

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Per-Hop Internet Measurement

Protocols

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy

at

The University of Waikato

by

Matthew Luckie

2006

c© 2006 Matthew Luckie

All Rights Reserved

ii

Abstract

Accurately measuring per-hop packet dynamics on an Internet path is difficult. Cur-

rently available techniques have many well-known limitations that can make it dif-

ficult to accurately measure per-hop packet dynamics. Much of the difficulty of

per-hop measurement is due to the lack of protocol support available to measure

an Internet path on a per-hop basis. This thesis classifies common weaknesses and

describes a protocol for per-hop measurement of Internet packet dynamics, known

as the IP Measurement Protocol, or IPMP. With IPMP, a specially formed probe

packet collects information from intermediate routers on the packet’s dynamics as

the packet is forwarded. This information includes an IP address from the interface

that received the packet, a timestamp that records when the packet was received,

and a counter that records the arrival order of echo packets belonging to the same

flow. Probing a path with IPMP allows the topology of the path to be directly deter-

mined, and for direct measurement of per-hop behaviours such as queueing delay,

jitter, reordering, and loss. This is useful in many operational situations, as well as

for researchers in characterising Internet behaviour.

IPMP’s design goals of being tightly constrained and easy to implement are

tested by building implementations in hardware and software. Implementations of

IPMP presented in this thesis show that an IPMP measurement probe can be pro-

cessed in hardware without delaying the packet, and processed in software with little

overhead. This thesis presents IPMP-based measurement techniques for measuring

per-hop packet delay, jitter, loss, reordering, and capacity that are more robust, re-

quire less probes to be sent, and are potentially more accurate and convenient than

corresponding measurement techniques that do not use IPMP.

iii

Acknowledgements

I am fortunate to have been advised by Tony McGregor. He provided continuous

encouragement, support, and patience throughout the course of this work, as well as

a continuous stream of feedback that was always helpful in completing this work.

Thanks also go to Murray Pearson and John Cleary, members of my advisory board,

who provided feedback in the preparation of this thesis.

Numerous members of the WAND network research group at Waikato helped

me throughout this work. James Spooner and Alan Holt carefully read drafts of

this thesis and supplied perspectives that come with real-world experience; these

perspectives greatly improved this work. In addition, James provided a hardware

implementation of an early version of IPMP and provided guidance on how it could

become more hardware-friendly. James also supplied a crash course in writing

VHDL that enabled me to complete the hardware implementation, simulate it, and

then tidy up the code so that it would synthesise on WAND’s non-blocking cross-

bar switch. I also pestered Matt Brown, Jamie Curtis, Matt Jervis, and Brendon

Jones for assistance with various WAND resources, and they were always helpful.

Other researchers provided feedback on my work at conferences, and as part

of the peer-review process. Mark Foster (NASA Ames Research Center) provided

public encouragement and perspective, as well as a review of a draft of this thesis.

Finally, many other people supported me prior to, and over the course of this

work. My thanks and love go to Jo Ball, my parents Wendy and Kevin, as well as

Jenny Ball, Mike Wright, Nick Grieve, Minty, Monty, and Cassie.

This work was funded, in part, by a University of Waikato doctoral scholar-

ship, a University of Waikato computer science scholarship, NLANR/MNA under

cooperative agreement no. ANI-0129677, and a scholarship from the WIDE group.

iv

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Overview of Thesis . 3

1.3 Contribution of this Work . 5

2 Background 7

2.1 Introduction . 7

2.2 Internet Topology . 9

2.2.1 Definition . 9

2.2.2 Motivation for Internet Topology Measurement 9

2.2.3 Internet Topology Measurement Techniques 10

2.2.3.1 Traceroute . 10

2.2.3.2 IPv4 Record Route 11

2.2.3.3 Traceroute Using an IP Option 12

2.2.4 Resolving Router Aliases 13

2.2.4.1 Iffinder . 14

2.2.4.2 Ally . 15

2.3 Delay . 16

2.3.1 Definition . 16

2.3.2 Motivation for Delay Measurement 17

2.3.2.1 End-to-End Motivation 17

2.3.2.2 One-way Motivation 17

2.3.2.3 Per-hop Motivation 18

2.3.3 Delay Measurement Techniques 18

v

2.3.3.1 Ping . 18

2.3.3.2 ICMP Timestamp 19

2.3.3.3 One-way Active Measurement Protocol 20

2.3.3.4 Cing and Tulip 20

2.3.4 Accounting for Host Delays 22

2.4 Loss . 25

2.4.1 Definition . 25

2.4.2 Motivation for Loss Measurement 26

2.4.2.1 End-to-End Motivation 26

2.4.2.2 One-way Motivation 26

2.4.2.3 Per-hop Motivation 27

2.4.3 Loss Measurement Techniques 27

2.4.3.1 Sting . 28

2.4.3.2 Tulip . 29

2.5 Reordering . 31

2.5.1 Definition . 31

2.5.2 Motivation for Reordering Measurement 31

2.5.2.1 End-to-End Motivation 31

2.5.2.2 One-way Motivation 32

2.5.2.3 Per-hop Motivation 32

2.5.3 Reordering Measurement Techniques 32

2.5.3.1 Tulip . 33

2.6 Capacity . 34

2.6.1 Definition . 34

2.6.2 Motivation for Capacity Measurement 34

2.6.3 Capacity Measurement Techniques 35

2.6.3.1 Packet Pairs . 35

2.6.3.2 Pathchar . 37

2.6.3.3 Nettimer . 39

2.6.3.4 Cartouche Probes 40

2.7 Summary . 42

vi

3 Overcoming Common Limitations 43

3.1 Introduction . 43

3.2 Common Limitations . 44

3.2.1 Forward Path Bound . 44

3.2.2 Static Path Behaviour Assumptions 44

3.2.3 ICMP Rate-Limiting . 45

3.2.4 ICMP Disabling . 46

3.2.5 Firewalls and Filters . 47

3.2.6 Hidden Queues . 47

3.2.7 Specialised Cooperation Required 48

3.2.8 Imprecise Timekeeping . 49

3.2.9 Free-Running Clocks . 50

3.2.10 Unable to Reliably Resolve Router Aliases 50

3.3 Desirable Features . 51

3.3.1 Integrated Path and Packet Dynamics Measurement 51

3.3.2 Able to Measure the Reverse Path 52

3.3.3 Minimal Overhead in Routers 53

3.3.4 Precise Timestamping . 53

3.3.5 Obtain Clock Synchronisation State 54

3.3.6 Denial of Service Resistant 55

3.3.7 Measure Different Traffic Types 55

3.3.8 Resolve Router Aliases . 56

3.3.9 Partial Deployment Utility 56

3.4 Summary . 56

4 IP Measurement Protocol 57

4.1 Introduction . 57

4.2 Protocol Overview . 58

4.3 Feasibility . 61

4.4 The Echo Protocol . 63

4.4.1 Echo Packet Design . 63

4.4.2 Path Record Design . 66

vii

4.4.3 Path Record IP Address 69

4.4.4 Path Record Timestamp 70

4.4.5 Creating an Echo Request 71

4.4.6 Echo Processing at an Intermediate Node 74

4.4.6.1 Store-and-Forward Decision Process 74

4.4.6.2 Bit-stream Decision Process 76

4.4.6.3 Inserting a Path Record 77

4.4.7 Echo Processing at a Destination 78

4.5 The Information Protocol . 80

4.5.1 Information Packet Design 80

4.5.2 Real-Time Reference Point Design 82

4.5.3 Resolving Router Aliases 82

4.5.4 Performance Data . 83

4.6 Relationship to Desirable Features 86

4.6.1 Integrated Path and Packet Dynamics Measurement 86

4.6.2 Able to Measure the Reverse Path 86

4.6.3 Minimal Overhead in Routers 87

4.6.4 Precise Timekeeping . 87

4.6.5 Denial of Service Resistant 87

4.6.6 Measure Different Traffic Types 88

4.6.7 Partial Deployment Utility 88

4.6.8 Resolve Router Aliases . 88

4.7 Summary . 88

5 Implementation 90

5.1 Introduction . 90

5.2 Software Implementation . 91

5.2.1 Model . 91

5.2.2 BSD Implementation . 93

5.2.2.1 Packet Storage 93

5.2.2.2 Timestamps . 94

5.2.2.3 Sending an Echo Request 95

viii

5.2.3 Linux Implementation . 96

5.2.3.1 Packet Storage 96

5.2.3.2 Timestamps . 96

5.2.3.3 Sending an Echo Request 97

5.2.4 Flow Counters . 98

5.3 Software Forwarding Performance 99

5.3.1 Apparatus . 99

5.3.2 Methodology . 100

5.3.3 Results . 101

5.4 Hardware Implementation . 105

5.4.1 Overview . 105

5.4.2 Checksums . 107

5.4.3 State Transitions . 107

5.5 Hardware Forwarding Performance 110

5.5.1 Methodology . 110

5.5.2 Results . 110

5.6 Summary . 113

6 IPMP Measurement Techniques 115

6.1 Introduction . 115

6.2 Topology . 115

6.2.1 All Nodes with IPMP . 115

6.2.2 Some Nodes with IPMP 116

6.2.3 End Hosts with IPMP . 117

6.3 Delay . 117

6.3.1 All Nodes with IPMP . 117

6.3.2 Some Nodes with IPMP 118

6.3.3 End Hosts with IPMP . 119

6.4 Loss . 119

6.4.1 All Nodes with IPMP . 120

6.4.2 Some Nodes with IPMP 122

6.5 Reordering . 122

ix

6.5.1 All Nodes with IPMP . 122

6.5.2 Some Nodes with IPMP 123

6.6 Capacity . 123

6.6.1 All Nodes with IPMP . 123

6.6.2 Some Nodes with IPMP 125

6.6.3 End Hosts with IPMP . 125

6.7 Summary . 125

7 Applications of IPMP 126

7.1 Introduction . 126

7.2 IPMP Ping . 127

7.3 Overview of CRCnet . 128

7.4 Per-Hop Loss Measurements . 129

7.5 Per-Hop Packet Dispersion Measurement 130

7.5.1 Methodology . 130

7.5.2 Capacity Estimation Results 131

7.6 Reverse Engineering CRCnet . 132

7.6.1 Forwarding Overhead . 133

7.6.2 MCG to WTU Minimum Dispersion 134

7.6.3 PIR to MCG Dispersion 135

7.6.4 MCG to WTU Dispersion Banding 136

7.7 Summary . 139

8 Related Work 140

8.1 Introduction . 140

8.2 One-way Active Measurement Protocol 140

8.2.1 Overview . 140

8.2.2 Requirements . 141

8.2.3 Specification . 141

8.2.4 Comparison with IPMP 143

8.2.4.1 Authentication and Encryption 144

8.2.4.2 Control Protocol 144

x

8.2.4.3 Small Packets 145

8.3 Trajectory Sampling . 146

8.3.1 Overview . 146

8.3.2 Comparison with IPMP 147

8.3.2.1 Complexity . 147

8.3.2.2 Security and Privacy 147

8.3.2.3 Practicality . 148

8.4 Summary . 148

9 Conclusions 149

9.1 Summary of Thesis . 149

9.2 Future Work . 151

A IPMP Internet Draft 153

B VHDL code for IPMP Forwarding 173

Bibliography 182

xi

List of Figures

2.1 Format of the traceroute IP option defined in RFC 1393 12

2.2 Format of the ICMP traceroute message defined in RFC 1393 12

2.3 Illustration of two hosts using traceroute 14

2.4 Resolving router aliases with ally using IP-ID 15

2.5 Contributors to fixed and variable delay factors 16

2.6 Format of the ICMP timestamp message defined in RFC 792 19

2.7 Measurement of per-hop queueing delay with cing 20

2.8 Packet timestamping inside a host 23

2.9 Cumulative distribution of timestamp differences in the transmit path 24

2.10 Cumulative distribution of timestamp differences in the receive path 24

2.11 Detecting one-way loss with sting using TCP 28

2.12 Detecting loss with tulip using the IP-ID field (source: User-level

Internet path diagnosis [1]) . 30

2.13 Detecting reordering with tulip using the IP-ID field (source:

User-level Internet path diagnosis [1]) 33

2.14 Illustration of the packet-pair technique (source: Packet-dispersion

techniques and capacity estimation methodology [2]) 35

2.15 Illustration of cartouche probing 40

4.1 A model of an IP stack with IPMP 58

4.2 The IPMP measurement architecture 59

4.3 The IPv4 header without options 62

4.4 Format of an IPMP echo packet 64

4.5 Format of the IPMP type field . 64

xii

4.6 Format of the IPMP path record when encapsulated in IPv4 66

4.7 Format of the IPMP path record when encapsulated in IPv6 68

4.8 The POSIX timeval and timespec structures 71

4.9 Creating an IPMP echo request packet 72

4.10 The decision process taken to insert an IPMP path record when the

packet is stored and then forwarded 75

4.11 The decision process taken to insert an IPMP path record when the

packet is presented as a bit-stream 77

4.12 The packet update process when inserting an IPMP path record . . . 78

4.13 Creating an IPMP echo reply packet from an echo request 79

4.14 Format of an IPMP information request packet 81

4.15 Format of an IPMP information reply packet 81

4.16 Format of an IPMP real-time reference point 82

4.17 Format of an IPMP VarBindList 83

4.18 Example IPMP performance data 85

5.1 A model of interactions between IPMP and a kernel 91

5.2 The BSD mbuf structure . 93

5.3 The structure of the IPMP flow counter implementation 97

5.4 Apparatus of the IPMP forwarding performance experiment 100

5.5 Forward-path minimum forwarding delay of IPMP packets against

packet size . 102

5.6 Reverse-path minimum forwarding delay of IPMP packets against

packet size . 104

5.7 Illustration of the IPMP forwarding component in hardware 106

5.8 State machine of the IPMP forwarding component 107

5.9 Forwarding delay through non-blocking crossbar switch 111

6.1 Example IPMP flow counter values after single probe loss 119

6.2 Example IPMP flow counter values when two consecutive probes

are lost . 120

xiii

6.3 Example IPMP flow counter values when probes follow alternate IP

paths . 121

7.1 Sample output from ipmp ping 127

7.2 Dispersion measured for 1500-byte packet-pairs traversing 802.11b

point-to-point wireless links on CRCnet between TTK and WTU . . 131

7.3 Packet-pair sequence diagram for a pair that maintains a 2ms dis-

persion through MCG, HSK, and WTU 134

7.4 Packet-pair dispersion scatter plots between MCG and WTU 137

7.5 Packet-pair sequence diagrams for MCG, HSK, and WTU 138

8.1 OWAMP-test probe without authentication support 142

8.2 OWAMP-test probe encapsulated in a single ATM cell 142

8.3 OWAMP-test probe with authentication and encryption support . . 143

8.4 IPMP echo packet encapsulated in a single ATM cell 145

8.5 Overview of trajectory sampling 146

xiv

List of Tables

3.1 Bytes between clock ticks for various link types 49

3.2 Byte clock wrap time for various link types 54

4.1 Number of path records able to be included for various IP packet sizes 69

4.2 Sample MIB entries . 84

5.1 Summary of the software forwarding performance experiments . . . 101

5.2 Forward-path IPMP echo processing delay 103

5.3 Reverse-path IPMP echo processing delay 104

5.4 Forwarding delay without IPMP through switch 112

5.5 Forwarding delay with IPMP through switch 112

5.6 Accuracy bounds of IPMP forwarding delay experiments 113

7.1 List describing CRCnet routers used in chapter 7 128

7.2 Consecutive packets lost on CRCnet between MWP and PWS . . . 129

7.3 Length and propagation delay of 802.11b point-to-point wireless

links between TTK and WTU . 130

7.4 Minimum dispersion measured for 1500-byte packet-pairs travers-

ing 802.11b point-to-point wireless links on CRCnet between TTK

and WTU . 132

7.5 Serialisation and propagation delay for 802.11b data and acknowl-

edgement packets at 11Mbps . 133

xv

List of Publications

M. Luckie, A. McGregor, and H.-W. Braun, “Towards Improving Packet Probing

Techniques,” in Proceedings of ACM/SIGCOMM Internet Measurement Workshop

2001, San Francisco, CA, Nov. 2001, pp. 145-151.

M. Luckie and A. McGregor, “IPMP: IP Measurement Protocol,” in Proceedings of

Passive and Active Measurement Workshop 2002, Fort Collins, CO, Apr. 2002, pp.

168-176.

M. Luckie and A. McGregor, “Segmentation of Internet Paths for Capacity Estima-

tion,” abstract presented at the IMRG/CAIDA ISMA Bandwidth Estimation Work-

shop 2003, San Diego, CA, Dec. 2003.

M. Luckie and A. McGregor, “Path Diagnosis with IPMP,” in Proceedings of ACM/

SIGCOMM Network Troubleshooting Workshop 2004, Portland, OR, Aug. 2004,

pp. 259-264.

K. Cho, M. Luckie, and B. Huffaker, “Identifying IPv6 Network Problems in the

Dual-Stack World,” in Proceedings of ACM/SIGCOMM Network Troubleshooting

Workshop 2004, Portland, OR, Aug. 2004, pp. 283-288.

M. Luckie, K. Cho, and B. Owens, “Inferring and Debugging Path MTU Discovery

Failures,” in Proceedings of Internet Measurement Conference 2005, San Francisco,

CA, Oct. 2005, pp. 193-198.

xvi

List of Acronyms Used

AS Autonomous System

ASes Autonomous Systems

ASIC Application-Specific Integrated Circuit

ASN Autonomous System Number

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

BER Basic Encoding Rules

BGP Border Gateway Protocol

BPF Berkeley Packet Filter

BSD Berkeley Software Distribution

CDMA Code Division Multiple Access

CE Congestion Experienced

CM Capacity Mode

CPU Central Processing Unit

CRCnet Connecting Rural Communities Network

DF Don’t Fragment

DoS Denial of Service

xvii

DSP Digital Signal Processor

ECN Explicit Congestion Notification

FCS Frame Check Sequence

FIFO First-in First-out

FIN TCP flag that signals the sender has no more data to send

FPGA Field-Programmable Gate Array

GPS Global Positioning System

HLIM Hop Limit

HMAC Keyed-Hashing for Message Authentication

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

ID Identification

IETF Internet Engineering Task Force

ILP32 32 bit Integers, Longs, and Pointers

IMAP Internet Message Access Protocol

I/O Input/Output

IP Internet Protocol

IP-ID IP header’s ID field

IPv4 IP version 4

IPv6 IP version 6

IPMP IP Measurement Protocol

xviii

ISP Internet Service Provider

LP64 64 bit Longs and Pointers

LRU Least Recently Used

MAC Media Access Control

MIB Management Information Base

MF More Fragments

MRU Most Recently Used

MTU Maximum Transmission Unit

NTP Network Time Protocol

OWAMP One-way Active Measurement Protocol

PC Personal Computer

PCI Peripheral Component Interconnect

PDU Protocol Data Unit

PMTUD Path MTU Discovery

POS Packet Over SONET

POSIX Portable Operating System for Unix

PPSKit Pulse Per Second Kit

PSAMP Packet Sampling working group

QoS Quality of Service

RFC Request For Comments

RTRP Real-Time Reference Point

RTT Round Trip Time

xix

SAR Segmentation and Reassembly

SCDR Sub-Capacity Dispersion Range

SLA Service Level Agreement

SMTP Simple Mail Transfer Protocol

SMP Symmetric MultiProcessor

SNMP Simple Network Management Protocol

SONET Synchronous Optical Network

SYN TCP/IP Synchronise Control Flag

TCP Transmission Control Protocol

TSC Time Stamp Counter

TTL Time To Live

UDP User Datagram Protocol

UTC Universal Time Coordinated

VoIP Voice over IP

VPS Variable Packet Size

VHDL VHSIC Hardware Description Language

WAND Waikato Applied Network Dynamics

xx

Chapter 1

Introduction

1.1 The Problem

The limitations of existing measurement techniques limit the accurate measurement,

analysis, and modelling of Internet behaviour [3]. The goal of Internet measurement

is to understand why the Internet, an Internet path, or an Internet hop behaves the

way it does. This thesis is an investigation into the per-hop measurement of Internet

packet dynamics.

Network operators, engineers, users, and researchers have devised many tools

and techniques to gain insight into the behaviour of an Internet path through mea-

surement. The development of these tools and techniques is in large part motivated

for two reasons. First, there exists an operational need to monitor network behaviour

and to diagnose an Internet path when the performance of the path or a network ap-

plication is poor. Second, there exists a need to understand the structure of the

Internet and the characteristics of Internet paths in order to build accurate mod-

els for simulation of new Internet protocols and applications. The questions asked

about the Internet in the operational community and by researchers have tended to

reduce to basic statistical questions such as:

1. What is the packet delay between a source and a destination?

2. How variable is the packet delay on this path?

3. What is the path between a source and a destination?

1

4. Where in the path are packets being lost, reordered, or encountering signifi-

cant delay?

5. What is the capacity of this path?

6. Where in this path is the capacity limited?

7. Which routers on this path are congested?

Significant attention and effort has gone into developing tools and techniques

that are capable of answering questions like these. The most popular tools and

techniques have tended to be simple. For example, two of the oldest and simplest

tools, ping [4] and traceroute [5], are ubiquitous and are often the first tools

used to debug an Internet path. The popularity of these simple tools is despite their

limited ability to convey real insight to their users, and their limited ability to answer

beyond the first three basic questions listed.

The support for measurement included in the Internet protocols has not evolved

with the need to answer increasingly complex questions of the Internet. Current

measurement approaches often estimate the actual properties of an Internet path.

Measurement techniques should be accurate, unobtrusive, robust, and scalable [6].

Current tools and techniques designed to help answer the last four questions in the

list do not meet all of these properties, are comparatively complex – and as a result,

are not widely deployed. These limitations often arise due to the inability of current

packet probing techniques to robustly and accurately isolate one-way and per-hop

behaviours.

The ability to isolate the per-hop behaviour of each hop in an Internet path is an

important and necessary step towards inferring where some interesting behaviour

occurs. Currently available techniques for inferring the per-hop behaviour of each

hop in an Internet path have to probe each hop separately to the others and then infer

per-hop behaviour by separating the behaviour of one hop from the behaviour of

previous hops. This is accomplished either by using TTL-limited packets similar to

the technique popularised by traceroute, or by targeting each hop individually.

This technique is unable to definitively separate the behaviour of one hop from

the behaviours of other hops in a path. In addition, this technique is unable to

2

infer per-hop behaviour for hops on the reverse path without explicit cooperation

from the end host. A reverse-path traceroute, while a simple and operationally

important concept, is absent from operational toolkits.

The relatively complex tools and techniques that can infer per-hop behaviours

have met with limited success outside of the research community, due in part to

caveats and limitations these tools have that affect their reliability and robustness.

As a result, some performance faults in the Internet are not diagnosed due to the

lack of robust tools and techniques to infer, identify, and characterise these faults.

This thesis argues that this problem exists because of a lack of basic Internet proto-

col support to robustly, reliably, and accurately measure per-hop behaviours on an

Internet path.

In this thesis, an Internet protocol designed for per-hop measurement of Internet

packet dynamics is presented. The protocol proposed to address the problem, the

IP Measurement Protocol (IPMP), enables per-hop measurement of Internet packet

dynamics by providing the means for routers to embed simple information into the

packet useful for directly measuring the dynamics of the packet on a per-hop basis.

As this operation requires a small modification to the forwarding path in routers, a

significant part of this particular problem is establishing the practical feasibility and

usefulness of IPMP, as router vendors are hesitant to increase the complexity of the

forwarding path without good reason.

1.2 Overview of Thesis

This chapter presents the thesis problem and the contributions of this thesis to the

field of Internet measurement. In the next chapter, a taxonomy of four metrics that

can be measured through packet probing is provided. The tools and techniques

available to measure or infer each metric on an end-to-end, one-way, and per-hop

basis are described, as well as the underlying motivation for doing so. For each tech-

nique described, limitations which reduce the effectiveness of the tool are identified

and discussed. In chapter 3, the fundamental limitations of the current measurement

support found in the Internet are identified and discussed. Chapter 3 also presents

3

a series of desirable features that a measurement protocol would require in order to

overcome or reduce these limitations. One of the fundamental features identified

by Van Jacobson [7] as important for improving per-hop measurement of Internet

packet dynamics is the ability to segment an IP path into individual IP hops, using

a method which is not flawed as the TTL method is. Having such a method would

improve the per-hop measurement of Internet path characteristics, as the behaviour

of each individual hop would be separated from the behaviour of other hops in the

path.

The Internet protocol proposed to address the problem, IPMP, is introduced in

chapter 4. IPMP is designed for per-hop measurement of Internet packet dynam-

ics. IPMP enables per-hop measurement through the introduction of a path record

structure. A path record contains an IP address, the TTL of the packet when seen, a

timestamp recording when the probe was received, and a flow-counter that records

the position of a particular probe amongst a series of IPMP probes belonging to

the same flow. As IPMP requires a modification to the forwarding path in routers,

IPMP was guided by the philosophy that it should be kept as simple as possible

to increase the likelihood of deployment without providing a vector for Denial of

Service (DoS) attacks.

Chapter 5 discusses implementation experience of IPMP both in software and

in hardware. First, a model of interactions between Internet protocol stacks and

IPMP is presented. Then, the specific interactions between two software protocol

stacks are detailed, for which ready access to the source code is available. The

two protocol stacks in question, FreeBSD and Linux, are substantially different in

their design and implementation, and provide insight as to the implementability of

IPMP. Then, a third implementation of IPMP, in hardware, is described. That

implementation modifies the forwarding path of a non-blocking cross-bar Ethernet

switch so that IPMP packets are modified in-line as each byte is deserialised. The

forwarding performance of the FreeBSD software implementation and the Ethernet

hardware implementation is also examined by passively measuring the forwarding

performance of each system with and without IPMP.

The final chapters of the thesis discuss the usefulness of IPMP. First, chapter 6

4

presents a series of measurement techniques which make use of IPMP. For each

technique, a comparison is made between the measurement techniques currently

available and the technique proposed which uses IPMP. Then, chapter 7 discusses

application experience gained by measurement of a rural wireless network where

IPMP is available on all IP routers. Finally, chapter 8 reviews related work, and

chapter 9 concludes the thesis and looks ahead at future work.

1.3 Contribution of this Work

The thesis of this work is that a protocol for per-hop measurement of Internet packet

dynamics is both feasible and useful. The core contributions of this thesis are:

1. the refinement of a measurement protocol (IPMP) that provides the ability to

measure Internet packet dynamics on a per-hop basis;

2. the implementation of IPMP and an analysis of the exhibited performance;

3. refinement of existing packet probing techniques to utilise the features of

IPMP;

4. an explanation of deployment experience gained by the deployment of IPMP

in a wireless network in all routers.

The IPMP protocol was first proposed by Tony McGregor in 1998 [8]. This the-

sis describes a substantially refined version of IPMP. My contributions to the IPMP

protocol include the rearrangement of echo header fields, removal of unnecessary

fields (the returned TTL field, length field, and data field), the addition of faux port

numbers, the addition of identification and sequence number fields, as well as the

ability to query for specific reported times of interest in the information protocol. In

the course of this work, James Spooner provided feedback on how to improve the

format of IPMP so that it is easier to process in hardware, and provided an imple-

mentation of an earlier version of the protocol. Additionally, Ratul Mahajan, Neil

Spring, David Wetherall, and Thomas Anderson suggested IPMP include a flow

counter field in “User-level Internet Path Diagnosis” [1].

5

IPMP addresses many limitations of current methodologies for per-hop mea-

surement of Internet packet dynamics by enabling packet probing techniques to

simultaneously measure both the packet dynamics and the path taken by a packet

in a single packet exchange. The protocol is tightly constrained, efficient, and easy

to implement. These characteristics are important, and are intended to make IPMP

suitable for implementation by router manufacturers.

The first half of this thesis focuses on the feasibility of IPMP. First, implemen-

tation models of IPMP are presented to show that the protocol has been designed

with processing efficiency as a primary design criterion. Second, actual software

and hardware implementations are presented and discussed, as well as measured to

show that IPMP can be quickly processed in the forwarding path of a router.

The second half of this thesis focuses on the usefulness of IPMP. This is shown

in two parts. First, IPMP-based measurement techniques are presented that are more

accurate, less obtrusive, more robust, and more scalable than their counterparts.

Second, the utility of IPMP in a real-world situation is presented. Since 2002, the

Waikato Applied Network Dynamics (WAND) network research group has operated

a predominately 802.11b wireless infrastructure network that connects schools in

rural settings to the Internet. Each router in this network is software-based and lends

itself to customisation and modification. The utility of IPMP in understanding and

improving this network through measurement is demonstrated.

6

Chapter 2

Background

2.1 Introduction

This chapter reviews four basic Internet performance metrics, discusses the moti-

vation to measure them, and reviews the current tools and techniques available to

measure them. The metrics – delay, loss, reordering, and capacity – indicate the

performance that an Internet path is able to provide between two systems. The per-

formance of all Internet protocols and applications is directly dependent on these

four metrics.

As TCP is the most widely used transport protocol in the Internet [9] and is

likely to remain that way in the future, special attention is paid to the dependencies

that TCP has on delay, loss, reordering, and capacity. Beyond TCP, many real-time,

interactive, multimedia services delivered using other transport protocols have strict

Quality of Service (QoS) requirements, which are comprised of these metrics.

This chapter discusses measurement of these metrics at three levels. Measure-

ment of these metrics at different levels can give different insights as to the be-

haviour of a path. The first level discussed is the measurement of these metrics in

an end-to-end scenario. That is, the measurement of a metric on the complete path

between a source and a destination. Internet applications and services are delivered

on an end-to-end basis between two hosts, and so the end-to-end behaviour of an

Internet path is important to the overall performance of the service.

The second level is the one-way scenario – the measurement of a metric either

on the forward path or the reverse path. Many protocols and services are more de-

7

pendent on the behaviour of a path in one direction than compared to the other, and

so the ability to measure the behaviour of the forward and reverse paths indepen-

dently is important.

The third level is the hop-by-hop scenario – the measurement of a metric for

each IP link on an end-to-end path. The ability to measure these metrics on a hop-

by-hop basis allows a user or operator to determine where in a path significant delay,

jitter, loss, and reordering occurs, or where the capacity-limiting link is, and is

useful for Internet path diagnosis [1]. For each metric – delay, loss, reordering, and

capacity – this chapter:

• provides a definition of what is being measured;

• establishes the operational motivations to be able to accurately measure the

metric in an end-to-end scenario, a one-way scenario, and a hop-by-hop sce-

nario;

• discusses the current tools and techniques available to measure the metric in

an end-to-end scenario, a one-way scenario, and a hop-by-hop scenario;

• identifies the limitations of these tools and techniques.

The rest of this chapter begins with a short review of Internet topology mea-

surement in order to motivate per-hop measurement of Internet packet dynamics.

Then, the four metrics are defined, their measurement is motivated, and the tools

and techniques available to measure them are discussed. Many current tools and

techniques share a series of common limitations that inhibit their operational use.

The three major limitations are that the techniques separate measurement of an IP

topology from the measurement of the metric in question such that the number of

probes required grows in proportion to the length of the path, that the measurement

of hops later in a path is less accurate, and that the tools often rely on the timely

delivery of ICMP responses. As the limitations of the current tools and techniques

are explored, the motivation for a new Internet protocol designed for per-hop mea-

surement of Internet packet dynamics is established.

8

2.2 Internet Topology

2.2.1 Definition

Topology is defined as the arrangement of nodes and links (the path) that a packet

follows from a source to a destination. Internet topology condenses this definition

into the arrangement of IP routers that a packet visits. Internet topology can be

reported at multiple layers, including the IP path, the Autonomous System (AS)

path, and the geographical path. An IP path is a sequence of IP addresses between a

source and a destination, each of which represents a single interface of each router

in the path. However, Internet inter-domain routing occurs with Border Gateway

Protocol (BGP) [10] between Autonomous Systems (ASes), with each AS having a

unique number. An AS path therefore represents the sequence of AS numbers that

a packet follows between a source and destination; an AS number represents a unit

of routing policy [11] and typically maps to an Internet Service Provider (ISP) or

organisation [12]. A geographical path is a sequence of cities or countries that a

packet visits as it is forwarded to a destination. Topology is typically measured as

an IP path and then, if desired, condensed into an AS path or a geographical path.

2.2.2 Motivation for Internet Topology Measurement

A primary motivation of Internet topology measurement in the context of per-hop

measurement of Internet packet dynamics is to discover who is involved in forward-

ing packets between a source and a destination. Knowledge of the IP path between

a source and a destination can be useful in isolating a network fault or anomaly, as

knowledge of the path provides a mechanism to narrow the problem search space.

Translating an IP path into an AS path is useful for determining the sequence of

ASes visited on a path, and for inferring AS relationships. Translating an IP path

into a geographical path is useful for geographical analysis of Internet paths [13]

and for forming a basis for measuring IP path symmetry [14].

A number of large-scale Internet mapping projects continuously probe the Inter-

net with a goal to infer a complete and unbiased view of the Internet topology. These

projects distribute Internet topology measurement systems across the Internet. Ex-

9

amples of such projects include the Internet Mapping Project [15], Skitter [12], and

DIMES [16]. Primary motivations for large-scale Internet topology mapping in-

clude the ability to provide realistic models for designing and measuring new rout-

ing protocols [17], providing data to understand the structure of the Internet [18],

defending against attacks on core Internet infrastructure [19], and determining op-

timal mirror placement [20, 21]. In addition, Internet-scale measurement of link

behaviours and characteristics [22] is guided by knowledge of the underlying topol-

ogy itself, as “annotating a map with measured properties becomes practical when

the basic map of the topology helps decide how to take detailed measurements” [23].

As this thesis is concerned with measurement of Internet packet dynamics on a

per-hop basis, this thesis focuses on measurement of the IP topology, However, it

is worth noting that IP topologies which are translated into AS topology are more

dense than AS topology inferred from BGP tables [18].

2.2.3 Internet Topology Measurement Techniques

2.2.3.1 Traceroute

The forward IP path to a destination can be inferred using traceroute [5].

traceroute works by sending packets with the Time To Live (TTL) field in

the IP header limited, so that successive probes will expire at intermediate hops

until the destination is reached. The router where a probe expires should send an

ICMP time exceeded message to the source of the probe, signalling that the TTL

of the probe expired at the router. The forward path is inferred by systematically

sending a sequence of TTL-limited IP packets with an increasing TTL value that is

initially set to one, and then extracting the source IP address from each ICMP time

exceeded message that is received as successive routers discard each probe due to

their TTL expiring. traceroute probes are usually UDP probes to unused ports,

so that when a probe reaches the destination, it will elicit an ICMP port unreachable

message and the source will know not to probe any further.

There are numerous limitations to the TTL-limited probing technique used by

traceroute. First, the technique requires that each hop be probed separately to

10

previous hops. If the path changes while it is being probed, or is load balanced

such that consecutive probes follow different IP paths, it is possible that a path

that does not actually exist will be reported. Second, it relies on each router to

generate an ICMP time exceeded message. This is not the case in scenarios where

some operators disable ICMP message generation due to DoS concerns. Third,

in order to infer the entire forward path, it relies on the probes being allowed to

reach their destination. This is not the case in scenarios where a firewall drops

unrecognised packets by default. Fourth, the technique is restricted to inferring

the forward path, because an IP packet has a single destination; any reply packet

is created from scratch with the IP TTL value set to a default value assigned by

the system. Therefore, in order to obtain the IP topology of the reverse path, the

destination host has to provide a method to cooperate with the source host. This

cooperation with a destination host has to come in the form of a protocol or other

known mechanism.

One approach to inferring the reverse path is to use a public traceroute

service. A public traceroute service is typically provided by a web-form that

allows a user to specify the target IP address and the traceroute options to

use. The service will then conduct a traceroute to the target and display the

output in a web page. A list of public traceroute services and the AS where

they are hosted can be found at http://www.traceroute.org/. The main

limitations of this approach to inferring the reverse path is that few hosts support

this facility, and finding a traceroute service near to the destination of interest

can be inconvenient.

2.2.3.2 IPv4 Record Route

Another approach to determining the IP path between a source and a destination is to

use the IPv4 record-route option [24]. The record-route option is a feature built into

the Internet protocol that allows a source machine to request that routers insert their

IP address into space reserved in the IP header as they forward the packet. When

the packet is returned, the source may determine the path taken by the packet. The

11

3

CF Number

Originator IP Address

Length

Outbound Hop Count

ID Number

Return Hop Count

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1

Figure 2.1: Format of the traceroute IP option defined in RFC 1393

Output Link MTU

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1
3

ChecksumType Code

unused

Return Hop Count

ID Number

Outbound Hop Count

Output Link Speed

Figure 2.2: Format of the ICMP traceroute message defined in RFC 1393

advantage of using the record-route option is that it allows the forward and reverse

paths to be captured in a single packet exchange.

There are numerous limitations to using the IP record-route option, however.

First, due to the small maximum size of the IP header, a packet may hold up to 9

addresses until it is full. This limit will not allow the complete forward and reverse

IP paths to be captured for most Internet paths. Second, because IP options are diffi-

cult to process efficiently [25], IP options are often ignored, and packets containing

IP options may be discarded or processed at low-priority. Third, it is not possible

to determine where in the path each router is in relation to other routers without

probing the path with a tool like traceroute. Finally, this option is not available

in IPv6.

2.2.3.3 Traceroute Using an IP Option

An experimental protocol for traceroute described in RFC 1393 [26] – “Trace-

route Using an IP Option” – introduced a method to obtain the IPv4 topology of

both the forward and reverse paths between a source and destination. A source

host sends an ICMP echo request (or some other request packet) to a target, em-

bedding the traceroute IP option in the packet. The format of the option is shown

12

in figure 2.1. Each router that understands this option sends an ICMP traceroute

message to the originator IP address specified in the IP option, before forwarding

the packet to the next hop. The format of the ICMP traceroute message is shown

in figure 2.2. When the destination receives a request packet with the traceroute IP

option, it makes a few modifications to the option and then includes the traceroute

IP option in a reply packet addressed to the source.

In the 12 years since being published in RFC 1393, the traceroute IP option

has not been widely implemented or deployed in the Internet. There are a number

of limitations to this approach to traceroute, which may have worked against

the protocol evolving beyond experimental status and being widely deployed. The

option lends itself to amplification of a simple flooding DoS attack, where a mali-

cious sender could spoof the originator IP address in the traceroute IP option and

cause routers on the path to amplify the attack by sending unsolicited ICMP trace-

route messages to the target. In addition, IP options are difficult to process effi-

ciently [25], and each intermediate router has to examine the options present and

then take appropriate action.

2.2.4 Resolving Router Aliases

The techniques described in section 2.2.3 infer the IP path that a packet follows

between a source and a destination. When combining multiple IP paths, such as

the forward and reverse IP paths between a pair of addresses, or IP paths collected

from a distributed set of machines, it can be useful for the purposes of further diag-

nosis and understanding to convert the IP topology into router topology. The router

topology is concerned with the arrangement of routers in an Internet path.

The distinction between IP topology and router topology arises because a router

has multiple interfaces, and each interface has at least one address. When a router

generates an ICMP message, it often sets the source address to be one from the out-

going interface used to transmit the packet. As the outgoing interface used depends

on a packet’s destination, a pair of hosts that both use traceroute to discover

the forward path to the other host may yield a different set of IP addresses, even if

the same routers are visited.

13

Host BRouter A Router B

Probe A

A1 A2 B2B1

TTL=2

Src=B1

Src=A1

TTL=1

Probe B
TTL=1

TTL=2

Probe C

Probe D

Src=B2

Src=A2

Host A

Figure 2.3: Illustration of two hosts using traceroute

Figure 2.3 shows an example of this. Despite the path being symmetrical be-

tween the two hosts, traceroute returns router addresses A1 and B1 when run

from host A, while traceroute returns B2 and A2 when run from host B.

2.2.4.1 Iffinder

iffinder [12] resolves router aliases by exploiting the same ICMP implemen-

tation strategy that necessitates the technique. iffinder solicits ICMP port un-

reachable messages by sending UDP probes to unused ports for each interface in the

IP topology. As the tool is run from a single host, each router that selects a source

address based on the outgoing interface will send response packets with the same

source IP address, allowing a router’s aliases to be resolved by matching responses

with common source IP addresses. This technique can quickly resolve router aliases

because each address can be resolved with a single probe.

There are a number of limitations to this technique, however. First, this method

cannot resolve router aliases if a router does not reply to these probes with the

same source address for each probe. For example, a router might send ICMP mes-

sages with a source address set to the destination address probed with the UDP

packet. Second, some interfaces are configured to not send any ICMP destination

unreachable messages, but show in the IP topology because ICMP time exceeded

messages are not suppressed [27]. Third, resolving aliases by sending probes tar-

geted to routers may appear as malicious probing in some scenarios and result in

abuse complaints.

14

4

RouterSource

1

2
3

Figure 2.4: Resolving router aliases with ally using IP-ID

2.2.4.2 Ally

Another approach to resolving router aliases is to exploit a common implementa-

tion strategy of assigning unique IP-ID values from a counter held centrally by the

router. The IP-ID field is used to uniquely identify a packet so if the packet is sub-

sequently fragmented by the network, packet fragments arriving at a destination can

be reassembled into their respective packets [24]. ally, the alias resolver of Rock-

etfuel [28], tests if two specified IP addresses belong to the same router by sending

a series of packets alternately to pairs of addresses it suspects of being aliases, as

figure 2.4 shows. If the IP-ID fields from the reply packets are progressive (allow-

ing for a small amount of reordering on the forward path) and the range between

the IP-ID values is small, then it is likely that the addresses probed are aliases for

the same router.

The advantage of the IP-ID approach to resolving router aliases is that it is

possible to use any type of probe which solicits a response from a router with a

sequential IP-ID value. Indeed, the IP-ID technique has been reported as being

much more effective than the UDP technique used by iffinder [19]. There are a

number of limitations to the IP-ID technique, however. The Internet protocol does

not define semantics on how to assign IP-ID values [24]. Some systems send ICMP

responses with the IP-ID field set to zero [1], and some systems send packets with

a randomised IP-ID field in order to avoid inadvertent information leakage [29].

Second, the IP-ID technique does not work with IPv6 topologies because the IPv6

header does not have an IP-ID field. Third, the IP-ID technique requires many more

probes than the UDP technique to resolve router aliases.

15

Se
ri

al
is

at
io

n
D

el
ay

Forwarding Path

T
X

 Q
ueue R

X
 Q

ue
ue

R
X

 Q
ue

ue

T
X

 Q
ueue

Propagation Delay Propagation Delay

Router R2Router R1 Router R3

Figure 2.5: Contributors to fixed and variable delay factors

2.3 Delay

2.3.1 Definition

Packet delay is the time it takes a single packet to get from one point in the network

to another. Packet delay consists of two groups of factors: fixed components and

variable components. Figure 2.5 shows the main fixed and variable delay compo-

nents for many common link types.

The main fixed components of packet delay are the serialisation delay from a

node and the propagation delay along a link. The serialisation of a packet involves

sending the packet with any necessary layer 2 headers one bit at a time onto the

medium. Likewise, the propagation delay along a link is fixed, as the signal used

to send each bit takes the same amount of time to reach the other end of the media.

The fixed components therefore place a lower-bound on the delay that a packet will

incur in transit to a destination.

The main variable components of packet delay are queueing and forwarding

delays at the node. The total queueing delay a packet experiences is variable and

depends on how full the various queues are when the packet is processed; the length

of each queue depends on cross traffic from other sources. The forwarding delay

a packet experiences is also variable, as it depends on how quickly the router can

decide the next-hop the packet should be forwarded to; the decision may be quicker

if the route is cached at the time the decision is made. In some networks, a network

16

interface will also have to hold a packet for some time until the medium is clear for

transmission. The variable components are responsible for jitter, or the difference

in delay experienced by a series of packets in relation to each other.

2.3.2 Motivation for Delay Measurement

2.3.2.1 End-to-End Motivation

End-to-end packet delay is important to interactive applications and services that

provide real-time feedback to a user, such as telnet and ssh, as “interactive response

is perceived as ‘bad’ when low-level feedback (character echo) takes longer than

100 to 200ms” [30]. Similarly, jitter is important to real-time and multimedia ap-

plications such as real-time Internet gaming and Voice over IP (VoIP), where the

predictable and constant arrival of a series of packets is required for the application

to be usable.

Beyond interactive applications and services, the speed of a TCP bulk trans-

fer depends on end-to-end packet delay and jitter. As the TCP protocol itself uses

packet delay and jitter measurements to determine a suitable retransmission timer,

being able to measure end-to-end packet delay and jitter is a useful prediction of

TCP performance. Fluctuations in packet delay can have a significant negative im-

pact on a TCP connection. This is because TCP may react to fluctuations in packet

delay by waiting longer before retransmitting a packet which is lost to avoid retrans-

mitting a packet that is simply delayed longer than usual, or may retransmit data too

soon, wasting capacity.

2.3.2.2 One-way Motivation

One-way packet delay and jitter is important to applications and services which de-

pend on the delay of a packet over one direction of a path more than the delay in the

other direction. Knowledge of the one-way delay of a packet allows path symmetry

to be inferred, which is useful in determining the direction that a packet incurs the

most delay. In order to account for propagation delay, some timing sensitive proto-

cols assume that the delay between a client and server is symmetrical. An example

17

of a timing sensitive application is Network Time Protocol (NTP) [31]; if the prop-

agation delay between an NTP client and server is asymmetrical, the client’s clock

will be offset from real-time.

2.3.2.3 Per-hop Motivation

Measurement of packet delay and jitter at a per-hop level provides the ability to

determine the hops which contribute significant delay and jitter. Being able to infer

which hops contribute significant delay is an important step towards determining

who is responsible for contributing to poor end-to-end performance and then im-

proving the network through targeted engineering.

2.3.3 Delay Measurement Techniques

2.3.3.1 Ping

The most widely used tool for measuring end-to-end packet delay is ping [4],

which measures Round Trip Time (RTT) with an ICMP echo request and reply

sequence. While the measurement of delay with ping is satisfactory in many situ-

ations, it has a number of limitations.

First, there has been significant debate as to the reliability of measuring delay

to a router by sending packets addressed to it, as routers are designed to forward

packets as quickly as possible. There is evidence to suggest that ICMP packet

generation times, in general, are not a significant source of measurement error in

the modern Internet [32]. However, in order to determine if a particular router

introduces significant measurement error, the router’s ICMP echo reply generation

time has to be profiled first. The implication of this is that it is not reliable to

measure packet delay to a router using ping.

Second, ICMP packets may be forwarded and queued with a different priority

compared to other packets in some networks. When this occurs, the delay measured

with ping will be different to the delay encountered by other protocols and expe-

rienced by other applications. The difference in network delay measured by ping

in this instance is a measurement artifact.

18

Sequence Number

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2

Type

Identifier

Code

3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1
3

Originate Timestamp

Receive Timestamp

Transmit Timestamp

Checksum

Figure 2.6: Format of the ICMP timestamp message defined in RFC 792

Third, there is the question of where in the source host a packet should be times-

tamped: in user-space, in kernel-space, or by the network interface itself. This con-

cern is not limited to ping [33]. The host timestamp issue is discussed in further

detail in section 2.3.4.

2.3.3.2 ICMP Timestamp

A number of techniques exist for measuring one-way packet delay and jitter. All

require some level of cooperation from the destination. The first method is to con-

struct an ICMP timestamp request message, as outlined in RFC 792 [34]. The ICMP

timestamp message, shown in figure 2.6, contains three timestamps – the originate

timestamp, the receive timestamp, and the transmit timestamp. The originate time-

stamp is included by the source, while the destination inserts the time it received the

packet in the receive timestamp, and the time it transmits the reply in the transmit

timestamp.

If both hosts involved in the timestamp exchange have synchronised clocks, the

forward path delay can be calculated by subtracting the originate timestamp from

the receive timestamp, and the reverse path delay can be calculated by subtracting

the transmit timestamp contained in the ICMP timestamp reply packet from the

time the response packet arrives back at the source host. However, without prior

knowledge of the clock-state of the target host, it is impossible to measure absolute

one-way delay of the probe packets [35].

19

t

Router 1 Router 2
22 1

1 2

Figure 2.7: Measurement of per-hop queueing delay with cing

2.3.3.3 One-way Active Measurement Protocol

In order to determine the clock-state of another system, some level of cooperation

is required with the system by way of a protocol. One-way Active Measurement

Protocol (OWAMP) is a protocol designed with measurement of one-way packet

dynamics in mind [36, 37]. A source host obtains the cooperation of a destination by

establishing a TCP connection, which is used to control the measurement process.

The source may then negotiate a process of UDP probes with the destination, with

probe packets flowing in a single direction; that is, either from the source to the

destination, or from the destination to the source. Each probe includes a timestamp

inserted by the sender, a sequence number, and the estimated error of the timestamp

if available.

The OWAMP protocol has a number of advantages over using the ICMP time-

stamp request protocol for measuring one-way packet delay. It provides simple

mechanisms to establish the synchronisation state of a sender’s clock, to negotiate

the size and UDP ports of measurement probes, to authenticate and encrypt mea-

surement probes for protection against manipulation by a third party, and to recover

measurement results from a destination when measuring the delay characteristics of

the forward path. The main limitation of the OWAMP protocol is that it is not likely

to be offered as a service by routers because operators may be hesitant to allow TCP

connections from arbitrary hosts to their routers.

2.3.3.4 Cing and Tulip

There are no techniques currently available to measure per-hop packet delay, due to

the lack of a protocol or technique to determine the offset of an arbitrary clock from

20

real time. However, two techniques exist to measure per-hop jitter using the ICMP

timestamp protocol.

The first technique, implemented in cing [38] and illustrated in figure 2.7,

infers queueing delays on a particular hop by sending sequences of two back-to-

back ICMP timestamp request packets to adjacent routers. The basic idea is that

queueing delay between adjacent routers can be inferred by comparing timestamps

in ICMP timestamp reply packets received from the routers. The technique requires

that the path to the first router is a prefix of the path to the second router, so that

both packets in the pair arrive at the first router at approximately the same time. The

first packet is addressed to the first router, while the second packet continues one

hop further. Both packets solicit ICMP timestamp replies. Assuming that the clocks

do not drift relative to each other and that at least one of the pairs does not incur

any queueing delay between the two routers, queueing delay can be measured by

changes in the timestamp provided by the second router relative to the timestamp

provided by the first.

The second technique – implemented in tulip [1] – infers queueing delays

towards a particular hop by sending a series of ICMP timestamp request packets

to the hop, and inferring jitter by comparing the timestamp received in the ICMP

timestamp response with the transmit time of the probe. The main advantage of

this approach over cing’s approach is that it does not require adjacent routers to

support the ICMP timestamp request option in order to determine queueing delay

towards a particular router.

ICMP timestamp techniques, like those used in cing and tulip, share a num-

ber of limitations. First, they are forward path bound, as it is not possible to identify

or measure individual routers on the reverse path without the cooperation of a desti-

nation host. Second, they also depend on the forward path to an intermediate router

being a prefix of the forward path to the actual destination, otherwise the measure-

ment is of behaviours that include hops other than the particular hop of interest.

Third, the resolution of the ICMP timestamp fields is limited to one millisecond.

This resolution is sufficient for inferring the location of significant or pathological

queueing delays, but not for profiling the queueing behaviour of many modern In-

21

ternet paths. Fourth, the ICMP timestamp request packet may queue internally in

a target router for a significant amount of time while other tasks with a higher pri-

ority complete, leading to a source of measurement error if other packets continue

to flow through the router. In [1], some routers were seen to take 100ms to 300ms

longer than normal to generate an ICMP timestamp reply. As this behaviour oc-

curred approximately every 60 seconds, it was reasoned to coincide with when the

router pushed forwarding tables to its line cards.

2.3.4 Accounting for Host Delays

Historically, the transmit and receive timestamps used to calculate RTT were gen-

erated in user-space. In the case of ping, the transmit timestamp was taken before

the echo request packet was sent, and the receive timestamp was taken after the

echo reply packet was received in user-space.

Measurement of packet delay with timestamps that are generated in user-space

has a number of limitations, as the measurement of delay may also include host de-

lays in processing the packet and the effect of how busy the host is. In the transmit

path, a timestamp taken in user-space immediately before making a system call to

send a packet will include the time it takes the system to determine the outgoing

route, and the time the packet spends in queues waiting to be passed to the net-

work interface. In the receive path, a timestamp taken in user-space immediately

after receiving a packet will include the time it takes for the packet to make its way

through the IP stack, and the time the packet spends in a queue before the applica-

tion is scheduled and can read it.

A diagram of the transmit and receive paths in a Unix-like operating system

is shown in figure 2.8. A host can often obtain a more accurate packet timestamp

than the timestamp provided in user-space, at the expense of additional application

complexity. For example, some systems provide a socket option or mechanism to

conveniently timestamp a received packet in the kernel before the packet is passed

to a user-space application.

An example of such a mechanism is the SO TIMESTAMP socket option, which

is common amongst systems derived from Berkeley Software Distribution (BSD),

22

K
er

ne
l−

Sp
ac

e
Network Interface Driver

BPF

if_output

ip_output

Route Lookup
Encapsulation

if_input

Decapsulation
Socket Lookup

ip_input

gettimeofdaysendto recvfrom

Socket T
im

estam
p

Figure 2.8: Packet timestamping inside a host

and applies to connectionless sockets, such as those used for UDP and ICMP. In

the SO TIMESTAMP case, a timestamp is generated immediately before the packet

is put in a socket queue for the application to then read it from. This is useful

in situations where a measurement application may be contending for the Central

Processing Unit (CPU) with other applications running on the same system, which

may result in the packet spending additional time in a socket buffer waiting to be

read.

However, there is not a similar socket option available to timestamp packets

in the transmit path. There is, however, the Berkeley Packet Filter (BPF) [39],

which provides a mechanism to timestamp packets closer to the network interface.

In the receive path, BPF allows an application to obtain a timestamp before the

packet is passed to the network protocol handler. In the transmit path, BPF allows

an application to obtain a timestamp either immediately before, or immediately

after the packet was passed to the network interface; the sequence depends on the

implementation of the network interface driver. In this scenario, an application may

send a packet using a regular socket, and then obtain the time the packet was passed

to the network interface using a BPF socket.

In order to quantify the difference in packet timestamps for the various locations

inside a host identified in figure 2.8, the difference in packet timestamps through a

host was measured. The host used in this experiment is a Pentium Pro 180 running

FreeBSD 4.11, which was otherwise idle during the experiment. While the CPU

of the system used in this experiment is slow compared to what is available for

23

Difference from gettimeofday (ms)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

Fr
ac

tio
n

 0

Figure 2.9: Cumulative distribution of timestamp differences in the transmit path

User−space Timestamp
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

Fr
ac

tio
n

Difference from BPF timestamp (ms)

Socket Timestamp

 0

Figure 2.10: Cumulative distribution of timestamp differences in the receive path

24

desktop computers in 2006, it is faster than some CPUs which are used in low-

power situations for software routers, like those that will be discussed in chapter 7.

A specially modified version of scamper [40] was used to collect the packet timing

data. scamper is a measurement application which can conduct traceroute

and other measurement techniques in parallel to fill a specified packets-per-second

rate.

Figure 2.9 shows the cumulative difference between the user-space timestamp

and the timestamp returned by BPF for a series of 44-byte packets in the transmit

path. This graph shows a processing delay of up to 1.3ms for 80% of packets sent,

indicating that the time taken to determine the outgoing route and encapsulate the

packet for transmission is a source of significant and unpredictable measurement

error.

Figure 2.10 shows the cumulative difference of the BPF timestamp to the socket

and user-space timestamps for packets received in response to the probes sent. This

graph shows a processing delay of up to 0.75ms for 80% of packets received, which

suggests the kernel to user-space delay is shorter in the receive path than the transmit

path. These results indicate the use of a socket timestamp option does not reduce

measurement error due to host-processing by a significant amount on an otherwise

idle host.

2.4 Loss

2.4.1 Definition

Packet loss occurs when a packet is either dropped or damaged in transit. Packet

loss is measured by the absence of an expected packet. Determining when loss

occurs is not entirely straight forward, as a decision has to be made when to declare

a packet lost rather than simply delayed for a long time. In many situations, a packet

might as well have been lost if it is delayed so long that the eventual arrival of the

packet is of no use.

There are many possible causes of packet loss. For example, a packet may be

dropped due to congestion on the path. Congestion-induced loss occurs when a

25

queue fills to capacity, leaving no space for additional packets. A packet may also

be damaged or corrupted in transit, which may then cause it to be discarded in the

network, or be delivered to the destination where it is subsequently discarded. A

packet may also be discarded by a router that drops packets under load.

Other types of packet loss exist. For example, a packet may be dropped due

to equipment failure in the network, or may be larger than the media’s Maximum

Transmission Unit (MTU) size and unable to be fragmented, or is fragmented in the

network but not all fragments subsequently delivered.

2.4.2 Motivation for Loss Measurement

2.4.2.1 End-to-End Motivation

The measurement of end-to-end packet loss is important to interactive applications

and services, as a retransmitted packet adds at least an extra RTT to the time it

takes to successfully receive a packet and update the user interface. In addition,

interactive applications such as VoIP and video conferencing will tolerate small

amounts of packet loss, but when the loss rate rises above a certain level, the quality

of these applications reduces very quickly. Packet loss is especially important to all

TCP-based applications, because TCP assumes that packet loss is due to network

congestion and will reduce the rate at which it transmits packets when it detects

packet loss. Sustained packet loss will result in poor TCP performance, as TCP will

exponentially reduce the rate of transmission for each packet lost.

2.4.2.2 One-way Motivation

The measurement of one-way packet loss is important to scenarios where the loss of

a packet in one direction is more critical than a packet lost in the other direction. For

example, in a TCP bulk transfer situation where data packets flow in one direction

and acknowledgement packets flow in the other, the loss of a TCP acknowledgement

packet is likely to have less of an impact on the time it takes the transfer to complete.

The loss of an acknowledgement packet without data will not significantly affect

the TCP connection if another acknowledgement packet arrives shortly after the

26

first would have, as TCP acknowledgements are cumulative. In this scenario, a

burst of new data segments will enter the network to replace those which were

acknowledged. While a large burst of packets sent back-to-back is more likely to

cause congestion than if the packets were sent gradually, recent work suggests that

less than 5% of moderate bursts of up to 15 packets result in a lost data segment

from that burst [41]. A lost data segment requires retransmission, and the sender

will halve the rate at which it sends new segments into the network in response to

the congestion.

2.4.2.3 Per-hop Motivation

Measurement of packet loss at a per-hop level provides the ability to determine

where loss is actually occurring. Determining the hop where packets are dropped is

an important operational diagnostic ability, as it can indicate an under-provisioned

link causing congestion, or a link with some hardware or link-layer failure. Know-

ing where packet loss occurs is useful in determining the responsible party, and in

planning network upgrades.

2.4.3 Loss Measurement Techniques

The techniques for measuring end-to-end packet loss are similar to those used for

measuring end-to-end delay, except that loss is measured by the absence of an ex-

pected reply packet within a defined time limit. Therefore, a convenient method

to measure end-to-end packet loss is with ping or some other tool that solicits

ICMP responses. However, a significant problem with this is that the generation

and forwarding of an ICMP packet may be rate-limited or disabled in some routers

and operating systems to guard against DoS attacks, as ICMP packets are relatively

expensive to generate and respond to compared with forwarding the same packet.

Similarly, one-way loss can be measured with a measurement protocol such as OW-

AMP [37] so long as the destination host supports the protocol. If both directions

are to be measured, the source host must negotiate two measurement sessions with

a destination. The first session measures one-way loss on the forward path, while

the second session measures one-way loss on the reverse path.

27

Acks Lost: 1

1

2

3

4

1

1

1
0

3
3

5

Stage 1: Data Seeding.
Probes Sent: 4
Acks Received: 2

Stage 2: Hole Filling.
Probes Lost: 1

Figure 2.11: Detecting one-way loss with sting using TCP

2.4.3.1 Sting

One-way loss between a source and a destination host can also be inferred with

sting [42], which is capable of measuring both forward and reverse path loss us-

ing the TCP protocol, so long as a destination host accepts TCP connections on a

port known to the source. Figure 2.11 illustrates the sting technique. sting’s

basic strategy is to initiate a TCP connection and then send a series of out-of-

sequence probe packets. When a TCP receiver receives an out-of-sequence data

packet, it immediately sends an acknowledgement for the last in-sequence data it

received. In sting’s case, none of the TCP packets it sends to measure packet

loss are sent in-sequence, so it expects to receive an acknowledgement for each data

probe it sends.

This first stage – known as data seeding – determines the end-to-end loss of the

path by comparing the number of data probes sent with the number of acknowl-

edgement packets received. The second stage – known as hole filling – determines

which data probes were lost on the forward path to the receiver; that is, the data

holes in the receiver’s buffer. sting begins ‘filling the holes’ by sending the miss-

ing first segment in order to have the receiver send an acknowledgement packet

acknowledging all bytes up to the first missing data segment, if any. sting then

re-transmits the data packet for the missing segment, and any subsequent missing

28

segments it learns of through the hole filling process, until it has accounted for all

data probe packets sent to the destination.

sting’s main advantage over using a measurement protocol such as OWAMP

is that the ubiquitous nature of TCP means stingwill work in a far greater number

of scenarios. However, there are limitations to the technique. First, it is not possible

to reliably control the series of packets sent by the destination on the reverse path

to the source; while the source is able to send large probes – which are arguably

more likely to be lost than smaller probes – a TCP receiver has little control over

the size of any acknowledgement packet returned. For this reason, sting may be

more able to measure forward path loss than reverse path loss.

Second, sting requires a number of system privileges and kernel support to

work optimally. In order to send out-of-sequence TCP packets and to receive raw

TCP packets, the kernel must allow the ability for an application to send these

probes with some form of data link access, which requires root-level access to the

system. Similarly, should the source host’s kernel respond automatically to un-

expected TCP acknowledgement packets arriving in response to sting probes,

sting will require the ability to prevent the kernel from interfering in the mea-

surement. This requirement can be met with a temporary firewall rule, although

there is no standardised method to do this across operating systems, and the kernel

may not have a firewall enabled.

Third, some devices such as application-level firewalls and load-balancers re-

quire the sender to send a valid request for the port being accessed, or they will

reset the connection as soon as an invalid request is detected. sting comes with a

valid HTTP request built in, but in order for sting to use another service such as

SMTP or IMAP requires sting to be modified.

2.4.3.2 Tulip

Per-hop packet loss on the forward path towards a destination host may be inferred

using the IP-ID technique used in tulip [1]. The IP-ID technique exploits the

common implementation strategy of assigning IP-ID values from a counter held

centrally in the line-card or router when generating packets [28]. tulip infers

29

Reverse

id

id+x

id+y

No
Loss
(a)

Forward
Loss
(b)

id+1

id id

(c)
Loss

Forward

id+x

id

id+x

(d)
Loss

Figure 2.12: Detecting loss with tulip using the IP-ID field (source: User-level
Internet path diagnosis [1])

per-hop packet loss by sending three TTL-limited probe packets, with the intent of

inducing loss on the middle packet. The two outer packets are small control packets

while the inner packet is a large data packet. The large data packet is more likely to

be dropped than the two small control packets if the packets encounter a congested

link, as it requires more queue resources. Loss on the forward path can be inferred if

the middle packet is dropped on the forward path and the two control packets arrive

back-to-back at the router where their TTL expires. As shown in figure 2.12b, the

control packets will be assigned incremental IP-ID values, and it can therefore be

inferred that the loss occurred on the forward path.

However, tulip is unable to infer reverse path loss with this technique. This

is because the IP-ID values in the control packets are the same in this circumstance

(figure 2.12d) as when the data packet is lost on the forward path and a packet

is generated for a third party in between the two control packets (figure 2.12c).

The technique also depends on each router assigning incremental or some other

predictable series of IP-ID values so that tulip can establish the arrival order

of the three packets. If tulip cannot determine the strategy used to assign IP-

ID values to responses, then it cannot determine the direction of packet loss. In

addition, tulip cannot definitively determine that any measured loss occurred at

the hop being targeted, because a probe may be lost anywhere prior to the targeted

hop.

30

2.5 Reordering

2.5.1 Definition

A stream of packets is defined as an ordered series if packets are delivered to the

destination in the same order as they were sent. Thus, reordering occurs if any

packet in a series of packets arrives at a destination in a different position than it

was sent in. Historically, packet reordering was believed to be an unusual event

which signalled some significant underlying event in the IP path, such as a route

change, although it is now accepted that this is not the case [43].

Reordering can occur in several scenarios. If load-balanced paths with differ-

ent delays exist, then reordering can occur if the first packet in a series takes a

longer path than one of the packets which follow. Reordering can also occur when

a router forwards packets in a different order than their arrival order. One strategy

to implement a fast forwarding path is to combine parallel paths made with slower

parts [43]. When two back-to-back packets enter a forwarding path of such a router,

it is possible that the first packet may exit the forwarding path behind the second

packet if the processing delay for the second packet is shorter at that particular time.

Packets can also be reordered by a router if packets of different sizes are placed into

different input or output queues that optimise the treatment of a packet based on its

size.

2.5.2 Motivation for Reordering Measurement

2.5.2.1 End-to-End Motivation

End-to-end packet reordering is not a particularly interesting metric, as few services

simply echo reply packets back to the sender. However, being able to establish if

any reordering is taking place end-to-end is an important first step towards under-

standing reordering behaviour exhibited by an Internet path.

31

2.5.2.2 One-way Motivation

The ability to detect if packet reordering is occurring in a particular direction is

important for many classes of applications, but especially to TCP. Packet reorder-

ing can have several negative impacts on the ability of TCP to use the network in

a fair manner [44]. As TCP acknowledges the last in-sequence segment received,

a TCP sender with fast retransmit will retransmit the next unacknowledged data in

the sender’s window when a third duplicate acknowledgement is received, inferring

that the next segment was lost. If the segment was reordered and not lost, then re-

transmitting it will result in the network doing unproductive work, and the sender

will needlessly reduce the rate at which it sends new segments into the network

believing that it encountered congestion. An acknowledgement that arrives out of

order acknowledging multiple segments will cause a burst of new segments to be

sent as in the loss case described in 2.4.2, while a late acknowledgement that ac-

knowledges old segments will be discarded by the receiver, and performs no useful

function.

Reordering is also important to real-time applications that trade off the quality

of data presented with the prompt processing and displaying of incoming data. Such

an application may be confused by a reordered packet, present the data available,

and discard any packet that subsequently arrives late.

2.5.2.3 Per-hop Motivation

Measurement of reordering at a per-hop level provides the ability to determine

where reordering is occurring, and may offer insight into the possible cause. For

example, a technique may be able to infer the IP topology of alternating paths of

load-balanced IP paths where alternating packets take different IP paths.

2.5.3 Reordering Measurement Techniques

End-to-end reordering can be measured, as with delay and loss, by sending a series

of probe packets towards a destination, and then observing the order of the reply

packets. If the reply packets arrive in a different order than the order their cor-

32

idid+x
id

Reordering
(a)

No Forward
Reordering

(b)

id+x
id

Reverse
Reordering

(c)

id
id+x

Fwd + Rev
Reordering

(d)

id+x

Figure 2.13: Detecting reordering with tulip using the IP-ID field (source: User-
level Internet path diagnosis [1])

responding request packets were sent in, then reordering has occurred somewhere

in the path. However, such a measurement might fail to identify reordering if it

occurred in both the forward and reverse directions.

2.5.3.1 Tulip

tulip [1] measures one-way reordering using a variation of the IP-ID technique

it uses to measure one-way loss. tulip sends two packets to the target that solicit

an ICMP message with incremental IP-ID values; it can do so with UDP probes

to high-numbered ports, TCP SYN probes, ICMP echo request probes, and ICMP

timestamp request probes. The IP-ID field records the arrival order of the probe

packets at the target.

The four reordering cases measurable are shown in figure 2.13. If the responses

arrive in order from the destination with sequential IP-ID values, they were not

reordered (unless they were reordered an even number of times on either the forward

or reverse paths). If the responses arrive out of order, but with sequential IP-ID

values, then reordering occurred on the forward path. If the responses arrive out of

order without sequential IP-ID values, then reordering occurred on the reverse path.

Finally, if the responses arrive in order but without sequential IP-ID values, there

was reordering on both the forward and reverse paths.

It is also possible use a similar technique to infer the rate of per-hop reordering

on the forward path, by sending TTL-limited probes which solicit ICMP responses

with incremental IP-ID values from intermediate hops. While reverse path reorder-

ing can be determined from the reply packets, it is not reliable to use this informa-

33

tion to determine where on the reverse path packet reordering occurs unless the path

(or segments where reordering occurs) is known to be symmetrical.

2.6 Capacity

2.6.1 Definition

In this thesis, capacity is defined as the maximum possible volume of data that can

be transferred by the network between a source and a destination over a defined

time period. Capacity is defined this way in line with common practice [2] in order

to avoid confusion that arises through use of the term ‘bandwidth’, which is de-

fined in the communications field as the difference between the highest and lowest

frequencies of a transmission channel.

If the source and destination are adjacent and directly connected network inter-

faces, then the capacity is the serialisation rate of the link between them, less any

packetisation overhead below the IP layer. If the source and destination are adja-

cent systems with layer 2 devices such as Ethernet switches between them, then the

capacity between the systems is the smallest capacity of the links between them.

Some IP hops consist of multiple physical paths used in parallel; in these cases,

the capacity of the hop will be the sum of the capacity of each path. Finally, if the

source and destination are separated by a series of IP hops, then the capacity of the

path corresponds to the hop with the smallest capacity in the path.

As a packet traverses a network path from a source to a destination, it is likely

to encounter links with different capacities. The maximum throughput that can be

obtained between a source and a destination will be the maximum capacity available

from the slowest link of the path, defined as the narrow link by Dovrolis et al. in [2].

2.6.2 Motivation for Capacity Measurement

The capacity of a path places a limit on how quickly some volume of data is able

to be transferred between a source and a destination. Round-trip capacity is not

particularly interesting to measure, as few applications are dependent on the ability

34

L/C

S

L/3C

C = 3C1

D

C = C2 C = 2C3

L/C

Figure 2.14: Illustration of the packet-pair technique (source: Packet-dispersion
techniques and capacity estimation methodology [2])

of an end-to-end path to carry the same packet both to and from a destination. The

performance of a capacity-bound TCP bulk transfer is almost certainly limited by

the capacity of the path that the data is carried over, assuming that the path in the

reverse direction is capable of delivering acknowledgement packets in a timely and

reliable fashion.

Therefore, capacity estimation is primarily concerned with the one-way mea-

surement of capacity from a source to a destination. The capacity of a path is

limited by the slowest link in the path. The ability to identify the capacity of the

narrow link and the position in the path where it occurs is helpful for determining

where capacity is limited.

2.6.3 Capacity Measurement Techniques

Capacity estimation is a complex and difficult problem to solve with currently avail-

able Internet protocols. Lai and Baker suggest that the ideal properties of a band-

width estimation technique are that it is accurate, quick, robust, and unobtrusive [6].

Current capacity estimation techniques measure network links with varying levels

of accuracy, speed, robustness, and obtrusiveness.

2.6.3.1 Packet Pairs

The capacity of the narrow link C can be estimated using packet-pairs, as first dis-

cussed by Keshav in [45]. Figure 2.14 illustrates the packet-pair technique. A

source sends two packets of the same size back-to-back to a destination. Each

packet encounters a serialisation delay, the length of which is determined by the

35

size of the packet. If the two packets enter a link back-to-back, then the capacity

of that link can be inferred by the dispersion of the two packets as they exit the

link; that is, the time elapsed between the last bit of the first packet from the last bit

of the second packet. Assuming that there is no cross traffic, the dispersion of the

packet-pair will not change after the packets exit the narrow link, and the capacity

of that link can be calculated by the by dividing the packet size by the spacing of

the two packets as they arrive at the destination.

There are a number of challenges to the packet-pair technique, and to capacity

estimation in general. One of the most significant challenges is accounting for the

effects of cross traffic on the probes [6]. First, in order to correctly estimate the

capacity of the path, it must be possible for at least one packet-pair to be sent over

the narrow link back-to-back; the likelihood of this happening depends on the effect

that cross traffic has on the packet-pair before it is sent over the narrow link. Second,

if a packet-pair exits the narrow link back-to-back, the dispersion of the two packets

may change according to the cross traffic they subsequently encounter. The packet-

pair may be separated further by cross traffic injected between the two packets.

Similarly, if the first packet in the pair queues behind cross traffic and the second

packet is allowed to catch up to the first, then the dispersion between the packet-

pair will be compressed. Third, if the packet-pair dispersion is communicated by

acknowledgement packets that are forwarded along the reverse path, these packets

may also be distorted as they are forwarded.

One approach to reducing the scope for reverse-path distortion of packet-pair

dispersion is to record the arrival times of each packet-pair at the destination. Doing

so can significantly increase the accuracy of the measurement, although it requires

explicit support at the destination host. However, the capacity estimation technique

still has to account for distortion of packet-pair distortion from cross traffic on the

forward path. Early work, such as bprobe from Carter and Crovella [46] and pre-

liminary work on nettimer by Lai and Baker [6] focused on statistically deter-

mining which dispersion measurement relates to the narrow link capacity, typically

by determining the mode of the distribution of capacity estimates [2]. However,

Paxson noted in [47] that the distribution of packet-pair dispersion measurements is

36

multi-modal, and that the capacity estimate is not necessarily the mode of the distri-

bution. Dovrolis et al. [2] presented a seminal review of the impact of cross traffic

on capacity estimation tools, and provided a capacity estimation methodology [48].

There are currently two known methods to infer which packet dispersion mode

corresponds to the underlying capacity of the narrow link. The first method, intro-

duced by Dovrolis et al. [2] and implemented in pathrate, infers which mode

corresponds to the underlying capacity by inferring which modes would result in

under-estimating the capacity of the path. These modes are referred to as belonging

to the Sub-Capacity Dispersion Range (SCDR). By definition, the next mode in

the series corresponds to the capacity of the path. This mode is referred to as the

Capacity Mode (CM).

pathrate infers the SCDR, and by inference the CM, by sending packet-

trains of increasing length until the distribution has a single mode. As long packet-

trains are more likely to become dispersed by cross traffic, measuring the dispersion

of these packet-trains will under-estimate the path’s capacity. The width of the

single mode corresponds to the SCDR.

The second method for inferring which dispersion value corresponds to the ca-

pacity, introduced by Kapoor et al. [49] and implemented in CapProbe, makes the

observation that the packet-pair from a large number of samples which incurred the

minimum delay (the sum of the delay of both packets) is likely to have encountered

no cross traffic at any link, including the capacity-limiting link. The dispersion of

this packet-pair therefore reflects the capacity of the narrow link.

2.6.3.2 Pathchar

The capacity of each hop on the forward path can be inferred using a number of

different techniques. Jacobson was the first to present a tool capable of estimating

the capacity of each hop on the forward path. Jacobson’s tool, pathchar [7], uses

a Variable Packet Size (VPS) technique where the extra delay incurred by a series

of progressively larger packets is measured [50]. As the length of time it takes to

serialise a packet grows with packet size, the VPS technique measures an RTT line.

pathchar uses TTL-limited packets to probe each hop on the forward path to-

37

wards the destination. The assumption of the VPS technique is that a larger packet

will incur additional delay compared to a smaller packet proportional to the seriali-

sation rate of the link measured. As discussed in section 2.3.1, a packet encounters

both fixed and variable delay factors; the main fixed delay factors consist of the

time it takes to serialise a packet of a given size, while the main variable factors are

the queueing and forwarding delays. pathchar sends a large number of packets

of varying sizes to each hop, with the assumption that at least one packet for each

packet size sent will encounter minimum queueing and forwarding delays for all

hops in the path. The packets with the shortest observed round-trip-times therefore

measure the serialisation and propagation delays for a particular packet size. As the

serialisation delay for a packet is a function of the packet’s size, pathchar fits the

RTT line using the linear least squares fit method.

There are a number of limitations to the technique used by pathchar. First,

as was noted by Downey in [50], the measurement of the minimum delay on a per-

hop basis, and thus the slope of the RTT lines used in estimation of the capacity,

depends on all queues in the path being empty at least once while a particular hop

is being measured. For this reason, pathchar may not accurately estimate the

capacity of links after a persistently congested link, because at least one probe for

each packet size is required to be forwarded through all routers without experiencing

congestion. Second, store-and-forward devices such as Ethernet switches cause the

technique to significantly underestimate the capacity of the hop, because there are

multiple serialisations in the path [51]. The pathchar technique assumes a single

serialisation. Third, the clock available on a host which runs pathchar is often

not sufficient to measure the extra time to serialise a 1500 byte IP packet on high-

speed paths such as OC48c links [33, 51], because the resolution of most clocks for

most operating systems is a microsecond. Fourth, the technique is not able to infer

the correct capacity of a multi-channel link, because each probe follows a single

channel through the link. Finally, the technique is unable to infer the capacity of

hops on the reverse path.

38

2.6.3.3 Nettimer

Another approach to measuring capacity on a per-hop basis is found in nettimer

by Lai and Baker [52]. The nettimer technique works by first estimating the

RTT line using the VPS technique described for pathchar, but for the entire

forward-path, rather than per-hop. In this case, the slope of the RTT line represents

the sum of per-hop RTT lines for all hops on the forward path. Then, it uses a

technique known as packet tailgating, where pairs of packets are designed to queue

together to the hop being measured. The first packet – the tailgater packet – is a

TTL-limited MTU-sized probe which is set to expire at the end of the particular

hop being measured. The tailgater packet is typically 1500 bytes in size, which

corresponds to the vast majority of path-MTU values in the Internet due to the

wide-spread nature of Ethernet. The second packet – the tailgated packet – is a

minimum-sized packet which continues onto the destination. The tailgated packet

is 40 bytes in size, which corresponds to a TCP FIN packet encapsulated in an

IPv4 header with no options. The tailgated packet will queue behind the tailgater

until the tailgater is discarded, and the tailgated packet will then be forwarded with

minimum delay to the destination assuming no cross traffic. nettimer conducts

the packet tailgating phase for each hop in the forward path, beginning with the first

hop. As the tailgated packet is delayed by the tailgater packet until the tailgater is

dropped, the receiver can determine how long the tailgated packet was delayed by

the tailgater compared to the previous hop, and thus the time to serialise the tailgater

at the hop where it was dropped.

The advantages of this technique compared to the pathchar technique are

that it sends less probes, can detect multi-channel links by sending additional small

probes with the tailgater probe, and does not rely on the ICMP time exceeded mes-

sage for the tailgater probe being delivered promptly, because these messages are

not used in the delay calculation. There are a number of limitations of this tech-

nique, as discussed by the authors of the technique [52]. First, the host system

must be able to supply the appropriate network interface with packets fast enough

for them to be sent back-to-back. Second, the technique relies on the packets be-

ing sent back-to-back on the link being measured, which cannot be guaranteed on

39

L/C

S

C = 3C1

D

C = C C = 2C32

L/3C L/C

Figure 2.15: Illustration of cartouche probing

a link which is much faster than the previous link; assuming a 1500 byte tailgater

packet and a 40 byte tailgated packet, this technique will fail when the ratio of out-

put to input bandwidths of a router exceeds 37.5. Third, a persistently congested

link anywhere in the path reduces the ability to measure the capacity of any hop in

the path, because the small packet is always routed to the destination. Fourth, any

measurement error for any of the hops accumulates and affects the accuracy of ca-

pacity estimates for later hops. Finally, this technique also suffers from the multiple-

serialisation problem that causes pathchar to underestimate capacity [51].

2.6.3.4 Cartouche Probes

A third approach to measuring capacity on a per-hop basis is to use cartouche

probes, introduced by Harfoush, Bestavros and Byers [53]. Cartouche probing is

able to estimate the capacity of a contiguous set of links, although this thesis fo-

cuses on using cartouche probing to measure capacity on a per-hop basis. The ap-

proach, illustrated in figure 2.15, is to send a series of packets that alternate between

large tailgater packets and smaller tailgated packets. The tailgater packets are TTL-

limited and set to expire at a particular hop, while the tailgated packets continue to

the destination and are designed to record the dispersion of the tailgater packets as

each tailgater is discarded. The tailgater packets are known as magnifier packets

while the tailgated packets are known as marker packets. As the marker packets are

small, their dispersion is less likely to be affected by cross traffic compared with

the magnifier packets. In figure 2.15, the marker probes record the dispersion of the

large tailgater packets when they were discarded at the egress of hop 2.

The cartouche approach to estimating the capacity of each hop consists of a

40

number of steps. To begin with, the capacity of the forward path is estimated using

a packet-pair technique, such as the packet-pair techniques of pathrate and Cap-

Probe. The purpose of this first step is to determine how many cartouche probes are

required to be sent between marker probes so that the marker probes remain sepa-

rated until they reach the destination. This condition will hold with two cartouches

consisting of a 1500 byte tailgater and a 40 byte marker provided at no point in the

path the difference between the capacity of a hop and the capacity of the path is

greater than (1500 + 40) / 40 = 38.5, because that would provide the ability for the

marker packets to serialise back-to-back at the capacity limiting link.

The next step attempts to determine the capacity of a particular hop using the

cartouche probe formation shown in figure 2.15. If the capacity estimate for the

hop is less than the capacity estimate for the path prefix up to the hop, then the

requirement for the cartouche probes to be sent back-to-back across the target hop

was fulfilled. Otherwise, a different probing structure known as a cartouche train

is used to estimate the capacity of the hop. The key observation of a cartouche

train is that though it is not possible to have a magnifier probe queue with two

marker packets immediately preceding and following, it might be possible to cause

the marker packets to become more dispersed over the hop by injecting additional

magnifier packets, which provides the basis for estimating the capacity of the hop.

As with other capacity estimation techniques which measure capacity using

packet dispersion measurements, the accuracy of the cartouche approach is lim-

ited by distortion effects of cross traffic on the spacing of the marker packets. The

approach described by Harfoush et al. is to select the last local mode of estimated

capacities based on the reasoning that marker packets are more likely to be dispersed

after the hop being targeted. As with other per-hop capacity estimation techniques,

cartouche probing requires each hop to be probed separately to previous hops. As

many samples of a path are required in order to build a robust estimate, this can

result in significant measurement load on the path.

41

2.7 Summary

The tools and techniques reviewed in this chapter have a number of characteristics

in common, as most are designed to use functionality found in existing hosts and

routers. Using existing functionality allows tools to be designed and implemented

without requiring new protocols to be deployed. The challenges facing active mea-

surement therefore consist of increasing the accuracy of the technique, reducing the

impact of measurement on the network, and increasing the robustness of the tech-

nique. To some degree, these challenges work against each other. For example,

it can be tempting to increase accuracy of a tool or technique by probing the path

more, thereby increasing the impact of measurement on the network.

Some tools and techniques overcome the challenge of increasing accuracy and

robustness of a technique without increasing the probe rate by obtaining explicit

cooperation of an end host. However, many measurement tools which can be useful

for inferring per-hop behaviours have little scope for seeking the specialised coop-

eration of an intermediate router due to denial of service concerns.

The next chapter examines the limitations of existing measurement techniques

in further detail. In doing so, the motivation for a protocol designed to support per-

hop measurement of Internet packet dynamics is further outlined, and the desirable

features of such are protocol are formally identified.

42

Chapter 3

Overcoming Common Limitations

3.1 Introduction

The previous chapter examined the motivation to measure four metrics – delay, loss,

reordering, and capacity – on an end-to-end, one-way, and per-hop basis. Currently

available tools and techniques to measure each metric on these bases were reviewed,

and the limitations of each approach were discussed. In doing so, a number of limi-

tations that are common across measurement techniques were highlighted – partic-

ularly with per-hop measurement techniques – which are difficult to overcome with

the current absence of an Internet protocol with support for per-hop measurement

of Internet packet dynamics.

This chapter looks towards a protocol designed for per-hop measurement of

Internet packet dynamics by discussing how common limitations to measurement

might be overcome. This chapter begins by reviewing common limitations of cur-

rent measurement tools and techniques. Then, a series of desirable features and

protocol requirements for such a measurement protocol are detailed. Some desir-

able features follow directly from addressing a common limitation, while others are

more general protocol requirements. Possible ways of implementing each desir-

able feature are examined. This chapter concludes by looking ahead at chapter 4,

where a protocol designed for per-hop measurement of Internet packet dynamics is

presented.

43

3.2 Common Limitations

3.2.1 Forward Path Bound

Many measurement techniques are limited to measuring the forward path, even

though the reverse path is often also of interest. This limitation arises because an IP

packet is unidirectional, and the TTL field for any reply packet sent from a destina-

tion is set to a default pre-determined value. Unless the destination and all routers

on the forward and reverse paths permit source-routed probes, or the destination

provides a method to cooperate with the source, a source is limited to measuring

the forward path towards a destination due to the lack of cooperation from the des-

tination.

In “Heuristics for Internet Map Discovery” [54], Govindan and Tangmunarunkit

reported that 8% of routers measured permitted source-routed probes. However,

they also received many abuse complaints from operators who noticed the source-

routed probes. While source-routed probes have utility for topology discovery, they

have little utility for measurement of packet dynamics, as IP options require extra

processing and therefore have different dynamics to packets that do not have IP

options [25].

3.2.2 Static Path Behaviour Assumptions

In addition to being forward path bound, measuring a path on a per-hop basis with

TTL-limited probes is not a robust, reliable, or accurate method. It is not possible to

definitively separate the behaviour of a particular hop from the behaviour of previ-

ous hops when using TTL-limited probes. Many per-hop measurement techniques

assume that each extra hop travelled towards a destination has an additive effect on

delay, jitter, loss, and reordering, and that it is possible to estimate the behaviour of

a single hop in the path by subtracting the behaviour of the path prefix leading to

the hop. This assumption in turn depends on both the path and its behaviour being

constant over the course of the measurement.

While most Internet routes are persistent over time scales of days, a few change

more regularly than this [55]; in particular, 9% of routes measured with trace-

44

route in [55] changed on a time scale of tens of minutes. Similarly, while the

behaviour of most Internet paths appears to be stable over timescales 10-30 min-

utes [56], there is evidence to suggest that at much shorter timescales, such as the

lifetime of a TCP connection, significant variation in RTT can be observed [57].

If the IP topology of the forward path is not constant during measurement, due

to IP-layer load balancing or a change of route, then it is no longer safe to use

the subtraction method to infer per-hop Internet packet dynamics. This is because

successive TTL-limited probes may follow different paths. If some ICMP messages

come from a different router to other messages in response for the same TTL, then

the path change can be detected. In this case, a tool can detect the requirement that

each probe follows the same path is not met and can stop probing. If a prefix of

the forward path changes while later hops are being probed but the ICMP messages

come from the same hop, the path change will not be detected, and the measurement

will be flawed. If the IP topology of the forward path remains constant, but the load

of the path changes, then the assumption it is possible to measure the additive effect

of subsequent hops on packet dynamics will not hold.

3.2.3 ICMP Rate-Limiting

Some measurement tools and techniques rely on the timely delivery of an ICMP

message in response to a probe, as ICMP is an integral part of the IP protocol [58]

and is thus ubiquitous. Generating an ICMP response requires significant addi-

tional resources from a router compared to forwarding a packet. In addition, some

ICMP messages are not absolutely critical to the operation of the Internet. Imple-

mentations of ICMP in both end-hosts and routers therefore often limit the rate at

which ICMP packets are generated. ICMP rate-limiting is problematic for tech-

niques that rely on these messages, as rate-limiting constrains the speed at which a

host can measure the network. In addition, any probe which is not replied to due

to rate-limiting causes the network to do unproductive work. ICMP rate-limiting is

particularly problematic for techniques that depend on ICMP messages when mea-

suring packet loss, as any absence of an expected ICMP message could be due to

rate-limiting and not packet loss.

45

The practice of rate-limiting ICMP packet generation was first formalised in

RFC 1716 – Towards Requirements for IP Routers [59]. RFC 1716 highlights two

significant problems associated with sending ICMP messages. First, generating

an ICMP message consumes resources on the reverse path, which may contribute

to congestion. Second, generating an ICMP message consumes router resources

such as CPU time and memory, which may interfere with the router’s ability to run

routing services such as BGP.

RFC 1716 outlines a number of different ways in which ICMP rate-limiting

may be implemented. All three scenarios reduce the robustness of measurement

techniques that rely on ICMP response messages. The first scenario described is a

count-based rate-limiting method that works by sending an ICMP packet for every

N packets per source host. The second scenario described is a timer-based rate-

limiting method that works by sending an ICMP packet once for some period of time

per source host. The third scenario described is a bandwidth-based rate-limiting

method that limits the percentage of an interface’s capacity that may be consumed

by ICMP packets that are originated at the interface.

3.2.4 ICMP Disabling

In addition to rate-limiting ICMP, some routers and end-hosts are configured to

not send ICMP messages; some are configured to not send any messages at all,

while others disable particular ICMP types. For example, a router may send ICMP

time exceeded messages, but be configured to not send other ICMP message types,

such as timestamp replies, echo replies, or destination unreachable messages. If

a measurement technique depends on ICMP support which is disabled, then the

technique will either not work, or operate with reduced functionality.

Recent research as part of work done with cing [38], discussed in section 2.3.3,

found that of 20206 random targets measured, the ICMP functionality required for

cing to measure per-hop queueing delay – ICMP echo, timestamp, and time ex-

ceeded – was available in 92.92% of routers measured. However, 37.22% of paths

measured had all routers with the required ICMP functionality available. Follow-up

work by Mahajan et al. [1] found similar results, and added observations that some

46

ICMP disabling is systematic. For example, they found that none of AT&T’s routers

measured had ICMP timestamps enabled.

3.2.5 Firewalls and Filters

An increasing number of networks stop some packets from reaching their desti-

nation by permitting selected packet types and protocols to pass, while discarding

the rest. There are many possible reasons for a deny-by-default firewall configura-

tion. Network security concerns are often cited as one reason for restricting what

may pass [60]. The effect this has on measurement depends on the configuration

of the firewall and the minimum protocol functionality required by a measurement

technique. UDP and TCP packets to unused ports are likely to be filtered, as filter-

ing these packets does not impact on supported services. However, filtering these

packets reduces the ease at which the forward topology may be discovered using

traceroute. Similarly, ICMP packets are often filtered if they are not consid-

ered crucial to the operation of the network. This behaviour prevents informational

ICMP probes such as echo request and timestamp request from being delivered to

the destination, and prevents Path MTU Discovery (PMTUD) from working [60].

3.2.6 Hidden Queues

A router is designed to forward packets as fast as it can. Many routers optimise

for the common case by implementing what is known as a fast path. The fast path

is the path taken through a router by a packet that does not require special pro-

cessing. A packet that requires special processing is placed in a queue outside of

the fast path for processing by a separate module. Precisely which packets require

special processing depends on the router’s implementation. However, likely candi-

dates for special processing include packets with IP options such as source-routing

and record-route, packets which require fragmentation, and packets which cause an

ICMP message to be returned to the source.

When a packet that requires special processing follows a different path through

a router compared to other packets, a ‘hidden queue’ is created, which has proper-

47

ties of its own. A hidden queue has a number of negative effects on the accurate

measurement of network properties, as packets in such a queue may be lost or de-

layed in a manner which does not reflect the way other traffic queues. A hidden

queue may therefore create artifacts that are only seen by measurement probes and

not by regular traffic. Mahajan et al. provide an example of a hidden queue in [1],

where ICMP timestamp request packets queue internally while the router is busy

with higher-priority tasks.

3.2.7 Specialised Cooperation Required

In order to improve the accuracy of particular techniques, some tools seek the co-

operation of the destination host. These tools typically operate in a client-server

mode. The server is often a user-space process that runs on a pre-negotiated or pre-

determined port, or is a service accessed with a web browser. The client negotiates

a measurement with a server, and then obtains results out-of-band. The specialised

cooperation of an end-host provides the ability to measure paths that a client is un-

able to measure by itself. Depending on the measurement, it can also lead to an

increased result quality.

However, specialised cooperation does not lend itself to being widely deployed,

for a number of reasons. First, routers are poor choices to run specialised mea-

surement software on. Router vendors and operators may perceive that including

specialised measurement software needlessly increases implementation complexity

and detracts from the desire to build a robust system designed to forward packets as

fast as possible. Not being able to use a router as a measurement target reduces the

ability to measure a path on a per-hop basis. Second, offering such a service may

provide a vector for denial of service or abuse, as a service may have to allocate and

use resources in support of the measurement. Third, while accurate measurement

is of operational benefit, it is more difficult to argue for the widespread deployment

of many specialised measurement services, compared to offering a general purpose

protocol that is shared amongst measurement techniques.

48

Link type Bit rate Bytes between clock ticks
(Mb/s) 1ms 1µs

10baseT 10 12.21kB 1.25B
100baseT 100 122.07kB 12.50B
OC3c POS 155.52 189.84kB 19.44B
OC12c POS 622.08 759.38kB 77.76B
1000baseT 1000 1220.70kB 125.00B
OC48c POS 2488.32 3037.50kB 311.04B
OC192c POS 9953.28 12150.00kB 1244.16B

Table 3.1: Bytes between clock ticks for various link types

3.2.8 Imprecise Timekeeping

In many situations, a satisfactory measurement can be made using an imprecise

clock or using low resolution timestamps. For example, the user may simply require

an approximate delay estimate to quickly infer round trip delay and jitter, in order

to infer the nature of some operational problem. However, many applications and

techniques require more precise timekeeping. The support provided for precise

timekeeping in Internet measurement is often inadequate.

Fundamental to precise delay measurement is a precise clock and timestamps

of an appropriate resolution. Many host-based measurement tools use user-space

timestamp facilities, such as gettimeofday. The resolution and accuracy of the time-

stamp facilities provided by various operating systems for the gettimeofday function

is not sufficient for some delay measurements. The timestamp returned by the get-

timeofday function has a maximum resolution of one microsecond, and the current

time is reported poorly on some systems. Similarly, the timestamp included in an

ICMP timestamp reply has a maximum resolution of one millisecond. The reso-

lution of these timestamps is fixed, and limits the ability to measure per-hop delay

and jitter on high speed networks.

Table 3.1 shows the number of bytes that can be serialised in 1 millisecond (the

maximum resolution of an ICMP timestamp) and in 1 microsecond (the maximum

resolution of gettimeofday). A timestamp resolution of 1ms is inadequate to mea-

sure jitter on a fine-grained timescale; at OC192c, almost 12MB of data may pass

before the timestamp advances.

49

3.2.9 Free-Running Clocks

The ability to measure one-way or per-hop delay requires synchronised clocks, or

the ability to determine the offset from real-time of each clock involved. Currently,

it is difficult to determine basic clock statistics from a third-party host, such as the

clock’s offset from real-time and its resolution, unless it offers an NTP service.

Because of this, there are no known techniques for measuring the one-way delay

between two arbitrary points on a path between a source and a destination.

3.2.10 Unable to Reliably Resolve Router Aliases

It can be useful to resolve router aliases when inferring Internet topology or mea-

suring a path from multiple points. Currently available techniques to resolve router

aliases are complex and rely on router implementation quirks; that is, router im-

plementation strategies that are not specified in any Internet protocol standard.

Hal Burch reviews three different approaches to resolving router aliases in his the-

sis [19]: probing unused UDP ports in order to solicit ICMP messages with the

same source address, inferring aliases by soliciting responses with progressive IP-

ID values, and inferring aliases by causing routers to rate-limit ICMP generation.

The first two of these techniques are discussed in section 2.2.4.

Burch [19] found that of the three techniques, the IP-ID technique was the most

successful at resolving router aliases, and could resolve nearly twice as many router

aliases than the UDP technique. However, the IP-ID technique required an order

of magnitude more probes to be sent. The last technique – resolving router aliases

by correlating rate-limiting episodes – requires more probes to be sent than the

UDP technique and resolves less aliases. As discussed in section 2.2.4, the IP-ID

technique is not useful for resolving IPv6 router aliases, because the IPv6 header

does not have an ID field.

50

3.3 Desirable Features

In this section, a series of features that would be useful in a protocol designed for

per-hop measurement of Internet packet dynamics are defined.

3.3.1 Integrated Path and Packet Dynamics Measurement

As discussed in section 3.2.2, it is not safe to assume static path behaviour. As a

result of experience gained in developing pathchar, Van Jacobson identified a

need for a more robust per-hop measurement technique than the TTL method as

important for future research [7].

In order to measure per-hop dynamics of a packet as is routed to its destination,

each router which forwards the packet is required to signal, to the sender, when

the packet arrived. The required primitive that records when a packet arrived is

a timestamp. Therefore, it is possible to segment a path into individual hops if it

is possible to obtain a timestamp that represents the time the packet was received

for each router which forwards the packet. The path becomes segmented because

the delay properties of each hop in the path can be determined using timestamps

reported by adjacent hops. A number of possible implementation strategies exist

for obtaining a timestamp from each router in a path.

One possible implementation strategy is for each router in a path to send a reply

to a specially marked probe before forwarding the probe to the next-hop, similar to

the methods used with the traceroute IP option [26] and mtrace [61]. With this ap-

proach, the sender has scope to control the size of and contents of each probe packet

sent, as packet dynamics are communicated separately to the probe. However, there

are a number of limitations to this approach. First, a single probe could cause an

order of magnitude more packets to be generated in response to the probe, which

provides a vector for denial of service attacks. Second, in addition to forwarding the

packet, a router would be required to generate a separate reply packet from scratch,

which is likely to require additional resources and thus be rate-limited.

Another possible implementation strategy is for each router in a path to embed

information useful for measurement in the specially marked probe packet, similar

51

to the method used with the IP record route option [24]. The main limitations of

this approach are that: the probe packet must be large enough for each router to

embed useful information in the packet; if the probe packet is lost, all embedded

information is lost with it; and the source host has little control over the contents

of the packet as it is altered through the network. One advantage of this approach

is that if the protocol is designed for efficient processing in the forwarding path, it

does not create a denial of service vector.

3.3.2 Able to Measure the Reverse Path

As discussed in section 3.2.1, many measurement techniques are only capable of

measuring the forward path, even though the reverse path is also often of interest.

For example, a protocol that enables a source host to determine the sequence of

routers that a packet traverses on the reverse path is immediately useful to both

operators and end-users. Existing techniques can only provide detailed per-hop

information for the forward path without specific cooperation from the destination

host. A number of possible implementation strategies exist for a protocol capable

of measuring the reverse path.

First, a measurement control protocol could be defined which negotiates a mea-

surement for the reverse path with a target host, similar to the method used by

OWAMP. The advantage of this method is that it provides the ability to control

the measurement process, which is important to measurements that require precise

probing control. As useful as a measurement control protocol is, experience with ex-

isting measurement protocols indicates that they are unlikely to receive widespread

adoption due to the complexity involved in implementing, deploying, and control-

ling access to deployed systems [1].

Second, an echo protocol could be defined where a source host sends a request

packet and expects the destination host to send a reply packet. The reverse path is

measured from the point where the echo reply packet is sent from the destination

host. The advantage of this method over a measurement control protocol is that an

echo protocol is simple enough to be implemented in a kernel or in a line card, as

an echo protocol does not require state to be kept at the end host.

52

3.3.3 Minimal Overhead in Routers

As discussed in sections 3.2.3 and 3.2.4, existing Internet protocol features such as

ICMP, which some techniques depend on to infer packet dynamics, are often rate

limited or disabled, due to vectors they can provide for overwhelming the ability

of a system to operate normally. Similarly, the path taken through a router by a

probe used for measurement of packet dynamics may be different to the path taken

by other traffic, introducing hidden queues, as discussed in section 3.2.6. However,

a measurement protocol capable of measuring packet dynamics on a per-hop basis

will require support from routers. In order to make a protocol useful for measure-

ment, the protocol must introduce minimal overhead so that measurement probes

can follow the same forwarding path as any other packet through the router.

3.3.4 Precise Timestamping

As discussed in section 3.2.8, current protocol support for precise timestamps is

limited. As networks get faster, the ability to accurately measure and characterise

per-hop behaviours on very high speed networks is challenged. In his Ph.D the-

sis on high-resolution passive network measurement, Donnelly discussed how the

required timestamp resolution and clock frequency might be defined for passive

measurement of various link types [62]. For example, if it is sufficient to be able to

distinguish the arrival order of two packets on a link, then the minimum timestamp

resolution required is “less than the transmission time of a minimum sized packet

on the media.” For Ethernet links, the minimum packet size is 64 bytes, which

corresponds to 46 IP packet bytes [63]. For Packet Over SONET (POS) links, the

minimum IP packet size is 28 bytes.

However, this resolution is not sufficient to measure jitter. As the minimum

transmission unit on most networks is a byte, an ideal clock resolution for measuring

jitter is an eighth of the bit frequency of the link being measured [62]. Therefore,

the ideal resolution of a timestamp used for measuring delay jitter on a particular

link type is a function of the time it takes to serialise a single byte on that link. The

53

Link Type Bit Rate Clock Wrap Time
(Mb/s) 32 bits 48 bits 64 bits

10baseT 10 00:57:15 > 7 years > 467953 years
100baseT 100 00:05:43 > 37 weeks > 46795 years
OC3c POS 155.52 00:03:40 > 23 weeks > 30089 years
OC12c POS 622.08 00:00:55 > 5 weeks > 7522 years
1000baseT 1000 00:00:34 > 3 weeks > 4679 years
OC48c POS 2488.32 00:00:13 > 1 week > 1880 years
OC192c POS 9953.28 3.452 sec > 2 days > 470 years

Table 3.2: Byte clock wrap time for various link types

timestamps used in the measurement process should be able to be used to detect

jitter on future networks.

For these reasons, this thesis argues that a measurement protocol should pro-

vide support for retrieving the timekeeping information necessary in order to im-

prove delay measurement. The protocol should allow a host or router to use a clock

suitable for measuring delay at a suitable scale for the situation. For a Personal

Computer (PC)-based host, this may mean using a software clock based on the Time

Stamp Counter (TSC) register that counts CPU cycles as suggested by Pásztor and

Veitch [64]. For a router, this may mean using a clock which runs at an eighth of the

interface’s bit frequency so that per-byte delay into the router can be determined.

Table 3.2 shows the length of time it will take the value from a clock that counts

bytes to wrap around for various link types, depending on the width in bits of the

clock value. Table 3.2 shows that a 32-bit value is unlikely to be sufficient to mea-

sure the generation of high-speed links beyond OC192c. For example, an OC768c

POS link will wrap a 32-bit byte counter in less than one second.

3.3.5 Obtain Clock Synchronisation State

As discussed in section 3.2.9, in order to measure one-way delay between two points

in the network, the clocks must either be synchronised, or there must be a method

to determine the absolute offset of one clock from the other.

54

3.3.6 Denial of Service Resistant

A protocol for per-hop measurement of Internet packet dynamics must not add any

DoS vector. There are two classes of DoS attacks: logic attacks, in which known

protocol implementation flaws are exploited; and flooding attacks, in which the

target is overwhelmed by the volume of incoming requests [65]. The scope for a

logic attack can be reduced by ensuring the protocol is well defined and simple to

implement. The scope for a flooding attack can be reduced by ensuring the protocol

does not provide the ability to amplify an attack, and ensuring the protocol does not

require state to be kept and is able to be efficiently processed so that a victim’s CPU

cannot be overwhelmed.

3.3.7 Measure Different Traffic Types

Many tools probe the network with UDP or ICMP probes and solicit ICMP re-

sponses. There are a number of reasons for doing so. The functionality required by

the technique often motivates their use. For example, an ICMP timestamp request is

a convenient method of obtaining a timestamp from a router. Similarly, in order for

a technique to infer packet dynamics using the IP-ID field, the sender must cause

the destination to generate a new packet; sending a UDP probe to an unused port is

a fairly unintrusive method of doing this. In addition, UDP and ICMP probes are

more simple to construct, to send, and to receive compared to, for example, probes

encapsulated in TCP.

However, these probes may not reflect the actual performance seen with other

traffic types due to different queueing priorities intermediate systems may enforce.

For example, some networks may prioritise the forwarding of TCP packets; others

may rate limit the forwarding of UDP and ICMP packets. A protocol for per-hop

measurement of Internet packet dynamics should be able to signal to intermediate

routers how the packet should be queued if the router forwards packets on a basis

other than First-in First-out (FIFO).

55

3.3.8 Resolve Router Aliases

As discussed in section 3.2.10, existing measurement techniques to resolve router

aliases are not reliable because they rely on implementation quirks. A protocol

for per-hop measurement of Internet packet dynamics is likely to encounter router

aliases. Therefore, such a protocol should provide a mechanism to determine which

addresses are aliases for the same router.

3.3.9 Partial Deployment Utility

A protocol for per-hop measurement of Internet packet dynamics will require sup-

port to be built into end-hosts and routers. As support for such a protocol will be

deployed incrementally, a protocol must be useful even without complete deploy-

ment.

3.4 Summary

The thesis of this work is that a protocol for per-hop measurement of Internet packet

dynamics is feasible and useful. In this chapter, the motivation of why a measure-

ment protocol designed for per-hop measurement of Internet packet dynamics is

useful was presented. The limitations of some techniques are shared with other

techniques that measure different properties. In particular, tools that manipulate

the TTL of outgoing probes share similar limitations; they are forward path bound,

and they cannot definitively separate the behaviour of prior hops. With the distilled

set of limitations enumerated in section 3.2, a series of desirable features were de-

fined that a protocol designed for per-hop measurement of Internet packet dynamics

might have. In particular, the ability to combine path and dynamics measurement

into a single packet exchange is identified as an important protocol feature. In the

next chapter, a protocol designed with measurement in mind which addresses the

limitations identified in this chapter is described.

56

Chapter 4

IP Measurement Protocol

4.1 Introduction

The Internet relies on cooperation and interoperability. To date, Internet measure-

ment and diagnosis tools have mostly relied on features found in existing general-

purpose Internet protocols, despite the many limitations this reliance has. In the pre-

vious chapters, the motivation for a measurement protocol was established. Chap-

ter 2 discussed various measurement techniques currently available, what they rely

on, and their relative advantages and limitations, for measuring delay, loss, reorder-

ing, and capacity;

Chapter 3 looked at overcoming the common limitations which are found in

many measurement techniques, and discussed a series of desirable features that a

protocol designed for per-hop measurement of Internet packet dynamics might have.

This chapter presents the IP Measurement Protocol (IPMP). IPMP is an Inter-

net protocol designed explicitly for the purpose of per-hop measurement of Internet

packet dynamics. IPMP is designed to solicit the cooperation of routers. A router

that supports IPMP inserts information into a specially formed packet as it is pro-

cessed. Although only simple information is added, this enables per-hop direct

measurement of packet dynamics such as propagation delay, delay jitter, packet

reordering, and loss. A concise specification of IPMP in Internet-Draft format is

included in appendix A. IPMP was first proposed by McGregor in 1998 [8].

The rest of this chapter discusses the design of IPMP. Section 4.2 begins the

chapter at a relatively high-level, with a general overview of IPMP. Section 4.3 dis-

57

Application

UDP IPMPTCP

IPv6IPv4

Network Driver

Figure 4.1: A model of an IP stack with IPMP

cusses the feasibility of the protocol in general terms to show that such a protocol

is possible. Sections 4.4 and 4.5 then take a detailed look at the two protocol com-

ponents of IPMP: the echo protocol, and the information protocol. As the protocol

seeks the cooperation of intermediate routers, these sections detail why IPMP takes

the form it does, and how the form relates to efficient processing in routers and des-

tination hosts. Finally, in section 4.6, IPMP is compared to the desirable features

discussed in chapter 3.

4.2 Protocol Overview

IPMP is encapsulated directly inside an IP packet, as shown in figure 4.1, placing it

at the same level as TCP, UDP, and ICMP. IPMP has two distinct protocol compo-

nents: the echo protocol, which is used to probe a network path, and the information

protocol, which is used to retrieve supplementary information from each router. The

echo protocol is used to directly measure per-hop path characteristics such as de-

lay, jitter, loss, and reordering. The echo protocol is designed to be processed in

the forwarding path of a router. The ability to process an IPMP echo packet in

the forwarding path is an important attribute, as an IPMP echo packet will provide

the most useful measurement of instantaneous network behaviour if it follows the

same processing path as any other packet. The information protocol is not used to

measure network behaviour, and may be processed at low priority and out of the

forwarding path if necessary.

The architecture of the IPMP echo protocol is shown in figure 4.2. A source host

constructs an IPMP echo request packet, addresses it to a destination host, and then

58

Echo

Source

IPMP

IPMP

Target

IPMP

3

7

IPMP
4

5
IPMP

IPMP

IPMP

IPMP

IPMP

IPMP

IPMPIPMP

IPMP

8

Path Record

AS #B

AS #A

AS #C

2

1

10

9

Router

Host Host

IPMP IPMP

Packet

AS Boundary

Figure 4.2: The IPMP measurement architecture

transmits the packet. In this diagram, the flow of the echo packet is shown on the

outside of the network. Each router on the forward path that implements IPMP may

insert information into the echo probe as it is forwarded towards the destination.

In this diagram, the information that is embedded is represented as a small shaded

box in the packet. The routers that implement IPMP in figure 4.2 are at hops 3, 4,

5, 7, and 8. When an echo request packet arrives at the destination, it is modified

and then returned to the source as an echo reply packet. Each router on the reverse

path that implements IPMP may also insert information into the echo probe as it is

forwarded back to the source.

The information that is inserted into an echo probe is in the form of an IPMP

path record. A path record may contain, among other things, an IP address of the

interface that received the packet and the local time at the router when the packet

59

was received. An IPMP echo reply packet has a (partial) record of which routers

forwarded the packet, and when it was received by each of them. As a path record

includes an IP address, the precise format of a path record and the method used to

update an IPMP echo probe differs between IPv4 and IPv6.

If all nodes on the forward and reverse paths support IPMP, then a single IPMP

echo exchange provides a forward and reverse path traceroute with one probe

packet. A tool that sends a series of echo probes can infer per-hop dynamics such

as jitter, loss, IP path changes, and load balancing. IPMP is also useful in scenar-

ios where it is not available on all nodes in a path. Figure 4.2 shows one possible

deployment scenario, where AS #A and AS #C choose to enable IPMP on border

routers at the edges of their respective networks. In this case the delay, jitter, and

loss characteristics of the path through a particular AS can be measured. The abil-

ity to do this would be useful in verifying that the service specified in a Service

Level Agreement (SLA) is being provided, or in determining if a particular AS is

contributing to a fault.

Should there be more IPMP-capable nodes in the path than an echo packet pro-

vides path record space for, a source host can restrict which nodes may insert a path

record. This feature is particularly useful should the source wish to measure a path

by sending small probes which reflect the packet size used by a particular applica-

tion. For example, some voice and video applications send small packets regularly

rather than wait for enough data to fill a path MTU-sized packet. This aspect of

IPMP is discussed in further detail in section 4.4.5.

The IPMP echo protocol also provides the ability for an intermediate system to

queue measurement probes as if they were a different type of packet, if that system

queues packets based on their type. Such a system often queues packets based on

a 5-tuple of values which consist of the source and destination IP addresses, IP

protocol type, and source and destination port numbers where applicable. IPMP

does this by providing three faux fields in the echo header which correspond to the

IP protocol type, and source and destination port numbers. This feature is discussed

in further detail in section 4.4.

As with any protocol that measures delay between two different points, there are

60

challenges in establishing the synchronisation state of the clocks at those points. In

order to measure absolute one-way or per-hop delay between two different points in

a network path, each point is required to have a synchronised clock. However, not

all measurements require synchronised clocks. For example, jitter can be inferred

between two points simply by determining the difference between a series of packet

arrival times.

IPMP’s approach to timekeeping is quite different to current approaches, and

consists of two distinct parts. The first part is concerned with the process of ef-

ficiently generating and storing a timestamp in a path record. This occurs in the

forwarding path. As the interface which receives and timestamps an echo packet

may not have a reliable or useful real-time clock, IPMP does not define the precise

format of a timestamp beyond the size and location of the timestamp field in the

path record. Rather, it allows the interface to generate a timestamp using the most

suitable clock available on the interface. For example, a network interface may

choose to generate a timestamp with a clock derived from the clock that is used to

serialise incoming packets.

The second part of IPMP’s approach to timekeeping is concerned with the pro-

cess of translating a timestamp to real time, and determining the usefulness of the

timestamp for measurement. The translation is done with information obtained in

a separate packet exchange using the IPMP information protocol. The information

protocol enables a source host to obtain the information necessary to be able to

translate timestamps to real time, to determine the error limit for the clock, the res-

olution of the clock, to resolve router aliases, and obtain other optional but useful

data items that the system administrator believes is of use to measurement.

4.3 Feasibility

Before IPMP is presented in detail, the feasibility of a protocol such as IPMP is

examined. One important goal of IPMP is for a measurement packet to follow the

same processing path as any other normal IP packet. Router vendors are concerned

with forwarding path performance and are reluctant to add new features, because

61

3

Ver.

TTL

Destination IP Address

Source IP Address

Checksum

Total LengthIHL

Flags Fragment OffsetIdentification

TOS

Protocol

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1

Figure 4.3: The IPv4 header without options

new features may introduce complexity and reduce forwarding path performance.

The purpose of this section is to show that a protocol like IPMP is (1) technically

feasible with currently available router architectures and implementations, (2) capa-

ble of having echo packets processed in the forwarding path, (3) within the bounds

of what might be implementable and that the cost of doing so is not unreasonable.

For software-based routers where each packet is processed in a FIFO basis by a

CPU, these requirements are not difficult to meet, so long as the required operations

can be done efficiently. In chapter 5, implementation experience with software-

based routers is presented.

For routers with hardware optimised forwarding paths, an argument is needed to

show that it is possible to process IPMP echo packets in the so-called fast path. The

fast path is the optimised forwarding path in a router that a packet follows when the

router does not have to queue the packet for special processing; that is, the packet

follows the fastest possible forwarding path through the router. A packet that re-

quires special processing is taken out of the fast path and placed in an appropriate

queue for further processing, which may be done in other specialised hardware or

by a general purpose CPU. The details of the fast path vary from router to router.

A common implementation of a fast path is one optimised to handle the common

packet forwarding case, where (1) a packet does not have any IP options that require

processing, (2) the router has a route to the destination cached, and (3) the only re-

quired modification to the packet is the IP-TTL decrement operation and associated

IP checksum update.

The format of the IPv4 header is shown in figure 4.3. Every IP packet that is

forwarded through a router has a minimum of two operations. First, the TTL field

62

is checked; if the TTL field is one, then the packet has expired and an ICMP time

exceeded message may be sent back to the source. Otherwise, the router decre-

ments the TTL and updates the IP checksum accordingly. Second, if the packet has

not reached its destination, a route to the destination is chosen. Any IPMP-related

modification to the packet must be made before the routing decision is completed if

the packet is not to be delayed.

Recall from the overview in section 4.2 that a path record includes an IP ad-

dress of the interface where it was received, and a timestamp that represents when

the packet was received. Generating and recording a timestamp in a packet is a

much easier operation than determining the next IP hop of the packet, because the

timestamp in IPMP can be as simple as a counter. Similarly, most interfaces have

only one IP address, so there is no decision to be made as to which IP address to

use. Interfaces with more than one IP address may choose to use a single globally

routable IP address for all path records it inserts which belongs to the interface and

uniquely identifies it; this is discussed further in section 4.4.6.

4.4 The Echo Protocol

This section discusses the design of the IPMP echo protocol in detail. The IPMP

echo protocol is the part of IPMP designed to directly measure per-hop packet dy-

namics on an Internet path. Section 4.4.1 discusses the overall design considera-

tions and format of the IPMP echo protocol. Section 4.4.2 presents the format of

the IPMP path record. Sections 4.4.3 and 4.4.4 discuss the details of forming a

path record structure by examining the IP and timestamp fields in detail. Finally,

echo processing at the source host, intermediate nodes, and the target is discussed

in sections 4.4.5, 4.4.6, and 4.4.7 respectively.

4.4.1 Echo Packet Design

As discussed in section 4.2, an echo packet must follow the same processing path

as any other packet for it to be a representative measurement of packet dynamics. In

addition, it must not present a denial of service vector. For these reasons, processing

63

3

Version

(optional) Path Record(s)

Path Record Pointer

Faux Source Port

Identifier

Type Faux IP Proto Reserved

Checksum

Sequence Number

Faux Destination Port
Header
Echo

Trailer
Echo

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1

Figure 4.4: Format of an IPMP echo packet

(0x01)

E S I RReserved
0 1 2 3 4 5 6 7

E

R
I
S = singleton packet

= request packet
= information packet

= echo packet (0x80)
(0x04)
(0x02)

Figure 4.5: Format of the IPMP type field

efficiency is a primary design criterion for the IPMP echo protocol. The design of

the IPMP echo packet has a number of purposes. First, it provides an efficient

mechanism for an IPMP-capable destination host or router to determine if it should

insert a path record in an echo packet. Second, it provides an efficient mechanism

for an IPMP-capable host or router to modify the echo packet. Third, it provides an

efficient mechanism for an intermediate system to determine how the packet should

be queued, should the system queue packets other than on a FIFO basis. Finally, it

provides an efficient mechanism for a measurement process executing on a source

host to identify individual echo responses as they arrive and match them to echo

request probes it sent.

The format of the IPMP echo packet is shown in figure 4.4. An IPMP echo

packet has three components; an echo header, pre-allocated space for path records,

and an echo trailer. The components are arranged in the order they are required

for decision making when an echo packet is processed in the forwarding path of a

router. For example, the trailer contains fields which are modified last, after pro-

cessing decisions have been made. The fields in each component are arranged so

that an IPMP echo packet is as simple to process as possible.

64

The echo header signals to IPMP capable nodes how to process the packet. The

version field identifies the version of the IPMP protocol being used, to allow for

non-backwards compatible extensions to be added in the future if required. The

type field, shown in figure 4.5, identifies if the IPMP packet is an echo probe, if the

packet is a request or response, and if the echo probe is a one-way singleton probe.

The identifier and sequence number fields allow a source host to match re-

sponses with a corresponding request record. If an IPMP packet causes an ICMP

message to be sent, the source host can use these fields to match the message with a

corresponding request record. The identifier and sequence number fields are placed

in the first 8 bytes of the echo packet so that if an ICMP stack is not configured to

send more of an original packet than the historical recommendation of the IP header

plus the first eight bytes of payload, it will still be able to identify the packet that

caused the ICMP message to be returned. The identifier is also used by interme-

diate systems – such as firewalls and routers – to determine which flow the packet

belongs to.

The faux protocol type, faux source port, and faux destination port fields allow

an IPMP echo probe to be queued or filtered as another packet type would if a

router or intermediate system queues or rate limits packets based on their type.

For example, if measurement of TCP traffic is of interest, then the faux protocol

field would be set to 6, which is the protocol type of TCP. Similarly, if Hypertext

Transfer Protocol (HTTP) traffic is of specific interest, then the sender would set

the faux destination port field to 80, which is the most common HTTP port used.

The echo trailer is found in the last four bytes of an echo packet. An echo trailer

contains a path record pointer and an IPMP checksum, which are updated when the

packet is modified to include an additional path record, or when the echo header is

modified at the destination host. These fields are located at the end of the packet

so that nodes which process IPMP packets as a bit-stream do not have to buffer

the whole packet when inserting a path record; this is discussed in further detail

in section 4.4.6.2. The value of the path record pointer field identifies the offset

relative to the first byte of the echo header (the version field) at which the next

IPMP path record should be inserted, and is used by nodes which process IPMP

65

TTL

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0
3

1

FlowC

Timestamp

IPv4 Address of the Receiving Interface

S Res.

Figure 4.6: Format of the IPMP path record when encapsulated in IPv4

packets in a store-and-forward manner. The checksum is a standard RFC 1009 [66]

Internet checksum, and is computed over the echo packet from the IPMP version

field to the IPMP checksum field.

Between the echo header and echo trailer is pre-allocated space reserved by the

source host for path records. The motivation for using pre-allocated path record

space instead of allowing an IPMP echo packet to grow dynamically is two-fold.

First, extending the packet requires extra processing; the IP header requires mod-

ification to the length and checksum fields, and the packet buffer which holds the

probe requires extra memory resources to be dynamically assigned. Second, ex-

tending the packet dynamically limits the ability to measure the behaviour of an

Internet path with a specific packet size. The space reserved for path records is also

initialised in such a way as to reduce the processing burden of intermediate nodes

which process IPMP in the forwarding path, and to allow a source to restrict which

routers on a path may insert a path record. These details are discussed further in the

next section.

4.4.2 Path Record Design

The path record is the structure in the IPMP echo protocol that enables per-hop mea-

surement of Internet packet dynamics to take place. An IPMP path record contains

information useful for directly measuring packet dynamics. Like the echo protocol,

the path record is designed to be compact and efficient to process. The format of

the IPv4 IPMP path record is shown in figure 4.6.

The reason that the path record structure is designed to be compact is to allow as

many path records to be included in an echo packet as possible; an IPv4 path record

requires 12 bytes, while an IPv6 path record requires 24 bytes. In order to keep the

66

space requirements of a path record to a minimum, a path record does not include

information about the path that does not change between probes. A mechanism to

retrieve static information is provided with the IPMP information protocol.

The space between the echo packet’s header and trailer is reserved for path

records. As with the IPMP echo packet design, the path record structure is de-

signed with processing efficiency as a primary design criterion. Most of the space

reserved for path records is initialised to zero so that incrementally updating the

IPMP checksum [67] is as simple as possible. The exception to this is the first byte

of each path record – the TTL field – which is used by the source to restrict which

hops may insert a path record. An intermediate node determines if it should insert

a path record by comparing the TTL field in the IP header – after the TTL has been

decremented as part of the forwarding process – with the TTL field of the next un-

used path record. If the TTL field in the next unused path record is greater than or

equal to the TTL field in the IP header, then the intermediate node may use that path

record space, provided the ‘S’ bit, discussed next, is not set.

When a path record is inserted, the IPMP TTL field in the path record inserted is

a copy of the TTL field from the IP header, after the IP TTL has been decremented

as part of the forwarding process. Including a TTL field in a path record allows a

host to determine the distance, in hops, into an Internet path where the path record

was inserted. The set (S) field is a bit which is set when space reserved for a path

record is used. This field is useful for systems which process an echo packet as a

bit-stream because it allows an intermediate system to determine the next suitable

location for a path record to be inserted without waiting for the path record pointer

field which comes at the end of the packet. Processing an echo packet as a bit-stream

is discussed further in section 4.4.6.2.

The flow counter (FlowC) field records the arrival order of a series of IPMP

echo packets which belong to the same flow. An IPMP flow is defined as a series of

echo packets with the same source and destination IP addresses, IP protocol type,

and IPMP echo ID. Including a flow counter in an IPMP path record was first pro-

posed by Mahajan, Spring, Wetherall, and Anderson in “User-Level Internet Path

Diagnosis” [1]. A flow counter provides the ability to determine the arrival order of

67

3

HLIM

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1

S Res. FlowC

Timestamp

IPv6 Address of the Receiving Interface

Figure 4.7: Format of the IPMP path record when encapsulated in IPv6

a series of packets and to infer where a previous packet was lost in appropriate con-

ditions. The algorithms for doing so are discussed in section 6.4. The flow counter

field is 4 bits wide, which enables 16 sequence numbers to be recorded before the

counter wraps. A flow record relates an IPMP flow to a flow counter. Flow records

are interface scoped; that is, each flow record records the arrival order of an echo

flow at a particular interface. IPMP echo probes that belong to the same flow but

arrive at different interfaces therefore have different flow records. Flow counters

are an optional part of IPMP, as generating and recording a flow counter requires

significant processing and state to be kept compared with other parts of the echo

protocol.

The three bits between the S field and the FlowC field are currently reserved;

they are set to zero by the sender. A possible use for one of these bits is to include

an Explicit Congestion Notification (ECN) Congestion Experienced (CE) bit in the

path record, which could be used for determining the congestion status of routers in

an end-to-end path.

The timestamp field is a 48 bit field that represents the time the packet was

received at the interface. In order to ensure that IPMP is as simple as possible to

process in the forwarding path, the timestamp field has no defined format, other

than the size and location. Translating the timestamp to real time is handled in a

separate packet exchange with the information protocol, discussed in section 4.5.

Finally, the IP address field is an IP address of the interface which received the echo

probe; the method to choose an appropriate address if the interface has more than

one address to choose from is discussed in section 4.4.3.

68

IPv4 IPv6
IP header size 20 bytes 40 bytes
IPMP echo header 12 bytes 12 bytes
IPMP echo trailer 4 bytes 4 bytes
Path record size 12 bytes 24 bytes
Minimum IP MTU 576 bytes 1280 bytes
Path record count 45 51
Ethernet IP MTU 1500 bytes 1500 bytes
Path record count 122 60

Table 4.1: Number of path records able to be included for various IP packet sizes

The format of the IPv6 IPMP path record is shown in figure 4.7. The format of

the IPv6 path record is very similar to the IPv4 path record. An IPv6 path record

varies from the IPv4 path record in two ways. First, it has a 128-bit IPv6 address

instead of a 32-bit IPv4 address. Second, it has a Hop Limit (HLIM) field instead of

a TTL field, as the IPv6 header has a HLIM field instead of a TTL field. Table 4.1

shows how many path records may be included in an echo probe, depending on the

size of the echo probe and whether IPv4 or IPv6 is used.

4.4.3 Path Record IP Address

Path records may be inserted by a source host, a destination host, and intermediate

routers. A destination host that inserts a path record uses the destination address of

the packet itself so that the source can determine which path record, if any, corre-

sponds to the destination. This is useful for separating the path records which were

inserted on the forward path from those which were inserted on the reverse path.

A source host that inserts a path record when sending an echo packet chooses an

IP address from the outgoing interface; this address will typically be the same ad-

dress as the source uses for the source IP address in the IP header. An intermediate

router that inserts a path record uses an IP address from the interface that receives

the probe.

An IPMP-capable node may have to perform an address selection algorithm

if the interface has multiple candidate addresses for the path record. The address

selection algorithm for path records is similar to the address selection algorithm

for IPv6 described in RFC 3484 – Default Address Selection for IPv6 [68]. RFC

69

3484 details how to determine a suitable source address based on a number of rules

where multiple candidate addresses exist. As with RFC 3484, the address selection

decision is based on the destination address in the IP header. This is to prevent an

destination host from spoofing its source address to learn private addresses along

the path. The major difference between the IPMP address selection mechanism and

RFC 3484 is that the IP address must be selected from the incoming interface and

not the outgoing interface.

There are two sets of candidate path record addresses; one set consists of candi-

date IPv4 addresses, while the other set consists of candidate IPv6 addresses. Nei-

ther of these sets may contain anycast, link-local, or multicast addresses. Anycast

addresses are excluded from the candidate sets because an anycast address does not

uniquely identify an interface in any scope, and so cannot be used to determine the

path an IPMP echo packet took. Link-local addresses are excluded from the candi-

date sets unless the path record is being inserted into an echo response packet at the

destination host; note that this will only occur if an echo probe is sent to another

link-local address. A link-local address will never be a candidate address in the

IPMP forwarding path because link-local addresses are by definition not routable.

A multicast address will never be a candidate address in the IPMP forwarding path,

because a multicast address does not uniquely identify a target. If there are multi-

ple candidate addresses remaining after anycast, link-local, and multicast addresses

have been removed, then the node should select one of the remaining addresses and

use that address consistently.

4.4.4 Path Record Timestamp

There are three approaches to including a timestamp in an IPMP path record. First,

if the node does not have a useful or accessible clock, it may choose to not include

a timestamp in any path record it inserts, leaving the timestamp field zero. It is

recommended that if the cost of reading from a clock is significant, IPMP nodes

should not include a timestamp in their path record. Second, if the node has a real-

time clock that is easily accessible, then the node could include a timestamp from

it in the path record. Depending on the capabilities of the system, a real-time clock

70

struct timeval {
long tv sec, /* seconds */
long tv usec /* and microseconds */

};

struct timespec {
time t tv sec, /* seconds */
long tv nsec /* and nanoseconds */

};

Figure 4.8: The POSIX timeval and timespec structures

should at least present a timeval structure, which has a maximum resolution of one

microsecond; more recent systems have a timespec structure with a resolution of

one nanosecond. The definitions of the timeval and timespec structures are pre-

sented in figure 4.8. Recall that the space reserved for a timestamp in an IPMP path

record shown in figure 4.6 is 48 bits. The simplest method of generating an IPMP

timestamp in this situation is to use the low-order 16 bits of the tv sec field and the

low-order 32 bits of the tv usec or tv nsec field. Third, the node may choose to use

some other clock, such as that used to serialise incoming packets. One example of

using such a clock is to divide the serialisation clock by 8, in order for the clock’s

accuracy to be able to measure delay per-byte, as discussed in section 3.3.4.

4.4.5 Creating an Echo Request

An application running on a source host is responsible for creating and initialis-

ing an echo request packet and sending it to a destination host. The nature of the

measurement is set by the source host, and is reflected in how the echo request is

constructed. The characteristics that can be controlled are:

• the size of the echo probe;

• which hops on the path may insert path records;

• how routers and middle-boxes should queue the probe;

• and if the packet is a one-way probe or an echo exchange.

71

Proto

4
8

12
16

20
24

28
32

36
40

0

E
ch

o
H

ea
de

r
IP

v4
 H

ea
de

r

0x45 0x00 1500

0x0000 0x0000

255 IPMP Checksum

130.217.251.39

199.109.33.1

1

00x3245

80

VHL TOS Length

Ident Offset

TTL Proto Checksum

Source IP Address

Destination IP Address

Ver.

Seq. No.Id. No.

Faux Dst Port

D
F

Fl
ag

s

Faux Src Port 1025

TTL

IP Address

Timestamp

Fl
ow 255

130.217.251.39

0

327487201

40390

44
48

52

#1

IP Address

Timestamp

TTL

Fl
ow 255 0x000x000x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

56
60

64

#2

IP Address

Timestamp

TTL

Fl
ow 255 0x000x000x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

n−
4

n
68

T
ra

ile
r

24 ChecksumChecksum

(b)
Example Values

(a)
Format

Path Record
Pointer

#0
Pa

th
 R

ec
or

d
E

ch
o

Pa
th

 R
ec

or
d

Pa
th

 R
ec

or
d

0

Faux Res.Type 60x81 0x00

R
es

.
R

es
.

R
es

.

Figure 4.9: Creating an IPMP echo request packet

72

The source host is required to initialise the space reserved for path records so

that intermediate nodes can determine if they should insert a path record. The source

host does this by initialising all bytes reserved for path records to zero, except for

those that correspond to the TTL field in each path record. In the simplest case

where the source host would like to collect path records from all intermediate nodes

on the path that support IPMP, it pre-initialises every path record’s TTL field to be

the same TTL it sets in the IP header, so that the TTL test will succeed on all IPMP

capable intermediate nodes and they will each insert a path record.

Figure 4.9 shows the layout of a complete IPMP echo request probe encapsu-

lated in IPv4, alongside an initialised echo request probe. As indicated by the IP

length field, this particular probe is 1500 bytes in size; the first 68 bytes and last 4

bytes of this packet are shown. The source host allocates a packet buffer and ini-

tialises the source and destination IP addresses, sets the IP TTL field to 255, and

sets the IP protocol type to the value assigned to IPMP. The source host also sets

the Don’t Fragment (DF) bit in the IP header so that the packet is prevented from

being fragmented at any point in the path, as the entire echo probe is required when

inserting a path record. So that processing an IPMP echo probe is as simple as

possible, particularly on routers which may process IP options out of the fast path,

it is recommended that an echo probe does not include any IP options, unless the

effect of including IP options is of interest. The IPMP echo header begins imme-

diately after the IP header. The version of IPMP described in this thesis is version

one. The IPMP type field is set to 0x81, which corresponds to an echo request,

according to figure 4.5. The faux IP protocol, faux source port, and faux destination

port correspond to an HTTP packet. The IPMP-ID number is 0x3245, which corre-

sponds to the low-order 16 bits of the process ID of the application which created

the probe. The sequence number is set to zero, as this is the first echo request sent

to the particular destination with this IPMP-ID.

In this example, the source host inserts the first path record so it has a convenient

record of when the probe was sent. The ‘S’ bit is set, indicating that the path record

space has been used. The flow counter field is set to zero as it is the first packet sent

from the host. In this example, the host forms an IPMP timestamp from a clock

73

with nanosecond resolution; the first 16 bits represent the number of seconds since

midnight, while the second 32 bits hold the fractional portion of the timestamp. The

IP address in the path record is the same as the source address in the IP header.

The rest of the pre-initialised space for path records is initialised to zero, except

for the TTL fields, which are set to 255 so that all intermediate nodes will insert a

path record if they can. Finally, the path record pointer is set to 24, which corre-

sponds to the offset of the first byte of the second path record from the first byte of

the IPMP header.

4.4.6 Echo Processing at an Intermediate Node

An intermediate node is responsible for determining if it should insert a path record,

and then inserting a path record if appropriate. One of the design goals of the IPMP

echo probe format is to make the path record insertion process as efficient as pos-

sible so that per-hop measurement with IPMP accurately reflects normal packet

behaviour, is implementable in the forwarding path, and does not introduce a vec-

tor for denial of service. This section discusses how an intermediate node should

process an IPMP echo packet.

There are two fundamentally different ways to receive and process an IPMP

echo packet, as there are two fundamentally different architectures for forwarding

packets. The first is store-and-forward, where a packet is received in its entirety

before the forwarding decision is made. The packet undergoes any updates before

being forwarded. The second is the faster notion of bit-stream forwarding, where the

packet is buffered only long enough for the forwarding decision to be made. Any

packet updates subsequent to the routing decision must be applied to the packet

in-line. The path record decision processes for both store-and-forward and bit-

stream processing are presented in the next two subsections. The most significant

architectural difference is in determining if a path record should be inserted.

4.4.6.1 Store-and-Forward Decision Process

The decision process to insert a path record when the packet is stored and then

forwarded is shown in figure 4.10. In this diagram, the packet is laid-out right-to-

74

40 36 32 28 24 20 16 12 8 4 0

V
H

L
T

O
S

L
ength

O
ffset

C
hecksum

Source IP A
ddress

D
estination IP A

ddress

IdentProto
T

T
L

IPv4 HeaderEcho Header
#0

V
er.

Id. N
o.

Seq. N
o.

is
IPMP

Yesis
frag

No

44n−4n

C
hecksum

#N

Yes

Trailer
Echo

Pointer
Path R

ecord

T
ype

R
es.

Proto

Flags

Faux
Src Port

Faux

Path Record Path Record

check
TTLYes Yes

D
st Port

Faux

is
Echo

Yes Yes is
onefit

can
fit

can

T
T

L

Figure 4.10: The decision process taken to insert an IPMP path record when the
packet is stored and then forwarded

left, as if the packet was moving across the page left to right. Each decision is shown

under the packet; each small square represents a register used to temporarily hold

information used in making the decision. The IPv4 header, the IPMP echo header,

and the first path record are shown in the first 44 bytes; this is followed by the N th

path record, located somewhere between the echo header and echo trailer; the echo

trailer is shown in the last 4 bytes of the packet.

First, the node determines if the packet is an IPMP packet by checking the IP

protocol field. If it is an IPMP packet, then the node ensures that a complete IPMP

packet is available by ensuring the More Fragments (MF) flag is not set, and the

offset field is zero. If the IPMP packet is complete, then the node then calculates

the length of the IP header in bytes, so that it can determine where the IPMP header

begins; this step is not shown in figure 4.10. The node then loads the IP header’s

length field and ensures the packet is large enough to contain a complete IPMP echo

header and trailer. These first steps may be done in parallel in a digital design.

75

Next, the node determines if the IPMP packet is an echo probe. It does this by

first checking the version field, ensuring that the value of the version field is one.

Then, it checks the IPMP type field to see if the ‘E’ bit is set; if set, it signals that the

packet is an echo probe. Then, the node loads the path record pointer field, located

in the echo trailer, to determine where the next path record should be inserted. These

three steps may also be done in parallel in a digital design.

Finally, the node determines if it should insert a path record by loading the TTL

field corresponding to the path record – which was pre-initialised by the source host

and pointed to by the path record pointer – in order to determine if it should insert

a path record. If the pre-initialised TTL field is greater than or equal to the TTL in

the IP header after it has been decremented, then the node determines that it should

insert a path record. Then, the node does a sanity check to ensure that there is

enough space left in the packet to insert the path record. These two steps may be

done in parallel in a digital design.

4.4.6.2 Bit-stream Decision Process

The decision process to insert a path record when the packet is presented as a bit-

stream is shown in figure 4.11. First, the node keeps a record of the length field

in the IP header. When the IP flags and offset fields arrive, the node ensures that a

complete IPMP packet is available by ensuring the MF flag is not set, and the offset

field is zero. When the IP TTL field arrives, it keeps a record of it for use in forming

a path record at a later time, if required. The node then checks the IP protocol field

to see if the packet is an IPMP packet. If it is IPMP, then the node waits for the first

byte of the IPMP header to arrive.

When the IPMP version field arrives, the node checks that the version is one, to

ensure that it can understand the format of the rest of the probe. If it is, it then checks

the IPMP type field to ensure that the packet is an echo probe. If it is an echo probe,

the node then begins to search the incoming bit-stream for an appropriate place to

insert a path record. It does this by checking the pre-initialised path record space,

beginning at the first byte after the echo header. The node may choose to insert a

path record in the first pre-initialised path record space it finds with the ‘S’ bit not

76

44 40 36 32 28 24 20 16 12 8 4 0

T
O

S
L

ength

O
ffset

C
hecksum

Source IP A
ddress

D
estination IP A

ddress

Ident

T
T

L

IPv4 HeaderEcho Header
#0

V
er.

Id. N
o.

Seq. N
o.

n−4n

C
hecksum

Path Record
#N

Path RecordTrailer
Echo

D
st Port

Src Port

Proto
Faux

R
es.

T
ype

Faux
Faux

Pointer
Path R

ecord

No
IPMP

is is
frag

Yescan
fit

is
one

Yes Yesis
Echocheck

TTLis
set

No Yescan
fit

Flags

Proto

V
H

L

T
T

L

Figure 4.11: The decision process taken to insert an IPMP path record when the
packet is presented as a bit-stream

set, so long as the pre-initialised TTL field for that path record is greater than or

equal to the IP-TTL stored earlier.

4.4.6.3 Inserting a Path Record

Figure 4.12 shows the high-level process of inserting a path record and then incre-

mentally updating the IPMP checksum. If the node implements IPMP flow coun-

ters, then it looks up the flow counter record to include in the path record which

matches the particular source and destination IP addresses and the IPMP ID. The

path record generator takes four items as input. They are: a timestamp, an IP ad-

dress, the IP TTL of the packet after it has been decremented, and a flow counter.

The path record generator uses this input to form the path record, and then inserts it

into the echo packet. As output, it produces a sum of the 16 bit words which make

up the path record, which is then passed to the checksum update process.

77

Src Port

32 28 24 20 16 12 8 4 0

V
H

L
T

O
S

L
ength

O
ffset

C
hecksum

Source IP A
ddress

D
estination IP A

ddress

IdentProto
T

T
L

IPv4 HeaderEcho Header

V
er.

Id. N
o.

Seq. N
o.

Flow
 T

able

n−4n

C
hecksum

Trailer
#N

Update
Checksum sum of

16 bit words

IP12

Echo
Path Record

T
T

L

#0
Path Record

364044

FlowC

Path Record
Generator

Time

T
ype

R
es.

Faux
Proto

Pointer

Flags

Path R
ecord

Faux
Faux

D
st Port

Figure 4.12: The packet update process when inserting an IPMP path record

The checksum update process takes four inputs; the original IPMP checksum,

the sum of 16 bit words from the path record, the TTL field from the pre-initialised

path record, and the constant of 12 which corresponds to the adjustment of the path

record pointer field when an IPv4 path record is inserted. As output, it produces a

replacement checksum value for the IPMP echo trailer.

Figure 4.12 does not show the update applied to the IPMP path record pointer

field. The value in this field is incremented by 12, which corresponds to the size of

an IPv4 path record.

4.4.7 Echo Processing at a Destination

Figure 4.13 shows the processing of an IPMP echo probe at a destination host. This

diagram does not include the decision process that determines the node has received

a packet addressed to it, as this is the same for all protocol types and is done before

a particular protocol handler is invoked. First, the node determines if the packet is

an IPMP echo probe by checking the IP protocol field, as well as the IPMP version

78

Ports

44 40 36 32 28 24 20 16 12 8 4 0

V
H

L
T

O
S

L
ength

O
ffset

C
hecksum

Source IP A
ddress

D
estination IP A

ddress

IdentProto
T

T
L

IPv4 Header
#0

V
er.

Id. N
o.

Seq. N
o.

T
ype

Faux Src Port
Faux D

st Port

R
es.

Faux
Proto

Echo Header

Flags

Path Record
#N

Path Record

n−4n

C
hecksum

Trailer

Pointer
Path R

ecord

Echo

Update

0x01

Checksum
is

IPMP
Yesis

frag
Yes Yes

Swap
AddressesReq. Bit

Unset

Nois
Echo

is
Req.

Swap

Figure 4.13: Creating an IPMP echo reply packet from an echo request

and type fields. Then, the node checks the IPMP type field to see if the request bit

is set; if the request bit is not set, then the packet is placed in a socket queue for

processing by a user-space application.

If the request bit is set, the node swaps the IP addresses in the IP header, swaps

the the IPMP faux port fields, unsets the request bit in the IPMP type field, adjusts

the IPMP checksum, and then sends the IPMP packet back to the source. The node

does not reset the TTL field in the IP header. Instead, it decrements it by one.

The IPMP echo checksum update is simple, as swapping the locations of 16 bit

quantities does not change the sum of the 16 bit words, and the adjustment made

to the IPMP type field is constant. The checksum update consists of adding 0x01

to the checksum field, to correct for clearing the request bit. After determining that

the packet is an echo request, all of these operations may be done in parallel in a

digital design.

Figure 4.13 does not show the target inserting a path record, although it may

79

do so if the echo probe permits. This process is the same as that described in sec-

tion 4.4.3.

4.5 The Information Protocol

The IPMP information protocol is the part of IPMP designed to query an IPMP-

capable node for information useful to measurement. As with the IPMP echo pro-

tocol, the information protocol is a simple request/response exchange. However,

the information protocol is not used to measure packet dynamics. Instead, it is used

to obtain information that is useful to measurement. This information includes the

properties of each clock used to generate timestamps as part of a path record, which

IP addresses belong to the same router, and other information that the system’s ad-

ministrator believes is useful for measurement.

In order to measure absolute one-way delay, timestamps from different clocks

must be calibrated. Similarly, in order to measure variation in packet delay be-

tween two points, clock drift and adjustments must be accounted for. The IPMP

echo protocol does not define the resolution, the frequency, or the epoch of a path

record timestamp. The information protocol provides this information by returning

an information response which includes a series of real-time reference points. A

real-time reference point consists of a local clock timestamp, a real-time timestamp

which matches this local clock timestamp, and a limit of the maximum error of

the real-time timestamp. A source host can then convert a timestamp reported in a

path record to real time by using linear interpolation between two adjacent real-time

reference points.

4.5.1 Information Packet Design

The format of an IPMP information request packet is shown in figure 4.14. An

information request packet consists of a simple header which identifies the IPMP

packet as being an information request, and an optional body which includes spe-

cific reported times of interest, should the sender be concerned with determining

clock properties for a specific time period. As with the echo protocol, the identi-

80

Version

(optional) Reported Times of Interest

Information
Request
HeaderIdentifier

Checksum

Sequence Number

Type

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1
3

Figure 4.14: Format of an IPMP information request packet

3

Reply
Header

Information
Checksum

Sequence Number

Performance Data Pointer

IPMP Processing Overhead

(optional) Real−Time Reference Points

(optional) Performance Data

Type

Identifier

AccuracyReserved

Version

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1

Figure 4.15: Format of an IPMP information reply packet

fier and sequence number fields in an information request packet are used by an

application to determine which information replies are of interest.

The format of an IPMP information reply packet is shown in figure 4.15. An

information reply packet contains three extra compulsory fields in addition to those

found in an information request. They are the accuracy field, the performance data

pointer field, and the IPMP processing overhead field. The accuracy field speci-

fies the number of valid bits in the real-time timestamp of each real-time reference

point; this is discussed further in section 4.5.2, but for now it is sufficient to note

that the field is used to determine the accuracy of the node’s real-time clock. The

performance data pointer field specifies the offset of the performance data from the

first byte of the IPMP header. It also implicitly specifies the length of the real-time

reference points embedded in the packet. Finally, the IPMP processing overhead

field specifies the extra delay, if any, of forwarding an IPMP echo packet over any

other packet. If the overhead is not known, then all bits in the field are set to one.

81

3

Reserved

Local Clock Time

Real Time

Estimated Error

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0 1

Figure 4.16: Format of an IPMP real-time reference point

4.5.2 Real-Time Reference Point Design

After the information reply header is space for real-time reference points and perfor-

mance data. The format of an IPMP Real-Time Reference Point (RTRP) is shown in

figure 4.16. Each RTRP contains a 48-bit timestamp generated by the local clock, a

64-bit real-time timestamp, and a 64-bit estimate of any error component. A RTRP

associates a locally-generated timestamp – such as that used in a path record – with

a real-time timestamp, with the error bounds of the real-time timestamp. The real-

time timestamp and error bounds are NTP [31] formatted timestamps. The first 32

bits count the number of seconds since midnight January 1st 1900 Universal Time

Coordinated (UTC). The second 32 bits are a fractional timestamp, which allows

for a maximum resolution of 200 picoseconds. The left-most bit is the most sig-

nificant bit; any unused bits are not set. A source host determines the number of

significant bits in the fractional portion of the timestamp by examining the accuracy

field in the information reply.

4.5.3 Resolving Router Aliases

When an IPMP-capable node replies to an information request, it must do so using

a common source IP address. The purpose of this is to allow router aliases to be

resolved. Therefore, a router should select a single globally-routable address, where

possible, and use that address to reply to all information requests.

82

VarBindList

H
dr Name Value H
dr Name Value H
dr Name ValueH
dr

IPMPVarBind IPMPVarBind IPMPVarBind

Figure 4.17: Format of an IPMP VarBindList

4.5.4 Performance Data

The performance data field is an optional part of the IPMP information protocol

that an operator can use to return information which may be of interest to the

source. For example, an operator may wish to report information about the in-

terface that was queried, or report information about the system, or report other

information useful for identifying who is responsible for the system. The perfor-

mance data field contains data formatted as Abstract Syntax Notation One (ASN.1),

and encoded with Basic Encoding Rules (BER) which Simple Network Manage-

ment Protocol (SNMP) uses. The rest of this section gives a general overview of

how some example data is formatted in the performance data field.

Performance data is formatted as a VarBindList from the SNMPv2 Protocol

Data Unit (PDU) defined in RFC 3416 - Version 2 of the Protocol Operations for

the Simple Network Management Protocol (SNMPv2) [69]. A VarBindList is a

simple arrangement of variable names and their values, as shown in figure 4.17.

The variable names and the range of types and values which are valid are defined in

various SNMP Management Information Base (MIB) documents. For example, the

MIB that defines variable names for network interfaces (IF-MIB) is found in RFC

2863 – The Interfaces Group MIB [70], and the MIB that defines variable names for

BGP (BGP4-MIB) is found in RFC 1657 [71]. The variable name is declared as an

object identifier, which is a hierarchical arrangement of integers that are assigned

by an authority such as IANA. The headers are simple fields that specify the size,

in bytes, of the variable and its value; the first header specifies the size of the entire

VarBindList.

Table 4.2 shows sample MIB entries from the BGP4-MIB and IF-MIB. These

sample MIB entries are selected as they are items of information that are useful

for Internet measurement. The data type column specifies the type of the variable;

83

MIB Variable Object identifier Data type Example value
BGP4 bgpLocalAs 1.3.6.1.2.1.15.2. Integer32 (2) 64512
IF ifType 1.3.6.1.2.1.2.2.1.3. Integer32 (2) Ethernet (6)
IF ifMtu 1.3.6.1.2.1.2.2.1.4. Integer32 (2) 1500
IF ifSpeed 1.3.6.1.2.1.2.2.1.5. Gauge32 (42) 100,000,000

Table 4.2: Sample MIB entries

the number in parentheses corresponds to the identifier used to denote the data type

when encoded in ASN.1. A Gauge32 type is an integer that records the maximum

value which the variable has held since it was reset. The bgpLocalAs variable al-

lows a router to report the AS to which it belongs; this is a much simpler method

of determining who is responsible for operating the system, and potentially more

accurate than using a routing table view. The ifType, ifMtu, and ifSpeed variables

allow a system to report the type, MTU, and the speed of an interface in bits per

second. As a router has multiple interfaces, the details of the interface returned are

for the interface which was queried with the information request. As an IP hop may

have an intermediate layer 2 device which has a lower serialisation rate or lower

MTU than the interface whose details are reported in an information response, the

values reported should be considered the upper limit of each particular value that

the hop can process.

Figure 4.18 provides an example byte encoding of the variables in table 4.2. For

illustrative purposes, the encoding of the VarBindList header and the bgpLocalAs

variable is now described; an exhaustive review of BER encoding and ASN.1 rep-

resentation is outside the scope of this chapter. The first two bytes correspond to

the VarBindList header and signify that a sequence of variables follows; the first

byte (0x30) signifies that a sequence follows; the next byte (0x3F) specifies that 71

bytes of data follows. The next 16 bytes encode the bgpLocalAs variable, and its

value of 64512. The first two bytes specify that a sequence follows, of 14 bytes.

The type of the variable is declared as an ObjectID (0x06), whose length is 8 bytes.

The encoding of the ObjectID in this PDU is 2B.06.01.02.01.0F.02.00; this corre-

sponds to the object identifier of 1.3.6.1.2.1.15.2. in table 4.2, except that the first

two integers are combined to save space, by multiplying the first integer by 40 and

adding the second integer to the result; (40 ∗ 1) + 3 = 43 = 0x2B. The last byte

84

Name: ifType, ifIndex: 1

30 3F

2B 06 01 02 01 0F 02 00

02 02

06 08

30 0E

FC 00

30 0F

06 0A

2B 06 01 02 01 02 02 01 03 01

0102

06

1030

06 0A

2B 06 01 02 01 02 02 01 04 01

02

05 DC

02

30 12

06 0A

2B 06 01 02 01 02 02 01 05 01

42 04

05 F5 E1 00

if
T

yp
e

if
M

tu
if

Sp
ee

d

Universal Seq., Len. 71

Universal Seq., Len. 14

Universal Seq., Len. 15

Universal Seq., Len. 16

Universal Seq., Len. 18

Type: Object ID; Len. 8

Type: Object ID; Len. 10

Name: bgpLocalAs

Type: Integer32; Len. 2

Value: 64512

Name: ifMtu, ifIndex: 1

Name: ifSpeed, ifIndex: 1

bg
pL

oc
al

A
s

Type: Integer32; Len. 1

Value: Ethernet (6)

Value: 1500

Type: Integer32; Len. 2

Type: Gauge32; Len. 4

Type: Object ID; Len. 10

Type: Object ID; Len. 10

Value: 100,000,000

Figure 4.18: Example IPMP performance data

85

of the ObjectID signifies an index in the case where there are multiple instances

of the particular object; because there is only one AS value for a particular router,

the index in this case is 0x00. The next two bytes specify the type of the variable,

and the number of bytes used in encoding the variable; in this case, the type of the

value is an Integer32, and two bytes are used to encode it. Those two bytes follow;

0xFC00 corresponds to the Autonomous System Number (ASN) 64512.

4.6 Relationship to Desirable Features

Chapter 3 looked at overcoming a series of common limitations which arise mainly

through the absence of explicit protocol support for per-hop measurement of Inter-

net packet dynamics. A series of desirable features for a measurement protocol for

this task were identified. This section examines how the design of IPMP allows for

the desirable features to be met.

4.6.1 Integrated Path and Packet Dynamics Measurement

Section 3.3.1 argued that integrated path and packet dynamics measurement is desir-

able, because the TTL method of progressively probing a path has many limitations.

IPMP addresses these limitations by allowing intermediate routers to insert a path

record which provides a record of when the router received the packet. With ex-

plicit cooperation, integrated path and packet dynamics measurement is possible, as

an echo packet is otherwise routed normally to the destination.

4.6.2 Able to Measure the Reverse Path

Section 3.3.2 argued that a measurement protocol for per-hop measurement of In-

ternet packet dynamics should be able to measure the reverse path. It is simple to

measure the reverse path with IPMP, as the echo protocol is a request/response-

based protocol, and routers on the reverse path are able to insert path records as

routers on the forward path do.

86

4.6.3 Minimal Overhead in Routers

Section 3.3.3 argued that such a protocol should introduce minimal overhead in

routers, because these systems are optimised to forward packets as quickly and

efficiently as possible. Section 4.4.6 shows that it is possible to process an echo

packet as a bit-stream. If an implementation processes an IPMP packet serially

amongst other packet operations, then IPMP is tightly constrained and designed

to be processed efficiently so that an echo packet will incur negligible additional

delay compared to any other IP packet. The performance of software and hardware

implementations are measured in the next chapter.

4.6.4 Precise Timekeeping

Section 3.3.4 argued that such a protocol should allow for adequately precise time-

keeping suitable for measuring the particular link, and Section 3.3.5 argued that

such a protocol should allow a measurement system to determine the clock state of

any system which reports a timestamp. IPMP allows the resolution and precision

of the clock used to measure packet dynamics to be decided by each system. Con-

version of a timestamp to real-time is accomplished in a separate packet exchange,

using the information protocol. This packet exchange, described in section 4.5, also

allows a source host to determine what the node believes the clock’s accuracy is and

its offset from real time.

4.6.5 Denial of Service Resistant

Section 3.3.6 argued that such a protocol should be DoS resistant. IPMP is designed

with processing efficiency as a primary design criterion. A flood of IPMP echo

request packets does not provide any additional vector for overwhelming the CPU

of the destination host or intermediate systems compared with processing any other

IP packet, if well implemented. In addition, IPMP does not provide any additional

vector for amplifying a denial of service attack, because an echo packet does not

result in any additional traffic being created.

87

4.6.6 Measure Different Traffic Types

Section 3.3.7 argued that such a protocol should be able to measure different traffic

types, because some systems in a path may prioritise the forwarding of some packets

over others. IPMP allows intermediate systems that queue and process packets

based on their traffic type to be measured by using the faux IP protocol, faux source

port, and faux destination port fields to determine the underlying traffic type, in

addition to the fields in the IP header that might also be used.

4.6.7 Partial Deployment Utility

Section 3.3.9 argued that such a protocol should not require full deployment in order

to be useful. The minimum support required in order for IPMP to work is protocol

support at the source and destination hosts. Even in this circumstance, IPMP is

useful, because it allows for simple one-way measurements of delay, jitter, loss,

and reordering to take place. As described in section 4.2, the IPMP architecture

works well if each AS deploys IPMP at the borders of its network, because it allows

a source to determine which network is responsible for adding significant delay,

jitter, loss, or reordering to overall packet dynamics.

4.6.8 Resolve Router Aliases

Section 3.3.8 argued that a protocol for per-hop measurement of Internet packet

dynamics should be able to resolve router aliases. The IPMP information protocol

specifies that all information replies generated by a router should be sent with a

single globally routable address where possible. This allows router aliases to be

resolved.

4.7 Summary

This chapter presented IPMP, a protocol designed explicitly for per-hop measure-

ment of Internet packet dynamics. IPMP differs from existing measurement pro-

tocols by seeking explicit cooperation from intermediate routers. It does so by in-

88

troducing the concept of a path record. Path records are embedded by intermediate

systems into the body of the echo packet as it is forwarded.

In the next chapter, implementation experience with IPMP is presented. Look-

ing further ahead, chapter 6 presents techniques using IPMP for measuring topol-

ogy, delay, jitter, loss, reordering, and capacity, and chapter 7 discusses application

experience in using IPMP in a rural wireless network where it is deployed on all

routers.

89

Chapter 5

Implementation

5.1 Introduction

In the previous chapter, an Internet protocol designed for per-hop measurement of

Internet packet dynamics was presented. The protocol, IPMP, seeks the cooperation

of intermediate routers. Intermediate routers insert raw data useful for measurement

in the form of a path record into an IPMP echo packet as it is forwarded.

This chapter demonstrates that it is feasible to implement IPMP in the forward-

ing path of a router by presenting and characterising three implementations. Two

of the implementations modify the source code of the kernel for two different oper-

ating system families. The third modifies the forwarding path of a layer 2 Ethernet

switch built for research purposes. Section 5.2 discusses the software implementa-

tion of IPMP, first by looking at a high-level model of how IPMP fits into the IP

stack in an operating system, and then by discussing the experience of implementing

IPMP in 4.4BSD-derived and Linux kernels. Section 5.3 discusses measurements

of the forwarding performance of the FreeBSD implementation, and examines the

additional processing required to implement optional portions of IPMP, such as

flow-counters. Section 5.4 presents the details of a hardware implementation of the

IPMP path record insertion process in the forwarding path, and section 5.5 discusses

measurements of the forwarding performance of this implementation. Section 5.6

summarises this chapter.

90

Forwarding

IPMP TCP

Socket
API

User
Space

Decision
Routing

IP
Output

TTL Check,
TTL Decrement

Path
Forwarding

IPMP

IP
Input

Protocol

Network
Interface

ForwardingOutput Input

Switch Table

Figure 5.1: A model of interactions between IPMP and a kernel

5.2 Software Implementation

This section discusses the software implementation of IPMP in the kernel of two dif-

ferent operating system families. The first family is the BSD family, which consists

of a number of operating systems derived from 4.4BSD, such as FreeBSD, NetBSD,

and OpenBSD. The second family is the Linux family. The network stacks of these

operating system families are substantially different in their design and implemen-

tation, and so the interactions that IPMP has with these systems are quite different

at the source-code level.

5.2.1 Model

While most of IPMP could feasibly be implemented entirely in user-space or en-

tirely in kernel-space, some of the protocol is most suited towards a kernel-space

implementation. For example, time critical operations such as modifying an echo

packet in the forwarding path or replying to an echo request are suited to a kernel-

space implementation, while processing an information request may be done at low-

priority in user-space. This section focuses on the kernel-space implementation of

91

the echo protocol because the performance and efficiency of IPMP is critically im-

portant in the context of a kernel.

Figure 5.1 presents a model of how a software implementation of IPMP might

interact with a kernel. The figure is divided into three sections, each separated by

dotted lines. These sections are the output path, the forwarding path, and the input

path. The output path is conceptually simple. The output path takes a packet to be

sent, determines the route to the destination, and passes the packet to the appropriate

network interface for transmission. The implementations of IPMP discussed in this

section do not modify the output path.

When an IP packet arrives in the IP input module from a network interface, the

host has to determine if the packet is addressed to it, or if it should forward the

packet on. If the packet is for the forwarding path, the IP TTL will be checked,

and if greater than one, it will be decremented. If the packet is an IPMP packet, the

packet is passed to the IPMP forwarding routine for further processing. After any

IPMP-specific processing has taken place, the packet is then passed to the IP output

path for transmission. This process was discussed in detail in section 4.4.6.

If the packet is addressed to this host, the packet is passed to the input path for

further processing. Software-based IP stacks maintain a table of IP protocol mod-

ules to further process IP packets of a particular type; in this case, IPMP is simply

another protocol module in this table. The IPMP protocol module is responsible

for determining if the IPMP packet is an information or echo probe. Information re-

quests, information replies, and echo replies are passed to the socket queue for read-

ing and further processing by user-space applications. Echo requests are modified

and then passed to the IP output path for transmission. The process of modifying

an echo request was discussed in detail in section 4.4.7.

The rest of this section details the kernel implementations for the BSD and

Linux kernels, and how they relate to the model shown in figure 5.1. For each

implementation, the effect of the system’s packet storage facilities, timestamp facil-

ities, and kernel facilities for sending an echo request are examined, because these

have the most impact on the design of an implementation.

92

IL
P3

2:
 2

08
 /

L
P6

4:
 1

76

m
_h

dr
m

_p
kt

hd
r

mh_nextpkt
mh_data
mh_len

mh_type
mh_flags

mh_next

rcvif
len
header
csum_flags
csum_data
tags

m
_e

xt

ext_buf
ext_free
ext_args
ext_size
ref_cnt
ext_type ILP32:

LP64:
24
48

ILP32:
LP64:

24
40

ILP32:
LP64:

24
40

25
6

by
te

s

data

Figure 5.2: The BSD mbuf structure

5.2.2 BSD Implementation

The BSD implementation of IPMP works on FreeBSD versions 3.0 through to 6.0,

and NetBSD 1.6. This section discusses how the design of the BSD kernel affects

the implementation of IPMP.

5.2.2.1 Packet Storage

Internally, BSD kernels store packets in mbuf structures. An mbuf is a small buffer

of fixed size designed to allow packet headers and trailers to be efficiently added

to and removed from the packet without creating a copy of the packet. Figure 5.2

shows the layout of the mbuf structure found in FreeBSD 6.0. All mbuf structures

begin with a header, m hdr which is used by the kernel to manage mbuf structures,

and to link to any other mbuf structures that combine to form the packet. The first

mbuf of each packet also has a second header, m pkthdr, which records the length

of the packet and the interface the packet was received on where applicable, among

other items. The interface field is used by the BSD implementation to determine an

appropriate IP address for an IPMP path record.

Most BSD kernels use 256-byte mbuf structures. On systems with 32-bit inte-

93

gers, longs, and pointers (ILP32) the first mbuf has 208 bytes for the actual packet,

and on systems with 64-bit longs and pointers (LP64) the first mbuf has 176 bytes

for packet data. Packets that require more storage than provided in the first mbuf

link extra storage to the mbuf, either by linking additional mbuf structures to the first

mbuf, or by attaching external buffer space to the mbuf with an m ext structure.

While most network drivers will ensure that a received packet is available in a

single buffer, this is not guaranteed. Therefore, the BSD implementation of IPMP

is required to be careful when accessing or modifying the echo trailer or a path

record, because these structures could be split across two mbuf structures. The

BSD implementation makes working copies of the echo trailer and any relevant

path record using m copydata, and then copies these structures back into the packet

with m copyback when finished. These necessary copy operations reduce the ability

to efficiently process an IPMP packet in the forwarding path.

IPMP is designed to allow an echo request packet to be efficiently transformed

into an echo reply and returned. When replying to an echo request packet, the

system is not required to allocate a new mbuf structure and then copy the IPMP

packet in, because the input routine has complete control over the mbuf. This is

desirable from an implementation perspective.

5.2.2.2 Timestamps

As described in section 4.3, the precise format of the timestamp field in the IPMP

path record is not defined. The BSD implementation of IPMP provides the ability

for the system administrator to choose between a real-time timestamp and a time-

stamp based on the system’s CPU cycle counter where available.

FreeBSD and NetBSD provide similar real-time timestamp facilities in the ker-

nel. Both systems have a microtime function that provides a timestamp with mi-

crosecond precision representing real-time as accurately as the system can with

the hardware available. FreeBSD provides a number of additional time routines,

including the nanotime function, found in FreeBSD releases from 3.0 onwards.

The FreeBSD implementation of IPMP uses nanotime where available, because

this function provides a higher-resolution timestamp than the microtime function.

94

Modern CPUs include a CPU cycle counter that can be useful for timing pur-

poses, as described by Pásztor and Veitch [64]. On Pentium-class CPUs, this regis-

ter is known as the TSC register. Modern Pentium CPUs operate at speeds in excess

of 1Ghz; therefore, the TSC register provides the necessary primitives for a clock

capable of measuring time differences with at least a nanosecond precision [64].

However, using the TSC to measure time intervals presents two significant chal-

lenges. First, if the rate of the CPU changes in order to save power, then so does the

rate of the clock. Second, the TSC values from two different CPUs in an Symmetric

MultiProcessor (SMP) system cannot be directly compared without some effort to

first calibrate the TSC registers from the various CPUs, because the TSC is local to

the CPU it is read from. As calibrating TSC registers across CPUs is outside the

scope of this protocol, the real-time clock is used by default. However, a system can

be configured to use the TSC if the system is a single CPU machine whose clock

rate does not abruptly change.

5.2.2.3 Sending an Echo Request

The BSD implementation also has a loadable kernel module that may be used by

user-space applications to create and send an IPMP echo request packet in kernel-

space. Sending an echo request in kernel-space has a number of advantages over

sending an echo request in user-space if the source host inserts a path record, be-

cause it is possible to generate the path record’s timestamp closer to when the packet

is transmitted; that is, after the packet has been assembled in kernel-space and the

appropriate route has been determined. A user-space application passes a struc-

ture to an IPMP system call that contains parameters used to form an echo request

packet, such as the destination address and the size of the packet to send.

The kernel module is accessed by using a system call number which is dynam-

ically assigned by the kernel when the kernel module is loaded. The ability to

dynamically load a system call is convenient compared to compiling a kernel with

the functionality built in, because that would require a system call number to be

permanently assigned for this purpose.

95

5.2.3 Linux Implementation

The Linux implementation of IPMP runs on various releases from the 2.4 branch

of the Linux kernel. The implementation of IPMP on Linux is logically similar

to the implementation of IPMP for the BSD kernel. The main differences are in

manipulating a packet in the packet buffer, recording a timestamp in a path record,

and sending an echo request probe from kernel-space.

5.2.3.1 Packet Storage

The Linux kernel stores packets in skbuff structures, which are designed to hold

an entire packet in a single buffer complete with any appropriate layer 2 headers.

In order to allocate an appropriately sized skbuff, the system has to determine the

outgoing route in order to determine the size of any layer 2 headers to reserve space

for. This differs from the logical approach in figure 5.1, where the routing decision

is made after the IP packet has been constructed.

The skbuff structure is designed to be shared throughout the network stack to

reduce unnecessary copying of the contents of the packet. Care must be taken to

avoid creating a race condition with other consumers of the packet when modifying

an echo packet. One example of such a race condition is in modifying a packet in

the receive path in parallel to a user-space application using a packet filter to capture

incoming packets. If a packet is modified before the packet filter has captured the

packet, then the packet filter will not have an accurate record of the contents of

the packet when it was received. Consequently, when replying to an echo request

modifications must be made to a copy of the original packet.

5.2.3.2 Timestamps

As with the BSD implementation, the Linux implementation of IPMP is able to ei-

ther use a real-time clock or a CPU cycle counter for timestamp purposes. The

Linux 2.4 kernel provides a real-time clock with a microsecond resolution, via

do gettimeofday. In order to obtain a real-time clock with higher resolution, the

Pulse Per Second Kit (PPSKit) patch [72] to the Linux kernel has to be used. The

96

Expire Queue

0

N

1

H
ash T

able

7 6 5

48

3 2 1

LMRU LRU

(a) Data structure

ifIndex
Expire Time

Src + Dst
IPMP ID
FlowC

(b) Node structure

Figure 5.3: The structure of the IPMP flow counter implementation

PPSKit patch provides a clock with nanosecond resolution using the do clock get-

time function. The PPSKit is a patch maintained externally to the Linux kernel.

Therefore, the Linux implementation of IPMP uses do clock gettime on sys-

tems where the PPSKit patch is used, and do gettimeofday on systems where it is

not. The Linux implementation also has the ability to use the TSC register as a

clock source, though it is susceptible to the same SMP and clock-rate limitations

that the BSD implementation is.

5.2.3.3 Sending an Echo Request

The Linux implementation also contains code to construct and send IPMP echo re-

quest packets in kernel-space. The implementation, however, is compiled into the

kernel and accessed by using an Input/Output (I/O) control function (ioctl) on an

IPMP socket. This is because Linux does not provide the ability to dynamically

load system call modules into the kernel. This is less convenient than using a load-

able system call as the BSD implementation does, because it requires a pre-defined

magic value to be assigned, and modification of the Linux socket code so that the

IPMP-specific ioctl is then handled by the IPMP code.

97

5.2.4 Flow Counters

The structure of the IPMP flow counter implementation for both BSD and Linux

is shown in figure 5.3. The flow counter implementation in this work is based on

the implementation of syncache in the FreeBSD operating system [73], which uses

a similar technique to maintain temporary records of incoming TCP SYN packets.

The structure consists of a hash table, a queue of flow counters ordered by expiry

time, and the flow entries themselves. In figure 5.3(a), each square box represents

a flow entry, the dashed lines represent links for joining flow entries with the same

hash index, the solid lines represent links for maintaining the expire queue, and the

number in each flow entry represents the next flow entry to expire. In figure 5.3(a),

the next entry to expire is the entry marked 1.

The flow counter implementation shown in figure 5.3(a) consists of a hash table

of N entries; each entry in the table is a queue of IPMP flow records of maximum

length L, ordered from Most Recently Used (MRU) to Least Recently Used (LRU).

The implementation described allows for O(1) insertion, modification, and deletion

of entries in the flow table. The search operation is O(L) worst-case, although this

is mitigated by restricting the length of each queue, by choosing a hash table with

more entries to reduce index collisions, and by ordering the flow counters based on

their last use. This implementation strategy was chosen because balanced tree data

structures are not as widely available among the various BSD kernels as queues are,

and the syncache provided a suitable model for implementing the flow counter data

structures.

The structure of the IPMP flow record structure is shown in figure 5.3(b). Each

flow record structure contains the source and destination IP addresses and the IPMP

ID field which identify the echo flow, as well as a flow counter that records the num-

ber of packets seen for the particular flow. As the hash table is held centrally while

flow records are scoped to an interface, a flow record also includes the interface

index that the flow is scoped to. An interface index value uniquely identifies each

network interface in the system.

A flow record also contains the time that it is due to expire, which is a fixed

amount of time after the interface last received a packet which belonged to the flow.

98

In addition to this data, a flow record also contains four fields for managing the flow

counter hash table. Two of these fields link the flow record to other flow records

that share the same hash key value, while the other two fields link to the records that

will expire before and after the flow record.

All flow records are allocated out of the same zone, which allows the operating

system to allocate all IPMP flow records out of a small group of memory pages.

Allocating flow records out of a single zone increases the chance that other flow

entries required subsequently will be found in the CPU’s cache. Whenever a new

flow record is created, or a flow counter of an existing record is incremented, the

particular flow record is moved to the front of the list corresponding to the appro-

priate hash index. The list of entries is searched from MRU to LRU so that the most

active flow records are located faster. The flow records are locked with a mutex,

restricting the use of flow counters to one thread of execution at a time, because the

kernel may have multiple threads of execution contending for flow records which

are stored centrally.

5.3 Software Forwarding Performance

This section measures the additional forwarding delay incurred by an IPMP echo

probe where a path record is inserted as the packet is forwarded. In a software

implementation of IPMP, additional processing delay defines additional CPU pro-

cessing load. The software-based system measured is a FreeBSD router. In order

to determine the additional processing delay incurred, the difference in forwarding

time of a FreeBSD router that makes IPMP modifications is measured and compared

to one that does not.

5.3.1 Apparatus

Figure 5.4 illustrates the apparatus of this experiment. The source sends IPMP echo

request packets to a destination machine that is a single hop away. The router is a

FreeBSD 5.3-RELEASE system with a Pentium3 800Mhz CPU and five physical

network interfaces. Four of the interfaces are Intel EtherExpress interfaces on a

99

DstRouter
IPMP

FreeBSD

P3−800
5.3R

Antenna
GPS

Passive TapPassive Tap

Monitor

Src

Figure 5.4: Apparatus of the IPMP forwarding performance experiment

single PCI board, two of which are enabled and used to connect the source and des-

tination hosts, respectively. In this experiment; both interfaces operate at 100baseT

full-duplex. The fifth interface is a 3Com 3c905C-TX, which is used as out-of-band

access to control the configuration of the router.

A fourth machine is used to passively monitor and timestamp each packet it

observes entering and exiting the router on both links. Two Dag 3.5e cards [74]

were used to passively monitor the two links in this machine. The Dag cards were

used in an in-line manner, where a host connects to one port, and the router is

connected to the other port. The clock of each Dag card was synchronised from a

single Trimble Palisade Global Positioning System (GPS) receiver, whose RS422

output was replicated to each card. This synchronisation enables absolute time

differences to be measured between when a packet is seen entering and then exiting

the router. The Dag cards used in this experiment have a specified precision of 60ns,

which is sufficient to measure packet delay on a per-byte basis. The forwarding

delays in both the forward and reverse directions can be measured, as the path in

this experiment is symmetrical.

5.3.2 Methodology

Four experiments were conducted in order to measure the performance of vari-

ous IPMP echo forwarding components. These experiments are summarised in

table 5.1. First, the forwarding delay of the router without IPMP echo forwarding

operations is measured, and is used as the control. Second, the IPMP forwarding

100

Experiment Name IPMP TSC FlowC
1 No-IPMP
2 IPMP #1 × ×
3 IPMP #2 ×
4 IPMP #3 × ×

Table 5.1: Summary of the software forwarding performance experiments

delay when a path record is inserted was measured. In this experiment, the time-

stamp was derived from the least significant 48 bits of the TSC register and flow

counters were disabled. Third, this experiment was repeated, but using nanotime to

derive the path record timestamp. Finally, this experiment was repeated, but with

flow-counters enabled. Each of these experiments should show additional process-

ing delay compared to the previous experiment because each additional forwarding

operation requires additional CPU time.

To measure if IPMP processing delay is affected by the size of an IPMP echo

probe, the source sent 17600 IPMP echo request packets of varying size to the

destination. The packets varied in size between 96 and 1500 IP packet bytes; each

size was a multiple of 4 bytes, and 50 packets of each size were sent in random

order. 96 bytes is the smallest IPMP packet with space for 5 path records, and 1500

bytes is the largest IP packet supported by the network interfaces.

Echo request packets were sent each time an echo reply for a previous request

was received. There was no other traffic on the network, and no IPMP packets were

lost in any of the experiments. Each IPMP echo request belongs to a different IPMP

flow so that the flow counter implementation is required to manage a number of flow

records in order to gain a worst-case understanding of the flow counter overhead.

5.3.3 Results

Figure 5.5 plots the minimum forwarding delay measured against packet size on the

forward path. The minimum delay observed is plotted because that corresponds to

the forwarding time of the packet when the system was otherwise idle and not inter-

rupted by other unrelated system tasks or activity. Figure 5.5 suggests that inserting

a path record adds little additional processing delay, although the processing delay

101

IPMP #3

 50

 100

 150

 200

 0 200 400 600 800 1000 1200 1400

M
in

im
um

 F
or

w
ar

di
ng

 D
el

ay
 (

m
ic

ro
se

co
nd

s)

Packet Size (bytes)

No IPMP
IPMP #1
IPMP #2

 0

Figure 5.5: Forward-path minimum forwarding delay of IPMP packets against
packet size

grows with the additional per-packet processing required for experiments IPMP #2

and IPMP #3.

Table 5.2 shows the minimum, lower quartile, median, and upper quartile values

of processing delay inferred for each of the four experiments. As forwarding delay

grows linearly with packet size, serialisation delay is excluded by computing the

linear least squares fit for each statistic. That is, processing delay is inferred by

using the intercept of the linear least squares fit with the Y-axis.

The first three rows in table 5.2 show the minimum processing delays inferred

for each of the four measurements, the additional processing delay measured com-

pared to no IPMP processing, and that additional delay as a percentage. Without

IPMP processing, the processing delay is 56.4µs. A path record with a timestamp

derived from the value of the TSC register (IPMP #1) requires an additional 1.5µs

processing delay, which corresponds to 2.6% additional processing delay compared

to not doing any IPMP processing. A path record with a timestamp derived from

nanotime (IPMP #2) incurs an additional 1.0µs processing delay, which corresponds

to 4.4% additional processing delay compared to not doing any IPMP processing.

Finally, a path record with a timestamp derived from nanotime and a flow counter

(IPMP #3) requires an additional 1.8µs processing delay, which corresponds to

102

Statistic Processing Delay (µs)
No IPMP IPMP #1 IPMP #2 IPMP #3

Minimum: 56.383 57.845 58.836 60.666
+1.462 +2.453 +4.283
+2.6% +4.4% +7.6%

Lower Quartile: 57.443 58.649 59.723 62.024
+1.206 +2.280 +4.581
+2.1% +4.0% +8.0%

Median: 58.403 59.194 60.262 62.643
+0.791 +1.859 +4.240
+1.4% +3.2% +7.3%

Upper Quartile: 62.912 59.861 60.947 63.454
-3.051 -1.965 +0.542
-4.8% -3.1% +0.9%

Table 5.2: Forward-path IPMP echo processing delay

7.6% additional processing delay. In this case, the minimum additional process-

ing delay corresponds to a hash table index with no other flow records.

The last three groups in table 5.2 show the median processing delay and the

inter-quartile range of the processing delays measured for each experiment. The

third group, corresponding to the median processing delay values of the four ex-

periments, shows that the median additional processing delay is less both as a per-

centage and an absolute value compared to the minimum observed delays. This

indicates that, on average, the additional processing delay will be less than when

a packet is processed with the minimum forwarding time, because the minimum

forwarding case is not the usual case even on a machine that is otherwise idle.

The first column in table 5.2, corresponding to the forwarding delays measured

where no IPMP forwarding operations took place, shows a greater interquartile

range than the experiments where IPMP forwarding operations took place. In addi-

tion, the upper quartile values are less for the experiments where IPMP was enabled

than where it was not. One possible reason for this result is by requiring addi-

tional IPMP processing in cases where the system is otherwise unable to forward

the packet, the system will be ready to forward the packet when IPMP processing

finishes.

Figure 5.6 shows the minimum forwarding delay measured for each packet size

in the reverse direction, and table 5.3 shows the processing delay inferred for the

103

IPMP #3

 50

 100

 150

 200

 0 200 400 600 800 1000 1200 1400

M
in

im
um

 F
or

w
ar

di
ng

 D
el

ay
 (

m
ic

ro
se

co
nd

s)

Packet Size (bytes)

No IPMP
IPMP #1
IPMP #2

 0

Figure 5.6: Reverse-path minimum forwarding delay of IPMP packets against
packet size

Statistic Processing Delay (µs)
No IPMP IPMP #1 IPMP #2 IPMP #3

Minimum: 47.039 48.405 49.430 50.475
+1.366 +2.391 +3.436
+2.9% +5.1% +7.3%

Lower Quartile: 47.956 49.219 50.277 51.308
+1.263 +2.321 +3.352
+2.6% +4.8% +7.0%

Median: 48.854 49.726 50.783 51.821
+0.872 +1.929 +2.967
+1.8% +3.9% +6.1%

Upper Quartile: 52.745 50.234 51.419 52.391
-2.511 -1.326 -0.354
-4.8% -2.5% -0.7%

Table 5.3: Reverse-path IPMP echo processing delay

104

reverse path. While the graphs in figures 5.5 and 5.6 appear similar, the minimum

processing delay through the router is 9.3µs less on the reverse path than that on

the forward path. This difference is most likely due to additional latency in the

quad port network interface card, because the Dag cards used in the experiment

were synchronised. It is important to note that the difference in forwarding delay

on the reverse path is nearly seven times larger than the additional processing delay

of IPMP in its minimum configuration. This indicates that IPMP processing delay

is not significant, and that other factors can have more effect than adding IPMP

to the forwarding path. Experiments IPMP #2 and #3 show similar additional de-

lays to the corresponding experiments for the forward path. The 4th experiment –

the IPMP configuration where the flow counter implementation is enabled – shows

significantly less additional processing than the same measurements made in the

forward path.

5.4 Hardware Implementation

The fundamental difference between a software implementation and a hardware

implementation is that hardware is limited by physical constraints while software is

often constrained more critically by execution time. A software implementation of

IPMP is required to execute a series of instructions serially as quickly as possible,

while a hardware implementation is limited by the number of logic gates and flip-

flops. Therefore, when examining the ability to implement IPMP in hardware, an

important metric to consider is the number of logic gates and flip-flops required.

This section describes a hardware implementation.

5.4.1 Overview

The IPv4 forwarding component of IPMP, described in section 4.4.6, was imple-

mented in a layer 2 Ethernet switch that was built for research purposes by the

WAND network research group. The WAND group is a network measurement and

research group at the University of Waikato, of which I am a member. The switch

has a customised data-path which is non-blocking and does not have conventional

105

data_next

data_h

data_in
data_l

IP Address

Path Record Pointer

TTL + ’S’ bit

Timestamp

Checksum

data_out

Figure 5.7: Illustration of the IPMP forwarding component in hardware

Ethernet Media Access Control (MAC) functions. Instead, the ports on the switch

are configured in a cross-bar fashion, where bits that arrive on one port are trans-

mitted out another port after a momentary delay. This is different to the traditional

Ethernet notion of store-and-forward behaviour where the entire packet is buffered

before being forwarded. As discussed in section 4.4.6, IPMP is well suited to either

packet forwarding strategy.

The data-path of the switch is implemented in a Field-Programmable Gate Array

(FPGA) and is therefore well suited to customisation. The IPMP forwarding com-

ponent was implemented in 492 lines of liberally commented VHSIC Hardware

Description Language (VHDL) code. The code is provided in appendix B. Com-

pared to a forwarding path without IPMP, the IPMP forwarding component requires

an additional 6592 Application-Specific Integrated Circuit (ASIC) gate equivalents.

An illustration of the IPMP forwarding component is shown in Figure 5.7. The

IPMP forwarding component receives data in 8-bit quantities, labelled as data l and

data h in figure 5.7. Two bytes at a time are buffered so that the IPMP path record

pointer and IPMP checksum fields can be modified in-line as they arrive. Incoming

data is multiplexed with potential replacement values. The replacement values,

listed beside the multiplexor in figure 5.7, are either provided externally such as the

IP address and timestamp, or working values from the current packet such as the

TTL, path record pointer, and checksum. A state machine combined with a count

of the number of bytes of the current packet already seen is used to determine the

106

ECHO_TRAILER

NO_PACKET

PKT_WAIT

IP4

IP4_IPMP

PR_INS

Figure 5.8: State machine of the IPMP forwarding component

current field and what data should be placed in data next from the possible inputs.

One byte at a time is read from the data next and output to the Ethernet MAC.

5.4.2 Checksums

Computing a replacement checksum value is a potentially difficult computation be-

cause it depends on the replacement values inserted into the packet as it is for-

warded. If a path record is inserted, then seven 16-bit words in the IPMP packet

are modified, not including the checksum field itself. In order to avoid a final

time-consuming computation of the replacement checksum field, the replacement

checksum field is computed iteratively and stored in a 32-bit word using the seven

replacement values as they are written out. When the checksum field arrives, the

final operation required is to sum the value of the checksum to the working compu-

tation, and then fold the 32-bit working value into a 16-bit checksum and write the

replacement checksum out.

5.4.3 State Transitions

The state machine transitions are shown in figure 5.8. The state machine has six

possible states and eleven possible state transitions. The state machine begins in

the NO PACKET state. When the first byte of an incoming packet is received,

107

the current time is read and is stored for use in a potential path record, as is the

interface’s IP address. The state machine stays in this state until the Ethernet type

field arrives. If the Ethernet type field signals an IPv4 packet, then the state machine

is moved into the IP4 state for further processing; otherwise, the state machine is

moved into the PKT WAIT state.

The PKT WAIT state is used whenever it is determined that the packet will not

have a path record inserted. In this state, each incoming byte passes through the

IPMP forwarding component without modification. Once in the PKT WAIT state,

the IPMP forwarding component will wait until the end of the current packet before

moving back into the NO PACKET state.

When in the IP4 state, the IPMP forwarding component may process up to five

operations. First, in order to determine where the IPMP header begins, the length

of the IPv4 header is calculated by shifting the IP header length field 2 bits to the

left, which is equivalent to multiplying by four. Second, in order to determine the

total size of the IP packet, the IP length field is recorded when it arrives. The length

field is used immediately to determine if the packet is large enough to include an

IPMP echo header, space for an additional path record, and an echo trailer. If it is

not large enough, then the state machine is moved into the PKT WAIT state. Third,

it determines if the packet is a complete, unfragmented IP packet by ensuring the IP

MF bit is not set, and the IP offset field is zero. If the packet is a fragment, then the

state machine is moved into the PKT WAIT state because a complete IPMP echo

probe is required in order to insert a path record and modify the echo trailer. Fourth,

the value of the IP TTL field is recorded so that it can be used later when forming a

path record. Finally, the IP protocol field is examined; if the type is IPMP, then the

state machine is moved into the IP4 IPMP state for further processing, otherwise

the state machine is moved into the PKT WAIT state.

When in the IP4 IPMP state, the IPMP forwarding component checks that the

IPMP version field is one, and that the echo bit in the IPMP type field is set. If

these two conditions hold, then a calculation is made to determine where the first

path record in the packet will be located, and the state machine is moved into the

PR INS state. Otherwise, the state machine is moved into the PKT WAIT state,

108

because the IPMP packet is not an echo probe.

When in the PR INS state, the IPMP forwarding component compares the cur-

rent byte offset with a value pre-calculated to determine when the first byte of the

next path record has arrived. Additionally, the forwarding component ensures that

with each byte read there would be enough space left in the packet for a path record

should one be inserted. Each time the current byte offset matches the value denot-

ing where the next path record begins, the IP TTL value stored earlier is compared

with the pre-initialised TTL value in the path record. If the stored IP TTL value is

greater than the path record TTL, then the state machine is moved into the PKT

WAIT state, because a node may only insert a path record in the first available space

reserved for a path record. Otherwise, it then checks if the ‘S’ bit is set; if it is set,

then the pre-calculated path record offset is adjusted to determine where the next

path record begins, as this space has already been used. Otherwise, the checksum

calculation records the existing value of the TTL, and then the path record begins

to be written out. This process continues for each incoming byte until the com-

plete path record has been written. The state machine then moves into the ECHO

TRAILER state.

The final state the IPMP forwarding component may enter is the ECHO TRAIL-

ER state. Prior to entering this state, a path record has been inserted. The purpose

of this state is to wait until the echo trailer arrives and then to update the path record

pointer and checksum fields found in it. The IPMP forwarding component deter-

mines when the trailer has arrived by comparing the current byte counter with the

length of IP payload reported in the IP header. When the path record pointer field

arrives, the existing value is read and replaced with a value 12 greater than the cur-

rent value. When the checksum field arrives, the existing value is read and merged

into the incremental calculation of the final checksum value. The only operation

left is to fold the checksum and write the replacement value, as discussed in sec-

tion 5.4.2, because the checksum alteration has been iteratively calculated as each

field was modified.

109

5.5 Hardware Forwarding Performance

5.5.1 Methodology

This section measures the forwarding delay of the switch with and without IPMP.

The experiment used is similar to the apparatus and methodology used for the soft-

ware forwarding performance measurement described in section 5.3, except that the

software router is replaced by the switch hardware. The other difference is that only

two forwarding modes of the switch are measured; with IPMP, and without IPMP.

The configuration of the switch in these experiments is slightly different to how

the switch would normally be configured. Normally, the switch would not have to

calculate the 4-byte Ethernet Frame Check Sequence (FCS) as part of forwarding a

packet, because it does not modify any packet it forwards. However, the Ethernet

FCS is required to be calculated when an IPMP packet has a path record inserted.

Both measurements of the switch with and without IPMP include the FCS being

recalculated, even though this step is unnecessary in the second experiment. This is

done for two reasons.

First, the FCS calculation occurs at layer 2, beneath the IP layer. The FCS

calculation is only of interest to Ethernet links; other layer 2 technologies may have

different checksum functions, or may not have a layer 2 checksum at all. Second, an

IP router will have to calculate the FCS even if it does not implement IPMP, because

an IP router modifies a packet when it decrements the TTL field in the IP header.

Therefore, the switch was configured to recalculate the FCS in both experiments,

though ordinarily it would not recalculate the FCS unless the packet was modified.

In a separate measurement of the switch, it was determined that the FCS calculation

adds 360ns ± 60ns additional delay.

5.5.2 Results

The results of the hardware forwarding performance measurement are shown in a

series of six graphs in figure 5.9. Each graph plots forwarding time against packet

size. The first two graphs show the forwarding delay measured through the switch

for both the forward and reverse directions where no IPMP support is present. The

110

Packet Size (bytes)

 0.5

 1

 1.5

 2

 2.5

 0 350 700 1050 1400

Fo
rw

ar
di

ng
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

 0

(a) No IPMP (fwd)

Packet Size (bytes)

 0.5

 1

 1.5

 2

 2.5

 0 350 700 1050 1400

Fo
rw

ar
di

ng
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

 0

(b) No IPMP (rev)

Packet Size (bytes)

 0.5

 1

 1.5

 2

 2.5

 0 350 700 1050 1400

Fo
rw

ar
di

ng
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

 0

(c) With IPMP (fwd)

Packet Size (bytes)

 0.5

 1

 1.5

 2

 2.5

 0 350 700 1050 1400

Fo
rw

ar
di

ng
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

 0

(d) With IPMP (rev)

Packet Size (bytes)

−0.5

 0

 0.5

 1

 0 350 700 1050 1400

Fo
rw

ar
di

ng
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

−1

(e) Dag to Dag (fwd)

Packet Size (bytes)

−0.5

 0

 0.5

 1

 0 350 700 1050 1400

Fo
rw

ar
di

ng
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

−1

(f) Dag to Dag (rev)

Figure 5.9: Forwarding delay through non-blocking crossbar switch

111

Forwarding Forward Path Reverse Path
Delay Frequency Percentage Frequency Percentage

1.490µs 2 0.01% 1 0.01%
1.550µs 810 4.60% 78 0.44%
1.609µs 5685 32.30% 1286 7.31%
1.669µs 8200 46.59% 6171 35.06%
1.729µs 2593 14.73% 7732 43.93%
1.788µs 303 1.72% 2271 12.90%
1.848µs 7 0.04% 61 0.35%
Total: 17600 100% 17600 100%

Table 5.4: Forwarding delay without IPMP through switch

Forwarding Forward Path Reverse Path
Delay Frequency Percentage Frequency Percentage

1.609µs 40 0.23% 10 0.06%
1.669µs 1333 7.57% 470 2.67%
1.729µs 6657 37.82% 4687 26.63%
1.788µs 7801 44.32% 8960 50.91%
1.848µs 1676 9.52% 3437 19.53%
1.907µs 93 0.53% 304 1.73%
1.967µs 0 0% 2 0.01%
Total: 17600 100% 17600 100%

Table 5.5: Forwarding delay with IPMP through switch

middle two graphs show the forwarding delay measured through the switch where

IPMP support is present. The final two graphs show the forwarding delay measured

between the two Dag cards when they are directly connected to each other with an

Ethernet crossover cable. In this situation, each packet arrives instantaneously at

both Dag cards. As the cards are synchronised, they should report identical time-

stamps for each packet; that is, the difference in packet timestamps at each Dag card

should be zero.

The graphs have a number of similarities. First, the first four graphs show that

the size of the packet does not affect the forwarding time of the packet through

the switch with or without IPMP support. Second, all graphs have bands offset by

60ns from each other. These bands are artifacts of the Dag cards used, which have

a specified timestamp precision of 60ns. Figures 5.9(e) and 5.9(f) show the Dag

artifacts with the switch removed; there are three strong bands at -0.060µs, 0µs,

and 0.060µs, with two weaker bands a further 60ns from the outer bands.

112

Timestamp Forward Path Reverse Path
Difference Frequency Percentage Frequency Percentage
-0.179µs 1 0.01% 2 0.01%
-0.119µs 390 2.22% 191 1.09%
-0.060µs 4725 26.85% 1846 10.49%
0.000µs 8463 48.09% 7808 44.36%
0.060µs 3595 20.43% 6531 37.11%
0.119µs 403 2.29% 1214 6.90%
0.179µs 23 0.13% 8 0.05%
Total: 17600 100% 17600 100%

Table 5.6: Accuracy bounds of IPMP forwarding delay experiments

Tables 5.4, 5.5, and 5.6 show the frequency of each band for the three mea-

surements. Table 5.6 shows the frequency of each timestamp difference when the

Dag devices are directly connected, and shows that the most common timestamp

difference measured between the Dag interfaces is no timestamp difference. Ap-

proximately 46% of all packet timestamps are identical between the Dag cards,

while another 47% of all packet timestamps are ±60ns. This result indicates that

the mode is the best measurement of delay for the switch.

On the forward direction, the most common delay measured without IPMP is

1.67µs and 1.79µs with IPMP, indicating an IPMP forwarding delay of 120ns ±

60ns. However, for the reverse direction, the most common delay measured with-

out IPMP is 1.73µs and 1.79µs with IPMP, indicating a forwarding delay of 60ns

± 60ns. These conflicting results indicate the actual forwarding delay added by in-

cluding IPMP in the switch is between 60ns and 120ns, and that the margin of error

is in the same order of magnitude as the delay itself.

5.6 Summary

This thesis argues that a protocol for per-hop measurement of Internet packet dy-

namics is feasible and useful. In this chapter it was proven, through implementation,

that IPMP is feasible to implement. The software implementations showed that the

overhead of inserting a path record is minor compared with the other packet pro-

cessing that a host does when forwarding any other packet, and that other factors

such as the model of network interface can have a larger effect than adding IPMP.

113

The hardware implementation showed that the IPMP forwarding component only

needs to buffer two bytes of the packet. Decrementing the IPv4 header’s TTL field

and then incrementally updating the checksum also requires two bytes of the packet

to be buffered; therefore, if implemented in the same processing stream as the TTL

decrement, inserting a path record into an IPMP echo probe will not further delay

the packet.

In order to facilitate the incremental deployment of IPMP, an IPMP hardware

dongle could be developed and deployed so that IPMP could be deployed without

requiring routers to be upgraded. Such a device would attach to a router’s port and

process packets in-line as they are received. The VHDL implementation provided

in appendix B provides the digital logic required for processing an IPMP packet in

an Ethernet device.

114

Chapter 6

IPMP Measurement Techniques

6.1 Introduction

In this chapter, the application of IPMP to existing packet probing techniques is dis-

cussed. The use of IPMP to measure topology, delay, loss, reordering, and capacity

is considered in three different deployment scenarios. The first case considered is

the optimal case where all nodes have IPMP support on the forward and reverse

paths. In this case, each IPMP echo packet has a path record inserted at each hop

in the network. This enables the packet’s dynamics to be measured on a per-hop

basis. The second case considered is the case where some routers have IPMP sup-

port and those routers are at strategic locations such as at AS boundaries. In this

case, each IPMP echo packet has a path record inserted at these strategic locations,

which allows the packet’s dynamics to be measured on a per-AS basis. The third

case considered is the minimum case where only the end hosts have IPMP enabled.

In this case, each ICMP echo packet has a path record inserted at the source when

it is transmitted, at the destination when it is received, and then back at the source

when it is received. This allows the packet’s one-way dynamics to be measured.

6.2 Topology

6.2.1 All Nodes with IPMP

An IPMP echo packet that has a path record inserted at each hop contains the com-

plete IP topology of the path followed by the packet for both the forward and reverse

115

paths, because an IPMP path record includes an IP address. Converting the IP topol-

ogy to a router-level topology is done by sending an IPMP information request to

each IP address, and then noting which replies have the same source IP address.

Converting the IP topology to an AS-level topology requires some way of deter-

mining which AS is responsible for the IP address. IPMP provides an additional

facility for this, through a node providing the AS number to which it belongs in an

information response, as discussed in section 4.5.4.

Compared with the TTL-limited technique that traceroute uses, IPMP of-

fers a number of useful features, especially if all nodes have IPMP deployed on the

forward and reverse paths. First, it allows the forward and reverse path IP topolo-

gies to be determined in a single packet exchange. A separate probe for each hop

is not required as it is with the TTL-limited technique. The IP path reported is not

susceptible to being a false path, because an IPMP echo packet is routed normally

to its destination. Second, it allows for a robust method of definitively determining

which IP addresses are aliases of the same router, because a mechanism for doing so

is provided for in the IPMP information protocol. When replying to an information

request, the router uses a constant source address to send each information reply.

In order to resolve router aliases, the IP addresses included in path records must

each be sent an information request. Third, if each router is configured to return

the AS to which it belongs in an IPMP information reply, the AS path can also be

determined without requiring access to routing tables or other separately managed

data.

6.2.2 Some Nodes with IPMP

If IPMP is deployed at strategic locations, such as at AS boundaries, then the se-

quence of ASes on the forward and reverse paths between two systems can be de-

termined. The TTL-limited technique can be used to infer the IP addresses for the

remaining hops on the forward path which did not insert a path record, if required.

The appropriate TTL values to use when probing to infer the remaining hops are

those that correspond to routers that did not insert a path record. This can be de-

termined by examining the TTL fields of each path record which was inserted. In

116

this case the number of probes required to infer the forward path is less than if

TTL-limited technique alone was used.

6.2.3 End Hosts with IPMP

If IPMP is only deployed at the source and destination, then it provides the ability

for the length of the forward and reverse paths, in IP hops, to be determined by using

the TTL value embedded in a path record at the destination. This can be useful for

measuring path symmetry in IP hops, but is unable to provide additional data to

explain why.

6.3 Delay

6.3.1 All Nodes with IPMP

An IPMP echo packet that has a path record inserted at each hop allows, at a min-

imum, per-hop jitter to be measured for all hops on the forward and reverse paths,

because an IPMP path record includes a timestamp. If two probes P and P ′ are sent,

and the path records inserted at hop h are notated as P[h] and P ′

[h] respectively, then

the relative delay jitter for these two probes is P ′

[h] − P[h]. Per-hop queueing delay

can be measured by a technique similar to that used by cing or tulip. If enough

probes are sent, then each hop should have at least one probe encounter minimum

queueing delay through it, allowing the other probes to infer the queueing delay

they experienced.

When compared with the ICMP timestamp techniques used by cing and tu-

lip, IPMP offers a number of useful features for measuring delay and jitter, espe-

cially when IPMP is deployed on all hops on the forward and reverse paths. First,

the precision of the IPMP path record timestamp can be much better than the max-

imum 1ms resolution of the timestamp provided by the ICMP timestamp protocol.

Second, because IPMP echo packets are designed to be efficiently processed in the

forwarding path, the timestamps can be a more reliable measure of the behaviour of

the path leading to the router.

117

Third, as an echo packet is otherwise forwarded normally and can go on to

collect additional timestamps from other systems in the path, it is possible to defini-

tively determine the queueing behaviour between two arbitrary systems that both

insert a path record. Using the timestamps in an echo packet separates the be-

haviour between the particular systems from the behaviour prior and subsequent to

the hop. This is a more robust method than inferring the queueing behaviour of

the path prior to the hop being measured, and then inferring the per-hop queueing

behaviour from the additive effect of travelling the particular hop.

Fourth, it requires no extra effort to measure the queueing delay for hops on the

reverse path, because path records are also inserted on the reverse path. Finally, be-

cause each hop in the path is not probed individually, the number of probes required

to measure queueing delay does not grow with the path’s length.

As discussed in section 4.5, determining the relationship that a particular time-

stamp has to real time is accomplished using the IPMP information protocol. In

the event where the clocks on two different interfaces are determined to be syn-

chronised, it is possible to measure absolute one-way delay between the particular

interfaces. Suitable calibration sources might be a high quality real-time source

such as a GPS or Code Division Multiple Access (CDMA) time receiver, or a re-

covered line clock from a Synchronous Optical Network (SONET) link provided

the master clock is sufficiently accurate.

6.3.2 Some Nodes with IPMP

If IPMP is deployed at strategic locations, such as at AS boundaries, then it is possi-

ble to determine queueing delay statistics through particular ASes. If a path exhibits

significant jitter, then being able to reduce the problem domain into a series of ASes

is useful for determining who the responsible ASes are, how they contribute to the

jitter, and where in the topology they are. If the respective systems at the AS bound-

aries have synchronised clocks, then absolute one-way delay between the systems

can be determined. If a path exhibits significant absolute delay, then being able to

measure the absolute delay contributed by each AS is useful for determining which

118

1

Hop 1 Hop 2Hop 0

1

2

0
0

01

2

Figure 6.1: Example IPMP flow counter values after single probe loss

ASes contribute the most delay, and for determining a more appropriate topology if

one exists.

6.3.3 End Hosts with IPMP

If IPMP is deployed only at end hosts, then it is useful for determining one-way

jitter on the forward and reverse paths, and absolute one-way delay if the clocks

are synchronised. While the raw data provided in this scenario is limited, it is

still useful for diagnosing end-to-end performance problems, and in measuring path

asymmetry.

6.4 Loss

It may be possible to determine where an echo packet was lost using subsequent

echo probes, because a system which implements IPMP may also keep flow state

and report the value of the flow counter in a path record. Figure 6.1 outlines a simple

example of determining where a packet was lost using IPMP flow counters. In this

example, the source sends three packets towards a destination, though the middle

packet is lost. The first packet is returned to the source with all flow counters having

the value 0. The second packet is lost between hops 1 and 2; because hops 0 and

1 forward the packet before it is subsequently lost, they increment the flow counter

corresponding to the packet’s flow record. The third packet is not lost and is returned

to the source, and can be used to determine that the second packet was lost after hop

1 by comparing the flow counter fields in the packets received.

119

Probe 3 is lost after Hop 1.

Hop 0 Hop 3Hop 2Hop 1 Hop 0 Hop 1 Hop 2 Hop 3

0 0 0 01 1

2

3

2

3

1

2 1

0 0 0 01 1

2

3

2

3 2 1

1

(a) (b)

#1

#2

#3

#4

#1

#2

#3

#4

Probe 2 is lost after Hop 1,
Probe 3 is lost after Hop 2.

Probe 2 is lost after Hop 2,

Figure 6.2: Example IPMP flow counter values when two consecutive probes are
lost

6.4.1 All Nodes with IPMP

When compared with the IP-ID technique that tulip uses, IPMP offers a number

of useful features for measuring packet loss, particularly if IPMP is deployed on

all routers in the path, and they all keep flow state. First, the behaviour of the

flow counter is defined, unlike the IP-ID field, so determining if a previous packet

was received by a router is more reliable. Second, diagnostic tools do not need to

send the triplet of packets formed in the tulip style where the outer packets are

used to infer forward loss, because the primitive for measuring loss is embedded

in subsequent measurement packets. Third, because a single packet collects the

necessary information from each router, the number of probes required to infer the

location of packet loss does not grow with the path’s length.

Using IPMP to infer per-hop loss does have some limitations, however. If more

than one packet is lost between two received packets and the packets are lost at

different hops, while it is possible to infer how many packets were lost at each hop,

it is not possible to determine the order in which the packets were lost. Figure 6.2

shows an example where two consecutive packets are lost at two different hops in

the path. In case (a), probe #2 is lost between hops 1 and 2, and probe #3 is lost

between hops 2 and 3. The IPMP-ID signature in probe #4 – which is not lost

and is used to infer where loss occurred – is the same as the IPMP-ID signature in

probe #4 in case (b), where probe #2 is lost between hops 2 and 3, and probe #3 is

120

2

Hop 4

Hop 3a

Hop 2a Hop 2b

Hop 3b

Hop 1

Hop 0

Hop 5

#1 #2#3 #4

02 1 3

0

0

0

0

0

1

0

3

1

0

2

1

1

1

1

2

Figure 6.3: Example IPMP flow counter values when probes follow alternate IP
paths

lost between hops 1 and 2. While fine-grained measurement of where each packet

is lost might be useful in some scenarios, the ability to infer where each packet was

lost is adequate to identify lossy and congested links.

A second limitation arises in measuring per-hop loss where multiple paths exist

towards a destination, and packets are routed round-robin through alternate paths

towards the destination. Figure 6.3 shows an example case where probes #1 and #3

are forwarded through the path on the left, while probes #2 and #4 are forwarded

through the path on the right. Probe #2 is lost between hops 2b and 3b. When

probe #3 is sent, the flow counters in the packet report that this is the second packet

that hop 2a has received. At this point, unless a subsequent packet is routed over the

same hops where probe #2 was lost, the source might incorrectly infer that probe #2

was lost between hops 1 and 2a. Probe #4 allows the source to infer that a previous

probe belonging to the same flow was seen at hop 2b but was subsequently lost,

ruling out packet loss between hops 1 and 2a. Unless the underlying topology of

the path is known, the IPMP technique is restricted to inferring where packet loss

did not occur, because in the example presented, there could be multiple active paths

between hops 2b and 4.

121

6.4.2 Some Nodes with IPMP

If IPMP is partially deployed at strategic locations through a path, then a diagnostic

tool could infer the AS or ASes where packet loss occurs. If IPMP is deployed only

at end hosts, then diagnostic tools can reliably determine whether the loss occurred

on the forward path or the reverse path.

6.5 Reordering

IPMP provides two facilities to measure packet reordering: timestamps, which

record when an echo packet packet was seen; and flow counters, which record the

arrival order of a series of echo packets. It is recommended that measurement tech-

niques use flow counters where possible, and timestamps where flow counters are

not reported, because two consecutive packets may have the same timestamp in-

serted if the clock used is not of sufficient resolution.

6.5.1 All Nodes with IPMP

The technique for measuring reordering is simple. If two packets arrive at one

particular hop in a different order compared to the arrival order at a prior hop, then

reordering has occurred between those hops.

When compared with the IP-ID technique used by tulip, IPMP offers a num-

ber of useful features for measuring packet reordering, especially when IPMP is

deployed on all hops on the forward and reverse paths. First, it is possible to di-

rectly measure where reordering occurs on a per-hop basis. If reordering occurs

multiple times in the path, then each instance can be detected by comparing the

path records inserted at each hop. Using the addresses inserted in the relevant path

records, measurement tools can report the path segment or segments where reorder-

ing occurred. This is a more robust method than inferring the reordering behaviour

of a particular hop by inferring the reordering behaviour of the path leading to the

hop and subtracting that from the reordering behaviour measured of the hop. Sec-

ond, the number of probes required to characterise packet reordering does not grow

122

with the length of the path, because each probe collects information for the com-

plete forward and reverse paths. Third, if reordering occurs due to the probe packets

taking different IP paths, it is possible to identify the two paths by the IP addresses

that make up those paths.

6.5.2 Some Nodes with IPMP

In the case where IPMP is partially deployed at strategic locations through the path,

such as at AS boundaries, then diagnostic tools can narrow the search for the re-

ordering segment to the applicable AS. Using the TTL values in the relevant path

records, diagnostic tools can report on the length of the path upon which the reorder-

ing occurred. In the case where IPMP is deployed only at end hosts, diagnostic tools

can identify forward path versus reverse path reordering as tulip does.

6.6 Capacity

Capacity estimation requires the ability to measure the delay incurred by a packet

of a particular size. With IPMP, it is possible to measure the minimum dispersion

of a packet-pair at a particular hop and use this dispersion measurement to infer

capacity, because an IPMP path record includes a timestamp. IPMP offers capacity

estimation techniques the ability to directly measure the dispersion of a packet pair

at each hop that implements IPMP. The dynamics of the packet-pair after it leaves a

hop which implements IPMP does not affect the measurement of packet dispersion

at that hop, because a path record contains the time each packet was seen at that

hop. For these reasons, error does not accumulate in per-hop capacity estimation as

it does in techniques discussed in section 2.6.3.

6.6.1 All Nodes with IPMP

If all hops on the forward path implement IPMP, then it is simple to determine the

capacity of the path and where the capacity limiting link is positioned. If enough

packet pairs are sent through the network, at least one packet pair should traverse the

123

capacity-limiting link back-to-back. The capacity-limiting link can then be identi-

fied as the hop with the largest minimum measured packet dispersion. The follow-

ing two equations further explain the two parts of the capacity estimation technique.

The first part, shown in equation 6.1, consists of determining δmin[h] – the minimum

packet-pair dispersion measured for each hop h in a path given N packet pairs each

consisting of P and P ′.

δmin[h] = min
{

P[h,i] − P ′

[h,i], i ∈ [1, N]
}

(6.1)

The second part, shown in equation 6.2, determines the capacity c of the path by

dividing the size S of each packet in the packet pair by the maximum δmin[h] value

recorded for the H hops on the forward path.

c =
S

max(δmin[h]), h ∈ [0, H]
(6.2)

When compared to the packet-pair technique itself, IPMP offers three main ad-

vantages. First, each dispersion measurement is taken in-place in the path. The

effect of cross traffic on the dispersion of the packet pair subsequent to a particular

hop does not affect the measurement of packet dispersion at that particular hop be-

cause the dispersion is recorded in the packet-pair. For this reason, a technique to

filter overestimations of capacity is not required. Second, it is possible to determine

where in the path the capacity limiting link is positioned and use the IP addresses in-

serted in path records to denote the link. Third, specialised software is not required

to be run at the destination host to measure the dispersion of arriving packets.

Estimation of the capacity of the reverse path still presents measurement chal-

lenges if the capacity of the reverse path is greater than that of the forward path,

because the packet pair must queue back-to-back at the capacity limiting link. One

possible approach to this problem is to use a tailgater packet ahead of a packet

pair of smaller probes, which is not echoed back to the source by the destination.

If the packet-pair is sent back-to-back from the destination, then it is possible to

use the packet-pair to estimate the capacity of the reverse path using the technique

discussed in this section.

124

6.6.2 Some Nodes with IPMP

If IPMP is deployed at strategic locations throughout a path, such as at AS bound-

aries, then a slightly different technique is required in order to estimate the capacity

between the locations. This is because if links of differing capacities exist between

the points, the packet-pair could compress after it has been sent over the capacity-

limiting link, and lead to an over-estimation of the path’s capacity. Instead, a tech-

nique similar to CapProbe[49] can be used, where the dispersion of a packet pair

with the minimum combined delay between the two points is used to estimate the

capacity, because this packet pair is likely to have encountered no cross traffic be-

tween the two points. The main advantage this technique brings to CapProbe is the

ability to determine approximately where in the path the capacity-limiting link lies.

6.6.3 End Hosts with IPMP

If IPMP is deployed only at end-hosts, then it can be used to infer the capacity

of the forward path using the CapProbe technique. In this case, IPMP allows the

capacity of the path to be measured without requiring a specialised program at the

destination host to be run.

6.7 Summary

This chapter described IPMP-based measurement techniques to measure topology,

delay, loss, reordering, and capacity, and compared these measurement techniques

to currently available techniques. The IPMP-based measurement techniques de-

scribed in this chapter are more robust, require less probes to be sent, and are po-

tentially more accurate and convenient than corresponding measurement techniques

that do not use IPMP, as IPMP allows routers to embed information useful to mea-

surement of per-hop packet dynamics into IPMP probes as they are forwarded.

IPMP allows each link to be measured independently of the behaviour seen by

the probe on prior links. If IPMP were standardised and deployed, operators would

be able to diagnose path faults in greater detail than at present, using fewer probes.

125

Chapter 7

Applications of IPMP

7.1 Introduction

In the previous chapter, measurement techniques for measuring delay, jitter, loss, re-

ordering, and capacity on a per-hop, one-way, and end-to-end basis were presented

and discussed. This chapter provides actual examples where having IPMP available

and deployed on all routers in a network has been useful in practice for understand-

ing network behaviour. The network measured, Connecting Rural Communities

Network (CRCnet), is a rural wireless network operated by members of the WAND

network research group, where all routers are software-based and are able to be cus-

tomised. CRCnet itself is used to provide higher capacity paths to remote schools

than is otherwise available, and therefore has some real-world use. This chapter is

not an exhaustive review of possible IPMP measurement applications on CRCnet.

Rather, it provides three case studies where IPMP enabled per-hop measurement of

packet dynamics to take place.

This chapter begins by describing a general-purpose IPMP-based measurement

utility. The utility, ipmp ping, assembles and transmits IPMP echo request pack-

ets and prints out replies which are received in response. The output from the utility

is designed to be simple to parse so that it is suited for use in simple network mea-

surement and monitoring scripts. Then, this chapter presents the CRCnet network

and three measurement case studies. The first case study measures packet loss on a

symmetrical wireless path which was reported by CRCnet operators to exhibit sub-

stantial packet loss that significantly reduced the quality of service provided. The

126

Flow counter

*

*

*

Hop distance

End host marker

IP Address

 5 10.1.231.1 Jun 16 15:37:49 2004 597041000

 2 10.1.255.1 Jun 16 15:37:50 2004 567719000

 8 10.1.240.254 Jun 16 15:37:49 2004 621183000 b
 7 10.1.255.254 Jun 16 15:37:50 2004 344348000 b
 6 10.1.253.1 Jun 16 15:37:50 2004 598441000 b

f
 4 10.1.22.254 Jun 16 15:37:49 2004 593785000 f
 3 10.1.253.254 Jun 16 15:37:49 2004 589492000 f

f
 1 10.1.240.1 Jun 16 15:37:50 2004 310616000 f
 0 10.1.240.254 Jun 16 15:37:49 2004 578602000 f

Timestamp

Figure 7.1: Sample output from ipmp ping

second case study measures path capacity and identifies the capacity limiting link

on a different symmetrical wireless path. The last case study examines in greater

detail the data collected in the second study, but instead of using the data to identify

the capacity of the path, the data is used to reverse engineer the interactions the

packets had as they were contending for the same resources on routers at the end of

the symmetrical path.

7.2 IPMP Ping

ipmp ping is a simple yet powerful application that combines the behaviour of

traceroute with the behaviour of ping. That is, the IP path discovered is

reported with each probe. ipmp ping allows the user to specify, among other

options, a target address, the probe size, how many probes to send, and how long to

wait between sending probes.

Figure 7.1 shows an example of the output from ipmp ping. Each line of out-

put prints the IP address, timestamp, and flow-counter values from the path record,

the distance in hops into the path where the path record was inserted, and an as-

terisk if a hop’s IP address corresponds to either the source or the destination. The

timestamp is formatted similarly to the output from the ctime function; the month,

date, time, and year of the timestamp is displayed. The timestamp also includes the

number of nanoseconds elapsed in the current second.

ipmp ping expects the path record timestamp to have a specific format; the

first 16 bits of the 48-bit path record timestamp field are the least-significant 16-

127

bits of a seconds-clock which counts from midnight on the 1st of January 1970,

while the remaining 32-bits are used to count the number of nanoseconds that have

elapsed in the current second. The timestamps in figure 7.1 are generated with

the do gettimeofday function in Linux, which has a microsecond resolution; the

intermediate nodes have multiplied the microsecond timestamp by 1000 to obtain a

timestamp with a nanosecond resolution.

7.3 Overview of CRCnet

As described in the introduction to this chapter, CRCnet is a rural wireless network

designed to offer higher-capacity paths than what is otherwise available. These

paths typically are offered to rural schools which use the network for commodity

Internet access. Therefore, while CRCnet is used for research and development of

network protocols, it also carries real-world Internet traffic.

Node Description
HSK Router at Hosking’s house
MCG Router at Tony McGregor’s house
MSB Router at Waikato management school
MWP Router at Murray Pearson’s house
PIR Router at Mount Pirongia
PWS Router at Pirongia woolshed
TTK Router at Te Taka’s house
WTU Router at Waitatuna school

Table 7.1: List describing CRCnet routers used in chapter 7

Table 7.1 provides a list describing CRCnet routers used in this chapter. Many

of these routers are used as relay points to reach networks that are further than the

802.11b signal could otherwise propagate. As these routers operate outdoors, most

routers are small, low-powered devices. For example, the router at PIR is located

near the top of a mountain where power is not readily available. This router is

powered by a collection of batteries buried in the ground, which are charged by

solar cells.

128

Time of Day Link Loss Time of Day Link Loss
15:37:42 PWS-MWP 5 15:57:56 PWS-MWP 2
15:37:49 PWS-MWP 4 15:58:02 PWS-MWP 4
15:42:48 PWS-MWP 3 16:03:02 PWS-MWP 3
15:42:54 PWS-MWP 6 16:03:13 PWS-MWP 4
15:46:25 PWS-MWP 2 16:08:44 PWS-MWP 10
15:48:15 PWS-MWP 2 16:12:56 PWS-MWP 4
15:48:18 PWS-MWP 2 16:13:04 PWS-MWP 5
15:48:21 PWS-MWP 5 16:17:52 PWS-MWP 3
15:52:41 PWS-MWP 2 16:18:01 PWS-MWP 2
15:52:44 PWS-MWP 5 16:23:09 PWS-MWP 6
15:52:53 PWS-MWP 2 16:23:15 PWS-MWP 3
Total: 62

Table 7.2: Consecutive packets lost on CRCnet between MWP and PWS

7.4 Per-Hop Loss Measurements

This measurement-driven case study determines the symptoms of pathological loss

reported on a symmetrical CRCnet path. At the time, the link in question was

a recently installed wireless link that reached PSC via a relay at PWS. As IPMP

was installed at each router in the path, flow counters were enabled, and only one

path between GTW and PSC exists, a series of IPMP echo packets provided the

necessary primitive to determine where packets were being lost on this path, using

the technique described in section 6.4.

Every 1.5 seconds, a single echo request was sent from GTW to PSC. This low

rate of probes reduced the probability that IPMP packets would cause congestion

to occur and artificially induce packet-loss. Of the 2015 echo probes sent over the

course of 50 minutes, 62 were lost, corresponding to a loss rate of 0.97%. Table 7.2

shows when the echo probes were lost, how many were lost in between received

packets, and which link was determined to have lost the packets. This table shows

that all probes were lost on the PWS-MWP link, that probes were lost approximately

every 5 minutes, and 9 packets were typically lost at each 5 minute interval – or an

effective outage of 13.5 seconds.

With this information, CRCnet operators were told which particular link caused

the packet loss. Interestingly, the link only lost packets on the reverse path back to

GTW. The actual cause of the loss was an antenna which was not correctly aligned.

129

Link Length Prop.
TTK – MSB 0.2km 0.67ns
MSB – MWP 13.6km 45.36µs
MWP – PIR 13.1km 43.70µs
PIR – MCG 17.4km 58.04µs
MCG – HSK 2.8km 9.34µs
HSK – WTU 0.4km 1.30µs

Table 7.3: Length and propagation delay of 802.11b point-to-point wireless links
between TTK and WTU

The 5 minute intervals coincided with SNMP polling of CRCnet interfaces by Na-

gios [75].

7.5 Per-Hop Packet Dispersion Measurement

802.11 is an interesting layer 2 MAC on which to measure per-hop packet dis-

persion, as it is a half-duplex shared medium with layer 2 acknowledgements and

retransmissions. Each packet sent has a layer 2 acknowledgement returned; if the

acknowledgement is not received, then the packet is retransmitted. The acknowl-

edgement is sent in the same band as any other data packet, so a gap is inserted

between any packets sent which arrive at the node back-to-back. The nominal se-

rialisation rate of 802.11b equipment is 11Mbps, although the capacity of the links

seen by experimentation on CRCnet is approximately 4.2Mbps. This section inves-

tigates the capacity of a path on CRCnet.

7.5.1 Methodology

In order to gain an empirical understanding of how the behaviour of the half-duplex

wireless links is related to the path’s capacity, a series of 1500-byte IPMP echo re-

quest packet-pairs were sent across a 12-hop symmetrical path in CRCnet composed

entirely of 802.11b point-to-point wireless links. In this experiment, all CRCnet

routers had IPMP code enabled and used the PPSKit patch for more precise timing.

No routers in the path had synchronised real-time clocks. The length of each wire-

less link and their propagation delays are shown in table 7.3. The propagation delay

130

Hop (name)

 2

 4

 6

 8

 10

 12

 14

 16

TTK
(0)

MSB
(1)

MWP
(2)

PIR
(3)

MCG
(4)

HSK
(5)

WTU
(6)

HSK
(7)

MCG
(8)

PIR
(9)

MWP
(10)

MSB
(11)

TTK
(12)

D
is

pe
rs

io
n

(m
s)

 0

Figure 7.2: Dispersion measured for 1500-byte packet-pairs traversing 802.11b
point-to-point wireless links on CRCnet between TTK and WTU

of a radio signal is approximately the speed of light when the signal takes a direct

path from the transmitter to the receiver.

7.5.2 Capacity Estimation Results

Figure 7.2 shows the observed dispersion for 3000 intact packet-pairs at each hop

through the path. The time stamps inserted in path records at the source host (TTK)

show that the packet-pairs are queued to be sent an average of 1.06ms apart, which is

slightly less than the serialisation time of 1.091ms for a 1500 byte packet at 11Mbps.

Therefore, it can be stated that the packet-spacing requirement of a packet-pair –

that they are sent back-to-back into the network – is fulfilled.

Table 7.4 shows the minimum observed packet-pair dispersion for all hops on

the CRCnet path. The capacity limiting link is the hop in the path with the largest

minimum observed packet pair dispersion, or if there is more than one hop with

this characteristic, the capacity limiting link is the first hop in the path. In this case

that hop is PIR to MCG, with a minimum dispersion measured of 2.013ms, which

equates to a capacity of 5.961Mbps. This link is also likely to be the link that limits

131

Hop Link Min. Disp.
1 TTK – MSB 1.579ms
2 MSB – MWP 1.654ms
3 MWP – PIR 1.677ms
4 PIR – MCG 2.013ms
5 MCG – HSK 2.013ms
6 HSK – WTU 1.857ms
7 WTU – HSK 2.007ms
8 HSK – MCG 2.010ms
9 MCG – PIR 1.958ms
10 PIR – MWP 1.695ms
11 MWP – MSB 1.611ms
12 MSB – TTK 1.813ms

Table 7.4: Minimum dispersion measured for 1500-byte packet-pairs traversing
802.11b point-to-point wireless links on CRCnet between TTK and WTU

TCP throughput, because it introduces the most packet dispersion variation, which

indicates queueing delay variation.

7.6 Reverse Engineering CRCnet

The previous section estimated the capacity of the CRCnet path measured by using

the minimum packet dispersion at each hop and reporting the capacity of the path

using it. This section investigates what can be learned from the packet-dispersion

dynamics captured with IPMP on CRCnet. Taking the minimum packet dispersion

of each hop from figure 7.2 does not explore the rest of the data, and ignores po-

tentially interesting information in it. This section examines the ability to reverse

engineer properties of the CRCnet path using packet interactions captured with the

IPMP packet-pairs used to infer capacity in section 7.5.

First, the nominal serialisation rate of an 802.11b link is 11Mbps, yet the max-

imum capacity available from this path is 5.961Mbps, which corresponds to 54.2%

of the nominal serialisation rate. Using information independently known about the

length of each link, including the capacity-limiting link, it is possible to separate the

802.11b propagation delay from router processing delay. Second, between MCG

and PIR, very few packets are observed to have a packet pair dispersion between

2.6ms and 5.0ms, and there is a significant number of packet-pairs observed to have

132

Link Prop. Data ACK Total
TTK – MSB 0.67ns 1262µs 116µs 1.378ms
MSB – MWP 45.36µs 1307µs 161µs 1.468ms
MWP – PIR 43.70µs 1306µs 160µs 1.466ms
PIR – MCG 58.04µs 1320µs 174µs 1.494ms
MCG – HSK 9.34µs 1271µs 125µs 1.396ms
HSK – WTU 1.30µs 1263µs 117µs 1.380ms

Table 7.5: Serialisation and propagation delay for 802.11b data and acknowledge-
ment packets at 11Mbps

a dispersion greater than 5.0ms. Using packet dynamics measured with IPMP, de-

termining causes of this variation in packet delay might allow TCP performance to

be improved. Third, a number of bands of packet dispersion values exist at 5.8ms,

8ms, and 9ms between hops 5 and 8 that indicate some property of the network is

causing these to occur.

7.6.1 Forwarding Overhead

Forwarding overhead comes in MAC-layer overheads and router capability to for-

ward packets. As discussed in the introduction to section 7.5, 802.11b has numer-

ous well-known performance limitations due to comparatively large MAC headers,

preamble, and in-band acknowledgements. Excluding propagation delay, a data

frame at 11Mbps includes an additional delay of 171µs for pre-amble and framing,

and an additional delay of 116µs for the layer 2 acknowledgement frame [76]. As

the length and thus propagation delay of each link is known, it is possible to ac-

count for the 802.11b MAC-layer overheads and infer the system’s capability for

forwarding packets for links where the packet-pair is able to queue back-to-back.

Table 7.5 shows the theoretical minimum 802.11b MAC inter-packet dispersion

for the six links on the forward path. At hop 1 (MSB) the minimum packet dis-

persion measured is 1.579ms, which is 0.201ms more than the minimum packet

dispersion possible with 802.11b. The remaining 0.201ms is difficult to precisely

quantify; however, the most significant contributors to the remaining delay are likely

to be processing delay in bringing the packet from the network interface into the

133

(disp. 2.18ms)

ACK

ACK

ACK

ACK

ACK

(rtt #2 14.4ms)
(rtt #1 14.5ms)
(disp. 2.11ms)

(disp. 2.18ms)

MCG

0
1
2
3
4
5
6
7
8
9

10

HSK WTU

11
12
13
14
15
16
17 (rtt #2 7.26ms)

(rtt #1 7.39ms)
(disp. 2.04ms)

Echo #1

Echo #2

ACK

ACK Echo #1

Echo #2

Echo #1

Echo #2

Echo #2

Echo #1
ACK

Figure 7.3: Packet-pair sequence diagram for a pair that maintains a 2ms dispersion
through MCG, HSK, and WTU

IP forwarding path where the timestamp is generated, and in the 802.11b radios

switching from receive to transmit and vice versa.

7.6.2 MCG to WTU Minimum Dispersion

Figure 7.2 shows that most packet pairs are forwarded through MCG to WTU and

back with a dispersion of between 2ms and 2.6ms. A packet-pair through hops 4,

5, 6, 7, and 8 contains adequate information to infer the interaction the first echo

packet has with the second echo packet when the packet is turned around at WTU,

and is a useful place to begin before examining the causes of the variation and

banding in packet dispersion. Even though the clocks at MCG, HSK, and WTU are

not synchronised, it is possible to determine the round trip time between MCG and

WTU, as well as HSK and WTU, using the timestamps inserted at hops 4, 8, 5, and

7. It is then possible to infer the packet sequence between hops 4 and 8 using the

arrival dispersion of the packet pair at each hop.

Figure 7.3 is a packet-pair sequence diagram which shows how the packet-pair

134

maintained a dispersion of approximately 2ms as it was forwarded through these

hops. The sequence diagram is constructed using the round-trip and dispersion in-

formation contained in a single packet pair returned to the source host. The blue and

red dots represent the timestamps the echo packets had embedded in path records

at each of the hops in the path. Using the embedded timestamps, the RTT of the

echo packets between MCG and WTU is measured to be approximately 14.5ms,

the RTT of the packets between HSK and WTU is measured to be approximately

7.3ms, and the echo packets maintain their dispersion of approximately 2ms. The

sequence diagram shows that in order for the packets to maintain this dispersion,

both packets have to simultaneously queue at WTU. The diagram shows that by the

time the first echo packet is able to be returned, the second echo packet is being

serialised on the half-duplex wireless link. Therefore, the first echo packet has to

queue at WTU until the second echo packet is deserialised.

7.6.3 PIR to MCG Dispersion

Between PIR (hop 3) and MCG (hop 4), very few packet-pairs are measured to have

a dispersion value between 2.6ms and 5.0ms. This 2.4ms gap could be caused by

a number of factors, including cross traffic in the form of another 1500 byte packet

increasing the dispersion of the packet-pair. However, the cause of the extra disper-

sion is unlikely to be cross traffic, because cross traffic would cause the packet-pair

to show a similar dispersion at earlier hops too.

Similarly, it is not likely to be contention for access to the link between the reply

to the first echo packet and the second echo request, as for that to occur the first

echo packet must be serialised at four different links ahead of the trailing packet.

The minimum RTT measured in the data set for the first echo packet in a packet-pair

between MCG on the forward path (hop 4) and MCG on the reverse path (hop 8) is

13.9ms. The implication of this is that a significant number of probes at PIR would

be required to be dispersed by at least this amount in order for the PIR to MCG link

to be under contention. Figure 7.2 shows this is not the case, as very few probes at

PIR are dispersed by more than 13.9ms.

In this case the 2.4ms gap is most likely caused by the second packet in the

135

pair being lost or corrupted and then requiring layer 2 retransmission. The link

between PIR and MCG corresponds to the longest link in the path, as shown in

table 7.3, increasing the probability that the signal may not be strong enough in

some scenarios for the packet pair to be received back-to-back at MCG.

7.6.4 MCG to WTU Dispersion Banding

In figure 7.2, banding can be observed between HSK (hop 5) and MCG (hop 8).

Between these hops, there are bands of measured packet dispersion at 5.8ms, 8ms,

and 9ms, indicating some property of the network is causing this to occur. The

dispersion banding weakens past hop 8 on the reverse path. As WTU is the point

where the echo request packets are returned, it is possible that the first echo packet

is contending for the same half-duplex wireless link as the second echo packet.

This section examines if this is the case by reconstructing packet dynamics based

on the information contained in the IPMP echo packets for these hops with these

dispersion values.

Figure 7.4 contains six scatter plots of packet-pair dispersion values. The first

four plots show the relationship between the measured dispersion of packet-pairs at

adjacent hops. Dispersion at the first router for the hop is plotted on the x-axis, and

dispersion at the second router is plotted on the y-axis. The last two plots show the

relationship between the arrival dispersion of a packet-pair and the RTT as measured

for the path measured back to that hop.

In the first four plots, points above the diagonal line through y = x show the

dispersion of the packet pair increases; that is, the second packet queued for longer

at the previous hop than the first does. Points below the diagonal line show the dis-

persion decreases; that is, the second packet caught up to the first by queueing for

less time at the previous hop. Diagonal clustering on the line through y = x shows

that the dispersion remains constant for a range of arrival dispersion values. Hori-

zontal or vertical clustering indicates that the dispersion of the packet pair is more

likely to change for a range of arrival dispersion values than for other dispersion

values around the cluster. Horizontal clustering further indicates that the dispersion

136

Dispersion (ms) at Hop 4 (MCG)

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

D
is

pe
rs

io
n

(m
s)

 a
t H

op
 5

 (
H

SK
)

 0

(a) MCG - HSK

Dispersion (ms) at Hop 5 (HSK)

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

D
is

pe
rs

io
n

(m
s)

 a
t H

op
 6

 (
W

T
U

)

 0

(b) HSK - WTU

Dispersion (ms) at Hop 6 (WTU)

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

D
is

pe
rs

io
n

(m
s)

 a
t H

op
 7

 (
H

SK
)

 0

(c) WTU - HSK

Dispersion (ms) at Hop 7 (HSK)

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

D
is

pe
rs

io
n

(m
s)

 a
t H

op
 8

 (
M

C
G

)

 0

(d) HSK - MCG

Dispersion (ms) at Hop 4 (MCG)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16

R
T

T
 (

m
s)

 to
 H

op
 8

 (
M

C
G

)

 0

(e) MCG - WTU RTT

Dispersion (ms) at Hop 5 (HSK)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16

R
T

T
 (

m
s)

 to
 H

op
 7

 (
H

SK
)

 0

(f) HSK - WTU RTT

Figure 7.4: Packet-pair dispersion scatter plots between MCG and WTU

137

(disp. 7.86ms)

Echo #2

23 (rtt #2 15.0ms)
(disp. 5.75ms)

(disp. 7.06ms)

(rtt #2 6.87ms)
(disp. 5.79ms)

(rtt #1 8.93ms) Echo #2

MCG

0
1
2
3
4
5
6
7
8
9

10

HSK WTU

11
12
13
14
15
16
17
18
19
20
21
22

ACK
Echo #1

(rtt #1 16.3ms)

ACK

Echo #1

ACK

Echo #2

ACK

Echo #1

Echo #1
ACK

ACK

Echo #2
ACK

ACK

(a) 8ms dispersion band

Echo #2

ACK

23

(disp. 6.09ms)

(disp. 8.08ms)

(rtt #2 6.91ms)
(disp. 7.98ms)

(rtt #1 14.1ms)

(rtt #2 16.0ms)
(disp. 7.97ms)

MCG

0
1
2
3
4
5
6
7
8
9

10

HSK WTU

11
12
13
14
15
16
17
18
19
20
21
22

ACK

Echo #2

Echo #1

ACK
Echo #1

Echo #2
Echo #1

ACK

ACK

Echo #2
ACK

Echo #1
ACK

(rtt #1 7.01ms)

ACK

(b) 8-9ms dispersion

Figure 7.5: Packet-pair sequence diagrams for MCG, HSK, and WTU

of the packet pair at the next router is able to be predicted by the dispersion at the

first router.

Consider the horizontal band of 8ms at HSK (hop 5) in figure 7.2. Figure 7.4(a)

shows that packet-pairs arriving at MCG with a dispersion of between 7ms and

8ms are observed to have an approximate dispersion of 8ms at HSK; that is, their

measured dispersion increases by up to 1ms for this hop. Figure 7.4(f) shows that

the minimum RTT measured for the round trip from HSK to WTU is 7ms, which

suggests that the if the first echo packet incurs minimum delay through HSK and

WTU, it is likely to interfere with the second echo packet. Figure 7.5(a) is a packet-

sequence diagram of a packet pair selected from the dataset because it arrives at

MCG with a dispersion of 7.06ms and at HSK with a dispersion of 7.86ms. In this

example, echo #1 has the same packet dynamics on the round trip to HSK as it did

138

in figure 7.3. However, while echo #1 is being processed by HSK, echo #2 arrives

from MCG to HSK. As HSK is a low-powered 486-based system which is only

capable of processing a single packet at a time, the diagram suggests that echo #2 is

required to queue at HSK for some time while echo #1 is processed.

Figure 7.5(b) shows a similar case, except the packet-pair is dispersed by 6.09ms

at MCG. This causes the echo packets belonging to the packet-pair to arrive almost

simultaneously at HSK. Figure 7.4(a) shows that packet-pairs which arrive at MCG

with a dispersion between 6ms and 7ms then arrive at HSK with a dispersion in-

creased by 2ms. The main subsequent difference between the two packet-sequence

diagrams in Figure 7.5 is that in the first example the second echo packet is for-

warded first, while in the second example the first packet is forwarded first. In both

examples, the second echo packet is returned to MCG 22ms after the first echo

packet entered MCG. As the second echo packet is delayed more in the first exam-

ple than in the second, this allows the second echo packet to catch up while the first

is processed; examining figure 7.5(a) once again, one of the two distinct causes of

the band of packet-dispersion values at 5.8ms in figure 7.2 can be explained by this.

7.7 Summary

IPMP is well suited to per-hop measurement, particularly when all hops in the net-

work have IPMP deployed and enabled. This chapter presented three case studies

of measurements of per-hop packet dynamics in detail not possible with existing

Internet protocol support for measurement. The first case study not only directly de-

termined where packet loss occurred, it was able to report which direction through

the hop the loss occurred. The second case study not only inferred the capacity of

the path, it determined where in the path the capacity limiting link is, and which link

is most likely to cause TCP to not reach capacity. The final case study re-created

packet-pair interactions for hops close to a destination in a symmetrical path, and

revealed the system capability to forward packets for some of these hops. The next

chapter reviews recent, related work, in the area of Internet measurement protocols.

139

Chapter 8

Related Work

8.1 Introduction

This thesis describes a protocol designed for the per-hop measurement of Internet

packet dynamics, and shows how the protocol is feasible and useful. This chapter

places this thesis in the context of existing, related research, and compares the so-

lution described in this thesis (IPMP) with these works. This chapter reviews two

related pieces of work in the area of measurement-specific Internet protocols. In

section 8.2, IPMP is compared with One-way Active Measurement Protocol (OW-

AMP), another protocol designed specifically for active measurement of the Inter-

net. Then, in section 8.3, IPMP is compared with trajectory sampling, an approach

to per-hop measurement of packet dynamics that works by passively sampling a

subset of packets as they pass through a set of routers in the same administrative

domain.

8.2 One-way Active Measurement Protocol

8.2.1 Overview

The only Internet protocol specific to active measurement to be standardised in the

Internet Engineering Task Force (IETF) at the time of writing is OWAMP. The

goals and requirements of OWAMP are defined in RFC 3763 [36] – “One-way

Active Measurement Protocol Requirements.” The goal of OWAMP is to provide

140

interoperability in the one-way measurement of Internet packet dynamics. Chap-

ter 2 discussed the use of OWAMP to measure one-way packet dynamics. This

section compares OWAMP with IPMP.

8.2.2 Requirements

RFC 3763 splits OWAMP into two parts. The first half of the protocol, OWAMP-

control, is used to negotiate and control OWAMP measurements. OWAMP-control

is required to authenticate and schedule measurement sessions, to report measure-

ment results, and to provide fine-grained control over when probes are sent and how

they are formed. The second half of the protocol, OWAMP-test, is used to measure

one-way Internet packet dynamics. The requirements specify that test traffic:

• be simple, lightweight, and easy to implement;

• should be indistinguishable from other traffic on the network so that routers

are unable to prioritise its forwarding;

• should be resistant to tampering by intermediaries;

• should be able to be encapsulated in a single Asynchronous Transfer Mode

(ATM) cell if possible.

8.2.3 Specification

The OWAMP specification [37], currently work in progress, meets these require-

ments with a TCP-based control protocol used to negotiate and control a measure-

ment, and a UDP-based test protocol to measure one-way packet dynamics. The

OWAMP-control protocol allows a pair of hosts to:

• negotiate the UDP ports, the packet size, and the destination of the test traffic;

• negotiate authentication and encryption for both the control session and test

probes in order to prevent intermediary nodes from tampering with a mea-

surement or prioritising measurement traffic ahead of other traffic;

• retrieve packet timings from an end host when the forward path is measured.

141

Packet Padding

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0
3

1

Sequence Number

Timestamp

Error Estimate

Figure 8.1: OWAMP-test probe without authentication support

Unused Space

ATM Header (5 bytes)

IPv4 Header (no IP options)

A
T

M
 c

el
l (

53
 b

yt
es

)

A
T

M
 c

el
l p

ay
lo

ad
 (

48
 b

yt
es

)

UDP Header

OWAMP−Test Header

Figure 8.2: OWAMP-test probe encapsulated in a single ATM cell

The format of a OWAMP-test probe differs if the test traffic is authenticated

or encrypted by the sender. Figure 8.1 shows the format of OWAMP-test traffic

without support for authentication. In this context, a 14-byte header is included in

each probe, and consists of a sequence number, transmit timestamp, and an estimate

of the error of the timestamp.

Figure 8.2 shows how this format allows a OWAMP-test probe to fit within a

single ATM cell, so that a OWAMP-test probe can avoid measuring ATM Segmen-

tation and Reassembly (SAR) overhead, if desired. An ATM cell has a fixed size of

53 bytes, and each cell has a fixed header of 5 bytes, leaving 48 bytes for payload.

Therefore, an IPv4 OWAMP-test probe can be encapsulated in a single ATM cell

provided no more than 6 bytes of IP options or OWAMP packet padding is included.

142

Keyed−Hashing Message Authentication (HMAC)

0 1 2 3 4 5 6 7
0

8 9 0
1

1 2 3 4 5 6 7 8 9 0
2

1 2 3 4 5 6 7 8 9 0
3

1

Sequence Number

Zero Padding

Timestamp

Error Estimate

Zero Padding

Packet Padding

Figure 8.3: OWAMP-test probe with authentication and encryption support

Figure 8.3 shows the format of OWAMP-test traffic with support for authentica-

tion and encryption. In this context, a 48-byte header is included in each probe. In

addition to the fields it has in common with the header without support for authen-

tication, this header contains a 16-byte Keyed-Hashing for Message Authentication

(HMAC) field for authentication, and 18 extra bytes of zero padding.

In authenticated mode, only the sequence number and the first block of zero

padding are protected; the timestamp is sent in the clear and alterations by inter-

mediaries will not be detected by the receiver. This mode permits a sender to pre-

compute the authentication fields ahead of generating a timestamp for the packet,

so that the timestamp is generated as close as possible to when the probe is sent. In

encrypted mode, the packet’s protection is extended to include the timestamp, error

estimate, and second area of zero padding.

8.2.4 Comparison with IPMP

While both IPMP and OWAMP are protocols designed for measurement of Internet

packet dynamics, they are significantly different, partly because IPMP is for mea-

143

surement of per-hop Internet packet dynamics, whereas OWAMP is for one-way

measurement of a path. This section compares two areas of significant difference:

the OWAMP support for authentication and encryption, and the OWAMP-control

protocol.

8.2.4.1 Authentication and Encryption

OWAMP contains many features designed to prevent an intermediary from interfer-

ing with OWAMP-test probes. OWAMP-test probes can run on UDP ports negoti-

ated out-of-band between the hosts, and can be further authenticated and encrypted

to prevent intermediaries from falsifying or modifying measurement probes, respec-

tively. In contrast, IPMP echo probes are obvious so that a router can efficiently

process them in the forwarding path.

It is possible for an intermediate node to modify existing path records in an

IPMP echo packet, or to forward IPMP packets with a higher priority. These sce-

narios are possible in theory, but not likely in practice, in part because they would

require a more complicated forwarding path. In the first scenario, such a system

would be required to know the timestamp format used in the path record in order to

correctly adjust it, or it would have to be able to intercept and modify information

requests for the node.

In both cases, it is likely that cheating could be inferred through measurement

with other techniques or other protocols. If it is determined that another party is ma-

liciously modifying another system’s path record, the operator of that system might

seek legal redress. In addition, these modifications may result in a reduced ability

for the organisation that implements them to measure, diagnose, and understand

their own network.

8.2.4.2 Control Protocol

OWAMP contains a control protocol with support to negotiate, among other things,

UDP ports, probe packet size, probe frequency, authentication, and encryption.

This thesis does not describe a control protocol for IPMP, as it focuses on router-

modifications required in order to efficiently measure per-hop Internet packet dy-

144

A
T

M
 c

el
l p

ay
lo

ad
 (

48
 b

yt
es

)

ATM Header (5 bytes)

IPv4 Header (no IP options)

IPMP Echo Header

IPMP IPv4 Path Record

IPMP Echo Trailer

A
T

M
 c

el
l (

53
 b

yt
es

)

Figure 8.4: IPMP echo packet encapsulated in a single ATM cell

namics. IPMP is not as dependent on a control protocol as OWAMP, and is useful

for measurement of per-hop Internet packet dynamics without one.

A control protocol could be defined for IPMP that builds on the work done with

the OWAMP-control protocol. An IPMP-control protocol, like OWAMP-control,

could provide for precise control over when probes are transmitted by a remote host,

authentication and encryption of a control session, and the ability to retrieve infor-

mation about the dynamics of each IPMP echo probe if they are sent to a third-party

destination. In addition, an IPMP-control protocol may allow a source to negoti-

ate the contents of the pre-initialised path record space to restrict which routers are

permitted to embed path records.

8.2.4.3 Small Packets

One of the design goals of OWAMP is to provide a probe packet that could be

encapsulated in a single ATM cell. OWAMP provides this capability with unau-

thenticated OWAMP-test traffic. Figure 8.4 shows that it is also possible for an

IPMP echo packet to be encapsulated in a single ATM cell, provided IPv4 is used,

and the IP header contains no options. In this scenario, a probe provides enough

space for a single path record to be included in the packet.

145

AS #B

Router 1
AS #B

Router 2
AS #B

Measurement
Collector

Figure 8.5: Overview of trajectory sampling

8.3 Trajectory Sampling

8.3.1 Overview

In “Trajectory Sampling for Direct Traffic Observation” [77], Duffield and Gross-

glauser describe an architecture for passively sampling a series of packets at each

router as they are forwarded through a domain. This is accomplished by deploying

an identification hash function on routers through the domain that selects packets

based on values in the IP, TCP, and UDP headers, so that the same series of packets

is selected at each router. Each router then forwards packet details to a measure-

ment host which can then process and analyse the information. The Packet Sam-

pling working group (PSAMP) in the IETF is currently defining an interoperable

protocol for trajectory sampling.

Figure 8.5 illustrates the trajectory sampling technique. This example shows two

adjacent routers in AS #B with identification hash functions that sample red packets

from incoming links, and a measurement collector where the packet records are

sent. In this example, the measurement collector is able to determine the trajectory

of the two red packets that enter router 1. In this case, both are forwarded to router 2.

Trajectory sampling is useful in many situations, including traffic engineering,

traffic measurement, and measurement of per-hop Internet packet dynamics. The

last of these is compared to IPMP in the next section.

146

8.3.2 Comparison with IPMP

Both trajectory sampling and IPMP allow for direct measurement of per-hop In-

ternet packet dynamics. Both techniques require the cooperation of intermediate

routers. Trajectory sampling uses a passive measurement technique to sample traf-

fic as it flows through a domain using a hash function, whereas IPMP uses informa-

tion embedded in path records to determine the packet’s dynamics and its trajectory

through the network. This section compares trajectory sampling and IPMP in terms

of complexity, security, and practicality issues.

8.3.2.1 Complexity

Trajectory sampling is more complex than measuring per-hop Internet packet dy-

namics with IPMP. In order to measure per-hop packet dynamics, the same iden-

tification hash function is required to be installed on each router in the network.

Duffield et al. outline a possible implementation scenario involving a Digital Signal

Processor (DSP) to sample the appropriate packets. In addition to this, trajectory

sampling requires a language to produce identification hash functions, a protocol

to load these functions into a router, and a measurement collector to receive packet

trajectories.

In comparison, IPMP requires the forwarding path to be modified so that echo

packets will have a path record inserted where appropriate, and some capability to

reply to information requests. As described in chapter 5, the modification required

to the forwarding path is simple, and a number of possible implementation strategies

exist for the information protocol.

8.3.2.2 Security and Privacy

Duffield et al. define trajectory sampling as being used in a single domain, such

as an AS, because numerous security and privacy issues arise with passive packet

sampling. Access to such a facility is likely to be available only to operational

staff inside a single domain because this facility can be used to monitor traffic from

147

third-parties. In comparison, IPMP echo probes can not be used to directly monitor

third-party traffic, so they do not present this threat.

8.3.2.3 Practicality

Trajectory sampling is useful, by design, to operators for measuring per-hop Inter-

net packet dynamics inside a single domain. Before measurement commences, the

same identification hash function must be deployed amongst all routers in the path.

If the applicable routers are not known in advance, then either the path must first be

discovered, or the hash function must be distributed amongst all possible routers.

In contrast, IPMP allows any network user to measure per-hop Internet packet

dynamics, and allows them to be measured Internet-wide, rather than just in the

local domain. No state is required to be kept by routers to allow per-hop Internet

packet dynamics to be measured.

8.4 Summary

This chapter reviewed two Internet measurement protocols that were developed re-

cently. While both protocols have different goals and motivations behind their de-

velopment, contrasting with IPMP allows the design of IPMP to be further scruti-

nised. Because IPMP is designed to be a general-purpose measurement protocol

that seeks the cooperation of routers, IPMP is designed for efficient processing by

routers.

148

Chapter 9

Conclusions

9.1 Summary of Thesis

This thesis presents the IP Measurement Protocol (IPMP) – a protocol designed for

per-hop measurement of Internet packet dynamics. An IPMP echo probe directly

measures per-hop Internet packet dynamics in the context of an IP path to a desti-

nation by allowing routers on the path to embed information into the probe as it is

forwarded. IPMP also provides auxiliary functions useful for Internet measurement.

The two main goals of this thesis are to show that an Internet protocol designed for

per-hop measurement of Internet packet dynamics, such as IPMP, is useful, and to

show that the modification required to efficiently process IPMP in the forwarding

path is feasible.

To accomplish the first goal, this thesis motivates the measurement of packet

dynamics on an end-to-end, one-way, and per-hop basis in chapter 2. The metrics

discussed – delay, loss, reordering, and capacity – are fundamental properties of

an Internet path. Measurement of these properties on a per-hop basis is useful in

many scenarios, and is particularly valuable in an operational context when diag-

nosing a poorly performing Internet path, monitoring the behaviour of a network,

and in providing data on the properties of Internet paths. Measurement tools and

techniques currently available for measuring per-hop Internet packet dynamics have

many common limitations. These limitations include being forward-path bound, re-

lying on static path behaviour over the course of the measurement, requiring each

hop to be measured with a separate set of probes, and depending on router and fire-

149

wall implementations and configurations that do not disable, rate-limit, or block the

required responses.

This thesis shows how IPMP addresses these limitations by combining the mea-

surement of the path’s topology with the packet’s dynamics, so that each probe can

efficiently measure packet dynamics on a per-hop basis. Per-hop measurement tech-

niques that use IPMP to measure topology, delay, loss, reordering, and capacity are

more robust, reliable, convenient, and accurate than currently available measure-

ment techniques. These properties are derived from the ability of each IPMP echo

packet to carry a path record inserted by each router on an Internet path. With this

feature, it is possible to directly measure an IPMP echo packet’s dynamics on a per-

hop basis on both the forward and reverse paths. Further, it is possible to isolate

the packet dynamics contributed by each hop, because a path record contains infor-

mation which records when the packet arrived at each router. This provides a more

robust method for measurement of per-hop behaviour compared with techniques

which probe each hop individually.

For example, packet-pair capacity estimation techniques that use IPMP do not

require additional techniques to determine which of the measured dispersion modes

corresponds to the underlying capacity of the path because this information is em-

bedded in path records in the returned packets. Continuing with the capacity esti-

mation example, IPMP also provides convenience through being a general-purpose

measurement protocol, so explicit support for a packet-pair capacity estimation

technique at a target host is not required if IPMP is implemented.

The usefulness and convenience of IPMP was demonstrated by measurement

of per-hop packet behaviours on CRCnet with IPMP deployed on each router in

the network. Using IPMP packet-pairs, it was possible to determine the capacity

limiting link of a path, and the capability of some routers in the path to forward

packets by causing the two packets in the pair to contend for the same resources. In

addition, through per-hop measurement of variation in observed packet dispersion,

it was possible to infer where engineering effort would be best directed if improving

TCP performance of a particular path was important. For another CRCnet path,

it was possible to determine where packets were being lost and to correlate this

150

information to periodic tasks which use the network.

To accomplish the second goal of the thesis, which is to show that IPMP is fea-

sible to implement, this thesis presents three different implementations of IPMP and

measurements of the performance of two of these implementations. The first two

implementations were constructed by modifying the source code to the kernel for

BSD and Linux kernels. Measurement of the BSD implementation shows that the

forwarding path modification adds little extra processing delay compared to simply

forwarding an unmodified probe. In addition, other host factors were measured to

have a larger impact on forwarding performance than IPMP, indicating that IPMP

does not have a significant effect on forwarding performance.

The third implementation, written in VHDL, modified the forwarding path of a

customised non-blocking cross-bar Ethernet switch. This implementation processed

an echo probe in a fundamentally different way to the software implementation and

showed that the required modifications can be made to an IPMP echo probe without

significantly delaying the packet. The increase in forwarding delay was measured at

between 60ns and 120ns; the accuracy of this measurement is limited by the passive

measurement hardware used in the experiment.

This thesis also shows how IPMP can be implemented in a hardware-optimised

forwarding path, like that of many routers, so that an IPMP echo packet experiences

the same dynamics as any other packet, and does not provide a vector for DoS. This

is accomplished by processing an echo packet in parallel with other IP forwarding

tasks.

9.2 Future Work

The Internet relies on cooperation and interoperability. In order for IPMP to become

widely deployed, it must first be formally standardised by a standards body such as

the IETF. In conjunction with this, IPMP must also be implemented by router and

operating systems vendors.

This thesis has outlined a series of measurement techniques to measure funda-

mental properties of Internet links in isolation from each other. Future work might

151

examine the use of IPMP in more complicated measurement tools and techniques

such as for user-space evaluation of the likely TCP performance of a path similar

to that inferred by TReno [78]. In addition, the development of a tool suitable for

user-level Internet path diagnosis of jitter, loss, and reordering like that described

by Mahajan et al. [1] that uses IPMP could be developed.

If IPMP were widely deployed in the Internet, then large-scale Internet mod-

elling and analysis would be more feasible and lead towards more accurate mod-

els of Internet behaviours. Examples of large scale Internet measurement include

reverse-engineering the Internet [22] as proposed by Spring, Wetherall, and Ander-

son. The data captured would be useful for developing more accurate models of

per-hop Internet behaviour [3] and would be useful in simulating the behaviour of

new protocols in a more realistic manner.

IPMP is both feasible and useful and has the potential to enhance Internet mea-

surement, modelling, and development.

152

Appendix A

IPMP Internet Draft

This chapter contains a specification of IPMP in Internet Draft form.

153

Individual Submission A. McGregor
Internet Draft M. Luckie
Intended status: Experimental Waikato University
Expiration Date: December 7, 2006 June 5, 2006

IP Measurement Protocol (IPMP)
draft-mcgregor-ipmp-05.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 7, 2006.

Copyright Notice

Copyright (C) The Internet Society (2006).

Abstract

The practice and need for active measurement of networks is well
established. Current tools are not well suited to this task,
primarily because the protocols which they employ have not been
designed for measurement of the modern Internet. The IP Measurement
Protocol (IPMP) is based on packet-probes. It is designed to allow
routers to participate in measurements by inserting path information
as the probe passes between a pair of hosts. IPMP is tightly
constrained and easy to implement.

McGregor Expires December 7, 2006 [Page 1]

154

Internet-Draft IP Measurement Protocol June 2006

Table of Contents

1. Introduction ... 3
2. Terminology and Definitions 4
3. Packet Formats ... 4
3.1 IPMP Echo Request and Echo Reply 4
3.2 Path Record Format .. 6
3.3 IPMP Information Request and Information Reply 8
3.4 Real-time Reference Point Format 10
4. Processing of IPMP Packets 11
4.1 Source Host Echo Processing 11
4.2 Destination Host Echo Processing 11
4.3 Forwarding System Echo Processing 12
4.4 Path Record Insertion 12
4.5 Destination Host Information Request Processing 13
4.6 Denial of Service Attacks 14
5. Discussion ... 14
5.1 Checksums ... 14
5.2 Real-time Timestamps 14
5.3 Inferred Real Time .. 15
5.4 Minimum Implementations 16
5.4.1 Echoing System .. 16
5.4.2 Forwarding System 16
6. Security Considerations 16
7. Acknowledgements ... 16
8. References ... 17
8.1 Normative References 17
8.2 Informative References 17
9. Authors’ Address ... 17

McGregor Expires December 7, 2006 [Page 2]

155

Internet-Draft IP Measurement Protocol June 2006

1. Introduction

The practice and need for active measurement of networks is well
established. Current tools are not well suited to this task,
primarily because the protocols which they employ have not been
designed for measurement of the modern Internet.

For example, the Internet Control Message Protocol (ICMP) is widely
used for measurements (in part because there is not a better
alternative) despite its well known limitations for this task.
These limitations include it being treated differently to other
IP protocols at routers and hosts, because it is difficult to
efficiently generate appropriate response packets. In addition,
ICMP has been implicated in denial of service attacks.
As a consequence, some Internet Service Providers (ISPs) disable
ICMP even though this potentially causes poor performance and does
not comply with [RFC1009].

Current packet probing techniques are not suited to measuring packet
delay at the router level, for several reasons. Routers often make
bad measurement targets because they are optimised for the
relatively simple task of forwarding packets. Because they are an
opportunity for denial of service attacks, routers may process tasks
that are resource intensive at low priority or not at all. Some
measurement techniques construct measurement traffic that can be
difficult to efficiently detect and respond to amongst other
network traffic. This type of measurement traffic precludes
measuring to a router and makes the task of identifying where delays
occur in the network difficult.

IPMP addresses all of these issues by providing a measurement
protocol that is tightly constrained [RFC1925], efficient, and easy
to implement. The protocol has been designed so measurement packets
can be processed with approximately the same level of computation as
needed for IP packet forwarding.

The protocol operates as an echo protocol allowing packet loss,
one-way path length, round-trip time, and one-way delay measurements
to be taken. The protocol also allows a measurement host to resolve
router aliases from the interface IP addresses it collects in the
echo exchange by exchanging information packets after the measurement
has completed.

McGregor Expires December 7, 2006 [Page 3]

156

Internet-Draft IP Measurement Protocol June 2006

Packets are generated by a measurement host and returned by an
echoing router or host. An echoing router or host is known as an
echoing system in this memo. The translation of router timestamps
to real-time timestamps is supported through a separate information
request and reply exchange between the measurement system and
systems that insert timestamps into the echo request or reply.

2. Terminology and Definitions

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described [RFC2119] and
indicate requirement levels for compliant IPMP implementations.

3. Packet Formats

3.1 IPMP Echo Request and Echo Reply

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Version | Type | Faux IP Proto | Reserved |
+-+
| Identifier | Sequence Number |
+-+
| Faux Source Port | Faux Destination Port |
+-+

| Path Record(s) |
: :
+-+
| Path Record Pointer | Checksum |
+-+

Version = 1

Type

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|E| Res |S|I|R|
+-+-+-+-+-+-+-+-+

E = echo packet
I = information packet (see Section 3.3)
R = request packet = 1 / response packet = 0
S = singleton packet, used for one-way probes, not echoed

McGregor Expires December 7, 2006 [Page 4]

157

Internet-Draft IP Measurement Protocol June 2006

Faux IP Proto, Faux Source Port, Faux Destination Port

The Faux IP Proto field mimics the IP header’s protocol field.
The Faux Source and Destination Port fields mimic the TCP or UDP
source and destination port fields (as appropriate). These fields
allow an IPMP echo packet to be queued or filtered based on a
quintuple of values when combined with the IP source and
destination addresses. Intermediate routers schedule an echo
packet with these fields if they implement a packet scheduling
discipline that is not first-in first-out (FIFO).

When an echo packet is received at the destination, the Faux
Source and Destination Ports MUST be swapped to reflect the way
that TCP and UDP ports are inverted in reply packets.

Identifier, Sequence Number

The echo request packet should contain enough information to
match an echo response packet. The identifier SHOULD be set to
the lower 16 bits of the process identifier responsible for
sending the packet, and the sequence number SHOULD increment for
each echo request packet sent to a unique IP address with a
particular identifier value.

Firewalls that keep state SHOULD use the Identifier field -
combined with the source and destination IP addresses and IP
protocol number (not Faux IP Proto) - to hash a packet in order
to decide which echo packets to allow past.

Path Record(s)

A source host is responsible for pre-allocating space for path
records to be inserted by intermediate systems. The path record
format is shown in Section 3.2. Other systems MUST NOT increase
the length of the space reserved for path records if the
pre-allocated space is consumed.

The first path record begins at the first byte after the echo
header. All path records are contiguous.

The pre-allocated space MUST be initialised to zero, except for
the Time to Live (TTL) or Hop Limit (HLIM) fields.
A source host MAY restrict the insertion of path records to
specific TTL / HLIM values by pre-initialising the TTL / HLIM
fields of the path record space to the TTL / HLIM values of
interest. The TTL / HLIM fields MUST be laid out in descending
order, except for the wildcard value of 255, e.g. [254, 250,
249, 255, 255].

McGregor Expires December 7, 2006 [Page 5]

158

Internet-Draft IP Measurement Protocol June 2006

Path Record Pointer

The position of the next available path record location, in
bytes from the beginning of the IPMP header, if there is space.
If an intermediary inserts a path record, it MUST increment the
path pointer by the size of the path record inserted.

Checksum

The checksum is the 16-bit one’s complement of the one’s
complement sum of the IPMP message starting with the IPMP version
field and ending with the end of the IPMP packet. For computing
the checksum, the checksum is set to zero.

3.2 Path Record Format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| TTL | Flags | FlowC | Timestamp |
+-+
| Timestamp <continued> |
+-+
| IP version 4 (IPv4) Address of Receiving Interface |
+-+

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| HLIM | Flags | FlowC | Timestamp |
+-+
| Timestamp <continued> |
+-+
| |
| IP version 6 (IPv6) Address of Receiving Interface |
| |
| |
+-+

TTL / HLIM

A host or router MUST include in a path record the value of the
TTL or HLIM field in the packet’s IP header after it has been
decremented as part of the packet forwarding process. This allows
an end-host to identify gaps in the network where a path record
was not inserted.

McGregor Expires December 7, 2006 [Page 6]

159

Internet-Draft IP Measurement Protocol June 2006

Flags

0 1 2 3
+-+-+-+-+
|S| Res |
+-+-+-+-+

S = Set bit (S-bit). Set to 1 when the path record space has
been used, and initialised to zero by the source host to indicate
that the path record has not been set.

FlowC

A host or router MAY include a flow counter which corresponds
to the flow counter value for an IPMP echo flow. An IPMP echo
flow is defined as a series of echo packets with the same
source and destination IP addresses and IPMP echo identifier.
A flow counter is scoped to the receiving interface.

Timestamp

A host or router MAY include the time at which the interface
completed receiving the packet. If the timestamp is not set in
the path record, the default value is zero. The timestamp is
allocated 48 bits, although the host or router does not have to
use them. The timestamp, if included, SHOULD represent the time
that the last bit of the packet was received.

IPv4 / IPv6 Address of Receiving Interface

When an echo request packet is received by the destination host,
the destination SHOULD set this field to the destination address
of the echo request so that the source host can determine which
path record (if any) corresponds to the echo packet arriving at
the destination. Similarly, when an echo reply packet is
received by the source host, the source SHOULD set this field to
the destination address set in the IP header.

Otherwise, this field contains the address of interface at which
the echo packet was received. If the receiving interface has
multiple addresses to choose from, the router should select one
with the same scope as the echo packet’s destination. A router
SHOULD NOT use an anycast, link-local, or multicast address in
this field, because these addresses either do not uniquely
identify the interface or are not globally-routable, preventing
the information exchange from taking place.

McGregor Expires December 7, 2006 [Page 7]

160

Internet-Draft IP Measurement Protocol June 2006

3.3 IPMP Information Request and Information Reply

Information Request

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Version | Type | Checksum |
+-+
| Identifier | Sequence Number |
+-+
| | :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
: (optional) Reported Times Of Interest :
+-+

Information Reply

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Version | Type | Checksum |
+-+
| Identifier | Sequence Number |
+-+
| Reserved | Accuracy | Performance Data Pointer |
+-+
| IPMP Processing Overhead |
+-+
| (optional) Real-time Reference Points |
: :
+-+
| (optional) Performance Data |
: :
+-+

Version, Type, Checksum, Identifier, Sequence Number

See Section 3.1

Accuracy

The number of valid bits in the fractional portion of each
real-time timestamp in each real-time reference point.

McGregor Expires December 7, 2006 [Page 8]

161

Internet-Draft IP Measurement Protocol June 2006

Performance Data Pointer

The position, of the performance data field, in bytes from the
beginning of the IPMP packet, if it exists. If there is no
performance data field, the default is 0.

IPMP Processing Overhead

The maximum difference between the time taken to process and
forward an IPMP packet and the time taken to forward an IP
packet with the same characteristics. The echo system may use
the values supplied in Faux IP Proto, Faux Source Port, and Faux
Destination Port if it implements a queueing discipline that is
not FIFO. If the overhead is unknown, then the value recorded
is MAX_TIME, i.e., 0xffffffff.

Reported Times of Interest

A measurement system MAY request that the end system constrain
the real-time reference points to cover a particular timestamp
that it received. In this case, the timestamping system SHOULD
return a real-time reference point for just this timestamp or a
pair of reference points, one before and one after, the
timestamp. In other cases the timestamping system MAY return
an arbitrary number of reference points bounded by the size of
the packet it can send.

Real-time Reference Points

A real-time reference point (see Section 3.4) gives the
relationship between real-time and the timestamp that would have
been placed in a path record by the interface at that time.
If any reference points are included, there must be at least two.
Within the bounds of the overall size of the packet, any number
of reference points may be included.

Performance Data

The Performance Data field allows arbitrary information from the
MIB of the system or the interface to optionally be included in
the Information Reply. It is formatted as a VarBindList from the
SNMPv2-PDU defined in [RFC3416]. In this context, ObjectSyntax
is the only valid choice within VarBind.

McGregor Expires December 7, 2006 [Page 9]

162

Internet-Draft IP Measurement Protocol June 2006

For example:

IPMP-PERFORMANCE-DATA DEFINITIONS ::= BEGIN

IMPORTS
ObjectName, ObjectSyntax,

FROM SNMPv2-SMI;

max-bindings
INTEGER ::= 2147483647

-- IPMP simplified list element
IPMPVarBind ::=

SEQUENCE {
name

ObjectName,
value

ObjectSyntax
}

-- variable-binding list
VarBindList ::=

SEQUENCE (SIZE (0..max-bindings)) OF
IPMPVarBind

END

3.4 Real-time Reference Point Format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| Local Clock Time |
+-+
| Real Time |
| |
+-+
| Estimated Error |
| |
+-+

Local Clock Time

A 48-bit timestamp in the same format as would be used in a path
record, which correlates a free-running local clock timestamp
with real time.

McGregor Expires December 7, 2006 [Page 10]

163

Internet-Draft IP Measurement Protocol June 2006

Real Time

A Network Time Protocol (NTP) formatted timestamp representing
the real time corresponding with the local clock time.

Estimated Error

An NTP formatted timestamp estimating the error bounds of the
real-time timestamp.

4. Processing of IPMP Packets

4.1 Source Host Echo Processing

A source host constructs an IPMP request, encapsulates it in an IP
datagram and the appropriate link layer protocol and sends it into
the network. Performance information is gleaned from the presence
or absence of a reply, the delay between the request and the reply,
the path record(s) if present, and the presence of errors, if they
occur.

When constructing an echo request, a source MUST set all words from
the end of the echo header to the beginning of the echo trailer (the
space allocated for path records) to zero, except for the bytes
corresponding to the TTL/HLIM field for path records.

The source host MAY include a path record when it sends an echo
request, and a path record when it receives an echo reply.

IPMP echo packets encapsulated in IPv4 SHOULD be sent with the
Don’t Fragment (DF) bit set, because the entire echo packet is
required in order to insert a path record. A source host SHOULD
assign a unique value to the IPv4 identifer field in case the
packet is fragmented despite the DF bit being set.

4.2 Destination Host Echo Processing

The IPMP echo request and echo reply packet formats are designed to
make processing at the destination host simple and efficient.

On receipt of the IPMP echo request, the destination constructs
the echo reply from the echo request by:

1. exchanging the source and destination IP addresses;

2. exchanging the faux source and destination ports;

3. setting the reply bit in the IPMP type field and incrementally
updating the IPMP checksum for this alteration;

McGregor Expires December 7, 2006 [Page 11]

164

Internet-Draft IP Measurement Protocol June 2006

4. decrementing the TTL field in the IP header and incrementally
updating the IP checksum;

5. optionally inserting a path record as described in Section 4.4;
and

6. scheduling the packet for forwarding, taking into account the
faux IP protocol, faux source port, and faux destination port,
if appropriate.

The destination host does not:

o validate the value of the IPMP checksum present in the header
against the contents of the packet;

o recalculate the IPMP checksum from scratch before transmitting
the packet;

Processing information request packets requires more resources
than processing an echo request. Direct measurements are not made
with an information exchange. Consequently, an implementer may
choose to process information request packets off the interface card
and/or at low priority.

4.3 Forwarding System Echo Processing

A forwarding system does not need to be IPMP aware. In the simplest
case, an IPMP packet is forwarded like any other IP packet.

If the forwarding system schedules packets based on the value of
any combination of the IP protocol field and the TCP or UDP source
and destination ports, then the forwarding system SHOULD use the
faux fields in the IPMP header for this purpose in place of the IP,
TCP or UDP fields.

A forwarding system MAY include a path record, as described in the
following section.

4.4 Path Record Insertion

Inclusion of path records is optional. A path record MAY be
inserted by forwarding systems on the forward and reverse paths,
and by the source and destination hosts.

A forwarding system SHOULD NOT insert a path record if it
cannot modify the packet in the same processing stream that any
other packet would take. This is to avoid the measurement path
being significantly different than that taken by a regular packet,
and to reduce opportunities for denial of service attacks.

McGregor Expires December 7, 2006 [Page 12]

165

Internet-Draft IP Measurement Protocol June 2006

A system that can insert a path record MUST ensure the complete
IP packet is available. If the echo packet is encapsulated in IPv4,
this means that the IP more fragments (MF) bit must not be set, and
the IP offset field must be zero. If the packet is encapsulated in
IPv6, this means that the packet is not encapsulated in an IPv6
fragmentation header.

A system that can insert a path record MUST check for sufficient
space in the echo packet based on the size of the path record
inserted. An IPv4 path record requires 12 bytes, while the IPv6
path record requires 24 bytes.

If a path record is inserted, it MUST be inserted in the first path
record space where the S-bit is not set. If the system processes
the packet in a store-and-forward manner, the first byte of this
path record will be indicated by the path record pointer.

A system that can insert a path record MUST compare the TTL/HLIM
field in the pre-initialised path record with the TTL/HLIM field
in the IP header after it has been decremented as part of the
normal IP forwarding process. A system MUST NOT insert a path
record unless the path record TTL is greater than or equal to the
IP TTL/HLIM.

A system that inserts a path record MUST update the path record
pointer as appropriate, MUST incrementally update the IPMP checksum
field as described in [RFC1624], and MUST also set the S-bit in
the flags field of the path record inserted. A system that inserts
a path record MUST NOT increase the length of an echo packet if
there is no reserved space left.

A system that adds a path record MAY include a timestamp in the
path record. If it does not include a timestamp, the timestamp
field in the path record is left unaltered, i.e., remains zero.

A system that adds a path record MAY include a flow counter in the
path record. If it does not include a timestamp, the FlowC field
in the path record is left unaltered, i.e., remains zero. If a
flow counter is included, the flow counter MUST increment by one
with each echo packet belonging to the same flow. An IPMP echo
flow entry MUST have interface scope, and is defined by the source
and destination IP addresses and IPMP identifier.

4.5 Destination Host Information Request Processing

When a destination host replies to an information request, it MUST
do so using a constant source address. This provides a mechanism
to resolve router aliases.

McGregor Expires December 7, 2006 [Page 13]

166

Internet-Draft IP Measurement Protocol June 2006

A destination host MAY include information useful for measurement
in the performance data section in an information reply packet.
This field is described in Section 3.3. Useful data to include in
this field may include bgpLocalAs from the BGP4-MIB [RFC1657],
and ifType, ifMtu, and ifSpeed from the IF-MIB [RFC2863].

4.6 Denial of service attacks

Because IPMP echo request packets are processed with approximately
the same effort as forwarding an IP packet, they do not introduce
any new denial of service opportunities.

IPMP information request packets may require more processing and may
be used as the basis of a denial of service attack in the same
way as any information request can be used on a router or host.
Because information request packets are not used to make
measurements, an implementer may implement protection against denial
of service attacks made with these packets in the same way as other
information requests. This might involve processing IPMP
information requests at a low priority, or regulating the maximum
flow of packets.

5. Discussion

5.1 Checksums

An IPMP checksum MUST be calculated by the source host when the
echo request packet is created. It is incrementally updated by
forwarding systems that insert a path record. The checksum is
not checked by a forwarding system or the destination. Errors
that occur between the source host and the destination host on
the forward and reverse paths are detected when the echo reply is
received at the source host.

5.2 Real-time Timestamps

32 bit real-time timestamp fields are coded following the
conventions described in [RFC1305]. Summarising from [RFC1305]:

In conformance with standard Internet practice, timestamps
are specified as integer or fixed-point quantities, with
bits numbered in big-endian fashion from 0 starting at the
left, or high-order, position. All quantities are unsigned
and may occupy the full field width with an implied 0
preceding bit 0.

McGregor Expires December 7, 2006 [Page 14]

167

Internet-Draft IP Measurement Protocol June 2006

Timestamps are represented as a 64-bit unsigned fixed-point
number, in seconds relative to 1 January 1900 00:00. The
integer part is in the first 32 bits and the fraction part
in the last 32 bits. In the fraction part, the
nonsignificant low order can be set to 0.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Seconds |
+-+
| Seconds Fraction (0-padded) |
+-+

This format allows convenient multiple-precision arithmetic
and conversion to UDP/TIME representation (seconds), but
does complicate the conversion to ICMP timestamp message
representation, which is in milliseconds. The most future
time that can be represented is 4,294,967 (some time in the
year 2036) with a precision of about 200 picoseconds, which
should be adequate for even the most demanding measurements.
RFC 2030 (SNTP) contains a proposal for extending timestamps
beyond the year 2036.

5.3 Inferred Real Time

The real time of a timestamp in a path record can be inferred when
a system provides an IPMP Information Reply with at least one Real-
Time Reference Point earlier, and one later, than the timestamp.
For the purpose of this inference, the drift of the clock is
assumed to be linear. Linear interpolation is used between the two
nearest Real-time Reference Points, where one is greater than, and
one is less than, the timestamp.

The timestamp in the path record structure may be of any format, as
discussed in Section 3.2; potentially, the timestamp can wrap over
the course of a series of measurements. It is the responsibility
of the measurement host to send information requests to the
timestamping systems sufficiently frequently to avoid information
loss. The correct frequency can be estimated from an information
reply.

McGregor Expires December 7, 2006 [Page 15]

168

Internet-Draft IP Measurement Protocol June 2006

5.4 Minimum Implementations

5.4.1 Echoing System

The simplest echoing system implementation returns the IPMP echo
request without a path record. As described in Section 4.2, this
only requires that the IP source and destination addresses be
exchanged, the R bit in the IPMP options field to be set, and the
packet scheduled for forwarding. Because of the format of the IPMP
echo request and echo reply packets, this can be implemented with a
very small number of instructions. A system that does not insert
path records does not need to process IPMP Information Requests.

Systems which provide even the minimum level of implementation will
allow a number of measurements to be made that are not currently
possible, specifically if they are routers that currently process
ICMP at a low priority to avoid DOS attacks.

5.4.2 Forwarding System

Forwarding systems do not need to be IPMP aware.

A forwarding system that is IPMP aware MAY include path records
with only the Forwarding IP Address set. This requires writing
the address to the packet and updating the checksum and Path
Pointer in the packet as described in Section 4.4. In this case
the forwarding system does not need to process IPMP Information
Request packets.

6. Security Considerations

An IPMP echo exchange reveals the path that may be taken between
two hosts. Some ISPs may feel that their security is weakened
if attackers know of an address in the core of their network,
and may choose to enable path record insertion for selected IP
addresses.

IPMP can be abused for denial of service attacks disguised as
legitimate measurement activity, although we feel that the
potential impact of IPMP denial of service attacks has been
minimised through not providing a vector for denial of service that
is not available with other protocols.

7. Acknowledgements

The comments of Randy Presuhn are appreciated. Maureen C. Curran
provides editorial assistance on the IPMP Internet drafts series.
James Spooner and Matt Jervis assisted with a VHDL implementation
and provided advice on how to make IPMP more hardware-friendly.

McGregor Expires December 7, 2006 [Page 16]

169

Internet-Draft IP Measurement Protocol June 2006

8. References

8.1 Normative References

[RFC1305] Mills, D., "Network Time Protocol (Version 3)
Specification, Implementation and analysis", RFC 1305, March
1992.

[RFC1624] Rijsinghani, A., editor. "Computation of the Internet
Checksum via Incremental Update", RFC 1624, May 1994.

[RFC2030] Mills, D. "Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI", RFC 2030, October 1996.

[RFC2119] Bradner, S. "Key words for use in RFCs to Indicate
Requirement Levels", RFC 2119, BCP 14, March 1997.

[RFC3416] Presuhn, R., editor. "Version 2 of the Protocol
Operations for the Simple Network Management Protocol
(SNMPv2)", RFC 3416, STD 62, December 2002.

8.2 Informative References

[RFC1009] Braden, R., and Postel, J. "Requirements for Internet
Gateways", STD 4, RFC 1009, USC/Information Sciences Institute,
June 1987.

[RFC1657] Willis, S., Burruss, J., and Chu, J., editor.
"Definitions of Managed Objects for the Fourth Version of the
Border Gateway Protocol (BGP-4) using SMIv2", RFC 1657, July
1994.

[RFC1925] Callon, R., editor. "The Twelve Networking Truths",
RFC 1925, April 1996.

[RFC2863] McCloghrie, K., and Kastenholz, F. "The Interfaces Group
MIB", RFC 2863, June 2000.

9. Authors’ Addresses

Anthony J. (Tony) McGregor
Department of Computer Science
Waikato University
Private Bag 3105
Hamilton
New Zealand
Phone: +64 7 838 4651
EMail: tonym@cs.waikato.ac.nz

McGregor Expires December 7, 2006 [Page 17]

170

Internet-Draft IP Measurement Protocol June 2006

Matthew J. Luckie
Department of Computer Science
Waikato University
Private Bag 3105
Hamilton
New Zealand
EMail: mjl@luckie.org.nz

McGregor Expires December 7, 2006 [Page 18]

171

Internet-Draft IP Measurement Protocol June 2006

Full Copyright Statement

Copyright (C) The Internet Society (2006).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).

McGregor Expires December 7, 2006 [Page 19]

172

Appendix B

VHDL code for IPMP Forwarding

This appendix provides a listing of VHDL code used to implement the path record

insertion process when forwarding an IPMP echo packet. The implementation is

described in section 5.4.

-- This file is part of the NBCS project undertaken by the WAND Network
-- research group, Dept of Computer Science, The University of Waikato.
--
-- (C) 2003-2006 The University of Waikato
-- All rights reserved
--
-- Authors:
-- James Spooner < jbs3@cs.waikato.ac.nz >
-- Matthew Jervis < mgj3@cs.waikato.ac.nz >
-- Matthew Luckie < mjl@wand.net.nz >
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity ipmp_8 is
port (

-- Options bus interface
reset_n : in std_logic;
clk : in std_logic;

data_in : in std_logic_vector(8 downto 0);
data_in_v : in std_logic;
cnt_in : in std_logic_vector(11 downto 0);

data_out : out std_logic_vector(8 downto 0);
data_out_v : out std_logic;
cnt_out : out std_logic_vector(11 downto 0);

-- Additional signals for IPMP Option

173

time_in : in std_logic_vector (47 downto 0);
ip_in : in std_logic_vector(31 downto 0)

);

end ipmp_8;

architecture rtl of ipmp_8 is

type IPMP_STATE is (NO_PACKET, PKT_WAIT, IP4, IP4_IPMP, PR_INS,
ECHO_TRAILER);

signal currstate : IPMP_STATE;
signal nextstate : IPMP_STATE;

signal ip4_addr : std_logic_vector(31 downto 0);

signal data_h : std_logic_vector(8 downto 0);
signal data_l : std_logic_vector(8 downto 0);
signal data_v : std_logic;

signal cnt : std_logic_vector(11 downto 0);

signal length_i : std_logic_vector(15 downto 0);
signal length : std_logic_vector(15 downto 0);
signal length_l : std_logic;

signal pathp_i : std_logic_vector(15 downto 0);
signal pathp : std_logic_vector(15 downto 0);
signal pathp_l : std_logic;

signal ttl_i : std_logic_vector(7 downto 0);
signal ttl : std_logic_vector(7 downto 0);
signal ttl_l : std_logic;

signal plst_i : std_logic_vector(5 downto 0);
signal plst : std_logic_vector(5 downto 0);
signal plst_l : std_logic;

signal carry : std_logic_vector(31 downto 0);
signal carry_wrap : std_logic_vector(15 downto 0);

signal csum_i : std_logic_vector(31 downto 0);
signal csum : std_logic_vector(31 downto 0);
signal csum_l : std_logic;

signal abus : std_logic_vector(15 downto 0);
signal bbus : std_logic_vector(15 downto 0);

signal timestamp : std_logic_vector(47 downto 0);

signal advance : std_logic;

signal data : std_logic_vector(15 downto 0);
signal data_next : std_logic_vector(15 downto 0);

-- Aliases

174

alias eth_type : std_logic_vector(15 downto 0) is data;
alias ip4_v : std_logic_vector(3 downto 0) is data(15 downto 12);
alias ip4_hl : std_logic_vector(3 downto 0) is data(11 downto 8);
alias ip4_proto : std_logic_vector(7 downto 0) is data(15 downto 8);
alias ip4_offset : std_logic_vector(12 downto 0) is data(12 downto 0);
alias ip4_length : std_logic_vector(15 downto 0) is data;
alias ip4_ttl : std_logic_vector(7 downto 0) is data(15 downto 8);
alias ipmp_ver : std_logic_vector(7 downto 0) is data(15 downto 8);
alias ipmp_type : std_logic_vector(7 downto 0) is data(7 downto 0);
alias ipmp_pathp : std_logic_vector(15 downto 0) is data;
alias ipmp_chksum : std_logic_vector(15 downto 0) is data;
alias pr_ttl : std_logic_vector(7 downto 0) is data(15 downto 8);

-- Constants

constant ETH_TYPE_IP4 : std_logic_vector(15 downto 0) := X"0800";
constant IP_VERSION_FOUR : std_logic_vector(3 downto 0) := X"4";
constant IP_PROTO_IPMP : std_logic_vector(7 downto 0) := X"A9";
constant IPMP_VERSION_ONE : std_logic_vector(7 downto 0) := X"01";
constant IP_OFFSET_ZERO : std_logic_vector(12 downto 0)

:= B"0000000000000";

-- Structure Lengths

constant ETH_HDR_LEN : integer := 22;
constant IPMP_PR_LEN : integer := 12;
constant IPMP_ECHO_LEN : integer := 16;
constant ECHO_HEADER_LEN : integer := 12;
constant ECHO_TRAILER_LEN : integer := 4;

-- Packet Offsets

constant ETH_TYPE_O : integer := 21;
constant IP4_VHL_O : integer := ETH_HDR_LEN + 1;
constant IP4_LENGTH_O : integer := ETH_HDR_LEN + 3;
constant IP4_OFFSET_O : integer := ETH_HDR_LEN + 7;
constant IP4_TTL_O : integer := ETH_HDR_LEN + 9;
constant IP4_PROTO_O : integer := ETH_HDR_LEN + 10;
constant IPMP_VER_O : integer := 1;
constant IPMP_TYPE_O : integer := 2;
constant IPMP_PATHP_O : integer := 13;
constant IPMP_CKSUM_O : integer := 15;

begin

data <= data_h(7 downto 0) & data_l(7 downto 0);
advance <= data_in_v;

ATLATCH : process (clk, reset_n)
begin
if reset_n = ’0’ then

timestamp <= (others => ’0’);
ip4_addr <= (others => ’0’);

elsif rising_edge(clk) then
-- Latch IP addresses into registers
-- Latch timestamp into register until first byte
if cnt = 0 then

timestamp <= time_in;

175

ip4_addr <= ip_in (31 downto 0);
end if;

end if;
end process;

--
-- Data (input) Latch
--

DLATCH : process(clk, reset_n)
begin
if reset_n = ’0’ then

data_l <= (others => ’0’);
data_h <= (others => ’0’);
data_v <= ’0’;
cnt <= (others => ’0’);

elsif rising_edge(clk) then
data_v <= data_in_v;
if advance = ’1’ then

data_l <= data_in;
data_h <= data_l(8) & data_next(7 downto 0);
cnt <= cnt_in;

end if;
end if;

end process;

cnt_out <= cnt;

CKSUM : process (clk, reset_n)
begin
if reset_n = ’0’ then

csum <= (others => ’0’);
elsif rising_edge(clk) then

if advance = ’1’ then
if cnt = "000000000000" then
csum <= (others => ’0’);

elsif csum_l = ’1’ then
csum <= csum_i;

end if;
end if;

end if;
end process;

--
-- IPMP Packet Detector
--

carry_wrap <= carry(15 downto 0) + carry(31 downto 16);

PDETECT : process (data, cnt, timestamp, data_l, carry,
pathp, ip4_addr, currstate, ttl,
data_v, data_h, data_next, plst,
csum_i, csum, length, abus, bbus)

begin

carry <= (others => ’0’);
csum_i <= (csum + bbus - abus);

176

data_next <= data_h(7 downto 0) & data_l(7 downto 0);

data_out_v <= data_v;
data_out <= data_h(8) & data_next(15 downto 8);

nextstate <= PKT_WAIT;

-- Latch indicators for various values we need to remember
ttl_l <= ’0’;
ttl_i <= (others => ’0’);

pathp_l <= ’0’;
pathp_i <= (others => ’0’);

length_l <= ’0’;
length_i <= (others => ’0’);

plst_l <= ’0’;
plst_i <= "000000";

csum_l <= ’0’;

abus <= (others => ’0’);
bbus <= (others => ’0’);

if cnt = "0000000000" then
-- Reset the statemachine if we get another packet
nextstate <= NO_PACKET;

else
case currstate is

when NO_PACKET =>

nextstate <= NO_PACKET;

if cnt = ETH_TYPE_O then
-- check that the ethernet type indicates IPv4
if eth_type = ETH_TYPE_IP4 then

nextstate <= IP4;
else

nextstate <= PKT_WAIT;
end if;

end if;

when IP4 =>

nextstate <= IP4;

if cnt = IP4_VHL_O then
-- check that we’ve got IP version 4
if ip4_v = IP_VERSION_FOUR then

-- If so, grab the header length (in case we have options)
-- and continue; ip4_hl is word addressed
plst_l <= ’1’;
plst_i <= (ip4_hl & "00") + ETH_HDR_LEN;

else
-- Abort on NON-IPV4 packets

177

nextstate <= PKT_WAIT;
end if;

end if;

if cnt = IP4_LENGTH_O then

-- if this packet does not hold enough for echo header, echo
-- trailer, and a path record, then skip.
if ip4_length < plst + IPMP_ECHO_LEN + IPMP_PR_LEN then

nextstate <= PKT_WAIT;
end if;
length_l <= ’1’;
length_i <= ip4_length;

elsif cnt = IP4_OFFSET_O then

-- Abort if a fragment
if ip4_offset /= IP_OFFSET_ZERO then

nextstate <= PKT_WAIT;
end if;

-- Abort if the MF bit is set, since the whole packet
-- needs to be here for the echo trailer
if data(13) = ’1’ then

nextstate <= PKT_WAIT;
end if;

elsif cnt = IP4_TTL_O then
-- Keep TTL for path record
ttl_l <= ’1’;
ttl_i <= ip4_ttl;

-- Load a potential ttl replacement into checksum
csum_l <= ’1’;
bbus <= ip4_ttl & X"00";

elsif cnt = IP4_PROTO_O then
-- skip if ip protocol type is not IPMP
if ip4_proto /= IP_PROTO_IPMP then

nextstate <= PKT_WAIT;
end if;

elsif cnt = plst then
-- got to the end of the IP header,
-- go onto the IPMP header now
nextstate <= IP4_IPMP;

end if;

when IP4_IPMP =>

nextstate <= IP4_IPMP;

if (cnt - plst) = IPMP_VER_O then
-- skip if an unknown IPMP version
if ipmp_ver /= IPMP_VERSION_ONE then

nextstate <= PKT_WAIT;
end if;

178

elsif (cnt - plst) = IPMP_TYPE_O then
-- skip if not an IPMP echo
if (data(15) = ’0’) then

nextstate <= PKT_WAIT;
else

pathp_l <= ’1’;
pathp_i <= X"000C";
nextstate <= PR_INS;

end if;

end if;

when PR_INS =>

nextstate <= PR_INS;

if (cnt - plst) = pathp + 1 then
if cnt > length + ETH_HDR_LEN -
(ECHO_TRAILER_LEN + IPMP_PR_LEN) then
-- check for room for a path record and echo trailer
nextstate <= PKT_WAIT;

elsif ttl > pr_ttl then
-- skip if pre-initalised PR TTL is larger than IP TTL
nextstate <= PKT_WAIT;

elsif (data(7) = ’0’) then
-- subtract the existing PR TTL value from the checksum
csum_l <= ’1’;
abus <= pr_ttl & X"00";
bbus <= X"0080";
-- write the replacement TTL value out
data_next <= ttl & X"80";

else
-- wait until the next path record now
pathp_l <= ’1’;
pathp_i <= pathp + 12;

end if;

elsif (cnt - plst) = pathp + 3 then
-- First 16 bits of timestamp
csum_l <= ’1’;
bbus <= timestamp(47 downto 32);
data_next <= bbus;

elsif (cnt - plst) = pathp + 5 then
-- Second 16 bits of timestamp
csum_l <= ’1’;
bbus <= timestamp(31 downto 16);
data_next <= bbus;

elsif (cnt - plst) = pathp + 7 then
-- Third 16 bits of timestamp
csum_l <= ’1’;
bbus <= timestamp(15 downto 0);

179

data_next <= bbus;

elsif (cnt - plst) = pathp + 9 then
-- First 16 bits of IP address
csum_l <= ’1’;
bbus <= ip4_addr(31 downto 16);
data_next <= bbus;

elsif (cnt - plst) = pathp + 11 then
-- Second 16 bits of IP address
csum_l <= ’1’;
bbus <= ip4_addr(15 downto 0);
data_next <= bbus;
nextstate <= ECHO_TRAILER;

end if;

when ECHO_TRAILER =>

nextstate <= ECHO_TRAILER;

-- if the path record pointer has arrived, then increment it
if cnt = ETH_HDR_LEN + (length - 4) + 1 then

csum_l <= ’1’;
abus <= ipmp_pathp;
bbus <= ipmp_pathp + 12;
data_next <= bbus;

-- sneaky in-between path record pointer and checksum cycle to
-- fold the checksum
elsif cnt = ETH_HDR_LEN + (length - 3) + 1 then

csum_l <= ’1’;
csum_i <= (X"0000" & csum(15 downto 0)) +

(X"0000" & csum(31 downto 16));

-- if the checksum field has arrived, incrementally update it
elsif cnt = ETH_HDR_LEN + (length - 2) + 1 then

carry <= (not ((X"0000" + csum(31 downto 0)) +
(X"0000" & csum(31 downto 16))))

+ ipmp_chksum + 1;

if carry_wrap = X"FFFF" then
data_next <= X"0000";

else
data_next <= carry_wrap;

end if;

-- got to the end of the IPMP packet, go back into PKT_WAIT
elsif cnt = ETH_HDR_LEN + length then

nextstate <= PKT_WAIT;

end if;

when PKT_WAIT =>

-- Wait the packet out
nextstate <= PKT_WAIT;

180

if data_h(8) = ’0’ then
nextstate <= NO_PACKET;

end if;

when others =>
nextstate <= PKT_WAIT;

end case;
end if;

end process;

STATEM : process (clk, reset_n)
begin
if reset_n = ’0’ then

length <= (others => ’0’);
pathp <= (others => ’0’);
ttl <= (others => ’0’);
plst <= (others => ’0’);
currstate <= NO_PACKET;

elsif rising_edge(clk) then

-- This is important
-- We don’t advance the state machine unless the word is valid.

if advance = ’1’ then

currstate <= nextstate;

if length_l = ’1’ then
length <= length_i;

end if;

if pathp_l = ’1’ then
pathp <= pathp_i;

end if;

if ttl_l = ’1’ then
ttl <= ttl_i;

end if;

if plst_l = ’1’ then
plst <= plst_i;

end if;

end if;
end if;

end process;

end rtl;

181

Bibliography

[1] R. Mahajan, N. Spring, D. Wetherall, and Anderson. T., “User-level Internet

path diagnosis,” in Proceedings of the nineteenth ACM symposium on Operat-

ing systems principles (SOSP), Bolton Landing, NY, Oct. 2003, pp. 106–119.

[2] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion tech-

niques measure?,” in Proceedings of IEEE INFOCOM, Anchorage, Alaska,

Apr. 2001, pp. 905–914.

[3] S. Floyd and E. Kohler, “Internet research needs better models,” ACM SIG-

COMM Computer Communications Review, vol. 33, no. 1, pp. 29–34, Jan.

2003.

[4] M. Muuss, “Ping,” http://ftp.arl.mil/∼mike/ping.html.

[5] V. Jacobson, “Traceroute,” ftp://ftp.ee.lbl.gov/traceroute.

tar.Z.

[6] K. Lai and M. Baker, “Measuring bandwidth,” in Proceedings of IEEE INFO-

COM, New York, NY, Mar. 1999, pp. 235–245.

[7] V. Jacobson, “pathchar - a tool to infer characteristics of Internet paths,” Apr.

1997, ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf.

[8] A.J. McGregor, “The IP Measurement Protocol,” http://moat.nlanr.

net/AMP/AMP/IPMP/, 1998.

[9] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport

protocols in the Internet,” ACM SIGCOMM Computer Communication Re-

view, vol. 35, no. 2, pp. 37–52, Apr. 2005.

182

[10] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),” RFC

4271, IETF, Jan. 2006.

[11] J. Hawkinson and T. Bates, “Guidelines for creation, selection, and registra-

tion of an Autonomous System (AS),” RFC 1930, IETF, Mar. 1996.

[12] B. Huffaker, D. Plummer, D. Moore, and k. claffy, “Topology discovery by ac-

tive probing,” in Symposium on Applications and the Internet (SAINT), Nara,

Japan, Jan. 2002, pp. 90–96.

[13] L. Subramanian, V.N. Padmanabhan, and R.H. Katz, “Geographic properties

of Internet routing,” in Proceedings of the General Track: 2002 USENIX

Annual Technical Conference, Monterey, CA, June 2002, pp. 243–259.

[14] V. Paxson, Measurement and Analysis of End-to-End Internet Dynamics,

Ph.D. thesis, University of California at Berkeley, 1997.

[15] H. Burch and W. Cheswick, “Mapping the Internet,” IEEE Computer, vol. 32,

no. 4, Apr. 1999.

[16] “Netdimes project,” http://www.netdimes.org/.

[17] A. Broido and k. claffy, “Analysis of RouteViews BGP data: policy atoms,”

in Proceedings of NRDM workshop, Santa Barbara, CA, May 2001.

[18] A. Broido and k claffy, “Internet topology: Connectivity of IP graphs,” in Pro-

ceedings of SPIE International symposium on Convergence of IT and Commu-

nication, Denver, CO, Aug. 2001, pp. 172–187.

[19] H. Burch, Measuring an IP Network in situ, Ph.D. thesis, Carnegie Mellon

University, 2005.

[20] M. Fomenkov, k. claffy, B. Huffaker, and D. Moore, “Macroscopic Internet

topology and performance measurements from the DNS root name servers,”

in Proceedings of USENIX LISA, San Diego, CA, Dec. 2001.

183

[21] E. Cronin, S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt, “Constrained

mirror placement on the Internet,” IEEE Journal on Selected Areas in Com-

munications, vol. 20, no. 7, pp. 1369–1382, Sept. 2002.

[22] N. Spring, D. Wetherall, and T. Anderson, “Reverse-engineering the Internet,”

in ACM SIGCOMM Workshop on Hot Topics in Networks, Cambridge, MA,

Nov. 2003, pp. 3–8.

[23] N. Spring, Efficient discovery of network topology and routing policy in the

Internet, Ph.D. thesis, University of Washington, 2004.

[24] J. Postel, “Internet Protocol,” RFC 791, IETF, Sept. 1981.

[25] K. Papagainnaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, “Measurement

and analysis of single-hop delay on an IP backbone network,” IEEE Journal

on Selected Areas in Communications, vol. 21, no. 6, pp. 908–921, Aug. 2003.

[26] G. Malkin, “Traceroute using an IP option,” RFC 1393, IETF, Jan. 1993.

[27] M. Luckie, K. Cho, and B. Owens, “Inferring and debugging path MTU dis-

covery failures,” in Proceedings of Internet Measurement Conference 2005,

Berkeley, CA, Oct. 2005, pp. 193–198.

[28] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with

Rocketfuel,” in Proceedings of ACM/SIGCOMM ’02, Pittsburgh, PA, Aug.

2002, pp. 133–145.

[29] S. Bellovin, “A technique for counting NATted hosts,” in Proceedings of the

2nd ACM SIGCOMM conference on Internet measurement, Marseille, France,

Oct. 2002.

[30] V. Jacobson, “Compressing TCP/IP headers for low-speed serial links,” RFC

1144, LBL, Feb. 1990.

[31] D.L. Mills, “Network Time Protocol (version 3): Specification, implementa-

tion and analysis,” RFC 1305, University of Delaware, Mar. 1992.

184

[32] R. Govindan and V. Paxson, “Estimating router ICMP generation times,” in

Proceedings of the PAM2002 workshop on Passive and Active Measurements,

Fort Collins, CO, Mar. 2002.

[33] G. Jin and B.L. Tierney, “System capability effects on algorithms for network

bandwidth effects,” Proceedings of the 3rd ACM SIGCOMM conference on

Internet measurement, pp. 27 – 38, Oct. 2003.

[34] J. Postel, “Internet Control Message Protocol,” RFC 792, IETF, Sept. 1981.

[35] K.C. Claffy, G.C. Polyzos, and H-W. Braun, “Measurement considerations

for assessing unidirectional latencies,” Internetworking: Research and Expe-

rience, vol. 4, no. 3, pp. 121–132, 1993.

[36] S. Shalunov and B. Teitelbaum, “One-way active measurement protocol

(OWAMP) requirements,” RFC 3763, IETF, Apr. 2004.

[37] S. Shalunov, B. Teitelbaum, A. Karp, J.W. Boote, and M. Zekauskas, “A

one-way active measurement protocol (OWAMP),” Internet Draft draft-ietf-

ippm-owdp-16.txt, IETF, Feb. 2006, work in progress.

[38] K. Anagnostakis, M. Greenwald, and R. Ryger, “cing: Measuring network-

internal delays using only existing infrastructure,” in Proceedings of IEEE

INFOCOM, San Francisco, CA, Mar. 2003, pp. 2113–2124.

[39] S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture

for user-level packet capture,” in Proceedings of the Winter 1993 USENIX

Conference, San Diego, CA, Jan. 1993.

[40] M. Luckie, “Scamper,” http://www.wand.net.nz/scamper/.

[41] E. Blanton and M. Allman, “On the impact of bursting on TCP performance,”

in Passive and Active Network Measurement: 6th International Workshop,

PAM 2005, Boston, MA, Mar. 2005, pp. 1–12.

185

[42] S. Savage, “Sting: a TCP-based network measurement tool,” in Proceedings

of USITS ’99: The 2nd USENIX Symposium on Internet Technologies and

Systems, Boulder, CO, Oct. 1999, pp. 71–79.

[43] J.C.R. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not

pathological network behavior,” IEEE/ACM Transactions on Networking, vol.

7, no. 6, pp. 789–798, Dec. 1999.

[44] E. Blanton and M. Allman, “On making TCP more robust to packet reorder-

ing,” ACM Computer Communication Review, vol. 32, no. 1, Jan. 2002.

[45] S. Keshav, “A control-theoretic approach to flow control,” in Proceedings of

SIGCOMM ’91, 1991, pp. 3–15.

[46] R.L. Carter and M.E. Crovella, “Measuring bottleneck link speed in packet-

switched networks,” Tech. Rep. BU-CS-96-006, Boston University, 1996.

[47] V. Paxson, “End-to-end Internet packet dynamics,” IEEE/ACM Transactions

on Networking, vol. 7, no. 3, pp. 277–292, 1999.

[48] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-dispersion techniques and

a capacity-estimation methodology,” IEEE/ACM Transactions on Networking,

vol. 12, no. 6, pp. 963–977, Dec. 2004.

[49] R. Kapoor, L-J Chen, A. Nandan, M. Gerla, and M.Y. Sanadidi, “CapProbe:

A simple and accurate capacity estimation technique,” in Proceedings of ACM

SIGCOMM 2004, Portland, OR, USA, Aug. 2004, pp. 449–460.

[50] A.B. Downey, “Using pathchar to estimate Internet link characteristics,” in

Proceedings of SIGCOMM ’99, Cambridge, MA, Aug. 1999.

[51] R.S. Prasad, C. Dovrolis, and B.A. Mah, “The effect of layer-2 store-and-

forward devices on per-hop capacity estimation,” in Proceedings of IEEE

INFOCOM, San Francisco, CA, Mar. 2003, pp. 2090–2100.

186

[52] K. Lai and M. Baker, “Measuring link bandwidths using a deterministic model

of packet delay,” in Proceedings of SIGCOMM ’00, Stockholm, Sweden, Aug.

2000.

[53] K. Harfoush, A. Bestavros, and J. Byers, “Measuring bottleneck bandwidth of

targeted path segments,” in Proceedings of IEEE INFOCOM, San Francisco,

CA, Mar. 2003, pp. 2079–2089.

[54] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map discovery,”

in Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, Mar. 2000, pp. 1371–

1380.

[55] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM Trans-

actions on Networking, vol. 5, no. 5, pp. 601–615, 1997.

[56] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy of Inter-

net path properties,” in Proceedings of the 1st ACM SIGCOMM Workshop on

Internet Measurement, San Francisco, CA, Nov. 2001, pp. 197–211.

[57] J. Aikat, J. Kaur, F.D. Smith, and K. Jeffay, “Variability in TCP round-trip

times,” in Proceedings of the 3rd ACM SIGCOMM conference on Internet

Measurement, Miami Beach, FL, Oct. 2003, pp. 279–284.

[58] F. Baker, “Requirements for IP Version 4 routers,” RFC 1812, Cisco, June

1995.

[59] P. Almquist and F. Kastenholz, “Towards requirements for IP routers,” RFC

1716, IETF, Nov. 1994.

[60] R. van den Berg and P. Dibowitz, “Over-zealous security administrators are

breaking the Internet,” in Proceedings of LISA ’02: Sixteenth Systems Admin-

istration Conference, Berkeley, CA, Nov. 2002, pp. 213–218.

[61] S. Casner, “The mtrace (8) manual page,” http://ftp.parc.xerox.

com/pub/net-research/ipmulti/.

187

[62] S.F. Donnelly, High Precision Timing in Passive Measurements of Data Net-

works, Ph.D. thesis, University of Waikato, 2002.

[63] C. Hornig, “A standard for the transmission of IP datagrams over Ethernet

networks,” RFC 894, IETF, Apr. 1984.

[64] A. Pásztor and D. Veitch, “PC based precision timing without GPS,” in Pro-

ceedings of SIGMETRICS, Marina Del Ray, CA, June 2002, pp. 1–11.

[65] D. Moore, G.M. Voelker, and S. Savage, “Inferring Internet denial-of-service

activity,” in Proceedings of the 2001 USENIX Security Symposium, Washing-

ton D.C., Aug. 2001.

[66] R. Braden and J. Postel, “Requirements for Internet gateways,” RFC 1009,

IETF, June 1987.

[67] A. Rijsinghani, “Computation of the Internet Checksum via incremental up-

date,” RFC 1624, Digital Equipment Corporation, May 1994.

[68] R. Draves, “Default address selection for Internet Protocol version 6 (IPv6),”

RFC 3484, Microsoft Research, Feb. 2003.

[69] R. Presuhn, “Version 2 of the protocol operations for the simple network

management protocol (SNMP),” RFC 3416, IETF, Dec. 2002.

[70] K. McCloghrie and F. Kastenholz, “The interfaces group MIB,” RFC 2863,

IETF, June 2000.

[71] S. Willis, J. Burruss, and J. Chu, “Definitions of managed objects for the

fourth version of the border gateway protocol (BGP-4) using SMIv2,” RFC

1657, IETF, July 1994.

[72] U. Windl, “Implementation of nanosecond time and a PPS API for the Linux

2.4 kernel,” http://www.kernel.org/pub/daemons/PPS/.

[73] J. Lemon, “Resisting SYN flood DoS attacks with a SYN cache,” in Proceed-

ings of BSDcon02, San Francisco, CA, Feb. 2002, pp. 89–98.

188

[74] Endace Measurement Systems, “DAG network monitoring interface cards,”

http://www.endace.com/.

[75] E. Galstad, “Nagios - network monitoring software,” http://www.

nagios.org/.

[76] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance

anomaly of 802.11b,” in Proceedings of IEEE INFOCOM, San Francisco,

CA, Mar. 2003, pp. 836–843.

[77] N.G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic

observation,” IEEE Transactions on Networking, vol. 9, no. 3, pp. 280–292,

June 2001.

[78] M. Mathis and J. Mahdavi, “Diagnosing Internet congestion with a transport

layer performance tool,” in Proceedings of INET’96, Montreal, Canada, June

1996.

189

