The upper Teurian signifies a significant shift in the ocean circulation 

pattern in the Marlborough paleo-embayment when compared to the 

majority of the lower Teurian.  Though „normal‟ sedimentation continued 

with the deposition of siliceous micrite and chert through many sites in the 

p-northwest, this was disrupted at sites in the Clarence Valley (Figure 

5.13).  At Mead Stream (locality 33), organic mudstone of the Waipawa 

Formation was deposited during this period, while towards the p-southeast 

at Branch Stream (locality 13) and Muzzle Stream (Locality 14), greensand 

of the Teredo Limestone was deposited contemporaneously.  During this 

period, erosion or non-deposition continued in the p-southwest of the 

Marlborough paleo-platform (Figure 5.13). 

 

 

Figure 5.13 Lithofacies map of southeastern Marlborough during the upper Teurian stage 

(c. 58 Ma).  See text for references and discussion. Locality numbers refer to localities in 

Table 5.5. 
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At Mead Stream, the organic mudstone of the Waipawa Formation was 

deposited as two separate units, Mudstone A and B (Figure 4.6), as a 

result of increased terrigenous supply and siliceous productivity, as 

discussed in section 5.2.  Fluctuations in terrigenous supply (TRG, 

Enclosure 1) in the Waipawa Formation correspond to stratal bedding 

observed in the field, with siliceous mudstone beds representing periods of 

lower terrigenous input, and argillaceous mudstone interbeds having 

higher concentrations of clays (Figure 4.9).  These fluctuations in 

terrigenous supply would suggest cyclic variations in processes affecting 

sedimentation at this site (Mead Stream), such as bottom water energy, 

oxygenation, or detrital flux and composition (Arthur & Dean 1991).  Based 

on a sedimentation rate of 0.7 cm/kyr (Hollis et al. 2005b), Mudstone A 

was deposited over 189 000 yr, while Mudstone B was deposited over 21 

000 yr.  These units contain ~20 and 4 peaks respectively of increased 

terrigenous supply represented by interbedded argillaceous mudstone 

units, respectively, which corresponds to intervals of ~9 000 and ~4 500 yr 

between peaks for Mudstone A and B.  While such bedding couplets were 

emplaced in too short a time frame to directly record precession (19 000 

and 23 000 yr), they are consistent with the range of depositional time 

periods for the latest Paleocene to Early Eocene for the Lower Limestone 

lithotype at Mead Stream reported by Hollis et al. (2005b).  It is inferred by 

Hollis et al. (2005b) that groups of beds record Milankovitch scale cyclicity 

and it is suggested here that this may also be the case for the Waipawa 

Formation.  Further investigation of this high frequency cyclicity may help 

identify processes responsible for the deposition of this unit. 

 

Similar fluctuations are observed in excess silica (Si[exc]) and excess 

barium (Ba[exc]) (Enclosure 1) and are interpreted here to reflect changes 

in recycling and supply of nutrients during the upper Teurian.  Si[exc] 

shows a significant negative correlation with TRG, suggesting periods of 

high siliceous productivity occurred during periods of reduced terrigenous 

input (Figure 5.14).  However, the interpretation requires caution because 

components of percentage data are not free to vary independently, so that 

decreases in one component will force an increase in another (Rollinson 
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1993).  Therefore, while increases in Si[exc] broadly reflect an increase in 

productivity during the deposition of both Mudstone A and B, variations in 

this proxy cannot be used for reliable estimates of actual changes.  Ba, in 

the form of barite, is strongly correlated with biological productivity in 

modern day ocean surface waters (Dymond et al. 1992) and is widely 

used as a proxy for paleo-productivity on this basis (Schmitz 1987a; 

Schmitz et al. 1997; Schroeder et al. 1997; Thompson & Schmitz 1997).  

Ba[exc] does not correlate with TRG (Figure 5.14), and is therefore 

considered to be a better representation of variation in nutrients resulting 

in periodic increases in productivity. 

 

Figure 5.14 Graph showing the relationship between Si[exc], Ba[exc] and TRG at Mead 

Stream. 

 

Fluctuating currents responsible for the transportation of terrigenous 

material to the distal Mead Stream site during the upper Teurian were of 

sufficient velocity to cause erosion at proximal sites in the p-south to p-

southeast, as well as to transport and deposit fine to very fine sand sized 

quartz and feldspar grains at Dart and Muzzle Streams during the same 

period.  Based on the modal size of these siliciclastic grains, current 

speeds would have had to reach in excess of 20 cm/s to cause erosion in 

the p-southeast during the upper Teurian (Figure 5.15).  As current 

velocities dropped below ~5 cm/s at Muzzle and Dart streams, deposition 

of the glauconitic, sandy Teredo Limestone would have occurred.  This 
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range of values is consistent with current speeds suggested to be 

responsible for the formation of the Canterbury Drifts during Pliocene to 

Recent times (Carter, R. M. et al. 2004a) and corresponds to the mid-

range of velocities for the modern day Southland Current (Sutton 2003).

 

Figure 5.15 Schematic diagram showing the range of average current speeds at which 

sediment particles of different sizes are eroded, transported, and deposited (after 

Bearman 1989). Hatched zone shows area occupied by sediments of the Teredo 

Limestone.  

 

These velocities are also comparable to those of the modern DWBC 

(Figure 5.10) reported by McCave & Carter (1997), which range between 1 

and 30 cm/s at sites from south of the Chatham Rise to the Kermadec 

Trench.  They record that seafloor topography can significantly affect the 

current speed of the DWBC, with greatly increased current speeds 

observed in areas of constriction or steep topography (McCave & Carter 

1997).  

 

The unconformity at the base of the Teredo Limestone is described by 

Morris (1987) and Reay (1993) as being mildly angular over large 

distances, ~2° between Dart and Branch streams (Reay 1993), and 
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suggested that the unconformity formed as a result of differential erosion.  

Morris (1987) invoked local tectonic activity to account for the differential 

erosion.  This would suggest that even though the eastern margin of 

Zealandia is considered to be a passive one and tectonically relatively 

quiescent during this period (Ballance 1993; King et al. 1999; Crampton et 

al. 2003), local tectonic activity did occur.  If this is the case, timing of this 

tectonic episode on the Marlborough paleo-platform can only be loosely 

constrained between upper Teurian and Waipawan.   

 

Waipawan 

During the Waipawan, the distribution of lithofacies can generally be 

divided into three broad zones (Figure 5.16).  In the p-northwest of the 

Marlborough paleo-embayment, sedimentation is dominated by siliceous 

micrite and chert of the Lower Limestone lithotype.  Towards the p-

southeast, micritic limestone of the Lower Limestone lithotype was 

deposited in a p-southwest to p-northeast trend across the centre of the 

Clarence block and the southeastern end of the Kekerengu block.  

Throughout the p-southwest of the Marlborough paleo-embayment, 

greensand of the Teredo Limestone was deposited widely in proximal 

settings. 

 

Though the lithofacies distribution shown in Figure 5.16 is characteristic of 

the Waipawan, the base of this stage is represented by the Dee Marl at 

sites where the Paleocene-Eocene boundary is not truncated by the 

unconformity underlying the Teredo Limestone (Enclosure 1) (Hancock et 

al. 2003; Hollis et al. 2005b, c).  This recessive unit, with lower carbonate 

concentrations in comparison to surrounding lithologies, was deposited 

during the Paleocene-Eocene Thermal Maximum (PETM).  Hollis et al. 

(2005b) suggested that as the lithologic expression of this climatic event, 

the Dee Marl was deposited as a result of increased precipitation, high 

terrigenous discharge and overall decreased biological productivity.  In the 

cooling phase that directly followed the PETM (Zachos et al. 2001), 

deposition of siliceous micrite and chert resumed once again at Mead 

Stream (Hollis et al 2005b) (Figure 5.16).  Based on similarities in 

lithofacies and abundance of radiolarians, Hollis et al. (2005b) inferred this 
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period of siliceous micrite and chert deposition represented the return to 

cooler (but still warm) oceanographic conditions that characterised the 

majority of the Paleocene.   

 

Figure 5.16 Lithofacies map of southeastern Marlborough during the Waipawan stage (c. 

55 Ma).  See text for references and discussion.  Locality numbers refer to localities in 

Table 5.5. 

 

During the Waipawan, the currents that resulted in erosion in proximal 

sites in the p-east to p-southeast through the upper Teurian waned, 

resulting in widespread deposition of the Teredo Limestone (Figure 5.16).  

The observation of phosphatised clasts of micritic limestone in the Teredo 

Limestone at Kaikoura wharf, as well as descriptions of similar clasts from 

other sections (Morris 1987), would suggest that at least one hardground 

formed during the period of reduced sedimentation.  
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Contemporaneous tectonic activity is evidenced by low-angle thrust 

faulting at the Kaikoura wharf section (Figure 4.25 and 4.26), which is 

interpreted here to represent intraformational slumping.  It is suggested 

that this period of tectonic activity resulted in overpressuring, mainly of the 

Teredo Limestone and to a lesser degree the underlying greensand 

associated with the K/T boundary at Kaikoura wharf, which led to the 

forced emplacement of clastic dykes (Figure 4.25, 4.26, 4.47). 

 

Mangaorapan 

During the Mangaorapan, sedimentation across the Marlborough paleo-

platform was almost entirely dominated by deposition of the Lower Marl 

lithotype of the Amuri Limestone (Figure 5.17).  By the Mangaorapan, 

deposition of the Teredo Limestone was confined to a relatively small area 

in the p-south of the Marlborough paleo-platform around Seymour Stream 

(locality 40). 

 

Deposition of the micrite facies (F3) as part of the Lower Marl lithotype of 

the Amuri Limestone represents a return to „background‟ sedimentation 

throughout much of the Marlborough paleo-platform during this period.  

Hollis et al. (2005b) showed that deposition of this unit occurred during the 

early Eocene climatic optimum (EECO), a peak that occurred between 52 

and 50 Ma during a prolonged period of global warming (Zachos et al. 

2001).  Hollis et al. (2005b) suggest that processes responsible for the 

deposition of the Dee Marl at the Paleocene/Eocene boundary were also 

responsible for the deposition of the Lower Marl during the EECO.  

Increased precipitation and high terrigenous discharge coupled with 

decreased biological accumulation in warm oligotrophic waters resulted in 

the deposition of this marly lithology. 

 

Waning currents that resulted in the deposition of the Teredo Limestone 

through the upper Teurian and Waipawan, continued to affect sites in the 

p-south of the Marlborough paleo-platform prior to cessation represented 

by the onset of deposition of the Lower Marl lithotype at these sites.  

Deposition of the Lower Marl directly upon the Teredo Limestone at 

Seymour Stream was initiated by the Mangaorapan and is probably
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Figure 5.17 Lithofacies map of southeastern Marlborough during the Mangaorapan stage 

(c. 52 Ma).  See text for references and discussion.  Locality numbers refer to localities in 

Table 5.5. 

Heretaungan in age ~1.5 m above the base of the Lower Marl (Chris Hollis 

pers. comm. 2010).  The Teredo Limestone exposed in The Fell is 

probably of similar age based on microfossil assemblages. 

 

The initiation of deposition of the Lower Marl at these sites signifies the 

end of oceanographic conditions that resulted in the deposition of the 

Teredo Limestone and its lateral equivalent, the Waipawa Formation, in 

southeastern Marlborough. 

 

5.4 PALEOCENE-EOCENE OCEAN CIRCULATION PATTERNS 

Based on the correlation of the Waipawa Formation and Teredo 

Limestone Member of the Amuri Limestone (Figure 5.4), along with the 
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fact that these two units were deposited contemporaneously across the 

Marlborough paleo-platform in the upper Teurian, it is necessary for any 

depositional model for the Waipawa Formation to take these matters into 

consideration.  This point is further supported by the identification of 

similar relationships between the Waipawa Formation and upper Te Uri 

Member of the Whangai Formation from sections within the East Coast 

Basin on the east coast of the North Island (Rogers et al. 2001). 

 

Based on evidence that suggested the Waipawa Formation was deposited 

under dysoxic conditions during a period of global warming that was 

initiated in the mid-Paleocene and climaxed in the PETM, Killops et al. 

(2000) inferred the formation to be deposited as a result of upwelling of 

oxygen depleted warm saline deep water (WSDW) at a front between 

converging water masses.  The source of WSDW during this period is 

suggested to have been the tropical Pacific (originally Tethyan) (Killops et 

al. 2000), as low-latitude areas where high temperatures and high 

evaporation rates dominate played a significant role in deep water 

formation through the Late Cretaceous to Early Eocene (Kennett & Stott 

1990; Corfield & Cartlidge 1992; Thomas 1992; D'Hondt & Arthur 2002).   

 

However, contrary to Killops et al. (2000) suggestion that the Waipawa 

Formation was deposited during a period of warming, biostratigraphic 

investigations (Hollis et al. 2000; Hollis et al. 2005b; Schiøler et al. 2010) 

show that deposition of this unit occurred between 58 and 57.5 Ma and is 

not associated with the PETM.  This period actually corresponds to some 

of the coolest temperatures recorded from the Paleocene, comparable to 

those reported across the K/T boundary (Zachos et al. 2001).  This is 

supported by temperature records from the East Tasman Plateau which 

show that sea surface temperatures in the Tasman Sea reached as low as 

~18°C during the Late Paleocene, ~17°C less than temperatures recorded 

for the EECO (Bijl et al. 2009).  On a broader scale, the deposition of bio-

siliceous sediments during this period of cooling is consistent with 

observations in modern day oceans where these deposits are found 

beneath relatively cool and productive surface waters (Hollis et al. 2005b).  

Waters need not be inherently oxygen depleted; for example, Kender et al. 
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(2009) documented significant expansion of the OMZ overlying the Congo 

Fan, East Africa, during the Middle Miocene as a result of increased 

upwelling of cool nutrient rich water. 

 

It is suggested here that processes responsible for increased productivity, 

unconformity formation and greensand deposition in southeastern 

Marlborough across the K/T boundary (Hollis 2003; Hollis et al. 2003b, c) 

are similar to those responsible for an identical event during the Late 

Paleocene to Early Eocene.  This comparison is based firstly on the fact 

that both oceanographic events resulted in upwelling of nutrient rich water 

and increased productivity.  Secondly, this comparison between these 

separate oceanographic events is based on the similarities of lithofacies 

observed at Kaikoura wharf.  At this site, similar unconformities and 

greensand units were developed at the K/T boundary and during the upper 

Teurian to Waipawan (Figure 4.28).  It was the similarities between the two 

units at Kaikoura that in the past was responsible for lumping both units 

into the Teredo Limestone (Morris 1987; Browne et al. 2005a), a situation 

not followed in the present study (see section 5.1.1). 

 

Based on the paleo-circulation models of Huber & Sloan (2001) and Bice 

& Marotzke (2002), Hollis et al. (2003b) suggested that the nutrient-rich 

cool waters responsible for increased siliceous productivity in 

southeastern Marlborough over the K/T boundary originated from 

downwelling at the Antarctic margin.  These currents were considered to 

be analogous to the modern Deep Western Boundary Current (DWBC).  

However, based on the inner shelf to mid bathyal paleodepths of sites 

investigated as part of this study, it is suggested here that unlike the model 

of Hollis et al. (2003b), currents that affected these sites during the Late 

Paleocene to Early Eocene cannot be considered true deep ocean 

currents.  Given the present day structure of oceanic fronts and water 

masses in the New Zealand sector of the Southern Ocean (Figure 5.18), 

where the DWBC is no shallower than ~2000 m (McCave & Carter 1997), 

the water mass responsible for increased siliceous productivity and 

unconformity formation is more consistent with an intermediate water 

mass, such as Antarctic Intermediate Water (AAIW).  AAIW forms as a 
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Figure 5.18  Water masses, fronts, and circulation patterns that characterise the present 

day New Zealand sector of the Southern Ocean (after Carter, R. M. et al. 2004b). STF = 

Subtropical Front, SAF = Subantarctic Front, AAPF = Antarctic Polar Front, AAD = 

Antarctic Divergence, CDW = Circumpolar Deep Water, STW = Subtropical Water, SAW 

= Subantarctic Water, CSW = Circumpolar Surface Water, AASW = Antarctic Surface 

Water. 

 

result of cold water sinking at the Antarctic Polar Front (McCave & Carter 

1997).  However, the present day configuration of oceanic fronts and 

water masses in the New Zealand sector of the Southern Ocean was not 

established until the late Early to Late Miocene, Nelson & Cooke (2001) 

state that no oceanic fronts are positively identifiable during the 

Paleocene.  Given this, Nelson & Cooke‟s (2001) interpretation of oceanic 

front development was based on the assumption of ice free conditions 

during the Paleocene and it is possible that brief Antarctic glaciation could 

have resulted in periodic development of an Antarctic Polar Front on 

timescales below the resolution of that study.  Conversely, if there was no 
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Antarctic Polar Front for AAIW to sink along, it would appear that the 

source of intermediate water during the Late Paleocene could be similar to 

that suggested for the Late Eocene by Lazarus & Caulet (1993).  Based 

on the mixing of cool and warm water radiolarians away from the Antarctic 

continent during this period, Lazarus & Caulet (1993) inferred a northward-

moving cool intermediate water was developed in, and sinking from, 

surface water near Antarctica. 

 

Applying this model to the paleogeographic map for the upper Teurian 

(Figure 5.19), calving Antarctic glaciers responsible for downwelling and 

invigoration of ocean currents initially delivered ice rafted debris to 

Campbell Island on the southern margin of the Campbell Plateau in the 

upper Teurian.  During the same period, invigorated currents moving along 

the eastern margin of Zealandia would have eventually resulted in non-

deposition at this site, where large increases in Zr at the boundary 

between the Garden Cove Formation and Tucker Cove Limestone 

reflected winnowing of sea-floor sediments and concentration of heavy 

minerals (Enclosure 1).  Further north, these nutrient-rich currents were 

forced to rise, either as a result of prevailing westerly winds, as suggested 

by Killops et al. (2000), or topographic features, resulting in the formation 

of widespread upwelling zones and deposition of bio-siliceous sediments.  

The widespread nature of this upper Teurian upwelling event is evidenced 

by descriptions of bio-siliceous deposits of this age at ODP Site 1121 

(Figure 5.19) where Hollis (2002) suggests the rate of compacted 

accumulation doubled from 15 to 30 mm/ka due in large part to a sudden 

and pronounced increase in all siliceous microfossils during this period.  In 

shallower sites near the shelf/slope break, such as at Mead Stream, this 

increased productivity resulted in the expansion or intensification of the 

OMZ responsible for influencing the deposition of the Waipawa Formation.  

The identification here of fossil contourite deposits, the Clarence Drift (see 

section 5.3.1) supports this model by showing that the Teredo Limestone 

formed under the influence of currents moving parallel to the paleo-slope. 

 

It is interesting to note that while the Waipawa Formation was deposited 

over a 500 000 yr period during the upper Teurian, the invigorated
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Figure 5.19 Paleogeographic reconstruction for New Zealand during the Late Paleocene 

(56 Ma) (after Kamp 1986; King et al. 1999) showing the distribution of the Waipawa 

Formation (after Killops et al. 2000) and paleo-circulation directions of postulated 

intermediate depth ocean currents (following Hollis et al. (2003a) (after Huber & Sloan 

2001; Bice & Marotzke 2002)).  IRD localities denote locations of documented Late 

Paleocene ice rafted debris.  CA: Campbell Island; MPE: Marlborough Paleo-embayment; 

TB: Taranaki Basin; ECB: East Coast Basin; CB: Canterbury Basin; GSB: Great South 

Basin; CP: Campbell Plateau.   

 

currents responsible for unconformity formation at Campbell Island and 

the condensed sections in southeastern Marlborough were much longer 

lived.  At both locations, unconformity formation and reduced 
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sedimentation conditions lasted from the upper Teurian to Mangaorapan 

(Hollis et al. 1997, Chris Hollis pers. comm. 2010), suggesting aberrant 

climatic events such as the PETM had little effect on this circulation 

pattern. 

 

Sites where this upper Teurian to Mangaorapan oceanographic event is 

recorded share no characteristics that are common to all.  For example, 

the Waipawa Formation at Mead Stream was deposited at bathyal water 

depths (Strong et al. 1995) while the Tartan Formation, the lateral 

equivalent of the Waipawa Formation in the Great South Basin, was 

deposited in an inner shelf environment (0-20 m) (Schiøler et al. 2010).  

This event is also not only recorded in eastern basins, but also in the 

Taranaki Basin on the western margin of Zealandia (Figure 5.19).  It is 

therefore suggested that one mechanism alone cannot be invoked to 

account for deposition of the lithofacies related to this event and that local 

factors, such as topography and the effect of eustatically driven sea-level, 

must be important.  In southeastern Marlborough, features such as the 

Marlborough paleo-platform and a possible seaway linking the 

Marlborough paleo-embayment with the Canterbury Basin (Figure 5.1) 

(Field et al. 1989; Crampton et al. 2003) likely influenced depositional 

processes within this region.  However, the extent to which such 

morphologic structures played a role is difficult to quantify because of the 

limited nature of appropriate outcrop. 



 

187 
 

CHAPTER 6 
SUMMARY AND CONCLUSIONS 

 

The eastern margin of the micro-continent of Zealandia contains unique, 

high latitude, southwest Pacific rock records of climatic change through 

the Late Cretaceous to Paleogene.  This study has focused on some 

selected key sites from this margin, investigating some sections in 

southeastern Marlborough and on Campbell Island to document and better 

understand sedimentary responses to climatic variation during the Late 

Paleocene to Early Eocene (early Paleogene), thereby satisfying the aims 

outlined in Chapter 1. 

 

6.1 REVISED PALEOCENE-EOCENE LITHOSTRATIGRAPHY OF 

SOUTHEASTERN MARLBOROUGH 

As part of this study, a revision of the early Paleogene stratigraphy of 

southeastern Marlborough was considered.  This involved a 

reinterpretation of the lithostratigraphy at the key Kaikoura wharf section 

as well as suggesting future stratigraphic nomenclature for specific units in 

the region.  Sedimentologic and micropaleontologic studies of the 

sedimentary succession at Kaikoura wharf have shown that the Teredo 

Limestone is confined to the upper greensand unit only at this site (Table 

5.1).  The lower greensand bed at the site, previously considered to 

represent the base of the Teredo Limestone (Table 5.1), is here 

considered to be the uppermost part the of the underlying Mead Hill 

Formation.  This study has shown that the name ‘Teredo Limestone’ is an 

inappropriate one for this stratigraphic unit based on the premises that the 

identification of Teredo tubes is problematic, the unit is actually a 

glauconitic, calcareous sandstone, not a limestone, and the name does 

not utilise a local geographic locality.  For these reasons it is suggested 

that in future studies the Teredo Limestone Member of the Amuri 

Limestone be elevated to formation rank and be renamed the South Bay 

Formation, containing the Hundalee Sandstone Member (a basal, cream 

to grey, massive, slightly calcareous sandstone) overlain by the Dart 

Greensand Member (a highly calcareous, glauconitic sandstone).  It is 
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also suggested that in future work the present informal lithotypes of the 

Amuri Limestone be raised to formal member status with appropriate 

stratigraphic names. 

 

6.2 LITHOFACIES CHANGES IN SOUTHEASTERN 

MARLBOROUGH AND CAMPBELL ISLAND 

As part of the first two aims of this study (Chapter 1), sedimentologic 

investigations, including both detailed field descriptions and petrographic 

studies, have shown that some significant changes in depositional 

processes occurred locally in southeastern Marlborough and on Campbell 

Island during the Late Paleocene to Early Eocene.  In southeastern 

Marlborough, normal ‘background’ sedimentation represented by micro-

bioclastic sediments of the Mead Hill Formation and Amuri Limestone was 

periodically interrupted by the deposition of siliceous mudstone of the 

Waipawa Formation at the distal Mead Stream site during this period.  

Petrographic study of the Waipawa Formation shows rapid increases in 

the abundance of radiolarian microfossils and sponge spicules in 

comparison to the underlying Mead Hill Formation and overlying Lower 

Limestone lithotype of the Amuri Limestone.  Thin sections of samples 

from the Waipawa unit also show extensive bioturbation and rare pelletal 

and vermicular glaucony.  In more proximal sites, at Muzzle Stream and 

Kaikoura wharf, formation of a regionally extensive unconformity was 

followed by deposition of quartz and glaucony rich sediments of the upper 

Teurian to Mangaorapan (Late Paleocene to Early Eocene) Teredo 

Limestone.  Thin sections of samples from this unit show it consists of well 

sorted, fine to very fine sand sized siliciclastic grains and fine sand sized 

pelletal and vermicular glaucony, set in a calcareous matrix that shows 

evidence of secondary silicification. Even though this unit is a lateral 

equivalent of the Waipawa Formation, both the base and top of the Teredo 

Limestone are time-transgressive, meaning the unit is upper Teurian at 

Muzzle Stream, while to the southwest at Seymour Stream the unit is 

Waipawan to Mangaorapan in age.  On Campbell Island, the time period 

of interest is represented by an unconformity between the Garden Cove 

Formation and Tucker Cove Limestone. 
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The suggestion that lithofacies changes observed in southeastern 

Marlborough and on Campbell Island represent a significant change in 

depositional processes is supported by inorganic geochemical proxies 

(Enclosure 1).  At Mead Stream, in southeastern Marlborough, increases 

in excess silica (Si[exc]), excess barium (Ba[exc]) and total organic carbon 

reaching as high as ~5% in the Waipawa Formation reflect abrupt 

enhancement of productivity through this unit.  This is associated with 

reduced oxygen conditions at the site as a result of degradation of large 

amounts of organic debris sinking through the water column throughout 

the period of increased productivity.  An inorganic geochemical proxy for 

terrigenous supply (TRG) also shows a significant increase during the 

deposition of the Waipawa Formation, implying an increased supply of 

clays to this distal site during the upper Teurian.  Though geochemical 

records from Muzzle Stream and Kaikoura wharf in southeastern 

Marlborough do not show such abrupt changes as are recorded at Mead 

Stream, they do show a general shift from bio-siliceous to bio-calcareous 

dominated deposition from the Late Cretaceous to Early Eocene.  On 

Campbell Island, inorganic geochemical proxies show similar trends to 

those observed at Muzzle Stream and Kaikoura wharf.  Increases in Zr, 

associated with contemporaneous increases in rare earth elements across 

the unconformable boundary between the Garden Cove Formation and 

Tucker Cove Limestone, are interpreted to result from the winnowing of 

sea-floor sediments and concentration of heavy minerals under 

invigorated current action responsible for the unconformity formation at the 

site. 

 

Palinspastic mapping of the Teredo Limestone (Figure 5.9C) further 

implies that the unit was deposited as a result of processes starkly 

disparate to those responsible for deposition of the bounding Mead Hill 

Formation and Amuri Limestone in southeastern Marlborough.  In contrast 

to other Late Cretaceous to Early Eocene units from the region, the 

Teredo Limestone increases in thickness to the p-southeast (Figure 5.9A, 

B, C) and is not recorded in distal sites towards the p-northwest of Dart 

Stream in the Clarence Valley and Kaikoura wharf on Kaikoura Peninsula.  

Furthermore, along with sedimentologic descriptions from key sites in 
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southeastern Marlborough, Figure 5.9C suggests that the Teredo 

Limestone was deposited as a ‘skin drift’ on the Marlborough paleo-

platform.  One ‘lobe’ of this deposit, centred on the present day middle 

Clarence Valley, and here named the Clarence Drift, appears to have 

been deposited under the influence of intermediate depth contour currents 

that affected the Marlborough paleo-embayment during the Late 

Paleocene to Early Eocene. 

 

6.3 ICE IN THE GREENHOUSE 

Evidence for a period of enhanced siliceous productivity, invigorated 

ocean currents and possible episodes of ice rafting is consistent with a 

brief period of Antarctic ice sheet growth during a phase of global cooling 

in the Late Paleocene.  Calving Antarctic ice sheets responsible for the 

transport of quartz pebbles to Campbell Island would have also cooled 

waters adjacent to the Antarctic continent resulting in downwelling and 

invigoration of intermediate depth ocean currents.  These currents 

subsequently impinged upon the eastern margin of the micro-continent of 

Zealandia where they reworked fine to very fine sand sized siliciclastic 

grains and perigenic glaucony across the Marlborough paleo-platform and 

supplied nutrient rich water to sites such as ODP Site 1121 and the 

Marlborough paleo-platform where pronounced upwelling resulted in the 

deposition of bio-siliceous sediments during the Late Paleocene (Figure 

5.19). 

 

The possible identification of Antarctic ice sheets, ephemeral though they 

may have been, not only challenges long held beliefs that the Antarctic 

continent remained ice free during the early Paleogene greenhouse world 

but also questions the suggested mechanisms responsible for Antarctic 

ice sheet growth.  The lack of ocean gateways in the Southern Ocean 

during this time effectively rules out thermal isolation of the Antarctic 

continent as a driver.  Given that this period of ice sheet growth is 

contemporaneous with a documented period of enhanced global ocean 

productivity and terrestrial carbon accumulation and related draw down in 

atmospheric CO2, it is suggested this may represent the driver responsible 
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for brief Antarctic glaciation during this period, though the postulated link 

requires further investigation. 

 

However, it may not be entirely correct to invoke one mechanism to 

account for both enhanced siliceous productivity and invigorated ocean 

currents during the early Paleogene.  The period of enhanced siliceous 

productivity was relatively short lived, only occurring between about 58 

and 57.5 Ma, and while coinciding with the above postulated period of 

global cooling, nevertheless ocean currents remained invigorated across 

the Paleocene-Eocene boundary and into the Mangaorapan.  It remains 

difficult to envisage Antarctic ice surviving to drive invigorated ocean 

currents in the southwest Pacific during the period of aberrant warming at 

the Paleocene-Eocene boundary into the prolonged warm period of the 

early Eocene climatic optimum. 

 

6.4  SUGGESTIONS FOR FUTURE STUDY 

Though southeastern Marlborough contains important records of Late 

Cretaceous to early Paleogene climatic events, the sedimentary facies 

developed in this region are markedly different from those developed in 

the East Coast Basin (North Island) proper to the northeast and in the 

adjacent Canterbury Basin (South Island) to the southwest.  It is therefore 

suggested that future work focus broadly on linking records from 

southeastern Marlborough to well studied successions in Hawke’s Bay 

around Tawanui and Te Hoe Stream and the mid-Waipara region in 

Canterbury Basin.  For the former, this could be achieved through 

investigation of sites around Tora, southern Wairarapa, which lay on the 

western side of the Marlborough paleo-embayment during the Late 

Cretaceous to Early Eocene (Figure 5.1).  While for the latter, investigation 

of key sections in the area of the Hurunui High in North Canterbury 

between Haumuri Bluff and mid-Waipara (Figure 5.1) is desired. 

 

On a much finer scale, it is suggested that investigation of the origin of 

limestone-marl alternations in the Amuri Limestone is required to 

determine the extent to which diagenetic redistribution of calcite has 

played a role in the formation of this style of bedding. This appears to be 
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crucial in establishing whether or not the limestone-marl alternations in this 

unit formed as a result of changes in primary sedimentary processes, 

which might then have been formed in response to early Paleogene 

climate change in the southwest Pacific. 

 

It is suggested that further investigation of glaucony from the Late 

Paleocene-Early Eocene Teredo Limestone Member of the Amuri 

Limestone in southeastern Marlborough also be carried out.  This should 

initially involve the characterisation of these grains, including the 

morphology, mineralogy and geochemistry, to determine if they are 

suitable for isotopic type studies.  If this is the case, isotopic studies 

including Rb/Sr and K/Ar dating of glaucony grains should be carried out 

to date sections where biostratigraphic control is poor or lacking and to 

differentiate authigenic or perigenic grains from those derived by recycling 

of glaucony from the underlying Claverley Sandstone, thereby quantifying 

the amount of reworking of glaucony in this unit.  Following this, 

investigation of neodymium and hafnium isotopic ratios in glaucony grains 

could aid firstly in constraining the source of intermediate water affecting 

southeastern Marlborough by broadly discriminating between warm deep 

saline water from the tropical Pacific (originally Tethyan) versus 

intermediate water from Southern Ocean sources.  Secondly, these 

isotopic records could record fluctuations in mechanical weathering on the 

Antarctic continent as a result of periodic glaciation during this period of 

otherwise greenhouse conditions during the early Paleogene.  
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APPENDIX A 
GEOLOGICAL TIMESCALES 
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APPENDIX B 
SAMPLE CATALOGUE 
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APPENDIX C-1 
PETROGRAPHIC DATA 

 
Semi-quantitative abundance limits used during petrographic analysis. 

 
Abbreviation Term % Abundance 

VA Very abundant >75 
A Abundant 50-75 

VC Very common 25-50 
C Common 15-25 
M Many 5-15 
S Some 1-5 
R Rare <1 
- Absent 0 

 

A: angular; a: subangular; r: subrounded; R: rounded.   

PS: poorly sorted; MS: moderately sorted; WS: well sorted. 
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APPENDIX C-2 
REPRESENTATIVE BULK UNORIENTED XRD TRACES 
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APPENDIX D-1 
CAMPBELL ISLAND BULK GEOCHEMICAL DATA 

 

 

 

 

 
*Thickness with respect to the boundary between the Garden Cove Formation and Tucker Cove Limestone 
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APPENDIX D-2 
MEAD STREAM BULK GEOCHEMICAL DATA 

 

 

 

 

 
*Thickness with respect to the Cretaceous/Tertiary boundary
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APPENDIX D-3 
MUZZLE STREAM BULK GEOCHEMICAL DATA 

 

 

 

 

 

 

 
*Thickness with respect to the boundary between the Mead Hill Formation and Teredo Limestone Member
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APPENDIX D-4 
KAIKOURA WHARF BULK GEOCHEMICAL DATA 

 

 

 

 

 
*Thickness with respect to the Cretaceous/Tertiary boundary 
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