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Abstract

Current macroscopic Internet topology discovery projectsuse large numbers of van-

tage points to conduct traceroute surveys of Internet paths. These projects send bil-

lions of unsolicited packets to millions of routers within the Internet. Due to the

structure of the Internet, many of these packets are sent without gaining any new

topology information. In this thesis, we implement and extensively test a large-

scale doubletree system designed to increase the efficiencyof topology mapping

projects and reduce the load that they place on the Internet.Also, for all of the

effort that current projects put into gathering data, the methods used do not dis-

cover, with confidence, the entire set of paths. We propose, implement and critique

a novel algorithm, economical MDA traceroute, which is designed to discover a

comprehensive topology in a manner which is more efficient than the current state

of the art. We show that, compared to current methods, well over 90% link coverage

can be obtained while reducing the number of probes used by over 60%. We also

evaluate alternate methods for making large scale topologydiscovery projects more

efficient and comprehensive; such as using BGP routing data to guide probing.
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Chapter 1

Introduction

1.1 The Problem

Data collected by macroscopic Internet topology discoveryprojects is used in a

number of ways by Internet researchers. For example, Faloutsoset al.use traceroute

data to determine that the Internet structure exhibits power-law characteristics [12].

RadarGun uses traceroute to produce router-level Internettopologies [6]. Leskovec

et al.use topology data to observe graph densification occurring in the Internet [21].

Due to the commercial nature of the majority of the networks that comprise the In-

ternet, topology details are considered sensitive and thusare not readily available.

The Internet’s topology must therefore be inferred by probing. Probing, in the con-

text of this thesis refers to the process of sending specially crafted packets, known as

probes, into the Internet to elicit responses from the routers the forwarding path. Be-

cause Internet routing differs depending on geographic location, mapping projects

use a large number of geographically distributedvantage pointsto generate com-

prehensive data. This combined with the sheer scale of the Internet Protocol (IP)

address space means that inferring accurate, complete topologies is a difficult task.

There has however, been significant criticism of the methodsby which data is cur-

rently collected. Lakhinaet al.show that the power-law observations made in [12]

are perhaps an artifact of the measurement process, rather than the underlying topol-

ogy [20]. Others have also investigated the effects of over-sampling the edges of the

Internet [2, 13, 28, 34]. It is therefore vital for collection methods to be improved

so the underlying topology is represented more accurately.
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actual paths between
source and destination

C

B

E

D

src A F dst

Figure 1.1: An example topology caused by load balancing. There are two paths
that can be observed to the destination; A-B-D-F and A-C-E-F.

src A B D F dst path discovered by
traceroute

Figure 1.2: An example path discovered by traceroute when tracing the topology
shown in Figure 1.1. Note that only one of the paths are discovered, the interfaces
C and E are missed by this trace.

Macroscopic topology discovery projects such as CAIDA’s Skitter [14] and Ark

[7], DIMES [31] and iPlane [24] use a specialised version of the traceroute algo-

rithm which allows them to discover the IP paths to large numbers of destination

IP addresses from many vantage points. Traceroute is an algorithm that exploits a

feature of the Internet Protocol. It works by sending packets which are designed

to expire at a known distance into the network. When a packet expires in the In-

ternet, RFC 792 [29] says the router should send an Internet Control Measurement

Protocol (ICMP) time exceeded message to the sender. By causing these packets to

expire at successive routers, a path can be incrementally discovered using the source

address of the time exceeded messages.

There are two major flaws to this approach which this thesis addresses. When

tracing a large number of destinations from a single vantagepoint, a tree, rooted

at the vantage point, is observed. The effect of this is that the nodes toward the

root of the tree are traversed repeatedly. For a set of destinations traced, there

are a substantial number of probes that are sent without gaining any new informa-

tion. The doubletree [9, 10, 11] algorithm proposed by Donnet et al.addresses this

problem by remembering encountered topology to reduce redundant probing. This

thesis investigates several issues surrounding this algorithm in macroscopic Internet

topology discovery projects.

The other major problem that macroscopic topology discovery projects face is

due to conventional traceroute algorithms not discoveringa comprehensive topol-

2



ogy. This is because there is rarely only one path between twopoints in the In-

ternet [5]. To provide redundancy in case of network failures, network operators

will often provision alternate links. In order to distribute traffic over these alternate

links, network operators use a technique known as load balancing. Load balancing

routers forward packets out over two or more outgoing links.The implications of

this is that because regular traceroute only discovers one path between the source

and destination, it will miss any alternate paths. For example, Figure 1.1 shows

a hypothetical set of paths between a source and destination. When traceroute is

used to conduct a trace to the destination, it only discoversthe single path shown in

Figure 1.2, missing the alternate path.

These two problems efficiency and comprehensiveness, form the major thrust of

this thesis. The goal is to create algorithms which allow a comprehensive topology

to be reliably discovered while minimising the number of probes sent. There is an

inherent tension between these two goals however: in makingthe topology discov-

ery more comprehensive, we must send more probes to ensure that all the potential

paths have been seen. However, in making the topology discovery more efficient,

we make assumptions about how the networks are structured inorder to avoid re-

probing sections of the path which have been previously discovered. This creates

the potential for topology to be missed. There is no perfect solution to this problem;

however the algorithms we present make improvements to the current state of the

art. We also investigate alternate sources of information with which we can guide

probing, such as Border Gateway Protocol (BGP) routing datato reduce probes

sent.

1.2 Thesis Overview

This chapter outlines the problems that the thesis addresses and how the thesis has

made contributions to the field of macroscopic Internet topology discovery. The

next chapter provides some background information which allows the thesis to be

read in the right context.

In Chapter 3 we present the economical Multipath Detection Algorithm (MDA)

3



traceroute algorithm that we have developed. This algorithm allows high-confidence

topology discovery like MDA traceroute [4] but remembers the interfaces previ-

ously observed by other vantage points so that it can minimise the number of probes

that it sends. We discuss the motivations behind the design and the details of the al-

gorithm. Chapter 4 presents an in-depth comparison of various large scale probing

methods. We have carried out several experiments using variations of traceroute,

doubletree, MDA traceroute and economical MDA traceroute.The results from

these experiments are presented, and the various methods compared and discussed.

Chapter 5 addresses the issues that arise when conducting large scale measurements

using a cooperative probing scheme as with doubletree. We present a method and

implementation which is able to cope with vantage points which probe at different

speeds to one another, thus improving the overall efficiencyof the system. Chap-

ter 6 is a discussion about the local stop set in doubletree. We have conducted

extensive experimentation and simulation regarding the optimal lifetime of the lo-

cal stop set. In Chapter 7 we discuss using BGP routing data toinfluence probing.

We investigate using BGP routing information to infer path lengths such that tracing

can specifically target sections of paths which have not yet been probed thoroughly.

Chapter 8 concludes the thesis and outlines areas which are open to further research.

1.3 Contributions

This thesis provides a number of contributions to the field ofmacroscopic Internet

topology discovery.

The most notable of these is the conception, development andimplementation

of an algorithm which provides confidence that a complete topology has been dis-

covered whilst reducing the number of probes that must be sent when compared to

the algorithm proposed in [5] by Augustinet al.. This algorithm collects informa-

tion regarding the destinations to which a node has been seenin the path to. This

allows MDA traceroute to remain in an economical tracing mode while it can de-

termine that a section of path has been probed enough to give confidence that all of

the topology has been discovered. Testing of this algorithmon a production topol-
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ogy discovery platform (Archipelago) found that it was ableto maintain around

90% link coverage while reducing the number of probes sent by64% compared

with MDA traceroute. Thus significantly reducing both the time used and amount

of unsolicited traffic generated. We also investigate the causes of the undiscov-

ered topology. We discover that a previously unidentified type of load balancing,

per-source/destination is responsible for a large portionof this topology loss.

In addition to this, the existing topology discovery algorithm, doubletree [11, 9,

10] has been implemented within scamper [22], the active measurement software

used by the Cooperative Association for Internet Data Analysis (CAIDA) on their

Archipelago platform. Doubletree improves the efficiency of the regular traceroute

algorithm by collecting information about previously discovered topology which al-

lows it to stop probing when a known path is encountered. Although doubletree has

been previously tested in simulation, it has never been implemented in a way such

that it can be used in a real-world topology discovery project. This thesis describes

the challenges involved in implementing a distributed system which allows large-

scale collection of data using the doubletree method. Substantial analysis has been

conducted on this system and on the data that it produces, such as how often the

information held should be cleared and how to deal with under-performing vantage

points.

Another area of research that the thesis describes is the useof BGP routing

data to influence and guide active measurement algorithms. BGP data provides

information about the Autonomous System (AS) path to a givendestination. We

investigate how to best use the AS path information to build an estimated width of

each AS. We propose and simulate an method which is able to learn these widths

and use them to infer at the IP level, the sections of the path which have not been

previously traced.

5



Chapter 2

Background

2.1 Introduction

This chapter introduces three active probing techniques which we leverage to im-

prove the efficiency and coverage of macroscopic Internet topology discovery projects.

The first of these - traceroute - is the method currently used in macroscopic topol-

ogy discovery projects, however it is inefficient and does not gather a comprehen-

sive topology. The other two algorithms - doubletree and MDA- aim to improve

the efficiency and coverage respectively, of traceroute.

This chapter also discusses the topic of macroscopic Internet topology discovery

and defines two coordination methods - team probing and cooperative probing -

which are used to coordinate large sets of vantage points. Team probing divides

the work amongst participating vantage points such that each vantage point only

traces a fraction of the overall destination list. However,with cooperative probing,

all vantage points trace all destinations, but share information about topology they

have discovered to help reduce the work that the other vantage points must do.

Finally, we introduce techniques for alias resolution. Alias resolution involves

reducing the interface-level data obtained by traceroute,where each node represents

an interface on a router, to a router-level graph such that each node represents a

router.

6



A

C

B

TTL 1 2 3

Figure 2.1: an example of how the ICMP time exceeded messagescan be used to
infer a path. A packet is sent with a TTL of one so that it expires at A. A replies with
an ICMP time exceeded message, the source address (A) of the message is used to
identify the router. This process is continued for TTLs two and three, discovering
routers B and C. The links are inferred between the discovered interfaces, to give a
path of A-B-C.

2.2 Traceroute

Traceroute [18] is perhaps the most ubiquitous per-hop Internet measurement tech-

nique. Traceroute works by exploiting an IP feature which allows a response to be

elicited from a router at a known distance into the network. This is achieved by ma-

nipulating the Time To Live (TTL) field in the IP header of a packet which is then

sent toward the destination of a path to be inferred. The TTL field is supposed to be

used to prevent a packet from never exiting a routing loop. Each router that a packet

visits on a path decrements the field by one. When the value reaches one, the packet

expires; the router at which it expires sends an ICMPTime Exceededpacket back

to the source telling the source that the packet did not make it to the destination.

Traceroute uses the TTL field to elicit a response from a router at a defined dis-

tance (in hops) into the network. The response contains the address of an interface

at the router at which the packet expired. To build up a view ofthe path between

a source and a given destination, traceroute starts by sending a probe packet with

a TTL of one, records the address of the responding router andthen sends a probe

with a TTL of two and so on until a response is received from theaddress that it

was probing toward as shown in Figure 2.1. There are also other conditions which

traceroute stops on depending on the implementation. For example, if a routing

loop is detected or a series of hops do not respond to probes. Many probes must be

sent into the network because traceroute needs to send at least one probe per hop in

order to discover a complete path.

7



210.7.32.1 210.7.36.67 210.7.47.22

KAREN (Research Network)

203.167.234.85

TELSTRA
(Commercial ISP)

130.217.2.6192.107.171.130

hlz−nz
192.107.171.49

Waikato University

Figure 2.2: A real-world example of outgoing links from the hlz-nz Ark vantage
point. The majority of destinations traced will traverse the commercial path, with a
small number being routed over KAREN. These six routers are repeatedly traversed
by Ark.

2.3 Efficient Topology Discovery

As the number of vantage points in a macroscopic Internet topology discovery

project are scaled up - from a single vantage point tracing a path to a single des-

tination - to a set of vantage points all tracing the paths to millions of destinations,

the amount of time and resources used is also scaled up. To discover topology,

traceroute must actively generate packets and send them unsolicited to destinations

in the Internet. When a large-scale system is being used to trace a large number

of destinations, these unsolicited packets can appear, to network operators, to be

an attack on their infrastructure. This could result in complaints, or modification of

firewall rules to prevent their routers from responding. Therefore it is in the interests

of all parties involved to minimise the number of probes used.

Due to the tree-like structure of the Internet, traces to several destinations must

repeatedly traverse the same outgoing links over and over. For example, the path

out of The University of Waikato’s network and then the localISPs, as seen in

Figure 2.2, is such that the first four hops in almost every trace are the same, with

many traces having much longer sequences of hops in common. The effect of this

is a large number of wasted probes; the first time a path is probed new topology is

discovered, but with subsequent traces some probes are sentwithout gaining any

new information.

This effect can also be observed when several vantage pointsare tracing toward

a single destination. As the paths converge toward the destination, probes are sent

8



src A

B

C

dst1

dst2

dst3

dst4

(a) monitor−rooted tree

src1

src4

src2

src3

dst

A

C

B

(b) destination−rooted tree

Figure 2.3: Internet path trees. (a) is an example of the treewhich is seen when
probing multiple destinations from a single vantage point.(b) is an example of the
tree seen when probing a single destination from multiple vantage points.

without any new topology being discovered. Figure 2.3a is a simplified example of

a tree of paths which are rooted at a single vantage point. As it traces multiple desti-

nations, the paths diverge. Figure 2.3b demonstrates the tree rooted at a destination

which has been traced by multiple vantage points.

Doubletree [9, 10, 11], a variation on the regular traceroute algorithm, addresses

this problem and thus increases the efficiency of macroscopic Internet topology dis-

covery. Doubletree assumes that Internet paths form two distinct trees; one rooted

at the vantage point when probing multiple destinations, and the other rooted at the

destination when multiple vantage points are being used. Inorder to reduce redun-

dant probing, doubletree begins a trace by sending probes toa mid-point in the path

to the destination. The mid-point is chosen to avoid the firstprobe reaching the

destination most of the time. The authors of doubletree suggest a value for which

the destination is not reached between 80% and 95% of the time. This maximises

the efficiency while reducing the probability of appearing like a distributed denial

of service attack on the destination which could occur if allvantage points send a

probe which reaches the destination [11]. From the mid-point, the doubletree al-

gorithm then proceeds to follow the algorithm of regular traceroute, increasing the

TTL value of the probe packets, and enumerating each of the interfaces in the path.

The difference between doubletree and traceroute is that while probing, dou-

bletree keeps a record of the interfaces encountered. This allows it to halt probing

9



global stop set
b, c

local stop set
f, e

backwards mode

be

a

c

d

f

1 2 3 4 5 6

forwards mode

Figure 2.4: An example doubletree trace. Tracing begins at TTL 4. Assuming that
the interfacesb andc are in the global stop set, forwards probing will discovera

and thenb, at which point it will switch to backward probing asb is in the global
stop set. Once in the backward probing mode,d will be discovered, followed bye,
which, because it is in the local stop set, will cause probingto halt.

when a reply is received from an interface which has been discovered by another

vantage point which has probed the same destination. This collection of previously

encountered interfaces is known as theglobal stop set. The assumption is that the

sequence of hops from an observed interface to the destination is the same for all

vantage points. Once doubletree has found a stop condition for forward probing,

whether that be by reaching the destination, discovering anaddress in the global

stop set, or one of the other stop conditions that tracerouteobserves, it switches

into a backward probing mode where it begins probing at a TTL just before the

mid-point it started at. While in backward probing mode, it decrements the TTL

by one with each probe, thus allowing it to effectively tracebackward towards the

vantage point. Tracing is halted when an interface is discovered which is a part of

the local stop set. The local stop set is a record of all of the interfaces seen bya

particular vantage point while probing. The assumption with the local stop set is

that the sequence of hops from an interface back to a vantage point is the same for

every trace from that vantage point.

Figure 2.4 gives an example of this process. In this example,the mid-point used

is four. Probing begins in the forward probing mode, which discoversa at TTL

four. As a is not in the global stop set, the TTL will then be incrementedby one

andb discovered. Becauseb is in the global stop set, forwards probing will halt

and backwards probing begins at TTL three. The reply from TTLthree will reveal

10



d. Becaused is not in the local stop set, the probe TTL will be decrementedande

discovered. Ase is in the local stop set, probing will halt.

The doubletree authors claim that the algorithm allows a reduction in measure-

ment load of approximately 76% whilst maintaining link coverage of over 90% [11].

It should be noted that these results are based on simulations using skitter [14] data.

This is revisited with data collected by our implementationof doubletree in Chap-

ter 4.

2.4 Comprehensive Topology Discovery

The topology discovery algorithms and techniques described thus far have one com-

mon failing: they all operate on the assumption that there isa single path between a

source and a destination. Internet network operators make use of a routing technol-

ogy known as load balancing which allows routers to distribute traffic over multiple

outgoing links. The result of this is the potential for thereto be a number of different

valid paths to any given destination which traceroute may not discover.

To understand the impact of this fully, we first need to describe the three methods

that routers use to manage load balancing. Augustin [3] describes these as per-

flow, per-destination, and per-packet. Per-flow load balancing forward packets in

such a way that a flow of packets is forwarded out over the same link. A flow is

based on several fields in the IP and either Transmission Control Protocol (TCP)

or User Datagram Protocol (UDP) headers. These are the Source and Destination

Addresses and Ports, Protocol and also a varying combination of the IP Type Of

Service (TOS), ICMP Code and Checksum fields. Per-destination load balancing is

a coarser version of per-flow load balancing where only the Destination Address in

the IP header is used for load balancing. Per-packet load balancing is focused solely

on distributing traffic evenly over outgoing links. Thus per-packet load balancing

pays no attention to the information in the packet headers. In order to enumerate all

paths between a source and a destination, the traceroute algorithm must be able to

manipulate probe packets so that it can accurately probe allof the branches in the

path caused by load balancing routers.
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n 2 3 4 5 6 7 8 9 10

95% 6 11 16 21 27 33 38 44 51
99% 8 15 21 28 36 43 51 58 66

n 11 12 13 14 15 16 17 18 19

95% 57 63 70 76 83 90 96 103 110
99% 74 82 90 98 106 115 123 132 140

Table 2.1: The number of probes that must be sent to a given TTLto rule outn
interfaces

src destA B C D

1 1 1 1 1

1 6 6 6 1

traceroute probes = 5

= 20MDA probes

Figure 2.5: A simple path. Traceroute would use five probes toinfer the topology
whereas the MDA would uses twenty to find all interfaces. We assume that the
source does not have any load balanced outgoing paths, and that the router with
interface D will always choose a directly connected path, sothat only one probe is
required.

The MDA proposed by Augustin [4] is able to enumerate load balanced paths

by varying theflow identifier(the fields a router consults when making a forwarding

decision) of probe packets in a controlled manner such that there can be statistical

confidence that the returned topology contains all of the possible paths. A large

portion of our work is derived from the MDA. The MDA begins by assuming that

at any given TTL there are two interfaces (that is, the routerat the TTL before this

has two outgoing links) and sends enough probes to test this hypothesis assuming

even load balancing. If a second interface is indeed discovered, the algorithm then

proceeds to test the hypothesis that there are three interfaces, and so on until the

final hypothesis has been disproved at the specified confidence level. A portion of

the look-up table used to determine the appropriate number of probes can be seen

in Table 2.1. For example, to rule out that there are two interfaces at a TTL to

95% confidence, six probes must be sent, with the same interface returned for each

probe.

The MDA must therefore send many more probes than regular traceroute. Fig-

ure 2.5 shows an example path in which there are five hops. Traceroute would send
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Figure 2.6: A best-case example of cumulative probe usage bytraceroute and MDA
traceroute for a path with 15 hops. The MDA traceroute is using a 99% confidence
level and so must send at least eight probes to most TTLs.

five probes whereas the MDA would have to send at least 30 probes to discover

the same path to 95% confidence. Figure 2.6 illustrates how quickly the number

of probes used increases with longer path lengths. By the time a 15 hop path is

reached, traceroute has sent 15 probes whereas MDA traceroute has sent at least

106 probes to rule out any alternate paths. This matter is discussed further in Chap-

ter 3 where we present a version of this algorithm which is designed to be more

economical than the original MDA specified by Augustinet al. [4].

2.5 Macroscopic Internet Topology Discovery

Having accurate knowledge about the structure at the IP level of the Internet is use-

ful to researchers who can use it to model and analyse Internet routing. Collecting

the data is a non-trivial task however. Most of the networks that comprise the In-

ternet are maintained by private organisations, so there are few organisations that

publish detailed information regarding the structure of their networks. Because of

this, the structure must be inferred using tools such as traceroute. Since traceroute

determines a single path from a source to a destination, a common way to gather

an Internet-wide topology is to use a globally distributed set of vantage points [30],
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each of which carries out traces to a representative sample of all of the end points

in the Internet [7, 14, 24, 25, 31].

2.5.1 Coordination Methods

There are two main types of coordination methods;team probingandcooperative

probing. Team probing works by splitting the destinations to be traced amongst the

vantage points such that each vantage point only traces a portion of the overall list.

CAIDA’s Ark infrastructure, for example, makes use of two teams of thirteen

vantage points. Each team traces one random address in everyrouted /24 BGP

prefix. The addresses to be probed are divided up amongst the vantage points. Thus

the time required to trace the entire address space is approximately divided by the

number of vantage points involved. It takes approximately 48 hours for a team of 13

vantage points to trace one destination in each routed /24 Internet Protocol version

4 (IPv4) prefix. Once this is completed, the process begins again with a fresh set of

addresses generated from the prefix list. Ark has been running since 2007 and has,

as of December 2009, collected over 5.18 billion traceroutes [15].

Cooperative probing, on the other hand, is designed so that all vantage points

trace all destinations. The advantage of cooperative probing is that vantage points

are able to share information regarding topology that has already been discovered,

thus reducing the burden on other vantage points and the networks being examined.

2.6 Alias Resolution

Routers have more than one interface, as by definition, a router must be connected

to more than one network. Each interface has at least one IP address assigned to

it. This causes problems when discovering paths with traceroute, because traceroute

discovers interfaces. In other words, maps derived from traceroute data may contain

more nodes than actually exist in the Internet.Alias resolutionis the process of

folding the multiple IP addresses of a router into a single node in the map. Figure 2.7

shows how traceroute can infer a path which has more routers than actually exist, but

once alias resolution is performed, interfaces can be assigned to the router topology.
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Figure 2.7: Alias resolution example. C and D are both interfaces on a single router.
What appears to be two distinct networks before alias resolution turns out to be one
interconnected network.

src

D F

GB

C E

A

x,y

x1,x2,y1,y2

x1,y2

x2,y1
x2,y1,x1,y2

Figure 2.8: IPID usage. The packets identified by IPIDs x and yare fragmented by
the router at A into x1, x2, y1 and y2. The load balancing router at B then forwards
the fragments out links which have different speeds causingthe fragmented packets
to arrive at G out of order. The IPID allows the fragments to beuniquely identified
and reassembled correctly into the original packets.

Alias Resolution Methods

There are several methods for performing alias resolution [6, 26, 32, 33]. The Mer-

cator [26] method relies on routers using the IP address of the outgoing interface

as the source address for ICMP port-unreachable messages. This means that when

two potential aliases are determined, packets can be sent toeach of them, and if

the source address of the replies is the same, then an alias has been found. This

method is problematic as it assumes that there is only a single dominant route from

all of the router’s interfaces to a given destination, and that routers respond in this

manner [33].

Another alias resolution method, Ally [33], takes advantage of how the Internet

Protocol Identifier (IPID) field is implemented in routers. The IPID field is used in

IP packets to uniquely identify a packet for re-assembly as illustrated in Figure 2.8.
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Most router implementations use a single shared counter that increments the IPID

field for each packet they create. Using this knowledge, whena pair of potential

alias addresses are identified, packets can be sent to both and by comparing the

IPIDs of the packets received back from each. If the IPIDs received back are se-

quential (or close to each other) and in the correct order, itcan be assumed that

the two IP addresses are aliases for the same router. This method is fairly reliable,

provided that routers increment the IPID counter in a sequential manner. Some sys-

tems, the Linux kernel for example, set the IPID of all packets to zero. This makes

it impossible to determine whether the addresses are aliases or simply routers which

do not follow the convention of a single shared counter.

One other method for resolving aliases is to perform some parsing of the Do-

main Name Service (DNS) names assigned to a router interface[32] to extract in-

formation about the router that they belong to. This method takes advantage of the

tendency for Internet Service Provider (ISP)s to name theirrouters in a way which

identifies where they are located geographically within thenetwork. For example,

sl-bb21-lon-14-0.sprintlink.netandsl-bb21-lon-8-0.sprintlink.netare aliases for the

same backbone router [32]. This technique has limited applicability as the software

needs to be trained for each ISP’s naming system. Also, some ISPs do not use a

systematic naming system, do not name their routers within the DNS, or do not

keep DNS records up to date, leading to false inferences [19].

Another method suggested by Springet al. [32] is to use the maps generated

from the traceroutes and two inference rules which allow alias addresses to be

folded together. The first rule is that two adjacent addresses in the map are likely to

represent adjacent routers rather than the same router. This is because if these ad-

dresses were in fact aliases, there would be a routing loop since one alias is forward-

ing to another alias on the same router. The other rule specifies that IP addresses

immediately before a point where links merge are likely to aliases if the links are

point-to-point, as there would not be one address connectedto two different routers

with a point-to-point link.

RadarGun [6] is an improvement on the Ally method, which attempts to model

the IPID counter of a router by observing how it changes over time, and thus can cal-
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culate the rate at which it is increasing (the velocity). This calculation is performed

for each of the candidate interfaces. The velocity of a router’s IPID is usually a

straight line and so radargun computes the distance betweenall pairs of lines. Pairs

which are close together represent IPIDs which were close together and so the inter-

faces are classified as aliases. Because RadarGun uses a model of the IPID counter,

it is able to resolve aliases with far fewer probes than Ally for large graphs. We

use RadarGun to resolve aliases on a set of interfaces identified by our large-scale

testing described in Chapter 4 in order to classify the causes of missed topology.

2.7 Summary

Because network operators rarely publish detailed information regarding the struc-

ture of their networks, considerable effort must be put intogathering this informa-

tion using alternate methods. Traceroute is currently the most widely used method

for actively gathering information about the Internet at the IP level. Traceroute has

two major drawbacks, it does not discover a comprehensive topology and it probes

inefficiently, wasting resources. Doubletree attempts to improve the efficiency of

traceroute by retaining information about previously discovered paths. MDA tracer-

oute allows all load balanced paths to be discovered, improving the coverage of the

tracing process. In the next chapter we present the economical MDA traceroute

which attempts to discover all load balanced paths in an efficient manner.
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Chapter 3

Economical MDA Traceroute

3.1 Introduction

This chapter describes enhancements to the MDA traceroute technique to make it

more economical. The economical MDA aims to discover a comprehensive topol-

ogy while minimizing the number of probes that it uses to do so. In order to do this,

we build on two existing algorithms, doubletree and the MDA.

By sending multiple probes per hop like the MDA, we are able todiscover load

balanced paths. We also make use of stop sets and cooperationbetween vantage

points in a similar fashion to doubletree in order to reduce the amount of probes

needed. The assumptions made in the design of the doubletreealgorithm are not ap-

plicable when considering load balanced paths. We therefore modify the local stop

set so that it attempts to trace a path enough times to discover any per-destination

load balancers before using an economical probing mode. We also implement the

global stop set part of doubletree to reduce the amount of redundancy between van-

tage points.

In addition to describing the economical MDA that we have developed, we dis-

cuss an implementation of this algorithm which uses CAIDA’sArk infrastructure

to conduct topology discovery. The implementation is able use a dynamic set of

vantage points which it uses to probe a set of destination IPsin a cooperative man-

ner. Our system shares global stop set data between vantage points and ensures that

destinations are traced in a round-robin manner, where eachdestination is probed

by a series of vantage points.
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3.2 Motivation

Due to the manner in which MDA traceroute enumerates load balanced paths, a

load balanced traceroute must send many more probes than a regular traceroute.

While this is an inconvenience when tracing a single destination, if one wishes to

use MDA traceroute in a macroscopic Internet topology discovery project such as

Ark, the number of probes needed is almost prohibitive. Because load balanced

traces use more probes, they therefore take more time to trace each destination.

It takes an Ark team of vantage points approximately 48 hoursto fully probe the

routed /24 IPv4 address space. If MDA traceroute were to be used to trace the same

destinations to 99% confidence, it would take approximately26 days. A run time of

this magnitude is impractical as routing changes could affect the topology. That is,

a path traversed to a destination at the beginning of the run,may have changed by

the end. If we then merge the traces to give a snapshot graph ofthe IPv4 topology,

we run the risk of inferring invalid links because data inferred early in the process

may no longer be valid due to routing changes. It is thereforeimportant to reduce

the amount of time MDA traceroute takes to run. Also, becauseMDA traceroute

sends multiple probes for each hop, the number of unsolicited packets being sent

into the Internet is far higher than with traceroute. This has the potential to look like

a hostile act to network operators.

Thus, in order to be able to gather a comprehensive large-scale topology that

we can have confidence in, a new method has been developed which improves the

efficiency of the MDA traceroute process. We call this new method the Economical

MDA Traceroute.

3.3 Overview

Economical MDA traceroute is based on the MDA discussed earlier. We have made

two notable additions to this algorithm. These are the a global stop set based stop-

ping criteria - similar to that which doubletree uses - and anadaptive local stop

set which is able to reduce the number of probes needed when wehave confidence

about the initial section of the path.
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X

Y

Z B

A

Figure 3.1: If X is a per-destination load balancer, the linkX-Y will be missed by
a trace to B. However, when tracing A, the link will be discovered as X is only
recorded in the global stop set for B.

3.3.1 Global Stop Set

We make use of a global stop set for economical MDA traceroutein much the same

way as doubletree does. It is a set of interface-destinationpairs that are used to halt

probing when a known section of a path is encountered. When a response is re-

ceived from a node in the path, the global stop set is consulted to determine whether

this interface has been encountered by another vantage point that also probed this

destination. If there is no corresponding entry in the global stop set, an entry is cre-

ated and probing carries on as usual. If there is an entry in the global stop set, then

tracing along thecurrent branchis halted. This is a slightly different behaviour than

doubletree as it is possible for there to be other branches which need to be traced

further. When the trace is completed, the global stop set is communicated to the

other vantage points so that they can incorporate it into their global stop set.

Using a global stop set like this assumes that given a node which has been seen

by another vantage point whilst tracing this destination, we have seenall pathsfrom

the node to the destination. We hypothesise that while doubletree has the potential

to miss topology due to load balancing which occurs within the area hidden by the

global stop set, economical MDA traceroute should not be affected if the types of

load balancing (per-flow, per-packet, per-destination) have been adequately defined

by Augustin [3]. This is because when tracing with MDA traceroute, we will see

all links caused by per-flow load balancing with only a singletrace - it takes regular

traceroute many traces to approach this sort of coverage.

Because a global stop set entry is tied to a specific destination, per-destination

load balancers should not affect the discovered topology either. Figure 3.1 shows the

paths to two hypothetical destinations, the router at X is balancing packets on a per-
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B D

src A F

C E

Figure 3.2: If A, B, D and F have been seen with previous probing, the local stop
set can cause C and E to be missed if F is seen first.

destination basis. If MDA traceroutes are carried out to both A and B, then the two

links X-Y and X-Z will be discovered. If we assume that X has been seen in the path

to B by another vantage point, then when this vantage point reaches it, it will halt

probing of this branch. However, when B is traced, X has not been seen in the path

to B and so tracing will continue, leading to the discovery ofX-Z. Thus, no topology

is missed due to either per-flow or per-destination load balancing. The only type of

load balancing that could cause topology to be missed due to the global stop set

is per-packet. Per-packet load balancers cannot be reliably discovered by MDA

traceroute as they pay no attention to the probe headers. Augustin however, states

that per-packet load balancers affect only 2.1% of all paths[4] and so therefore

should have a minimal impact on the link coverage of economical MDA traceroute.

We investigate this further in Chapter 4.

3.3.2 Adaptive Local Stop Set

The assumption central to doubletree’s use of a local stop set is that from any node

in the tree of paths rooted at a vantage point there is only onepossible path that leads

back to the root. When we take load balancing into account, the situation becomes

more complicated. If we assume that whenever we see an interface the remainder of

the path back to the source is known, there is the potential for topology to be missed

as illustrated in Figure 3.2. If probing were to begin at F, when E is found, the

conventional local stop set would cause us to assume that theremainder of the path

is known and halt probing. This assumption will cause the alternate path which

traverses D to be missed. When tracing with MDA traceroute, all per-flow load

balancers can be discovered with a single trace from one vantage point, however,

per-destination load balancers can only be seen when tracing multiple destinations.
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A B C

ZYX

Figure 3.3: The paths A-B-C and X-Y-Z have been seen multipletimes with pre-
vious probing, however a rare link between A and Y could be missed if back-links
are not checked.

We therefore have re-designed the manner in which the local stop set is used so that

it takes per-destination load balancers into consideration by ensuring that topology

has been seen in the paths to multiple destinations before assuming that it does not

need to be exhaustively probed.

To do this, we begin probing with a regular traceroute at TTL 1, assuming that

we have seen this interface with prior probing. That is, we send only one probe per

TTL to begin with. With each response, we check that there we still have reason

to believe that all per-destination load balancers have been seen, and as such are

not missing any topology. When we reach a point where a link has not been tra-

versed enough to have confidence that there are not other per-destination links to

be discovered, the algorithm switches into the full MDA traceroute mode, sending

multiple probes per TTL and discovering all links. To enablethis check to be made,

we keep a record of the destinations that an interface has been seen in the path to

and also which interfaces it forwards packets to.

We also keep information regarding theback-linksfrom an interface. That is,

the interfaces which forward packets to this interface. By keeping a record of the

destination count, we are able to ensure that we have confidence that we have seen

all of the per-destination links out of an interface. The back links allow us to be

sure that we have seen this specific link with previous probing by checking that the

interface which we traversed before discovering the current interface is present in

the back links list. We therefore reduce the chance of missing rare per-destination

links between two sets of previously seen topologies as illustrated in Figure 3.3.

Figure 3.4 is a hypothetical set of paths that have been traversed by the algo-

rithm. The information kept for interface B says that B has been seen in the path to
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Figure 3.4: An example of a series of paths which have a commoninterface. B
would have a destination count of three and a forward links field containing refer-
ences to C, D and E

three destinations. The forward links list would contain references to the informa-

tion held for interfaces C, D and E.

We call the information kept the Adaptive Local Stop Set (ALSS) to differentiate

it from the local stop set which doubletree uses.

3.4 Algorithm

The economical MDA algorithm works by attempting to reduce the number of

probes that must be sent by the MDA algorithm to discover a path. As demon-

strated in Figure 3.5, the algorithm moves through two majorstates before using

the original MDA algorithm to comprehensively trace the remainder of the path.

These are the economical probing mode and the transition mode.

The economical probing mode is designed to use a minimal number of probes to

traverse the initial hops in a path which have been seen in thepaths to many previous

destinations. Once the economical mode determines that a hop has not been seen

in enough prior paths, the transition mode is used to determine a suitable starting

TTL for the MDA. It does this by iteratively probing back toward the vantage point,

looking for a TTL at which only one interface responds. Once in the MDA mode,

probing continues as with the original MDA except we add an additional stopping

condition. If an interface is discovered which is in the global stop set, then probing

is halted. Upon completion of a trace, the discovered topology is then parsed and

the ALSS is updated.

When an economical MDA traceroute run is started, the vantage point has no

state information. To attempt to use the adaptive local stopset part of the algorithm
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Figure 3.5: State diagram illustrating the operation of theeconomical MDA tracer-
oute. When a trace is started in economical mode, each probe is sent with an in-
variant flow identifier. For each reply that is received, if there is uncertainty as to
whether the discovered interface has been seen in enough paths to have observed
all possible interfaces at the next hop, then the algorithm moves into the transition
mode. Otherwise, the TTL is incremented and another probe sent. Once in transi-
tion mode, probes are repeatedly sent using the same TTL value but varying flow
identifiers in an attempt to elicit a response from a different router at this TTL. If
one is seen, then the TTL is decremented and another probe sent. Provided that
no alternate reply interfaces are observed, probes are sentuntil the hypothesis that
there are two interfaces at a TTL has been disproved (8 probesto 99% confidence).
At this point, the regular MDA algorithm is used to trace the remainder of the path.
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in this case is actually counter-productive as several probes would be used to de-

termine that economical mode needed to be switched off at TTLone. Thus, when

there is no state in the ALSS, traces are started with the economical mode already

switched off. The effect of this is that there will be severaltraces, depending on

how many traces a vantage point can conduct in parallel, at the beginning of a run

which are essentially regular load balancer traces.

3.4.1 Economical Probing

Once state from at least one trace has been accumulated in theALSS, new traces are

started in the economical mode. The job of the economical mode is to efficiently

probe a single path from the vantage point until it reaches aninterface at which it

no longer has confidence that all per-destination load balancing has been observed.

It begins by sending a single probe to TTL 1. The ALSS is consulted and the

information associated with the discovered interface is retrieved. As mentioned

earlier, an ALSS entry for an interface contains a set of interfaces which represent

the outgoing links, and a count of the number of destinationsthat it has been seen

in the path to.

To be confident that continuing with economical probing willnot cause topol-

ogy to be missed, several criteria must be met. First, we musthave already seen the

back-link that discovering this interface creates. This means that the ALSS state for

the previous interface must have this interface in its list of forward links. Having this

check reduces the chance of missing alternate routes which are seen infrequently.

Second, givenn forward links, to disprove the hypothesis that there is aren + 1

forward links, the destination count must be greater than the number of samples re-

quired1 for n+1. For example, an interface with three interfaces in its forward links

list needs to have been seen in the path to at least 21 different destinations to have

99% confidence that there is no more per-destination load balancing at this router.

Several other checks are made at this stage also, such as ensuring that there are no

loops in the path and that we have not reached the destination. The ALSS entries are

not modified at any point during the economical probing mode because we are not

1See Table 2.1 for these values.
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Figure 3.6: An example path where the per-destination adaptive prober can switch
to an economical probing mode for TTL 3. The dashed lines indicate information
contained in the stop set state (forward links and destination count).

exhaustively probing each hop and so do not have comprehensive knowledge of the

path. That is, there may be alternate links previously discovered, but which are not

re-encountered while in economical mode. If all of these conditions are met, then

the algorithm records the current interface in a list of interfaces discovered during

the economical mode. This is used for both the loop checking and back-link verifi-

cation portions of the algorithm. If any of these checks fail, then we must transition

back into the regular MDA traceroute algorithm in such a way that we can have

confidence the topology being inferred is accurate.

Figure 3.6 is an example of how this process works. The interface labeled B

has 2 forward links (B-C, B-D) and has been seen in the path to eight destinations.

According to Table 2.1, B must have been seen in the path to at least fifteen destina-

tions to rule out a third forward link. The destination countfor B is eight, therefore

we must transition out of the economical probing mode.

3.4.2 Transitioning

When we encounter an interface where we have not yet probed the number of des-

tinations required to rule out per-destination load balancing, the economical mode

is switched off and algorithm moves back into regular MDA traceroute. Before it

does this, it first determines where in the path to begin. Thisis dependant on what

has caused the economical mode to be terminated.

If there is not a back-link from the discovered interface to the previous interface,

then we attempt to start the load balancer algorithm from theTTL at which the
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Figure 3.7: Alternate interface check. The economical modeis switched off at TTL
5 after discovering F. To be able to start the regular MDA, there must be no alternate
interfaces. At most eight probes are sent to TTL 5 (assuming 99%). One probe will
discover G, at this point the TTL is decremented by one and TTL4 is probed up to
eight times. The alternate interface D is discovered and so the TTL is decremented
to 3. After re-probing TTL 3 eight times and only seeing C, theMDA can be started.

previous interface was discovered. We do this to allow the previously unseen link

to be properly discovered.

To be sure that this can be done safely, the algorithm checks for the existence of

any alternate interfaces at this TTL. This is done to ensure that we can be sure that

a probe with any flow identifier will end up traversing this interface. If this is not

done, then the topology inferred later in the path could be invalid.

To ensure there are no alternate interfaces, we sendn probes to the chosen TTL

with varying flow identifiers, where n is the value which is needed to rule out two

interfaces at a hop (5 for 95% and 8 for 99%). Provided that allprobes return the

same (original) interface, we set the MDA traceroute algorithm going. If alternate

interfaces are discovered as demonstrated in Figure 3.7, the TTL is decremented by

one and the check is carried out again. This process of checking the previous hop is

continued until TTL three is reached. At this point, there are no gains in reducing

the number of probes required to be made by continuing backward and so tracing is

simply started from TTL one. This is because stepping backward to TTL two will

cost as many probes to establish that there is only as single interface as it would to

simply revert to the regular forward probing algorithm and send the usual one probe

to TTL one and moving on to TTL two.

If the discovered interface has not been seen in the path to enough destinations,

then tracing may be able to start from the current TTL. We again check for alternate

interfaces before tracing continues.
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If a loop is discovered, we attempt to salvage the trace by resetting to TTL one

and switching the economical mode off. We do this because theeconomical mode

only probes down one path, so it is possible for there to be an alternate path (already

seen with previous tracing) that does not have a loop. The MDAalgorithm probes

both branches until it identifies the loop at which point it would halt probing the

branch with the loop and only continue probing any other branches.

3.4.3 Collecting ALSS State

The ALSS is not modified during the economical phase of tracing, therefore it must

be populated with data whilst in the regular MDA traceroute modes. Because the

paths that can be discovered by MDA traceroute can contain multiple branches, our

algorithm populates the ALSS once the trace has been completed and all of the

links between branches inferred. The tree of links discovered is traversed and the

ALSS state for each interface encountered is updated with the new information. A

disadvantage to this method is if traces are being conductedin parallel, there are

likely to be several traces started in parallel before the ALSS is populated.

3.4.4 Global Stop Set

Once the economical mode has been disabled and probing usingthe regular MDA

commences, each interface that is discovered is checked against a global stop set

which contains all of the interfaces that have been seen in paths toward this desti-

nation by each of the vantage points which have previously completed traces to it.

If a discovered interface is in the global stop set, then we assume that the rest of the

path has also already been seen and we halt probing on this branch.

This is a safe assumption provided that the majority of load balancing observed

is per-flow or per-destination. MDA traceroute can, with onetrace, discover all

alternate paths caused by per-flow load balancing, therefore successive traces from

different vantage points should not discover any new topology. Tracing continues

down other branches of the path until a stop condition is met there also. This allows

alternate paths which were not discovered by other vantage points to be seen.
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3.4.5 Timeouts

Due to the unreliable nature of the Internet, replies are notalways received for

probes. The algorithm deals with probes that were not responded to in different

ways depending on why the probe was sent.

If a probe times out while in the economical mode, we use a gap limit fea-

ture similar to that found in the traceroute used by macroscopic topology discovery

projects. When a probe times out, we check that the number of probes which have

timed out is less than the specified gap limit. If it is, then wesimply increment the

TTL by one and probe the next hop. Once the gap limit is reached, we decide the

trace is not viable and terminate.

If a probe times out while checking for alternate interfaces, we simply treat it

as a response which doesn’t match the original interface as we cannot be sure that

there is only one interface at this hop. That is, we decrementthe TTL by one each

time a timeout is received until we reach TTL 3, at which pointwe revert to regular

MDA traceroute at TTL 1.

3.5 Implementation

This algorithm has been implemented as an optional part of the MDA traceroute

implementation currently available in scamper [22]. Scamper is an open-source

prober, written in C, which implements several well-known active measurement

techniques. As scamper itself contains no mechanism for coordinating a set of van-

tage points, we also implement a coordination system, written in Ruby, to distribute

global stop set data using Marinda [7].

3.5.1 Scamper

We implement economical MDA traceroute as two optional parameters to the MDA

traceroute already implemented in scamper. These are the ALSS and the global stop

set.

The ALSS portion of the algorithm is enabled by specifying a name for the
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stop set. This allows concurrent but distinct experiments to be run without the stop

sets overlapping. The stop set is implemented as a splaytree. The nodes in the

stop set are structures which contain the IP address of the node, the number of

destinations it has been seen in the path to, and a list of stopset entries to which this

node forwards packets to (forward links). We are able to makethe back-link check

without explicitly storing any additional data. Given the link x→y, where we want

to check thaty has a back-link tox, we retrieve the ALSS record ofx and verify

thaty appears in the forward links array ofx.

The global stop set part of the algorithm is enabled by passing in a list of inter-

faces which are to be used as the global stop set for this trace. This list is managed

by the control mechanism and passed to scamper as command parameters. The

global stop set is implemented as an array of IP addresses which are specific to a

single trace. These are not shared between traces.

When a trace is started, if the ALSS is enabled, the ALSS is checked to ensure

that there are nodes in it. If there are not, then there is nothing to be gained by using

the economical mode and so the original MDA is used. When thistrace completes,

because the ALSS is enabled, the topology discovered by the trace is parsed and

converted into ALSS nodes and inserted into the splaytree. Now that there are

nodes in the stop set, proceeding traces are started in the economical mode.

Scamper makes use of call-back functions to handle replies to probes sent. This

is implemented using modes; the code that is executed when a reply is received is

dependent on the current mode. We therefore implement our algorithm as a series of

modes. To begin with, we are in the economical mode. When a reply is received in

the economical mode, the interface that the reply is received from is looked up in the

ALSS. The ALSS record retrieved is then consulted and the conditions described in

Section 3.4.1 are checked. If they are met and economical probing can proceed, the

TTL is incremented and another probe sent. Otherwise, the mode is changed to the

transition mode in order to check for alternate interfaces.A different flow identifier

is used and another probe sent. When a reply to this probe is sent, the transition

code deals with checking that the probe is received from the same address every

time. If the addresses match then a different flow identifier is used and another
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probe sent. This process continues until the required number of probes have been

sent or a reply is received from a different address. If different reply addresses are

seen then the TTL is decremented and another probe is sent. This process continues

until a suitable TTL is found or the trace is terminated as described in Section 3.4.2.

Provided a TTL is found for which there is only one address seen, the mode is

changed to the first mode that the original MDA uses. A probe isthen sent such that

when the reply is received, the code for the original MDA handles it.

We have altered the code for the MDA to allow the use of a globalstop set.

Each reply address that is received is looked up in the globalstop set. If there is

a corresponding entry, then probing along the current branch of the path is halted;

other active branches continue to be probed however. We alsoadd code to populate

the ALSS with the new information gained with each trace. When a trace is com-

pletely finished, we traverse the links discovered and for each address, retrieve the

relevant ALSS entry, update the destination count, and add the forward links from

this address.

3.5.2 Marinda based Coordination Mechanism

Because scamper runs independently on a vantage point, we implement our coordi-

nation mechanism using the shared memory implementation, marinda, that CAIDA

uses to coordinate its Ark infrastructure [7]. Marinda allows a high-level approach

to be taken to coordination. It is written in Ruby and abstracts away issues such as

race conditions and loss of connectivity between the vantage points and the control

server. This is useful as it allows different projects to be implemented and deployed

with a minimum of repeated effort.

Marinda uses tuples to share data. A tuple is an ordered set ofobjects, im-

plemented as an array in marinda. Arbitrary tuples can be written into a region

of shared memory, ortuple space, within marinda, and then retrieved using basic

pattern matching. For example, the tuple

TEST, item1, item2
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could be retrieved by requesting a tuple which matches the pattern

TEST, ∗, ∗

where * is a wildcard.

We implement our coordination system as a set of clients running on the vantage

points, responsible for driving scamper and returning global stop set information,

and a central control server which sends tasks to the vantagepoints. All of the van-

tage points, along with the control server, connect to marinda. The control server

inserts a tuple for each destination to be traced into the tuple space. These tuples

are considered low-priority and so are only taken if there are no high-priority tuples

available. We separate the tuples into high-priority and low priority so that once

and address is traced by one vantage point, the others trace it shortly after. The van-

tage points then each retrieve enough of these tuples to occupy scamper. Because

scamper is a parallelised tracer, it requires many tasks to be maximally efficient.

Once scamper completes a trace, the tuple is updated with global stop set informa-

tion returned by scamper and inserted back into the tuple space as a ‘done’ tuple.

The control server, watching for these done tuples, retrieves it, determines which

vantage point should probe it next by using an alphabetically ordered list of vantage

points that are yet to trace it, and inserts it back into the tuple space as a high-

priority tuple. Vantage points retrieve high-priority tuples using pattern matching

so that they only receive tuples designated for them. For example, the vie-at vantage

point would request a tuple the matched the following pattern:

TASK HP, ∗, ∗, vie at

This request could retrieve the tuple:

TASK HP, 130.217.230.17, trace, vie at

This tuple instructs the vantage point to issue a task to scamper requesting a classic

traceroute (‘trace’) to 130.217.230.15.
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Once a destination has been traced by all vantage points, thecontrol server re-

moves it from the tuple space. After all destinations have been traced, the control

server sends a notification tuple to each of the vantage points informing them that

the run has completed.

To reduce load on marinda, the trace data collected is storedlocally on the vari-

ous vantage points and manually collected upon completion of the run.

3.6 Summary

In this chapter we present economical MDA traceroute, our variation on MDA

traceroute which is designed to reduce the number of probes required to discover

load balanced paths with confidence. We also outline our implementation of this

algorithm and a control mechanism which allows it to be tested on the Ark infras-

tructure. We evaluate the economical MDA traceroute in Chapter 4 and discuss

potential shortcomings and improvements.
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Chapter 4

Method Comparisons

4.1 Introduction

Because the main objective of this thesis is contribute to making real-world macro-

scopic Internet topology discovery systems more efficient and comprehensive, it is

important that the techniques devised are tested in a mannerwhich closely reflects

an actual implementation. We test the implementation of theeconomical MDA

traceroute algorithm presented in Chapter 3 alongside a complete implementation

of the doubletree algorithm. We test these in concert with classic traceroute and

MDA traceroute to give a benchmark against which we can compare the doubletree

and economical MDA traceroute methods.

This chapter begins by discussing the metrics used to compare the performance

of the topology discovery methods tested. We describe two metrics - probe count

and link count - which we use for overall performance comparison between meth-

ods. We also describe several metrics for evaluating the performance of the stop

sets used by both doubletree and economical MDA traceroute.

Once the evaluation metrics have been discussed, we presentthe results obtained

from conducting a large-scale coordinated experiment using CAIDA’s Ark infras-

tructure. We investigate variances in discovered topologybetween the methods and

explain why some methods perform better than others. In doing so, we observe

a type of load balancing - per-source/destination - which was not considered by

Augustinet al. [3]. Per-source/destination load balancers take both the source and

destination addresses into consideration when forwardinga packet. In addition to
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this, it appears that the assumptions behind doubletree andeconomical MDA tracer-

oute’s use of a global stop set may be flawed. The global stop set is the cause of

a large fraction of the links which these algorithms fail to discover. We investigate

the causes of this and determine that aliases and per-source/destination load bal-

ancers form the majority of the cases where topology is not discovered. We suggest

altering the global stop set to consider per-source/destination load balancing.

4.2 Efficiency Metrics

Because the various techniques that we are dealing with in this thesis have differ-

ent goals and so gather topology in different ways, some thought must be given to

establishing a set of efficiency metrics that allow for robust and unbiased compar-

ison of both variations of methods (classic and doubletree traceroutes) and indeed

between different methods (MDA and classic traceroute). Weuse two basic metrics

to compare the overall performance of each method. The first is probe count, which

gives measures the relative efficiency of the method. The second is link count which

we use to give an indication of the amount of topology that each method is able to

discover. In addition to this, we also investigate the effectiveness of the stop sets

that both doubletree and economical MDA traceroute use. In order to do this we de-

termine the topology that doubletree has failed to discoverand attempt to determine

the cause of this. For the ALSS, we use the length of path that the economical mode

was able to remain on for. We use this metric as, for each TTL that is probed using

the economical mode, several fewer probes are sent when compared to the original

MDA.

4.2.1 Probe Count

The most basic indicator of an algorithm’s efficiency is the number of probes that

it uses. A probe being a packet sent into the Internet in orderto discover some

information. Probe count is a particularly good indicator of efficiency as a probe

is of finite size and so takes a finite amount of time to send. Therefore, the more

probes that are used, the longer the method will take to run. In addition to time, the
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amount of data sent into the network also increases proportionally with the probe

count.

Probe count by itself however is not enough to robustly compare methods. To

be able to use probe count alone to compare methods, all of theother variables

must be the same. The methods must have traced the same numberof destinations

from the same number of vantage points, using the same probing structure (team or

cooperative probing). In order to reliably compare methodsthat conduct probing in

different manners, the probe count metric must be enhanced.In order to do this, we

impose a set of conditions which allow different methods to be compared using the

probe count value.

The first condition we impose on this comparison is that all methods have traced

the same set of destinations. We impose this condition because traces to two differ-

ent destinations can have completely different characteristics. For example, one of

the destinations may be located closer to the vantage point than the other in terms

of hops and so will take cost fewer probes. The only way to minimise this problem

is to have all methods tracing identical destination lists.The second condition is

that either both methods used team probing or both methods used cooperative prob-

ing. If team probing is used, each vantage point should have traced the same set

of addresses with both methods. If a cooperative probing structure is used, then all

vantage points must conduct traces using all methods to all destinations.

With these conditions in mind, we can then measure the efficiency of each

method by calculating the number of probes used per destination. By using a cumu-

lative probe total, we can look at the probe count for the lasttrace for each method

and see the total number of probes which were sent during the course of the ex-

periment. Figure 4.1 shows an example graph of this metric. In this example, we

can see that the MDA traceroute uses many times more probes than regular tracer-

oute. Also, the increase in probes is linear because neitherof the methods make any

attempt to be efficient.
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Figure 4.1: An example probe count graph showing probe usageas the experiment
is run. The data is a sample from the large scale experiment described in Section 4.3

.

src A B * D E

links:interfaces: A, B, D, E src−A, A−B, D−E

Figure 4.2: An example path from which we can extract 4 interfaces (A, B, D and
E) and 3 links (src-A, A-B, D-E)
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Figure 4.3: An example link count graph showing link discovery as the experiment
is run.

4.2.2 Topology Coverage

While the probe count goes a long way in determining how efficient a method is,

there is little point in using a method which uses very few probes but also misses

large amounts of topology. We therefore need to view the probe count in the context

of another metric which can give an indication of the coverage of the method. There

are two statistics that can be used to measure the amount of topology that a method

discovers. These are interface and link counts. The number of interfaces discovered

by a trace is the number of unique IP addresses that are seen. The link count value

is the number of links that can be inferred from the interfaces discovered. For

example, given the path discovered in Figure 4.2, the interface count would be 4

(A, B, D and E). The interface labelled with a ‘*’ was unresponsive during probing

and so we cannot infer any topology from it. The link count would be 3 (src-A,

A-B, D-E). Again, as we did not discover the interface between B and D, we cannot

infer any links between the two nodes. Because we are only looking at net gains in

topology, we count only the globally unique links or interfaces in each trace. That

is, the links in tracen + 1 that are also in traces1 to n are only counted once.

As with the probe count we use a cumulative count per trace to plot the topol-

ogy discovery over time. Figure 4.3 is an example link count graph for the same
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set of traces that Figure 4.1 was generated from. By looking at these two graphs in

the context of each other, we can see that although the MDA traceroute uses nine

times more probes than regular traceroute in this situation, the gain in topology dis-

covered is relatively small. However, as we have mentioned,one of the failings of

current macroscopic traceroute projects is that they over-sample the edges of the

Internet closest to the vantage points [20, 2, 28, 34, 13]. Classic traceroute is ap-

proaching the coverage of MDA coverage because it re-probesthe nodes close to

the vantage points over and over, thus inadvertently discovering load balanced links.

We therefore argue that the majority of the extra links that MDA traceroute discov-

ers are located toward the end of the paths traced, thus reducing the sampling bias

prevalent in current macroscopic traceroute data. So although the gain in topology

is relatively small, we argue that the gains are in the areas of paths that traceroute

has been criticised for under-sampling. We thus provide a more comprehensive

topology which is less influenced by sampling bias.

4.2.3 Stop Set Effectiveness

Because both of the efficient methods (doubletree and economical MDA) use stop

sets, it is necessary to have a way to identify which of the stop sets (local or global)

are reducing the probes used and also identify the situations which cause missed

topology.

Doubletree

We begin by looking at the stop sets used by doubletree. If we compare doubletree

and traceroute using only the probe and link count metrics then we are unable to

determine where the increase in efficiency is coming from or where topology is

being missed. We therefore must separate the trace into two parts, the interfaces

discovered by backward probing and the interfaces discovered by forward probing.

This is done by simply taking the value that was used as the initial hop distance

(first hop) for the vantage point in question and splitting the trace at that point. The

interfaces up to, but not including, the interface at the first hop TTL are assumed to

have been discovered by backward probing, the remainder by forward probing.
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ttl traceroute doubletree diff

1 128.223.157.3 x (in lss)
2 128.223.3.8 x (in lss)
3 128.223.3.9 x (in lss)
4 207.98.68.181 x (in lss)
5 207.98.64.162 x (in lss)
6 207.98.64.10 x (in lss)
7 207.98.64.137 x (in lss)
8 63.211.200.245 63.211.200.245 + (exact match)
9 4.68.105.12 4.68.105.12 + (exact match)
10 4.59.232.54 4.59.232.54 + (exact match)
11 207.88.13.142 207.88.13.142 + (exact match)
12 65.106.1.45 65.106.1.45 + (exact match)
13 65.106.0.174 x (in gss, san-us)
14 207.88.83.194 x (in gss, san-us)
15 66.239.36.10 x (in gss, san-us)
16 * x (star)
17 * x (star)
18 * x (star)

Figure 4.4: difference between doubletree and traceroute traces to 12.172.35.5 from
eug-us. An ‘x’ indicates an implicit match (the interface isseen elsewhere), a ‘+’ in-
dicates an exact match. In this trace doubletree is able to discover the same topology
as traceroute.
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Because doubletree is designed to be a more efficient versionof traceroute, we

compare the interfaces discovered by doubletree to those discovered by traceroute.

We do this in a hop-by-hop manner. For each hop doubletree misses an interface

at, we attempt to locate the missing interface elsewhere in the trace data. For inter-

faces missed during backward probing, we look only at the doubletree data for the

vantage point in question. For interfaces missed during forward probing, we look

at the doubletree data for all of the vantage points. It is possible for an interface

which is determined to be missed by backward probing to be discovered coinciden-

tally by another vantage point and so not contribute to the overall missed interface

count. However, with this metric we are testing the assumptions behind the local

stop set and so do not include these coincidental matches. Figure 4.4 is a repre-

sentative ‘diff’ between doubletree and traceroute tracesto one destination. In this

case, doubletree starts with a first hop value of 9 and probingforward, discovers

4.68.105.12, 4.59.232.54 and 207.88.13.142 which were notin the global stop set.

It then discovers 65.106.1.45 at TTL 12, causing forward probing to be halted as it is

in the global stop set. In this case we can see that the interfaces that doubletree does

not discover due to the global stop set stopping probing are indeed already discov-

ered by the san-us vantage point. It then switches to backward probing, discovering

63.211.200.245 at TTL 8 which has been seen by this vantage point previously and

so is in the local stop set. The trace is then halted completely. Again, the interfaces

not explicitly discovered by doubletree are able to be foundin other traces from this

vantage point.

Perhaps more important than identifying which interfaces have been missed is

identifying the reason that doubletree has not discovered them. We do this by us-

ing MDA traceroute data which was collected in parallel withthe traceroute and

doubletree data. We use the MDA traceroute data as a ‘ground truth’ from which

we can make inferences about the causes of missed interfaces. Given an inter-

face which has been missed by doubletree, we look up the relevant MDA traceroute

traces and attempt to determine whether the miss was caused by load balancing, and

if it was, the type of load balancing in place. We attempt to make this determination

based on heuristics about how the different types of load balancing work. If we
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ttl traceroute doubletree diff

1 128.223.157.3 x (in lss)
2 128.223.3.8 x (in lss)
3 128.223.3.9 x (in lss)
4 207.98.68.181 x (in lss)
5 207.98.64.162 x (in lss)
6 207.98.64.10 x (in lss)
7 207.98.64.137 x (in lss)
8 63.211.200.245 63.211.200.245 + (exact match)
9 4.68.105.30 4.68.105.30 + (exact match)
10 4.69.132.18 4.69.132.18 + (exact match)
11 4.69.132.54 4.69.132.54 + (exact match)
12 4.68.107.104 4.68.107.104 + (exact match)
13 4.71.40.2 4.71.40.2 + (exact match)
14 64.78.230.215 o (gss miss)
15 64.78.193.134 x (in gss (scl-cl))
16 * x (star)
17 * x (star)
18 * x (star)

Figure 4.5: difference between doubletree and traceroute traces to 216.17.122.184
from eug-us. An ‘x’ indicates an implicit match (the interface is seen elsewhere), a
‘+’ indicates an exact match and an ‘o’ indicates a missed interface. In this trace,
the doubletree global stop set assumptions have not held up and caused the interface
64.78.230.215 to be missed.

4.71.40.2

64.78.230.194 64.78.230.204 64.78.230.205 64.78.230.211 64.78.230.212 64.78.230.215

Figure 4.6: The interfaces that MDA traceroute discovers inlinks from 4.71.40.2
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consider the trace shown in Figure 4.5, doubletree has missed the interface at hop

14 (64.78.230.215). By not discovering this interface, we also do not discover the

link 4.71.40.2→64.78.230.215. We hypothesise that if there is a link 4.71.40.2→x,

wherex is not 64.78.230.215, then it is likely thatx is the interface discovered

by doubletree from another vantage point, thus causing the link we observe in this

trace to be missed. Figure 4.6 shows the links from 4.71.40.2that MDA traceroute

discovered.

In order to classify the type of load balancing that is causing this link to be

missed, we first need to perform alias resolution on the six interfaces to ensure that

we are dealing with distinct routers. As routers have more than one interface associ-

ated with them, it is common to see multiple interfaces in theIP topology discovered

by traceroute which in reality, all belong to the one router.To resolve these aliases,

we use the RadarGun [6] technique discussed in Section 2.6 and implemented in

scamper.

Once we are confident that there a six distinct routers at the same hop that dou-

bletree missed the interface at, we attempt to classify the type of load balancing in

effect by considering which vantage points discovered which interfaces. If every

vantage point discovers all of the possible links, then we say that there is per-flow

load balancing. Because the MDA traceroute algorithm can manipulate probes such

that it discovers per-flow load balancing, it follows that each vantage point is able

to discover the complete topology.

Per-flow load balancing is not in effect in the example case weillustrate in Fig-

ure 4.5 as each vantage point only discovers one outgoing interface from 4.71.40.2.

Because of this, we suggest that there is a type of load balancing which is based on

the source and destination address tuple. We believe that this is the type of load bal-

ancing that Augustinet al. [3] classify as per-destination. Taken from one vantage

point where the source address is constant, it would appear that it is solely the des-

tination address that the router is using to vary the path. However, as we see with

six vantage points, it appears that by varying the source address and keeping the

destination address constant, we also see these variances in the path. To classify an

interface as missed due to per-source/destination we use a heuristic that if each van-
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A B E F

C

D

per packet load balancer

path inferred: B −> (C, D) −> E

Figure 4.7: The result of probing past a per-packet load balancer. We cannot have
confidence about which flow identifiers are forwarded to C or D,but because the
paths re-converge at E, we can group C and D into a clump and treat it as a single
node for probing past.

tage point discovers only one interface and there is more than one unique interface

discovered by the various vantage points then there is per-source/destination load

balancing. For a linkx→y to have been missed due to per-source/destination load

balancing, wherey is the interface that doubletree has missed, the MDA traceroute

data from each vantage point must show only one link which originates atx. Also,

at least one other vantage point must discover a different link. We only require two

unique interfaces rather than one per vantage point as it is possible to see routers

which have only two outgoing interfaces towards a destination. This case we would

see the two interfaces repeated across the set of vantage points but still with each

vantage point only discovering one of the two interfaces. Ifit were per-flow load

balancing, all of the vantage points would see both of the interfaces.

The other type of load balancing that could cause doubletreeto not discover

some topology is per-packet. As our implementations of traceroute and doubletree

only send one probe per hop provided a response is received, it is possible that a

per-packet load balancer will cause traceroute to see a different path to doubletree.

To classify an interface as being a per-packet load balancer, we once again use the

MDA traceroute data. In our implementation of the MDA traceroute algorithm, if

a potential per-packet load balancer is identified in the path, the algorithm attempts

to probe past it by treating the ambiguous links as a clump. Figure 4.7 shows a

hypothetical per-packet load balancer. If the paths which lead up to the load bal-

ancer are symmetrical, then the algorithm is able to probe past it, however, it cannot

accurately enumerate the links out of the load balancer so itforms a clump. These

clumps can indicate whether a router is doing per-packet load balancing.
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Once we have processed all of the missed interfaces in the doubletree data, we

can determine the relative impact each cause has on the doubletree data and develop

methods to mitigate their effects.

Economical MDA Traceroute

As with doubletree, we are interested in quantifying how well the economical MDA

traceroute algorithm is performing by checking if, and how much, topology being

missed. If there is missed topology, we attempt to determinethe portion of the

algorithm causing the topology loss.

Because the ALSS has not been previously tested, we ensure that it is reducing

the number of probes used. We do this by checking the TTL at which the econom-

ical mode is switched off. Because the economical mode generally only sends one

probe per TTL, compared to at least eight with regular MDA traceroute to 99% con-

fidence, the further that the economical mode can get into thepath, the less probes

that are sent overall. We use these TTL values to plot a graph which illustrates the

number of hops the economical mode is used for, on a per-tracebasis. We expect

this length to increase over time as the ALSS grows and more confidence about the

topology is gained.

In addition to this, we also plot the number of probes used in the economical

mode. A probe count which is similar to the number of hops thatthe economical

mode is switched on for indicates that the algorithm does notoften need to step

backward to find a hop at which there are symmetrical paths leading to it as dis-

cussed in Chapter 3.4.2. For example, a trace which reaches TTL 10 in economical

mode, but then must step back to TTL 4 before switching the economical mode off

will use up to 66 probes, compared to only 18 for a trace which is able to switch the

economical mode off immediately at TTL 10.

As we did with doubletree, we analyse the topology generatedby economical

MDA traceroute to determine which links are missed. We divide each trace into the

links discovered while using the ALSS to guide probing and those discovered while

using the global stop set. This allows us to see where the majority of topology is

being missed.
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name location organization type doubletree
firsthop

hlz-nz Hamilton, NZ university 12
eug-us Eugene, USA university 9
nap-it Napoli, Italy university 13
san-us San Diego, USA research 8
scl-cl Santiago, Chile network infrastruc-

ture
7

vie-at Vienna, Austria community network 6

Table 4.1: The Ark vantage points used in our large-scale testing.

4.3 Large-Scale Cooperative Testing

4.3.1 Methodology

In order to carry out our large-scale experiments using the cooperative probing

methodology that doubletree requires, we make use of CAIDA’s Archipelago (Ark)

measurement infrastructure. Ark is a set of over thirty globally distributed vantage

points which are used to collect the IPv4 Routed /24 TopologyDataset. For our ex-

periments we use a subset of these vantage points. Table 4.1 lists the vantage points

that we use, along with their location and organisation type. The Ark platform is

well-suited to carry out these experiments as it has been designed to allow new

measurement types to be deployed and tested with a minimum ofeffort. Ark uses

a tuple space coordination system, marinda [7], which allows the vantage points to

communicate at a high level.

Marinda is a coordination mechanism which allows arbitrarytuples to be stored

and retrieved with ease. We use marinda to issue tracing tasks to the vantage points

and to pass stop set data on to successive vantage points, this is outlined in Chap-

ter 3.5.2. Marinda inherently prevents one tuple from beingretrieved simultane-

ously from two vantage points, so doubletree always probes in a round-robin fash-

ion, ensuring that only one vantage point will trace a destination with an empty stop

set. The original doubletree authors used windows of destination addresses to keep

vantage points busy [11]. We eliminate the need for vantage points to manage win-

dows of addresses by dividing tasks into two categories; high and low priority. The
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Figure 4.8: The cumulative mass of path lengths for each Ark vantage point used
in the large-scale experiments. The horizontal line aty = 0.2 indicates the first hop
values selected for doubletree tracing. These values mean that the destination will,
with 20% of traces, be reached by the first probe.

low priority destinations are those which have not yet been traced by any vantage

point. A vantage point first checks for any high-priority destinations assigned to it,

if there are none, it takes a low priority destination and proceeds to trace according

to the method described in the tuple. Once the trace has completed, the tuple is up-

dated with the vantage point’s name and new stop set information. It is then inserted

back into marinda as a done record. The control server collects these done records

and determines which vantage point should probe it next. Therecord is inserted as

a high-priority tuple directed at the next vantage point in the list. Because high-

priority tuples are taken first, destinations are probed by all vantage points in quick

succession. This minimises the effect of routing changes. Also, because we pass

the global stop set on a per-destination basis, the need for windows of destination

addresses is removed.

The tunable parameter to doubletree is the first hop value. The first hop value is

the distance into the path at which doubletree begins its forwards probing. The first

hop value is chosen individually for each vantage point suchthat 80% of the time,

the destination is not reached with the first probe [11]. To calculate this value, we

use existing trace data from each vantage point and plot a cumulative mass graph
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of observed path lengths as seen in Figure 4.8. From this we can determine the

appropriate first hop value for each vantage point by readingoff the path length

where the cumulative mass is 0.2. These values are shown in Table 4.1.

We carry out traces to 46,000 destinations for each of the methods being tested.

This number was derived from prior knowledge about the time it takes, on average,

to carry out MDA traceroutes. We decided on an estimated three-day run time.

Three days provides a compromise between keeping the tracing time short, so that

the effects of routing changes are minimised, and gatheringa comprehensive data

set. The addresses we select are generated randomly from a RouteViews BGP prefix

table. We select 46,000 prefixes at random, and for each prefixgenerate a random

IP address covered by it.

For each destination in the list, we conduct four traces. Thefirst is regular

traceroute. We use ICMP-echo request packets as these have been shown to have

the highest response rate [23]. We also set the maximum number of unresponsive

hops (gap limit) to three, as this helps to speed up traces forwhich the destination

is unreachable. The second method we use is doubletree traceroute. We use the

same parameters as for regular traceroute. Third is MDA traceroute, for which we

use a 99% confidence level, a gap limit of three and a minimum inter-packet time

of 150ms. The fourth method is the economical MDA traceroute, using the same

parameters as the MDA traceroute.

4.3.2 Results

We began our experiments on December 30, 2009. The run took approximately 72

hours, with almost 74 million packets sent in total.

Before we can analyse the data gathered, we first must merge the topology from

each vantage point as both the doubletree and economical MDAtraceroute methods

attempt to not re-probe topology which has already been discovered by another

vantage point. We do this by extracting all of the links that each method discovers

in the path to a destination and removing any duplicates. We only consider links

from one interface to another, that is, links which have stars (unresponsive hops) in

them are discarded. If one vantage point discoversa→b→c and another discovers
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vantage
point

traceroute doubletree MDA eco MDA

eug-us 910614 429611 7387756 2971282
hlz-nz 1028975 294221 8436059 2403428
nap-it 1038420 298587 8635434 2596954
san-us 853177 372781 7200280 2975541
scl-cl 773296 327035 6948846 2845561
vie-at 871827 411568 7433549 2684581

total 5476309 2133803 46041924 16477347

Table 4.2: The number of probes sent from each vantage point.

vantage
point

traceroute doubletree MDA eco MDA

eug-us 93171 51469 99535 58975
hlz-nz 97590 33079 104344 41231
nap-it 94582 30923 100181 38012
san-us 97590 53899 103318 59932
scl-cl 98170 50229 104825 57908
vie-at 103735 47438 112050 55356

Table 4.3: The number of links discovered by each vantage point.

c→d→e, our final link list will containa→b, b→c, c→d, andd→e. For the probe

count metric, we simply sum the number of probes that each vantage point used for

the given method. Table 4.2 contains a list of these raw probecount values for each

method and vantage point. Table 4.3 shows the number of linksdiscovered.

Link Coverage

We use a per-trace link count to allow us to determine performance over time of each

method tested. Figure 4.9 shows the cumulative number of unique links discovered

by each trace. These results are unexpected as we see the linkdiscovery of regular

traceroute is a close second to MDA traceroute. One possiblereason for traceroute

almost matching the link coverage of MDA traceroute is that,due to having several

vantage points, each tracing the same destination, we effectively send six probes

to every hop with traceroute. Thus potentially discoveringalternate paths without

explicitly re-probing each hop.
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Figure 4.9: Per-trace cumulative link discovery. 46,000 destinations.

Missed Topology

The difference between the number of links discovered by traceroute and doubletree

is larger than expected, as is the difference between MDA traceroute and econom-

ical MDA traceroute. We attempt to determine the cause of this gap by classifying

links missed by economical MDA traceroute into links misseddue to the ALSS and

links missed due to the global stop set as this indicates an assumption has not held

up. Figure 4.10 shows the number of links missed by a representative sample of

vantage points. It appears that it is the global stop set which is causing the majority

of links to be missed. For example, the global stop set causes6,726 links to be

missed by hlz-nz whereas the ALSS only causes 877 links to be missed. Given that

the links missed by the ALSS only represent 1.49% of the totallinks discovered

by eug-us, we focus our attention on determining why the global stop set missed

11.4% of links.

In order to do this, we turn to the doubletree data which exhibits much the

same missed-link characteristics as we saw with the economical MDA traceroute.

Figure 4.11 shows the results of our attempts to classify themissed interfaces based

on the type of routing which immediately precedes them.

By far the most biggest cause of missed topology are aliases.Aliases comprise

around 45% of the causes of missed doubletree topology in ourexperiment. When
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one router replies with more than one address, a path collected with traceroute could

see a different topology to one collected with doubletree traceroute. In fact, two

consecutive doubletree traces might see a different topology. Whether or not this is

a cause for concern is entirely dependent on the end goal of the topology mapping

project. This is because two traces where there is a difference caused by aliases

are describing the same router-level path. If the topology at the interface level is

important, then doubletree would benefit from sending multiple probes per TTL,

however, this impacts the efficiency of the algorithm.

The next largest cause of missed topology are per-source/destination load bal-

ancers, making up 40% of the missed interfaces. These links are missed because a

global stop set entry from another vantage point has caused tracing to halt. Because

the other vantage point has a different source address, the per-source/destination

load balancer has routed the probe packets on an alternate path, thus invalidating the

doubletree assumption that paths form trees converging on adestination from mul-

tiple vantage points. This a concern for doubletree as regular traceroute mitigates

this effect somewhat by repeatedly probing each hop from multiple sources. Each

source will potentially see a different outgoing link and thus improve the overall

coverage. As doubletree only requires one vantage point to see an interface before

it is used in the global stop set, the alternate paths are missed. A possible way to

improve doubletree’s coverage with respect to per-source/destination load balancers

would be to alter the global stop set such that an interface needs to be seen from a

certain number of vantage points before it is to halt future probing.

With around 10% of misses, per-packet load balancers are thenext most preva-

lent. Because per-packet load balancers pay no attention tothe IP header fields, a

different interface can be seen with each probe sent. In thiscase, we miss topology

for much the same reason as we do with aliases. For example, two vantage points

A and B trace toward the same destination, B stops after discovering an interface

previously seen by A. However, there is a per-packet load balancer later in the path

which causes the path seen by traceroute to differ from the path observed by A. As

with other types of load balancing, the only way to see the alternate paths caused

by per-packet load balancers is send multiple probes. Again, if we ensure that a
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Figure 4.12: Per-trace cumulative probe usage. 46,000 destinations

number of vantage points have seen an interface in the path toa destination before

allowing a trace to be halted, we should discover more of these per-packet load

balanced links.

Per-flow load balancers make up less than 5% of the misses we observed. This is

most likely due to the Paris traceroute implementation usedby both traceroute and

doubletree in these experiments. Paris traceroute maintains a constant flow identi-

fier such that per-flow load balancers always forward probe packets out the same

interface. The remainder of the interfaces for which we haveno MDA traceroute

data are labelled as unclassified.

One of the most significant causes of missed interfaces in doubletree is also

applicable to economical load balancer traceroute. Per-source/destination load bal-

ancers are not affected by repeated probing, we see only one outgoing interface for

each vantage point which probes them. Therefore if economical MDA traceroute

stops earlier in the path, the alternate interfaces are missed.

Probe Usage

Once we have checked the topology gathered and determined the reasons for any

shortcomings, the next step is to ensure that the efficient algorithms have indeed re-

sulted in a reduction in the number of probes sent. We plot thecumulative number
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Figure 4.13: Per-trace cumulative probe usage. The global stop set was disabled in
both doubletree and economical MDA traceroute.

of probes used to trace each destination in Figure 4.12. The reduction in probes

between the standard methods and their efficient counterparts can be seen. The top

line, MDA traceroute, sends over 46 million probes, whereaseconomical MDA

traceroute only sends around 16.5 million. This representsa 64% reduction in

probes. We see a similar reduction in probes used between doubletree and tracer-

oute. Traceroute sends nearly 5.5 million probes, whereas doubletree only sends

just over 2 million; a 61% reduction in the number of probes used.

To empirically determine the extent to which the global stopset is causes links

to be missed, we re-run the experiment to a 5,000 destinationsubset of the original

list. We choose 5,000 addresses to decrease the run-time andbecause in the original

graph we can see that the lines are already cleared separatedby the 5,000 trace

mark. For this run, we disable the global stop set features ofboth doubletree and

economical MDA traceroute. Figure 4.13 shows much the same distribution of

probe counts as seen in the first experiment, with doubletreeand economical MDA

traceroute both using slightly more probes as is expected. In Figure 4.14 however,

we can see the improvement in link discovery by both methods.Link coverage by

economical MDA traceroute has increased to over 95%, again demonstrating the

need to re-think the way that the global stop set is used.
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Figure 4.14: Per-trace cumulative link usage. The global stop set was disabled in
both doubletree and economical MDA traceroute. Note that the eco MDA line is
much closer to the MDA line than in the graph where the global stop set was used.

ALSS Performance

To check the performance of the ALSS in economical MDA traceroute, we plot

both the number of probes used by the economical mode and the TTL at which the

regular MDA was engaged. Figures 4.15 and 4.16 are a the probeusage results

from san-us and vie-at vantage points which are representative of the others. The

slight increase in probes over time is expected as the economical mode gathers more

knowledge of the topology and is thus is engaged for longer lengths. This is seen in

Figures 4.17 and 4.18, which show the TTL at which the economical mode finished.

As anticipated, the TTL increases over time, with the peak lengths being reached

after approximately 20,000 traces.

4.4 Per-source/destination Load Balancing

It is worth noting our discovery of a type of load balancer that Augustinet al. did

not explicitly consider in [3]. We see evidence of routers which forward packets

based solely on their source and destination addresses. While probing with MDA

traceroute from a single vantage point, only one outgoing link is seen from a per-

source/destination load balancer, however, when we combine the data from multi-
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probes used by the economical mode increases over time indicating that the eco-
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ple vantage points, we see multiple unique outgoing links. It is unknown whether

these are a type of load balancer not encountered by Augustin, or a more accurate

classification of the load balancing that they refer to as per-destination. A per-

source/destination load balancer would appear to be a per-destination load balancer

if data from a single vantage point is considered. It appearsthat because these

routers forward based on the source address as well as the destination address, the

only way to be confident that all forward links have been discovered is to conduct

probing from several vantage points.

Because per-source/destination load balancers are one of the leading causes of

missed topology when using a global stop set, we propose a modification to the

global stop set and associated forward probing algorithm, which would allow these

alternate links to be discovered. We suggest that when probing with a large set of

vantage points, an interface must be seen by a number of thesevantage points be-

fore it is included in the global stop set. This is similar to the method that MDA

traceroute uses to enumerate per-flow load balancers, except that we are using mul-

tiple source addresses to vary the fields consulted by the router when making a

forwarding decision. We suggest using a table of values likethe MDA does which

increase depending on how many outgoing links are seen. For example, a per-

source/destination load balancer with two outgoing links,would need to be probed

by 15 vantage points to rule out a third link.

4.5 Summary

We have presented our results from comparing four macroscopic Internet topology

discovery methods, classic traceroute, doubletree, MDA traceroute and economical

MDA traceroute.

In real-world testing, while the local stop set portion of doubletree performs

well and discovers upward of 99% of the topology that classictraceroute does, the

global stop set is causing around 10% of topology to be missed. We see similar

results from testing of economical MDA traceroute. The ALSSis performing well,

while the global stop set causes large numbers of links to be missed.
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We classify the interfaces that the global stop set is causing doubletree to miss.

We conclude that in order to better discover interfaces caused by aliases and per-

source/destination load balancers, the behaviour of the global stop set needs to be

modified. We suggest that the global stop set is extended suchthat an interface must

been seen in the path to a destination by a number of vantage points before it can

be used to halt tracing. This will allow other vantage pointsto discover interfaces

which the first vantage point to trace the destination may have missed.
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Chapter 5

Challenges In Cooperative Probing

5.1 Introduction

Following our experiences with the large-scale testing described in Chapter 4, we

discovered that due to several contributing factors, the various vantage points used

were not able to work at even rates. We observed that vantage points which had

low memory and slow CPUs would cause the coordination mechanism to become

saturated with tasks that the slow vantage points could not act upon fast enough. To

begin with we mitigated this effect by improving the efficiency of the coordination

code itself, but we also considered a more scalable approachwhich involves manip-

ulating the order in which vantage points are allocated traces such that the slower

vantage points are given tasks with larger global stop sets and therefore more chance

of being able to stop probing earlier in the path. We demonstrate that marginal gains

can be made when using our optimisations on a dedicated measurement platform

such as Ark. Also, we show that there is the potential for moresignificant gains to

be had when using these optimisations in a system which has a more varied set of

vantage points, such as a end-user based tracing project.

5.2 Motivation

The cooperative probing methodology which we use for doubletree and economical

MDA traceroute is useful because it allows the vantage points involved to share

information about topology they have discovered, reducingthe amount of work
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each has to do. However, for maximum efficiency, two vantage points cannot trace

the same destination simultaneously. Because of this, a destination is probed in a

round-robin fashion, such that once a vantage point probes adestination, the stop

set is then passed to the next vantage point in the sequence which proceeds to trace

it.

This causes a problem when not all vantage points are able to complete traces

at the same rate. If there is even one vantage point which doesnot complete traces

at the same rate as the others, all other vantage points are slowed down while they

wait for the slow vantage point to complete traces that they are waiting for. Hence,

toward the end of a cycle, the faster vantage points will be blocked, waiting on the

slower vantage points to complete traces.

A slow vantage point can be caused by a number of factors. By virtue of being

in geographically distinct locations, the vantage points tend to have varying path

lengths. For example, the hlz-nz vantage point located in Hamilton, New Zealand,

has a median path length of twenty hops, whereas sjc-us, located in San Jose, Cali-

fornia, has a median path length of fifteen [8]. This means that hlz-nz takes longer

to complete traces than sjc-us because, in general, each path that hlz-nz traces has

more hops in it, thus taking longer to reach each destination.

If we consider the six vantage points used in our testing, Figure 5.1 shows the

distribution of the number of hops in each path when tracing with vanilla traceroute.

We use a count of observed hops to enable comparison to doubletree, as doubletree

does not necessarily trace the entire path to each destination. A hop count will give

an indication of the amount of work that each vantage point has to do relative to the

others. We can see that there is variation between the vantage points, as described

earlier.

Along with path lengths, another cause of difference in tracing speed between

vantage points is resource limitations. Several vantage points in the Ark infras-

tructure are several years old and have relatively slow CPUsand limited memory

as shown in Table 5.1. Early versions of the cooperative probing mechanism were

significantly affected by inefficient memory usage and threading implementations

in Ruby. This resulted in vantage points with limited resources struggling to keep
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name CPU RAM OS

hlz-nz Pentium II (400MHz) 362MB FreeBSD 7.1
eug-us Celeron (2.4GHz) 108MB FreeBSD 6.2
nap-it Dual Pentium

(2.0GHz)
1985MB FreeBSD 6.4

san-us Dual Pentium
(2.5GHz)

1926MB FreeBSD 7.1

scl-cl Pentium III (1.4GHz) 993MB FreeBSD 6.2
vie-at Core 2 (2.4GHz) 256MB Ubuntu 4.1

Table 5.1: Specifications for the Ark vantage points used. These are significantly
different in terms of CPU power, memory available and OS used.
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up with the others. hlz-nz, for example was slowed down enough that Marinda,

the shared memory system which allows communication between vantage points,

became overloaded and caused the entire experiment to fail.

Also, doubletree is suited well to a system which utilises consumer machines

such as traceroute@home [10]. It would be advantageous for such a system to allow

end-users, who are taking part voluntarily to specify how much data the tracing can

use. For example, in New Zealand, DSL users have a capped amount of data, so a

participant on a small data plan may set the rate at which probe packets are sent at

a much smaller amount than a research organisation. This hasthe effect of altering

the amount of time that each trace takes to complete, thus thefaster members would

be waiting for the slower ones to complete traces.

5.3 Optimisation Method

In order to counter this, a system must be devised so that slowvantage points can

still make the most of the advantages allowed by doubletree,but do not force other

vantage points to sit idle whilst they complete traces. The system that we propose

uses logic on the control server such that it keeps track of how long each vantage

point is taking to complete traces. It can then use this information to control the

order in which destinations are allocated to vantages points.

For example, if we have four vantage points, A, B, C and D. A andB are able to

complete 10 traces a second. C, 5 traces a second, and D, 1 trace per second. In this

situation, when A, B and C are finished with all of the available fresh destinations,

D will still have a large number locked. To overcome this, thecontrol server must

keep watch and ensure that D never takes addresses that have not been traced by all

of the other vantage points. Similarly, C must only be given an address once both

A and B have traced it. A and B should be free to request fresh addresses whenever

they run out of work as they will complete traces before the others.

Our control mechanism uses two different priority levels for destinations. Des-

tinations which have not been traced previously are designated as low-priority and

can be selected by any vantage point which has run out of high-priority jobs. The
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high-priority jobs are designated for a specific vantage point. To optimise the order-

ing, we keep track of the time between making a destination available for tracing

and receiving a completion notification. We then use this time to update a rolling

mean value for the vantage point which just completed it. Thus, over time, we gain

an estimate of the various speeds at which the vantage pointsare completing traces.

When a trace is to be allocated to a specific vantage point, rather than simply using

a round-robin process, we select the next fastest vantage point. The effect of this is

that by the time a slower vantage point receives the destination to trace, the global

stop set will be larger, and so the slow vantage point should have to do less work,

thus increasing its speed.

5.4 Results

5.4.1 Ark

We begin by testing our optimisation methods using the same six Ark vantage points

that we use for the large scale testing described in Chapter 4. We run two doubletree

experiments, each to the same 46,000 destination list. The first experiment we run

is regular doubletree with no additional optimisations. That is, when a destination

has been traced, it is passed the next vantage point in alphabetical order.

Figure 5.2 shows the number of probes that each vantage pointused to trace

the destination list. When compared to Figure 5.3, we can seethat there is only

a marginal improvement in terms of even distribution of effort between vantage

points. We can see that scl-cl and vie-at have sent more probes to become marginally

more even with the other vantage points. We also see that nap-it has had a slight

reduction in probes used to fall into line with hlz-nz and san-us.

Figures 5.4 and 5.5 illustrate the over time that each experiment took. We again,

see a negligible improvement; scl-cl takes slightly longerto complete. Overall, the

experiment completes around three minutes quicker with optimisation turned on (a

1% improvement).

Figure 5.6 helps explain why we see only minimal differencesbetween the van-

tage points in terms of probes and time. We can see that the distribution of hops
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Figure 5.2: The number of probes that each vantage point usesto conduct doubletree
traces to 46,000 destinations. The order in which vantage points trace a destination
has not been optimised for these results. Note that the distribution of probes is
similar to the distribution of hop counts in Figure 5.6.
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Figure 5.3: The number of probes that each vantage point usesto conduct doubletree
traces to 46,000 destinations with the ordering of vantage points optimised. There
is a marginal gain, the overall probes used is reduced by a fraction of a percent. The
number of probes used by hlz-nz, nap-it and san-us has been smoothed slightly so
that each is using almost the same number of probes.
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Figure 5.4: Without optimised ordering. The overall amountof time taken to con-
duct doubletree traces to 46,000 destinations. All vantagepoints take roughly the
same amount of time to complete their traces.
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Figure 5.5: Optimised vantage point ordering. The overall amount of time taken
to conduct doubletree traces to 46,000 destinations. Optimisation has, as with the
probe usage, reduced the differences between vantage points marginally.
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Figure 5.6: The minimum, lower quartile, median, upper quartile and maximum hop
counts for traces using doubletree traceroute. Compared toFigure 5.1, the variation
in hop counts is much smaller. This impacts the extent to which optimisation of
vantage point ordering is effective.

observed by doubletree is much less varied than those observed by vanilla tracer-

oute in Figure 5.1. Many of the hops which cause some vantage points to have

longer paths are seen in the majority of traces from that vantage point. Therefore

we see less variance in the number of hops visited by each vantage point when using

doubletree because these common nodes are not re-visited. Because there is only a

small variance in hops visited, there is less to be gained by optimising the order in

which vantage points are assigned traces.

5.4.2 Varied Probing Rates

In order to test the optimisation method on a system that has vantage points which

probe at varying rates, we limit the rate at which three of ourvantage points can

send probes. We reduce the probes per-second rate on hlz-nz,nap-it and scl-cl from

50, to 25, effectively halving the speed at which they can complete traces. We then

re-run the two experiments using a 10,000 destination sub-set of the original list.

We use a smaller list because the optimisations are done on a per-destination basis,

and therefore is independent of the number of destinations traced.

Both Figure 5.7 and Figure 5.8 show much the same distribution of probes used
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Figure 5.7: No optimisation. The number of probes used to conduct doubletree
traces to 10,000 destinations. hlz-nz, nap-it and scl-cl have been artificially slowed
to 25 probes per second, half the speed of the other vantage points.
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Figure 5.8: With optimisation. The number of probes used to conduct doubletree
traces to 10,000 destinations. hlz-nz, nap-it and scl-cl have been artificially slowed
to 25 probes per second, half the speed of the other vantage points. There is no
significant difference in probe usage between optimised andnon-optimised traces.
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Figure 5.9: No optimisation. The overall time taken for eachvantage point to con-
duct doubletree traces to 10,000 destinations. hlz-nz, nap-it and scl-cl have been ar-
tificially slowed to 25 probes per second, half the speed of the other vantage points.
This is evident in their longer trace times.

as we saw with all the vantage points running at equal speeds.This is because

although the vantage points are tracing at differing speeds, they must still trace all

destinations and so the number of probes used will not vary greatly.

When we look at the amount of time taken by each vantage point however, we

can see the advantages of optimising the ordering of the traces. Figure 5.9 shows the

duration for each vantage point when optimisation is not used. The vantage points

which have been slowed down are clearly visible. The anomalyis vie-at which

also has a longer run time. This is most likely due to the traces being assigned in

alphabetical order such that it has to wait for traces from all of the slow vantage

points. Figure 5.10 shows that optimisation has indeed beenbeneficial. Both scl-cl

and vie-at have had their durations significantly reduced, at the expense of eug-

us and san-us, thus bringing all the durations closer to eachother. We also see a

cumulative reduction in run-time of around 8%.
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Figure 5.10: With optimisation. The overall time taken for each vantage point to
conduct doubletree traces to 10,000 destinations. hlz-nz,nap-it and scl-cl have
been artificially slowed to 25 probes per second, half the speed of the other vantage
points. The advantage of optimising the ordering of the vantage points can be seen.
Overall time is reduced by almost 10% and the time taken by each vantage point is
smoothed in relation to the other vantage points.

5.5 Summary

Because we see less variance between vantage points of the number of hops visited,

there is limited scope for optimisations to be advantageousin situations where all

vantage points are able to conduct traces at the same rate. However, even though

we observe minimal improvements when using optimisation onthe standard Ark

vantage points, the only cost for such optimisations, provided the assumptions made

by doubletree about the paths forming trees hold up, is in calculating and storing

a mean trace time for each vantage point. We therefore recommend using taking

vantage point speed into consideration even when using a setof vantage points

which are able to trace at similar rates.

We demonstrate that there are gains to be had by using optimisation in a system

where there are vantage points with varied tracing speeds. For both of these ex-

periments, better results may be observed by making use of a larger set of vantage

points. This would allow the differences between assigningtraces to vantage points

in alphabetical order and in speed order to be more clearly seen.
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Also, it may be beneficial to consider a different method of tracking vantage

point speeds. For example, a weighted rolling mean similar to that used by TCP [17]

could be used to favour newer data points.
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Chapter 6

Stop Set Considerations

6.1 Introduction

In implementing doubletree in a large-scale topology discovery system which is de-

signed to repeatedly trace a representative portion of the entire IPv4 address space,

we must be careful that the state that is collected within thelocal and global stop

sets remains accurate. For example, when routing changes occur, the state held

in the stop set may not match the actual topology and as such cause doubletree to

halt probing erroneously. To counter this, we consider the most appropriate time

to empty the stop sets, thus removing potentially stale topology information. We

briefly consider the global stop set, but determine that clearing the global stop set

at the end of a cycle is sufficient. We then consider the local stop set, for which

there is no clearly defined interval to clear it. We conduct simulations to attempt to

empirically determine an optimum interval. Although we seea small decrease in

topology discovery with longer clearing intervals, this isin most cases around 2%

over a month of data.

6.2 Stop Set Clearing Intervals

The local stop set is a per-vantage point set of all the interfaces which have been dis-

covered while in the backward probing phase, whereas the global stop set contains

a set of interface-destination pairs which describe the interfaces seen in the paths to

a destination. As these sets are used to decide where in a pathto halt probing, it is
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important that the information contained is up-to-date andaccurate. If there is data

about topologies that have since changed, this can cause doubletree to halt probing

prematurely and therefore not discover topology. The more often that the stop sets

are cleared, the less effective doubletree becomes at reducing the number of probes

sent. On the other hand, clear the state too infrequently andchanges in topology

will be hidden by data in the stop sets.

6.2.1 Global Stop Set

Because the two sets hold different information, it makes sense that they are con-

sidered separately and cleared independently of each other. The global stop set is

the simplest to consider; the global stop set holds the collective knowledge about

the interfaces that comprise the paths that converge on eachdestination. Therefore

it makes sense that when a dynamically generated destination list is being used for

probing, this knowledge is discarded at the end of a cycle. The chances of an identi-

cal destination being randomly generated again within a short enough window such

that there has been no major routing changes is fairly small [27].

6.2.2 Local Stop Set

The local stop set on the other hand, has no clear cut point at which it should be

cleared. Because the local stop set is specific to a vantage point it should be kept

for as long as the paths closest to the vantage point remain stable. While the paths

leading away from a vantage point are stable, there is littlechance of the doubletree

algorithm stopping backward probing and therefore missingtopology. This chapter

reports on a study into the amount of topology which is missedover time by dou-

bletree based on how long the local stop set is kept for. Usingexisting data from the

IPv4 Routed /24 Topology Dataset [16] we have simulated the backward probing

phase of the doubletree algorithm running on each vantage point in team one.
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6.3 Simulation Design

In this simulation, we take existing Internet topology dataand use this to simulate

the backward probing phase of the doubletree algorithm. We then compare the

results from the doubletree probing to the original data in order to see the extent

of any missed topology. We repeat this experiment 30 times, each time with a

different local stop set life-time. We have chosen to simulate this scenario as the

length of time necessary to conduct such an experiment in thereal-world would be

prohibitively long (nearly three years) and changes in Internet routing would mean

comparisons would be flawed.

The topology data we use is sourced from the CAIDA IPv4 Routed/24 Topology

Dataset [16]. We use the data collected by the 13 team one vantage points during the

month of June, 2009. This amounts to over 104 million traces in total. As a starting

point for doubletree, we use firsthop values tuned to the individual vantage point.

These are the same firsthop values that we use in our real-world doubletree runs.

See Section 4.3.1 for a description of how these values were obtained. For each run

through the data, we record the links that doubletree discovers so that they can be

compared to the trace data. We use stop set-lifetimes that increase exponentially to

give a fine-grained coverage of the smaller intervals and a more coarse coverage of

the longer intervals. The formula we use isn2
∗ 60 wheren is the run number. We

begin with an interval of 60 seconds (12
∗ 60 = 60). That is, the local stop set is

emptied every minute. The next interval is 240 seconds (22
∗ 60 = 240) and so on

up to 54,000 seconds (15 hours). Along with generating data about the links that

doubletree discovers, we also extract the links that trace discovers.

6.4 Results

Figure 6.1 shows the number of interfaces which were missed by the various vantage

points used in the simulation when the local stop set is not cleared for the duration of

the simulation. This simulates the base case where we never clear the local stop set.

It appears that some vantage points are missing a far higher number of interfaces

than others. When we look at Figure 6.2 however, we see that the total size of
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Figure 6.1: Cumulative count of interfaces that are missed due to doubletree’s local
stop set path assumptions. Simulated using Ark Team 1 traceroute data from June
2009.
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over time.
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Figure 6.3: The proportion of interfaces missed in relationto the total number of
interfaces held in the local stop set for each vantage point.

each vantage point’s local stop set also varies. This is mostprobably due to varying

amounts of diversity in the paths prior to the first-hop valueused by doubletree.

That is, some vantage points a higher out-degree for nodes within the firstn hops,

wheren is the doubletree first-hop value. If we take this variance into account by

plotting the number of interfaces missed by each vantage point in proportion to its

local stop set size, we get Figure 6.3. From this graph we can see that all of the

vantage points in the simulation discover well over 90% of the interfaces with some

discovering over 98%. There does not appear to be an increasein the proportion

being missed over time. Thus implying that not clearing the local stop set may

not cause the topology loss feared. These results are supported by results from our

large scale testing outlined in Chapter 4. We discuss this further and suggest an

appropriate interval at which the local stop set should be cleared in Section 6.5.

Figure 6.4 shows the proportion of links that doubletree discovers when com-

pared to traceroute for each of the clearing intervals in thesimulation. We see that

with the exception of nrt-jp, there is not a large variance between the different clear-

ing intervals. This is again the case in when we consider the number of probes used

in Figure 6.5. We can see that the probe count is virtually unaffected by the changes

in clearing intervals.
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Figure 6.4: The proportion of links discovered by doubletree during backward prob-
ing compared to traceroute for a representative selection of vantage points. Only
hops up to the doubletree first hop value are considered.
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a representative selection of vantage points.
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6.5 Discussion

When we consider the base case where we never clear the local stop set, we see

that with the exception of a couple of vantage points (lej-deand hel-fi), the number

of interfaces missed does not rise quickly as seen in Figure 6.1. For most vantage

points, interfaces are missed regularly at the beginning but this rate drops off over

time. Once we take into consideration the total size of each vantage point’s stop set

as in Figure 6.3, we see this trend more clearly. The number ofinterfaces missed

drops quickly in the first few hours/days and then stabilizes.

When we look at the data from the entire simulation, we see that the number of

links missed by doubletree generally increases over time (Figure 6.4). This growth

is very slow however, and after a month of tracing, the simulation shows that in

most cases less than 1,000 interfaces are missed. This implies that the effect of

routing changes on doubletree’s topology discover is minimal and leaving the stop

set uncleared for an entire month would not affect the data gathered too much.

The effect of varying the interval at which the local stop setis cleared has even

less of an effect on the number of probes used. When we look at 6.5 we see almost

no decrease in the number of probes used when the stop set is cleared every 54,000

seconds (15 hours) compared to when it is cleared hourly. Theonly effect seen is

when the stop set is cleared very quickly such that doubletree does not have enough

knowledge about the topology to probe efficiently.

From these results, we see that the interval at which the local stop set is cleared

has little effect on both the topology discovered and the number of probes used.

Another aspect to be considered is the memory requirements of the local stop set. As

the size of the stop set increases, so will the memory usage ofthe probing process.

If it is running on machines with limited resources, this could present a problem,

so some care must be taken such that the stop set is cleared regularly enough to

prevent the probing process from exhausting the available resources. As with the

global stop set, we decide that the most appropriate time forthe local stop set to be

cleared is at the end of a tracing cycle. This allows the data gathered to be used as

a discrete set. Again, care must be taken if the cycle is goingto take a sufficiently

long amount of time that routing changes or memory usage willaffect the results.
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An unexpected result from this simulation is that we see remarkably better link

coverage by doubletree in simulation than we see in the real-world experiments de-

scribed in Chapter 4. The cause for this is presumably load balancing routers. In

this simulation, we are treating the traceroute data as a ground truth regarding the

topology. However, the traceroute data is incomplete due toits inability to com-

pletely discover load balanced paths. Due to the low number of interfaces missed

by this simulation, we conclude that the majority of missed interfaces in real-world

doubletree runs are caused by load balancing and not by routing changes.
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Chapter 7

BGP Guided Probing

7.1 Introduction

The various methods for increasing the efficiency of a macroscopic traceroute project

discussed thus far have all attempted to reduce the number ofprobes sent by main-

taining state at an interface level about paths that have been observed with previous

probing. Another potential way to reduce the number of probes required to trace

a path is to use BGP routing information specific to each vantage point [11]. We

firstly use simulations to determine whether it is feasible to use BGP routing data

coupled with existing traceroute to accurately estimate the length of an IP path to a

destination by learning the mean width of the ASes in the path. We then use another

simulation to determine how many times an AS should be traversed before the width

learned can be used to direct further probing. This is an exploratory examination

of the area and we leave running a full simulation to determine link coverage for

future work.

7.2 Overview

If a vantage point has access to the routing information specific to its location within

the Internet, it is able to determine, with no probes, the AS path from it to a des-

tination. With this information, the algorithm is able to determine the ASs in the

path which have not been traced previously and can direct probes to them. We can

use this ability to create a prober which specifically targets sections of paths which
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vantage
point

bgp source date file name

ams-nl RIPE RIS 01/06/2009 bview.20090601.0759.gz
nrt-jp Route-Views 01/06/2009 rib.20090601.0000.bz2

Table 7.1: Sources of BGP routing data used in our simulations.

have not been traced previously. We would see similar benefits to doubletree at the

edges of paths, but we would also be able to skip path segmentsmid-path, which

doubletree can not do. This would mean that topology which may have been hidden

by doubletree’s stop sets is discovered.

In order to be able to probe a specific AS in a path, the algorithm must be able

to determine the widths of each of the preceding ASes in the path. We use the term

AS width to describe the number of interfaces that are seen ina traversal of an AS.

If the width of each AS in the BGP path can be determined, the algorithm can then

effectively skip sections of the path which have been seen with prior probing.

To establish whether we can use BGP data to estimate path lengths, we take

existing Ark trace data and use it to learn the average width of all of the ASes in the

paths. From these widths, we then attempt to predict the overall length of the path

to each destination by taking the sum of the widths of each AS in the advertised

BGP path.

7.3 Simulation Design

We test our algorithms in simulation by using a month of data from two vantage

points in CAIDA’s Ark infrastructure. We use the ams-nl and nrt-jp vantage points

as they both have publicly available BGP routing data, as defined in Table 7.1.

We run two simulations. The first is to determine whether routing data can be

used to accurately predict path lengths and the second is to determine the appropri-

ate number of times that an AS must be traversed before using the calculated width

to influence future tracing.

Our first simulation involves using the real-world trace data to learn average

widths for the various ASes which are then used to estimate the total lengths of the
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Figure 7.1: An example of how the simulator determines AS widths from an IP path
and routing data. Each interface is looked up in the routing data to determine which
AS it belongs to. Adjacent IP addresses which belong to the same AS are counted
and a width for that AS is determined. In this example, the addresses C,D and E all
belong to the AS 499, thus making our first width estimate for AS 499 three hops.

paths to each of the destinations in the data set. We first convert the trace data into a

series of IP paths. Using these paths, we attempt to learn theAS widths. To do this,

we traverse each path and, by using the routing data, look up the AS number of each

interface in the path. When we cross an AS boundary, we updatethe width value

held for the AS. An example of this is demonstrated in Figure 7.1. Each IP in the

path is converted to its respective AS number and a width for each AS is calculated.

In this example, the IP addresses represented by A and B both belong to AS 23,

so the width estimate for AS 23 would be two hops. Because the width of an AS

may vary slightly from trace to trace we have our algorithm learn the mean width.

Once all of the paths have been parsed, we have a look-up tableof AS numbers and

their respective widths. Again using the destinations fromthe Ark data, we look up

the corresponding BGP route using the longest matching prefix. From this we get

a sequence of AS hops. For each AS in the path, we look up our table of widths.

We take the sum of each AS in the path, up to, but not including the final AS, for

which we add half of the recorded width. This is because we expect, on average, to

only traverse half of the final AS before reaching the destination. We then compare

these estimated lengths to the actual path lengths to determine how accurately we

can predict the width of each AS.

We then attempt to empirically determine the number of timesan AS should be
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Figure 7.2: The frequency of differences between estimatedand actual path lengths
when simulated with a month of ark trace data from the ams-nl vantage point.

traversed before using the calculated width to influence future tracing. We run a

simulation which varies the number of times that an AS must betraversed before

using its width information to skip over it in future traces.

For each trace that was used in the simulation, we look up the AS path from

the routing information. We then iterate through each AS in the path and determine

whether we have traversed the AS enough times to 1) have an accurate width value

and 2) reduce the chance of an alternate path through an AS being missed. If we

do have an accurate width value, the TTL that traceroute probes is increased by the

sum of the determined AS widths. If there is not enough data tomake an accu-

rate width determination, the TTL is left unchanged and tracing continues as with

normal traceroute until the next AS in the path is reached andthe test is performed

again.

7.4 Results

The results from initial testing using BGP data to predict path lengths is encourag-

ing. Figure 7.2 shows over 1 million path estimated precisely. Also, the majority of

estimates are less than five hops different to the actual pathlength.
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length and the actual path length is less than two. Simulatedusing data from the
ams-nl Ark vantage point
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jp interface line). A confidence value of approximately 20 appears to be best for
reducing the number of probes.

Figures 7.3 and 7.4 shows the results when we plot the number of traces where

the estimated path length was within two hops of the actual path length. We can

see that the distribution closely follows that of the actualpath lengths. We see that,

especially for the ams-nl data, short paths (up to five hops) are accurately estimated.

Also, for the majority of path lengths, the estimated lengths are within two hops of

the actual path length.

If we look at the data from the simulation of the AS traversal threshold, illus-

trated in Figure 7.5, we can see the effect that varying the threshold has on both

the probes used and the interfaces discovered. Foremost, wesee that the effect

on the number of interfaces discovered is negligible such that on this graph, the

interface count is a horizontal line. Both vantage points have interface discovery

counts which are within 20,000 of each other. Given that interface discovery is

not impacted, the coverage of this algorithm is not in question. The other factor

to consider is the number of probes used. The probe count for each vantage point

is shown toward the top of the graph. For very low traversal thresholds, there is a

larger number of probes used. This is likely due to the initial path length estimates
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being markedly different to the actual AS widths resulting in regular traceroute must

be used more frequently, thus not probing as efficiently. Also, as the threshold in-

creases, the number of probes used also increases. This is due to having to use

the regular traceroute algorithm more before the traversalthreshold is reached. We

determine that 20 traversals ensures maximum efficiency as both higher and lower

traversal thresholds result in higher probe usages.

7.5 Summary

This chapter demonstrates that by using BGP routing data, itis possible to predict

the IP path length to a given destination accurately. This isuseful in active mea-

surement projects as this data is essentially free. That is,obtaining this knowledge

requires no active probing, thus if we can reduce the number of traceroute probes

we send by making use of this data, we can reduce the impact that our unsolicited

traffic has on the Internet. Also, because this data can generally be obtained far

quicker than traceroute data can, we can improve the speed with which we can trace

large numbers of destinations.

We also determine approximately 20 traversals to be a reasonable number of

times to observe an AS before using its width in future tracing. 20 traversals ensures

maximum probe efficiency as demonstrated in Figure 7.5.

The limitation of this method for improving traceroute efficiency is that each

vantage point must have access to the BGP data for its routing. Having access to

local routing data means that the routes used to select whichsections of the path to

trace will be more accurate than those gathered from other sources. Future work

should look at the effect that using routes gathered from public sources such as

RouteViews [1] in place of local routing information has on the accuracy of data

gathered and on the number of probes used. There would need tobe investigation

into which route was the best to use. This would allow vantagepoints which do not

have access to local BGP data to use this technique also.
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Chapter 8

Conclusion

8.1 Contributions

This thesis provides several contributions to the field of macroscopic Internet topol-

ogy discovery. We present a variation on the MDA, economicalMDA traceroute

which is designed to discover comprehensive topologies while minimising the num-

ber of probes used. We find that in real-world testing, we are able to maintain over

90% link coverage while reducing the number of probes used byaround 60%. We

are able to show that the ALSS is causing a reduction in probes, whilst maintaining

link coverage of over 95%.

We discover that the assumptions behind the global stop set are flawed and cause

our doubletree implementation to miss around 10% of interfaces. Upon classifying

these missed interfaces, we discover that the topology lossis largely due to aliases

and per-source/destination load balancing. Per-source/destination load balancing is

a type of load balancing not explicitly considered by Augustin et al. in [3]. We de-

termine that per-source/destination load balancers are not affected by manipulating

the flow identifier as per-flow load balancers are. Alternate links in a path to a single

destination are only seen from differing sources.

Our investigation into optimising the order in which tasks are given to vantage

points shows that, in the Ark infrastructure, we are able to make minimal gains at

no extra cost. However, in an environment where the vantage points are probing

at significantly different rates, we reduce the overall timetaken by nearly 10%.

This will be useful in a massively distributed environment where the probers are
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end-users with varying link speeds and data plans.

We also investigate the impact that the doubletree local stop set has on discov-

ered links. We simulate clearing the local stop set at various intervals and observe

the number of links doubletree misses. We determine that there is minimal differ-

ence in link discovery across the clearing intervals and conclude that the decision as

to when to clear the local stop set should be made based on an acceptable memory

overhead for storing the stop set on the probers.

Our work with BGP data shows that IP path lengths can be estimated using AS

paths obtained from routing information. Based on this work, we simulate using

BGP data to guide traceroute probes to previously undiscovered sections of paths.

We simulate using different AS traversal thresholds to determine that an AS should

be traversed approximately 20 before using the width estimate to guide future traces

in order to gain maximum efficiency.

8.2 Future Work

There are a number of areas of our work which we believe deserve further research.

The results from the global stop set investigation we have conducted, indicate that

the assumptions Donnetet al. originally made do not hold up in today’s Internet.

We suggest that the global stop set be extended so that several vantage points must

discover a link before it can be used to halt probing to a destination. This would

allow better coverage of aliases and per-source/destination load balancers, the most

prevalent causes of topology loss when considering the global stop set.

Another improvement which could be made to the economical MDA is to re-

enable the economical probing mode mid-path when confidencein the path segment

is regained. This would allow a further reduction in the number of probes sent. This

would need to be analysed as to whether the potential topology loss is worth the

efficiency gain.

To extend the preliminary work we have done using BGP data, wesuggest that

a BGP aware MDA is developed such that probes can be directed to ASes in which

have not been comprehensively probed with previous tracing. The system would
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need to peer with a local BGP router and obtain routing information with which

it could learn AS widths as we have described. From there it can analyse the AS

path to a destination and determine the sections which need to be probed using the

MDA. Using the MDA would require fewer traces to target each AS as most of the

load balanced links could be discovered with one trace.

To further improve on our work into optimising the ordering of vantage points,

we suggest using a large set of vantage points which are situated on consumer ma-

chines. This will allow a more accurate experiment to be conducted, and the impacts

of optimisations better observed. We also suggest researchinto a more sophisticated

method for tracking the speed of each vantage point. For example, a weighted mov-

ing mean may help by favouring newer data points.
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