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Abstract

The design, analysis and application of a multiplexing mgpectral imager is presented.
The hyperspectral imager consists of a broadband digigad projector that uses a digital
micromirror array as the optical engine to project lighttpats onto a sample object. A
single point spectrometer measures light that is reflectad the sample. Multiplexing
patterns encode the spectral response from the sampleg whelh spectrum taken is the
sum of a set of spectral responses from a number of pixelsoddag in software recovers
the spectral response of each pixel. A technique, which Weaaplement encoding, is
introduced for the removal of background lighfexts. Complement encoding requires
the use of multiplexing matrices with positive and negaéuéries.

The theory of multiplexing using the Hadamard matrices etigped. Results from
prior art are incorporated into a singular notational systender which the dierent
Hadamard matrices are compared with each other and withsiibgu of data without
multiplexing (pointwise acquisition). The link betweend#amard matrices with strongly
regular graphs is extended to incorporate all three typeadamard matrices. Théfect
of the number of measurements used in compressed sensingasurament precision is
derived by inference using results concerning the eigergabf large random matrices.
The literature shows that more measurements increasesaagaf reconstruction. In
contrast we find that more measurement reduces precisithesmois a trade between
precision and accuracy. Théect of error in the reference on the Wilcoxon statistic is
derived. Reference error reduces the estimate of the Witcoxowever given an esti-
mate of the Wilcoxon and the proportion of error in the referss we show that Wilcoxon
without error can be estimated.

Imaging of simple objects and signal to noise ratio (SNR)eexpents are used to
test the hyperspectral imager. The simple objects allow gs¢ that the imager produces
sensible spectra. The experiments involve looking at thR 88klf and the SNR boost,
that is ratio of the SNR from multiplexing to the SNR from pwise acquisition. The
SNR boost varies dramatically across the spectral domam 8 to the theoretical max-
imum of 16. The range of boost values is due to the relativeddoi to additive noise
variance changing over the spectral domain, f@ce that is due to the light bulb output
and detector sensitivity not being flat over the spectralaiamit is shown that the SNR
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boost is least where the SNR is high and is greatest whereNReiSleast, so the boost
is provided where it is needed most. The varying SNR boostterpreted as a prefer-
ential boost, that is useful when the dominant noise sowdedeterminate or varying.
Compressed sensing precision is compared with the accuraegonstruction and with
the precision in Hadamard multiplexing. A tradf® observed between accuracy and
precision as the number of measurements increases. Ggdémdbmard multiplexing is
found to be superior to compressed sensing, but compresssithg is considered suitable
when shortened data acquisition time is important and pata& quality is acceptable.

To further show the use of the hyperspectral imager, volumetapping and analysis
of beefm. longissmus dors are performed. Hyperspectral images are taken of suceessiv
slices down the length of the muscle. Classification of thetspeaccording to visible
content as lean or nonlean is trialled, resulting in a Witmoxalue greater than 0.95,
indicating very strong classification power. Analysis o tfariation in the spectra down
the length of the muscles is performed using variographye Vdriation in spectra of a
muscle is small but increases with distance, and there isiadie effect possibly due to
water seepage from where connective tissue is removed frerméat while cutting from
the carcass. The spectra are compared to parameters dagceéra rate and value of
meat bloom (change of colour post slicing), pH and tendetopmeading (shear force).
Mixed results for prediction of blooming parameters areaot#d, pH shows strong cor-
relation (R> = 0.797) with the spectral band 598-949 nm despite the narrogeramf
pH readings obtained. A likewise narrow range of tenderoynetadings resulted in no
useful correlation with the spectra.

Overall the spatial multiplexed imaging with a DMA basecdhlignodulation is suc-
cessful. The theoretical analysis of multiplexing give®aeyal description of the system
performance, particularly for multiplexing with the Hadard matrices. Experiments
show that the Hadamard multiplexing technique improvesSiN® of spectra taken over
pointwise imaging. Aspects of the theoretical analysisda®onstrated. Hyperspectral
Images are acquired and analysed that demonstrate thagig¢beasacquired are sensible
and useful.
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Chapter 1
Introduction

The purpose of this thesis is the design, construction, aatysis of a hyperspectral im-
ager that operates in the near infrared (NIR) and if possi#evisible (Vis) domain. A
hyperspectral imager is an optical system that acquiregesiavhere each pixel is com-
prised of a full spectrum. The spectrum at each pixel, whigseréte, consist of narrow
and closely spaced bands to approximate a continuous s@yrcahventional spectrome-
ter measures the spectral detail totalled over a given palyaiea on an object or sample.
The purpose of hyperspectral imaging is to acquire detapedtral information with spa-
tial specificity, that is, a hyperspectral imager distirsip@s the spectral detail from one
location on an object to another.

In building a hyperspectral imager we need to charactehnsesystem for salient fea-
tures such as signal to noise ratio and related limitatiattsnespect to image acquisition
time and spatial resolution. In other words if we have a sydteat acquires hyperspectral
images it is important to assess how well it does that job. &é& s complete and unified
theoretical model for understanding the behaviour andopexdnce of the imager. The
theoretical model encompasses all forms of error that weealistically expect to see in
the system. Some forms of error are systematic and cortectabhere others are random.
The model indicates how correction of the systematic ewon$ will afect the overall
performance of the imager.

At the outset of this research spectrometers that exammespbctral region from
400-1700 nm were available for use in this research. Thergpeeters by default are
configurable to examine a quarter inch diameter region tftraa fibre optic probe or
to integrate light from an area tens of millimetres in diagnetSince we can spectrally
analyse the sum total of light from a given region the goabisamehow modulate the
light so that we can obtain spectral information with sgdtiealisation.

Alternative methods of spectral image capture that involv@ dimensional sensors,
typically via the so called pushbroom and whiskbroom meshoen provide fast capture
of detailed spatial and spectral information. Such methargésdismissed at the outset
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2 Introduction

as unsuitable for this research as two dimensional sensaratt beyond 1100 nm are
expensive, and construction of a such a system essentajlyires building new spec-
trometers which is unnecessary when good working specteymwere available. Fur-
thermore, in utilising a two dimensional sensor to perforypdrspectral imaging one
typically uses the rows of the sensor as individual speattens that analyse ftierent
spatial locations in parallel. Berent spectrometers havefdrent behaviour in terms of
both random noise and systematic error. Analysis and maddéisfor the data produced
may not uniformly fit to the spectra from thefidirent rows of the sensor, causing error.
The process of correcting such issues is known as calibratimsfer, a process that we
choose to avoid.

Having made the decision to utilise a single point specttente perform hyperspec-
tral imaging we now decide on what optical system to use taiolgpatial information.
The options fall into two broad classes: acquiring spectra pixel at a time or some
method of parallel acquisition such as multiplexing. Madéght modulation devices
(discussed below) provide the flexibility to do both poirderiand multiplexed data ac-
quisition with the same hardware. Furthermore, the noidaaton properties of multi-
plexing makes a multiplexed system the natural choice.

The system requires a light source, control of the light pautiol integration and spec-
troscopic analysis of the light from the sample. The methaddigiht modulation broadly
fall into two classes: those that control the light path t® sample being imaged (which
we call source modulation) and those that control the liglthgrom the sample to the
sensor (call this sample modulation). A source modulaty@tesn forms patterns on the
sample so that only certain parts of the sample are illurathawvhere dterent areas of
the sample are sequentially illuminated in turn. In contrassample modulation sys-
tem floods the sample with light and controls which areas @fsgimple are permitted to
illuminate the sensor. A system that does both is conceaviall for our purposes is un-
necessarily complex. In Section 3.2.2 we see theoretitiadlymodulation of light after
the sample introduces undesirable issues surroundinggbmakd dfset correction, thus
a source modulation system is preferable. Specificallyidengsg our system, multi-
plexing both the spatial and spectral domains is concesydimbwever because of the
availability of good working spectrometers spectral dam@iultiplexing is not neces-
sary. In summary, we seek to design and build a hyperspétiaging system comprised
of a light source modulation system that projects multiplgxpatterns on to the sample
and a spectrometer that integrates and spectrally andlysdight from the sample.

Modulation of light to the sample is most easily and pradtigachieved by using an
optical image projector. The optics for light projectiorsgms are well understood and
easy to assemble, and are present in common slide projectdrdigital data projectors.
Slide projectors use tungsten halogen bulbs, the same typgothat is commonly used
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in visible/near infrared spectroscopy, whereas moderjeptars use mercury arc lamps
or metal halide lamps which have undesirable spectral ctexiatics, so we choose a tra-
ditional slide projector arrangement. An optical compdribat forms the light patterns
that encode the pixels is required as part of the opticavpath\We desire flexible com-
puter control of the light patterns projected onto the samsplclearly traditional slides are
not acceptable. Options for achieving digital control oft@an formation include use of
a liquid crystal device (LCD) or a digital micromirror arra1A). LCDs are designed
for visible domain light modulation and have strong spdd&atures whereas the broad
spectral characteristics of mirrors make DMAs the natuhaice. For these reasons we
choose a traditional slide projector with a DMA in place of slides as the light pattern
generation device to comprise the light modulation system.

The analysis of the imager presented in this thesis invalkiasacterisation of the per-
formance with respect to random noise and systematic emdrevidence that the imager
produces spectroscopic data of adequate quality for specipic applications. The pur-
pose of multiplexing is to reduce noise relative to per paeuisition. To understand the
effect and behaviour of noise under multiplexing we construger@eral model of multi-
plexing with all reasonable possible error sources. We aeglkfied notation under which
different mathematical encoding systems can be analysed anqoean We interpret the
error sources in the context of light multiplexing and asalyhe form of the error that we
expect of our system. Informed by the model, signal to nasie experiments are con-
ducted and interpreted. Spectroscopic images are takempliesobjects with interesting
spectral shape to demonstrate that the system gives useéul d

To further strengthen the case that the imager producesludsgh we turn to an ap-
plication closer to a real world scenario. Spectral imagedaken of beef strip loins to
volumetrically map the spectral characteristics. Thegduin is the source of many im-
portant retail cuts and non destructive prediction of qudéatures by spectroscopy can
potentially add value to the meat. In performing spectrpgcmeasurement an under-
standing of the source and form of spatial variability i©ommhative. Furthermore, quality
assessments must be computed on spectra of the lean andmofatfor any other visible
constituent. To this end we investigate the classificatigpectra as lean or not lean.

1.1 Multiplexing

Multiplexing is the method of mixing multiple objects acdorg to specific grouping
patterns. We use multiplexing specifically for signal meament. Consider weighing
a number of objects that have an average weight of 10 g, butriyeweighing device
available has an uncertainty of 1 g, so that, on average,ighalgo noise ratio of mea-
surement is 10. Here ‘noise’ is identified with the uncettai@nd is estimated as the
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standard deviation in measurement. Now consider a mutiimyesystem which weighs
groups of ten objects at a time, thus the average signal e matio of the measurement of
a group is 100. After measuriny different combinations, with appropriate selection of
the combinations, then the weights §fdifferent objects can be estimated. If the group-
ing patterns are well selected then the estimates of thebgghts have less noise than
measurement of each object individually.

In this thesis we focus primarily on Hadamard matrices aggtbeping pattern. In
particular, we primarily utilise the Hadamard H-matrix whiis the matrix with maximum
determinant when all entries have value between negatigeaad positive one. Other
Hadamard matrices, namely the G-matrix and the S-matrixciwban be derived form
the H-matrix are also given focus. Thifext of Hadamard multiplexing on additive noise
Is well known (Harwit and Sloane, 1979), specifically, if amler N H-matrix is used
then the noise variance is reduced by a factavof

In the context of optical light multiplexing the measurermdavice is a light sensor
such as an array of light sensitive diodes in a spectromé&tar.the type of hyperspec-
tral imaging device described, multiplexing involves tldestive illumination of pixels
according to the multiplexing pattern matrix. A DMA baseddrhination system can be
easily adapted to perform multiplexing with any conceieadgahcoding matrix without the
need to change or adapt any hardware. Multiplexing light @dately causes issues sur-
rounding light drift, stray and background light and noikatthas variance proportional
to the light intensity such as photon fluctuations.

1.2 Theory

The theoretical analysis presented herein (Chapter 3) msagoily concerned with the
construction of a general model for multiplexing that acusiuor all reasonable possible
error sources. A uniform notation is developed under whighdrror sources are anal-
ysed for the three Hadamard matrices and other multiplesystems. The error sources
include systematic and random forms that both manifest dtpieative and additive
effects resulting in four main classes of error. THeeet of multiplexing on random
additive noise is well known, namely that for a general ‘gaodiltiplexing matrix, for
multiplexing N measurements, then the variance is reduced by a factornpic@d to N .
The dfect of Hadamard multiplexing on random noise with varianagprtional to the
signal, i.e. Poisson noise, has been studied by othersd@-inatrix and to a much lesser
extent the H-matrix (Harwit and Sloane, 1979; Nitzsche ares&iberg, 2003; Hassler
et al., 2005; Damaschini, 1993). Poisson noise variance is isetey S-matrix multi-
plexing, whereas H-matrix multiplexing has nffext on average. The H-matrix analysis
the prior art was developed for the specific context of tinsmheed fluorescence imaging
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and considered each pixel as a separate emitter. In cqwirasteat the light source as the
single emitter and consider the multiplexing apparatustaacgample imaged as attenu-
ating the light. Systematic errors occur due to backgroigid (additive) and drift in the
light source (multiplicative). Systematic additive eriereduced by multiplexing in the
same way random additive error is, but, by definition, syst&eradditive error does not
have zero expected value at any given time point or else & doeexist. Multiplicative
systematic error is mixed by the multiplexing so tligeet is more complicated than addi-
tive error. Both the form of the error and th#fext on the random noise due to correction
of systematic error are explored.

Recently Ratneet al. (2007) linked a type of graph, called the strongly regulaipdr
(SRG), to Hadamard multiplexing. Specifically the SRG wasdahkto Hadamard matri-
ces with ones and zeros as entries, namely the S-matriceslinkhwas established via
the respective eigenvalue structures and the observaiabihte éect on noise was com-
putable from the trace, that is, the sum of the eigenvaluesletUcertain conditions an
SRG has the same eigenvalue structure as an S-matrix, howev&RG has the distinct
advantage over the S-matrix that the number of objects dieclun each measurement is
variable. Reducing (or increasing) the number of objectlided in each measurement
means that certain error processes, such as Poisson nemsasor saturation, are reduced
in a superior manner than with Hadamard matrices. Radrar (2007) do not consider
multiplexing matrices that include negative one entries.aktend the theory to examine
the link, if any, between SRGs and the other Hadamard matrices

Compressed sensing (CS) (Donoho, 2006) is a recent techrugsighal acquisition
that falls in the class of multiplexing. Traditional thedgfl us that if we want to acquire
N data, then we need to take at ledAstmeasurements. Traditional multiplexing requires
N measurements according to a specific linear transformé&toon which the data are
recovered by inversion of the transformation. Compressesisg theory tells us that if
the signal is compressible then we can get a good reconstmualt N data from fewer
than N measurements, i.e., inversion of an underdeterminedray$terthermore, matri-
ces with random entries form good patterns for CS encoding litérature shows that
CS is accurate even when random noise is present. We examiné&bgnce the fect
on precision (as a distinct measure from accuracy) due to §lffpaged as the signal to
noise ratio due to random error. The action of the number @gisueements on the preci-
sion is analysed via the eigenvalue structure of large nanabatrices. In considering the
accuracy of CS reconstruction it is recognised in the liteethat a rectangular matrix
of random entries resembles an orthonormal system to watitain limits, the so-called
restricted isometry principle. We utilise a similar ideaetamine by inference how the
precision in CS is fiected by the number of measurements.

The Wilcoxon and the area under the curve (AUC) of the rec@iperator characteris-
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tic (ROC) are two equivalent statistics for estimating thayability that one group of data
have values that are larger than another group. Given datdatls into two groups, the
Wilcoxon is the ratio of the count times that the members & group are larger in value
than the members of the other group, over the total numbesraparisons. Similarly the
AUC ROC is a measure of the separation between the two greapssection 2.6.3. The
Wilcoxon and AUC are important statistics in the data analysthe application of the
hyperspectral imager. To compute the Wilcoxon we need tavkmbat group each datum
Is assigned to. To know the group assignments typicallyereete method is used, how-
ever the reference method is a classification method that(aray probably does) have
errors in the form of false positives and false negatives défese the Wilcoxon from the
AUC, hence establishing the link directly, and then use tbaltéo compute theféect of
error in the reference on the Wilcoxon.

1.3 Hardware and Experimental Direction

There are two purposes for the experimental work present#fus thesis, the first is to
characterise the error behaviour of the hyperspectralémagd the second is to demon-
strate that the imager produces spectra fficgent quality for use in an application. The
characterisation of the error behaviour is performed viamedion of the signal to noise
ratio (SNR) of the spectra and examination of the improveanm@rSNR when multi-
plexing over measuring one pixel at a time. SNR experimaets@nducted for H-matrix
and G-matrix multiplexing and compressed sensing. The Mada& multiplexing is con-
sidered accurate so only precision is examined via the SNIRcdfopressed sensing both
precision and accuracy are assessed, where accuracy isiegdny considering the dif-
ference between the compressed sensing result and thesbesdte of the true spectral
pixel values. In our case the best possible estimate of tieeptixel values is the average
of several Hadamard hyperspectral images.

Correction of the systematic error and tHéeet of the corrections on random noise
sources are necessary. Only one hardware configuraticstésl{enamely the DMA based
source modulated multiplexed system. To correct for bamlkaga illumination we devise
the concept of complement encoding, in which the measureofepixel responses is
divided into two complement groups. Background illuminataccurs in both the com-
plementary encodings. If the complementary spectra areiepquickly enough then
the background illumination is the same for both acquisgiand the encoding-decoding
scheme removes the background lightifigget.

Systematic multiplicative drift occurs due to drift in thght bulb output over time.
In terms of the multiplexing we are interested in drift dgrithe acquisition period. The
light drift between complement encodings is assumed vegflsbut no such assumption
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Is made about the drift from the first to the last measureménteference beam con-

ducts light from the bulb, through a chopper directly to thedrometer, and a reference
beam spectrum measurement is taken immediately after aagbles spectrum. The sam-
ple spectrum is divided by the corresponding reference lsgaautrum before decoding,
which removes the multiplicative factor due to light dripectra are taken of a highly
reflective white object that is half cardboard and half acryThe spectra are corrected by
Spectralon white tile spectra. The images are corrected ngference beam correction
and without reference beam correction and tii#edence assessed.

Demonstration that the spectra are useful and sensibldialjnexamined by imag-
ing simple fabricated objects comprised dfédient materials with interesting and distinct
spectral shapes. Also imaging of a test pattern fiedint resolutions demonstrates the
flexibility of the system. Simple chemometric analysis @& #pectra demonstrate that the
variation in the spectra is fficiently low within groups for segmentation of the pixels.
We then move on to application of the imaging system to a fquudieation. We perform
volumetric mapping of spectra down the length of beef strid. We test the discrimi-
nation of lean from non lean spectral pixels, examine speeariability down the length
of the muscle as well as perform pilot study level analysigasfous important chemical
features such as acidity, bloom (change in colour from mutplred due to oxygenation
of myoglobin over time after initial exposure to air) andderometry (measurement of
sheer force to ‘bite’ though cooked meat).

1.4 Thesis Structure

Chapter 2 comprises the literature review. Multiplexindggvant hardware configurations
and the Hadamard transform are covered, with the compressesihg method and some
main theoretical results included. Chemometrics, thatisssical methods used on spec-
troscopic data, and other statistical techniques not Bpécichemometrics are reviewed.
Lastly some results of visible and/or near infrared spacwpy and chemometrics to
analyse beef are covered with some results for pork alsaded.

Chapter 3 presents the theoretical development for unaelista and analysing the
hyperspectral imager. The topic of multiplexing is coveiredn application independent
manner, with the intention of providing a unified framewomder which multiplexing
matrix error behaviour can be analysed. A model of multiplg»xaccounting for all rea-
sonably possible error sources is built up. Each error soigrconsidered in turn from
which the complete model is then assembled. Theory suringribe correction of sys-
tematic error sources is developed, with the accompanyftiegteon the random forms of
error. The Hadamard H, G and S-matrices are all examined tineléramework.

Chapter 3 also covers the extension of the link between diraegular graphs and
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S-matrices to the other Hadamard matrices. Beginning welgtph matrix equivalent
to the S-matrix the corresponding G-like and H-like matsiege constructed and anal-
ysed. Chapter 3 then moves on to compressed sensing. Firsivige pertinent aspects
from the literature, then examine the precision behavioitin vespect to the number of
measurements for a random acquisition matrix. The cormettetween the Wilcoxon
statistic and the area under the receiver operator curverigedl, and the result used
to analyse theféect of error in the reference on the Wilcoxon. Numerical $atians
support the theoretical result.

Chapter 4 describes the hardware implementation for therggpetral imager and
interprets the theory in terms of light multiplexing on thestm. Methods of testing the
hyperspectral imager for Hadamard multiplexing and comsged sensing are given and
the results of the testing are presented and discussed.

Chapter 5 is concerned with an application of the imagingesydb demonstrate the
usability of the spectra produced, namely analysis of beébngissumus dorsi. Spectral
volumetric mapping of the meat was performed with accompeangolour imaging and
pH measurement. Bloom curves were also obtained using tleeircmhaging and ten-
derometry reading were taken by way of a shear force metessffifzation of the spectra
into lean and nonlean groups is performed using the coloaginy to determine visible
content as the reference method. The theory of the Wilcosatissc with error in the
reference is applied to the classification result. Varipgyas applied to the spectra down
the length of the muscle to examine the nature and possibisesaof variation in the
spectra. Calibration of the spectra against parametergatént point, end point and rate
of bloom is performed. The predictive power of the calibvatmodels is analysed using
per-animal crossvalidation. Correlations are exploredéenh the spectra and the pH and
tenderometry. Conclusions and thoughts for future work aeegnted in Chapter 6.

1.5 List of Publications

The following publications arose from the research conetlifor this thesis.
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L. Streeter, G. Burling-Claridge, M. Cree, and R. Kiinnemeyeésib\e/near infrared hy-
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Spectroscopy, 15(6), pp. 395-399 (2007).
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Chapter 2
Review

This section comprises a review of relevant theory andditee to this thesis. Overview
of the fundamentals of multiplexing theory is covered anel ttaditional and modern
multiplexing hardware are reviewed, then the propertieshef Hadamard matrix for
multiplexing and the newer compressed sensing techniqear Mfrared spectroscopy
and chemometerics and finally the capture and analysis otrspand relevant informa-
tion of the variation in certain beef muscles are reviewed.

2.1 Multiplexing

Multiplexing (Harwit and Sloane, 1979) is the technique oduping objects according

to a specific pattern. Specifically, in the present contextfipiexing involves measuring

multiple samples simultaneously to improve the signal te@oatio (SNR) of measure-
ment. Consider a set @¥ objects of mass; to be weighed. Now if the weighing device
has uncertainty then the SNR of each measurement is

X (2.1)

(o2

If we weigh half of the objects together at any given time ttienSNR is approximately
N/2 times greater.

If N grouped measurements are taken, each time weighinfjesatit set of the ob-
jects, then the measurements constitute a linear tranafmmof the mass values. Let
M be a matrix of ones and zeros that records which objects wehaded in each mea-
surement, where a one at rgvand columni indicates that objeatis included in mea-
surementj. The matrixM is known as both the multiplexing matrix and the weighing
design matrix. Loading the true mass values into the vectbe measurement process is

11
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represented by the matrix multiplication
y=MX+E¢€ (2.2)

wherey is the set of observed measurements arisl random error with variance?.
Decoding to recover an estimate of the weighis performed by application of the math-
ematical inverse to the multiplexing matrix

X=M71ly=x+M"e (2.3)

The selection of the matrid determines the SNR of the estimates at reconstruction.
The error in the reconstructionis-x = M ~'e. If the random errors representectigach
have the same variance as each otherMnd suitable then the errors in the reconstruction
will also have the same variance as each other, where podféhe error in reconstruction
Is less than the error ie When the random errors in reconstruction afféetiént to each
other some single computable measure of the ovefgdteof multiplexing on error is
required. The ffect on average of the squared error of measurements duetiplexihg,
called the A-optimality, is such a measure (Harwit and Séd979). It turns out that the
A-optimality of a multiplexing matrix is computed as

e = %zTr (M7 m)7] (2.4)

where Ti-] is the matrix trace. A good multiplexing matrix produces &uedor e that
is less thans?. The minimum possible value, according to Hotelling’s lovis®und,
is (Harwit and Sloane, 1979)

(2.5)

2|9,

2.2 Hardware

A spectrometer is a device for measuring the spectral irdcion in light. The term ‘light’
here is general and pertains to portions of the electromeggpectrum that are not visible
to the human eye but are close in wavelength to the humanevisabge, such as ultra-
violet and infrared. In the visible and near infrared (ViBR) domain a spectrometer is
made from traditional optical elements, such as lensetingesand prisms. A spectrom-
eter consists of a slit through which light enters, a disperslement, such as a grating
or prism which separates the light into spectral componamtisan array of sensors, such
as a linear diode array or charged couple device, to medseitght. Figure 2.1 shows a
simplified spectrometer. The dispersive element sepattagespectral components of the
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Figure 2.1: Simplified diagram of a spectrometer. The arrowlgcate the light path.
Light entering through the entrance slit is dispersed afidated onto the sensor.

light so that each sensor element is exposed to unique bdtid(ypically labelled as a
wavelength) of light. A light source typically accompantbe spectrometer. Tungsten
halogen bulbs have broad spectral blackbody output witld gemporal stability so are
suitable for Vis/NIR spectroscopy. Light from the sourcaaiees the entrance slit by two
routes. The first route is light reflectedf the sample. The second route is via a refer-
ence beam that conducts as much light directly from the Bghtrce as possible without
saturating the sensor.

The concept of light multiplexing to boost signal to noise fise in the context of
spectrometry is attributed to Golay (1949). Harwit and 8®61979) state that “Golay’s
work more than any other laid the foundation for multiplexsp@ctroscopy”. The early
multiplexed spectrometers had multiple slits, known astisiiilconfigurations. Golay
first proposed a spectrometer with two masks that form aalimuultislit system. One
mask was a rotating disc and the other a rectangular maskotdteng disc had encoding
patterns in the form of holes and occlusions that encodettrgiseopic information. The
spectral signal was later reconstructed via computer gsicg.

Traditional optical light multiplexing systems implemedtthe S-matrix encoding
(Harwit and Sloane, 1979), Golay patterns (Golay, 1949)random sequences of maxi-
mal length (Wilhelmi and Gompf, 1970). Other traditionahexples are surveyed by Har-
wit and Sloane (1979). Encoding was performed by occlusiuh @assage of light.
Figure 2.2 shows a diagram illustrating the principle of tisiit spectrometry. Light
enters through the entrance slit and is separated intoragpecimponents. A mechani-
cal encoding multislit element selects which spectral conemts reach the sensor. The
combination of spectral components that reach the sensoltsen more light per single
measurement than when each spectral component is measdnedually. The encoding
elementis changed between successive measurementsngeisLa linear transformation
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Figure 2.2: Diagram of a multiplexing spectrometer. Theows indicate the light
path. Spectral wavelength components separated by thersligp element are selec-
tively passed and occluded by the encoder and measured Bgriser. Successive mea-
surements utilise efierent sets of wavelengths, encoding the spectrum.

of the spectrum. Mechanical systems to perform such ligidutagion include multislit
spectrometers, one and two dimensional rectangular gratirays, rotating discs and
combinations thereof. Multiplex encoding using holes andlusions has the obvious
disadvantage that a large fraction of the light from the dangnot used. Sloanet al.
(1969) pointed out that the fraction of light normally lostutd be recovered via reflec-
tion in place of occlusion. Light sensors then measure bwhransmitted and reflected
light. Subtraction of the two signals is implemented elegically using a subtractor cir-
cuit or digitally after data capture. This concept was laeended by Davis (1995) to
two dimensions via two one-dimensional encodings to ofpyicaplement the Kronecker
product.

The advent of the Texas Instruments Digital Micromirror &yrfDMA) (Hornbeck,
1989) has facilitated the revision and revitalisation ofiegd multiplexing techniques.
The DMA is an array of small (typically Idn x 14um) mirrors that can be individually
addressed to deflect to a nominally on df state. Example DMA sizes are 0.55” or
0.7” diagonal with respectively 609 800 or 1024x 768 mirrors. DMASs are dficiently
fast (the slower fi-the-shelf evaluation kit boasts 100 fps via USB interfearg] flexible.
Also the broad spectral characteristics of mirrors makeDMA a natural choice for
Vis/NIR spectroscopic applications. The DMA is reliabledadue to their small size the
mirrors do not resonate with the mechanical vibration fesguies of a typical working
environment.

Figure 2.3 shows a diagram of a generic DMA based imagingtspaeter system
similar to that proposed by DeVerse al. (2000). The light from the entrance slit is
dispersed in one axis and imaged in the other onto the DMA. D& then modu-
lates spatial and/or spectral information and the moddlagit is sensed by the CCD.
The two dimensional CCD is interchangeable with a one dimeasiinear array or a
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Figure 2.3: DMA and CCD based imaging spectrometer. The DMAutadds the spec-
tral and/or spatial information which is then recorded by @CD.

single point diode for the specific mode of multiplexing anthging desired. The spec-
tral dispersion can be implemented before the sample &#eion) or after the sample
(dispersion). The use of the DMA in multiplexing was implertezd in dispersive NIR
spectrometry (Fatelegt al., 2000; DeVersest al., 2000), de-dispersive Vis/NIR spec-
troscopy (Fatelegt al., 2002), Raman imaging (DeVerseal., 1999, 2000) and visible
spectrometry (Spudickt al., 2003) using a combination of DMA based modulation of
spectral and/or spatial information coupled with two disienal (CCD or similar) sensor
technology. A de-dispersive system using a single diodemenas described by Fate-
ley et al. (2002) in which the DMA was directly illuminated by the brdmhd source,
the light spectrally dispersed and imaged onto the samplt@datathe spectral and one
spatial dimension is captured. The sample was then traastat build up the second
spatial dimension. The hyperspectral imaging was apptiati¢ detection of cancerous
tissue (Maggionet al., 2006).

A DMA based microscope (Hanlegt al., 1998) utilised the Hadamard transform to
implement optical sectioning, a method for improving imagsolution similar to con-
focal microscopy but with greater light throughput (Vemnveeal., 1998). A number of
pinholes are used in patterns so that light from the planatefeést is encoded. Out of
focus light from out of the plane of interest is equally pregsa each capture. Decoding,
which involves a series of additions and subtractions, tleeonstructs the detail of the
sectioned plane and removes the light from out of the planmati& and spectral res-
olution is obtained with a CCD based imaging spectrographdkainines one spatial
and the spectral dimension. Mechanical pushbroom scamecilgates acquisition of the
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second dimension. A similar optical configuration (Hanéewl., 2000) utilised a trans-
missive LCD in place of the DMA. The LCD microscope implementadtiplexing with
pushbroom scanning. A further adaptation (Hanley and J@@@1) implemented optical
sectioning with multiplexing using a CCD based spectrometer.

2.3 Hadamard Transform

The Hadamard matrices are ideal for multiplexing underagertonditions. Here we
review the construction and properties of Hadamard matri€onsider the problem of
finding a square matrix wittv rows and columns, where each entry is real and has abso-
lute value less than or equal to one, and the matrix has tgedapossible determinant.
The Hadamard H-matrix (Harwit and Sloane, 1979) is the swiuthe construction of
which was first described by Sylvester (1867). The Sylvestaistruction first defines
the solution for the X 1 matrix, H;, and the 2x 2 matrix, H», as

H, =[1],

[ 1 1] (2.6)
H, = .
1 -1

Given two H-matricesd y and H,,;, a new H-matrixH y ., is constructed by taking the
Kronecker product, that is, each elementHn, is replaced by that element timégy .
For example the matri¥l,,, = Hyis

H, = H, Hz]
H, —-H,
(1 1 1 1] 2.7)
11 14
11 o1 -1 -1
1 -1 -1 1

The examples above all have ones on the leading row and colioeh H-matrices
are said to be normalised. Rearranging the rows or columnpmraiuce equally valid
unnormalised H-matrices, for example

11
[21] oo

The Hadamard transform is the linear transform accordinthéoH-matrix. For a
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vectorx the transformation is the matrix product
HX. (2.9)

The rows (and columns) of the H-matrix are pairwise orth@jomhe vector product of
any two rows (or columns) il is zero, but if the same row is chosen twice then the
product isN. Written succinctly, wherée' is the matrix transpose operation ahdis the
matrix identity,

HlHy=HyH,) = Nly. (2.10)

From equation 2.10 the inverse of the H-matri¥d$ /N, thus the inverse transformation
gives
1
X=—H"HXx. (2.11)
N

For the normalised H-matrices abok# = H thereforeH ! = H /N, but this is not true
for the non-normalised example. The self transpose prpperiseful so heretofore we
only consider normalised H-matrices.

The H-matrix has optimal matrix condition and thus is higimigensitive to random
perturbations such as noise. Adding erero the Hadamard transform and taking the
inverse transformation gives an estimate

o1
X=—H(Hx+e),
N (2.12)

=X+ 1 He
= S He
The A-optimality of the Hadamard matrix is (Harwit and Sleat©979)

e= %ZTr |(17H)7,

- Y, (2.13)

02

ﬁ.
This is the minimum achievable according to Hotelling’s bdwn the error. The reduc-
tion of additive noise is called the Hadamard multiplex adage. It is closely related to
the Fellgett advantage, which pertains to multiplexingoading to the Fourier transform.

There are negative entries in the H-matrix which are proaten{but not impossible)
for implementation in optical systems. The S-matrix (Siexpmatrix) is an alternative
which has no negative entries. The S-matrix can be derivaa the H-matrix (there
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exist other construction methods). First the G-matffix, 1, is defined as

1 ok
Hy = N | (2.14)
Ony-1 Gn-1

whereoy _; is a column vector oN —1 ones. From equation 2.6 it is apparent thgt= ],

an empty matrix. The S-matrix is obtained by setting the on&s-matrix to zeros and
the negative ones to positive ones. Alternatively we camplirget all the negative ones
to zeros (although in using this alternative method we mesaware that we have the
complement of the S-matrix). About half of each row.$fis ones and the other half
zeros, so the S-matrix encoding employs an approximatéfy ity measurement system
while maintaining maximal independence between rows (ahghans). The inverse of
the S-matrix is

. 2
St = SN (2.15)

The A-optimality of S-matrix encoding is

2
e=ZTr((s75)7.
N
o? 4
= —Tr |—G?|, 2.16
g (2.16)
N 462
~ N .
Thus the S-matrix transform reduces the average MSE by arfatt/ N. The S-matrix
is conjectured to be optimal in terms of insensitivity to dam additive noise for all
matrices of ones and zeros, however the S-matrix does not gaite the same promise

of signal improvement that the H-matrix does.

In optical systems Poisson photon noigeets are known to be detrimental to the ad-
vantage of Hadamard encoding, particularly in S-matrixoeineg (Nitzsche and Riesen-
berg, 2003; Damaschini, 1993). Such noiste@s are treated as multiplicative, i.e the
noise variance at acquisition is directly proportionaltte tight level. The S-matrix per-
mits about 50% of light to reach the sensor, so the noisenegiat data acquisition is
then proportional to

~ N (x) /2, (2.17)

where(x) is the mean of the entries i Inverting the S-matrix transform then gives a
noise variance proportional to
~2(x). (2.18)

In contrast if no transformation is used then the noise foheatry inx is proportional to
that entry. On average the noise is proportiongbdg half that of S-matrix multiplexing,
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so S-matrix multiplexing is disadvantageous for signapprtional noise.

Hassleret al. (2005) studied theféect of H-matrix multiplexing in the context of
multiplexed time resolved fluorescence imaging. In suclgimga sample is exposed to a
series of excitation light flashes and the time for the thé fin®ton from the fluorescence
to reach the sensor is recorded for each excitation. The fomthe light to reach the
sensor follows Poisson statistics. A histogram of the tineesrded is obtained to which
a Poisson distribution is fit. Imaging was performed by Haaahmultiplexing of the
light from the sample to the sensor. Hasseal. (2005) presented theoretical analysis
in which each ‘pixel’ region on the object was treated as as#p emitter, and the light
from the pixels was then selectively passed or obstructedcambined at the image
sensor. They derived theoretically that on average theophobise level in the pixel
reconstruction was not changed by the multiplexing. Thagtgmit that the averaging of
the Poisson noise level by H-matrix encoding will incredserioise in dark pixels which
may be unhelpful in some applications.

Alternative derivations in the context of mass spectroynéfive indicated a SNR
boost under S-matrix encoding with photon noise (Wilhelnd &ompf, 1970; Fe@ndez
etal., 2001). Mass spectra typically are sparse, meaning the #re few peaks and most
of the measurements are indistinguishable from zero. gmabio noise ratio ‘spectrum’
associated with a mass spectrum is indistinguishable fienm except at the locations of
the peaks. It is not appropriate to consider the boost in ifreabto noise ratio due to
multiplexing at the zero locations because it involves #it@rof two numbers that are
indistinguishable from zero. An alternative assessmermtivwes examination of the SNR
at the peaks in the spectra only.

Alternative encoding strategies have been proposed (Wiihaend Gompf, 1970;
Wuttig, 2005; Ratneet al., 2007) to provide optimal noise reduction under photoneois
or to trade ¢ between reduction of photon noise and instrument noiseetei@l these
photon noise reduction transformations employ less th&nb 80ty while maintaining
maximum possible independence between rows in the encadhitrgx. In particular Rat-
ner et al. (2007) utilise a result from graph theory, namely the sthpmggular graph
(SRG). Consider a graph of vertices (points), where each vertex is connectdddther
vertices. The connections are called edges and two poiatsath connected are said to
be adjacent and are called neighbours. Now assume that éacleiat pair of vertices has
a common neighbours. Furthermore assume that each nonatljzeie hasf common
neighbours. Such a graph is called strongly regular andnsteéd srg{V, k, a, ). Any
graph is represented by its adjacency matrix where each nolwxcalumn corresponds
to each vertex in the graph. A one at positianj) indicates that verticesand j are
neighbours whereas a zero indicates that they are not.ni$ tnut that wherg = « the
eigenvalue structure of the adjacency matrix matches thdteoS-matrix of the same
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size. The eigenvalue structure is linked to the noise belbawdue to multiplexing. Fur-
thermore a SRG does not require each vertex to be adjacenif thdather vertices, so
the matrix in question does not necessarily require halétitees in each row to be ones.
Thus when multiplexing via an appropriate adjacency malkréxsignal and photon noise
variance is reduced. When the signal is reduced then theldigoat over the additive
noise is also reduced so there is a trafidetween the advantage over additive and multi-
plicative noise. Given known additive and multiplicativeise levels Ratnegt al. (2007)
show howk can be selected to minimise the total noise. Specificallyafadditive noise
variance iss? and the photon noise per measuremenir( x) is p, then multiplexing by
an appropriateV x N adjacency matrix results in total noise MSE

62+pk<1 +(N—l)2>

N k2 Nk — k2

(2.19)

at decoding. Optimising the multiplexing is a matter of fimglk so that equation 2.19 is
minimised. For a givetN andk, there may not be a SRG with= «. However there are
many known strongly regular graphs from which one can séfecbne with the closest
parameters. Furthermore SRGs exist for valuesvofor which no known Hadamard
matrix exists.

2.4 Compressed Sensing

Compressed sensing, or compressive sensing (CS), is thageehof reconstructing a
discrete signal from a reduced number of measurements wigesignal is compress-
ible (Candest al., 2006; Donoho, 2006). Random multiplexing pattedhsare used to
acquire data

y = X, (2.20)

where® has fewer rows that columns. The sigrats assumed sparse in some transfor-
mation'¥. In other words ifx is represented by the reconstruction

X = PO, (2.21)

then the vectop is a set of cofficients where a few are large but most are zero or near
zero. The system to be solved is then

y = OV, (2.22)

from which the estimate of is computed.
Consider an acquisition basb, Let®r be any subset of at mostolumns in®, then
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the restricted isometry constraist, € (0, 1), is the smallest number such that (Casd
and Tao, 2005)
(1= 8,)lIplI3 < 1D7pll5 < (1+6,)lIpII3. (2.23)

where]|| - ||, is the L2 norm. A matrix® that satisfies equation 2.23 is said to satisfy
the restricted isometry property (RIP) (Baranitkal., 2008). An equivalent statement
of the RIP is to replacé; with ® and consides sparse vectorp, which have at most

s nonzero entries (Caed, 2008). It turns out that random matrices satisfy the RtP an
form suitable CS acquisition systems. The RIP states thatseswolb the columns id
can alter the L2 norm of any vector by at most a small fract®®.seeks a representation
of p as a combination of basis vectors. The RIP ensures that #iteszesmagnitude of the
contributions of these basis vectors is minimally altereereoding.

Reconstruction of is done via L1 norm minimisation. The estimate is found by
solving the linear programming problem

min||@||1 subject toa = ®Y0, (2.24)

where]|| - ||1 is the L1 norm (the sum of the absolute values). The lineagnamming
problem is solved by the basis pursuit algorithf@henet al., 1998), among others.

Basis pursuit uses a primal-dual log-barrier linear prognamg algorithm (Chen
et al., 1998). The approach involves solving the perturbed liragram proposed
by Gill et al. (1991):

. 1 1 .
minc’x + §||yX||2 + §||q||2 subject toAx + 6q = b, x > 0, (2.25)

wherex is the unknown of interesh is the measured data apdndé are small regulari-
sation parameters (Chenal. (1998) suggest 18). The procedure given by Chenal.
(1998) is as follows.

1. Set the feasibility tolerance FT, the duality gap toleDBGT,y ands.
2. Initialise the prime variables > 0, the dual variableg, = 0 andz > 0, andu > 0.

3. Loop

!SparseLab Matlab package Version:100, implementationntimded fromhttp://sparselab.
stanford.edu/, August 2007, Copyright (c) 2006 Victoria Stodden and Da¥ahoho.
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(a) Compute the residuals and the diagonal mariy
t=c+y>—z- A"y
r=b— Ax— 8%
V= puo0— ZX
D=X"'Z+yD?
whereX andZ are diagonal matrices formed fraxrandz.

(b) Solve forAy
(ADAT + 8°I)Ay =1 + AD(t — X~1Vv)

and compute
Ax = D(ATAy + X v —t) andAz = X }(v — ZAX)

(c) Calculate the primal and dual step sipgsndp,, and update

pp = 0.99max p|x + pAXx}

pa = 0.99maxp|z + pAz}

X=X+ p,AX, Y =Y+ psAy,Z=Z+ psAZ
u = (1—min(p,, ps, 0.99))u

4. Terminate if the following are all satisfied

(a) [Irll2 <FT

L+{Ix]l2

It
(b) oy <FT

(c) —2% _ < DGT

1+]Izl211x]12

For basis pursuit s&t= o, a vector of ones, to implement the L1 norm. To satisfy O
solve the system matrijd, —A] for x. The result is the length/2 vector comprising of
the concatenated positive and negative parts of the desatationx, andx_ from which
P = X, — X_ is computed.

The error of CS in the noiseless case is bounded (Donoho, 2f204)1 norm min-

imisation the upper bound is
log N \ 2
C||9||1< i > (2.26)

wheren (the number of rows i) gets largeC is a constant that depends on at most
log N/logn and]|| - || is the L1 norm. Furthermore CS is stable against additivearsnd
noise (Candest al., 2006; Haupt and Nowak, 2006) and the combination of addléivd
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multiplicative random noise (Haupt al., 2006).

An implementation of CS for imaging is the single pixel cam@rakharet al., 2006;
Wakinet al., 2006a). The single pixel camera is a passive imaging sysesfarming CS
on light from the object. A DMA spatially modulates pixel arfnation using randomly
assigned deflection of light to or away from a light sensitlede. Reconstruction of
the image is performed using L1 norm minimisation with thet faavelet transform as
the compression basis. Video imaging has been implememigdeosingle pixel cam-
era (Wakinet al., 2006b). Time domain CS assisted in improving the captuesoagr
CS in the spatial domain only. CS has the obvious advantagdetivat measurements
provides faster acquisition than traditional techniqulkes Hadamard imaging, however
it is not clear how CS compares to Hadamard imaging in termsgofat quality. The
relative performance of CS and Hadamard imaging are compasattion 4.3.3.

A single-shot CS hyperspectral imager, described by Gethath (2007), used sym-
metric optics and a CCD imager. The optics has two identicabavirere each arm is a
dispersive spectrometer that uses an equilateral priseas@&tond armféectively cancels
out the dispersive action of the first arm. Between the two asrasoding aperture based
on an S-matrix or order 192. The image of an object is spégtigédpersed by the first
optical arm. The dispersed image is then encoded and umségpen the second arm.
The result is captured by the CCD imager. The hyperspectraensreconstructed via
a probabilistic multiresolution framework. Spectral inmagwas performed in the range
520-590nm, with filtering to prevent detection of light ofiet wavelengths. Wagadarikar
et al. (2007) present an alternative single shot architecturehvhses one dispersive arm
and the coding aperture. Again the CS paradigm was invokedreMewer measure-
ments than reconstructed data values were measured. &petging was achieved in
the range 546 640nm. The object is imaged onto the coded aperture. Relagsdrans-
mit light from the coded aperture, through the dispersiem&nt and reimage onto the
CCD. The single-shot paradigm, facilitated by use of a CCD sensguires one capture
rather than the multiple captures required for traditianaltiplexing, however the spec-
tra obtained are over a narrow band whereas the use of adradispectrometer permits
much broader spectral analysis.

2.5 Near Infrared Spectroscopy and Chemometrics

Chemometrics is the application of specialised statistazziniques to spectroscopic data.
Spectroscopic data include, but are not limited to, phopmtsoscopy of which the vis-
ible and near infrared spectrum is of interest to this théSisborneet al., 1993). The
objective of chemometric analysis is often to calibratedbgut of a spectrometer with
some reference substance concentratiorffect or to detect the presence of a substance
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or effect by classification.

The simplest chemometric methods include constructionliolear regression model
against a selected subset of wavelength responses, ostghiwavelengths measured.
In spectroscopy there is often a large number of interdepeindeasured observables, so
over fitting often occurs in linear regression. Wavelengtfle&ion is one method to over-
come over fitting. Factor analysis methods, otherwise vieagesubspace analysis meth-
ods, are full spectrum techniques that “aim to reduce thatijyaf spectral data, and thus
avoid overfitting problems, without discarding any usefidfbrmation” (Osbornest al.,
1993). The most prominent factor analysis methods are ipiexcomponent regression
(PCR) (Osbornet al., 1993) and partial least squares (PLS) (Wold, 1975; de k948).
PCR exploits eigenvector analysis of the variance-coveeaitructure of the spectral data
only. PLS computes factors based on the covariance betweepéctral data and the ref-
erence data used for calibration. Nonlinear techniqudadiecneural networks (Osborne
et al., 1993) and support vector regression (Smola andRopf, 2004). Classification
in chemometrics can be performed directly using PLS (BarkdrRayens, 2003) or al-
ternatively via extended canonical variates analysisgiandet al., 2006), an application
of PLS to find the solution to Fisher linear discriminant gsa.

25.1 PCRandPLS

Let X be then x m matrix of spectral data with each row a spectrum and eachnooku
narrow waveband anglther x 1 vector containing the reference variable. Both PCR and
PLS seek an x k matrix of basis vector#”, wherek is small (typically less than 10) so
that the fit

y=XWc, (2.27)

wherec is ak x 1 vector, is robust and accurate. Both PCR and PLS are facttysea
methods for modelling a relationship between multivartdea and some reference vari-
able when the multivariate data is highly collinear. Coléingy means that the columns in
X are pairwise highly correlated which drastically impedespgerformance of traditional
least squares regression methods. In the context of speoprg, collinearity means that
the response of the measured wavelengths give similamnatoon. For PCRA is a sub-

set of the eigenvectors &f” X chosen to meet some criterion, like capturing most of the
variation inX.

Partial least squares (PLS) (de Jong, 1993) compiitesy examination of the co-
variance structure between the daxg, with the reference variablg, PLS algorithms
exist for multivariate reference data but here we restiicselves to the single reference
variable case. Consider a reference variable vectoir sizern x 1 and a data variable
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matrix X of sizen x m. Assume a linear model of the form,
y = Xb. (2.28)

PLS factorises andy according to the: x k, k < m, score matrixr’

X=TP+E,
y=Tq+f, (2.29)
T=XW.

where P andq are loading variabled}” is a matrix ofk weighting vectors of lengtim
and E andf are unexplained information. Some PLS algorithms make dhemns of T’
orthogonal whereas others make the columnB/obrthogonal. The objective of PLS is
to find W, henceT’, with smallk so that a stable relationship betweEmandy is found
with minimal risk of overfitting

y=Tc. (2.30)

From the last line of equation 2.29
y=Tc= XWc, (2.31)
=>b=Wc (2.32)

The PLS algorithm proceeds as follows. The data are meamecepér columnX, =

X —xandy, = y—y. If avery large number of measurements are represented in
X andy (n is large) then for computationatfeciency one may replac&, andy, with

the covarianceS(gXo/n and Xy /n. At eachith iteration a new weight vectow;, is
found, from which a new score vector, and loadingsp; andg; are computed, th& and

y data are deflated to remove the factor correspondimg gnd the deflated” andy then
become the subject of the next iteration. The followingesatedk times.

1. Computev; = X/ ,y,-1/l1 X7 ,yi-1]l and loadw; into thei th column of .
2. Computd; = X;_;w; and load; into thei th column ofT.

3. Computep; = t' X, 1/||t;||> andg; = t'y,_1/||t;||?> and respectively load into the
i th row of P andq.

4. Compute the residuals; = X,_; —t;p; andy; = y,_; — t;q;. The residuals become
the newX andy for the next iteration.

In the above the scores, carry the variance represented in each factor wihere, and
g; are normalised. One can uBdo predictq and subsequently reconstryctAlternately
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we can recomput& = XW without the mean centring and solve equation 2.30 using
least squares regression, namely

c=(T"1)'1y. (2.33)

The vectorc is then used with the computé#f to predicty. Equation 2.33 is the method
we use for the data analysis in this thesis.

2.5.2 Spectral Preprocessing

Spectral preprocessing can make chemometric analysis mooust. Unwanted light or
sample contamination can influence spectral featuresimelyatonfounding chemomet-

ric analysis. First or second order numerical derivativ@sijorneet al., 1993) were tradi-
tionally used to remove baseliné&set and slope and make spectral peaks appear sharper.
The standard normal variate transform (SNV) (Bareeal., 1989) and multiplicative
signal correction (MSC) (Marteret al., 1983) respectively normalise per spectrum and
per data set for gross spectréileets. Let theth spectrum in data séf be x; with mean

x; and standard deviatioy of the values in the vector;. The standard normal variate
transform sets the mean of each spectrum to zero and theastiaheliation to one by

(2.34)

After performing the correction a detrend operation is fiexatly used, in which a straight
line is fit to each corrected spectrum and subsequently atbtf. Now let the mean
spectrum be, the MSC models the spectra as

Xi = a; + b,)? (235)

The parameters; andb; are estimated by regression for each spectrum over the wave-
lengths. The correction is then
(2.36)

A mathematical link between SNV and MSC has been establi@dednoaet al., 1994),
where by making the appropriate substitutions one canftyemsfrom SNV corrected
spectra to MSC.

Extended MSC (EMSC) (Marteret al., 2003) includes polynomial factors in the
spectral ‘x-axis’ (wavelength) and reference spectraidiacas determined by the user,
who can choose what to remove from the spectra and what te Iral.ets; be represen-
tative spectra chosen by the uskthe wavelength index and a set of cofficients. The
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EMSC model is
X=a;+ b,)?+ ki‘lll + ki,2/12 + Z k,JSj (237)
J
The 4 and A? terms represent straight line and parabola terms. Thiicieatsa;, b; and
k;; are estimated for each spectrum by least squares.

2.5.3 Extended Canonical Variates Analysis

Classification is the algorithmic separation of data into twanore groups, or classes.
Extended canonical variates analysis (ECVA) (Ngrgastra., 2006) is an application
of PLS to solve the Fisher linear discriminant analysis (DRRassification method when
the data X, are highly collinear. LDA seeks a vectowhich separates the data according
to two or more classes listed in the reference varigbléet X; be the submatrix o
with all instances of class Let m be the vector dference between the means of class
pairs andS; be the scatter (variance-covarianceXof For the two class problem, Fisher
LDA poses the scalar objective function to be maximised as

b”S,b
J(b) = , 2.38
0) = grsp (2.38)
wheresS), is the between class scatter matrix given by
S, =m’'m, (2.39)
and.sS,, is the within class scatter
Se =) S, (2.40)

The solution to equation 2.38 is the solution to the genszdlieigenvalue problem with
the largest eigenvalue, that is
S,b = AS,b. (2.41)

However, using equation 2.39, the right hand side of eqon&idl is
ASyb = Am mb. (2.42)

The productimb is a scalar. Since LDA is concerned with finding the optimaitoe
direction scalar terms are inconsequential/b) is maximised by the solution to the
linear system

S,b=m". (2.43)
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When X is highly collinear thenS,, is poorly determined. ECVA uses PLS to find a
robust solution to equation 2.43. Ngrgaat@l. (2006) go further and expand the above
for three or more classes, here we need only consider thelass problem.

2.6 Data Analysis Methods

Here we review some data analysis techniques relevanttthibsis that do not fit specif-
ically into the category of chemometrics.

2.6.1 Correlation

The correlation between two variablesandy; is a measure of the quality of the linear fit.
The codficient of variationR? between two variables is defined as (Ott and Mendenhall,
1985)

SSfy
RP= ————, (2.44)
S8 SSy,
where
SSxy = Z(xi _;)(yi - Jj)’
SSxx = Z(xi - ;)(xi - ')?)’ (245)

SSyy = Z(yi - ;)(yi - )7)’

are the sum of squares about the meaar(dy). If y is modelled fromx thenR? describes
the proportion of variation iry that is explained by (Ott and Mendenhall, 1985).

Assuming a linear fit existsR? = 1 means a perfect straight line fit aR¥ < 1
means there is some deviation from the line. Nonlinearityhim relationship between
two variables reduceR? when computed according to equation 2.44, even when a strong
relationship exists. It can be necessary to visually insiiexscatter ok versesy for the
presence of nonlinearity.

When considering the correlation between two univariatéabées (or a univariate
with each variate in a multivariable), then we writewhich is computed as the square
root of equation 2.44. The termis known as the correlation cffieient. Unlike R?, r
may be negative, where negative values indicate negatnygoptionality.
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2.6.2 Variography

Variography (Gy, 2004a,b; Petersen and Esbensen, 2005 o$faom the theory of sam-
pling (TOS) for examining variation in measurements ovensalimension. Consider a
set of objects to be measured called units. The populationits is called the loL. The
heterogeneity:,, is the “contribution to the heterogeneity of Ibtmade by unitU,,” (Gy,
2004a). Given measuremends, on objects with masa/,,, the heterogeneity is

hy=Ny——~_" (2.46)

wherea; and M, are the lot measurement and mass respectivelyNana the number
of units. Given a lag parametgr, representing a physical gap between samples over the
dimension of interest the variogram is computed as

V) = 575 2 s = )’ (2.47)

(Ny

Lag can be any physical parameter, such as distance, timepijest the count of units
going past on a conveyor belt. The variogram representspigat correlation against
distance informing of the nature of variability with inceag distance from any given
sample. The variogram can be decomposed into four partdonafluctuations, the non-
random continuous part, the non-random continuous cyelit gnd some residual part.
The random part is due to random fluctuations within each Tihi¢é non-random contin-
uous part describes the variation trend with lag, e.g. iiamlity increases, decreases or
is static with distance. Similarly the cyclic part is due §@lc variation. The residual,
typically small, is due to error in estimation.

2.6.3 Receiver Operator Characteristics and the Wilcoxon

Consider a two class detection problem where there are yposiistances (or measure-
ments) and negative instances. Now if an instance is trusytige, as identified by some
reference method, then ideally we want a classifier to determhat measurement to be
positive and likewise for negative instances. Such clasgitins are called true positives
and true negatives. When a classifier is in error and labelgatine instance positive
we have a false positive. Similarly misclassified positivetances are called false nega-
tives. Let N, be the number of positive instances andihe number of negative instances.
Thus the total number of instances issNN, + N,,. Given the number of false positives,
FP, made by a classification and the number of true positMesthen the true positive
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fraction, TPF, and false positive fraction, FPF, are

TP FP
TPF= N_,, FPF= N (2.48)

Frequently classification algorithms have a continuousadloutput to which some
threshold parameter is applied to delineate positive agdthe classifications. By vary-
ing this threshold parameter a set of TPFs and FPFs are @olseBy plotting the TPF
against 1- FPF a receiver operator characteristic (ROC) curve is nbthi The area un-
der the ROC curve (AUC) is indicative of the power of the diésastion method, with an
AUC of 1 being perfect classification and an AUC of 0.5 no lrdttan random classifi-
cation. To compute the AUC numerical integration of the R@@ be used (Hanley and
McNeil, 1982), the so-called non-parametric AUC.

The AUC is equivalent to the Wilcoxon statistic (Hanley andN&il, 1982). For
nonparametric data of two groups, count the number of tirmeh enember of one group
is larger than each member of the other group. The sum of tliletsds indicative of the
separation between the groups. Division of the sum of cduyntise product of the number
of members in the two groups,,N,, gives the Wilcoxon. Like the AUC the Wilcoxon
is a fraction between 0.5 and 1. Computing the Wilcoxon onnterimediate continuous
classification output with group assignments accordingeaeference method yields the
AUC. Cortes and Mohri (2004) observed that for two groups, A Bnthe AUC is the
probability that A is greater than B, that A > B), and that the Wilcoxon is the same
for the discrete case. Thus they proved the link between thé and the Wilcoxon.

The null hypothesis, HO, for the Wilcoxon is that there is eparation between the
groups, H1 is that there is separation. The probability taatiom group assignment
yields a larger Wilcoxon than the reference determinesigrefecance. If the probability
is suficiently low then HO is rejected in favour of H1. Estimation tbe probability
is performed by repeatedly assigning random grouping toddta and computing the
Wilcoxon, say one hundred or one thousand times. The p-valthee fraction of times
that a random Wilcoxon is greater than the value due to trexerte.

2.7 Near Infrared Spectroscopy and Beef

For over a decade beef grading based on NIR measurementsédras lbopic of interest.
Traditional measurement of chemical content, such as femor acidity or functional
features such hardness (first bite) and tenderness (ggtatthe whole chewing process)
typically required slow and destructive techniques. NIRtlo@ other hand is fast and
nondestructive, so if mathematical models relating spesftmeat to relevant features are
accurate then spectroscopy holds significant potentiaktiopm real time online grad-
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ing. Tenderness is assessed two ways, by expert panel arftely ferce. Shear force
measurements are taken using a metal ‘tooth’ that bitesigfréhe meat with a sensor
that measures the amount of force required. The majoritgrderness readings in the
literature are taken with a Warner-Bratzler shear force méteecent review by Huang
et al. (2008) covers the prominent literature on meat featuredigterd or analysed via
NIR spectroscopy. In reviewing, we convert all correlatimefficients reported asto R?
for consistency. Where available and relevant, root meaarsgerror in crossvalidation
(RMSECYV), root mean square error in prediction (RMSEP), andstardard deviation
of the reference data (reference SD) are included.

Hildrum et al. (1994) tested prediction of hardness, tenderness anag@ssiof beef
longissimus dorsi (strip loin) muscles by NIR spectroscoplyey present spectra in the
band 1100-2500 nm with 4 nm intervals and also consider riresson spectra in the
band 850-1050 nm with 2nm intervals. The reference varsablere determined by an
expert panel of nine trained assessors. The hardness r&oge®.9-7.1, the tender-
ness ranged from 2.9-7.4 and the juiciness ranged from 4.@e&ch reference value
was on a scale from 1 to 9.) They used PCR with MSC preprocesditite spectra.
Using cross validation they obtained correlation for hasthand tenderness wit? in
the range 0.64-0.81, with reported root mean square erps$ validation (RMSECV)
0.54-1.04, but did not obtain good correlation for juics€R? in the range 0.13-0.24,
RMSECV 0.36-0.51). The authors make interesting comment®wartdugher samples
have higher absorptions than tender samples at most watkteand that a the spectrum
of a tender sample isff&zcted more by the freezing than a tougher sample, but do not
seek a spectroscopic basis to the models they build. Ratedtbcuss in detail the data
analysis, considering carefully the process of model mgiénd outlier removal.

Naes and Hildrum (1997) examined classification methodsefaderness prediction
by NIR spectroscopy and compared classification to regressn their data. They ac-
quired spectra between 1100-2500 nm on raw meat samplesd Base expert panel
assessment of the meat, they grouped the samples into #mwderhess groups: very
tough, intermediate and very tender. They used a varietyedhaas, including: grouping
of PCR output; canonical discriminant analysis; Bayes rulé \ariations thereof in-
cluding the Mahalanobis distance on the principal comptmdusing classification they
obtained good results on extreme tenderness values. Onheland PCR calibration
tended to return intermediate values, so samples that veeyegender or very tough were
often misclassified by examination of the regression re3iiey concluded that classifi-
cation was better than PCR for tenderness prediction andhbd#lahalanobis distance
was the best of the classification methods used. The MaHzikddstance utilises in-
formation about the mean and distribution of thé&eatent data groups, classifying data
according to what distribution each point fits best into. dcah this thesis we utilise a
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related technique to perform classification.

Andersenet al. (1999) examined pH with visible (362—777 nm, 1 nm intervasjl
NIR (1000-2630 nm, 1 nm intervals) spectroscopy in pork.yTéxamined correlations
per wavelength and calibration using PLS. The pH measuremesre taken of 46 sam-
ples the day after slaughter. They compared the pH of the mied¢ whole to after
homogenisation and found that they correlate wRBA & 0.978). On the unhomogenised
samples they had pH values in the range 5.46-6.97. Cormgatibthe pH with the in-
dividual wavelengths varied widely from a positive cortila with R? = 0.64 at 360 nm
to a negative correlation witR? = 0.30 at 1900 nm. PLS modelling of the pH with the
spectra was performed. Leave one out crossvalidation wed, fisom which they ob-
tained a correlation oR? = 0.53 over LD muscles with the spectral band 1000-2630 nm
(reference SD 0.153, RMSECV 0.104).

Radbotteret al. (2000) examined the relationship between spectra (11@B+25,
4 nm intervals) taken early post-mortem and quality featufdey examined final tender-
ness (both tenderometer and sensory) and fat content usBgvih and without MSC
using full crossvalidation. They observed moderately po@diction of tenderometer
readings withR? values of up to 0.46 and worse prediction of sensory valués R4 in
the range 0.22-0.30. Applying MSC to the spectra did not aw@rthe correlation with
tenderness. Moderate correlation with intramuscular datent (0.61-0.72, RMSECV
1.2-1.4 %) was observed. They concluded that their findilmgsad support the use of
spectra taken early postmortem for final tenderness predjdiut stated that broadening
the spectral bandwidth may improve the prediction result.

Radbotteret al. (2001) measured NIR spectra (950—-1700 nm, 6 nm intervalbeeh
at 2, 9 and 21 days post mortem with two treatments based oagstéemperature to
affect tenderness. The tenderness ranges at the respects/pakymortem were 5.94—
14.8 kg cm?, 3.26-12.2 kg cn? and 3.04-15.1kg cM. PLS was used to perform ten-
derness prediction from the spectra. Comparing spectra twéhienderness readings
taken at the same time, including the temperature treatm&rmation for calibration
did not improve the power of the spectroscopy to predictéeness. For prediction of
tenderometry readings in the future, including the treatnm&ormation assisted in ten-
derometry prediction. Crossvalidation was used to asseskgtion power. Calibration
without treatment information gave prediction wik? in the range 0.27-0.69 (RMSECV
in the range 2.54-1.37kg ¢A). Including the treatment information in the calibra-
tion improved correlation to 0.50-0.72 (RMSECYV in the rande521.29 kg crm?). The
pooled SD of error in the reference ranged from 0.48 kg°cam 2 days to 0.62 kg ci at
21 days. Also measurement of spectra though a glass platevegppredictions, which
the authors tentatively ascribe to reduced specular rigfteoh the meat surface but sug-
gest further examination before final conclusions are dralre beef samples were as-
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signed to one of two or three groups by their tenderometrglings. When two groups
were used 73—-98 % of the samples were correctly classifiegh wWhiee groups were used
63—75 % were correctly classified. It may be that the spebtratl improved results over
the earlier study, but it is éficult to decouple any improvement due to the spectral band
from the improvement due to the more detailed timepointrmfation acquired. A com-
monly reported feature in the literature reviewed is a triemaverall NIR reflectance to
decrease with tenderness.

Tagerseret al. (2003) examined fat, moisture and protein in ground beefIiy/dypec-
troscopy at several discrete temperatures betwdeand+10°C. The reference value
ranges were, in percentage of wet weight, fat 7.66—22.91 #stare 59.39-71.48 %,
and protein 17.04-20.76 %. The spectrometer measured tite 0-2500 nm with
2 nm intervals. Principal component regression was usedaeelength bands selected to
avoid the water freezingkect on the spectra. The reference measurements were abtaine
by wet chemistry. Good prediction results, presented asabemean squared error of
cross validation (RMSECV) percentage of wet weight, wereiabthin each case. The
RMSECV were 0.48-1.11 % for fat, 0.43-0.97 % for moisture add-€0.47 % for pro-
tein.

Gonzalez-Marin et al. (2003) examined a wide range of specific subcutaneous fatty
acids in Iberian swine using NIR in the range 1100-2000 nnh wesolution of 2 nm.
They used modified PLS with several preprocessing meas8igs, (MSC, detrending
and numerical dferentiation), selecting the preprocessing that gave therbsults under
crossvalidation. An external test set was used for vabeativhere the authors indicate
that the external data were acquired on new samples. Poavdd R? and standard
error in prediction values were reported. In particular Rfevalues ranged from 0.17
to 0.94. Overall they conclude that “...the NIRS technigueng a fibre-optic probe,
Is a useful alternative to gas chromatography for detertimnaf fatty acid contents in
samples of subcutaneous fat from Iberian pigs.” Sietra. (2008) used near infrared
transmittance (NIT) in the range 850-1050 nm, 2 nm inter¥afsa range of specific fatty
acids, similar to that of Goratez-Martn et al. (2003), obtaining good prediction of some
prominent species. They also observed accurate predictignoups such as saturated
(R? = 0.837), branchedR? = 0.701) and monounsaturateft{ = 0.852) fatty acids.

Qiaoet al. (2007a) used a pushbroom hyperspectral imager to examrkdqranar-
bling levels and quality features, such as redness or psdemed exudation. The im-
ager was a CMOS camera based linescan system that acquictcaspehe range 400—
1000 nm with spectral resolution®nm. Principal components of the spectra were com-
puted and subjected to cluster analysis and a feed forwandheetwork. The reddish
firm samples were grouped into exudative and non-exudatveps with 75-80 % suc-
cess. An angular second moment was used as a texture femtdrapplied to determine
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marbling scores. The same imaging system was used to exéonioelour, pH and drip
loss (Qiacet al., 2007b). Drip loss was determined as the percentage of Weighafter
two days storage and four degrees. Colour was the luminanad,Lla*b* space taken
with a chromameter. Wavebands were selected by choosirsg tthat best correlated
with the response variables. Prediction was performed kingathe “average intensity
of whole loin-eye area at each feature band images.” Thelasgpwas predicted with a
correlation cofficient (R? value) of 0.59, the pH 0.30 and the colour, L, 0.74.

Andréeset al. (2008) examined NIR over 400-2498 nm, 2 nm intervals, fodigten
of pH, sarcomere length, cooking loss, shear force and cdlaarb*) in beef at 1, 3,
7 and 14 days post slaughter. They took spectra at the sareegotimts as observing
reference features. Using PLS, good predictability wagotesl for pH at 24 hoursR? =
0.97, Range 5.50-6.67, reference SmM.33) and luminance (L) at cut timeR¢ = 0.85,
Range 27.62—-42.70, reference $D2.76) and 60 minutesR?> = 0.82, Range 28.89-
43.78, reference SB 3.76). The rest of the examined features had poorer parameters

Scattering coficients computed on beef muscle were computed and examiried wi
respect to tenderness (Xeh al., 2007) and heat induced properties (>¢taal., 2008).
The scattering cdécients were derived from a physical theoretical model ofouia-
incidence reflectometry. The model includes consideraifatfective attenuation, angle
of incidence and the lateratfget of the points of incident light to the centre of th&wuke
reflectance. From the model they obtained an absorptiofiiceat and a ‘reduced scat-
tering’ codficient. “These absorption and scattering fticents represent the probabili-
ties of a photon being absorbed and scattered inside thelsa(®a et al., 2007). Light
from an optical fibre conduit source impinged on the meat $amat@an oblique angle, and
a collection fibre at a right angle to the meat conducted reftelight to a spectrometer.
The sampling fibre was moved laterally to obtain a profile 8emtance with position. An
optical scattering model was fit to the profile at each wawglerfrom which the absorp-
tion and scattering cdigcients were computed. The scatteringftieeent at 721nm was
found to correlate with the shear force wit = 0.59 (precise statistics of the reference
data are not given, but from the figures presented we surnskear force range of about
29-73 N). They recognise that the result, while encouragmguires further study with
large samples sizes (they used 32) and the use of multisdaastatistics to explore the
relationship of tenderometry readings with the whole spmet Scattering cdécients
were observed to change with the structural changes cayskeédbing. Also, based on
their observations of how tenderometry readings and soaiteodficients change with
temperature, they deduced that myofibril (muscle fibresrivatcross the cell) and col-
lagen (connective tissue) haveftdrent défects from each other on scattering. Overall
the work of Xiaet al. (2007, 2008) highlights that scatterinffexts are relevant when
considering optical measurements on meat.
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Bowling et al. (2009) used spectroscopy in the band 345-1100 nm, 5 nm, tiicpre
beef tenderness. They used linear regression, over ageoagpectral bandwidths, re-
gression over band averages with product and squared tsgoer(d order polynomial)
over bandwidths in the visible domain and PCR. The terms thiatreah the regression
model were chosen using a forward selection procedure (iteydetail is given). They
reported low correlationsR? < 0.23, RMSE> 0.754, rather than use independent set
validation, they test for significance using regressionyans) with the best correlation
occurring for the regression including the squared terntseyTobserved that using the
visible and the NIR together did not improve the predictitdity of the models. They
noted that other authors had reported high correlationishbse prior studies used greater
variation in muscles and treatment types. Rosenebél. (2009) examined the relation-
ship between NIR spectroscopy and quality features. Theynae the spectral band
400-1700 nm with wavelength spacing 6 nm. Several treasngate used to create a
range of values in the measurements, such as electricallation, wrapping of the mus-
cles and varying the cooling temperature. They measurarisapre-rigor such as pH,
glycogen and temperature and and post rigor like pH, sheee fasing a MIRINZ ten-
derometer, (MacFarlane and Marer, 1966) and water holdapgaty. The spectra and
reference measurements were taken at intervals posthé&aug observe changes over
time. They observed that the first principle component ofsihectra separated the spec-
tra into pre-rigor and post-rigor groups. Calibrations wauwét using PLS, the predictive
power of which was assessed using independent set vahd&wy pre and post-rigor pH
they obtainedR? = 0.84 (range 5.15-7.17, RMSEP 0.2), for post-rigor tendernsssaf
force) R? = 0.58 (range 19-265N, RMSEP 28 N), and for pre-rigor glyco§én= 0.70
(range 0.0-18.7 mty, RMSEP 2.7 mgg). They also obtained a calibration of the nat-
ural logarithm of time in hours post-rigor witR?> = 0.82 (range 0.0—-4.5 In(hours 1),
RMSEP 0.66 In(hours- 1)).

The spatial variation of the textural and shear force priigm meat has been stud-
iled (Hanseret al., 2004; Janzt al., 2006). Shear, tenderness, hardness, juiciness and
sensory textural attributes were all found to vary withiffetient muscles. Significant
sensory and instrumentalftirences between the left and right side of the carcass were
observed.






Chapter 3
Theory

This chapter covers the theory for optical multiplexing axtends the theory where nec-
essary. Hadamard multiplexing, the connection of Hadanmariiplexing with strongly
regular graphs and compressed sensing are covered.

The action of Hadamard transform matrices on realisticgygfeerror is expounded.
In covering the Hadamard multiplexing we develop a unifietational framework under
which the action of the dlierent matrices are computed and compared. Broadly the srrori
divided into two groups, error that does not interact with émcoding at encoding (addi-
tive error) and error that does (multiplicative error). fhermore random and systematic
error are both considered for each group. The theory for dnection of the systematic
error dfects at decoding is developed and the total combiffiistieis examined.

A link between the Hadamard transform S-matrix matrix andec#ic type of matrix
from graph theory was described by Rateerl. (2007) via the respective eigenvalue
structure and subsequent action on noise by multiplexirgrekhe link is explored fur-
ther for the other Hadamard matrices. The constructionestimatrix from the H-matrix
is reversed for the graph theory matrix. The A-optimalityglage optimality) of the re-
sultant G-like and H-like matrices is examined via the eigédure structure and compared
to the Hadamard equivalents.

The recently developed method of compressed sensing fatlsei realm of multi-
plexing. If a digital signal to be reconstructed hsisdata points then, unlike traditional
multiplexing, compressed sensing involves taking fewantN measurements. Hence
the acquisition time is shorter than traditional multipkex The reconstruction is a com-
pressed version of the sensed signal. The accuracy of cesgutesensing, that is the
boundedness of the error due to taking fewer measuremenigli established. Here
the dfect on the precision due to the number of compressed sensagurements is
developed. The acquisition is typically performed usingatrm of randomly assigned
values. The A-optimality is derived by inference using kmogigenvalue properties of
large random rectangular matrices.

37
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3.1 Multiplexing

A multiplexing system is one where data is acquired accgrtbhrsome linear transform
M, viz
a= Mp, (3.1)

wherep is the unknown data of interest aads the data physically acquired. We acquire
aaccording toM and then reconstrugtby inversion of the transformation, namely

p=M"1a (3.2)

The acquisition in Eq 3.1 must be invertible either by diretrix inversion ofM to
recoverp, or the estimation op must be computable by more sophisticated algorithmic
means.

Due to practicalities, the entries in the mat?X are typically bound to{M };; €
[—1, 1]. Physically the bound on the entriesMi means that each ‘datum of interest’an
contributes at most once to each measuremeatin certain cases the entries &f may
range continuously between the bounds, such as Fourieforam spectroscopy (Becker,
1972) or magnetic resonance imaging (Westbrook, 2002) evkers the Fourier trans-
form matrix. In contrast for multislit spectroscopy (Hatand Sloane, 1979) or optically
multiplexed imaging (the topic herein) each entryMhmust be one of the s¢t-1,0, 1}.
Each row inM corresponds to one acquisition and each column one datumth&o
jth row in M anith column entry of~1, 0 or 1 means that thigh datum must be sub-
tracted, excluded or added respectively to obtain the spaedingjth entry ina. The
caseM = I (I the identity matrix) corresponds to setting= i and physically means
measuring each entry mindividually, which we refer to as pointwise acquisition.

3.1.1 Hadamard Matrices

Hadamard multiplexing is the acquisition of data accordimgne of the Hadamard ma-
trices (Harwit and Sloane, 1979). The Hadamard matricetharel-matrix, S-matrix and
G-matrix. The H-matrix,H,, has the maximum possible determinant for aviyx N
matrix with entries constrained betweef and 1. Every entry it 5, has absolute value
1 and the H-matrix satisfies

HIHy = H? = Ny, (3.3)
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where-T is the matrix transpose. The self transpose condition istnictly necessary, but
is useful for notational simplicity and ease of computaiiothe theoretical analysis.

The Sylvester H-matrix construction is as follows (HarwidaSloane, 1979). The
matricesH; and H, are:

H; =[1],

!1 1] (3.4)
H, = .

1 -1

Given two H-matricesH y and H,,;, a new H-matrixH y,, is constructed by replacing
eachentry indy, {Hy}, ;, with {Hy}, ; Hy, thatis by taking the Kronecker product be-
tweenH ,, andH y. This construction gives matrices of the ordér= 28 k = 1,2, 3, ...
It is conjectured that Hadamard matrices exist for all valoikk.

The G-matrix,Gy_1, is obtained from the H-matrix by removing the leading row an

column of ones, hence
1 o,
0

N-1 Gn-1

whereoy_; is a column vector of ones of lengid — 1. The S-matrix is subsequently
derived from the G-matrix by changing all the 1s to 0 and-tfie to 1. Clearly,

Gn-1=JIn-1—25N-1, (3.6)
whereJy_; is a matrix of ones. From the fact (Harwit and Sloane, 1979),

Gn-1Sn-1=Jn-1Sn-1— 285,

N N
= ?JN—l ) (In-1+ Jn-1) (3.7)
- 2 N-1,
the inverses of andG are,
1 2
Sy-1 =~ On-1
. 5 (3.8)
Gyo1=—5Sn-1

An alternative direct construction of S-matrices is via mad length shift-register
sequences (SRS) (Harwit and Sloane, 1979). A SRS S-matrixlg dgach row is a
cyclically shifted version of the previous one) of ordér— 1 =2"-1m =1,2,3...
To describe the construction process we follow the examipndoy Harwit and Sloane
(1979).
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1. Take a binary primitive polynomial, for exampté + x + 1 which corresponds to

m=4.
2. Set the entries of the first row 8fto {S}1, = 1and{S},; =0,; # 1.

3. Cyclically shift each element in the first row Sfone step to the right and at each
entry take the sum modulo 2 according to the binary primitigg/nomial, that is,
{S}14a = {S}141 + {S}1,. Repeat until no further change occurs.

4. For the rows from = 2, iteratively set{.S};; = {S}i-1+1.

A list of binary primitive polynomials fom = 1, ..., 20 is given by Harwit and Sloane
(1979). Other methods for constructing cyclic S-matricastea review of such methods
is also given by Harwit and Sloane (1979).

3.2 Error Effects Under Hadamard Encoding

In practical multiplexing the acquired data are contangddiy random and systematic
error. The random component due to noise causes a varianesisurement; the system-
atic component causes a bias. Considering noise, the pripuappse of multiplexing is
to permit more of the object being measured (light in our tasthe measurement device
so that the signal is increased. The signal increase causgaal to noise ratio (SNR)
boost at data acquisition. If the multiplexing pattern isim@l then the SNR boost is op-
timally maintained at reconstruction. This section adsiesgjeneral key forms of random
noise and systematic error in multiplexing. The contrits to the state of the art of this
section are:

e A coherent and unified description of théfext of all likely error sources for all
three types of Hadamard matrix.

e An examination of driftand Poisson noiseféects for all the Hadamard matrices
and, in particular, for the H-matrix and G-matrix.

The error types and theiffect under multiplexing are introduced individually. The
error types are: random additive noise, additiféset, Poisson noise or any noise with
variance proportional to the signal, and systematic miidagive ofset. The correction of
the systematic error types and the subsequietton the random noise are considered.
This section does not consider the physical cause of the gmes explicitly to main-
tain generality. While the theory was developed in the caméxoptical multiplexing,
applicability to other multiplexing situations is posslby reconsideration of the error
sources.
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3.2.1 Additive Random Noise

We first consider theféect of random additive errog, with variances?, that occurs at
acquisition and is independent of the multiplexing matvix

a=Mp+e (3.9

Decoding recovers an estimate of the dgtacontaminated with additive error that is
modified by the inverse of the encoding system

p=M"1a
=M Mp+Mle (3.10)
=p+e,

wheree = M le.

An advantageous encoding system will reduce the variandbeoerror at decod-
ing. The variance (or MSE) of the errors at encoding are narajuteed to all be the
same as each other at decoding, nor are the MSE of the errdecatling. To assess
the theoretical performance of multiplexing system masiwe use the average of the
MSE or A-optimality (Harwit and Sloane, 1979). Other optlityameasures exist, but
A-optimality is probably the most important measure preddhat the errors are ap-
proximately equal (Harwit and Sloane, 1979). lkgbe the entries in the vecter, an
A-optimal matrix minimises

1y
_ 2
€= igl €;. (3.11)

It turns out that an A-optimal design is one which minimisdarfvit and Sloane, 1979)
= G—2Tr [(M"M)™] (3.12)
€ = N s .

where TH-] is the matrix trace. The trace term in equation 3.12 is ugefudnalysing the
predicted error behaviour of a matr™ for random additive noise.

For pointwise acquisitionM = I, we have
Tr[(UNIn)] =TrI] = N. (3.13)

Equation 3.13 is the baseline for multiplexing, any muéiyphg matrix that does not yield
a smaller result provides no advantage.
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For the H-matrix we have using equation 3.3

Te (G H) ) = 5T [H3)
= %NTr [Iv] (3.14)

=1

The H-matrix attains the smallest possible value accortbnigotelling’s bound on the
MSE (Harwit and Sloane, 1979), thus the H-matrix is optimal rinultiplexing. The
optimality is also seen intuitively by noting that the inseofH is simply a scaled version

of itself, that is, the rows irH form an orthogonal basis set. The reconstruction then is
essentially a rotation and scaling operation and the réawmted data have the same SNR
as the acquired data on average. If the SNR is optimised aisatign, then the MSE is
minimised at reconstruction.

For the G-matrix we have

Tr[(GN1Gr-) 7] = Tr[G]
4 (3.15)
= ﬁTr [szv-l]

where equation 3.8 was used. An S-matrix has on each row dachedN — 1+ 1)/2
ones, thus Tnﬂf\,_l) = (N -1)(N —1+1)/2. Thexl term for.S encompasses both
Sylvester and cyclic SRS matrices, with the former corredpwnto—1 and the latter to
+1. Now

4 4 (N-1)(N-1+1)

—Tr[s? | =— )

N2 [Sv-1] N2 2 (3.16)
~ 2, forlargeN.

So G is not as optimal ag{ but provides a useful alternative should a matrix of odd
dimensions be required. This result was presented by Skiaahe(1969) and was inde-
pendently derived by by the present author (Streettal., 2008b) without knowledge of
the derivation by Sloanet al. (1969).

For the S-matrix we rework the result of (Sloaeteal., 1969; Harwit and Sloane,
1979) in the manner above to obtain

Tr [(SZ,_lSN—l)_l] =1Tr [S;lz—l] ,
4 (3.17)
= ﬁTr [GRl -
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Since the G-matrix has no zeros we see tha{t}ﬁ;_l] = (N - 1)?, which gives

R — 4 — 2
Tr [G%_1| = 2(N 1)%, (3.18)

~ 4, for largeN.

The S-matrix, while not as optimal as the H-matrix or the Gfiracontains no negative
terms. The S-matrix is conjectured to be the optimal matitk wo negative terms (Har-
wit and Sloane, 1979) and is useful in situations where theraations necessary for
implementingH and G are not practicable. As such the S-matrix is very common in
multiplexing.

3.2.2 Additive Offset Bias

Additive offsets cause bias in the measurement. Systematic additiygeoc@mts such as
background and baselindfset are represented by a term that is multiplexgdand a
term that is independent of the multiplexitygy Multiplexed acquisition in the presence
of such dfsets is

a=M(p+t)+t,. (3.19)

Reconstruction by inversion @i gives
p=Mla=p+t;+ M1, (3.20)

The independent componety, is reduced by multiplexing wheregsis recovered.

Being systematic the additivéfeets must be directly measured and subtracted at the
appropriate point in reconstruction. Measurtags performed directly by settingg = 0,
generally a simple matter in many multiplexing systems. irhetiplexed dfset is more
problematic because 3.19 implies thatcannot be measured independentlypof An
auxiliary independent measurement device observing tlaEsuarement environment may
overcome the dficulty in measuring,, but also introduce new error sources. Thus itis
preferable to avoid multiplexing systems for whigh# 0.

Additive offset factors that drift are represented by varying entrieg amdt,. When
the dfset is guaranteed not to drift then only one measuremengigreel which is sub-
sequently subtracted appropriately during reconstractvevention of drift altogether is
very difficult, if not impossible, and typically the entries; andr,; in t; andt, must be
measured with eachy in a. Making such measurements gives estimates of the tfaeto
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values with random errds andt,. The measurements taken are modelled as

a= M(p+t1)+t2+%,

th=ti+e, (3.21)
th=t,+e,

wheree,, e, ande, are sampled at random from the same distribdtioMaking the
appropriate corrections

p=M"a-t) -1, (3.22)

we see that
p=p-e+Me—e). (3.23)

Thus from equation 3.23 correction taf andt, at reconstruction results in an average
MSE of

€=0+ %ZTr [(M"M)™ . (3.24)

Correction oft, increases the average MSE of the error that is reduced byphexing.
However correction of; introduces error that is notfacted by the multiplexing, which
reinforces the preference of avoiding situations wtigegé O.

3.2.3 Poisson Noise

The variance of Poisson noise is proportional to the meartipfiexing, which boosts the
signal at data acquisition, also increases the varianceiss®&n noise. The critical issue
for multiplexing in the presence of Poisson noise is how milnghencoding increases
the noise at the data acquisition compared to how much thesttenstruction reduces
the noise. We first derive the general form of the average MiStecoded multiplexed
estimates in the presence of Poisson noise, then examispdicdic Hadamard matrices
in turn. We restrict the analysis to the case where signgdgtmnal noise emanates from
sources that add positively, so the Poisson noise variartbeiefore as large as it can be
so the following analysis represents a ‘worse case scehdtionceptually there may
be cases where the noise is proportional to the signal redogéhe negative encoding
elements inH andG, causing a smaller noise variance than in the followingysis

Let (r) be an average intensity ‘weight’ in measurement &nlde a diagonal matrix
with random values to represent noise. Furthermore let dedonal element irE be
sampled at random from a distribution with varianeé¢. In the context of reflectance
imaging or spectroscopy-) is the mean intensity of the light source and is typically a

Lif £, is taken with an axillary device them is from a diferent distribution.
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large real number (assuming a classical model of the phHysinsther contexts it may
be physically sensible fofr) to have any other magnitude or even be unity. We model
multiplexing with signal dependent noise as

= (r) Mp + EMp. (3.25)

So an error term is multiplied bgach encoded measurement and added to the noise free
encoding. Decoding gives
=(r)p+ M *EMp. (3.26)

Letep, = EMp, the noise at acquisition. The variance in jtie entry of the acquisition
a, 05, ., due to thejth entry inep is

02, = (r)Imy| - (3.27)

where we introduce the notatigm;| to be a vector of the absolute values of jitie row
of M. The notationjm,| is distinct from the norm of a vectofim;||, which returns a
scalar. It is necessary here to take the absolute value efntnies inM to ensure that all
variances add and do not subtract. The error in the decodietbéss isepp = M tep,.
The MSE of thekth reconstructed estimate is thus

N
-1,2 2
€ppk = Z{M }k,jap,j,a

(3.28)

v
= Y (M2 () Imy] - p

and the average MSE is

1 X
€pp = N Z EPpk

N N
Y Y AME (ryImy] - p, (3.29)
ko

1 N
=5 2 imil: pZ{M-l}k,

Equation 3.29 is the most general form of the average MSE digsen noise. The last
line in equation 3.29 shows that the average MSE is modifieépguisition by the factor
ZkN{M‘l}ij, that is, the average MSE is a weighted average of the nosegaisition.

For the special case where the Poisson noise variances acttjugred data are approxi-

ZIH
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mately equal{r) |m;| - p ~ (r) m - p for some vectom, equation 3.29 becomes

(rym-
N

epp X Prr (M7 M), (3.30)

which shows the similarity between equation 3.29 and eqnail2.

The average MSE for pointwise encodid, = I, is

1 N
o =< ) (o ) U}l
€pp NIZ"P; k

=(r){p).

(3.31)

wherep; is theith entry inp and(p) the mean of the;. As with additive noise, pointwise
encoding is considered the baseline and any multiplexintpogemust not increase the
average MSE.

The H-matrix, with the inverse aff from equation 3.3, gives
1 N N
_ -1,2
€pp = N Z (r)Ihyl - p;{H Y
J

N N N 2 3.32
-2 ZnX(¥) o
=(r){p).

where|h;| is a vector of the absolute values of tfte row of H. Thus H-matrix multi-
plexing averages the errors at reconstruction but doeseuthice the Poisson erron
average. Essentially becausH is a scaling and rotation, the signal and the noise are both
boosted and reduced by the same amount at acquisition aonkstaaction. Hassleat al.
(2005) obtained substantially the same result when consgi®oisson noise emanating
per-datum to be multiplexed under the specific case of fleerese imaging. Here we
have modelled Poisson noise variance as a function of thes gneeight’ measured.

For the G-matrix we have

N-1

1
erp = o 1Z<r>|g,| pZ{G—l}k,

NZN 1Z<r>2p,Z{SN )2

wherelg;| is a vector of the absolute values of tiile row of G. SinceS has approximately

(3.33)
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N/2 1s andN/2 Os on each row and column we have

N—
4 1 N
€pp ~ ﬁm E (r) E pii, N Iarge
j i

=2(r)(p)-

(3.34)

The G-matrix increases noise that is proportiong tmd should not be used when Pois-
son noise is dominant.

For the S-matrix case

N-1
erp = o 1Z<r>|s| pZ{S—l}k,
(3.35)
4 1 @
el pZ{G}k,

where|s;| is a vector of the absolute values of itk row of.S. We make the simplifying
approximatiorp; ~ (p), use equation 3.8 for the inverse®fand observe again that each
row in S has approximatelyw /2 1s andN /2 0s to find

e Z "3 Z ») Z(ﬂ)z

~ 2(r)(p),for largeN.

(3.36)

The S-matrix, like the G-matrix, is not suitable for Poisswise. The result in equa-
tion 3.36 agrees with Damaschini (1993) and Nitzsche andeRirg (2003).

The result thatS and G have the sameffect on Poisson noise contrasts with the
result for additive noise (Section 3.2.1). The reason is@hecreases the Poisson noise
variance more thary does at acquisition but at reconstructiGnreduces the Poisson
variance more tha§. In contrast, additive noise is independent of the encqdinghe
reduction of noise by, being greater thas, is better for additive noise.

3.2.4 Multiplicative Drift, Systematic Multiplicative Bias

Allowing (r) in section 3.2.3 to vary between acquisitions models nlidapive drift.
We write (r), for the jth acquisition and load eaglr); onto thejth row of the diagonal
matrix R. The average of thé-); is (r). Assuming the acquisition to be free of any other
error

a= RMp. (3.37)
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Reconstruction of the estimapegives
p=M"1RMp, (3.38)

which is contaminated by a bias. The error due to the bisscomputed by taking the
difference (Streetest al., 2008b)

b=(r)p-p
= (r)p— M'RMp, (3.39)
=M({r)I-R)Mp.

sob is proportional to the dierencesr) — (r),. A simple and reliably precise way to
correct for drift is to observe the); over the acquisition and correct eachn a before
reconstruction. The average squared error due to mubiple drift is

1
€bp = NbTb

(3.40)

_ %pTMT () T = R) (M~ M~ ((r) I — R) Mp

Prediction of the relative féect of multiplexing matrices o, cannot be performed
without knowledge of the nature of the drift representefirSinceR is different between
acquisitions further general analysis isfidult.

Multiplicative drift modifies the Poisson noise variancecluding drift, equation 3.27
becomes

Cpja= (1) 1Ml -p, (3.41)

thus the average MSE at decoding for Poisson noise withigrift
1 N N
erp =+ Z (ry; Im;| - p g{M-l}i,.. (3.42)
J
For pointwise encoding the average MSE is

1 N
erp = 5 2 (Nipi % (1) (p). (3.43)

For the Hadamard matrices, examination of equations 3.83 &nd 3.36 shows
that the(r); are averaged in each case. Thus, including drift, the aeel#8E for the
Hadamard matrices is unchanged from the average MSE ofdPomsse without drift.
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3.2.5 Combined Hfect

Combining the errorféects in multiplexing gives the general acquisition model,
a=(R+E)M(p+ty) +t,+e,. (3.44)

As described in section 3.2.2, correction of error dug tg 0 results in noise that is not
affected by the multiplexing. Thus we utilise multiplexing wiehe encoding and the
additive bias are independentso= 0. We assume thak andt, can be independently
measured, that is, we have access to

ji = R+EP+EG, (345)

and
L=t +e, (3.46)

where allE and Eg are diagonal matrices containing the Poisson and additiee i@ R
and theE;, e, ande, come from similar but independent noise sources, thus ad tie
same variances?, as each other.

Correction of the encoded measurements using the measunectes of R andt,
givesa., namely

a, = IA{—l(aA— fz),A | (3.47)
=(R+Ep+Eg) (RMp+EMp+e,-6).
Writing the combined random error in the corrected acqoisibee, . gives
a = Mp + e, (3.48)
and decoding gives the estimate
P=p+M e, (3.49)

Writing e, in simple form is problematic due to the matrix inversion guation 3.47,
however we may use the equation for the random error in a{@é&arson, 1897) to obtain
the average MSE in the reconstructed corrected estimaiteisth

1 2 (a)? 2 (@ 1 T py-1
A~ ,Q‘/ ~ a + A— ~ 2# ~ _Tr (M M) y (350)
€p < >2 <O’ < >20'R <R>aa,R> N [ ]

whereo? is the variance in the a\cquisitiorﬁ2 is the variance in the drift measurement
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and azﬁ is the covariance between the acquisition and the drift oreasents. From
the subtraction of, which doubles the random additive variance and approxigdtie
Poisson variances in the elements ofito be equal to each other give$~ 262+(r) |m|-

p. The variance in the drift measurementxisz (r) + 6% and due to the assumption
of independence in the measurements the covaria@ge: 0. The expected values are
(@ ~ (rylm|-p and(fe) ~ (r). Substituting into equation 3.50 and rearranging we
obtain

12
6 <2"2 + () m] - p + L2 P

r) (r)?

= 5 (20 () Il p+ (Ml p)? ) + (il - p)0%) T [(M7 M)
=

() + 02)> Le a7,

A~

(3.51)

=

Equation 3.51 looks like a drastic reduction in the averagEMue to the term /1(r)?
from the drift correction, however the mean squared signalso reduced by the same
amount so the resultant SNR is not reduced by this factorettain cases it may not be
possible to measur@and R independently se‘rif2 in equation 3.50 may not necessarily
be zero. Such situations must be treated ad hoc for the plartimultiplexing equipment.

For the case of pointwise acquisition we recall from equa831 that the average

MSE |m| - p = (p) Thus equation 3.51 reduces to

1
@3 (26% + (r) (p) + (PY* (r) + (P)? 67) .

r

3.52
2t ), 0 0 oo
(ry? Ary )
For the case of the H-matrix,
1 11
e & — (26°+ N (r) (p) + N*(p)*(r) + N (p)* c?) Szl [H?],
r) (3.53)

_ 20 (P, NP’ (p)Pe?
N2 () () (r?

The N that appears in the third term is disadvantageous, howéwsvrsin chapter 4,
certain instrumental considerations mitigate the factavo

For the case of the G-matrix,

1 14
€p X o (26% + N (r) (p) + N?(p)*(r) + N (p)*0?) FﬁTr [$7].
46°  2(p) N 2N (p)? N 2(p)?o?

SN () (r)?

(3.54)

, N large
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The S-matrix gives

1 1 4
me. <20' +—<r><p>+—<p> (ry+— <|o>2 2) el |G?] .
802 2(p) N(p)? (p)’o? (3:55)
~ N(r}2+ B + " + O N large.

Comparing the first term in equations 3.54 and 3.55 we see Hgdithe G-matrix reduces
the additive noise by twice the amount of the S-matrix. Frbengecond term the Poisson
noise is equally doubled with respect to the pointwise aitjan. For the third and fourth
terms (‘mixed terms’ that result from the ratio) the S-matutperforms the G-matrix by
a factor of two. Like with the H-matrix, the third and fourtbrins are mitigated by
instrumental considerations.

3.3 Graph Theory and Hadamard Multiplexing

Ratneret al. (2007) established a link between strongly regular graplts&matrices
via the eigenvalue structure and the subsequent action ise.ndhey showed how in
certain circumstances the adjacency matrix of a stronguleg graph, which describes
the location of edges between vertices, provides a usdtraltive to the Hadamard S-
matrix. Ratneret al. (2007) however did not extend the link to the Hadamard G-matr
and H-matrix. Here we:

e Reverse the Sylvester S-matrix construction to obtain gtyoregular graph based
equivalents to the Sylvester G-matrix and H-matrix and

e Examine the A-optimality of the constructed matrices.

A strongly regular graph (SRG) (Ratner al., 2007), written srgl, k, a, ), is a
graph with N vertices, where each vertex hWasdjacent verticesk(connections to other
vertices). When two vertices are both connected to anothiet viertex then the two
vertices are said to have a common adjacent vertex. Eacbesdjpair of vertices in a
SRG hasr common adjacent vertices and each non adjacent pajf basimon adjacent
vertices. The adjacency of all vertex pairs can be repreddny a matrix of ones and
zeros called the adjacency matiiX. The eigenvalue structure of the adjacency matrix
is well known and is dependant on the parametér, « andg. Specifically forw =
Srg(N, k, a, p = a) the largest eigenvalue 5 = k and the other eigenvalues all have the
same magnitude as each other and are lesstharhe Hadamard S-matrix also has this
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eigenvalue structure. Multiplexing vi&” results in an average MSE of

6?2 (1 (N-1)°
=2 (Z+ 1), 3.56
w N<k2+Nk—k2> (3.56)

Whenk = NT” ew R~ %62, identical to the advantage achieved$yHadamard matrices
have only been found for a specific set of integer valuevof In principle, there is
no such restriction for graph matrices, however for any ifigecalue of N there may
not necessarily be a known sig(k, a, a) for the most optimal integer value a@f for
minimisation ofey . In such a case one simply selects the most optimal matrilabie
There are two immediate benefitsiéf over.S arising from the fact that is variable
in equation 3.56 (Ratnet al., 2007). The first benefit is that the multiplex ordércan be
raised whilek is lowered. Thus ifN is increased by adding more objects to be measured,
then loweringk will avoid potential saturation of the measurement devitke second
benefit is if multiplicative Poisson noise is present anddbetributions due to Poisson
error and additive error (respectivel¢ ands?) are known then we can write, assuming
homogeneous contributions to the Poisson noise by all date multiplexed,

62+pk<1 +(N—1)2>

(3.57)

WEETN A\ Nk—#2
Finding the optimal multiplex matri¥” is a matter of finding the integer value btthat

minimisesey p.

3.3.1 The ‘Link’ Between W and S, G and H

The link betweerd” and.S is established through the respective eigenvalue streiCRat-
neret al., 2007). We show here that starting withi, and reversing the construction pro-
cedure to get a S-matrix from an H-matrix, that a G-like mxa#i; = J — 2W shares
the properties of. Also adding the extra row and column of oned#g to produce an
H-like matrix, Wy, results in slightly reduced noise reduction propertiesmtH. This
counter intuitive result is evidence that while under dartaonditions.S and W share
very similar eigenvalue structure, they do not share allsdn@e properties. Regardless
W provides a useful noise reduction.

The Matrix Wy =J —2W

To begin, we recall that for an arbitrary encoding matvixwhere M” = M, the dfect
on noise variance due to multiplexing is

c? _
ew = T (M2, (3.58)
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where Ty -] is the matrix trace. Also recall that the matrix trace is tamof the eigen-
values, that the trace of the matrix inverse is the sum of ¢lsgorocal eigenvalues, and
that the trace of a sum of matrices is the sum of the tracess itV = J — 2W

Tr (W% =Tr[(J - 2w)7?].
=Tr[@W>+J%-2WJ -2JW)7Y], (3.59)
=Tr [(4W? + (N — 4k)J)™] .
sinceJ is a matrix of ones an®¥ has on each row and coluntnones andV — k zeros.

There is a fundamental lemma of linear algebra which stdtasfor the sum of two
matricesA + B, whereA has full rank andB has rank one, that (Miller, 1981)

1
(A+B)t=Aat1- ———  _AlBA™L
1+ Tr [BA™]

Therefore, after some algebraic manipulation,

N — 4k

+ Tr(w=2Jw™2]. (3.60)
4(4+ (N — 4k)Tr [JW-2))

T wg?) = 37w

The solution to the term Tji#’ 2] is (Ratneret al., 2007) (cf. equation 3.56)

_ 1 (N -1)
Trw? == + —~=. 3.61
[ ] k2 Nk — k2 ( )
To find the value of the other trace terms we see that Sitide= JW = kJ,
1
Tr [W2IW ™2 = ZTr [W2W2IW?2w 2],
k (3.62)
1 N
Similarly we have
N
-2
Tr{Jw=?] = e (3.63)
Thus equation 3.60 becomes
_ 1/1 (N-1)7? N(N — 4k)
WA=+ - : 3.64
5] 4<k2 Nk —k?  k2(4k?>+ N2 —4kN) (3.64)

As stated the Hadamard S-matrix coincides wikhwhenk = NT“ Making such a

substitution into equation 3.64 and assumMdgrge then the second term in the brackets
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clearly dominates, thus

1 N —1)?
r [WGTZ] ~ 4 < N(N(+l) (1)v+1)2>
> — (3.65)
~ 1.
The noise reduction due # is then
1
ewa N Naz. (3.66)

Equation 3.65 implies that the rows (and columnship form a nearly orthonormal set
and thus nearly satisfy the Hadamard condition (equati®n 2s the same is not true for
G, equation 3.65 also implies thatis not exactly equivalent t&.

The ‘Equivalent’ to H

We examine the properties of the H-like matrix constructednfi#”. We construct the
H-like matrix, W, from W by adding a row and column of ones to the frontigf, viz

1 o’
Wy = , 3.67
" [o J—ZW] ( )

whereo is a column vectors of ones. The squardigf is

(3.68)

) N+1 (1+ N — 2k)o"
1+ N-2k)o 4W2+ @1+ N —4k)J |’

To simplify, we make the substitutions = 2W, ay = 1+ N —2k andfy = 1+ N —4k.
The inverse oW,§ is obtained by blockwise inversion (Henderson and Sea®@] t as

2 -1 2 -1
1 12T (12 @ T (12 @
N+1+(N+1)2aHo (V +<ﬁH_Nil>J) 0 _1\7110 (V +<ﬁH_Ni1>J)
1

“zan (V2 (- its) 1) o (Vo (o) 7).
(3.69)

W=

’the Banachiewicz equation
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The trace ofW,” is then

2 1 1 2 2 0‘%{ -
Tr w4 = oV - J] o
Wi N+1 (N1 T\ i "

2 -1
Tr <V2 + </3H - N“f 1) J> . (3.70)

2
We make the substitution= gy — -2 and using the matrix inverse lemma find that

N+1
2 11 -2 k?y -2 -2
(V2+7J) = \Wr - RIw
Y

e
4 k2(1+yN) )’

which substituted back into equation 3.70 and solving gives

1
N+1

1 1 N -1 2 2 N N2 N 1
HEi W=D, o (N an -T2 ) @
4\ k? Nk-k? (N+1P\k*> Kk?(4k>+yN)/ A4k*+yNk?

Tr [W,?] = +

Making the substitutiot = NT‘l we observe thaty andy are of the order (N). Thus,
again, the second term in the brackets dominates so

Tr (W% ~ L. (3.72)

There are terms in equation 3.71 that are of ottlgy ~*) whereas there are no such terms
in equation 3.65, thus the approximations made for the wéaé&E; are more precise than
for Wy, Typically one should expect Ti;;?| to be slightly greater than Tiw;?|.

A Numerical Example

The srg(166, 2, 2) 2 is an example of a SRG that nearly fits the assumptiors NT”
anda = f. The assumption = f ensures the desired eigenvalue structure (Ra&tredr,

3http://www.maths.gla.ac.ukés/srgraphs.html, date accessed 8/5/2008.
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2007) and is the more important of the two. The matrix in goess

(0111111000000 00(
1011000111000 0 0 (
110100000011 10 0 (
111000000000011 1
100001110010010d
100010101001001(
100011000100100 1
w_|010010001110010¢4 (3.73)
010001010101001¢
010000111000100 1
001010010001110 ¢
001001001010101C¢
001000100111000 1
000110010010001 1
000101001001 010 1
0001001001001 11(

The largest eigenvalue & 2 is 36 and the rest are 4, which, denoting the eigenvalues as

Ai, give
1

i 3.7, (3.74)

Tr (w2 = Z

where x denotes recurrence. This provides slightly better noise reduction than a S-
matrix of order 16, if indeed one existed. The eigenvalued/gfare all 16, thus

Tr (W52 =1, (3.75)

as predicted. The matridy is of size 17x 17. The largest eigenvalue ﬂffl Is 38.651,
the smallest is 10.349 and the other fifteen eigenvaluesGaréHis gives

Tr [W,%] = 1.06, (3.76)

slightly higher than foM/; but still corresponding to an excellent multiplex advaetag

3.4 Compressed Sensing

Compressed sensing (CS) (Donoho, 2006; Tsaig and Donoho) Ed@énodern multi-
plexing method for signal acquisition that requires feweasurements than traditional
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techniques. CS is based on the assumption that a signal capresented in some trans-
formation by a sparse vector. If one takes an orthogonaktoamation matrix¥ and
computes the cdgcient vector as the solution @ = Y6, thené is sparse if many of
the codficients are zero. Frequently a transformation is not sparses Istill compress-
ible, where most of the essential informationdito reconstrucp is contained in a small
number of cofficients. These essential dbeients are much larger in magnitude than
the non-essential cffecients. The magnitude of the dfieients of a compressible signal,
when sorted into decreasing order, decay according to ardawe

Consider an acquisition matri with randomly assigned ones and negative ones with
fewer rows than columns and acquire data according to

a= op. (8.77)

Substitutingp = Y0 gives
a= ove. (3.78)

The transformsd and ¥ are required to be mutually independent, that is they cannot
represent each other in a compressible manner. When thissmaotependence holds
and wherp is sparse (or compressible), therhencep, can be accurately reconstructed
with high probability.

Let p be the reconstruction gf via CS. Supposing we know the location of the
largest entries ip, form p, by setting all but the largest entries to zero. Assuming data
are acquired with noisewhere||e||, < k and thais,, < v2 — 1 then (Cands, 2008)

1P = pll2 < Cos™2(Ip = psll1 + Cax (3.79)

whereC, andC; are constants that depend &. From the proofs by Cars (2008), let
tcs = 2v/1 + 625 /(1 — 625) andpes = V265, /(1 — 6o,) then

1
CO — 21 + pCS’
~ Pes (3.80)
Ucs
C,=2 )
1-pcs

So the error in the reconstruction is bounded, even in thegmiee of noise.

For a signal of lengthV, at least logvV measurements are required for reconstruc-
tion (Donoho, 2006; Haupt and Nowak, 2006). It has also beews empirically that if
k codficients ind are necessary fo¥ to represenp, then abou = 4k measurements
are necessary to estimatéo reconstrucp via CS (Tsaig and Donoho, 2006).
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3.4.1 CS and the Hect of Random Noise

Equation 3.79 explains that CS is stable in terms of accueatenstruction. It also ex-
plains that the error contribution due to random noise in @®nstruction increases as
the signal becomes less sparsancreases). It does not explain how the precision in
CS reconstruction isféected by the number of measurements. Intuitively more nreasu
ments mean better SNR. Here we show by inference that in CS tiverse is true for a
random acquisition system and random additive noise, tloaé mneasurements reduces
precision.

Consider the acquisition of CS data with random additive neise

a=®op+e
= 0¥ +e

(3.81)

Now assume that we can accurately invert the linear sysb&itnpby some linear algorithm
1[®Y](-), where, for any vectax satisfying the conditions of the algorithm

I[DPY] (®PX) = X, (3.82)
thus,
0 =1[DY](a), (3.83)
=0+ 1[DY](e),
from which

p=Yo

(3.84)
= p+YI[DY](e).

Since VY is well conditioned and the inversiod,, is linear, I [®Y] = I[Y]I[®] =
¥-11 [®] and the random error in reconstruction is

& =YY 'I[D] () = I[D] (e), (3.85)

thus the é&ect on the error in reconstruction depends only on the irveis ©.
We examine the A-optimality of CS with a random matrix via

¢ = %ZTr [(@7®)7]. (3.86)

wheren < N is the number of acquisitions taken. The inversion befoedridice operation
is not directly possible. The matri@’® hasN eigenvaluesN — n of which are zero
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which explains why®” @ is not invertible by traditional means. CS sidesteps thesisgu
invertiblility, performing reconstruction with the available pieces of information. Thus
we infere by replacing the trace with the sum of inverse of #h@nzero eigenvalues
P |

€=— ,- /1—12 (3.87)
Eigenvalues are pairwise coupled (Rateteal., 2007). If one eigenvalue is made smaller
then some other eigenvalue gets larger. The greater thaedsipréhe eigenvalues the larger
the trace and the less A-optimal CS is. Silverstein (1985)veldathat the smallest and
largest eigenvalues of a large Wishart matrixNIb” ®, where the entries i® are inde-
pendent and infinitely distributed Gaussian with variancaré respectively (2 /)% and
(1+ y)?> wheren/N — y € (0, 1) as n gets large. From Silverstein (1985) the eigenval-
ues of®’® must be non-randomly distributed aroundwith finite positive support that
increases witlk. Thus we can infer that precision due to the A-optimality ofde8reases
with more measurements. A certain number of measurementequired before recon-
struction becomes accurate so there is a trdtlbetween accuracy and precision in CS.
Whenn is too low the error due to incorrect reconstruction dongedhe error processes
and whem is too high then random noise dominates.

Random Error Effect on CS

25_ ......... e I R I SRR )
A : : -| — — — Numerical CS Error | -
Theoretical Precisiof:

ok T ST e TR TRRRRTT g

sk S N TR R ;

SNR

10 | ; ; N e, ;

'l 'l I
300

0 L1 1 1 | I T T | | I T T | | L1 1 1 | L1 1 1 |

0 50 100 150 200 250
Number of Measurements

Figure 3.1: SNR of CS for a numerical example and the SNR dubedheoretically
inferred precision. As the number of measurements incsghgsgandom error dominates
the SNR.



60 Theory

We perform a numerical demonstration of the erféeets in CS.

o A 256x256 random acquisition matrix was generated with Gausaiatham entries
of variance one.

e A N = 256 positive random signal was generated with 20 nonzero entries.

e The encoding of the signal was contaminated with randonti@ddbaussian noise
with variance 0.1.

e CS reconstruction was performed via basis pursuit for 1 togsfiisitions and for
each reconstruction the SNR computed as the ratio of themean-square (RMS)
of the true signal over the RMS of thefiirence between the true signal and the
reconstruction.

e The SNR due to theoretical precision was computed as tteohthe RMS of the
true signal to the square root of equation 3.87

Figure 3.1 shows the numerical CS SNR and the theoretical CS @MRto A-
optimality. The numerical SNR startsfeamall due to inaccurate reconstruction and then
jumps quickly neam = 4k = 80 measurements in accordance with Tsaig and Donoho
(2006). The numerical SNR meets the theoretical SNR at 158sorements. Above
150 measurements the random noise dominates the error amditnerical SNR tracks
closely with the theoretical SNR.

3.5 The Hfect of Error in the Reference on the Wilcoxon

Classification is the process of assigning data to one of twoaye groups. For example
in an automated detection system, a classifier determiresch measurement is an in-
stance of the target for detection or not, and labels eat@irins as positive or negative. In
performing classification tasks one must assess the poviike afassifier to discriminate
between groups of interest. Assessing the power of a clssfiessentially assessing
how often the classifier is incorrect, however when perfagrthe assessment one must
know beforehand what group each member belongs too. Theoch&bh assigning ref-
erence groups is called the reference method and is assonbedcorrect, nevertheless
the reference method is another classification and carwayalbe assumed to be free of
error.

The area under the curve (AUC) of a receiver operator chenatit (ROC) curve and
the Wilcoxon statistic are two equivalent methods for asisgsthe power of a classifier.
When there is error in the reference then calculation of thiedon, or AUC, will be
biased.
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3.5.1 Alternative Derivation that the Wilcoxon is Equivalent to the
AUC

We derive a direct link between the AUC and the Wilcoxon. Tésuit provides a use-
ful equation for examining theféct of error in the reference on assessing classification
power. Assume some data falls into two groups, group A andmg Group A is the
‘positive’ group and group B is the ‘negative’ group. If a s$éfier labels a member of
group A as positive then it is a true positive, if the same sifees labels a member of
group B positive then it is a false positive.

We begin with the definition of the AUC given by Barrettal. (1998)

1

AUC = J TPF@)d [FPF()] . (3.88)
0

where TPF is the true positive fraction (see section 2.&BJ; is the false positive fraction

andt is the threshold parameter that is varied to generate the ®R¢. Equation 3.88

views the TPF as a function of FPF. Taking the inverse funciie. the FPF as a function

of the TPF, an equivalent definition of the AUC is the area leetwthe line FPE 1 and

the ROC curve )

AUC::J [1- FPFE)] d[TPF()] . (3.89)
0

Like Barrettet al. (1998) we change the variable of integration to obtain

AUC=J

o]

dt[1 - FPF{)] % [TPF@)] . (3.90)

The integration is fromxo to —co because TPF and FPF both go to 0 gses toco and
to 1 astr goes to—co. The TPF is the probability that a member of A is at leqstr
TPF= P,(x > 1), thus

%[TPF(t)] = falx =1), (3.92)

wheref,(x = t) is the frequency that = ¢ in group A. Similarly FPF() = Pg(x > 1), so
1-FPF¢) =1— Pg(x>1) = Pg(x <1). (3.92)

Substituting equations 3.91 and 3.92 into equation 3.9@sgiv

—0o0

mm:l dtPy(x < 1) £4(0). (3.93)

[ee]

In the discrete case the members of A and B are grouped\irttans with even bin width
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L/N, which gives

L N
AUC = — Z Pp(x < 1) fa(t)), (3.94)

whereL is the extent in the domain of the combined nonzero regions @ind fz and

L i-1
Pp(x <t)) = = > fa(t). (3.95)

Now assume the bin width is made small enough so that a maxiofiwmly one distinct
value of the measurements in A and B can be presentin eacB&amPp(x < ;) f4(2;) IS

the normalised count of times that the members in A inil@re larger than the members
inBinbinsj el ..., i — 1. Thus equation 3.94 is the normalised sum of the count of
times that the members in A are larger than the members in EEhwsithe Wilcoxon.

3.5.2 The Hfect of Error in the Reference

Assume group A had members and group B h@members, with distribution of mem-
bers arbitrary but clustered about the respective meansthdfmore assume that the
values of the majority of members in group A are greater thenrmajority of mem-
bers in group B, but the separation between the groups is roatsearily perfect, i.e.
05< P(A>B) <1

Error in the reference assigns members to the incorrecpgroet B* be the number
of members actually from group B but are missassigned topyfoand A* the number
of members from group A missassigned to group B. The frequeistyibution of the
members erroneously transferred from group Ajsand likewise for group Bf. The
unnormalised frequency distribution of group A with ere#if, — A* f; + B* f, and the
probability of group B with error isBPg + A* P, — B*P,. The Wilcoxon where there is
error in the reference is (c.f equation 3.94)

|BPs + A*Py — B*Py| (x <1) [Afa— A" f3 + B*f3] (1)

L
We=y 2 (B+ A" — B") (A— A" + BY) (3.96)

The exact #&ect of error on the Wilcoxon depends on the distributions efmher trans-
ference. We proceed with the simplest case that every meimibeth groups has equal
chance of missassignment. Thfisand P, are scaled versions of the distributions with-
out error, namelyf, and Pg. Letting the Wilcoxon without error b~ and recalling that
the Wilcoxon of a group of data with itself is 0.5, gives

W (BA— BA* — B*A) + 0.5(B*B + AA* — (B*)? — (A*)? + 2A*B*)

) (B + A* — B*) (A — A* + B*) (397)
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An interesting feature is that due to the assumption thaethars in the reference
occur with uniform probability, wherd = B, A* = B* and equation 3.97 becomes

B*\ B
W, =W <1— 2?> = (3.98)

Substitutingk = Z%f wherek is a continuous variable between 0 and 1 gives

k
We=W(@L-k)+3, (3.99)

which is a linear interpolation between the pointsW (k)) = (0, W) and &, W (k)) =
(1,0.5), i.e. a straight line between the Wilcoxon with no errothe reference and ran-
dom group assignment.

The importance of this theoretical result is that given thikci¥on and an estimate
of the amount of error in the referen@& and A*, then the Wilcoxon without error is
estimated by projection back along equation 3.97 to thetptin= B* = 0. Alternatively
rearranging equation 3.97 gives

W,.(B+ A*— B*)(A— A"+ B*) — 05 (B*B + AA* — (B*)? — (A*)? + 24" B*)
B (BA — BA* — B*A)

(3.100)
For the straight line that occurs whein= B,

_ W.-B*/B

W= 1-2B*/B’

(3.101)

The uncertainty of the estimate of the trlid&(A* = B* = 0) is determined by the uncer-
tainty in the computedl, and the uncertainty in the estimate af and B*. Let 8 be the
true AUC, the standard error i is (Hanley and McNeil, 1982)

VO(L—0) + (A —1)(Q1— 62) + (A —1)(02 - 6?)

102
1B (3.102)

SEW) =
where ‘W can be thought of as an estimateéof.”(Hanley and McNeil, 1982)Q; is
the probability that two randomly chosen members of group i\ kave higher value
than any random member of group B afdlis the probability that one randomly chosen
member of group A will be higher than any two randomly chosemibers of group B:

(3.103)
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For W, we might make the appropriate substitutions #foand B in equation 3.102 to
include A* and B*, however in practise one would use equation 3.102 with theremess
that the values ofA and B used include the error. Computing the uncertaintyofrom
the uncertainty iff#, and B* is problematic because we do not have accurate knowledge
of B, rather, we havaB — B* + A*. Instead graphical means are employed where curves
are computed for the upper and lower limits of the estimatéd’oand B*, with the point
W,(B*/B = 0.5, A*/A = 0.5) = 0.5 taken as definite, i.e the assumption that when half
the data points are transferred into the other group thedifle is 0.5.

A very important point is that the error in the reference mayaccur completely at
random so the distributiong, and f, may not be scaled versions ¢f and f5. Since
the reference method used for classifier assessment isatskssifier then errors in the
reference are more likely to occur where the groups ovefllap.salient issue is if the ref-
erence method is independent to the new method. Considexatnggeoup individually, if
the reference method and the new method are uncorrelatethtaeeference errors occur
with equal probability in the new method. If they are cortetathen the reference errors
will not appear randomly in the new method, rather they wdllbbased towards either
the high or low end of the distribution. If the reference noetlis biased towards correct
classification of either group then missassignment of thenbegs of the other group will
occur more frequently. Furthermore if data cleaning is quenkd per group, then data
points outside of the overlap region and transfered fromgroep to the other may ap-
pear as outliers and be removed, changing the distribufibransfered data. Maximum
likelihood estimation with assumptions about the undedydistributions to estimatg;
and f is conceivable but beyond the scope of this thesis.

3.5.3 Numerical Simulation

We demonstrate theffect of reference error on the Wilcoxon by numerical simolati
and match the results with the theoretical prediction. Twaugs of data are generated,
the first set is designated group A and las 3000 members. The second group is group
B and has number of membeBs= kA, whereky can be any real number greater than
zero. Both groups are normally distributed with variance toup B has mean O where
Group A has mean 1.5.

The following procedure was performed.

1. For each ok in the set{0.3,1, 10} let B = kzA and generate groups A and B.

2. Forp from 1 to 50%, randomly select and transfemembers from group A to
group B,p members from group B to group A, and compute the Wilcoxon.
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Wilcoxon with Erronious Designations

Wilcoxon
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Figure 3.2: Numerical computation and theoretical preaiicof the Wilcoxon with vary-
ing amount of error in the reference.

Figure 3.2 shows the result of the numerical simulation aqEnied with the theoreti-
cal prediction for eaclky = B/A. The numerical data points are presented as circles
where the diferent theoretical lines are identified by their respeciive types. The true
Wilcoxon with no reference error was 0.86. The theoreticatiction matches the numer-
ical simulation well, where it is clear in figure 3.2 which tietical line matches which
set of numerical data points.






Chapter 4
Hardware

This chapter describes the design, theory and use of thegahgystem. The hardware
consists of an optical light projection system to encodktlgatterns on the sample and
a visible/near infrared spectrometer to collect refleciglit] The projector uses a Texas
Instruments Digital Micromirror Array (DMA) as the opticaingine. The DMA was
chosen because it is fully controllable at individual mirievel and for the broad spectral
characteristics of the mirrors.

Before modern light modulation devices such as DMAs, lightiolation was tradi-
tionally implemented via mechanical multiple aperturetigigs and grids. Cyclic ma-
trices were traditionally very popular in optical multigieg because a physically self
supporting mechanical grid could be constructed accortbrifpe first row, where self
supporting means that the grid holds itself together. Wdagxghe principle in more
detail. For a cyclic S-matrix generated from a cyclic seqaenf length 2 — 1 = ab, the
sequence is wrapped into a matrix of dimensiensb. Each row of the new matrix is a
length b fragment of generating sequence. The code fragment on eacbfrthea x b
wrapped matrix is continued to the right to generatezanab matrix. Each row of this
new matrix is the same row above it but shifted cyclicaltimes. The first x b ‘window’
of the new matrix is the wrapped first row of the S-matrix, themda x b ‘window’ the
wrapped second row and so on. Careful selection of the Sxretd the dimensions
a andb ensures that the wrapped cyclic matrix is self supportimgnely that every ‘1’
entry is vertically, horizontally and/or diagonally adgmt to another ‘1’, likewise every
‘0’ is adjacent to another ‘0. A physical self supportingcyof holes and occlusions to
represent the 1's and 0’s can therefore be made to represgali@S-matrix.

Modern light modulation devices completely remove the rfeedelf supporting en-
coding schemes. Figure 4.1 shows an image of a DMA chip (wpkcture drawn on
the mirror region) and a close up drawing of nine mirrors anc¢hip. Each mirror in a
DMA can be individually addressed and programmed to defigotthe nominally on or
off state (respectively towards the optical path or away irge Bpace or a light dump).

67
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TELAS SN TRUME RTS

(b)

Figure 4.1: (a) A DMA chip and (b) a close up drawing of the mis: (Sourcehttp:
//www.dlp.com/tech/what.aspx, date accessed 16/02/20@Copyright 2009 Texas
Instruments Incorporated. Used by permission.)

Any binary encoding pattern of order equal to or less thamtimaber of mirrors in the
DMA can conceivably be used (barring aliasing). A typical Bivhight have a grid of
800 x 600, 1024x 768 or even more mirrors. The degree of flexibility permitsdidws
the use of non-cyclic Hadamard matrices (Streetet., 2009) and the random patterns
required for compressed sensing (Streeted., 2008a). Furthermore, unlike traditional
mechanical methods, the same optical system can implenadrhiard multiplexing or
compressed sensing of any order without replacement of ang.p

4.1 Optics and Operational Theory

Sample

Direct View .

Spectrometer <—D<7
Reference

Projector

Figure 4.2: Diagram of the optical setup. Arrows indicateltght path. The spectrometer
measures light from the sample and light piped directly ftbensource. The light chopper
rate is controlled by the spectrometer.

Figure 4.2 shows the optical arrangement. For the illunonasystem a custom
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Sample Projector

Spectrometer Sensor Housing Chopper Reference Beam

(@)

Light Source Housing

(b)

Figure 4.3: a) The optical arrangement, the dashed arrowates the sample light path.
The DMA based custom light projector is identified at the ightrand is comprised of the
digital projector, with optics stripped down to the DMA areptaced with slide projector
optics. A sample (a piece of meat) is seen on the left. Thetspreter sensor housing
is on a pole to the right of the sample in the image. The bluealdibre is the reference
beam, conducting light directly from the source to the lightpper. b) A close up detail
of the custom projector without the reference beam fibre. [alge black box with the

red taped wires is the light bulb housing that contains thekiedlector, condenser and
shaper optics. The light source is pointed at the mirrorsherl@MA and the projection

lens is held in place in front the the DMA.
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broadband digital micromirror array (DMA) projector wasilbStreeteret al., 2007,
2008b, 2009). The projector illuminates the sample withtipleixing patterns, encoding
the spatial information of the sample. To build the custonjgmutor, the optics of a com-
mercially available digital data projector (PD100D, ACERIiwan) were stripped back
to provide full access to the DMA, and replaced with a lighirse suitable for Vis/NIR
spectroscopy and an appropriate projection lens. The sightce, DMA and projection
lens together form the projector. The particular DMA hasid gf 800 x 600 mirrors.
The light source is a 250 W tungsten halogen bulb (Osram, &eyjnwith a back re-
flector and condenser and shaper lenses from a Hanimex GylR00O0 slide projector
(Hanimex Australia, now part of Fujifilm Austrafip The Hanimex light source illumi-
nates the DMA. Mirrors on the DMA that are set to the on staflecelight through a
50 mm projection lens taken from a Leitz Pradovit 153DU sjiejector (Ernst Leitz
AG, a former German corporation), which images the mirrdtgsa on to the sample.
Light incident on DMA mirrors in the fi state deflect into free space, landing on the ceil-
ing of the room a good ten metres from the DMA and out of viewhaf $pectrometer.
The custom projector illuminates the sample with a ‘viewhdaow at the sample of ap-
proximately 100 mmx 130 mm. S-matrix encoding uses the full 130 mm width whereas
H-matrix encoding utilises the central 100 mm width of thewwindow.

A diode array spectrometer (100 series, KES Analysis In¥,, B5A) collects and
measures light reflected from the sample. The spectromeieanalyses the band 400-
1700 nm with wavelength spacing ranging from 6 nm at 400 nn®tom at around 1300—
1400 nm. The light from the sample is collected by a direciniigput, which is simply
a collection lens in front of the entrance slit of the spetteter. The collection lens does
not appear to precisely image the sample onto the entraibcetlserwise the spectrome-
ter would only sample light from a thin slit on the samplehgatthe lens is partially out
of focus with the entrance slit so that a blurred area is sathplhe blurred entrance slit
image on the sample is then an oval collection region. Thectliriew input is standard
on the KES 100 series spectrometer and collects light fra@mtimerical aperture cone
in front of it. The spectrometer is positioned as close tosthrple as possible to collect
a maximum amount of light, but is as far away from the sampleeggssary so that light
from the entire sample is collected. Images were capturddeaamined and the spec-
trometer repositioned to minimise edgieets (minimise the presence of corner pixels
from which light does not reach the sensor).

The spectrometer has an inbuilt light chopper arrangenmattis synchronised with
the spectrometer’s data acquisition sequence. The chomsedetached from the main
spectrometer body and mounted externally for full accesgraflient index lens focuses
light from the halogen bulb of the Hanimex light source intbram diameter optical fibre

lhttp://hanimex. co.nz/, date accessed 02/07/2009
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that conducts the light from the light source to the choppbe chopped reference beam
is conducted to the spectrometer via a fibre optic bundle. tDydysical constraints the
light to the sample is not chopped. When the chopper is cldsedgectrometer receives
light from the sample only, when the chopper is open the speter receives light from
the sample and the reference beam.

The DMA and spectrometer are computer controlled via Mapl@®07a, The Math-
works, MA, USA). KES Inc. ActiveX libraries provide the inface between Matlab
and the Spectrometer. The ACER data projector controlledvare is left intact and
the DMA chip controlled via the computer VGA interface. ThgyBhophysics Tool-
box (Brainard, 1997; Pelli, 1997) is used to interface Matlath the projector.

A physical masking system is not used to prevent light frortside of the sample to
reach the entrance slit. Instead, assuming that unwargbtii not changing between
sequent spectral acquisitions, the data acquisition azmhstruction method described
below (section 4.1.2) removes unwanted light, producingtaal masking &ect. There
is ample opportunity for the optical arrangement to causeamted spatial and spectral
effects, such as attenuation at optical surfaces and uneveglisgrof the sample by the
spectrometer: the centre is seen as brightest, even if thpleas evenly illuminated. An
internal study performed at AgResearch independent of ieisis observed the uneven
collection with the centre being brighteétThese &ects are multiplicative in nature and
are easily corrected (see Section 4.1.5 below).

Figure 4.3 shows a) an image of the experimental setup andlbye@up of the custom
image projector. The experimental setup is the final setwul dier the meat spectral
imaging application in chapter 5. The spectral imaging ipriocess in a), so the light
source is on and the DMA cannot be seen because of the brgifttiliuminating it.
The picture of the close up of the custom projector in b) waeraearly in the setup
process, so a minimum number of components are seen (icydartthe reference beam
is absent, which was added later). The light source housiitg the red taped wires) and
projection lens (held in place with a retort stand arm) aeaidy seen in the picture. The
DMA is the rectangular grey object to the right of the projectlens. There is a black
mask object in front of the DMA that permits only the mirrogren to be seen.

4.1.1 Data Acquisition

Before discussing multiplexing on the optical system we a&ixphcquisition of one spec-
trum with an associated reference beam measurement. Esguiyed measurement com-
prises of two parts: the spectrum via the sampleand the spectrum including the light
source reference,. The acquired sample spectrumgconsists of: the sample spectrpm

2Private Communication.
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(an attenuation), the light source spectruifwith associated noise» of variancer), the
background which includes stray light and the spectrometers baselidetlae random
additive noisee. Now

a,=ag,(ri+ep;)pi+t,+e,, (4.1)

where4 is the index of wavelength observed by any particular diddé® spectrometer
anda, ; is the attenuation of light due to the optics. As stated apdwe to physical con-
straints with the available equipment, the light to the sl@ngpnot chopped whereas the
reference beam is. Therefore the second part of the speairumcludes, in addition to
the reference beam, and the associated random additive naésgthe sample spectrum
a. Thus

a.y=a.,(ry+epry) +as,(r,+ep.)pi+t,+e.,. (4.2)

whereaq, ; is the attenuation through the reference optics and thecepbs denotes ref-
erence. The time flierence between the acquisition oianda, assumed small enough
thatz does not change between the two measurements. The estihthéereferencer,”
is recovered by subtraction

Fr=ay;—a,=a,r;+ (a4 as,)epr, — s epps+ e, — e (4.3)

With any reference beam system the optics are designed$@pasuch light as possible,
SOoa,, > a,, ande, sep,, > e, ; — e, and we can approximate the reference estimate as

Fo R Q)+ Qrj€prj. (4.4)

The subtraction betwee#) anda in equation 4.3 causasandr to have non-zero co-
variance. The simplification made in equation 4.4 does na@mikat the covariance is
approximately zero. The covariancéf is the variance of the noise terms that appear in
both equations 4.1 and 4.3. L&} be the variance of the random additive noise and since
the variance of the source term is equal to the medme covariance is

62, = —a,rp, — 63. (4.5)

ar

4.1.2 Complement Encoding

Consider the Hadamard encoding matkxwith +1 and—1 entries. The optical system
of Figure 4.2 cannot directly implement thdl’'s of H. We split the encoding matrikl
into two parts, each with entries of 0 and 1: a positive paftand negative part ~ such
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H +1| +1] -1 | +1 ] -1 =
H +1] +1| 0 | +#1| o -
H 0 0 | +1 0 | +1

Figure 4.4: lllustration of splitting the Hadamard matmta H* and H~ components. In
H* the—1s of the original H-matrix are converted to 0’s. MT the+1s are converted to
Os and the-1’s are converted te-1s.

thatH = H* — H~, where

1+H

H' = :
2

- _L1-H

==

The H* and H~ encode complementary subsets of the pixels. Figure 4 gtridites the
splitting process. Davis (1995) used occlusion and re@iadb split the Hadamard ma-
trix to perform hyperspectral imaging. The optics of ourteysin conjunction with the
splitting of the multiplexing matrix facilitates backgnod illumination removal (Streeter
et al., 2007), which was not considered by Davis. The splittingpss was also proposed
in optical communications for code division multiple accegstems (Nguyen and Young,
1995) to boost the SNR of identifying a single user from npldtisignals.

The spectrometer measures a set of bands, each labelled patticular wavelength.
We drop the subscript as the operations described are applied simultaneouslinded
pendently to each measured band. To acquire the spectyéhthew of H* is wrapped
into a two dimensional pattern, projected onto the sampittae correspondingth entry
of a* is acquired. Immediately after each row Hf* the corresponding row off ~ is
similarly wrapped and projected onto the sample and theespandingjth entry ofa-
acquired. The spectra are contaminated by random addisteument noise and the
additive combination of dark current, background and shigiyt, all represented b¥'.
The light source in our experimental setup has been showe &idble during the data
acquisition period (Streetet al. (2008b), also see Section 4.3.2), as no significant im-
provement in measurement repeatability was seen afteeatorg for light source drift
in spectral regions of usable SNR in that study. Regardlessadel the éect of light
source drift during the data acquisition as multiplicatimynthe diagonal matrixR. The
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illumination has random fluctuation following Poisson stiids represented by the diag-
onal matrix of random error&p. For pixel responses & {p};, < 1 at pixeli on the
sample, the acquired spectra are then:

at=a(R"+E)H'p+T +¢€",

(4.6)
a=a(R+E,)H p+T+¢€,
The variance of the diagonal entriesilz are
var({Ep};;) = {R};; = (r);., and{E};; = O foralli # j. (4.7)

where var() denotes variance. Equation 4.7 states that the illunanaiver the sample
has random fluctuation with variance equal to the mean iitterharacteristics typified
by Poisson statistics. The superscriptsRrE» ande highlight that random noise sources
change between acquisitions.

There is a second source of intensity dependent noise knesima noise, that occurs
in the sensor diodes and is proportional to the current iediny photon interaction with
the sensor. Theffect of shot noise is a constant modifier, greater than onehenght
hand side of the first equation in 4.7. Furthermore this @ishodifier is dependent on
the width of the band (not truly a bandwidth in the sense thatdiodes do not have a
Gaussian sensitivity profile) of the diode in the same wayritensity noise is dependant
on the bandwidth of the observation. In a spectrometer the bapendence may not be
precisely identical between diodes and thus may cause elegth’ dependent noise
effect in the spectra. We do not explicitly model shot noise adleoretical results and
associated interpretations that follow are not alteredsigaificant way. Regardless we
recognise that the shot noisffext exists.

The combined stray and background light,is assumed to be slowly changing and,
because of the source encoding (equation 4.63,independent off . As each row of the
positive and negative encodings are taken in quick suaness make the approximation
R ~ R™ ~ R™. Thus taking the dference between positive and negative encoding parts
gives

a=a'—-a =a,RHp+e.p+e (4.8)
wheree = e — e is the total additive noise and
€pr=a(EyH —E,H)p (4.9)

is the total Poisson photon noise. The variance &f6? = 255 due to the subtraction
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operation. The value ef? is not to be identified or confused with the theoreticabf the
previous chapter. The encoding is performed according tmicea with positive entries
and theH* and H~ encode complement subsetsmfthus the signal dependent noise
variance for thgth acquisition iszrf,P,j = a,|h;| - p where|h,| is a vector consisting of the
absolute values of the entries of tjté row of H. For the G-matrix (section 3.1.1) we
substitutgg;| for |h;].

4.1.3 Decoding and Noise in Complement Encoding

Application of the inverse transform to the acquired segtves

1
p=—Ha
N (4.10)
= S pRHp+ BH(ELHY — ESHO)p + — He
N N P P N 7

The lastterm in equation 4.10 is the reduced additive ndike first term in equation 4.10
is the reconstructed pixel values but now contaminated bylépticative matrix factor.
If the light source drifts over time then the factor corrutte relative magnitude of the
entries inp by

%HRH. (4.11)

If the light source does not drift theR = (r) I so

%H (Y ITH =a, (r) 1, (4.12)

and the multiplicative error factor is constant over theiestinp.

The second term in equation 4.10 is the photon noise. If weweilluminate the
entire sample then the photon noise varianag i$); N (p) where(p) is the mean pixel
value, N (p) is the attenuation of the entire imaged region ard is the light intensity
at the time that thgth acquisition is taken. Recall that each positive encoditepn
(row in H™) illuminates a subset of the pixels and the correspondiggnge encoding
from H~ illuminates the complement subset. Thus there exists gwidn 0< §; < 1
such that the photon noise variance of ttile acquisition of the positive encoding is
(67p)* = 6;a,(r); N (p) and the negative encoding(,)* = (1 — 6;)a, (r); N (p). The
photon noise variancefa,,, of the jth acquisition in equation 4.8 is then

ng,a,P = (U;,_P)z + (Uj_,P)z =0 <">j N (p). (4.13)

The photon noise for the G-matrix at acquisition is apprately the same as equa-
tion 4.13 becausé has no 0 entries.
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H-matrix decoding averages the error values (with sign ifigmue to the negative
entries inH) and reduces the random noise MSE by a factor /¥ 1 The MSE of the
estimates due to photon noise at decoding (equation 4.10¢risfore

ep.p = a5 (r)(p). (4.14)
Thus for the H-matrix the average MSE is
e—i2+a<r><>+ibTb (4.15)
= NG s p N s .

whereb is the bias error due to the light drift (section 3.2.4) whiglpends o, namely
1
b = a <(r> I- NHRH> p. (4.16)

When the light source does not drift then from equation 4b12,0. Multiplicative bias
that alters the relative magnitude of the estimatgsaiso results in nonzefm A constant
bias is easily correctable, however a non constant bias e aifficult if not impossible
to correct without auxiliary measurement of the cause.

Decoding for the G-matrix does not reduce the photon noiiasteame degree as the
H-matrix. The average MSE for G-matrix multiplexing at ddg is

1
N-1

o2+ 2a, (r) (p) + b’b. (4.17)

[ N_1
The biasb in equation 4.17 is dependent 6h Thus the bias error in equation 4.17 is not
the same as that of equation 4.15. EQib is

b = a ((r) I - %SRG) p. (4.18)

For pointwise encoding, it is necessary to acquire a measmeof the background il-
lumination/baseline/stray with every pixel measurem&he continual background mea-
surement is to mitigate any erroffects due to background drift, but causes the ran-
dom additive error in acquisition to ke = 205, the same as the complement encoding.
The background measurement is subtracted from the pixedumement, thus the average
MSE for pointwise encoding is

e~ o+ a, (r)(p)+ %bTb. (4.19)
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Again the biad is dependent on the acquisition matrix, in this case theiridtntity
b=a,((r)I —R)p. (4.20)

In the above the noise was averaged to produce a single nmasaateristic, namely
the A-optimality (average optimality, see section 3.2@dnsidering the pointwise pho-
ton noise MSE per pixel (which is also per acquisition fompaise acquisition) we have
afp = a, (r); {p);- In multiplexing (H or G for example) the noise per-pixel after recon-
struction is the average of the noise at acquisition. Tha ssibtle but important point,
because the Poisson noise is increased for lower than agrélgassleret al., 2005).

If the image has a high dynamic range then dark pixels havgsBoinoise increased by
multiplexing. Likewise bright pixels have Poisson noiser@ased. Whether the increase

of Poisson noise in dark pixels is important is applicatiepehdent.

4.1.4 Reference Beam Correction

For theoretical purposes we have made the simplificationlitftet source drift between
positive and negative encodings is negligible. This sifigaltion is purely a theoretical
device and in practice a reference measurement is acqoirechd applied to each of the
2N measurements. The purpose of light drift correction is toaee the bias due t& in
the first term of equation 4.10. The simplest correction etior light source drift is to
acquire reference spectra and divide the acquired spegtieelreference spectra before
decoding. Assuming that the reference beam is acquiredagueckly before or after the
sample spectrum, light drift between sample and referenoegligible. The measured
reference is represented by the diagonal matRix,and is the combination of the true
light level values,R, and error terms, with entries

{R}ii=a.{R+Ep,}i;i + (€} (4.21)

where Ep, is the reference photon noise agdis the instrument noise. The reference

beam is designed to pass the maximum amount of light to theosethus{R},;, =

var({Ep,},;) > var({e};), moreover{R},, > var({Ep,r},-,,-)l/z. The total error vari-

ance in the reference beam is then well approximated by th)phnoisepf,. = a, (r).
Application of the reference beam correction and then degogives

.1 1
Pp=—H—R, "[a,RHp] + €&
N a,

; (4.22)
=—p+e,
a

wheree, is the total random error in the estimate, that is, the noigetd instrument and
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photon défects combined with the reference beam noise. The total M&¥ iefference
correction is

1 a
= N‘”’"(E)
_ 1 < 2+ <a>2 62_2 <a> 62 > (423)
N({RZ\ " (R (R) ™)

where the second line in equation 4.23 uses the equationdmatriance of the ratio of two

variables with random error (Pearson, 1893), is the expected value of the acquisition
ands?, is the covariance between the the sample spectra and therregéebeam spectra.
Substitutings? = a, (r) N (p) + 62, 6% = (R,) = a, (ry and(a) = a, (r) N {p) gives

1
6 =—-
N (a,(r))?

2 2 n12 2
(as (r) N (p) + 0% + = <r>2 <N>2<p> a, (r) -2

r

@ (VN ()
o) V)

(4.24)
Only the reference beam is chopped (section 4.1.1), thusatheneasurements include
light from both the sample and the reference beam. The mferbeam measurements
are easily obtained by subtracting the sample measuremntthe raw measurement.
This subtraction results in a covarianceadf. = —6? — a, (r) N (p). Substituting and
rearranging, the MSE of the reference corrected estimates i

t

_ Nay(r)(p) +0° <1+ 2Na <p>> N N (p)* a?

N ()2 2, () o (#425)

There is a factor ofV on the top line in the brackets and in the second term. Thisifac
of N corresponds to the samé that appeared in equation 3.53, which was considered
disadvantageous. Note that tiféeet of the optical pathway is given ly ande,, and that
typically the light path of any reference beam system isgiesd to pass as much light as
possible, thus, > a,. To a close approximation

 Nadr) (p) + 0
T ONE@)?

: (4.26)
The decoding performs an averaging operation of the naishesaverage MSE is= ¢,.
Comparing equation 4.26 to equation 4.15 we see that thedueto the bias is removed
and the error is reduced by a factorddf(r)*>. The mean squared signal is also reduced
by the factor ofa? (r)*> and so the overall signal to noise ratio is not reduced by this
factor. The removal of the bias term is significant if the tdgfsignificant. If the additive
noise varianceg?, is larger than the multiplicative noise, then the noiseeiduced by
the Hadamard multiplexing. However N o, (r) (p) > &2 then the noise is not reduced,
S0 in such cases multiplexing is not necessary. In situatidmere both may occur then
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equation 4.26 may be considered a preferential noise neduaethich is demonstrably
useful when the main noise source is indeterminate or v@gryin

For G-matrix multiplexing with reference correction it limlvs that the total noise
variance, hence the average MSE is twice that of the H-matrix

o~ 2Nay (r) (p) + 26>

4.27

Naf (r)? *.27)
For pointwise encoding the total MSE per pixel is
a;(r),; p; + c?

€~ (),—p, (4.28)

a7 (r)s
The average MSE is then the average ofdhethus

1 asp; 2
== 3 ( ot <‘:>2_> . (4.29)

J

In equation 3.43 we made an approximation that the mean afdupt is the product of
the means. This approximation is not valid for ratios so &#qunat.29 is the simplest form
of the average MSE for reference corrected pointwise measeimt.

4.1.5 Reference Object Correction: the White Tile Hfect

The optics used in the multiplexing produce spatial and tspkemhomogeneities that
cause systematic error. Furthermore the error was assuomsthat over the spatial and
spectral dimensions. In practice the error due to the opgicsot constant but rather
varies in space and wavelength, however the opfiesceis multiplexed with the pixels
and subsequently recovered intact at decoding thus theeahewretical results hold. In
precision measurement we want to obtain the variation dubesample only and any
systematic error must be corrected for. The Standard peactireflectance spectroscopy
Is to measure a white reference tile with very higfiuBe reflectance. We use a Spectralon
reference white tile (Labsphere, North Sutton, NH, USA)althihe manufacturers claim
to have the highest known felise reflectance in the visible and near infrared domain.
Furthermore the Spectralon white tile has a very flat reflfexgrofile both spatially and
spectrally in the spectral domain of interest (approxinyat®€0—1700 nm).

The purpose of white tile reference correction is to corfecbptical dfects not di-
rectly due to the sample. A spectroscopic measurementnsiitaeé mathematical product
of the attenuation due to each optical substance and bouedaountered by the light,
including the optical glass, mirrors, the light source,spectrometer diuser, the sensors
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and even air as well as the sample. Replacing the sample wéflei@nce tile and acquir-
ing spectra we essentially assume that the attenuatiorodihe reference tile is known,
to which sample reflectances are compared. Taking the ratieesample spectra to the
white tile spectra removes thé&ect due to the optics.

Recall that the reconstructed image pixels of an object wefirence beam correction,
p, are (equation 4.22)

A as,i
pi=—Dite

r

The reference white imagpy,, is accordingly

N as,i
Pwi=—pw e w,i. (4.30)

r

wherepy, is a real number less than but close to 1 that representsflbetamce of the tile.

In practical situations it is nearly impossible to acculsassesgy, with high precision,

SO we use the pragmatic approximation that the refereneestid perfect reflector, i.e.
pw = 1. Taking the pixelwise ratio of the pixel to reference tileasurements gives

L E————— (4.31)

Pwii

where theec; are the noise errors after white tile correction.

White tile correction, like the reference beam correcti@moves a bias to make the
estimate ofp more accurate. However such corrections also increaseoibe wariance.
Returning to the assumption that thg, have the same value, the noise MSE for the
reference corrected pixel values is (equation 4.26)

 Nadr) (o) + 0
T NaZ(r)?

Immediately we can see that the MSE for the reference caudeghite tile measurements
is
(4.32)

We observe thafp) < 1, thuse, s > ¢ In the presence of Poisson noise. This is a
sensible result as the white tilefflisely reflects more light to the sensor than any other
known sample.

The average MSE due to the white tile correction, using Pe&$ormula and using
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the fact that white tile measurements are independent ofitage measurement, is

ec = Var < f; > ,
bw
__1 K28
" w)? ( ’ <ﬁw>€"W> |

Using the above expressions for the MSES,= «; (p) /a, and{py /) = a,/a,,

(4.33)

2 2
a, as(r)+o
N <N r+o®

€c X —
N a? Na? (r)?
_ Nay(r){p) +o°

N (r)?a?

» Nag (r) + o2
7 Na3<r>2>
2Nars(r>+02
PN

(4.34)
+

In equation 4.34 we see the multiplexing mitigation of tiffeet of additive noise. How-
ever there is a sharp increase in noise variance over thenekecorrected measurements
due to the optics variable?, appearing on the bottom line of both terms. The light in-
tensity termr), is typically large, so the increase in variance is coumtecsomewhat
by the multiplication ofa? by (r)%. Further compounding the noise increase is a near
doubling of noise variance seen by the presence of two tefrsisndar magnitude. The
theoretical analysis leads to the common sense conclughansapart from the multi-
plex advantage, more light from the light source and lessnattion due to the optics
ultimately leads to better signal quality. Equation 4.34etathe interpretation further in
showing how poor light levels and high light attenuation anly causes a low signal at
capture, but causes high noise levels when all the necessagctions are applied.

4.2 Testing Methodology

To test the hardware we take images and examine:
1. the accuracy and repeatability of measurement and
2. the usability of the spectra produced.

Hadamard multiplexing is assumed accurate thus for Hadhmasitiplexing we only
assess the SNR per wavelength. For compressed sensingtina@cand precision varies
with the number of measurements so we need to test for thiasityiio the true values as
well as the SNR. In practical cases itis typically not possiblknow the true values so we
must use the best estimate of the true values possible. Biadéadamard multiplexing
Is assumed accurate we use the average of a number of Hadaogaiiced images as the
best estimate of the true values.
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SNR is simply the square root of the mean squared signal beerdriance. To char-
acterise the SNR for hyperspectral imaging we:

e capture a set of images;
e compute the mean and variance for each pixel at each wavklend
e compute the SNR hyperspectral image.

Clearly for a hyperspectral system there is a SNR value aasalowith each pixel at each
wavelength and we must reduce the rich information down amtceasily interpretable

form. The imager performs the multiplexing operation sitankously to all the wave-

lengths measured, thus spectral variation in the SNR and &Rt are informative of

the nature of the noise per wavelength. We take the mean SERto pixels to obtain

a single SNR spectrum. Computing an average SNR spectrumssstent with the con-

cept of A-optimality (section 3.2.1). The multiplexing optes over the pixels, and we
want to quantify on average the power of multiplexing to ioy@ signal quality.

When a spectral image is obtained that iffisiently accurate and precise then it is
usable. Spectral images that are usable can be processettlta giscrete segmentation
or continuous range of values that represent some chasdictexf the object. Spatial
representations, such as the mean image, principal comfooeer the wavelengths or
multivariate calibrations, are interesting when therepgtial variation in the object. The
processed versions of the hyperspectral image typicallg hauch lower dimensionality
So it is a simple matter to view and qualitatively assessgfeatures. Spatial repre-
sentations are further transformable. Simple threshgldingrey scale slicing, or more
complex processing techniques such as clustering, can p®wsa to return a classifi-
cation of pixels. Calibration techniques such as regressiothe principal components
against some reference value return a single continuowéctioe image. In this chapter
we are interested in simple examples which demonstratethiealhyperspectral imager
provides useful data.

4.2.1 G-matrix (Complement S-matrix) Multiplexing

In addition to H-matrix complement encoding we test G-nmxagmcoding via S-matrix
complement encoding (see Section 3.1.1 for an overviewehihtrices). Recall from
Section 4.1.2 that complement coding, in conjunction wiid $ource modulated multi-
plexing optics, facilitates the removal of backgroundriination dfects from the mea-
surements. G-matrix complement encoding is implementeaiclyiring data according
to S and byJ — S, whereG = S - (J —5) = 25 — J and the two encodings acquire com-
plement information. Each row o is wrapped and projected onto the sample, following
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immediately by the corresponding row &£f— S so that drift éfects between acquisitions
are minimised. The acquired data are reference beam cedrant subtracted to give

a=(J/-S)p-Sp+e,
=(J-2S)p+e, (4.35)
=Gp+e,

whereg, is the total noise. Previouslys2-J was referred to as the total encoding (Streeter
et al., 2007, 2008b); here we correctly identify the total encgdwith G. If G is order
N -1, then the estimate from decoding is

N
) (4.36)

From Sections 3.2.1 and 3.2.3 we expect a reduction in &dd@ndom noise variance of
2/N and a doubling of the Poisson noise variance. The ovdialteon the SNR depends
on the relative contributions of the two noise sources.

4.2.2 Compressed Sensing

For compressed sensing (CS) we used the same encoding gatérandomly entered
ones and negative ones in each image acquisition (Streteer 2008a). Complement
encoding is used to acquire the dath:is split into complement positive and negative
partsd* and®~ with entries that consist of ones and zeros. We acquire

at = o™,
(4.37)
a =op,
and take the dierence which gives
a=a"-a = op. (4.38)

To compare the Hadamard and CS encoding on a fair basis w& use H, the
Hadamard matrix, as the compression basis. This choicetlsefumotivated by the fact
that if one concatenates the rows of an image, as we have,sthamg almost square
shaped periodicity occurs. Periodic information is exgttte type of information that the
Hadamard transform can represent in a sparse manner. Fo6tdecoding the following
was carried out:

1. for!l from 50 to 256,
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2. estimatg from / measurements.

We ran the CS decoding as per equation 2.24, i.e. non-noisesaard with the noise
aware option (Tsaig and Donoho, 2006). The Sparselab padisag Section 2.4) has a
basis pursuit denoising option which is invoked by setéing 1 in equation 2.25. The
reference beam correction reduces the magnitude of theodased into the basis pursuit
reconstruction, so noise aware CS used a noise parameter=00.001. This noise
parameter term appears somewhat small, but is further atethby the expected noise
level with respect to the reference corrected signal. Aftégrence beam correction and
subtraction of the negative from the positive encoding tioise parameter is of the same
order of magnitude as the measurements.

The SNR was used to examine precision and the RM®@reéince from the best esti-
mate of the true signal used to examine accuracy. For poeciee mean and standard
deviation for each type of imaging were taken and the SNR tsgaetral images com-
puted. The ratio of SNRs between the Hadamard to pointwisdlen@S to pointwise
were computed. The mean SNR over the pixels were taken taagimgle average SNR
boost spectrum for each case. For accuracy the mean of trentdad images was used
as the best estimate of the true pixel values. Thfe@ince between the CS and mean
Hadamard reconstructions were computed to obtain a hypetrsppdiference image. For
each number of measurements used in reconstruction the RgiSxars computed over
the acquisitions and the mean RMS error was computed aneglott

4.2.3 Objects Imaged

A set of objects were imaged to provide interesting hypeaspkimages. In some cases
the objects are intended to simply show upon visual inspedhat the imager produces a
sensible spatial pattern, that is, the image looks corf@ttter objects were fabricated to
provide contrasting signals so that we can observe therghebipe. Segmentation of the
hyperspectral images by simple chemometric techniqguesdbmonstrates the usability
of the spectra produced by the imaging system.

A spatial grid pattern was generated and is shown in Figlse #he image shown
is slightly larger than the view area used in the hyperspeatraging. However in the
hyperspectral image a white square in the top lefthand negi@pproximately 6 mim
where in the bottom righthand corner a square is less than®3 ifine grid pattern is for
performing imaging at dierent spatial resolutions. The pattern is comprised of argqu
wave sequence that varies with increasing rate from lefigtat and from top to bottom.
Where two peaks in the sequences intersect then a white neggalts, when two troughs
intersect then a black region results and where a troughsigepeak then a 50% grey
region results. A given imaging resolution that is able toiee the top left may produce
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Figure 4.5: The testpattern for examining spatial varratiothe reconstruction. The rate
of change of the bright-dark patterns increases from théefbpo the bottom right.

Figure 4.6: The wood and acrylic object. The acrylic is onlgfeand the wood on the
right.
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aliasing at the bottom right. Furthermore if the imagingmoetis valid then the pattern, or
some aliased corruption of the pattern, should be cleapg@gnt in reconstructed image
data. The spatial grid pattern was printed using a typicarget printer on printer paper
and glued onto a cardboard back using PVA. Also a fully blaw&ge was printed from
the same printer to test the ink. The ink exhibited reasgnabinogeneous absorption
over the entire spectral region of the spectrometer (4008-hi wavelength) with no
obvious peaks.

Figure 4.6 shows the wood and acrylic object used by Streeer(2007) and imaged
using G-matrix encoding. Streetetr al. (2007) used photographic white paper on an
aluminium backing as the reference white. While not ideamthée paper provided the
means to correct for spatial inhomogeneities, albeit withioe optimised reflectance of a
Spectralon tile. The wood is pingifusradiata) and the acrylic is the material commonly
used in engineering workshops. The wood is approximatep@thick and the acrylic
approximately 3 mm thick. The two materials are held togeblyd®VA glue, with another
piece of pine glued to the wood behind the acrylic, onto wiiehacrylic is glued. Acrylic
was chosen for this object because of its distinct spechsbption regions in the NIR.
In contrast wood was chosen because it is a highly inhomaysneaterial that can be
expected to have a distinct general shape but with condildevariability. The wood used
in this sample is quite dry, so distinct water absorptiondsashould not be obvious.

Figure 4.7 shows the polystyrene object with diagonal imlafyRimu wood @acry-
dium cupressinum) strips. This object was used in Streegtial. (2007, 2009). In the
latter publication imaging was performed with H-matrix eding. Both the wood and
the polystyrene are approximately 15 mm thick and gluecctyr®nto a cardboard back.
The shape of this object is to show spectral imaging of ancbbyh a more interest-
ing spatial pattern than simply two halves. Polystyreneighlly particulate so spectra
produced are expected to have a high degree of scattefiegt.eAlso the material was
deliberately obtained from a engineering workshop whereagsanable chance of con-
tamination is possible by dust or other substances, saédst@g’ spectra are expected.
Similarly the Rimu wood was from a discarded piece of furm@i@though surfaces with-
out paint or polish were used.

In Streeteret al. (2008b) a sample with acrylic on the left hand side and whaiel-c
board on the right hand side was used to demonstrate thelitysabithe spectra and
examine the SNR boost of the multiplexing with referencentbearrection. Forty im-
ages were taken of the object over five days to allow for thaipoy of changes in the
imager to occur and to examine if the reference correctidnged these changes. The
Spectralon tile was used as the white reference. G-matogding was employed as the
imaging method. A Figure of this sample is not included bsedn the visible domain it
appears as a plain white object with a crack down the middbeth& eye the cardboard
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and the acrylic are distinguishable, however a colour nreciiision system would have
considerable dficulty separating the two substances. Cardboard, like wadikely to
have considerable chemical variation. While the white ceadth board and acrylic look
similar in the visible domain, in the NIR there are stronffatiences and discrimination
is a simple matter.

The acrylic and printed circuit board (PCB) object in Figur@ was fabricated as an
alternative to the acrylic and wood object and was used ieeBtret al. (2009). The
sample consists of the same type of acrylic used in the acayld wood sample with
PCB fibreboard fastened with electrical tape. When imagingkject the tape was kept
out of the optical pathway. The PCB board is semi-transparedtyellowish to the eye.
The spectral #ect of the PCB was largely unknown at the time of fabricatioowver
general attenuation of the light was expected.

The Spectralon white tile was imaged to act as a referenceewbject. Pointwise
division of sample images by the Spectralon images corffectsnwanted variability
due to the imager. Also the images of the Spectralon tilecatdi the spatial variation
due to the imager. We use the Spectralon tile for performiNgR $neasurements on
the system. For the G-matrix imaging we use a 255 order mdéixed from a cyclic
SRS S-matrix wrapped to acquire ¥517 pixel images. For H-matrix we use a 256
order Sylvester construction matrix wrapped to acquire< 1 pixel images. For each
SNR boost experiment pointwise images were acquired cogtly with the multiplexed
images of the same dimension and resolution. The white &k the highest tluse
reflection of any object available to us. Thus the light Iduen the tile, hence the photon
noise, is greatest when using the Spectralon tile. The SNiRadging with the white
tile will be greatest with respect to additive signal indegent noise, but the SNR boost
reduction due to multiplicative signal dependent noise a&imised. Thus the SNR of
the white tile images provide the most interesting and mfmiive SNR data.

4.3 Results and Discussion

4.3.1 Images and Spectra

Images of the spatially varying pattern in figure 4.5 are showFigure 4.9. Both images
were taken with Hadamard H-matrices and are displayed & Arh7 The pattern is ho-
mogeneous over the wavelengths where thereffcgant SNR. Both images were filtered
in the spectral dimension to reduce noise. There is an effiget @n the top and bottom
right due to the spectrometer not quite capturing light ftbia region. The images have
been white corrected which exacerbates the error in the efflges considerably where
the signal, hence SNR, is small in magnitude. The imagingeaysvas designed for
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Figure 4.7: The wood and polystyrene object.

Figure 4.8: The acrylic and PCB object. The acrylic is on tlitdad the PCB covering
the acrylic on the right. Marks are imperfections such asfsan the material.
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Figure 4.9: Images of the test pattern. a) AxL&6 pixel image and b) a 64 64 pixel
image. Both images were of an approximately XA®M0 mm square region on the object.

imaging a round object centred in the middle of the field ofw{see the next chapter),
so the corner edgdfects are not significantly detrimental for practical apgiicns. The
left hand image has resolution of ¥616 pixels over approximately 1060100 mm. This
corresponds to a pixel size of about 6 mm, far too low resolution to resolve the pattern.
Indeed visual inspection immediately confirms that thegoatis severely aliased. On the
left and to a lesser degree at the top a square pattern istagas,completely lost at the
right hand bottom. The right hand image has a resolution of 64 pixels over approx-
imately 100x 100 mm, resulting in pixel size of about6lx 1.6 mm. The square pattern
of varying rate of change is clearly visible. Some aliasmg@resent, especially towards
the right and bottom of the image.

With the available equipment the lower resolution imag&®®&-3 minutes to acquire
and another 2.5-3 minutes for the accompanying white reéerdile image, for a total
of 5 minutes. The higher resolution image took over 40 misu8® minutes including
the white tile image. The acquisition time for one spectrgnthie length of time from
the computer command to change the pattern until the imagwletely forms on the
DMA plus the acquisition time of the spectrum for that pattein total about 8/25s.
During the spectral acquisition four spectra are taken anthged to reduce noise which
represents about half the acquisition time. Reducing thebeumwf spectra would reduce
the acquisition time but will also increase the noise. DMAeirhardware is availablefio
the shelf (albeit expensive) with a frame rate of 100 fpst gudentially can reduce the
acquisition times drastically. With DMA frame rate of 10@fgata acquisition is limited
by the capture rate of the spectrometer.

Figure 4.10 shows spectra from the tenth row from the top efitege of the wood
and acrylic object. The object was imaged with G-matrix elwg wrapped into a
15 x 17 pixel pattern. Some of the spectra have reflectance suiadta greater than
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i Acrylic
r | = — - Pine Wood

Horizontal Wood and Acrylic Object Spectra
1.6

Acrylic

L4r NS == — - Pine Wood

1.2]

1N (
o 1 8 T
2 € or
3 08 IS N
‘6 (8] -1+
o] 2
@ _/
0.4 L/
L [
0.2 -4
0 -5
_O.n-....l....l....I....I....I....I JT~Y I [T SR S S NS S S S NS S S R PR IR S R |
600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800
Wavelength(nm) Wavelength(nm)
(@) (b)

Figure 4.10: Acrylic and wood object imaged using G-matmcading. a) Reference
corrected spectra and b) the standard normal variate tnansff the same spectra.
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Figure 4.11: The first principal component of the image oftlo®d and acrylic object.




4.3 Results and Discussion 91

unity which is due to the use of photographic paper in thisigaar instance. Regardless
there are obvious ffierences in the spectral shapes of the two substances. fféredces
are emphasised in the SNV transformed spectra. The acpdictis are quite uniform
in shape whereas the wood spectra show considerable garéate to chemical variation
in the wood. The familiar water absorption bands are notgureis the wood due to the
wood being sfficiently dry. The acrylic has the usual absorption bandsraddii 50 nm,
1200 nm, 1400 nm and towards 1700 nm. A mixed boundary speds@apparent, par-
ticularly in the regions around 1150 nm and 1200 nm.

Figure 4.11 shows the first principal component of the SN\¢spdrom the wood and
acrylic hyperspectral image. Thei@irence between the two substances is clearly visible.
There are edgefects in the top left and bottom left corners due to the pasitig of the
spectrometer. Mixed spectra down the centre of the imagerarent and correspond to
where the pixels straddle both the wood and the acrylic.

Diagonal Wood and Polystyrene Object Spectra SNV of Diagonal Wood and Polystyrene Object Spectt
5

Polystyrine H Polystyrine
— — — Rimu Wood 4 — — — Rimu Wood|
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Figure 4.12: Wood and polystyrene object imaged using Girnaicoding. a) Reference
corrected spectra and b) the standard normal variate tnansff the same spectra.

Figure 4.12 shows the spectra from the diagonal wood andspyogne object (Fig-
ure 4.7) acquired using G-matrix encoding and referenaectad with the photographic
white paper. The encoding was wrapped into a5 pixel pattern for imaging. There is
some reflectance greater than unity due to the white papéravatg optimal reflectance.
The spectra are messy due to contamination in the sampleoasibfy due to scattering in
the polystyrene. The SNV of the spectra clarifies the graypetween the two groups of
spectra somewhat, but the noise is still a dominant feakigeire 4.13 shows the second
principal component of the wood and polystyrene image. Tiagahal wood inlays are
clearly visible, appearing as dark regions. The fact thatsgecond principal component
and not the first describes the between group variation ig hike$y due to both random
and non-random error in the spectra.

Figure 4.14 shows spectra from the eighth row of image tlmftye white cardboard
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Figure 4.13: The second principal component of the imageefitood and polystyrene
object. The imaging was performed with a 255 order G-matrix.

Reflectance

Eighth Row of Image 30

600 800 1000 1200 1400 1600
Wavelength (nm)

Figure 4.14: Spectra from the eighth row of an acrylic andtevbardboard object.



4.3 Results and Discussion 93

10.95
10.9
10.85

0.8
0.75
0.7
0.65
0.6
0.55

Figure 4.15: The thirtieth spectral image of the acrylic aacboard object at 1150 nm.

and acrylic object. In this Figure we show the full spectaige of the spectrometer
to display the severity of the noise in the extreme regioastiqularly in the visible do-
main. Both substances have high reflectance so the reflecaisstarts at @ to show
clearly the detail of the spectral shape. The spectra of thdia are easily identifiable
from the absorption bands around 1150 nm, 1200 nm, 1400 nntaaverds 1700 nm.
The cardboard spectra are predominately flat but have soewtrapinhomogeneity. The
spectrum with gross low reflectance is from an edge pixel.réflectances greater than
unity are due to noise. Figure 4.15 shows the spatial vanaif the same spectral image
at 1150 nm. The two substances are clearly distinguishaiteaerylic on the left and
cardboard on the right. The object was not perfectly aligrertically which is seen as
the slight diagonal lean of the boundary.

Figure 4.16 shows spectra from images taken using H-matdoding. The image
resolution is 16« 16 pixels over approximately 100 niniThe spectra are from the eighth
row of each image. These spectra were white corrected use@pectralon tile. The
wood spectra are easily identified by the lower overall rédilece and the water absorp-
tion bands about 1200 nm and 1450 nm. Comparing the wood andtpa@ne object
spectra with that of Figure 4.12 the increase in water featim the wood spectra is
apparent. A period of some months transpired between thasatgn of the G-matrix
image and the H-matrix image, during which the object wasestmear a window in an
office where it was undeliberately exposed to moisture. Regardte diference in the
spectral shapes are interesting. The acrylic and PCB olgectrs: are distinguishable by
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Wood and Polystyrene Acrylic and PCB
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Figure 4.16: Spectra acquired by H-matrix encoding. Thednarad polystyrene object is
on the left and the acrylic and PCB fibreboard object is on tylat ri
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Figure 4.17: a) The wood and polystyrene object at kb3d3maged using H-matrix
encoding. b) The PCB and fibreglass object.
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gross absorption, where the PCB attenuates the light tiagetio and from the acrylic.
Some alteration of the spectra shape due to the PCB fibrelmaegn.

Images acquired using the H-matrix encoding are in Figut§.4.The wood and
polystyrene object is on the left with the diagonal dark oegi due to the wood. Here
the wood and polystyrene object is positioned so that theoétlee wood strips are in the
field of view. The acrylic and PCB object is on the right. The PGBdboard region is
apparent as the darker region on thee right side of the imiageoth images there is an
edge éect in the bottom right hand corner.

4.3.2 Signal to Noise Ratios and Noise Features

Figure 4.18 shows the SNR for G-matrix encoding, G-matrithweference correction
per acquisition and G-matrix encoding with reference adioa by the average reference
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Figure 4.18: a) SNRs for the G-matrix encoding with no refeeetorrection, correction
per acquired spectrum and the average reference spectemamwacquisition period for
the entire encoding matrix. b) Significance test of refeeecmrrection using the of the
reference measurements and the per sample reference preasts.
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spectrum for each encoding period. An ANOVA test (Ott and Wearhall, 1985) for the
difference between the treatments with a 99% confidence thdeshalvs no significance
above 550 nm. The T-statistic (the square root of the Fssiatised in ANOVA) is shown
as we compared the SNR of each reference correction methbd twn-corrected SNR
separately in a two treatment manner. Below 550 nm the referearrection causes a
significant degradation in the SNR. The precise reason whysiiie decreases is un-
known. Regardless the low wavelength region correspondfiegmerthe SNR is too poor
for any use of the data. The rest of the spectral region showsggnificance in the change
of SNR due to reference correction. The lack of change inesctwo things, 1) that the
light source is stable during the data acquisition, so thatias due to light source drift
is small, and 2) that the reference beam ifisiently intense, thus the noise level is not
significantly increased by the correction.

Figure 4.19 shows the SNR boost for G-matrix encoding andfonatrix encoding
with reference correction. The smallest SNR boost aroui®d-/800 nm, where the light
from the source, hence the photon noise, is greatest. Th&t beaches the theoretical
maximum of@ = 1129 at the lowest and highest wavelengths where the light from
the source is least and the boost is most needed. SNR boasswiceeding 11.29 are
ascribed to randomfiects. The sharp discontinuity near 950 nm occurs at the l@ynd
between the two types of sensor in the spectrometer.

Figure 4.20 shows the average SNR for H-matrix multiplexeaging of a Spectralon
white tile. The SNR is much greater than that seen in Figuk8 for G-matrix imaging,
but the G-matrix images were white reference corrected evtiezse are not, so a direct
comparison is unfair. Below we compare SNR boosts which isradst. The H-matrix
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Figure 4.19: The SNR boost over pointwise imaging due to Gimnancoding.
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Figure 4.20: The average SNR due to H-matrix encoding.



4.3 Results and Discussion 97

spectra were reference corrected per spectrum beforeidgcddhe SNR is greatest about
800 nm, has a sharp discontinuity near 950 nm and is very ldiheiwisible domain. The
G-matrix SNR has similar features.

SNR Boost

SNR Ratio
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Figure 4.21: The SNR boost over pointwise imaging due to Hrimancoding.

Figure 4.21 shows the SNR boost for H-matrix encoding overtpase imaging with
reference correction. The horizontal line shows the themlemaximum boost of 16.
The boost curve shows the same general shape as the G-nwisixdbect but is greater
in value. The curve shows maximum boost at the highest anddbwavelength ranges
where the light intensity is least, shows minimum boost aB00—800 nm where the light
intensity, hence photon noise, is greatest and has a sten@ntinuity near 950 nm at the
change in the sensor material. Notably the greatest SNR lzodslivered in the low light
level regions where it is most needed. The relative drop iR 8de to Poisson noise is not
as pronounced for the H-matrix as for the G-matrix. For edarbptween 1000-1200 nm
the H-matrix boost is about 3/4 of the maximum possible, wlierthe G-matrix the SNR
boost is about 1/2 the maximum possible in the same speegadr. Furthermore that
for the H-matrix encoding we used a Spectralon white tile niehe for the G-matrix we
used a white acrylic and cardboard object. Thus the H-mattiltiplexing was subjected
to slightly more photon noise than the G-matrix (the reflectaratio of the two objects
is seen in Figure 4.14). The theoretical prediction that &trim multiplexing is better
suited to situations where both additive and Poisson nsipesisent is confirmed.

Figure 4.22 shows the ratio of the SNR boosts from the H-m&tr(-matrix encod-
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Figure 4.22: The ratio of the H-matrix SNR boost to the G-imeé8NR boost.

ing. For additive noise only the H-matrix was predicted ttpeuform the G-matrix by a
factor ofv2, as is seen in Figure 4.22 above 1600 nm. For Poisson n@dé-thatrix is
predicted to outperform the G-matrix by a factor of 2, whistihe theoretical maximum
of the ratio of the two boosts. From 400-1400 nm the SNR beost H-matrix encoding
Is about twice that of the G-matrix, ranging up to around Rries between 950-1150 nm,
suggesting that Poisson noise is dominant in these regions.

The reason why the ratio of the H-matrix to G-matrix multipley boosts exceeded
the theoretical prediction is not precisely known. It is gibke however that other noise
effects not explicitly discussed come into play. We can onlyj@ctnre about what these
effects may be. For example if the photon noise of ambient liginind the H-matrix
acquisitions was greater than during the G-matrix then rrameding independent noise
would be present, increasing the SNR boost. Also mechanibedtion in the system
may have degraded the signal and reduced the SNR boost istpbédyl

4.3.3 Comparison of Compressed Sensing with Hadamard Imaging

Figure 4.23 shows the average reconstructed rows from tlarHard technique of the
Spectralontile. There is a strong almost periodic patteahdrises from the concatenation
of the rows. The low intensity (y axis) is due to normalisatioy the highly intense
reference beam.
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Figure 4.23: The average concatenated rows from Hadamagimg of the Spectralon
tile. This represents the best estimate of the true pixeiesl

Figure 4.24 shows the SNRs for Hadamard, CS and pointwise ngaBiecall that the
Hadamard and pointwise imaging use 256 measurements indacae with the number
of pixels. The CS reconstruction in Figure 4.24 was performid 150 measurements.
Interestingly the noise aware CS has not performed as welleasdn-noise aware case.
The SNRs in each case peak around 600—900 nm which corresfmtigs peak output
of the light source. Also there is a noticeable discontinagar 950 nm that is due to
the use of two types of sensor material in the spectrometerfar the visible and very
near infrared and the other for the near infrared. The Haddmacoding outperforms
the other techniques on our system in terms of SNR, partigudathe lower wavelengths
where the photon noise is greater. In the near infrared metfie non-noise aware CS
approaches the Hadamard imaging.

Figure 4.25 shows the SNR boost of Hadamard and CS imagingtiogyointwise
imaging. The CS reconstruction was performed with 150 measents. Again the
Hadamard imaging outperforms CS on our system. Both methods d&NR boost
greater than one which means that they provide an advantaggointwise imaging. In
both Hadamard and CS there is a sharp drop in the SNR boost thieevatput of the light
source and sensor response is greatest. This drop in SNRibtlosrefore dependent on
the relative level of photon and instrument noise.

Figure 4.26 shows the peak SNR of the CS against the numberasfureaments used
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Figure 4.24. Signal to noise ratios for Hadamard, compressaising and pointwise
imaging.

in the reconstruction. The non-noise aware reconstrut¢tasan negative almost linear
relationship with the number of measurements. CS seeks aespatution, so fewer
measurements causes a solution with more entries neardo Zhis in turn leaves less
room for random fluctuation in the smaller d¢fieients. The shape of the noise aware
CS SNR in Figure is similar to that of the theoretical SNR showirigure 3.1. In
Figure 4.26 the experimental SNR was computed by compahnmgeticonstructed signal
with the known true signal. Here the SNR was computed by exatioin of the fluctuation
around the average reconstructed signal, so is more sitoithie theoretical prediction,
especially as the SNR does not drop at a low number of measuteihis worthwhile to
note that while the SNR, hence repeatability, from fewer mesment is higher than from
more, it is likely to be repeatably inaccurate. The noiserawzs reconstruction achieves
maximum peak SNR at 130 measurements, but does not reaclatizartdrd peak SNR.
Also the noise aware reconstruction is much closer in SNReg@bintwise imaging than
to the Hadamard imaging.

Figure 4.27 shows the reconstruction error percentag@sigae number of measure-
ments used. The non-noise aware reconstruction followgiealyshape in CS reconstruc-
tion for a non-sparse compressible signal. The error innsttoction increased with the
SNR, a trade fi between accuracy and precision of measurement. At 256 mezasuots
there is a slight upturn in error, presumably due to the rsttantion not taking account
noise éfects. The noise aware reconstruction is very inaccuratspiiethe peak SNR
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Figure 4.25: SNR boost comparison between Hadamard ergadoh CS.

for noise aware reconstruction being greatest at 130 measunts the corresponding re-
construction error is greater than 60%. So while the noisr@WS reconstruction may
be repeatable at 130 measurements, it is repeatably isto@kearly the data acquired do
not satisfy the model of noise aware reconstruction uset®¥pasis pursuit algorithm.
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Chapter 5

Volumetric Mapping of Beef
M. Longissimus Dorsl

This chapter is concerned with an application of the hardwarprove the concept, that
IS, to show that the hyperspectral imaging system prodysesti& that are of sficient
quality for use in practical applications. Ultimately it wid be useful to have a gen-
eral system for chemometric applications with spatial nragpThe primary application
however is to map spectral variability in products and pozdu

To demonstrate the applicability of the imaging technigqueexamine variability in
beefM. Longissimus Dorsi (LD)!. The LD, also known as the strip loin, is a compound
muscle that runs along each side of the spine from the 12tbbree to the tail end of the
animal. The LD is the source of many important retail cutdisasthe porterhouse steak,
the ribeye steak and beef rib steak. NIR spectroscopy arngsssmeepresents significant
potential in nondestructive grading of meat. As such it i®@id of investigation, see
section 2.7.

Ultimately an indication of quality features in the entigcass from as few measure-
ments as possible is desired. A grading system might retuficators of meat quality
from possibly one measurement at a specific location on timeadn Meat grading by
NIR is an ongoing project at AgResearch, with the objectivgratling a whole carcass
from a few measurements. Such lofty goals are not aimed fthignwork. Here we
examine the variability in the important LD.

When analysing spectra of meat to perform some estimationeofeat quality it is
important to ensure that the spectra are of lean. If a giveotsym is of a part of the meat
that has a high proportion of fat, connective tissue or eweth&n an estimation of quality
features from that spectrum might be unacceptably biasatexample it makes no sense
to measure pH or tenderness of fat, so estimation of suctrésamust not be performed

A description is found ahttp://bovine.unl.edu/bovine3D/eng/muscleIndex. jsp, date ac-
cessed 4/3/2009. Identified as ‘Longissimus’

103
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on spectra of fat. Thus we examine classification of spestcal@an and nonlean groups.
To verify classification colour imaging and image procegsiras used as the reference
method. The classification is therefore against visibleeain

Characterisation of the nature of the variation in the spedtiwn the length of the
muscle was performed by variography. Variography estistte correlation of any point
to any other point a certain distance away, thus variograpwgals features such as in-
creasing or decreasing similarity and periodicity withtaince. We also piggyback some
basic quality assessment pilot studies of the meat. The pthdbe length of the LD
and between LDs, tenderness and blooming of the meat witrspNéRtroscopy are exam-
ined. These extra quality features, in particular the pHtanderness, inform about the
variation in the samples examined. As described below iti@eb.1.1, steps are taken
to prevent shortening of the meat so a broad range of tensteara pH values are not
expected.

5.1 Meat Collection and Instrumental Apparatus

This section outlines the data collection apparatus, ciidle scheme and describes the
analysis procedures used. LDs were collected early pasilstar and stored at until rigor,
on which spectra and colour images were taken. A steak frerhelad end of the muscle
was subjected to tenderometry readings and a bloom curveoeeour after slicing was
acquired. Down the length of the LD muscle hyperspectralcholur images were taken
of successive slices. Image processing of the colour imagsesitilised to determine the
visible content of each spectrum in each slice. Classifinaif@ach spectrum as lean and
nonlean was performed using chemometric analysis. Vaagr was applied to the slice
spectra per wavelength down the length of the muscle. Measemts of pH were taken
on each slice and the pH correlated with the spectra.

5.1.1 Meat Collection

Fourteen beefn. longissimus dorsi with connecting muscles were harvested. The left and
right sides of seven animals were taken, cut from betweeh2tteand 13th vertebrae and
the tail. The breeds were four Angus cross and three Herefoss. The tail muscle was
removed from the LD then the LD was rolled in clingwrap to metshortening (Devine

et al., 1999) with one continuous piece that wrapped around thela@ise times. The
wrapped LDs were stored at A5 for 72 hours to allow onset of rigor.
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5.1.2 Instrumental Configuration

The wrapped meat was placed in a stainless steel tube thaievated above the equip-
ment table. The data collection apparatus consisted of yperbpectral imager, a Jai
CV-M90 RGB colour machine vision camera (Copenhagen, Denmaitk) a Fujinon
CL11052 Closeup TV Lens (Saitama City, Japan), a Mettler Tolet#0 pH meter
(Greifensee, Switzerland) with a Mettler Toledo InLab 423, and a MIRINZ meat
tenderometer (MacFarlane and Marer, 1966).

Figure 5.1 shows a diagram of the imagers for the experirheetap. The hyper-
spectral image is comprised of the light pattern projectal the spectrometer, with meat
in the sample holder completing the optical pathway of ligbin the source to detector.
The colour camera and the light projector are trained on thatfiace along very close to
the optical axis’ (causing specular reflection issues dised below). Light from the pro-
jector is incident on the sample at approximateiy®dthe meat face surface normal and
the camera is slightly elevated above the projector and rmalcangle to the meat face
from the plane view. The spectrometer views the meat facp@mbaimately 60 on the
same side as the projector, so specular reflection from thealsurface on the sample is
at 65 degrees to the spectrometer. Use of the tube for presamtatine meat provides
consistent positioning with respect to the imagers. Theshggectral imager light source,
with all the mirrors on the DMA set to the on position, is albe tllumination for the
colour imager.

\ Colour
Meat Holder Camera

Light Projector

Spectrometer

Figure 5.1: Diagram of the experimental setup.

5.1.3 Data Collection

During data collection the room temperature was set t&€16ut ranged from 15-1T.

A first steak around 120mm thick, but at least 100mm thick, t@&en from the head
end, cooked by boiling and subjected to tenderometry rgadimhe meat was placed
in a non-sealed plastic bag and immersed in°@®&ater and monitored continuously
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until the centre reached 76. Slices were cut 10 mm wide from which ten bites were
cut 10x 10 mm and about 30 mm long. The ten bites were sheared at nglégsato the
muscle fibre direction using a MIRINZ tenderometer (MacHaland Marer, 1966) to
measure the shear force. The average shear force of thetésnaas taken as the shear
force measurement.

Immediately after the initial slice the bloom readings beg# colour image, hy-
perspectral image rotation proceeded for one hour fficeently capture the breadth of
colour change during blooming.

Twenty 13 mm slices were taken, proceeding down the lengtheomuscle to volu-
metrically map the LD. At least three colour images were tiaddeeach slice immediately
after it was cut. Fluid on the meat face caused some spetyuiarihe colour images.
Blotting with absorbent paper before each colour image reditive specularity, nonethe-
less some specularity remained but the repeated blottungeckthe specularity to appear
in different locations in each image. After taking the colour insam@6x 16 (N = 256)
Hadamard hyperspectral image was acquired. The slow spauige acquisition time
(approximately 2.5 minutes per image) and the time comdttiaat we sought to complete
the mapping of two LD muscles per day are the reasons why agatie$ resolution was
used. The next slice was cut and the pH measured on the meataged. Five pH
measurements of each slice were taken.

Colour Image Processing

The colour image processing was similar to that of Stresttar. (2006a) (which was in
turn informed by earlier work (Streetet al., 2005)) but with some adaptations and im-
provements. Despite the blotting, some specularity ajppgas small bright regions was
present in all the colour images. The blotting used to redoeepecularity also ensured
that most specularities occurred irffdrent locations in each image. The minimum over
the set of colour images at each pixel for each meat face weslaged, producing one
colour image per slice that was cleaner than the raw images.

Desired Object Desired Object

Artifact Artifact
Mask i

//%%

Marker Reconstruction

Figure 5.2: lllustration of the action of the morphologicatonstruction. On the left is
the mask and the marker and on the right is the result aftenstiction.

After the minimum operation further cleaning of the imageswgeerformed with a
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morphological reconstruction to each colour plane (Vinc&893). The morphological
reconstruction operation requires two images, a markeraameisk where each pixel in
the marker is less than or equal to the mask pixel at the saraédo. The minimum im-
age was used as the mask and a morphological opening with &<S8ructuring element
of the minimum image as the marker. The marker image indicatesre to begin and the
mask determines the maximum pixel value the reconstrucaomattain. Beginning from
the pixel values in the marker image, morphological reaoicsibn spreads out laterally
until a pixel in the mask image indicates to stop. Figure BuBtrates the action of the
morphological reconstruction. The mask in the illustratemntains two objects, one is
desired and an the other is an artefact. The marker indigdtesh object is desired and
the reconstruction fills out this object. The artefact ispegsed because the reconstruc-
tion cannot return values greater than the boundary betteeartefact and the desired
object.

The region just inside the meat holder tube was manuallytéolcand masked in the
image to remove the metal tube and outside region. The imagdransformed into CIE
La*b* colour space. A threshold value was computed for, asetion, the a* plane using
Otsu’s method (Otsu, 1979). The result of the threshold &fan estimate of the lean
region. Fat was identified as bright areas in the green platheedRGB image. The green
plane was selected because red objects were minimised. |G@g@lane was not useful
as the images were taken directly after slicing, so had alishrpppearance due to de-
oxymyoglobin (blooming had not occurred). The fat surrangdhe lean was identified
using a diferent threshold computed again using Otsu’s method on #engslane. The
resultant fat estimate was refined by excluding the learoregnd the region outside of
the meat. Excluding the lean region also excluded marbMeybling appeared as bright
objects inside the lean region. These marbling objects werdified as statistical outliers
in the green plane assuming normal statistics. Any pixeh@éléan region with intensity
at least three standard deviations greater than the meatabated as marbling. The
final fat binary image was the combination of the outer fat araibling. Streeteet al.
(2006a) used a pattern recognition classifier method toaugothe specificity of marbling
object detection. Here the colour image acquisition wadcsently improved so that the
segmentation was considered specific enough to not warfarther classification.

Figure 5.3 shows two (of three) replicate images of the sdice the result after tak-
ing the minimum and morphological reconstruction and tHewosegmentation. Small
bright specularities are in both the colour images on thedap but appear in dierent
locations on the face of the slice due to the blotting of thatfece with absorbent paper.
Around the edge, especially on the top left there is a brigfiection due to the plastic
wrapping used on the meat. The plastic wrapping causestlaighs that confuse the fat
detection scheme, as seen in the segmentation image onptheftto A morphological
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Figure 5.3: Images of animal 5, left hand side, slice eight p row shows two fierent

colour images of the same slice with blotting between ca&sturThe bottom row, left
shows the preprocessed image formed from the images of the skice. Bottom row,
right, shows the segmentation where red is the pixels ¢ledsis lean and green as fat.

opening was considered to remove the edge region on the &galentation to remove
false fat objects due to the plastic wrap, but was dismisseduse opening changes the
morphology of the object which is not desired.

The colour image processing result was registered to therbgpctral images to en-
able estimation of the visible content of the meat for eastcspm. To perform the
registration, two complement checkerboard patterns wjtihases corresponding to the
hyperspectral image pixel locations were projected on tatavite object in the place of
the imaged meat surface. Images were taken of the checkdnbatkerns, were processed
and the locations of each square registered. In this wayr&as@n each colour image that
corresponded with each pixel in the hyperspectral imagee wentified. The reference
visible content proportion for the hyperspectral imageefsxwas calculated. Spectral
pixels were identified as lean if there was more lean that &mgrisible constituent.

We have the opportunity here to assess not only the qualitieoprimary analysis
method (classification of NIR spectra) but also the refezemethod. The colour im-
age processing is essentially the automation of classrassigt that otherwise would
have been performed manually. Manual rechecking of theucafoage processing re-
sult allows us to obtain an estimate of the error in the r@fegenethod. Ten slices were
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selected at random from the dataset. The original imagedhendolour segmentation
image were displayed on screen. Regions in the image whevg@ut segmentation had
occurred were manually ‘clicked’ and the pixel locationsaieled, with even and moder-
ately dense coverage of the incorrect regions aimed forct&peixels with at least one
identified error location were labelled as having error. iHg\some error does not nec-
essarily mean that the spectral pixel was incorrectly ladeit means that mislabelling
could have occurred, so the method of estimation of referenmor employed indicates
the upper limit of the error level. The ratio of spectral pexavith error to total number
of spectral pixels was taken as an estimate of the upper @frgtrror in the reference
method. For each image the percentage of spectral pixdisanior in the reference was
computed, and the mean and standard deviation of the enmrcemages were taken over
the ten images.

5.1.4 Data Summary

Table 5.1: Enumeration of the breeds from which the musckrs waken.
Animal/Day Breed
Angus cross
Hereford cross
Hereford cross
Angus cross
Angus cross
Hereford cross
Angus cross

~NOo ok wWDNPE

The LDs were taken from steer carcasses, shot with captivamad electrically stim-
ulated and harvested from breeds on an as available basike 4 lists the breeds per
animal. The two LDs for each animal were used for each day t dallection, so a
reference to day three, for example, corresponds to anihmee t

The hyperspectral images of the volumetric mapping cowsisventy 16x 16 pixel
images per muscle over the fourteen muscles correspondisgven sets, that is, one
set per animal. In total this gave a raw data set of 71680 speetra. Spectral pixels
of the air around the meat face were considered outliers aaré wasily identified by

Table 5.2: Breakdown of the number of spectra per animal nétbafter the removal of
air spectra.
Animal 1 2 3 4 5 6 7
No. of Spectra 8347 7952 6626 6348 8004 8556 6380
No. of Lean Spectra 6647 6449 5495 5240 6600 6725 5123
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Table 5.3: Summary of the reference data. The varialfledown are defined in Sec-
tion 5.4.

Variable Name n Meas Standard Deviation Minimum Maximum
Tenderometry(kgF) 14 92+1.10 4.26 7.75
pH 12 537+ 0.15 5.08 5.75
ag 12 176 £ 2.47 14.7 22.9
aj; 12 204+ 275 17.0 25.9
kq 12 0172+ 0.075 0.0684 0.322
by 12 671+ 202 3.01 11.4
b;i 12 106+ 2.09 7.60 14.8
ky 12 0225+ 0.103 0.0854 0.440

simple thresholding and removed leaving 52213 spectraleTaR gives a breakdown
of the usable nonair slice spectra for each muscle. The nuaiflspectra per animal is
determined by the size of the muscle. Bloom spectra aréferelnt set of data and are
not included in the counts listed in Table 5.2. The maximuroren the visible content

reference was estimated to b& 2 1.6% to two significant figures.

Table 5.3 summarises the statistics of the reference dateadh case there is one
sample per muscle. For the pH twenty measurements per musotetaken, but as de-
tailed below, the intramuscular spread in pH was small coetbto the variation between
muscles. The parameters for the bloom represent one bloora par muscle.

5.2 Lean Pixel Classification

Classification of the hyperspectral pixels as lean dominastinvestigated. The reference
classification was designated lean dominant if there wag hean in that pixel than any
other content. ECVA (see Section 2.5.3) was employed to laulidear classification
model for the two class problem. The power of classificati@s wssessed using ROC
(see Section 2.6.3) analysis. We compute the ROC AUC usetgdbezoidal rule and use
the SE (equation 3.102) of the Wilcoxon to estimate the SE@AUC. This work was
informed by earlier investigations into visible contenlilmation Streeteet al. (2006b),
specifically that study considered calibration of visildeédontent by NIR.

The data were divided into three groups. The first group ohetuall data except
those from two animals. The second and third groups were deatpof the data of one
animal only, each group being one animal not included in tisedroup. The second and
third group were simply chosen as data from the last two asiaequired, however the
choice was supported by the fact that fetient breed was represented in each of the last
two animals. The classification was analysed in three stagies first stage was cross
validation per-animal on the first group to probe if classificn was possible. Per-animal
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cross validation was used to maintain as much independetaeén groups as possible.
The second stage was testing. Here ECVA models were built fin@niirst group using
a range of number of PLS factors, with the models tested osgbend group. From the
second stage the number of factors to use in the model wasrchd$e third and final
stage was validation. A model was constructed using thefdaita both group one and
two together as one set, with the number of factors as detedmin the second stage. The
model was then used to classify the data from the third growglae AUC computed.

Average Content Spectra
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Figure 5.4: Average spectra from the slice images for da§s Phe average lean and fat
are shown as solid lines and the one standard deviatiorvatsesire dashed lines. After
removal of air spectra the fat is the dominant nonlean ctuesit.

The colour images from the first day’s data acquisition weoblematic and dficult
to segment, so the last six days were used for pixel clagsificalhe data from the six
animals formed six subsets. Cross validation was used perahan the first four sets to
probe the data for classification power. The fifth animals deds used to test the model.
The number of factors was chosen at the point where no ineigaaJC (accounting for
SE) can be obtained by adding more factors. To validate thaehtbe spectra from the
sixth animal was classified and the AUC computed.

Figure 5.4 shows the average lean and fat spectra with ondasthdeviation inter-
vals, computed on spectra identified as completely lean amgletely fat by the visible
content reference. There are obviouatences in the shape with the most notable being
that the lean has higher overall absorbance. The lean asmhbises dramatically below
650 nm and at higher wavelengths towards the water absonptiak at 1500 nm. Around
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Lean Classification Vector
05 o e e e e R S )

Separation Vector

Wavelength (nm)

Figure 5.5: The classification vector. Regions greater tten are indicative of the
location of spectral features that distinguish the learugrimom the nonlean group (the
nonlean group is predominantly fat).
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Figure 5.6: Box and whisker plot of the first score per animatha lean group and b)
the nonlean group.
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Figure 5.7: Box and whisker plot of the second score per aniamdhe lean group and b)
the nonlean group.
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Figure 5.8: Box and whisker plot of the third score per aniraakthe lean group and b)
the nonlean group.

1000 nm the lean has one peak where the fat has two peaks en &ile. At 1200 nm
there is an absorption peak due to the combination of thervaaig hydrocarbon peaks
in both the lean and the fat. The lean spectra, being moreemdled by the water, has its
peak slightly to the left of the fat peak and does not decraesend 1300 nm like the fat
spectra do.

Figure 5.5 shows the classification vector built from theadat five animals data
during the validation stage. Notable features include dngd weighting given to the rise
in lean absorption at shorter wavelengths; the small bun@thm corresponding with
the small water peak in the lean; the peak at 950—-1000 nm hiaaply drops € below
zero either side corresponding with the water feature ingée and hydrocarbon features
in the fat spectra at the same wavelength region; the pealo@isw 1200 nm and the
large positive region above 1200 nm that peaks at 1350 nnegmonding to where the
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Classifier Output for Lean Classifier Output for Nonlean
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Figure 5.9: Box and whisker plot of the overall classifier atitper animal, a) the lean
group and b) the nonlean group. This is the result of the ifieason vector on the data
it was computed on so is likely to be favourably biased.
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separation between the two groups of spectra is large duetedge of the large water
peak in the lean and fat, but is more dominant in the lean tharat. Qualitatively we
see that the ECVA classifier has sensibly utilised the maptufes of diference between
the lean and nonlean groups.

Figures 5.6, 5.7 and 5.8 show box plots respectively of teegecond and third score
of the training data loadings per animal per group. The factbown are due to the ECVA
computed at the training for the validation stage. The stmraone of the animals is ob-
viously different to the rest, barring perhaps animal two for the firddiltgaon the lean
group, but animal two is not greatlyféerent to the rest. The lean and nonlean scores for
animal three and four are not separated as well as the seftitm@nd sixth in the first
score. Figure 5.4 shows that gross absorbance is a stramgrigating feature between
the lean and fat. The first score is heavily dependent on tfiereince in the average
absorbance in the lean and fat groups. The variation in thesitore seen in Figure 5.6
might lead one to conclude that this gro$geet should be removed by preprocessing,
however this gross absorbancéeiience is too important a spectral feature to be thrown
away by using a preprocessing step such as the SNV transfona.could alternatively
use MSC or EMSC (Section 2.5.2) so that the grdscéis normalised per animal while
the gross dference between lean and fat is retained. Unfortunately pregprocessing
requires prior knowledge of the animal which is not necelgsavailable when analysing
a spectrum from a new animal at random. Still EMSC could haenhused with an
average spectrum over all the animals instead of per-anbugivas not considered nec-
essary. Ultimately gross absorbance is an important fediut is not necessarily the
strongest discriminating feature in all the natural gro(gremals) present.

The first and second scores have a large number of pointotidlike outliers. These
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supposed outliers do not sit at a large distance from anyr ottgasurements and are
not due to grossly erroneous measurements or true outberh (measurements were
removed earlier with the air spectra). Furthermore any neasurement may reside
in the ‘outlier’ regions so it is appropriate to include thémthe calibration data set.

Figure 5.9 shows the classifier output before thresholdergpimal on the training data.

The separation between the lean and nonlean groups is appaltbough the plots do

show application of the classifier on the same data the @krsaias computed on, so are
likely to be favourably biased.

#Factors| Cross Validation Testing

1 0.6824(0.0037)

0.6983(0.0063)

2 0.9048(0.0018)  0.9070(0.0031)
3 0.9614(0.0010) 0.9755(0.0014)
4 0.8923(0.0019) 0.9779(0.0014)
5 0.9702(0.0009) 0.9817(0.0012)

Table 5.4: AUC(SE) for pixel classification.

True Positive Fraction

False Positive Fraction

Figure 5.10: ROC curve for the validation data.

The AUC and associated SE for the cross validation and teateashown in Table 5.4.
In every case the AUC via the trapezoidal rule and the Wilcoxere computed and found
to be the same. In the cross validation the AUC increases @noanto three factors and
then drops at the fourth. The AUC(SE) for the third factor.i8814(0.0010) indicating
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strong classification power. The test AUC increases undilttiird factor, beyond which
the increase is small and the intervals indicated by the SHayy, thus we select a three
component ECVA model.

Figure 5.10 shows the validation ROC for hyperspectrallmibessification as visible
lean. The validation AUC(SE) is 0.9515(0.0025). The ROGreuracks close to zero
false positives until TPF= 0.64 where FPF starts to increase dramatically. The curve
does not reach TPE 1 until FPF= 1, indicating that the spread of the true class (lean)
reaches to the far side of the false group, that is, the mimmlassifier result for the lean
pixels is as small as the minimum result for the nonlean pixEhere are many more lean
spectra than nonlean spectra, as evidenced by the largareacompared to the fat area
seen in Figure 5.3, so the spread of the lean classifier isribugh to reach the far side
of the nonlean group. One might conclude that a Bayesian pkecach is appropriate,
in which the prior knowledge that there is more lean than eamlis incorporated to bias
the classifier towards classification of spectra as leanmgasing sensitivity. However
the objective of this exercise is to identify specificallg tlean spectra with a minimum
of false positives so that analyses are guaranteed to berped on lean spectra only.
Biasing the classifier to classify spectra as lean runs tkefiseducing specificity.

Now we examine what the true value or the AUC might be taking account the
error in the reference. From Section 5.1.4 the maximum enrtine reference is.3 +
1.6% and in the validation set there were 6380 spectra, of Wwbil&8 were labelled lean
by the reference method and 1257 were labelled not lean. \&@ toeassess whether
Equation 3.97 or (preferably, due to the simpler form) Eopue8.98 is more appropriate.
We recompute the Wilcoxon on the classified validation da&fqre thresholding) one
thousand times, each time using a subset or 1257 lean spgxthat the lean and nonlean
groups are balanced. The mean and standard deviation odshenpled Wilcoxon over
the thousand random resamplings was 0.9514 and 0.0036e¢ 88 figure above is
within one standard deviation of resampled Wilcoxon. Beeahs figures are so close
we approximate the erroffect as a straight line and use equation 3.98. We highlight tha
if the error in the reference was much larger than it was ia tiaise then the flerence
in the Wilcoxons may have been larger and the straight lin@gagmation would not
be appropriate, but in this case we can not conclude from dltee tthat the straight line
approximation is dferent from the nonlinear change in AUC due to error in theregfee.
Substitution of the data into the rearranged equation 3i@®ely equation 3.101, gives a
maximum possible AUC(SE) of 0.98(0.02). So, concluding,AUC of classification of
the validation data is at least 0.94 (no error in the refezgaad is at most 1 (error in the
reference plus the SE).

Studies conducted by others focussed on fat content in nvbate we focus on iden-
tification of lean spectra. For example Gafez-Martn et al. (2003) and Sierrat al.
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(2008) examined the detailed content offelient types of fatty acids as identified by
chemical testing. We consider lean and fat in general adifaehby visible content.
However like them we see that NIR spectroscopyfiisaive for identification of the ma-
jor constituents of meat, albeit we do not examine the détail they do. Qiacet al.
(2007a) performed marbling assessment using spectrostdipy range 400—-1000 nm, a
band that overlaps ours but encompasses the visible donédh we have not been able
to use here. They had much higher spatial resolution thart whdave and were able
to use features computed over the spatial dimension, whare@erformed classification
using spectral information only. Regardless, classificatiblean spectra is successful in
this trial.

5.3 \Variography

Variation in the spectra was examined down the length of theates by variography.
The lean spectra were extracted from the data set using tvedelassifier. The average
spectrum for each slice was taken and the variogram of easklenat each wavelength
was computed. The average variogram for each wavelengticavaputed over the mus-
cles and notable features of interest observed.

o ——
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Figure 5.11: The average variogram for each wavelength dbenength of the LDs.
Each line represents one wavelength. The variograms fone@lvavelengths are shown
together in this manner so that the general shape of thetieariagainst lag down the
muscle can be seen.
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Figure 5.12: The average variogram for each wavelength dbweriength of the LDs
after EMSC. The ffect due to water and the average lean spectrum was remova@ bef
computation of the variograms.

The variography was performed down the length of the twelusctes for days 2 to
7. The lean pixel classifier was applied to the spectra to sagthe lean spectra and the
average lean spectrum was taken for each slice. The vamoges taken for each muscle
at each wavelength and the variograms averaged over théewussulting in one average
variogram for each wavelength.

Figure 5.11 shows the computed average variograms. Theteaiobvious dominant
effects: first the correlation between positions increasels digtance down the length
of the muscle and second there is a periodfea in the variograms with period about
65mm. Furthermore the trough in the periodffeet occurs at about 65mm lag. The
vertebrae in the animal are also about 65mm in length. Whemilele is cut from
the carcass an alternating pattern is formed of bare leanemmdcovered with intact
connective tissue, which has periodicity due to the thesbeate, that is, about 65 mm.

There are two possible reasons why the vertebrae might eapsgodic &ect down
the muscle. The first possible reason is after the beast uglslared, and while it is
butchered and dressed, the halves of the carcass are huhg Bghilles tendon. Me-
chanical stress from the weight on the carcass pulls dowrhemtuscles, with some
counter force at the connection between the vertebrae anlddhThe result is possible
micro changes in the fibres of the muscle that cause a scatifect on the spectra. The
second possible reason is the connective tissue sheathdattoel LD causes moisture to
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be retained in the lean, but where the muscle is cut from theaesa the connective tissue
is removed from around the lean. Thus one might expect adierifect due to periodic
variation of moisture in the meat. In section 5.2 we obseevedmber of features in the
spectra that are due to water to varying degrees. These dependent features proved
useful in the discrimination between lean and nonlean ggdqgxall the nonlean group
was predominantly fat). Again water appears to be a majorceoaf variation in the
spectra.

EMSC was performed on the average lean spectra and the raggtogrepeated. Fig-
ure 5.12 shows the result. A representative water spectndrhe mean of all the slice
spectra were used as the reference spectra in the EMSC. The spatctrum was ac-
quired with a KES 200 series spectrometer by transmissidigbf through 1 mm of
water at 20C and reflectedf a Fluorilon (Avian Technologies, Wilmington, OH, USA)
white reference tile. The temperature of the water at speatquisition was chosen as
the closest available in our database to the ambient temopera data acquisition for the
meat (15-17C). Polynomial order zero was used in the EMSC. A polynomidkeor2
was also tried but yielded nofeierence in the variograms. Two majoffférences that
occur in the variograms after EMSC are the reduction of gvasstion by a factor of
ten and the removal of the 65 mm periodicity. There is stitheshape to the variogram
but nothing obviously consistent over the wavelengthss Hifficult to say whether the
normalisation against the mean spectrum or removal of thengpectrum fect is pre-
dominant in removing the periodicity. The mean lean spectizigreatly influenced by
water so the mearttect is also highly correlated to the watdfeet. Regardless it is clear
that the EMSC has removed the periodicity which arises eitlue to the water féect
or some other féect that correlates strongly with the water. In future stadf spectra
taken of meat not acquired in situ, particularly of the LD miasboth the ffect due to
connective tissue removal from the exterior of a muscle,thatlthis dfect is likely due
to water seepage, should be born in mind.

To our knowledge this is the first study to examine spectrehtian within the LD
using variography. Hanseast al. (2004) and Janet al. (2006) showed that variation in
quality features occurs within other muscles. Variatiothwi the LD is not surprising
given that it is a relatively large compound muscle, so iessonable to expect variation
to exist pre-rigor and to occur during the rigor process. Whegpping however was used to
homogenise the meat and reduce variation. The wrappingiedppe-rigor, stretches the
muscle fibres so they have less opportunity to contract bdfay cool and the muscle
hardens. A detailed description on th#eet of wrapping was given by Devirg al.
(1999).
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5.4 Bloom

For the bloom time series colour images, the lean region destified using the colour
image processing method described above for each imageenaind the meah, «* and
b* taken. In the corresponding hyperspectral images the giamr was identified as per
the ECVA model.

Bloom over the first hour after slicing is due to the oxygermatbmyoglobin, causing
a change from purple to red (Hedriekal., 1994). At first none of the myoglobin is oxy-
genated so the rate of change is greatest. As the oxygematoaeds less unoxygenated
myoglobin is available so the rate of change decreases.misguhe rage of change pro-
portional to the amount of unoxygenated myoglobin then ttygenation process follows
an exponential decay process. A parametric exponentiakauas fit to thez* data over
time, ¢, with the model

a*(t) = aj + Aa* (1 — 707, (5.1)

wheregq is the initial value Aa* is the change in value during the blooming peribds
the rate of blooming ang is the slice time. A similar curve was obtained tdr To fit
the blooming model to the colour image data a custom impléatien of iterative least
squares was used.

The L data, being luminance, is strongly influenced by surfacétextiag efects,
hence is erratic over time so modelling thevalues is not sensible. The La*b* colour
space does not completely separate the chroma from thesityteaso o* and »* may be
influenced by the erratic behaviour 8f PLS models for each of the six parametejs
a; = ap+ Aa*, ke, by, by = by + Ab* andk, were evaluated using per animal cross
validation.

Parametric Fit to Bloom Parametric Fit to Bloom

15.5 Fit
*  Measured
[ 1| SAPRPURU SR EUNRSSN EPSSIPSPN Blrmr war mar mrmsr s )

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (minutes) Time (minutes)

(@) (b)

Figure 5.13: Example bloom curves from animal 6, left sidej the parametric curve
fit to them. a) Thes* component and b) th& component over the blooming period are
shown.
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Unlike the slice images, the bloom colour images from the fiesy were salvage-
able. The bloom image acquisition was repeated on one sl&etione so there was less
variability to account for when processing the bloom imaiipes the slice images. Fur-
thermore many of the bloom images were taken when the leandaatied, or was neatr,
the bright red colour characteristic of bloomed meat so segation of the lean region
in the ¢* plane was frequently easier in the bloom images than the sliages. Seg-
mentation of the lean region and computation of the cololueswere successful, which
resulted in seven groups with two bloom curves per group.

Thea* andb* bloom curves increased in a manner similar to an exponeagaioach
to a maximum over the bloom period. Figure 5.13 shows the pl@abioom for animal
6, left side and the parametric curves fit. Over the fourteesates the average RMS
error of the fit fora* + ¢ is 0.019+ 0.009 and forb* + ¢, 0.03+ 0.01. The change in
L over the bloom period was erratic and not consistent betwageiples. Some samples
increased inL, others decreased, and some exhibited increase followelktrnease or
vice versa. The most likely explanation is that the lumireanas heavily influenced by
specular reflection due to fluid on the meat face. This fluid prase to change over the
data collection period due to secretion, in which even dopsied and ran down the face
of the meat. Such aggregation and movement of moistteetad the colour images much
more than the hyperspectral imaging because the coloureinzagl the illumination were
both near normal to the meat face whereas the spectrometanea slit was at about 60
to the surface normal of the meat, although influence on tpefspectral images cannot
be ruled out.

The lean spectra were identified by application of the le&elgiassifier (Section 5.2)
and the mean lean spectrum taken for each spectral imagespEeum from the initial
time point, the final time point, the average over the bloomaggeand the diference
between the initial and final spectra were compared to thepateday, a7, k., by, b and
k;, using PLS via per animal cross validation. The PLS modelswoeilt against each
response individually. Crossvalidation was performed pa&mal, with the two samples
per animal. Due to the small number of observations we useoat three PLS factors,
but those models that reach three factors are considerediven

Table 5.5: Optimal number of factors, correlation and philiigt of spurious correlation
for crossvalidation of the spectra against the bloom cuarampeters. The numbers are
formatted as: # Factor®? (p value).

| a*o ay k, b*g b* s ky

Initial spectra 2,0.81(0.00) 2,0.77(0.00) X 3,0.46(0.01) 2,0.69(0.00) X

Final Spectra 2,0.81(0.00) 2,0.83(0.00) X 2,0.46(0.01) 2,0.74(0.00) X
Difference Spectr X X 3, 0.40(0.02) X X 3,0.31(0.04)

Table 5.5 lists the number of factors and correlations fer different spectra and
responses after crossvalidation. Models marked witk amdicate that no clear relation-



122 Volumetric Mapping of BeefM. Longissimus Dorsi

ship was observed, that is, there was no obvious optimal sumitfactors and a p test
showed that for any number of factors the correlation waigimiscant. The initial and
final spectra resulted in a reasonable prediction of thelrand finala* and b* values
and no prediction of the rate values. The prediction of thtelnb* values required three
factors thus is tentative. TheftBrence spectra resulted in weak correlation and poor
tentative prediction of the bloom rate values. The mostulgesult here is that spectra
taken immediately after cutting correlate with the finalaeolvalues. A larger scale study
Is required to investigate the prediction of final bloom onsela prerigor and at various
pertinent time points postrigor, in particular to study piestra acquired at certain time
points soon after slaughter can predict the final bloom vatuiene points consistent with
the time of retail presentation.

Qiaoet al. (2007b) and Andrset al. (2008) both obtained good correlation with lu-
minance,L, but not for the chromag* andb*. Our result is in contrast. Presumably in
those studies measures were taken to prevent speculantymomation of the La*b* mea-
surements. Here, despite the blotting processed used twveeexcess surface moisture,
specularity made modellinfy impractical. Obtaining significant correlations withand
b* is encouraging and future studies with many more samplésiaiv us to expound on
the relationship in more detail.

5.5 Tenderometry and pH Correlation

The correlation of the spectra per-wavelength with the pH mderometry data was
calculated. The band that best described the responsélesriaere chosen.

5.5.1 pH

Detrimental é&ects, such as an aging pH probe requiring more careful beasibn of the
pH meter, impacted on the pH data from the first animal. Non@@fssues were insur-
mountable, but the first day’s data was considered unreligbdreful pH data acquisition
left us with the remaining six animals data. Figure 5.14 shtlwe pH per slice, with
vertical dashed lines to delineate each muscle. The datardeeed day two, left, slices
1-20; day two, right, slices 1-20; day three, left, and so®mme of the muscles have
drift in the pH measurements over the slices due to the issuresunding the pH meter.
The drift in measured pH is possibly increased by changeamtbat pH during the data
acquisition period (approximately two hours per muscleyéver pH in meat normally
decreases with time as aging occurs and the fact that somegutthgs increase suggests
issues with the meter is the more reasonable explanatiothelismall number of ani-
mals represented there is a trend for the left side musclaue lower pH than the right,
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pH Values Over Slices

Slice

Figure 5.14: The pH readings down twelve LD muscles (the &rstal is excluded).
Vertical dashed lines separate one muscle from the nextdataeare ordered per animal,
left side followed by the right side. There is a tendency Fa& tight side pH readings to
be slightly higher than the left.
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Figure 5.15: Correlation (r value) of each wavelength with giiH. The average of the
selected region indicated is compared with the pH refergales.
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Mean NIR vs. pH Scatter
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Figure 5.16: Scatter of the mean NIR reflectance in the baBd%® nm against the pH.

possibly due to the carcass being hung by one leg at the Ash#indon after slaughter
causing more strain down one side than the other. More me@sumts on new carcasses
are needed to confirm the trend of one side having lower pHttie@nother.

The Intra-LD spread in pH is small compared to inter-LD sgragaour results. Ef-
fectively there are twelve unique pH measurements whicloassimall a set for any
calibration-validation process. The lean spectra weretified using the lean pixel clas-
sifier described above. The mean lean spectrum and mean gddbrmuscle was com-
puted. Correlations were obtained per wavelength to obgbevpresence of a relation-
ship between the spectra and the pH readings, and are shokigure 5.15. Strong
correlation was observed between 600 and 950 nm, indicatdtkaselected region. The
average of the spectra within 600 and 950 nm was taken artespktted against the pH
readings, as shown in Figure 5.16. A linear relationshipsgle and has a correlation
with R? = 0.797 (p = 0.0001). Fitting a line to the scatter in Figure 5.16 yields angRM
of the residuals of 0.068, about 10 % of the spread in the ptiegal

The pH values here are in a very narrow range (5.08-5.75) efsedet al. (1999)
used 46 pork samples measured the day after slaughteriolgt@ pH range of 5.46—
6.97 in thesemimembranosus muscle which was subsequently used in calibration. Using
PLS with leave one out crossvalidation Anderseal. (1999) obtained a correlation of
R? = 0.53 on spectra of LD muscles over the band 1000-2630 nm. Tlseyexdam-
ined correlations per wavelength over 360-777 nm and 10&&B2m but did not obtain
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the high and almost steady correlation over any of the bargd-%8 nm that we did.
This may be because of theffdirent animal type examined (pig, not cow) or the time
of measurement post mortem. Rosenweldl. (2009) studied pH values over an exten-
sive period of time post-mortem (from 1h to about 90h) withmas treatments involving
temperature while cooling and wrapping to influence the rasaigor developed. As a
result, they obtained a broad range of pH values 5.15-7.1L.3.vilas used to model the
pH based on the spectra. Over the 253 samples used in thati@liget they obtained
R? = 0.84. The work of Rosenvolét al. (2009) is a much more comprehensive study
than what is presented here, regardless the fact that a goaglation could be found in
our data is in accordance with their result.

5.5.2 Tenderometry

Correlation Against Tenderness
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Figure 5.17: Correlation (r value) of tenderness readingmagthe wavelengths.

Figure 5.17 shows the correlation of the tenderness ovecitbesvalidation data
against wavelength. There are no spectral regions thaglaterwell with the tenderom-
etry readings. Any relationship between spectfédas and the tenderometry readings,
if it exists at all, is not simple and is unlikely to be seenaclg or reliably with the
small number of samples obtained. Five tenderometry measamnts were taken of each
steak, where the correlations in Figure 5.17 are of the veagths against the mean ten-
derometry for each muscle. The upshot is that each muselettetometry reading has
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an associated standard deviation, with the mean of theatawl@viations to be.05 kgF.
The spread in the average tenderometry readingt&KgF, so the ratio of the average
standard deviation over the spread is 0.272. The uncertaimearly 30% of the spread.
Clearly with the tenderometry measurement equipment dlailauch greater spread in
the tenderometry values is required before any useful lediwa can be observed.

In the literature a mix of tenderness classification andocation is reported. The
purpose of investigating tenderness via spectroscopy fiadoa way to grade the meat
without damaging it. Grading for tenderness means asggaitabel of tender or not
tender, so classification is reasonable. We do not have érgargples to attempt classifi-
cation, nor did we intend to, and the samples that we have tahmto obvious groups.
Rather we sought to measure quality features of the meatdoninthe variography and
pixel classification. Hildrurret al. (1994) and Naes and Hildrum (1997) obtained good
classification and calibration of tenderness. They coredutiat classification was bet-
ter because calibration tended to return intermediateegalktausing the more tender and
tough samples to be misclassified.

Radbottenet al. (2000), like us, did not obtain good prediction of tendesnéR?
values up to 0.46) but they were seeking a prediction of tereds in the future, that
Is, they ask whether spectra taken early post-mortem cahgptenderness much later.
Bowling et al. (2009) reported low correlationR? < 0.23) and observed that others who
obtained good correlation had a broad range in tendernasssvadRgdbottest al. (2001)
incorporated information regarding the treatment of thathp®stmortem in performing
prediction of tenderness in the future. They obtained beétsults in future prediction
when treatment information was used than when it was not (iR&éh the range 0.27—
0.69 without treatment information, 0.50—-0.72 with treafrinformation). Rosenvold
et al. (2009) obtained moderate prediction of tenderng®s £ 0.58) but had a broad
range of tenderness values (19-26bobtained from meat subjected to a range of treat-
ments and measured at various times post-mortem. We hayesead one treatment, that
resulted in the narrow range of tenderness measuremetesd staove. Ofering treat-
ments of the meat potentially could have provided a broagiege of tenderness values
and produced better results. Varying treatments may alge Yialded diferent results
in the variography, potentially even drowning out the waféect observed. Regardless
variography, along with tenderness, unddfatent treatments is an interesting topic for
future investigation.



Chapter 6
Conclusion and Future Work

This thesis presented the successful acquisition of hgpetsal images using source
modulated spatial multiplexing. A projector system wasdalieped that used a digital
micromirror array (DMA) to project light patterns onto a galsn A spectrometer mea-
sured the spectral information reflected from the sample light patterns encoded the
spatial information in such a way that the signal quality waproved over measuring
each point on the sample at a time.

The theory for multiplexing was developed. In particuldascdssion of all types of
realistic error under multiplexing with the Hadamard nes was presented. This discus-
sion incorporated theoretical development that had gofedezncompassing the results
into a single theoretical development. THeeet of compressed sensing on multiplexing
precision and some results concerning the use of stronglylae graph matrices were
also discussed and developed.

The hyperspectral imager was tested and characterised)f@l $0 noise ratio (SNR)
behaviour. Aspects of the developed theory were verifieganticular, the reduction of
the benefit in SNR due to Poisson noise was observed. The Hadamatrices were
also seen to be useful despite the SNR boost being reducedtairchigh Poisson noise
situations, especially when the main noise source (Poigsadditive Gaussian) is inde-
terminant or varying.

An important issue in all the work presented is that the hgjpectral imager is proof
of concept in its design and implementation. As such fundgweited which impacted
significantly in the selection of parts and equipment usedil&\the imager took good
spectral images, it took a long period of time to do so (abo&tr@inutes to acquire
a 16 x 16 pixel image, up to about 40 minutes to acquire ax684 pixel image) and
the equipment is fragile. Better (and more expensive) pagsgpected to reduce the
acquisition time significantly and to enable developmeirjorove the ruggedness of the
device.

The imager was used to acquire spectra of Ineef ongissimus Dorsi from the right
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and left sides of seven animals. The spectra were analysabdalassification power

between lean and nonlean groups, variation down the lerfgtieanuscles, pH, bloom

(change in colour after cutting) and tenderness (forceireduo sheer the meat after
cooking). The proof of concept nature of the work meant tHatge scale study was not
sensible at this time. The positive results concerning fability of the spectra produced
by the system and the interesting features observed on thé vakdate the approach.
Furthermore, from a technical standpoint, further develept of the imaging system and
larger scale investigation of the meat is warranted.

6.1 Theory

The theory for multiplexing by the Hadamard matrices undilittve and multiplicative
systematic and random error was developed. Results fromamtiavere integrated into
a single notational system under which tHteet of the Hadamard H,G and S matrices
on the diferent noise types were compared. For random additive noésa/é¢ll known
result surrounding noise reduction was derived. That isHhmatrix provides the best
noise reduction, followed by the G-matrix and the S-matas the least noise reduction.
For Poisson (random multiplicative) noise we confirmed thatS-matrix increased the
noise variance, that the H-matrix has rfeet on the average variance and it was shown
that the G-matrix has the same noise increase as the S-matrix

Systematic additive error {iset) was divided into two type fiset that is multiplexed
and dfset that is not multiplexed. It was observed that elimimabboffset that is multi-
plexed is preferable, that is, anffeet should be independent of the encoding. Additive
offset that is independent of the encoding is corrected forbefecoding and any random
noise défects associated with the measurement used to make thetariscreduced in
the subsequent decoding operation. If tifiiset is multiplexed, then the correction must
be made after decoding and any random noise associatedhgittotrection is not re-
duced.

The dfect of systematic multiplicative drift at decoding was séerbe dificult to
assess in the general sense. Because the error was mixedrgenenthe multiplexing
matrix the signal measured and the drift itself were reqLicecompute the resultant er-
ror. Correction of multiplicative drift removed the bias botreased the overall noise
level. Computation of the overall noise level was performgsbaning additive and mul-
tiplicative noise were present in the signal and refereneasurements. The reference
measurements and the signal measurements were assumpeendest, but the case of
non independent measurements was recognised as possitgated as requiring ad-hoc
treatment. The correction of multiplicative drift prodaceew noise variance terms in
addition to the terms that arise due to random noise. Oneegttterms showed a distinct
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multiplexing disadvantage of the order ®f, the size of the multiplexing matrix, how-
ever analysis in a later chapter with consideration of umagntal &ects showed that this
disadvantageous factor was mitigated by ensuring thatuteon though the reference
beam is small. The H-matrix was better overall than the diverHadamard matrices in
terms of noise variance. Some variance terms in the S-masaie smaller than for the
G-matrix and others were larger, so neither had a distincdtdge.

The link between strongly regular graphs (SRGs) and Hadaiadd G-matrices
was explored. The link between SRGs and the S-matrix waslesstath by Ratneet al.
(2007) herein the connection to the other Hadamard matisoesplored. The SRG ma-
trices have useful properties for multiplexing when Paisgoise is present, especially
when the relative Poisson and additive noise levels are krimfore multiplexing takes
place. One construction procedure for the S-matrix is td §tem the H-matrix, from
which the G-matrix and subsequently the S-matrix are dériv&tarting with the SRG
matrix, this construction procedure was reversed to preditike and G-like matrices.
The properties of the new matrices were examined via theixnafice and eigenvalue
structure. It was found that the G-like matrix has propertser to the Hadamard H-
matrix. The H-like matrix, while providing a good multipleboost, was not quite as
good as the G-like matrix. We take this as evidence that whédeS-matrix shares many
properties with a SRG matrix under certain conditions, theyret exactly equivalent.
Regardless, SRG matrices form attractive multiplexing pagtéor certain situations.

Compressed sensing (CS) theoretical precision using a raedooding matrix was
examined against the number of measurements. It was shawththrandom error in
a CS reconstruction depends only on the inversion of the sitigui pattern acting on
the random error in the acquisition. For a large random ma#s the number of rows
increases the spread in the eigenvalues increases. Frosigde/alue structure it is in-
ferred that the precision decreases as the number of measni®increases. A numerical
simulation was performed in which a sparse signal was CS ipteked’ using a random
acquisition pattern to which random error was added. Theasigyas subsequently re-
constructed using basis pursuit for a range of the numbereaisorements and the SNR
computed for each reconstruction. The theoretical SNR wagpated assuming that ran-
dom noise at acquisition was the only error source. The SNBSrreconstruction was
small for very few measurements in accordance with othealyaes. The SNR increased
until it met the theoretical SNR from our model and then daseel closely tracking to
the theoretical prediction.

The Wilcoxon and the area under the receiver operator clR@C(AUC) are two
equivalent statistics for assessing the power of a claasiit system to assign data to
groups. The #ect of error in the reference in computing the Wilcoxon wasvee and
discussed. A direct link between the two statistics wasbéisteed by beginning with the
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the definition of the AUC and deriving a result which was seematch the definition of
the Wilcoxon. The resultant equation was then modified amadyaed under the presence
of error in the reference which manifested as the transterehmembers between groups.
The Wilcoxon was found to be reduced by error in the refereiigigen an estimate of
the number of data transferred, we showed that an estimé#te dfilcoxon without error
could be computed. Numerical simulations of computing thic®on on data with
varying numbers of data transferred between groups vetlietheoretical prediction of
the dfect of error in the reference on the Wilcoxon.

6.2 Hardware

A hyperspectral imager was built and tested. The imagesetilsource modulated multi-
plexing using a custom digital image projector with a braaublight source. The pro-
jector imaged multiplexing patterns onto the sample anah@lsipoint spectrometer in-
tegrated light from the sample. The light source projectaddf’ patterns of squares
onto the sample with each square corresponding to one (@kelnging the patterns over
time while taking spectra built a linear transformationtod spectral image pixels. Later
decoding returned the individual spectral pixel respon3é® spatial domain was mul-
tiplexed while the spectral domain was examined by the spedter, so each spectral
band, or wavelength, was multiplexed in parallel. The etypes considered in the the-
ory chapter were interpreted for the optical system. Adeitandom error occurred in
the spectrometer and multiplicative random noise occuae@hoton fluctuations from
the light source that followed Poisson statistics. Systensditive error occurred as
background illumination and the baselinéset in the spectrometer while systematic mul-
tiplicative error occurred as light source drift. The thearas reworked to incorporate
hardware specific considerations such as the importanisimi of the optical attenua-
tion effect.

A complement encoding scheme was used to remove additiseto Assuming that
the encoding matrix (Hadamard or otherwise) had both pesithd negative entries, then
the pixels at locations that corresponded to the positiseeswere illuminated, then im-
mediately following were illuminated according to the nidgaentries, and spectra were
taken for each illumination. The positive and negative elivags are complementary,
hence we call the process complement encoding. Since thivp@sd negative encod-
ings were taken in quick succession there is minimal chaoicdrift in the background
offset to occur, so the additiveffeets in both spectra were the same and subtraction of
the negative encoding from the positive encoding perforthednecessary correction.
Since the encodings were complementary no desired spees@bdnse from the sample
was lost. For multiplexing matrices that have no negativees) such as the Hadamard
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S-matrix and pointwise acquisition, a background measeng¢mvas required for each en-
coding. The background measurement was acquired by s#tgrencoding to uniformly
zero (no illumination of the sample) and taking a spectrumpdrform the correction the
background spectrum was subsequently subtracted frormtieelang spectrum.

A reference beam monitored the light source intensity dweatquisition period. The
reference beam measurements were subsequently usechtatriiy correction. A refer-
ence spectrum was taken with and subsequently divided fiamy @ncoding spectrum.
Due to physical size constraints the acquired raw referbreen measurements actually
were the combination of the reference beam and sample sddmdbe reference beam
the sample spectrum without the reference beam was sudritoim the raw reference.
The subtraction operation caused the sample and refereeasurements to be depen-
dent. The theory surrounding théect on random error of reference beam correction
was reworked to account for the lack of independence whicteased the noise variance
slightly. There was a disadvantageous term in Hadamardptexing that occurred due
to correction of multiplicative drift. Accounting for ol effects showed that if the ref-
erence beam optics attenuate much less than the sampls thyaicthe combined optical
effect mitigates the disadvantage. Also the rise in noise negi@ue to the lack of inde-
pendence between the sample and reference measuremermgseaids mitigated by the
relatively low attenuation by the reference beam optics.

In decoding the image spectra the optical attenuatféeceremained after the cor-
rections and were applied. A reference white tile was useabtain an image of the
attenuation ffect. The reference white tile was assumed to have a very imdtilat re-
flectance profile over the spectral band of interest. Digdire sample image by the white
tile image removed the opticdfect. The only error remaining after this final correction
was the random noise. The theoretical noise variance wagputech for the white tile
corrected spectra. It was found that a low light level thiotlge sample optics resulted
in an increase in noise variance, but was mitigated byfiacgently intense light source.
The overall noise variance was approximately doubled bythige tile correction. The
theoretical analysis lead to the commonsense conclusamibre light from the light
source and less attenuation by the optics ultimately legestonoise in the final corrected
spectra.

Hadamard matrix and compressed sensing patterns werenmapted. SRG matrix
multiplexing was not implemented because the relativetadand multiplicative noise
level varied over the wavelengths, so a multiplexing patte¥signed to give the optimal
boost where the photon noise was greatest would not havedmmmal where the light
level, hence the signal, was low. Instead, prompted by tberth the Hadamard multi-
plexing was expected to provide a good multiplexing advgatat wavelengths of low
light level where it was most needed and that the advantagddvioe smaller where the
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light level, hence the SNR, was already good. Since the Hixmddes not reduce Poisson
noise variance on average, the varying SNR boost was ieteghas a preferential noise
reduction at lower light levels which is demonstrably us@fben the main noise source
Is indeterminate or varying, which is the case with our syste

Hadamard G-matrix and H-matrix encodings were implemeniBoese Hadamard
encoding matrices used have both positive and negativeegists complement encoding
was used. Complement encoding, with its inherent advantggslisadvantages, is one
of the key features of the work herein. S-matrix encodingsdua require complement
encoding and provides no theoretical advantage over tlez bléidamard matrices so was
not used here. The complement encoding is used to removetearid illumination and
the baseline fiset in the spectrometer. To do the same for S-matrix encadiggires
measurement of the baseline with no added value in termsyoiraing information about
the sample. Complement encoding performs the backgroumdatimn using measure-
ments that have spectral information from the sample, aitqtiaé reason why the G-
matrix encoding is better than the S-matrix with regardsigoa independent additive
noise.

In a multiplexing situation where the correction of systémadditive error is not
required then complement encoding is not necessary, ansuthteaction operation that
doubles the random noise may even render complement egcodimdvantageous. One
must assess the benefits of the encoding system for thepartgituation. We believe
that Hadamard H-matrix encoding using complement encoditige best approach for
the hardware configuration described herein. There was kgb@amd dfset inherent in
the spectrometer; zero illumination did not return a zemcgpim and the baseline point
could drift over time. Background illumination due to lighiusces not related to the
spectrometer system and stray light from the spectromigtar $ource both contributed
to the additive ffset. Also, as stated above, the H-matrix, which can only ldemented
on our system by complement encoding, provides the useffém@ntial boost.

Hyperspectral images of simple objects were taken and thiersywas assessed by
examination of the signal to noise ratio of the spectra. &isxamination of the images of
the simple objects showed that the images produced ards=rirocessing of the spectra
using SNV, SVD and thresholding segmented the images ssfaflgsdemonstrating that
in simple objects the spectral imager produces usablerspect

SNR experiments were conducted to examine the SNR boospougwise imaging
for the G and H-matrices. For the G-matrix multiplexingva= 255 matrix was used to
capture 14 15 pixel images. The SNR boost reached the maximugi255/2 = 11.29
at the highest and lowest wavelengths, which is where the bgtput from the bulb
and the detector sensitivity were both lowest. The SNR bdagiped greatly where the
light bulb output, hence the photon noise, was greatestt@ddtector sensitivity, hence
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relative instrument noise, was least. The SNR boost was\Wdere the SNR is greatest,
and was greatest where the SNR was least, indicating th&NifReboost was delivered
where it was most needed.

For the H-matrix encoding & = 256 matrix was used to capture k616 pixel
images. Like with the G-matrix multiplexing, the maximum BNMoost ofv256 = 16
was reached at the lowest and highest wavelengths and timunmSNR boost occurred
where the SNR was greatest. The H-matrix maximum SNR bodsthaoccurs when
additive noise dominates the noise processes, was ap@t@tinv2 times that of the G-
matrix boost as predicted. The general shape of the SNR b@ssthe same for the two
encoding matrices but with the importantfdrence that the photon noise did not reduce
the boost relative to the maximum possible boost to the sageed that the G-matrix
encoding did, as predicted. For a complement encoding seliematrix multiplexing is
superior to the G-matrix.

Compressed sensing (CS) was implemented using & 256 matrix of randomly
assigned ones and negative ones to performns 16 pixel spectral imaging. With CS it
was necessary to perform SNR experiments to assess measdingracision and error
experiments to assess accuracy. Both accuracy and preeaiead with the number of
measurements taken. As the number of measurements indrke@s8NR decreased as
predicted and the accuracy increased as indicated by énatlire, thus there is a tradéo
between accuracy and precision. The software used to petfa CS reconstruction has a
noise aware reconstruction option. The noise aware rewmtisin performed very poorly
indicating that the real data acquired did not satisfy tleuagptions in the algorithm in
accounting for random fluctuations.

6.3 Application

To demonstrate the applicability of the imaging system gdaand more dficult prob-
lem than imaging simple objects was attempted. Spectrainvelric mapping of beef
m. longissimus dorsi (LD) muscles was performed. LDs are long and after collectio
they were rolled producing a long tubular shape. Volumatiapping was performed
by slicing the meat and taking hyperspectral images of elof SConcurrent with the
hyperspectral imaging colour images were acquired andespuiestly processed to iden-
tify the visible content of each spectral pixel. The pH ofleatice was measured and
tenderometry readings were taken on a steak cut from eactienus

Classification of the spectra as lean or nonlean was trial@dspectra were easily
identified and removed as part of the data cleaning prockss, the air spectra were
not processed as part of the lean pixel classification. Thie misible components left
were lean and fat. Some connective tissue was visible indleeicimages but the image
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processing did not segment out the connective tissue regi@i. No preprocessing,
such as SNV or MSC, was used on the spectra as such methodsergnoesg intensity
which was considered an important spectral feature. Exigoednonical variates analysis
(ECVA) was used to discriminate between the lean and nonleaupg. ECVA is the
application of PLS to solve a Fisher linear discriminantlgsia problem when there is
a large degree of covariance between the wavelengths itrapdata. Being based on
PLS, ECVA produces factors that can be examined individuAliree factor model was
chosen from the testing stage for use in validation. Thefugtor did not produce strong
separation of the lean and nonlean groups for all the mussled in the training data
set, indicating that gross intensityfidirence was not always the strongest discriminating
factor. The other two factors produced good separation detvthe groups over the
different muscles. The AUC of a ROC curve, equivalently the Wibcostatistic, was
used to assess the classification power. The AUC of validatias 0.9515. In other
words the ECVA model returned a higher score for the lean thambnlean in about
95% of the validation spectral pixels indicating very godaksification power.

The technique of variography was used to examine the nafutrewariation in the
spectra down the length of the muscles. Variography exasme similarity on average
(correlation) between data atfiirent points for varying distances between points. The
shape of the variogram is indicative of the type of variatiorthe samples from which
the data (spectra) are taken. The variography indicatddhbavariation within a given
muscle is small, but increased with distance down the lengtere was a periodidiect
in the variography that corresponded with the spatial peoicthe vertebrae that the LDs
were cut from. There are two possible explanations for thimgeity in the variograms.
The first is that a spatially periodic removal of connectigsue corresponding with the
vertebrae that is produced when the LD is cut from the car€@ssnective tissue retains
water, so where the connective tissue is removed from therneare seepage is likely.
The second explanation is a possible strdfaat on the muscle fibres when the carcass is
hung postslaughter. Each vertebrae could pull on the mesaciging a periodicféect.

A bloom curve was obtained for each muscle using both colodrteyperspectral
imaging. The colour images were processed to obtain CIE La&ies for each time
point. Exponential decay parametric curves were fit to tharak b* values to obtain the
initial values, final values and the rate of change of the tlo®he L values were erratic
and unusable, most likely due to specularities in the cdlnages. The lean spectra in the
bloom spectral images were identified using the ECVA classainel averaged to obtain
one spectrum per muscle per time point. Using SIMPLS and ipierad cross validation
the initial spectra, final spectra andfdrence spectra were related to the parameters of
the bloom curve. The initial and final spectra both relatedl weboth the initial and
final bloom parameters. Theftkrence spectra related moderately well to the bloom rate
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parameter, but the model should be considered tentative.uéhrfarger scale study is
required to assess if initial spectra can predict the bloate and if spectra taken at some
time point soon after slaughter can predict the final coldar ttme point consistent with
retail presentation.

Variation of pH within each muscle was small compared torintescle variation,
so the average pH for each muscle was taken, giving twehe plaints (a very small
number). The wavelength band from 598 to 949 nm was foundnelede well with the
pH and the average absorbance in this band retuRies 0.7973 withp = 0.0001. Given
the small number of measurements correlation with such glealue is a good result,
yet many more measurements are needed to establish a tahlboépH from spectral
reflectance. Other limiting factors are the small spreadHrnvalues and the use of one
time point post slaughter. The small spread in pH values doubtedly related to the
use of one time point, but is further exacerbated by the ciddle and handling protocol
which was intended to optimise the tenderness in the meat.

Prediction of tenderometry failed in this study. The pnpleicause of dficulty was
the small range of tenderometry values caused by the hgnpllocedure. No useful cor-
relations were observed. Varying the handling proceduddiamepoints for measurement
was identified as necessary to broaden the range of tendeyoreadings. The literature
that we compared our work to contained a mix of classificadiath calibration approaches
to the prediction of tenderness via NIR. The work presented isenot intended to create
a data set suitable for classification.

6.4 Future Directions

The foremost concern of future direction is the improvenwédiihe light projector system.
The heart of the imager is the DMA chip in the projector. The ®AMsed is from an
off-the-shelf digital data projector and is limited in speedtbg associated electronic
hardware. Better suited hardware to drive the DMA will impralata acquisition speed
significantly. The optical system is proof of concept in matand is fragile. Investment
into the physical design will result in a more robust optisgstem. The visible domain
and the high wavelength end of the NIR region were too noisgeReh into improving
the spectral breadth of the light source output will imprthwewidth of the spectral region
not dominated by noise. The most obvious improvement to n=ke use a tungsten
halogen bulb with a higher colour temperature than what vgasl therein (2800 Kelvin).
A higher colour temperature has greater emission in thdédleisilomain. The overall
intensity output increases with colour temperature, se ealt be required to ensure that
the DMA chip is not harmed if a similar optical scheme to wiatdescribed here is
employed.
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The actual physical construction shown in Chapter 4 is feagyild nonportable. A fu-
ture construction should be more robust and self contaig#tinately desired is a single
box unit containing the projector optics and spectrometéh a view window on top to
place samples on for imaging. In a new construction both éference beamand the
light to the sample should be chopped so that the covariagtveelen the sample and ref-
erence measurements is zero. Purchasing a DLP kit from Tes@aments that includes
the chip and driver hardware and software is critical fordhecessful implementation of
a more robust unit. The modified data projector approachtéleze to get access to a
working DMA, while suficient at proof of concept level, is the main cause of fragifit
the system. Like the hardware presented in this thesis,akeiteration in development
would involve pulling together the appropriate parts frooff the shelf’ sources. Fur-
ther iterations may require the development of speciakdedtronic driver circuitry for
optimised speed and synchronisation of the modulated ilation and data acquisition
process.

Calibration transfer, that is the use of a model built fromadabm one spectrometer
on data from other spectrometers, is always an issue. Wa@attd that if a two dimen-
sional sensor like a CCD was used then there would even be detrgameblem within
the data generated by the one spectrometer, thus a singkespectrometer with one sen-
sor per wavelength was used. Regardless if developmento$ylsiem progresses then
transfer of calibrations betweenfidirent units built will no doubt be necessary.

We have identified a tradé&detween precision and accuracy in compressed sensing.
Some outstanding issues remain. The precise interpnetatithe tradeff between ac-
curacy and precision and the relationship with overfittiegses wrong model error that
can occur in least squares regression problems are issukstfeer consideration. The
theoretical éfect on random noise, computable from the eigenvalues ofaiheom ac-
quisition system, assumes that the acquisition matrix h&rsee drawn at random from
a Gaussian distribution. The numerical example given nmibetassumption of entries
drawn at random from a Gaussian, however the acquisitioealfdata was performed
using an acquisition system of randomly assigned ones agative ones. The theoret-
ical connection of theféect on precision between the two similar buffelient types of
acquisition matrices need to be established. The results asexpected but with one
exception. The denoising option in the basis pursuit temdid not improve the recon-
struction, in fact the opposite occurred. We can only caselihat the data did not meet
the assumptions of the basis pursuit denoising technicqueever the reason why is not
currently known and should be investigated further.

The theoretical result concerning the Wilcoxon statistiewthere is error in the ref-
erence has room for further development. In particular we le@sumed that the reference
method and the new method under examination are indeperiasTde are uncorrelated.
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We havenot studied in detail théfect of correlation between the reference method and
a new classification technique. Independence betweerereferand the new method
means that data misclassified by the reference method ar&fdreed between groups
without bias from the perspective of the new method. Coridtetween the two meth-
ods means that there is bias from the perspective of the naWwoche For example, if
the two methods are positively correlated then the misifieaton is more likely to oc-
cur at the boundary between the two classes in the new me@aaversely, negatively
correlated methods mean that the misclassification is nikely ito occur at the opposite
extreme values away from the boundary in the new methodidefgtow to mathemat-
ically model the &ect of error in the reference method on the new method whee the
correlation is not known at this time. Modelling independehany particular distribu-
tion is preferred, but it may be that assumptions about the of distribution are required
to facilitate analysis. There is also scope for numericat@long with non-Gaussian
distributions to broaden the verification of the theory.

The application of the hyperspectral imager is limited iope Repetition of the meat
spectra analysis with many more samples is necessary talisstaommercially viable
calibrations and clearer understanding of the variabgitydies. The variography will
benefit greatly from the inclusion of many more samples. 8ador variography need
to be taken of meat that has undergone varying handling gots#@nd at dferent time
points post slaughter. The bloom analysis requires mang m@mples to establish cali-
brations that are not considered tentative in nature. Th& we@sented in this thesis can
inform the design of experiment analysis to establish homyrsamples are necessary.
The work of Rosenvoldt al. (2009) answers many of the questions surrounding pH pre-
diction that might arise from this work. Regardless pH measient is always useful and
informative in the analysis of meat, so subsequent comman$ pH readings with spec-
tra is sensible. The cause of thefdiulties in predicting tenderometry reading, namely
the lack of breadth of measurements that we obtained, wergiiedd. Varying handling
protocols and time points for variography will also causeeater range of tenderometry
readings. Causing variation in the tenderness readingsisdlallow the classification of
spectra into dferent tenderness groups to be investigated.
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