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Abstract

The design, analysis and application of a multiplexing hyperspectral imager is presented.

The hyperspectral imager consists of a broadband digital light projector that uses a digital

micromirror array as the optical engine to project light patterns onto a sample object. A

single point spectrometer measures light that is reflected from the sample. Multiplexing

patterns encode the spectral response from the sample, where each spectrum taken is the

sum of a set of spectral responses from a number of pixels. Decoding in software recovers

the spectral response of each pixel. A technique, which we call complement encoding, is

introduced for the removal of background light effects. Complement encoding requires

the use of multiplexing matrices with positive and negativeentries.

The theory of multiplexing using the Hadamard matrices is developed. Results from

prior art are incorporated into a singular notational system under which the different

Hadamard matrices are compared with each other and with acquisition of data without

multiplexing (pointwise acquisition). The link between Hadamard matrices with strongly

regular graphs is extended to incorporate all three types ofHadamard matrices. The effect

of the number of measurements used in compressed sensing on measurement precision is

derived by inference using results concerning the eigenvalues of large random matrices.

The literature shows that more measurements increases accuracy of reconstruction. In

contrast we find that more measurement reduces precision, sothere is a tradeoff between

precision and accuracy. The effect of error in the reference on the Wilcoxon statistic is

derived. Reference error reduces the estimate of the Wilcoxon, however given an esti-

mate of the Wilcoxon and the proportion of error in the reference, we show that Wilcoxon

without error can be estimated.

Imaging of simple objects and signal to noise ratio (SNR) experiments are used to

test the hyperspectral imager. The simple objects allow us to see that the imager produces

sensible spectra. The experiments involve looking at the SNR itself and the SNR boost,

that is ratio of the SNR from multiplexing to the SNR from pointwise acquisition. The

SNR boost varies dramatically across the spectral domain from 3 to the theoretical max-

imum of 16. The range of boost values is due to the relative Poisson to additive noise

variance changing over the spectral domain, an effect that is due to the light bulb output

and detector sensitivity not being flat over the spectral domain. It is shown that the SNR
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boost is least where the SNR is high and is greatest where the SNR is least, so the boost

is provided where it is needed most. The varying SNR boost is interpreted as a prefer-

ential boost, that is useful when the dominant noise source is indeterminate or varying.

Compressed sensing precision is compared with the accuracy in reconstruction and with

the precision in Hadamard multiplexing. A tradeoff is observed between accuracy and

precision as the number of measurements increases. Generally Hadamard multiplexing is

found to be superior to compressed sensing, but compressed sensing is considered suitable

when shortened data acquisition time is important and poorer data quality is acceptable.

To further show the use of the hyperspectral imager, volumetric mapping and analysis

of beefm. longissimus dorsi are performed. Hyperspectral images are taken of successive

slices down the length of the muscle. Classification of the spectra according to visible

content as lean or nonlean is trialled, resulting in a Wilcoxon value greater than 0.95,

indicating very strong classification power. Analysis of the variation in the spectra down

the length of the muscles is performed using variography. The variation in spectra of a

muscle is small but increases with distance, and there is a periodic effect possibly due to

water seepage from where connective tissue is removed from the meat while cutting from

the carcass. The spectra are compared to parameters concerning the rate and value of

meat bloom (change of colour post slicing), pH and tenderometry reading (shear force).

Mixed results for prediction of blooming parameters are obtained, pH shows strong cor-

relation (R2
= 0.797) with the spectral band 598–949 nm despite the narrow range of

pH readings obtained. A likewise narrow range of tenderometry readings resulted in no

useful correlation with the spectra.

Overall the spatial multiplexed imaging with a DMA based light modulation is suc-

cessful. The theoretical analysis of multiplexing gives a general description of the system

performance, particularly for multiplexing with the Hadamard matrices. Experiments

show that the Hadamard multiplexing technique improves theSNR of spectra taken over

pointwise imaging. Aspects of the theoretical analysis aredemonstrated. Hyperspectral

images are acquired and analysed that demonstrate that the spectra acquired are sensible

and useful.
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Chapter 1

Introduction

The purpose of this thesis is the design, construction, and analysis of a hyperspectral im-

ager that operates in the near infrared (NIR) and if possiblethe visible (Vis) domain. A

hyperspectral imager is an optical system that acquires images, where each pixel is com-

prised of a full spectrum. The spectrum at each pixel, while discrete, consist of narrow

and closely spaced bands to approximate a continuous signal. A conventional spectrome-

ter measures the spectral detail totalled over a given physical area on an object or sample.

The purpose of hyperspectral imaging is to acquire detailedspectral information with spa-

tial specificity, that is, a hyperspectral imager distinguishes the spectral detail from one

location on an object to another.

In building a hyperspectral imager we need to characterise the system for salient fea-

tures such as signal to noise ratio and related limitations with respect to image acquisition

time and spatial resolution. In other words if we have a system that acquires hyperspectral

images it is important to assess how well it does that job. We seek a complete and unified

theoretical model for understanding the behaviour and performance of the imager. The

theoretical model encompasses all forms of error that we canrealistically expect to see in

the system. Some forms of error are systematic and correctable, where others are random.

The model indicates how correction of the systematic error forms will affect the overall

performance of the imager.

At the outset of this research spectrometers that examine the spectral region from

400–1700 nm were available for use in this research. The spectrometers by default are

configurable to examine a quarter inch diameter region through a fibre optic probe or

to integrate light from an area tens of millimetres in diameter. Since we can spectrally

analyse the sum total of light from a given region the goal is to somehow modulate the

light so that we can obtain spectral information with spatial localisation.

Alternative methods of spectral image capture that involvetwo dimensional sensors,

typically via the so called pushbroom and whiskbroom methods, can provide fast capture

of detailed spatial and spectral information. Such methodsare dismissed at the outset
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2 Introduction

as unsuitable for this research as two dimensional sensors that act beyond 1100 nm are

expensive, and construction of a such a system essentially requires building new spec-

trometers which is unnecessary when good working spectrometers were available. Fur-

thermore, in utilising a two dimensional sensor to perform hyperspectral imaging one

typically uses the rows of the sensor as individual spectrometers that analyse different

spatial locations in parallel. Different spectrometers have different behaviour in terms of

both random noise and systematic error. Analysis and modelsbuilt for the data produced

may not uniformly fit to the spectra from the different rows of the sensor, causing error.

The process of correcting such issues is known as calibration transfer, a process that we

choose to avoid.

Having made the decision to utilise a single point spectrometer to perform hyperspec-

tral imaging we now decide on what optical system to use to obtain spatial information.

The options fall into two broad classes: acquiring spectra one pixel at a time or some

method of parallel acquisition such as multiplexing. Modern light modulation devices

(discussed below) provide the flexibility to do both pointwise and multiplexed data ac-

quisition with the same hardware. Furthermore, the noise reduction properties of multi-

plexing makes a multiplexed system the natural choice.

The system requires a light source, control of the light path, and integration and spec-

troscopic analysis of the light from the sample. The methodsof light modulation broadly

fall into two classes: those that control the light path to the sample being imaged (which

we call source modulation) and those that control the light path from the sample to the

sensor (call this sample modulation). A source modulation system forms patterns on the

sample so that only certain parts of the sample are illuminated, where different areas of

the sample are sequentially illuminated in turn. In contrast, a sample modulation sys-

tem floods the sample with light and controls which areas of the sample are permitted to

illuminate the sensor. A system that does both is conceivable but for our purposes is un-

necessarily complex. In Section 3.2.2 we see theoreticallythat modulation of light after

the sample introduces undesirable issues surrounding background offset correction, thus

a source modulation system is preferable. Specifically considering our system, multi-

plexing both the spatial and spectral domains is conceivable, however because of the

availability of good working spectrometers spectral domain multiplexing is not neces-

sary. In summary, we seek to design and build a hyperspectralimaging system comprised

of a light source modulation system that projects multiplexing patterns on to the sample

and a spectrometer that integrates and spectrally analysesthe light from the sample.

Modulation of light to the sample is most easily and practicably achieved by using an

optical image projector. The optics for light projection systems are well understood and

easy to assemble, and are present in common slide projectorsand digital data projectors.

Slide projectors use tungsten halogen bulbs, the same type of bulb that is commonly used
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in visible/near infrared spectroscopy, whereas modern projectors use mercury arc lamps

or metal halide lamps which have undesirable spectral characteristics, so we choose a tra-

ditional slide projector arrangement. An optical component that forms the light patterns

that encode the pixels is required as part of the optical pathway. We desire flexible com-

puter control of the light patterns projected onto the sample so clearly traditional slides are

not acceptable. Options for achieving digital control of pattern formation include use of

a liquid crystal device (LCD) or a digital micromirror array (DMA). LCDs are designed

for visible domain light modulation and have strong spectral features whereas the broad

spectral characteristics of mirrors make DMAs the natural choice. For these reasons we

choose a traditional slide projector with a DMA in place of the slides as the light pattern

generation device to comprise the light modulation system.

The analysis of the imager presented in this thesis involvescharacterisation of the per-

formance with respect to random noise and systematic error,and evidence that the imager

produces spectroscopic data of adequate quality for spectroscopic applications. The pur-

pose of multiplexing is to reduce noise relative to per pixelacquisition. To understand the

effect and behaviour of noise under multiplexing we construct ageneral model of multi-

plexing with all reasonable possible error sources. We seeka unified notation under which

different mathematical encoding systems can be analysed and compared. We interpret the

error sources in the context of light multiplexing and analyse the form of the error that we

expect of our system. Informed by the model, signal to noise ratio experiments are con-

ducted and interpreted. Spectroscopic images are taken of simple objects with interesting

spectral shape to demonstrate that the system gives useful data.

To further strengthen the case that the imager produces useful data we turn to an ap-

plication closer to a real world scenario. Spectral images are taken of beef strip loins to

volumetrically map the spectral characteristics. The strip loin is the source of many im-

portant retail cuts and non destructive prediction of quality features by spectroscopy can

potentially add value to the meat. In performing spectroscopic measurement an under-

standing of the source and form of spatial variability is informative. Furthermore, quality

assessments must be computed on spectra of the lean and not ofthe fat or any other visible

constituent. To this end we investigate the classification of spectra as lean or not lean.

1.1 Multiplexing

Multiplexing is the method of mixing multiple objects according to specific grouping

patterns. We use multiplexing specifically for signal measurement. Consider weighing

a number of objects that have an average weight of 10 g, but theonly weighing device

available has an uncertainty of 1 g, so that, on average, the signal to noise ratio of mea-

surement is 10. Here ‘noise’ is identified with the uncertainty and is estimated as the
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standard deviation in measurement. Now consider a multiplexing system which weighs

groups of ten objects at a time, thus the average signal to noise ratio of the measurement of

a group is 100. After measuringN different combinations, with appropriate selection of

the combinations, then the weights ofN different objects can be estimated. If the group-

ing patterns are well selected then the estimates of the object weights have less noise than

measurement of each object individually.

In this thesis we focus primarily on Hadamard matrices as thegrouping pattern. In

particular, we primarily utilise the Hadamard H-matrix which is the matrix with maximum

determinant when all entries have value between negative one and positive one. Other

Hadamard matrices, namely the G-matrix and the S-matrix, which can be derived form

the H-matrix are also given focus. The effect of Hadamard multiplexing on additive noise

is well known (Harwit and Sloane, 1979), specifically, if an orderN H-matrix is used

then the noise variance is reduced by a factor ofN.

In the context of optical light multiplexing the measurement device is a light sensor

such as an array of light sensitive diodes in a spectrometer.For the type of hyperspec-

tral imaging device described, multiplexing involves the selective illumination of pixels

according to the multiplexing pattern matrix. A DMA based illumination system can be

easily adapted to perform multiplexing with any conceivable encoding matrix without the

need to change or adapt any hardware. Multiplexing light immediately causes issues sur-

rounding light drift, stray and background light and noise that has variance proportional

to the light intensity such as photon fluctuations.

1.2 Theory

The theoretical analysis presented herein (Chapter 3) is primarily concerned with the

construction of a general model for multiplexing that accounts for all reasonable possible

error sources. A uniform notation is developed under which the error sources are anal-

ysed for the three Hadamard matrices and other multiplexingsystems. The error sources

include systematic and random forms that both manifest as multiplicative and additive

effects resulting in four main classes of error. The effect of multiplexing on random

additive noise is well known, namely that for a general ‘good’ multiplexing matrix, for

multiplexingN measurements, then the variance is reduced by a factor proportional toN.

The effect of Hadamard multiplexing on random noise with variance proportional to the

signal, i.e. Poisson noise, has been studied by others for the S-matrix and to a much lesser

extent the H-matrix (Harwit and Sloane, 1979; Nitzsche and Riesenberg, 2003; Hassler

et al., 2005; Damaschini, 1993). Poisson noise variance is increased by S-matrix multi-

plexing, whereas H-matrix multiplexing has no effect on average. The H-matrix analysis

the prior art was developed for the specific context of time resolved fluorescence imaging
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and considered each pixel as a separate emitter. In contrast, we treat the light source as the

single emitter and consider the multiplexing apparatus andthe sample imaged as attenu-

ating the light. Systematic errors occur due to background light (additive) and drift in the

light source (multiplicative). Systematic additive erroris reduced by multiplexing in the

same way random additive error is, but, by definition, systematic additive error does not

have zero expected value at any given time point or else it does not exist. Multiplicative

systematic error is mixed by the multiplexing so the effect is more complicated than addi-

tive error. Both the form of the error and the effect on the random noise due to correction

of systematic error are explored.

Recently Ratneret al. (2007) linked a type of graph, called the strongly regular graph

(SRG), to Hadamard multiplexing. Specifically the SRG was linked to Hadamard matri-

ces with ones and zeros as entries, namely the S-matrices. The link was established via

the respective eigenvalue structures and the observation that the effect on noise was com-

putable from the trace, that is, the sum of the eigenvalues. Under certain conditions an

SRG has the same eigenvalue structure as an S-matrix, however, the SRG has the distinct

advantage over the S-matrix that the number of objects included in each measurement is

variable. Reducing (or increasing) the number of objects included in each measurement

means that certain error processes, such as Poisson noise orsensor saturation, are reduced

in a superior manner than with Hadamard matrices. Ratneret al. (2007) do not consider

multiplexing matrices that include negative one entries. We extend the theory to examine

the link, if any, between SRGs and the other Hadamard matrices.

Compressed sensing (CS) (Donoho, 2006) is a recent technique for signal acquisition

that falls in the class of multiplexing. Traditional theorytell us that if we want to acquire

N data, then we need to take at leastN measurements. Traditional multiplexing requires

N measurements according to a specific linear transformationfrom which the data are

recovered by inversion of the transformation. Compressed sensing theory tells us that if

the signal is compressible then we can get a good reconstruction of N data from fewer

thanN measurements, i.e., inversion of an underdetermined system. Furthermore, matri-

ces with random entries form good patterns for CS encoding. The literature shows that

CS is accurate even when random noise is present. We examine byinference the effect

on precision (as a distinct measure from accuracy) due to CS, estimated as the signal to

noise ratio due to random error. The action of the number of measurements on the preci-

sion is analysed via the eigenvalue structure of large random matrices. In considering the

accuracy of CS reconstruction it is recognised in the literature that a rectangular matrix

of random entries resembles an orthonormal system to withincertain limits, the so-called

restricted isometry principle. We utilise a similar idea toexamine by inference how the

precision in CS is affected by the number of measurements.

The Wilcoxon and the area under the curve (AUC) of the receiver operator characteris-
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tic (ROC) are two equivalent statistics for estimating the probability that one group of data

have values that are larger than another group. Given data that falls into two groups, the

Wilcoxon is the ratio of the count times that the members of one group are larger in value

than the members of the other group, over the total number of comparisons. Similarly the

AUC ROC is a measure of the separation between the two groups,see section 2.6.3. The

Wilcoxon and AUC are important statistics in the data analysis in the application of the

hyperspectral imager. To compute the Wilcoxon we need to know what group each datum

is assigned to. To know the group assignments typically a reference method is used, how-

ever the reference method is a classification method that may(and probably does) have

errors in the form of false positives and false negatives. Wederive the Wilcoxon from the

AUC, hence establishing the link directly, and then use the result to compute the effect of

error in the reference on the Wilcoxon.

1.3 Hardware and Experimental Direction

There are two purposes for the experimental work presented in this thesis, the first is to

characterise the error behaviour of the hyperspectral imager and the second is to demon-

strate that the imager produces spectra of sufficient quality for use in an application. The

characterisation of the error behaviour is performed via estimation of the signal to noise

ratio (SNR) of the spectra and examination of the improvement in SNR when multi-

plexing over measuring one pixel at a time. SNR experiments are conducted for H-matrix

and G-matrix multiplexing and compressed sensing. The Hadamard multiplexing is con-

sidered accurate so only precision is examined via the SNR. For compressed sensing both

precision and accuracy are assessed, where accuracy is examined by considering the dif-

ference between the compressed sensing result and the best estimate of the true spectral

pixel values. In our case the best possible estimate of the true pixel values is the average

of several Hadamard hyperspectral images.

Correction of the systematic error and the effect of the corrections on random noise

sources are necessary. Only one hardware configuration is tested, namely the DMA based

source modulated multiplexed system. To correct for background illumination we devise

the concept of complement encoding, in which the measurement of pixel responses is

divided into two complement groups. Background illumination occurs in both the com-

plementary encodings. If the complementary spectra are captured quickly enough then

the background illumination is the same for both acquisitions and the encoding-decoding

scheme removes the background lighting effect.

Systematic multiplicative drift occurs due to drift in the light bulb output over time.

In terms of the multiplexing we are interested in drift during the acquisition period. The

light drift between complement encodings is assumed very small, but no such assumption
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is made about the drift from the first to the last measurement.A reference beam con-

ducts light from the bulb, through a chopper directly to the spectrometer, and a reference

beam spectrum measurement is taken immediately after each sample spectrum. The sam-

ple spectrum is divided by the corresponding reference beamspectrum before decoding,

which removes the multiplicative factor due to light drift.Spectra are taken of a highly

reflective white object that is half cardboard and half acrylic. The spectra are corrected by

Spectralon white tile spectra. The images are corrected with reference beam correction

and without reference beam correction and the difference assessed.

Demonstration that the spectra are useful and sensible is initially examined by imag-

ing simple fabricated objects comprised of different materials with interesting and distinct

spectral shapes. Also imaging of a test pattern at different resolutions demonstrates the

flexibility of the system. Simple chemometric analysis of the spectra demonstrate that the

variation in the spectra is sufficiently low within groups for segmentation of the pixels.

We then move on to application of the imaging system to a food application. We perform

volumetric mapping of spectra down the length of beef striploins. We test the discrimi-

nation of lean from non lean spectral pixels, examine spectral variability down the length

of the muscle as well as perform pilot study level analysis ofvarious important chemical

features such as acidity, bloom (change in colour from purple to red due to oxygenation

of myoglobin over time after initial exposure to air) and tenderometry (measurement of

sheer force to ‘bite’ though cooked meat).

1.4 Thesis Structure

Chapter 2 comprises the literature review. Multiplexing, relevant hardware configurations

and the Hadamard transform are covered, with the compressedsensing method and some

main theoretical results included. Chemometrics, that is statistical methods used on spec-

troscopic data, and other statistical techniques not specific to chemometrics are reviewed.

Lastly some results of visible and/or near infrared spectroscopy and chemometrics to

analyse beef are covered with some results for pork also included.

Chapter 3 presents the theoretical development for understanding and analysing the

hyperspectral imager. The topic of multiplexing is coveredin an application independent

manner, with the intention of providing a unified framework under which multiplexing

matrix error behaviour can be analysed. A model of multiplexing accounting for all rea-

sonably possible error sources is built up. Each error source is considered in turn from

which the complete model is then assembled. Theory surrounding the correction of sys-

tematic error sources is developed, with the accompanying effect on the random forms of

error. The Hadamard H, G and S-matrices are all examined under the framework.

Chapter 3 also covers the extension of the link between strongly regular graphs and
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S-matrices to the other Hadamard matrices. Beginning with the graph matrix equivalent

to the S-matrix the corresponding G-like and H-like matrices are constructed and anal-

ysed. Chapter 3 then moves on to compressed sensing. First we revise pertinent aspects

from the literature, then examine the precision behaviour with respect to the number of

measurements for a random acquisition matrix. The connection between the Wilcoxon

statistic and the area under the receiver operator curve is derived, and the result used

to analyse the effect of error in the reference on the Wilcoxon. Numerical simulations

support the theoretical result.

Chapter 4 describes the hardware implementation for the hyperspectral imager and

interprets the theory in terms of light multiplexing on the system. Methods of testing the

hyperspectral imager for Hadamard multiplexing and compressed sensing are given and

the results of the testing are presented and discussed.

Chapter 5 is concerned with an application of the imaging system to demonstrate the

usability of the spectra produced, namely analysis of beefm. longissumus dorsi. Spectral

volumetric mapping of the meat was performed with accompanying colour imaging and

pH measurement. Bloom curves were also obtained using the colour imaging and ten-

derometry reading were taken by way of a shear force meter. Classification of the spectra

into lean and nonlean groups is performed using the colour imaging to determine visible

content as the reference method. The theory of the Wilcoxon statistic with error in the

reference is applied to the classification result. Variography is applied to the spectra down

the length of the muscle to examine the nature and possible causes of variation in the

spectra. Calibration of the spectra against parameters of the start point, end point and rate

of bloom is performed. The predictive power of the calibration models is analysed using

per-animal crossvalidation. Correlations are explored between the spectra and the pH and

tenderometry. Conclusions and thoughts for future work are presented in Chapter 6.
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Chapter 2

Review

This section comprises a review of relevant theory and literature to this thesis. Overview

of the fundamentals of multiplexing theory is covered and the traditional and modern

multiplexing hardware are reviewed, then the properties ofthe Hadamard matrix for

multiplexing and the newer compressed sensing technique. Near infrared spectroscopy

and chemometerics and finally the capture and analysis of spectra and relevant informa-

tion of the variation in certain beef muscles are reviewed.

2.1 Multiplexing

Multiplexing (Harwit and Sloane, 1979) is the technique of grouping objects according

to a specific pattern. Specifically, in the present context, multiplexing involves measuring

multiple samples simultaneously to improve the signal to noise ratio (SNR) of measure-

ment. Consider a set ofN objects of massxi to be weighed. Now if the weighing device

has uncertaintyσ then the SNR of each measurement is

xi

σ
. (2.1)

If we weigh half of the objects together at any given time thenthe SNR is approximately

N/2 times greater.

If N grouped measurements are taken, each time weighing a different set of the ob-

jects, then the measurements constitute a linear transformation of the mass values. Let

M be a matrix of ones and zeros that records which objects were included in each mea-

surement, where a one at rowj and columni indicates that objecti is included in mea-

surementj. The matrixM is known as both the multiplexing matrix and the weighing

design matrix. Loading the true mass values into the vectorx the measurement process is

11
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represented by the matrix multiplication

y = Mx + e, (2.2)

wherey is the set of observed measurements ande is random error with varianceσ2.

Decoding to recover an estimate of the weightsx̂ is performed by application of the math-

ematical inverse to the multiplexing matrix

x̂ = M−1y = x +M−1e. (2.3)

The selection of the matrixM determines the SNR of the estimates at reconstruction.

The error in the reconstruction isx̂−x = M−1e. If the random errors represented ineeach

have the same variance as each other andM is suitable then the errors in the reconstruction

will also have the same variance as each other, where preferably the error in reconstruction

is less than the error ine. When the random errors in reconstruction are different to each

other some single computable measure of the overall effect of multiplexing on error is

required. The effect on average of the squared error of measurements due to multiplexing,

called the A-optimality, is such a measure (Harwit and Sloane, 1979). It turns out that the

A-optimality of a multiplexing matrix is computed as

ǫ =
σ2

N
Tr

[

(

MTM
)−1

]

, (2.4)

where Tr[·] is the matrix trace. A good multiplexing matrix produces a value for ǫ that

is less thanσ2. The minimum possible value, according to Hotelling’s lower bound,

is (Harwit and Sloane, 1979)

ǫ =
σ2

N
. (2.5)

2.2 Hardware

A spectrometer is a device for measuring the spectral information in light. The term ‘light’

here is general and pertains to portions of the electromagnetic spectrum that are not visible

to the human eye but are close in wavelength to the human visible range, such as ultra-

violet and infrared. In the visible and near infrared (Vis/NIR) domain a spectrometer is

made from traditional optical elements, such as lenses, gratings and prisms. A spectrom-

eter consists of a slit through which light enters, a dispersion element, such as a grating

or prism which separates the light into spectral componentsand an array of sensors, such

as a linear diode array or charged couple device, to measure the light. Figure 2.1 shows a

simplified spectrometer. The dispersive element separatesthe spectral components of the
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E ntrance Slit

Sensor

Figure 2.1: Simplified diagram of a spectrometer. The arrowsindicate the light path.
Light entering through the entrance slit is dispersed and reflected onto the sensor.

light so that each sensor element is exposed to unique bandwidth (typically labelled as a

wavelength) of light. A light source typically accompaniesthe spectrometer. Tungsten

halogen bulbs have broad spectral blackbody output with good temporal stability so are

suitable for Vis/NIR spectroscopy. Light from the source reaches the entrance slit by two

routes. The first route is light reflected off the sample. The second route is via a refer-

ence beam that conducts as much light directly from the lightsource as possible without

saturating the sensor.

The concept of light multiplexing to boost signal to noise for use in the context of

spectrometry is attributed to Golay (1949). Harwit and Sloane (1979) state that “Golay’s

work more than any other laid the foundation for multiplexedspectroscopy”. The early

multiplexed spectrometers had multiple slits, known as multislit configurations. Golay

first proposed a spectrometer with two masks that form a virtual multislit system. One

mask was a rotating disc and the other a rectangular mask. Therotating disc had encoding

patterns in the form of holes and occlusions that encoded spectroscopic information. The

spectral signal was later reconstructed via computer processing.

Traditional optical light multiplexing systems implemented the S-matrix encoding

(Harwit and Sloane, 1979), Golay patterns (Golay, 1949) andrandom sequences of maxi-

mal length (Wilhelmi and Gompf, 1970). Other traditional examples are surveyed by Har-

wit and Sloane (1979). Encoding was performed by occlusion and passage of light.

Figure 2.2 shows a diagram illustrating the principle of multislit spectrometry. Light

enters through the entrance slit and is separated into spectral components. A mechani-

cal encoding multislit element selects which spectral components reach the sensor. The

combination of spectral components that reach the sensor results in more light per single

measurement than when each spectral component is measured individually. The encoding

element is changed between successive measurements, resulting in a linear transformation
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Figure 2.2: Diagram of a multiplexing spectrometer. The arrows indicate the light
path. Spectral wavelength components separated by the dispersion element are selec-
tively passed and occluded by the encoder and measured by thesensor. Successive mea-
surements utilise different sets of wavelengths, encoding the spectrum.

of the spectrum. Mechanical systems to perform such light modulation include multislit

spectrometers, one and two dimensional rectangular grating arrays, rotating discs and

combinations thereof. Multiplex encoding using holes and occlusions has the obvious

disadvantage that a large fraction of the light from the sample is not used. Sloaneet al.

(1969) pointed out that the fraction of light normally lost could be recovered via reflec-

tion in place of occlusion. Light sensors then measure both the transmitted and reflected

light. Subtraction of the two signals is implemented electronically using a subtractor cir-

cuit or digitally after data capture. This concept was laterextended by Davis (1995) to

two dimensions via two one-dimensional encodings to optically implement the Kronecker

product.

The advent of the Texas Instruments Digital Micromirror Array (DMA) (Hornbeck,

1989) has facilitated the revision and revitalisation of optical multiplexing techniques.

The DMA is an array of small (typically 14µm× 14µm) mirrors that can be individually

addressed to deflect to a nominally on or off state. Example DMA sizes are 0.55” or

0.7” diagonal with respectively 600× 800 or 1024× 768 mirrors. DMAs are sufficiently

fast (the slower off-the-shelf evaluation kit boasts 100 fps via USB interface)and flexible.

Also the broad spectral characteristics of mirrors make theDMA a natural choice for

Vis/NIR spectroscopic applications. The DMA is reliable and due to their small size the

mirrors do not resonate with the mechanical vibration frequencies of a typical working

environment.

Figure 2.3 shows a diagram of a generic DMA based imaging spectrometer system

similar to that proposed by DeVerseet al. (2000). The light from the entrance slit is

dispersed in one axis and imaged in the other onto the DMA. TheDMA then modu-

lates spatial and/or spectral information and the modulated light is sensed by the CCD.

The two dimensional CCD is interchangeable with a one dimensional linear array or a
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Figure 2.3: DMA and CCD based imaging spectrometer. The DMA modulates the spec-
tral and/or spatial information which is then recorded by the CCD.

single point diode for the specific mode of multiplexing and imaging desired. The spec-

tral dispersion can be implemented before the sample (de-dispersion) or after the sample

(dispersion). The use of the DMA in multiplexing was implemented in dispersive NIR

spectrometry (Fateleyet al., 2000; DeVerseet al., 2000), de-dispersive Vis/NIR spec-

troscopy (Fateleyet al., 2002), Raman imaging (DeVerseet al., 1999, 2000) and visible

spectrometry (Spudichet al., 2003) using a combination of DMA based modulation of

spectral and/or spatial information coupled with two dimensional (CCD or similar) sensor

technology. A de-dispersive system using a single diode sensor was described by Fate-

ley et al. (2002) in which the DMA was directly illuminated by the broadband source,

the light spectrally dispersed and imaged onto the sample sothat the spectral and one

spatial dimension is captured. The sample was then translated to build up the second

spatial dimension. The hyperspectral imaging was applied to the detection of cancerous

tissue (Maggioniet al., 2006).

A DMA based microscope (Hanleyet al., 1998) utilised the Hadamard transform to

implement optical sectioning, a method for improving imageresolution similar to con-

focal microscopy but with greater light throughput (Verveer et al., 1998). A number of

pinholes are used in patterns so that light from the plane of interest is encoded. Out of

focus light from out of the plane of interest is equally present in each capture. Decoding,

which involves a series of additions and subtractions, thenreconstructs the detail of the

sectioned plane and removes the light from out of the plane. Spatial and spectral res-

olution is obtained with a CCD based imaging spectrograph thatexamines one spatial

and the spectral dimension. Mechanical pushbroom scanningfacilitates acquisition of the
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second dimension. A similar optical configuration (Hanleyet al., 2000) utilised a trans-

missive LCD in place of the DMA. The LCD microscope implementedmultiplexing with

pushbroom scanning. A further adaptation (Hanley and Jovin, 2001) implemented optical

sectioning with multiplexing using a CCD based spectrometer.

2.3 Hadamard Transform

The Hadamard matrices are ideal for multiplexing under certain conditions. Here we

review the construction and properties of Hadamard matrices. Consider the problem of

finding a square matrix withN rows and columns, where each entry is real and has abso-

lute value less than or equal to one, and the matrix has the largest possible determinant.

The Hadamard H-matrix (Harwit and Sloane, 1979) is the solution, the construction of

which was first described by Sylvester (1867). The Sylvesterconstruction first defines

the solution for the 1× 1 matrix,H1, and the 2× 2 matrix,H2, as

H1 = [1] ,

H2 =

[

1 1

1 −1

]

.
(2.6)

Given two H-matricesHN andHM , a new H-matrixHN+M is constructed by taking the

Kronecker product, that is, each element inHM is replaced by that element timesHN .

For example the matrixH2+2 = H4 is

H4 =

[

H2 H2

H2 −H2

]

=













1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1













.

(2.7)

The examples above all have ones on the leading row and column. Such H-matrices

are said to be normalised. Rearranging the rows or columns canproduce equally valid

unnormalised H-matrices, for example

[

1 1

−1 1

]

. (2.8)

The Hadamard transform is the linear transform according tothe H-matrix. For a
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vectorx the transformation is the matrix product

Hx. (2.9)

The rows (and columns) of the H-matrix are pairwise orthogonal. The vector product of

any two rows (or columns) inHN is zero, but if the same row is chosen twice then the

product isN. Written succinctly, where·T is the matrix transpose operation andIN is the

matrix identity,

HT
NHN = HNH

T
N = NIN . (2.10)

From equation 2.10 the inverse of the H-matrix isHT/N, thus the inverse transformation

gives

x =
1
N

HTHx. (2.11)

For the normalised H-matrices aboveHT
= H thereforeH−1

= H/N, but this is not true

for the non-normalised example. The self transpose property is useful so heretofore we

only consider normalised H-matrices.

The H-matrix has optimal matrix condition and thus is highlyinsensitive to random

perturbations such as noise. Adding error,e, to the Hadamard transform and taking the

inverse transformation gives an estimatex̂

x̂ =
1
N

H (Hx + e) ,

= x +
1
N

He.
(2.12)

The A-optimality of the Hadamard matrix is (Harwit and Sloane, 1979)

ǫ =
σ2

N
Tr

[

(

HTH
)−1

]

,

=
σ2

N
Tr

[

(NI)−1
]

,

=
σ2

N
.

(2.13)

This is the minimum achievable according to Hotelling’s bound on the error. The reduc-

tion of additive noise is called the Hadamard multiplex advantage. It is closely related to

the Fellgett advantage, which pertains to multiplexing according to the Fourier transform.

There are negative entries in the H-matrix which are problematic (but not impossible)

for implementation in optical systems. The S-matrix (simplex matrix) is an alternative

which has no negative entries. The S-matrix can be derived from the H-matrix (there
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exist other construction methods). First the G-matrix,GN−1, is defined as

HN =

[

1 oT
N−1

oN−1 GN−1

]

, (2.14)

whereoN−1 is a column vector ofN−1 ones. From equation 2.6 it is apparent thatG0 = [],

an empty matrix. The S-matrix is obtained by setting the onesin G-matrix to zeros and

the negative ones to positive ones. Alternatively we can simply set all the negative ones

to zeros (although in using this alternative method we must be aware that we have the

complement of the S-matrix). About half of each row ofS is ones and the other half

zeros, so the S-matrix encoding employs an approximately 50% duty measurement system

while maintaining maximal independence between rows (and columns). The inverse of

the S-matrix is

S−1
N−1 =

2
N

GN−1. (2.15)

The A-optimality of S-matrix encoding is

ǫ =
σ2

N
Tr

[

(

STS
)−1

]

,

=
σ2

N
Tr

[

4

N2
G2

]

,

≈ 4σ2

N
.

(2.16)

Thus the S-matrix transform reduces the average MSE by a factor of 4/N. The S-matrix

is conjectured to be optimal in terms of insensitivity to random additive noise for all

matrices of ones and zeros, however the S-matrix does not carry quite the same promise

of signal improvement that the H-matrix does.

In optical systems Poisson photon noise effects are known to be detrimental to the ad-

vantage of Hadamard encoding, particularly in S-matrix encoding (Nitzsche and Riesen-

berg, 2003; Damaschini, 1993). Such noise effects are treated as multiplicative, i.e the

noise variance at acquisition is directly proportional to the light level. The S-matrix per-

mits about 50% of light to reach the sensor, so the noise variance at data acquisition is

then proportional to

≈ N 〈x〉 /2, (2.17)

where〈x〉 is the mean of the entries inx. Inverting the S-matrix transform then gives a

noise variance proportional to

≈ 2〈x〉 . (2.18)

In contrast if no transformation is used then the noise for each entry inx is proportional to

that entry. On average the noise is proportional to〈x〉, half that of S-matrix multiplexing,
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so S-matrix multiplexing is disadvantageous for signal proportional noise.

Hassleret al. (2005) studied the effect of H-matrix multiplexing in the context of

multiplexed time resolved fluorescence imaging. In such imaging a sample is exposed to a

series of excitation light flashes and the time for the the first photon from the fluorescence

to reach the sensor is recorded for each excitation. The timefor the light to reach the

sensor follows Poisson statistics. A histogram of the timesrecorded is obtained to which

a Poisson distribution is fit. Imaging was performed by Hadamard multiplexing of the

light from the sample to the sensor. Hassleret al. (2005) presented theoretical analysis

in which each ‘pixel’ region on the object was treated as a separate emitter, and the light

from the pixels was then selectively passed or obstructed and combined at the image

sensor. They derived theoretically that on average the photon noise level in the pixel

reconstruction was not changed by the multiplexing. They point out that the averaging of

the Poisson noise level by H-matrix encoding will increase the noise in dark pixels which

may be unhelpful in some applications.

Alternative derivations in the context of mass spectrometry have indicated a SNR

boost under S-matrix encoding with photon noise (Wilhelmi and Gompf, 1970; Ferńandez

et al., 2001). Mass spectra typically are sparse, meaning that there are few peaks and most

of the measurements are indistinguishable from zero. The signal to noise ratio ‘spectrum’

associated with a mass spectrum is indistinguishable from zero except at the locations of

the peaks. It is not appropriate to consider the boost in the signal to noise ratio due to

multiplexing at the zero locations because it involves the ratio of two numbers that are

indistinguishable from zero. An alternative assessment involves examination of the SNR

at the peaks in the spectra only.

Alternative encoding strategies have been proposed (Wilhelmi and Gompf, 1970;

Wuttig, 2005; Ratneret al., 2007) to provide optimal noise reduction under photon noise

or to trade off between reduction of photon noise and instrument noise. In general these

photon noise reduction transformations employ less than 50% duty while maintaining

maximum possible independence between rows in the encodingmatrix. In particular Rat-

ner et al. (2007) utilise a result from graph theory, namely the strongly regular graph

(SRG). Consider a graph ofN vertices (points), where each vertex is connected tok other

vertices. The connections are called edges and two points that are connected are said to

be adjacent and are called neighbours. Now assume that each adjacent pair of vertices has

α common neighbours. Furthermore assume that each nonadjacent pair hasβ common

neighbours. Such a graph is called strongly regular and is denoted srg(N, k, α, β). Any

graph is represented by its adjacency matrix where each row and column corresponds

to each vertex in the graph. A one at position (i, j) indicates that verticesi and j are

neighbours whereas a zero indicates that they are not. It turns out that whenβ = α the

eigenvalue structure of the adjacency matrix matches that of the S-matrix of the same
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size. The eigenvalue structure is linked to the noise behaviour due to multiplexing. Fur-

thermore a SRG does not require each vertex to be adjacent to half the other vertices, so

the matrix in question does not necessarily require half theentries in each row to be ones.

Thus when multiplexing via an appropriate adjacency matrixthe signal and photon noise

variance is reduced. When the signal is reduced then the signal boost over the additive

noise is also reduced so there is a trade off between the advantage over additive and multi-

plicative noise. Given known additive and multiplicative noise levels Ratneret al. (2007)

show howk can be selected to minimise the total noise. Specifically if the additive noise

variance isσ2 and the photon noise per measurement (xi in x) is ρ, then multiplexing by

an appropriateN ×N adjacency matrix results in total noise MSE

σ2
+ ρk

N

(

1

k2
+

(N − 1)2

Nk − k2

)

, (2.19)

at decoding. Optimising the multiplexing is a matter of findingk so that equation 2.19 is

minimised. For a givenN andk, there may not be a SRG withβ = α. However there are

many known strongly regular graphs from which one can selectthe one with the closest

parameters. Furthermore SRGs exist for values ofN for which no known Hadamard

matrix exists.

2.4 Compressed Sensing

Compressed sensing, or compressive sensing (CS), is the technique of reconstructing a

discrete signal from a reduced number of measurements when the signal is compress-

ible (Candeset al., 2006; Donoho, 2006). Random multiplexing patterns,Φ, are used to

acquire data

y = Φx, (2.20)

whereΦ has fewer rows that columns. The signalx is assumed sparse in some transfor-

mationΨ. In other words ifx is represented by the reconstruction

x = Ψθ, (2.21)

then the vectorθ is a set of coefficients where a few are large but most are zero or near

zero. The system to be solved is then

y = ΦΨθ, (2.22)

from which the estimate ofx is computed.

Consider an acquisition basis,Φ. LetΦT be any subset of at mosts columns inΦ, then
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the restricted isometry constraint,δs ∈ (0,1), is the smallest number such that (Candès

and Tao, 2005)

(1− δs)‖p‖2
2 ≤ ‖ΦTp‖2

2 ≤ (1+ δs)‖p‖2
2, (2.23)

where‖ · ‖2 is the L2 norm. A matrixΦ that satisfies equation 2.23 is said to satisfy

the restricted isometry property (RIP) (Baraniuket al., 2008). An equivalent statement

of the RIP is to replaceΦT with Φ and considers sparse vectorsps which have at most

s nonzero entries (Candès, 2008). It turns out that random matrices satisfy the RIP and

form suitable CS acquisition systems. The RIP states that a subset of the columns inΦ

can alter the L2 norm of any vector by at most a small fraction.CS seeks a representation

of p as a combination of basis vectors. The RIP ensures that the relative magnitude of the

contributions of these basis vectors is minimally altered at encoding.

Reconstruction ofθ is done via L1 norm minimisation. The estimate is found by

solving the linear programming problem

min‖θ‖1 subject toa = ΦΨθ, (2.24)

where‖ · ‖1 is the L1 norm (the sum of the absolute values). The linear programming

problem is solved by the basis pursuit algorithm1 (Chenet al., 1998), among others.

Basis pursuit uses a primal-dual log-barrier linear programming algorithm (Chen

et al., 1998). The approach involves solving the perturbed linearprogram proposed

by Gill et al. (1991):

mincTx +
1
2
‖γx‖2

+
1
2
‖q‖2 subject toAx + δq = b, x ≥ 0, (2.25)

wherex is the unknown of interest,b is the measured data andγ andδ are small regulari-

sation parameters (Chenet al. (1998) suggest 10−4). The procedure given by Chenet al.

(1998) is as follows.

1. Set the feasibility tolerance FT, the duality gap tolerance DGT,γ andδ.

2. Initialise the prime variable,x > 0, the dual variables,y = 0 andz > 0, andµ > 0.

3. Loop

1SparseLab Matlab package Version:100, implementation downloaded fromhttp://sparselab.

stanford.edu/, August 2007, Copyright (c) 2006 Victoria Stodden and DavidDonoho.
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(a) Compute the residuals and the diagonal matrixD by

t = c+ γ2 − z− ATy

r = b − Ax − δ2y

v = µo−Zx

D = (X−1Z + γ2I)−1

whereX andZ are diagonal matrices formed fromx andz.

(b) Solve for∆y

(ADAT
+ δ2I)∆y = r + AD(t −X−1v)

and compute

∆x = D(AT
∆y +X−1v − t) and∆z = X−1(v −Z∆x)

(c) Calculate the primal and dual step sizesρp andρd, and update

ρp = 0.99max{ρ|x + ρ∆x}

ρd = 0.99max{ρ|z+ ρ∆z}

x = x + ρp∆x, y = y + ρd∆y, z = z+ ρd∆z

µ = (1− min(ρp, ρd,0.99))µ

4. Terminate if the following are all satisfied

(a) ‖r‖2

1+‖x‖2
< FT

(b) ‖t‖2

1+‖y‖2
< FT

(c) zT x
1+‖z‖2‖x‖2

< DGT

For basis pursuit setc = o, a vector of ones, to implement the L1 norm. To satisfyx ≥ 0

solve the system matrix[A,−A] for x. The result is the length 2N vector comprising of

the concatenated positive and negative parts of the desiredsolutionx+ andx− from which

p̂ = x+ − x− is computed.

The error of CS in the noiseless case is bounded (Donoho, 2006), for L1 norm min-

imisation the upper bound is

C‖θ‖1

(

logN
n

)1/2

(2.26)

wheren (the number of rows inΦ) gets large,C is a constant that depends on at most

logN/ logn and‖ · ‖1 is the L1 norm. Furthermore CS is stable against additive random

noise (Candeset al., 2006; Haupt and Nowak, 2006) and the combination of additive and
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multiplicative random noise (Hauptet al., 2006).

An implementation of CS for imaging is the single pixel camera(Takharet al., 2006;

Wakinet al., 2006a). The single pixel camera is a passive imaging systemperforming CS

on light from the object. A DMA spatially modulates pixel information using randomly

assigned deflection of light to or away from a light sensitivediode. Reconstruction of

the image is performed using L1 norm minimisation with the fast wavelet transform as

the compression basis. Video imaging has been implemented on the single pixel cam-

era (Wakinet al., 2006b). Time domain CS assisted in improving the capture rate over

CS in the spatial domain only. CS has the obvious advantage thatfewer measurements

provides faster acquisition than traditional techniques like Hadamard imaging, however

it is not clear how CS compares to Hadamard imaging in terms of signal quality. The

relative performance of CS and Hadamard imaging are comparedin section 4.3.3.

A single-shot CS hyperspectral imager, described by Gehmet al. (2007), used sym-

metric optics and a CCD imager. The optics has two identical arms where each arm is a

dispersive spectrometer that uses an equilateral prism. The second arm effectively cancels

out the dispersive action of the first arm. Between the two armsis a coding aperture based

on an S-matrix or order 192. The image of an object is spectrally dispersed by the first

optical arm. The dispersed image is then encoded and undispersed on the second arm.

The result is captured by the CCD imager. The hyperspectral image is reconstructed via

a probabilistic multiresolution framework. Spectral imaging was performed in the range

520–590nm, with filtering to prevent detection of light of other wavelengths. Wagadarikar

et al. (2007) present an alternative single shot architecture which uses one dispersive arm

and the coding aperture. Again the CS paradigm was invoked, where fewer measure-

ments than reconstructed data values were measured. Spectral imaging was achieved in

the range 540−640nm. The object is imaged onto the coded aperture. Relay lenses trans-

mit light from the coded aperture, through the dispersive element and reimage onto the

CCD. The single-shot paradigm, facilitated by use of a CCD sensor, requires one capture

rather than the multiple captures required for traditionalmultiplexing, however the spec-

tra obtained are over a narrow band whereas the use of a traditional spectrometer permits

much broader spectral analysis.

2.5 Near Infrared Spectroscopy and Chemometrics

Chemometrics is the application of specialised statisticaltechniques to spectroscopic data.

Spectroscopic data include, but are not limited to, photon spectroscopy of which the vis-

ible and near infrared spectrum is of interest to this thesis(Osborneet al., 1993). The

objective of chemometric analysis is often to calibrate theoutput of a spectrometer with

some reference substance concentration or effect, or to detect the presence of a substance
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or effect by classification.

The simplest chemometric methods include construction of alinear regression model

against a selected subset of wavelength responses, or against all wavelengths measured.

In spectroscopy there is often a large number of interdependent measured observables, so

over fitting often occurs in linear regression. Wavelength selection is one method to over-

come over fitting. Factor analysis methods, otherwise viewed as subspace analysis meth-

ods, are full spectrum techniques that “aim to reduce the quantity of spectral data, and thus

avoid overfitting problems, without discarding any useful information” (Osborneet al.,

1993). The most prominent factor analysis methods are principle component regression

(PCR) (Osborneet al., 1993) and partial least squares (PLS) (Wold, 1975; de Jong,1993).

PCR exploits eigenvector analysis of the variance-covariance structure of the spectral data

only. PLS computes factors based on the covariance between the spectral data and the ref-

erence data used for calibration. Nonlinear techniques include neural networks (Osborne

et al., 1993) and support vector regression (Smola and Schölkopf, 2004). Classification

in chemometrics can be performed directly using PLS (Barker and Rayens, 2003) or al-

ternatively via extended canonical variates analysis(Nørgaardet al., 2006), an application

of PLS to find the solution to Fisher linear discriminant analysis.

2.5.1 PCR and PLS

Let X be then × m matrix of spectral data with each row a spectrum and each column a

narrow waveband andy then× 1 vector containing the reference variable. Both PCR and

PLS seek am × k matrix of basis vectorsW , wherek is small (typically less than 10) so

that the fit

y = XW c, (2.27)

wherec is ak × 1 vector, is robust and accurate. Both PCR and PLS are factor analysis

methods for modelling a relationship between multivariatedata and some reference vari-

able when the multivariate data is highly collinear. Collinearity means that the columns in

X are pairwise highly correlated which drastically impedes the performance of traditional

least squares regression methods. In the context of spectroscopy, collinearity means that

the response of the measured wavelengths give similar information. For PCRW is a sub-

set of the eigenvectors ofXTX chosen to meet some criterion, like capturing most of the

variation inX.

Partial least squares (PLS) (de Jong, 1993) computesW by examination of the co-

variance structure between the data,X, with the reference variable,y. PLS algorithms

exist for multivariate reference data but here we restrict ourselves to the single reference

variable case. Consider a reference variable vectory of sizen × 1 and a data variable
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matrixX of sizen × m. Assume a linear model of the form,

y = Xb. (2.28)

PLS factorisesX andy according to then × k, k < m, score matrixT

X = TP + E,

y = Tq + f ,

T = XW.

(2.29)

whereP andq are loading variables,W is a matrix ofk weighting vectors of lengthm

andE andf are unexplained information. Some PLS algorithms make the columns ofT

orthogonal whereas others make the columns ofW orthogonal. The objective of PLS is

to findW , henceT , with smallk so that a stable relationship betweenX andy is found

with minimal risk of overfitting

y = Tc. (2.30)

From the last line of equation 2.29

y = Tc = XW c, (2.31)

⇒ b = W c. (2.32)

The PLS algorithm proceeds as follows. The data are mean centred per column,X0 =

X − x̄ and yo = y − ȳ. If a very large number of measurements are represented in

X andy (n is large) then for computational efficiency one may replaceX0 andy0 with

the covariancesXT
0 X0/n andXT

o y0/n. At eachi th iteration a new weight vector,wi, is

found, from which a new score vector,ti, and loadings,pi andqi are computed, theX and

y data are deflated to remove the factor corresponding towi and the deflatedX andy then

become the subject of the next iteration. The following is iteratedk times.

1. Computewi = XT
i−1yi−1/‖XT

i−1yi−1‖ and loadwi into thei th column ofW .

2. Computeti = Xi−1wi and loadti into thei th column ofT .

3. Computepi = tTi Xi−1/‖ti‖2 andqi = tTi yi−1/‖ti‖2 and respectively load into the

i th row ofP andq.

4. Compute the residualsXi = Xi−1 − tipi andyi = yi−1 − tiqi. The residuals become

the newX andy for the next iteration.

In the above the scores,ti, carry the variance represented in each factor wherewi, pi and

qi are normalised. One can useP to predictq and subsequently reconstructy. Alternately



26 Review

we can recomputeT = XW without the mean centring and solve equation 2.30 using

least squares regression, namely

c = (T TT )−1T Ty. (2.33)

The vectorc is then used with the computedW to predicty. Equation 2.33 is the method

we use for the data analysis in this thesis.

2.5.2 Spectral Preprocessing

Spectral preprocessing can make chemometric analysis morerobust. Unwanted light or

sample contamination can influence spectral features negatively, confounding chemomet-

ric analysis. First or second order numerical derivatives (Osborneet al., 1993) were tradi-

tionally used to remove baseline offset and slope and make spectral peaks appear sharper.

The standard normal variate transform (SNV) (Barneset al., 1989) and multiplicative

signal correction (MSC) (Martenset al., 1983) respectively normalise per spectrum and

per data set for gross spectral effects. Let theith spectrum in data setX bexi with mean

x̄i and standard deviationσi of the values in the vectorxi. The standard normal variate

transform sets the mean of each spectrum to zero and the standard deviation to one by

xi,SNV =
xi − x̄i

σ
. (2.34)

After performing the correction a detrend operation is frequently used, in which a straight

line is fit to each corrected spectrum and subsequently subtracted. Now let the mean

spectrum bēx, the MSC models the spectra as

xi = ai + bix̄. (2.35)

The parametersai andbi are estimated by regression for each spectrum over the wave-

lengths. The correction is then

xi,MSC =
xi − ai

bi
. (2.36)

A mathematical link between SNV and MSC has been established(Dhanoaet al., 1994),

where by making the appropriate substitutions one can transform from SNV corrected

spectra to MSC.

Extended MSC (EMSC) (Martenset al., 2003) includes polynomial factors in the

spectral ‘x-axis’ (wavelength) and reference spectral factors as determined by the user,

who can choose what to remove from the spectra and what to leave in. Letsj be represen-

tative spectra chosen by the user,λ the wavelength index andkj a set of coefficients. The
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EMSC model is

x = ai + bix̄ + ki,1λ + ki,2λ
2
+

∑

j

ki,jsj. (2.37)

Theλ andλ2 terms represent straight line and parabola terms. The coefficientsai, bi and

ki,j are estimated for each spectrum by least squares.

2.5.3 Extended Canonical Variates Analysis

Classification is the algorithmic separation of data into twoor more groups, or classes.

Extended canonical variates analysis (ECVA) (Nørgaardet al., 2006) is an application

of PLS to solve the Fisher linear discriminant analysis (LDA) classification method when

the data,X, are highly collinear. LDA seeks a vectorb which separates the data according

to two or more classes listed in the reference variabley. Let Xi be the submatrix ofX

with all instances of classi. Let m be the vector difference between the means of class

pairs andSi be the scatter (variance-covariance) ofXi. For the two class problem, Fisher

LDA poses the scalar objective function to be maximised as

J (b) =
bTSbb
bTSwb

, (2.38)

whereSb is the between class scatter matrix given by

Sb = mTm, (2.39)

andSw is the within class scatter

Sw =

∑

i

Si. (2.40)

The solution to equation 2.38 is the solution to the generalised eigenvalue problem with

the largest eigenvalue, that is

Swb = λSbb. (2.41)

However, using equation 2.39, the right hand side of equation 2.41 is

λSbb = λmTmb. (2.42)

The productλmb is a scalar. Since LDA is concerned with finding the optimal vector

direction scalar terms are inconsequential soJ (b) is maximised by the solution to the

linear system

Swb = mT . (2.43)
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WhenX is highly collinear thenSw is poorly determined. ECVA uses PLS to find a

robust solution to equation 2.43. Nørgaardet al. (2006) go further and expand the above

for three or more classes, here we need only consider the two class problem.

2.6 Data Analysis Methods

Here we review some data analysis techniques relevant to this thesis that do not fit specif-

ically into the category of chemometrics.

2.6.1 Correlation

The correlation between two variablesxi andyi is a measure of the quality of the linear fit.

The coefficient of variationR2 between two variables is defined as (Ott and Mendenhall,

1985)

R2
=

SS2
xy

SSxxSSyy

, (2.44)

where

SSxy =

∑

i

(xi − x̄)(yi − ȳ),

SSxx =

∑

i

(xi − x̄)(xi − x̄),

SSyy =

∑

i

(yi − ȳ)(yi − ȳ),

(2.45)

are the sum of squares about the mean ( ¯x andȳ). If y is modelled fromx thenR2 describes

the proportion of variation iny that is explained byx (Ott and Mendenhall, 1985).

Assuming a linear fit exists,R2
= 1 means a perfect straight line fit andR2 < 1

means there is some deviation from the line. Nonlinearity inthe relationship between

two variables reducesR2 when computed according to equation 2.44, even when a strong

relationship exists. It can be necessary to visually inspect the scatter ofx versesy for the

presence of nonlinearity.

When considering the correlation between two univariate variables (or a univariate

with each variate in a multivariable), then we writer, which is computed as the square

root of equation 2.44. The termr is known as the correlation coefficient. UnlikeR2, r

may be negative, where negative values indicate negative proportionality.
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2.6.2 Variography

Variography (Gy, 2004a,b; Petersen and Esbensen, 2005) is atool from the theory of sam-

pling (TOS) for examining variation in measurements over some dimension. Consider a

set of objects to be measured called units. The population ofunits is called the lotL. The

heterogeneityhm is the “contribution to the heterogeneity of lotL made by unitUm” (Gy,

2004a). Given measurements,am on objects with massMm, the heterogeneity is

hm = NU

(am − aL)
aL

Mm

ML

(2.46)

whereaL andML are the lot measurement and mass respectively, andNU is the number

of units. Given a lag parameter,j, representing a physical gap between samples over the

dimension of interest the variogram is computed as

V (j) =
1

2(NU − j)

∑

m

(hm+j − hm)2. (2.47)

Lag can be any physical parameter, such as distance, time or even just the count of units

going past on a conveyor belt. The variogram represents the spatial correlation against

distance informing of the nature of variability with increasing distance from any given

sample. The variogram can be decomposed into four parts: random fluctuations, the non-

random continuous part, the non-random continuous cyclic part and some residual part.

The random part is due to random fluctuations within each unit. The non-random contin-

uous part describes the variation trend with lag, e.g. if variability increases, decreases or

is static with distance. Similarly the cyclic part is due to cyclic variation. The residual,

typically small, is due to error in estimation.

2.6.3 Receiver Operator Characteristics and the Wilcoxon

Consider a two class detection problem where there are positive instances (or measure-

ments) and negative instances. Now if an instance is truly positive, as identified by some

reference method, then ideally we want a classifier to determine that measurement to be

positive and likewise for negative instances. Such classifications are called true positives

and true negatives. When a classifier is in error and labels a negative instance positive

we have a false positive. Similarly misclassified positive instances are called false nega-

tives. Let Np be the number of positive instances and Nn the number of negative instances.

Thus the total number of instances is N= Np + Nn. Given the number of false positives,

FP, made by a classification and the number of true positives,TP, then the true positive
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fraction, TPF, and false positive fraction, FPF, are

TPF=
TP
Np

, FPF=
FP
Nn

. (2.48)

Frequently classification algorithms have a continuous valued output to which some

threshold parameter is applied to delineate positive and negative classifications. By vary-

ing this threshold parameter a set of TPFs and FPFs are observed. By plotting the TPF

against 1− FPF a receiver operator characteristic (ROC) curve is obtained. The area un-

der the ROC curve (AUC) is indicative of the power of the classification method, with an

AUC of 1 being perfect classification and an AUC of 0.5 no better than random classifi-

cation. To compute the AUC numerical integration of the ROC can be used (Hanley and

McNeil, 1982), the so-called non-parametric AUC.

The AUC is equivalent to the Wilcoxon statistic (Hanley and McNeil, 1982). For

nonparametric data of two groups, count the number of times each member of one group

is larger than each member of the other group. The sum of the counts is indicative of the

separation between the groups. Division of the sum of countsby the product of the number

of members in the two groups, NpNn, gives the Wilcoxon. Like the AUC the Wilcoxon

is a fraction between 0.5 and 1. Computing the Wilcoxon on the intermediate continuous

classification output with group assignments according to the reference method yields the

AUC. Cortes and Mohri (2004) observed that for two groups, A andB, the AUC is the

probability that A is greater than B, that isP (A > B), and that the Wilcoxon is the same

for the discrete case. Thus they proved the link between the AUC and the Wilcoxon.

The null hypothesis, H0, for the Wilcoxon is that there is no separation between the

groups, H1 is that there is separation. The probability thatrandom group assignment

yields a larger Wilcoxon than the reference determines the significance. If the probability

is sufficiently low then H0 is rejected in favour of H1. Estimation ofthe probability

is performed by repeatedly assigning random grouping to thedata and computing the

Wilcoxon, say one hundred or one thousand times. The p-valueis the fraction of times

that a random Wilcoxon is greater than the value due to the reference.

2.7 Near Infrared Spectroscopy and Beef

For over a decade beef grading based on NIR measurements has been a topic of interest.

Traditional measurement of chemical content, such as fat, water or acidity or functional

features such hardness (first bite) and tenderness (relating to the whole chewing process)

typically required slow and destructive techniques. NIR onthe other hand is fast and

nondestructive, so if mathematical models relating spectra of meat to relevant features are

accurate then spectroscopy holds significant potential to perform real time online grad-



2.7 Near Infrared Spectroscopy and Beef 31

ing. Tenderness is assessed two ways, by expert panel and by shear force. Shear force

measurements are taken using a metal ‘tooth’ that bites through the meat with a sensor

that measures the amount of force required. The majority of tenderness readings in the

literature are taken with a Warner-Bratzler shear force meter. A recent review by Huang

et al. (2008) covers the prominent literature on meat features predicted or analysed via

NIR spectroscopy. In reviewing, we convert all correlationcoefficients reported asr toR2

for consistency. Where available and relevant, root mean square error in crossvalidation

(RMSECV), root mean square error in prediction (RMSEP), and thestandard deviation

of the reference data (reference SD) are included.

Hildrum et al. (1994) tested prediction of hardness, tenderness and juiciness of beef

longissimus dorsi (strip loin) muscles by NIR spectroscopy. They present spectra in the

band 1100–2500 nm with 4 nm intervals and also consider transmission spectra in the

band 850–1050 nm with 2 nm intervals. The reference variables were determined by an

expert panel of nine trained assessors. The hardness rangedfrom 2.9–7.1, the tender-

ness ranged from 2.9–7.4 and the juiciness ranged from 4.6–6.1 (each reference value

was on a scale from 1 to 9.) They used PCR with MSC preprocessingof the spectra.

Using cross validation they obtained correlation for hardness and tenderness withR2 in

the range 0.64–0.81, with reported root mean square error ofcross validation (RMSECV)

0.54–1.04, but did not obtain good correlation for juiciness (R2 in the range 0.13–0.24,

RMSECV 0.36–0.51). The authors make interesting comments on how tougher samples

have higher absorptions than tender samples at most wavelengths and that a the spectrum

of a tender sample is affected more by the freezing than a tougher sample, but do not

seek a spectroscopic basis to the models they build. Rather they discuss in detail the data

analysis, considering carefully the process of model building and outlier removal.

Naes and Hildrum (1997) examined classification methods fortenderness prediction

by NIR spectroscopy and compared classification to regression on their data. They ac-

quired spectra between 1100–2500 nm on raw meat samples. Based on an expert panel

assessment of the meat, they grouped the samples into three tenderness groups: very

tough, intermediate and very tender. They used a variety of methods, including: grouping

of PCR output; canonical discriminant analysis; Bayes rule and variations thereof in-

cluding the Mahalanobis distance on the principal components. Using classification they

obtained good results on extreme tenderness values. On the other hand PCR calibration

tended to return intermediate values, so samples that were very tender or very tough were

often misclassified by examination of the regression result. They concluded that classifi-

cation was better than PCR for tenderness prediction and thatthe Mahalanobis distance

was the best of the classification methods used. The Mahalanobis distance utilises in-

formation about the mean and distribution of the different data groups, classifying data

according to what distribution each point fits best into. Later in this thesis we utilise a
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related technique to perform classification.

Andersenet al. (1999) examined pH with visible (362–777 nm, 1 nm intervals)and

NIR (1000–2630 nm, 1 nm intervals) spectroscopy in pork. They examined correlations

per wavelength and calibration using PLS. The pH measurements were taken of 46 sam-

ples the day after slaughter. They compared the pH of the meatwhile whole to after

homogenisation and found that they correlate well (R2
= 0.978). On the unhomogenised

samples they had pH values in the range 5.46–6.97. Correlations of the pH with the in-

dividual wavelengths varied widely from a positive correlation withR2
= 0.64 at 360 nm

to a negative correlation withR2
= 0.30 at 1900 nm. PLS modelling of the pH with the

spectra was performed. Leave one out crossvalidation was used, from which they ob-

tained a correlation ofR2
= 0.53 over LD muscles with the spectral band 1000–2630 nm

(reference SD 0.153, RMSECV 0.104).

Rødbottenet al. (2000) examined the relationship between spectra (1100–2500 nm,

4 nm intervals) taken early post-mortem and quality features. They examined final tender-

ness (both tenderometer and sensory) and fat content using PLS with and without MSC

using full crossvalidation. They observed moderately poorprediction of tenderometer

readings withR2 values of up to 0.46 and worse prediction of sensory values with R2 in

the range 0.22–0.30. Applying MSC to the spectra did not improve the correlation with

tenderness. Moderate correlation with intramuscular fat content (0.61–0.72, RMSECV

1.2–1.4 %) was observed. They concluded that their findings do not support the use of

spectra taken early postmortem for final tenderness prediction, but stated that broadening

the spectral bandwidth may improve the prediction result.

Rødbottenet al. (2001) measured NIR spectra (950–1700 nm, 6 nm intervals) onbeef

at 2, 9 and 21 days post mortem with two treatments based on storage temperature to

affect tenderness. The tenderness ranges at the respective days post-mortem were 5.94–

14.8 kg cm−2, 3.26–12.2 kg cm−2 and 3.04–15.1 kg cm−2. PLS was used to perform ten-

derness prediction from the spectra. Comparing spectra withthe tenderness readings

taken at the same time, including the temperature treatmentinformation for calibration

did not improve the power of the spectroscopy to predict tenderness. For prediction of

tenderometry readings in the future, including the treatment information assisted in ten-

derometry prediction. Crossvalidation was used to assess prediction power. Calibration

without treatment information gave prediction withR2 in the range 0.27–0.69 (RMSECV

in the range 2.54–1.37 kg cm−2). Including the treatment information in the calibra-

tion improved correlation to 0.50–0.72 (RMSECV in the range 2.15–1.29 kg cm−2). The

pooled SD of error in the reference ranged from 0.48 kg cm−2 at 2 days to 0.62 kg cm−2 at

21 days. Also measurement of spectra though a glass plate improved predictions, which

the authors tentatively ascribe to reduced specular reflection on the meat surface but sug-

gest further examination before final conclusions are drawn. The beef samples were as-
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signed to one of two or three groups by their tenderometry readings. When two groups

were used 73–98 % of the samples were correctly classified, when three groups were used

63–75 % were correctly classified. It may be that the spectralband improved results over

the earlier study, but it is difficult to decouple any improvement due to the spectral band

from the improvement due to the more detailed timepoint information acquired. A com-

monly reported feature in the literature reviewed is a trendfor overall NIR reflectance to

decrease with tenderness.

Tøgersenet al. (2003) examined fat, moisture and protein in ground beef by NIR spec-

troscopy at several discrete temperatures between−5 and+10◦C. The reference value

ranges were, in percentage of wet weight, fat 7.66–22.91 %, moisture 59.39–71.48 %,

and protein 17.04–20.76 %. The spectrometer measured the band 1100–2500 nm with

2 nm intervals. Principal component regression was used on wavelength bands selected to

avoid the water freezing effect on the spectra. The reference measurements were obtained

by wet chemistry. Good prediction results, presented as theroot mean squared error of

cross validation (RMSECV) percentage of wet weight, were obtained in each case. The

RMSECV were 0.48–1.11 % for fat, 0.43–0.97 % for moisture and 0.41–0.47 % for pro-

tein.

Gonźalez-Mart́ın et al. (2003) examined a wide range of specific subcutaneous fatty

acids in Iberian swine using NIR in the range 1100–2000 nm with resolution of 2 nm.

They used modified PLS with several preprocessing measures (SNV, MSC, detrending

and numerical differentiation), selecting the preprocessing that gave the best results under

crossvalidation. An external test set was used for validation, where the authors indicate

that the external data were acquired on new samples. Poor to good R2 and standard

error in prediction values were reported. In particular theR2 values ranged from 0.17

to 0.94. Overall they conclude that “. . . the NIRS technique, using a fibre-optic probe,

is a useful alternative to gas chromatography for determination of fatty acid contents in

samples of subcutaneous fat from Iberian pigs.” Sierraet al. (2008) used near infrared

transmittance (NIT) in the range 850–1050 nm, 2 nm intervals, for a range of specific fatty

acids, similar to that of González-Mart́ın et al. (2003), obtaining good prediction of some

prominent species. They also observed accurate predictionof groups such as saturated

(R2
= 0.837), branched (R2

= 0.701) and monounsaturated (R2
= 0.852) fatty acids.

Qiaoet al. (2007a) used a pushbroom hyperspectral imager to examine pork for mar-

bling levels and quality features, such as redness or paleness and exudation. The im-

ager was a CMOS camera based linescan system that acquired spectra in the range 400–

1000 nm with spectral resolution 2.8 nm. Principal components of the spectra were com-

puted and subjected to cluster analysis and a feed forward neural network. The reddish

firm samples were grouped into exudative and non-exudative groups with 75–80 % suc-

cess. An angular second moment was used as a texture feature,and applied to determine
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marbling scores. The same imaging system was used to examinefor colour, pH and drip

loss (Qiaoet al., 2007b). Drip loss was determined as the percentage of weight loss after

two days storage and four degrees. Colour was the luminance, L, of La*b* space taken

with a chromameter. Wavebands were selected by choosing those that best correlated

with the response variables. Prediction was performed by taking the “average intensity

of whole loin-eye area at each feature band images.” The driploss was predicted with a

correlation coefficient (R2 value) of 0.59, the pH 0.30 and the colour, L, 0.74.

Andréset al. (2008) examined NIR over 400–2498 nm, 2 nm intervals, for prediction

of pH, sarcomere length, cooking loss, shear force and colour (La*b*) in beef at 1, 3,

7 and 14 days post slaughter. They took spectra at the same time points as observing

reference features. Using PLS, good predictability was observed for pH at 24 hours (R2
=

0.97, Range 5.50–6.67, reference SD= 0.33) and luminance (L) at cut time (R2
= 0.85,

Range 27.62–42.70, reference SD= 2.76) and 60 minutes (R2
= 0.82, Range 28.89–

43.78, reference SD= 3.76). The rest of the examined features had poorer parameters.

Scattering coefficients computed on beef muscle were computed and examined with

respect to tenderness (Xiaet al., 2007) and heat induced properties (Xiaet al., 2008).

The scattering coefficients were derived from a physical theoretical model of oblique-

incidence reflectometry. The model includes considerationof effective attenuation, angle

of incidence and the lateral offset of the points of incident light to the centre of the diffuse

reflectance. From the model they obtained an absorption coefficient and a ‘reduced scat-

tering’ coefficient. “These absorption and scattering coefficients represent the probabili-

ties of a photon being absorbed and scattered inside the sample” (Xia et al., 2007). Light

from an optical fibre conduit source impinged on the meat sample at an oblique angle, and

a collection fibre at a right angle to the meat conducted reflected light to a spectrometer.

The sampling fibre was moved laterally to obtain a profile of reflectance with position. An

optical scattering model was fit to the profile at each wavelength, from which the absorp-

tion and scattering coefficients were computed. The scattering coefficient at 721nm was

found to correlate with the shear force withR2
= 0.59 (precise statistics of the reference

data are not given, but from the figures presented we surmise ashear force range of about

29–73 N). They recognise that the result, while encouraging, requires further study with

large samples sizes (they used 32) and the use of multivariariate statistics to explore the

relationship of tenderometry readings with the whole spectrum. Scattering coefficients

were observed to change with the structural changes caused by heating. Also, based on

their observations of how tenderometry readings and scattering coefficients change with

temperature, they deduced that myofibril (muscle fibres thatrun across the cell) and col-

lagen (connective tissue) have different effects from each other on scattering. Overall

the work of Xiaet al. (2007, 2008) highlights that scattering effects are relevant when

considering optical measurements on meat.



2.7 Near Infrared Spectroscopy and Beef 35

Bowling et al. (2009) used spectroscopy in the band 345–1100 nm, 5 nm, to predict

beef tenderness. They used linear regression, over averages of spectral bandwidths, re-

gression over band averages with product and squared terms (second order polynomial)

over bandwidths in the visible domain and PCR. The terms that entered the regression

model were chosen using a forward selection procedure (verylittle detail is given). They

reported low correlations (R2 ≤ 0.23, RMSE≥ 0.754, rather than use independent set

validation, they test for significance using regression analysis) with the best correlation

occurring for the regression including the squared terms. They observed that using the

visible and the NIR together did not improve the predictive ability of the models. They

noted that other authors had reported high correlations, but those prior studies used greater

variation in muscles and treatment types. Rosenvoldet al. (2009) examined the relation-

ship between NIR spectroscopy and quality features. They examine the spectral band

400–1700 nm with wavelength spacing 6 nm. Several treatments were used to create a

range of values in the measurements, such as electrical stimulation, wrapping of the mus-

cles and varying the cooling temperature. They measure features pre-rigor such as pH,

glycogen and temperature and and post rigor like pH, shear force using a MIRINZ ten-

derometer, (MacFarlane and Marer, 1966) and water holding capacity. The spectra and

reference measurements were taken at intervals post-slaughter to observe changes over

time. They observed that the first principle component of thespectra separated the spec-

tra into pre-rigor and post-rigor groups. Calibrations werebuilt using PLS, the predictive

power of which was assessed using independent set validation. For pre and post-rigor pH

they obtainedR2
= 0.84 (range 5.15–7.17, RMSEP 0.2), for post-rigor tenderness (shear

force)R2
= 0.58 (range 19–265 N, RMSEP 28 N), and for pre-rigor glycogenR2

= 0.70

(range 0.0–18.7 mg/g, RMSEP 2.7 mg/g). They also obtained a calibration of the nat-

ural logarithm of time in hours post-rigor withR2
= 0.82 (range 0.0–4.5 ln(hours+ 1),

RMSEP 0.66 ln(hours+ 1)).

The spatial variation of the textural and shear force properties in meat has been stud-

ied (Hansenet al., 2004; Janzet al., 2006). Shear, tenderness, hardness, juiciness and

sensory textural attributes were all found to vary within different muscles. Significant

sensory and instrumental differences between the left and right side of the carcass were

observed.





Chapter 3

Theory

This chapter covers the theory for optical multiplexing andextends the theory where nec-

essary. Hadamard multiplexing, the connection of Hadamardmultiplexing with strongly

regular graphs and compressed sensing are covered.

The action of Hadamard transform matrices on realistic types of error is expounded.

In covering the Hadamard multiplexing we develop a unified notational framework under

which the action of the different matrices are computed and compared. Broadly the error is

divided into two groups, error that does not interact with the encoding at encoding (addi-

tive error) and error that does (multiplicative error). Furthermore random and systematic

error are both considered for each group. The theory for the correction of the systematic

error effects at decoding is developed and the total combined effect is examined.

A link between the Hadamard transform S-matrix matrix and a specific type of matrix

from graph theory was described by Ratneret al. (2007) via the respective eigenvalue

structure and subsequent action on noise by multiplexing. Here the link is explored fur-

ther for the other Hadamard matrices. The construction of the S-matrix from the H-matrix

is reversed for the graph theory matrix. The A-optimality (average optimality) of the re-

sultant G-like and H-like matrices is examined via the eigenvalue structure and compared

to the Hadamard equivalents.

The recently developed method of compressed sensing falls in the realm of multi-

plexing. If a digital signal to be reconstructed hasN data points then, unlike traditional

multiplexing, compressed sensing involves taking fewer thanN measurements. Hence

the acquisition time is shorter than traditional multiplexing. The reconstruction is a com-

pressed version of the sensed signal. The accuracy of compressed sensing, that is the

boundedness of the error due to taking fewer measurements, is well established. Here

the effect on the precision due to the number of compressed sensing measurements is

developed. The acquisition is typically performed using a matrix of randomly assigned

values. The A-optimality is derived by inference using known eigenvalue properties of

large random rectangular matrices.

37
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3.1 Multiplexing

A multiplexing system is one where data is acquired according to some linear transform

M, viz

a = Mp, (3.1)

wherep is the unknown data of interest anda is the data physically acquired. We acquire

a according toM and then reconstructp by inversion of the transformation, namely

p = M−1a. (3.2)

The acquisition in Eq 3.1 must be invertible either by directmatrix inversion ofM to

recoverp, or the estimation ofp must be computable by more sophisticated algorithmic

means.

Due to practicalities, the entries in the matrixM are typically bound to{M}ij ∈
[−1,1]. Physically the bound on the entries inM means that each ‘datum of interest’ inp

contributes at most once to each measurement ina. In certain cases the entries ofM may

range continuously between the bounds, such as Fourier transform spectroscopy (Becker,

1972) or magnetic resonance imaging (Westbrook, 2002) whereM is the Fourier trans-

form matrix. In contrast for multislit spectroscopy (Harwit and Sloane, 1979) or optically

multiplexed imaging (the topic herein) each entry inM must be one of the set{−1,0,1}.

Each row inM corresponds to one acquisition and each column one datum. For the

jth row in M an ith column entry of−1, 0 or 1 means that theith datum must be sub-

tracted, excluded or added respectively to obtain the correspondingjth entry ina. The

caseM = I (I the identity matrix) corresponds to settingj = i and physically means

measuring each entry inp individually, which we refer to as pointwise acquisition.

3.1.1 Hadamard Matrices

Hadamard multiplexing is the acquisition of data accordingto one of the Hadamard ma-

trices (Harwit and Sloane, 1979). The Hadamard matrices arethe H-matrix, S-matrix and

G-matrix. The H-matrix,HN , has the maximum possible determinant for anyN × N

matrix with entries constrained between−1 and 1. Every entry inHN has absolute value

1 and the H-matrix satisfies

HT
N = HN ,

HT
NHN = H2

N = NIN ,

⇒ H−1
N =

1
N

HN ,

(3.3)
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where·T is the matrix transpose. The self transpose condition is notstrictly necessary, but

is useful for notational simplicity and ease of computationin the theoretical analysis.

The Sylvester H-matrix construction is as follows (Harwit and Sloane, 1979). The

matricesH1 andH2 are:

H1 = [1] ,

H2 =

[

1 1

1 −1

]

.
(3.4)

Given two H-matrices,HN andHM , a new H-matrixHNM is constructed by replacing

each entry inHN , {HN}i,j, with {HN}i,j HM , that is by taking the Kronecker product be-

tweenHM andHN . This construction gives matrices of the orderN = 2k, k = 1,2,3, . . .

It is conjectured that Hadamard matrices exist for all values ofk.

The G-matrix,GN−1, is obtained from the H-matrix by removing the leading row and

column of ones, hence

HN =

[

1 oT
N−1

oN−1 GN−1

]

, (3.5)

whereoN−1 is a column vector of ones of lengthN − 1. The S-matrix is subsequently

derived from the G-matrix by changing all the 1s to 0 and the−1s to 1. Clearly,

GN−1 = JN−1 − 2SN−1, (3.6)

whereJN−1 is a matrix of ones. From the fact (Harwit and Sloane, 1979),

GN−1SN−1 = JN−1SN−1 − 2S2
N−1

=
N

2
JN−1 −

N

2
(IN−1 + JN−1)

= −N

2
IN−1,

(3.7)

the inverses ofS andG are,

S−1
N−1 = − 2

N
GN−1,

G−1
N−1 = − 2

N
SN−1.

(3.8)

An alternative direct construction of S-matrices is via maximal length shift-register

sequences (SRS) (Harwit and Sloane, 1979). A SRS S-matrix is cyclic (each row is a

cyclically shifted version of the previous one) of orderN − 1 = 2m − 1, m = 1,2,3 . . .

To describe the construction process we follow the example given by Harwit and Sloane

(1979).
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1. Take a binary primitive polynomial, for examplex4
+ x + 1 which corresponds to

m = 4.

2. Set the entries of the first row ofS to {S}1,1 = 1 and{S}1,j = 0, j 6= 1.

3. Cyclically shift each element in the first row ofS one step to the right and at each

entry take the sum modulo 2 according to the binary primitivepolynomial, that is,

{S}1,j+4 = {S}1,j+1 + {S}1,j. Repeat until no further change occurs.

4. For the rows fromi = 2, iteratively set{S}i,j = {S}i−1,j+1.

A list of binary primitive polynomials form = 1, . . . ,20 is given by Harwit and Sloane

(1979). Other methods for constructing cyclic S-matrices exist, a review of such methods

is also given by Harwit and Sloane (1979).

3.2 Error Effects Under Hadamard Encoding

In practical multiplexing the acquired data are contaminated by random and systematic

error. The random component due to noise causes a variance inmeasurement; the system-

atic component causes a bias. Considering noise, the primarypurpose of multiplexing is

to permit more of the object being measured (light in our case) to the measurement device

so that the signal is increased. The signal increase causes asignal to noise ratio (SNR)

boost at data acquisition. If the multiplexing pattern is optimal then the SNR boost is op-

timally maintained at reconstruction. This section addresses general key forms of random

noise and systematic error in multiplexing. The contributions to the state of the art of this

section are:

• A coherent and unified description of the effect of all likely error sources for all

three types of Hadamard matrix.

• An examination of driftand Poisson noise effects for all the Hadamard matrices

and, in particular, for the H-matrix and G-matrix.

The error types and their effect under multiplexing are introduced individually. The

error types are: random additive noise, additive offset, Poisson noise or any noise with

variance proportional to the signal, and systematic multiplicative offset. The correction of

the systematic error types and the subsequent effect on the random noise are considered.

This section does not consider the physical cause of the error types explicitly to main-

tain generality. While the theory was developed in the context of optical multiplexing,

applicability to other multiplexing situations is possible by reconsideration of the error

sources.
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3.2.1 Additive Random Noise

We first consider the effect of random additive error,e, with varianceσ2, that occurs at

acquisition and is independent of the multiplexing matrixM

a = Mp + e. (3.9)

Decoding recovers an estimate of the data,p, contaminated with additive error that is

modified by the inverse of the encoding system

p̂ = M−1a,

= M−1Mp +M−1e,

= p + ǫ,

(3.10)

whereǫ = M−1e.

An advantageous encoding system will reduce the variance ofthe error at decod-

ing. The variance (or MSE) of the errors at encoding are not guaranteed to all be the

same as each other at decoding, nor are the MSE of the errors atdecoding. To assess

the theoretical performance of multiplexing system matrices we use the average of the

MSE or A-optimality (Harwit and Sloane, 1979). Other optimality measures exist, but

A-optimality is probably the most important measure provided that the errors are ap-

proximately equal (Harwit and Sloane, 1979). Letǫi be the entries in the vectorǫ, an

A-optimal matrix minimises

ǫ =
1
N

N
∑

i=1

ǫ2
i . (3.11)

It turns out that an A-optimal design is one which minimises (Harwit and Sloane, 1979)

ǫ =
σ2

N
Tr

[

(MTM)−1
]

, (3.12)

where Tr[·] is the matrix trace. The trace term in equation 3.12 is usefulfor analysing the

predicted error behaviour of a matrixM for random additive noise.

For pointwise acquisition,M = I, we have

Tr
[

(IT
NIN )−1

]

= Tr [I] = N. (3.13)

Equation 3.13 is the baseline for multiplexing, any multiplexing matrix that does not yield

a smaller result provides no advantage.
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For the H-matrix we have using equation 3.3

Tr
[

(HT
NHN )−1

]

=
1

N2
Tr

[

H2
N

]

=
1

N2
NTr [IN ]

= 1.

(3.14)

The H-matrix attains the smallest possible value accordingto Hotelling’s bound on the

MSE (Harwit and Sloane, 1979), thus the H-matrix is optimal for multiplexing. The

optimality is also seen intuitively by noting that the inverse ofH is simply a scaled version

of itself, that is, the rows inH form an orthogonal basis set. The reconstruction then is

essentially a rotation and scaling operation and the reconstructed data have the same SNR

as the acquired data on average. If the SNR is optimised at acquisition, then the MSE is

minimised at reconstruction.

For the G-matrix we have

Tr
[

(GT
N−1GN−1)

−1
]

= Tr
[

G−2
N−1

]

=
4

N2
Tr

[

S2
N−1

]
(3.15)

where equation 3.8 was used. An S-matrix has on each row and column (N − 1± 1)/2

ones, thus Tr(S2
N−1) = (N − 1)(N − 1 ± 1)/2. The±1 term forS encompasses both

Sylvester and cyclic SRS matrices, with the former corresponding to−1 and the latter to

+1. Now

4

N2
Tr

[

S2
N−1

]

=
4

N2

(N − 1)(N − 1± 1)
2

,

≈ 2, for largeN.

(3.16)

So G is not as optimal asH but provides a useful alternative should a matrix of odd

dimensions be required. This result was presented by Sloaneet al. (1969) and was inde-

pendently derived by by the present author (Streeteret al., 2008b) without knowledge of

the derivation by Sloaneet al. (1969).

For the S-matrix we rework the result of (Sloaneet al., 1969; Harwit and Sloane,

1979) in the manner above to obtain

Tr
[

(ST
N−1SN−1)

−1
]

= Tr
[

S−2
N−1

]

,

=
4

N2
Tr

[

G2
N−1

]

.
(3.17)
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Since the G-matrix has no zeros we see that Tr
[

G2
N−1

]

= (N − 1)2, which gives

4

N2
Tr

[

G2
N−1

]

=
4

N2
(N − 1)2,

≈ 4, for largeN.

(3.18)

The S-matrix, while not as optimal as the H-matrix or the G-matrix, contains no negative

terms. The S-matrix is conjectured to be the optimal matrix with no negative terms (Har-

wit and Sloane, 1979) and is useful in situations where the subtractions necessary for

implementingH andG are not practicable. As such the S-matrix is very common in

multiplexing.

3.2.2 Additive Offset Bias

Additive offsets cause bias in the measurement. Systematic additive components such as

background and baseline offset are represented by a term that is multiplexed,t1, and a

term that is independent of the multiplexingt2. Multiplexed acquisition in the presence

of such offsets is

a = M (p + t1) + t2. (3.19)

Reconstruction by inversion ofM gives

p̂ = M−1a = p + t1 +M−1t2. (3.20)

The independent component,t2, is reduced by multiplexing whereast1 is recovered.

Being systematic the additive offsets must be directly measured and subtracted at the

appropriate point in reconstruction. Measuringt2 is performed directly by settingM = 0,

generally a simple matter in many multiplexing systems. Themultiplexed offset is more

problematic because 3.19 implies thatt1 cannot be measured independently ofp. An

auxiliary independent measurement device observing the measurement environment may

overcome the difficulty in measuringt1, but also introduce new error sources. Thus it is

preferable to avoid multiplexing systems for whicht1 6= 0.

Additive offset factors that drift are represented by varying entries int1 andt2. When

the offset is guaranteed not to drift then only one measurement is required which is sub-

sequently subtracted appropriately during reconstruction. Prevention of drift altogether is

very difficult, if not impossible, and typically the entriest1,j andt2,j in t1 andt2 must be

measured with eachaj in a. Making such measurements gives estimates of the true offset
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values with random error̂t1 andt̂2. The measurements taken are modelled as

a = M (p + t1) + t2 + ea,

t̂1 = t1 + e1,

t̂2 = t2 + e2,

(3.21)

whereea, e1 and e2 are sampled at random from the same distribution1. Making the

appropriate corrections

p̂ = M−1(a− t̂2) − t̂1, (3.22)

we see that

p̂ = p − e1 +M−1(ea − e2). (3.23)

Thus from equation 3.23 correction oft1 and t2 at reconstruction results in an average

MSE of

ǫ = σ2
+

2σ2

N
Tr

[

(MTM)−1
]

. (3.24)

Correction oft2 increases the average MSE of the error that is reduced by multiplexing.

However correction oft1 introduces error that is not affected by the multiplexing, which

reinforces the preference of avoiding situations wheret1 6= 0.

3.2.3 Poisson Noise

The variance of Poisson noise is proportional to the mean. Multiplexing, which boosts the

signal at data acquisition, also increases the variance of Poisson noise. The critical issue

for multiplexing in the presence of Poisson noise is how muchthe encoding increases

the noise at the data acquisition compared to how much the thereconstruction reduces

the noise. We first derive the general form of the average MSE of decoded multiplexed

estimates in the presence of Poisson noise, then examine thespecific Hadamard matrices

in turn. We restrict the analysis to the case where signal proportional noise emanates from

sources that add positively, so the Poisson noise variance is therefore as large as it can be

so the following analysis represents a ‘worse case scenario.’ Conceptually there may

be cases where the noise is proportional to the signal reduced by the negative encoding

elements inH andG, causing a smaller noise variance than in the following analysis.

Let 〈r〉 be an average intensity ‘weight’ in measurement andE be a diagonal matrix

with random values to represent noise. Furthermore let eachdiagonal element inE be

sampled at random from a distribution with variance〈r〉. In the context of reflectance

imaging or spectroscopy〈r〉 is the mean intensity of the light source and is typically a

1If t̂1 is taken with an axillary device thene1 is from a different distribution.
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large real number (assuming a classical model of the physics). In other contexts it may

be physically sensible for〈r〉 to have any other magnitude or even be unity. We model

multiplexing with signal dependent noise as

a = 〈r〉Mp + EMp. (3.25)

So an error term is multiplied byeach encoded measurement and added to the noise free

encoding. Decoding gives

p̂ = 〈r〉p +M−1EMp. (3.26)

Let eP,a = EMp, the noise at acquisition. The variance in thejth entry of the acquisition

a, σ2
P,j,a, due to thejth entry ineP,a is

σ2
P,j,a = 〈r〉 |mj| · p (3.27)

where we introduce the notation|mj| to be a vector of the absolute values of thejth row

of M. The notation|mj| is distinct from the norm of a vector,‖mj‖, which returns a

scalar. It is necessary here to take the absolute value of theentries inM to ensure that all

variances add and do not subtract. The error in the decoded estimates iseP,p̂ = M−1eP,a.

The MSE of thekth reconstructed estimate is thus

ǫP,p̂,k =

N
∑

j

{M−1}2
k,jσ

2
P,j,a

=

N
∑

j

{M−1}2
k,j 〈r〉 |mj| · p,

(3.28)

and the average MSE is

ǫP,p̂ =
1
N

N
∑

k

ǫP,p̂,k,

=
1
N

N
∑

k

N
∑

j

{M−1}2
k,j 〈r〉 |mj| · p,

=
1
N

N
∑

j

〈r〉 |mj| · p
N
∑

k

{M−1}2
kj.

(3.29)

Equation 3.29 is the most general form of the average MSE for Poisson noise. The last

line in equation 3.29 shows that the average MSE is modified per-acquisition by the factor
∑N

k {M−1}2
kj, that is, the average MSE is a weighted average of the noise atacquisition.

For the special case where the Poisson noise variances in theacquired data are approxi-
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mately equal,〈r〉 |mj| · p ≈ 〈r〉m · p for some vectorm, equation 3.29 becomes

ǫP,p̂ ≈ 〈r〉m · p
N

Tr
[

(MTM)−1
]

, (3.30)

which shows the similarity between equation 3.29 and equation 3.12.

The average MSE for pointwise encoding,M = I, is

ǫP,p̂ =
1
N

N
∑

i

〈r〉 pi
N
∑

k

{I}ki,

= 〈r〉 〈p〉 .

(3.31)

wherepi is theith entry inp and〈p〉 the mean of thepi. As with additive noise, pointwise

encoding is considered the baseline and any multiplexing method must not increase the

average MSE.

The H-matrix, with the inverse ofH from equation 3.3, gives

ǫP,p̂ =
1
N

N
∑

j

〈r〉 |hj| · p
N
∑

k

{H−1}2
kj

=
1
N

N
∑

j

〈r〉
N
∑

i

pi

N
∑

k

(

±1
N

)2

= 〈r〉 〈p〉 .

(3.32)

where|hj| is a vector of the absolute values of thejth row ofH. Thus H-matrix multi-

plexing averages the errors at reconstruction but does not reduce the Poisson erroron

average. Essentially becauseH is a scaling and rotation, the signal and the noise are both

boosted and reduced by the same amount at acquisition and reconstruction. Hassleret al.

(2005) obtained substantially the same result when considering Poisson noise emanating

per-datum to be multiplexed under the specific case of fluorescence imaging. Here we

have modelled Poisson noise variance as a function of the gross ‘weight’ measured.

For the G-matrix we have

ǫP,p̂ =
1

N − 1

N−1
∑

j

〈r〉 |gj| · p
N−1
∑

k

{G−1}2
kj

=
4

N2

1
N − 1

N−1
∑

j

〈r〉
N−1
∑

i

pi

N−1
∑

k

{SN−1}2
kj.

(3.33)

where|gj| is a vector of the absolute values of thejth row ofG. SinceS has approximately
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N/2 1s andN/2 0s on each row and column we have

ǫP,p̂ ≈ 4

N2

1
N − 1

N−1
∑

j

〈r〉
N−1
∑

i

pi
N

2
, N large,

= 2〈r〉 〈p〉 .

(3.34)

The G-matrix increases noise that is proportional top and should not be used when Pois-

son noise is dominant.

For the S-matrix case

ǫP,p̂ =
1

N − 1

N−1
∑

j

〈r〉 |sj| · p
N−1
∑

k

{S−1}2
kj,

=
4

N2

1
N − 1

N−1
∑

j

〈r〉 |sj| · p
N−1
∑

k

{G}2
kj,

(3.35)

where|sj| is a vector of the absolute values of thejth row ofS. We make the simplifying

approximationpi ≈ 〈p〉, use equation 3.8 for the inverse ofS and observe again that each

row inS has approximatelyN/2 1s andN/2 0s to find

ǫP,p̂ ≈ 4

N2

1
N − 1

N−1
∑

j

〈r〉 1
2

N−1
∑

i

〈p〉
N−1
∑

k

(±1)2,

≈ 2〈r〉 〈p〉 , for largeN.

(3.36)

The S-matrix, like the G-matrix, is not suitable for Poissonnoise. The result in equa-

tion 3.36 agrees with Damaschini (1993) and Nitzsche and Riesenberg (2003).

The result thatS andG have the same effect on Poisson noise contrasts with the

result for additive noise (Section 3.2.1). The reason is that G increases the Poisson noise

variance more thanS does at acquisition but at reconstructionG reduces the Poisson

variance more thanS. In contrast, additive noise is independent of the encoding, so the

reduction of noise byG, being greater thanS, is better for additive noise.

3.2.4 Multiplicative Drift, Systematic Multiplicative Bias

Allowing 〈r〉 in section 3.2.3 to vary between acquisitions models multiplicative drift.

We write〈r〉j for the jth acquisition and load each〈r〉j onto thejth row of the diagonal

matrixR. The average of the〈r〉j is 〈r〉. Assuming the acquisition to be free of any other

error

a = RMp. (3.37)
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Reconstruction of the estimatep̂ gives

p̂ = M−1RMp, (3.38)

which is contaminated by a bias. The error due to the biasb is computed by taking the

difference (Streeteret al., 2008b)

b = 〈r〉 p − p̂

= 〈r〉 p −M−1RMp,

= M−1 (〈r〉 I − R)Mp.

(3.39)

so b is proportional to the differences〈r〉 − 〈r〉j. A simple and reliably precise way to

correct for drift is to observe the〈r〉j over the acquisition and correct eachaj in a before

reconstruction. The average squared error due to multiplicative drift is

ǫb,p̂ =
1
N

bTb

=
1
N

pTMT (〈r〉 I − R) (M−1)TM−1 (〈r〉 I − R)Mp
(3.40)

Prediction of the relative effect of multiplexing matrices onǫb,p̂ cannot be performed

without knowledge of the nature of the drift represented inR. SinceR is different between

acquisitions further general analysis is difficult.

Multiplicative drift modifies the Poisson noise variance. Including drift, equation 3.27

becomes

σ2
P,j,a = 〈r〉j |mj| · p, (3.41)

thus the average MSE at decoding for Poisson noise with driftis

ǫP,p̂ =
1
N

N
∑

j

〈r〉j |mj| · p
N
∑

k

{M−1}2
kj. (3.42)

For pointwise encoding the average MSE is

ǫP,p̂ =
1
N

N
∑

i

〈r〉i pi ≈ 〈r〉 〈p〉 . (3.43)

For the Hadamard matrices, examination of equations 3.32, 3.33 and 3.36 shows

that the〈r〉j are averaged in each case. Thus, including drift, the average MSE for the

Hadamard matrices is unchanged from the average MSE of Poisson noise without drift.
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3.2.5 Combined Effect

Combining the error effects in multiplexing gives the general acquisition model,

a = (R + E)M (p + t1) + t2 + ea. (3.44)

As described in section 3.2.2, correction of error due tot1 6= 0 results in noise that is not

affected by the multiplexing. Thus we utilise multiplexing where the encoding and the

additive bias are independent sot1 = 0. We assume thatR andt2 can be independently

measured, that is, we have access to

R̂ = R + ÊP + ÊG, (3.45)

and

t̂2 = t2 + e2, (3.46)

where allÊP andÊG are diagonal matrices containing the Poisson and additive error in R̂

and theEG, ea ande2 come from similar but independent noise sources, thus all have the

same variance,σ2, as each other.

Correction of the encoded measurements using the measured estimates ofR and t2

givesac, namely

ac = R̂−1(a− t̂2),

=
(

R + ÊP + ÊG

)−1
(RMp + EMp + ea − e2) .

(3.47)

Writing the combined random error in the corrected acquisition beea,c gives

ac = Mp + ea,c, (3.48)

and decoding gives the estimate

p̂ = p +M−1ea,c. (3.49)

Writing ea,c in simple form is problematic due to the matrix inversion in equation 3.47,

however we may use the equation for the random error in a ratio(Pearson, 1897) to obtain

the average MSE in the reconstructed corrected estimate, that is

ǫp̂ ≈ 1
〈

R̂
〉2

(

σ2
a +

〈a〉2

〈

R̂
〉2

σ2
R̂
− 2

〈a〉
〈

R̂
〉σ

2
a,R̂

)

1
N

Tr
[

(MTM)−1
]

, (3.50)

whereσ2
a is the variance in the acquisition,σ2

R̂
is the variance in the drift measurement
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andσ2
a,R̂

is the covariance between the acquisition and the drift measurements. From

the subtraction of̂t2 which doubles the random additive variance and approximating the

Poisson variances in theaj elements ofa to be equal to each other givesσ2
a ≈ 2σ2

+〈r〉 |m|·
p. The variance in the drift measurements isσ2

R̂
≈ 〈r〉 + σ2 and due to the assumption

of independence in the measurements the covarianceσ2
a,R̂

= 0. The expected values are

〈a〉 ≈ 〈r〉 |m| · p and
〈

R̂
〉

≈ 〈r〉. Substituting into equation 3.50 and rearranging we

obtain

ǫp̂ ≈ 1

〈r〉2

(

2σ2
+ 〈r〉 |m| · p +

(〈r〉 |m| · p)2

〈r〉2

(

〈r〉 + σ2
)

)

1
N

Tr
[

(MTM)−1
]

,

=
1

〈r〉2

(

2σ2
+ 〈r〉 |m| · p + (|m| · p)2 〈r〉 + (|m| · p)2 σ2

) 1
N

Tr
[

(MTM)−1
]

.

(3.51)

Equation 3.51 looks like a drastic reduction in the average MSE due to the term 1/ 〈r〉2

from the drift correction, however the mean squared signal is also reduced by the same

amount so the resultant SNR is not reduced by this factor. In certain cases it may not be

possible to measurea andR̂ independently soσ2
a,R̂

in equation 3.50 may not necessarily

be zero. Such situations must be treated ad hoc for the particular multiplexing equipment.

For the case of pointwise acquisition we recall from equation 3.31 that the average

MSE |m| · p = 〈p〉 Thus equation 3.51 reduces to

ǫp̂ ≈ 1

〈r〉2

(

2σ2
+ 〈r〉 〈p〉 + 〈p〉2 〈r〉 + 〈p〉2 σ2

)

,

=
2σ2

〈r〉2
+

〈p〉
〈r〉 +

〈p〉2

〈r〉 +
〈p〉2 σ2

〈r〉2
.

(3.52)

For the case of the H-matrix,

ǫp̂ ≈ 1

〈r〉2

(

2σ2
+N 〈r〉 〈p〉 +N2 〈p〉2 〈r〉 +N 〈p〉2 σ2

) 1
N

1

N2
Tr

[

H2
]

,

=
2σ2

N 〈r〉2
+

〈p〉
〈r〉 +

N 〈p〉2

〈r〉 +
〈p〉2 σ2

〈r〉2
.

(3.53)

TheN that appears in the third term is disadvantageous, however shown in chapter 4,

certain instrumental considerations mitigate the factor of N.

For the case of the G-matrix,

ǫp̂ ≈ 1

〈r〉2

(

2σ2
+N 〈r〉 〈p〉 +N2 〈p〉2 〈r〉 +N 〈p〉2 σ2

) 1
N

4

N2
Tr

[

S2
]

,

≈ 4σ2

N 〈r〉2
+

2〈p〉
〈r〉 +

2N 〈p〉2

〈r〉 +
2〈p〉2 σ2

〈r〉2
, N large.

(3.54)
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The S-matrix gives

ǫp̂ ≈ 1

〈r〉2

(

2σ2
+

N

2
〈r〉 〈p〉 + N2

4
〈p〉2 〈r〉 + N

4
〈p〉2 σ2

)

1
N

4

N2
Tr

[

G2
]

,

≈ 8σ2

N 〈r〉2
+

2〈p〉
〈r〉 +

N 〈p〉2

〈r〉 +
〈p〉2 σ2

〈r〉2
, N large.

(3.55)

Comparing the first term in equations 3.54 and 3.55 we see againthat the G-matrix reduces

the additive noise by twice the amount of the S-matrix. From the second term the Poisson

noise is equally doubled with respect to the pointwise acquisition. For the third and fourth

terms (‘mixed terms’ that result from the ratio) the S-matrix outperforms the G-matrix by

a factor of two. Like with the H-matrix, the third and fourth terms are mitigated by

instrumental considerations.

3.3 Graph Theory and Hadamard Multiplexing

Ratneret al. (2007) established a link between strongly regular graphs and S-matrices

via the eigenvalue structure and the subsequent action on noise. They showed how in

certain circumstances the adjacency matrix of a strongly regular graph, which describes

the location of edges between vertices, provides a useful alternative to the Hadamard S-

matrix. Ratneret al. (2007) however did not extend the link to the Hadamard G-matrix

and H-matrix. Here we:

• Reverse the Sylvester S-matrix construction to obtain strongly regular graph based

equivalents to the Sylvester G-matrix and H-matrix and

• Examine the A-optimality of the constructed matrices.

A strongly regular graph (SRG) (Ratneret al., 2007), written srg(N, k, α, β), is a

graph withN vertices, where each vertex hask adjacent vertices (k connections to other

vertices). When two vertices are both connected to another third vertex then the two

vertices are said to have a common adjacent vertex. Each adjacent pair of vertices in a

SRG hasα common adjacent vertices and each non adjacent pair hasβ common adjacent

vertices. The adjacency of all vertex pairs can be represented by a matrix of ones and

zeros called the adjacency matrixW . The eigenvalue structure of the adjacency matrix

is well known and is dependant on the parametersN, k, α andβ. Specifically forW =

srg(N, k, α, β = α) the largest eigenvalue isλ1 = k and the other eigenvalues all have the

same magnitude as each other and are less thanλ1. The Hadamard S-matrix also has this



52 Theory

eigenvalue structure. Multiplexing viaW results in an average MSE of

ǫW =
σ2

N

(

1

k2
+

(N − 1)2

Nk − k2

)

. (3.56)

Whenk =
N+1

2 , ǫW ≈ 4
N
σ2, identical to the advantage achieved byS. Hadamard matrices

have only been found for a specific set of integer values ofN. In principle, there is

no such restriction for graph matrices, however for any specific value ofN there may

not necessarily be a known srg(N, k, α, α) for the most optimal integer value ofk for

minimisation ofǫW . In such a case one simply selects the most optimal matrix available.

There are two immediate benefits ofW overS arising from the fact thatk is variable

in equation 3.56 (Ratneret al., 2007). The first benefit is that the multiplex orderN can be

raised whilek is lowered. Thus ifN is increased by adding more objects to be measured,

then loweringk will avoid potential saturation of the measurement device.The second

benefit is if multiplicative Poisson noise is present and thecontributions due to Poisson

error and additive error (respectivelyρk andσ2) are known then we can write, assuming

homogeneous contributions to the Poisson noise by all data being multiplexed,

ǫW,P =
σ2

+ ρk

N

(

1

k2
+

(N − 1)2

Nk − k2

)

. (3.57)

Finding the optimal multiplex matrixW is a matter of finding the integer value ofk that

minimisesǫW,P .

3.3.1 The ‘Link’ BetweenW andS, G andH

The link betweenW andS is established through the respective eigenvalue structure (Rat-

neret al., 2007). We show here that starting withW , and reversing the construction pro-

cedure to get a S-matrix from an H-matrix, that a G-like matrix WG = J − 2W shares

the properties ofH. Also adding the extra row and column of ones toWG to produce an

H-like matrix, WH , results in slightly reduced noise reduction properties thanH. This

counter intuitive result is evidence that while under certain conditionsS andW share

very similar eigenvalue structure, they do not share all thesame properties. Regardless

W provides a useful noise reduction.

The Matrix WG = J − 2W

To begin, we recall that for an arbitrary encoding matrixM whereMT
= M, the effect

on noise variance due to multiplexing is

ǫM =
σ2

N
Tr

[

M−2
]

, (3.58)
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where Tr[·] is the matrix trace. Also recall that the matrix trace is the sum of the eigen-

values, that the trace of the matrix inverse is the sum of the reciprocal eigenvalues, and

that the trace of a sum of matrices is the sum of the traces. Thus forWG = J − 2W

Tr
[

W −2
G

]

= Tr
[

(J − 2W )−2
]

,

= Tr
[

(4W 2
+ J 2 − 2WJ − 2JW )−1

]

,

= Tr
[

(4W 2
+ (N − 4k)J )−1

]

.

(3.59)

sinceJ is a matrix of ones andW has on each row and columnk ones andN − k zeros.

There is a fundamental lemma of linear algebra which states that for the sum of two

matricesA + B, whereA has full rank andB has rank one, that (Miller, 1981)

(A + B)−1
= A−1 − 1

1+ Tr
[

BA−1
]A−1BA−1.

Therefore, after some algebraic manipulation,

Tr
[

W −2
G

]

=
1
4

Tr
[

W −2
]

+
N − 4k

4(4+ (N − 4k)Tr
[

JW −2
]

)
Tr

[

W −2JW −2
]

. (3.60)

The solution to the term Tr
[

W −2
]

is (Ratneret al., 2007) (cf. equation 3.56)

Tr
[

W −2
]

=
1

k2
+

(N − 1)2

Nk − k2
. (3.61)

To find the value of the other trace terms we see that sinceWJ = JW = kJ ,

Tr
[

W −2JW −2
]

=
1

k4
Tr

[

W −2W 2JW 2W −2
]

,

=
1

k4
Tr [J ] =

N

k4
.

(3.62)

Similarly we have

Tr
[

JW −2
]

=
N

k2
. (3.63)

Thus equation 3.60 becomes

Tr
[

W −2
G

]

=
1
4

(

1

k2
+

(N − 1)2

Nk − k2
+

N (N − 4k)

k2(4k2 +N2 − 4kN)

)

. (3.64)

As stated the Hadamard S-matrix coincides withW whenk =
N+1

2 . Making such a

substitution into equation 3.64 and assumingN large then the second term in the brackets
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clearly dominates, thus

Tr
[

W −2
G

]

≈ 1
4

(

(N − 1)2

N (N+1)
2 − (N+1)2

4

)

≈ 1.

(3.65)

The noise reduction due toWG is then

ǫW,G ≈ 1
N

σ2. (3.66)

Equation 3.65 implies that the rows (and columns) inWG form a nearly orthonormal set

and thus nearly satisfy the Hadamard condition (equation 3.3). As the same is not true for

G, equation 3.65 also implies thatS is not exactly equivalent toW .

The ‘Equivalent’ to H

We examine the properties of the H-like matrix constructed from W . We construct the

H-like matrix,WH , fromW by adding a row and column of ones to the front ofWG, viz

WH =

[

1 oT

o J − 2W

]

, (3.67)

whereo is a column vectors of ones. The square ofWH is

W 2
H =

[

N + 1 (1+N − 2k)oT

(1+N − 2k)o 4W 2
+ (1+N − 4k)J

]

. (3.68)

To simplify, we make the substitutionsV = 2W , αH = 1+N −2k andβH = 1+N −4k.

The inverse ofW 2
H is obtained by blockwise inversion (Henderson and Searle, 1981)2 as

W −2
H =





1
N+1 +

1
(N+1)2

α2
HoT

(

V 2
+

(

βH − α2
H

N+1

)

J
)−1

o − αH
N+1oT

(

V 2
+

(

βH − α2
H

N+1

)

J
)−1

− 1
N+1αH

(

V 2
+

(

βH − α2
H

N+1

)

J
)−1

o
(

V 2
+

(

βH − α2
H

N+1

)

J
)−1



 .

(3.69)

2the Banachiewicz equation
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The trace ofW −2
H is then

Tr
[

W −2
H

]

=
1

N + 1
+

1

(N + 1)2
α2
HoT

(

V 2
+

(

βH −
α2
H

N + 1

)

J

)−1

o+

Tr





(

V 2
+

(

βH −
α2
H

N + 1

)

J

)−1


 . (3.70)

We make the substitutionγ = βH − α2
H

N+1 and using the matrix inverse lemma find that

(

V 2
+ γJ

)−1
=

1
4

(

W −2 − k2γ

1+ γN
W −2JW −2

)

=
1
4

(

W −2 − γ

k2(1+ γN)
J

)

,

which substituted back into equation 3.70 and solving gives

Tr
[

W −2
H

]

=
1

N + 1
+

1
4

(

1

k2
+

(N − 1)2

Nk − k2
+

α2
H

(N + 1)2

(

N

k2
− αHN

2

k2(4k2 + γN)

)

− γN

4k2 + γN

1

k2

)

. (3.71)

Making the substitutionk =
N−1

2 , we observe thatαH andγ are of the orderJ (N). Thus,

again, the second term in the brackets dominates so

Tr
[

W −2
H

]

≈ 1. (3.72)

There are terms in equation 3.71 that are of orderJ (N−1) whereas there are no such terms

in equation 3.65, thus the approximations made for the traceof WG are more precise than

for WH . Typically one should expect Tr
[

W −2
H

]

to be slightly greater than Tr
[

W −2
G

]

.

A Numerical Example

The srg(16,6,2,2) 3 is an example of a SRG that nearly fits the assumptionsk =
N+1

2

andα = β. The assumptionα = β ensures the desired eigenvalue structure (Ratneret al.,

3http://www.maths.gla.ac.uk/∼es/srgraphs.html, date accessed 8/5/2008.
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2007) and is the more important of the two. The matrix in question is

W =







































































0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0

1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0

1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0

0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0

0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1

0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1

0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0







































































. (3.73)

The largest eigenvalue ofW 2 is 36 and the rest are 4, which, denoting the eigenvalues as

λi, give

Tr
[

W −2
]

=

∑

i

1

λ2
i

= 3.7̇, (3.74)

where ẋ denotes recurrence. ThusW provides slightly better noise reduction than a S-

matrix of order 16, if indeed one existed. The eigenvalues ofW 2
G are all 16, thus

Tr
[

W −2
G

]

= 1, (3.75)

as predicted. The matrixWH is of size 17× 17. The largest eigenvalue ofW 2
H is 38.651,

the smallest is 10.349 and the other fifteen eigenvalues are 16. This gives

Tr
[

W −2
H

]

= 1.06, (3.76)

slightly higher than forWG but still corresponding to an excellent multiplex advantage.

3.4 Compressed Sensing

Compressed sensing (CS) (Donoho, 2006; Tsaig and Donoho, 2006) is a modern multi-

plexing method for signal acquisition that requires fewer measurements than traditional
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techniques. CS is based on the assumption that a signal can be represented in some trans-

formation by a sparse vector. If one takes an orthogonal transformation matrixΨ and

computes the coefficient vector as the solution top = Ψθ, thenθ is sparse if many of

the coefficients are zero. Frequently a transformation is not sparse but is still compress-

ible, where most of the essential information inθ to reconstructp is contained in a small

number of coefficients. These essential coefficients are much larger in magnitude than

the non-essential coefficients. The magnitude of the coefficients of a compressible signal,

when sorted into decreasing order, decay according to a power law.

Consider an acquisition matrixΦ with randomly assigned ones and negative ones with

fewer rows than columns and acquire data according to

a = Φp. (3.77)

Substitutingp = Ψθ gives

a = ΦΨθ. (3.78)

The transformsΦ andΨ are required to be mutually independent, that is they cannot

represent each other in a compressible manner. When this mutual independence holds

and whenθ is sparse (or compressible), thenθ, hencep, can be accurately reconstructed

with high probability.

Let p̂ be the reconstruction ofp via CS. Supposing we know the location of thes

largest entries inp, form ps by setting all but thes largest entries to zero. Assuming data

are acquired with noiseewhere‖e‖2 ≤ κ and thatδ2s <
√

2− 1 then (Cand̀es, 2008)

‖p̂ − p‖2 ≤ C0s
−1/2‖p − ps‖1 + C1κ (3.79)

whereC0 andC1 are constants that depend onδ2s. From the proofs by Candès (2008), let

αcs = 2
√

1+ δ2s/(1− δ2s) andρcs =
√

2δ2s/(1− δ2s) then

C0 = 2
1+ ρcs

1− ρcs
,

C1 = 2
αcs

1− ρcs
.

(3.80)

So the error in the reconstruction is bounded, even in the presence of noise.

For a signal of lengthN, at least logN measurements are required for reconstruc-

tion (Donoho, 2006; Haupt and Nowak, 2006). It has also been shown empirically that if

k coefficients inθ are necessary forΨ to representp, then aboutn = 4k measurements

are necessary to estimateθ to reconstructp via CS (Tsaig and Donoho, 2006).
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3.4.1 CS and the Effect of Random Noise

Equation 3.79 explains that CS is stable in terms of accurate reconstruction. It also ex-

plains that the error contribution due to random noise in CS reconstruction increases as

the signal becomes less sparse (s increases). It does not explain how the precision in

CS reconstruction is affected by the number of measurements. Intuitively more measure-

ments mean better SNR. Here we show by inference that in CS the converse is true for a

random acquisition system and random additive noise, that more measurements reduces

precision.

Consider the acquisition of CS data with random additive noisee

a = Φp + e

= ΦΨθ + e.
(3.81)

Now assume that we can accurately invert the linear system,ΦΨ, by some linear algorithm

I [ΦΨ] (·), where, for any vectorx satisfying the conditions of the algorithm

I [ΦΨ] (ΦΨx) = x, (3.82)

thus,

θ̂ = I [ΦΨ] (a),

= θ + I [ΦΨ] (e),
(3.83)

from which

p̂ = Ψθ̂

= p + ΨI [ΦΨ] (e).
(3.84)

SinceΨ is well conditioned and the inversion,I, is linear,I [ΦΨ] = I [Ψ] I [Φ] =

Ψ
−1I [Φ] and the random error in reconstruction is

ep̂ = ΨΨ
−1I [Φ] (e) = I [Φ] (e), (3.85)

thus the effect on the error in reconstruction depends only on the inversion ofΦ.

We examine the A-optimality of CS with a random matrix via

ǫ =
σ2

n
Tr

[

(

Φ
T
Φ
)−1

]

, (3.86)

wheren ≤ N is the number of acquisitions taken. The inversion before the trace operation

is not directly possible. The matrixΦT
Φ hasN eigenvalues,N − n of which are zero
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which explains whyΦT
Φ is not invertible by traditional means. CS sidesteps the issue of

invertiblility, performing reconstruction with then available pieces of information. Thus

we inferǫ by replacing the trace with the sum of inverse of then nonzero eigenvalues

ǫ =
σ2

n

n
∑

i

1

λ2
i

. (3.87)

Eigenvalues are pairwise coupled (Ratneret al., 2007). If one eigenvalue is made smaller

then some other eigenvalue gets larger. The greater the spread in the eigenvalues the larger

the trace and the less A-optimal CS is. Silverstein (1985) showed that the smallest and

largest eigenvalues of a large Wishart matrix, 1/NΦ
T
Φ, where the entries inΦ are inde-

pendent and infinitely distributed Gaussian with variance 1, are respectively (1−√
y)2 and

(1+
√
y)2 wheren/N → y ∈ (0,1) as n gets large. From Silverstein (1985) the eigenval-

ues ofΦT
Φ must be non-randomly distributed aroundN with finite positive support that

increases withn. Thus we can infer that precision due to the A-optimality of CSdecreases

with more measurements. A certain number of measurements are required before recon-

struction becomes accurate so there is a trade off between accuracy and precision in CS.

Whenn is too low the error due to incorrect reconstruction dominates the error processes

and whenn is too high then random noise dominates.
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Figure 3.1: SNR of CS for a numerical example and the SNR due to the theoretically
inferred precision. As the number of measurements increases the random error dominates
the SNR.
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We perform a numerical demonstration of the error effects in CS.

• A 256×256 random acquisition matrix was generated with Gaussian random entries

of variance one.

• A N = 256 positive random signal was generated withk = 20 nonzero entries.

• The encoding of the signal was contaminated with random additive Gaussian noise

with variance 0.1.

• CS reconstruction was performed via basis pursuit for 1 to 256acquisitions and for

each reconstruction the SNR computed as the ratio of the root-mean-square (RMS)

of the true signal over the RMS of the difference between the true signal and the

reconstruction.

• The SNR due to theoretical precision was computed as the ratio of the RMS of the

true signal to the square root of equation 3.87

Figure 3.1 shows the numerical CS SNR and the theoretical CS SNRdue to A-

optimality. The numerical SNR starts off small due to inaccurate reconstruction and then

jumps quickly nearn = 4k = 80 measurements in accordance with Tsaig and Donoho

(2006). The numerical SNR meets the theoretical SNR at 150 measurements. Above

150 measurements the random noise dominates the error and the numerical SNR tracks

closely with the theoretical SNR.

3.5 The Effect of Error in the Reference on the Wilcoxon

Classification is the process of assigning data to one of two ormore groups. For example

in an automated detection system, a classifier determines ifeach measurement is an in-

stance of the target for detection or not, and labels each instance as positive or negative. In

performing classification tasks one must assess the power ofthe classifier to discriminate

between groups of interest. Assessing the power of a classifier is essentially assessing

how often the classifier is incorrect, however when performing the assessment one must

know beforehand what group each member belongs too. The method for assigning ref-

erence groups is called the reference method and is assumed to be correct, nevertheless

the reference method is another classification and cannot always be assumed to be free of

error.

The area under the curve (AUC) of a receiver operator characteristic (ROC) curve and

the Wilcoxon statistic are two equivalent methods for assessing the power of a classifier.

When there is error in the reference then calculation of the Wilcoxon, or AUC, will be

biased.
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3.5.1 Alternative Derivation that the Wilcoxon is Equivalent to the

AUC

We derive a direct link between the AUC and the Wilcoxon. The result provides a use-

ful equation for examining the effect of error in the reference on assessing classification

power. Assume some data falls into two groups, group A and group B. Group A is the

‘positive’ group and group B is the ‘negative’ group. If a classifier labels a member of

group A as positive then it is a true positive, if the same classifier labels a member of

group B positive then it is a false positive.

We begin with the definition of the AUC given by Barrettet al. (1998)

AUC =

∫ 1

0
TPF(t)d [FPF(t)] . (3.88)

where TPF is the true positive fraction (see section 2.6.3),FPF is the false positive fraction

andt is the threshold parameter that is varied to generate the ROCcurve. Equation 3.88

views the TPF as a function of FPF. Taking the inverse function, i.e. the FPF as a function

of the TPF, an equivalent definition of the AUC is the area between the line FPF= 1 and

the ROC curve

AUC =

∫ 1

0
[1− FPF(t)] d [TPF(t)] . (3.89)

Like Barrettet al. (1998) we change the variable of integration to obtain

AUC =

∫−∞

∞
dt [1− FPF(t)]

d

dt
[TPF(t)] . (3.90)

The integration is from∞ to −∞ because TPF and FPF both go to 0 ast goes to∞ and

to 1 ast goes to−∞. The TPF is the probability that a member of A is at leastt, or

TPF= PA(x ≥ t), thus
d

dt
[TPF(t)] = fA(x = t), (3.91)

wherefA(x = t) is the frequency thatx = t in group A. Similarly FPF(t) = PB(x ≥ t), so

1− FPF(t) = 1− PB(x ≥ t) = PB(x < t). (3.92)

Substituting equations 3.91 and 3.92 into equation 3.90 gives

AUC =

∫−∞

∞
dtPB(x < t)fA(t). (3.93)

In the discrete case the members of A and B are grouped intoN bins with even bin width
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L/N, which gives

AUC =
L

N

N
∑

i

PB(x < ti)fA(ti), (3.94)

whereL is the extent in the domain of the combined nonzero regions offA andfB and

PB(x < ti) =
L

N

i−1
∑

j

fB(tj). (3.95)

Now assume the bin width is made small enough so that a maximumof only one distinct

value of the measurements in A and B can be present in each bin.EachPB(x < ti)fA(ti) is

the normalised count of times that the members in A in bini are larger than the members

in B in bins j ∈ 1, . . . , i − 1. Thus equation 3.94 is the normalised sum of the count of

times that the members in A are larger than the members in B, which is the Wilcoxon.

3.5.2 The Effect of Error in the Reference

Assume group A hasA members and group B hasB members, with distribution of mem-

bers arbitrary but clustered about the respective means. Furthermore assume that the

values of the majority of members in group A are greater than the majority of mem-

bers in group B, but the separation between the groups is not necessarily perfect, i.e.

0.5 < P (A > B) ≤ 1.

Error in the reference assigns members to the incorrect group. LetB∗ be the number

of members actually from group B but are missassigned to group A andA∗ the number

of members from group A missassigned to group B. The frequencydistribution of the

members erroneously transferred from group A isf∗
A, and likewise for group B,f∗

B. The

unnormalised frequency distribution of group A with error isAfA−A∗f∗
A+B∗f∗

B and the

probability of group B with error isBPB + A∗P ∗
A − B∗P ∗

B. The Wilcoxon where there is

error in the reference is (c.f equation 3.94)

We =
L

N

∑

[

BPB + A∗P ∗
A − B∗P ∗

B

]

(x < t)
[

AfA − A∗f∗
A + B∗f∗

B

]

(t)

(B + A∗ − B∗) (A − A∗ + B∗)
. (3.96)

The exact effect of error on the Wilcoxon depends on the distributions of member trans-

ference. We proceed with the simplest case that every memberin both groups has equal

chance of missassignment. Thusf∗
A andP ∗

B are scaled versions of the distributions with-

out error, namelyfA andPB. Letting the Wilcoxon without error beW and recalling that

the Wilcoxon of a group of data with itself is 0.5, gives

We =
W (BA − BA∗ − B∗A) + 0.5

(

B∗B + AA∗ − (B∗)2 − (A∗)2
+ 2A∗B∗)

(B + A∗ − B∗) (A − A∗ + B∗)
. (3.97)
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An interesting feature is that due to the assumption that theerrors in the reference

occur with uniform probability, whenA = B, A∗
= B∗ and equation 3.97 becomes

We = W

(

1− 2
B∗

B

)

+
B∗

B
. (3.98)

Substitutingk = 2B∗

B
wherek is a continuous variable between 0 and 1 gives

We = W (1− k) +
k

2
, (3.99)

which is a linear interpolation between the points (k,W (k)) = (0,W ) and (k,W (k)) =

(1,0.5), i.e. a straight line between the Wilcoxon with no error inthe reference and ran-

dom group assignment.

The importance of this theoretical result is that given the Wilcoxon and an estimate

of the amount of error in the referenceB∗ andA∗, then the Wilcoxon without error is

estimated by projection back along equation 3.97 to the point A∗
= B∗

= 0. Alternatively

rearranging equation 3.97 gives

W =
We (B + A∗ − B∗) (A − A∗

+ B∗) − 0.5
(

B∗B + AA∗ − (B∗)2 − (A∗)2
+ 2A∗B∗)

(BA − BA∗ − B∗A)
.

(3.100)

For the straight line that occurs whenA = B,

W =
We − B∗/B

1− 2B∗/B
. (3.101)

The uncertainty of the estimate of the trueW (A∗
= B∗

= 0) is determined by the uncer-

tainty in the computedWe and the uncertainty in the estimate ofA∗ andB∗. Let θ be the

true AUC, the standard error inW is (Hanley and McNeil, 1982)

SE(W ) =

√

θ(1− θ) + (A − 1)(Q1 − θ2) + (A − 1)(Q2 − θ2)

AB
, (3.102)

where “W can be thought of as an estimate ofθ...”(Hanley and McNeil, 1982),Q1 is

the probability that two randomly chosen members of group A will have higher value

than any random member of group B andQ2 is the probability that one randomly chosen

member of group A will be higher than any two randomly chosen members of group B:

Q1 =
θ

2− θ
,

Q2 =
2θ2

1+ θ
.

(3.103)
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For We we might make the appropriate substitutions forA andB in equation 3.102 to

includeA∗ andB∗, however in practise one would use equation 3.102 with the awareness

that the values ofA andB used include the error. Computing the uncertainty ofW from

the uncertainty inWe andB∗ is problematic because we do not have accurate knowledge

of B, rather, we haveB − B∗
+ A∗. Instead graphical means are employed where curves

are computed for the upper and lower limits of the estimate ofWe andB∗, with the point

We(B∗/B = 0.5, A∗/A = 0.5) = 0.5 taken as definite, i.e the assumption that when half

the data points are transferred into the other group the Wilcoxon is 0.5.

A very important point is that the error in the reference may not occur completely at

random so the distributionsf∗
A andf∗

B may not be scaled versions offA andfB. Since

the reference method used for classifier assessment is itself a classifier then errors in the

reference are more likely to occur where the groups overlap.The salient issue is if the ref-

erence method is independent to the new method. Considering each group individually, if

the reference method and the new method are uncorrelated then the reference errors occur

with equal probability in the new method. If they are correlated then the reference errors

will not appear randomly in the new method, rather they will be biased towards either

the high or low end of the distribution. If the reference method is biased towards correct

classification of either group then missassignment of the members of the other group will

occur more frequently. Furthermore if data cleaning is performed per group, then data

points outside of the overlap region and transfered from onegroup to the other may ap-

pear as outliers and be removed, changing the distribution of transfered data. Maximum

likelihood estimation with assumptions about the underlying distributions to estimatef∗
A

andf∗
B is conceivable but beyond the scope of this thesis.

3.5.3 Numerical Simulation

We demonstrate the effect of reference error on the Wilcoxon by numerical simulation

and match the results with the theoretical prediction. Two groups of data are generated,

the first set is designated group A and hasA = 3000 members. The second group is group

B and has number of membersB = kBA, wherekB can be any real number greater than

zero. Both groups are normally distributed with variance 1. Group B has mean 0 where

Group A has mean 1.5.

The following procedure was performed.

1. For each ofkB in the set{0.3,1,10} letB = kBA and generate groups A and B.

2. For p from 1 to 50%, randomly select and transferp members from group A to

group B,p members from group B to group A, and compute the Wilcoxon.
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Figure 3.2: Numerical computation and theoretical prediction of the Wilcoxon with vary-
ing amount of error in the reference.

Figure 3.2 shows the result of the numerical simulation accompanied with the theoreti-

cal prediction for eachkB = B/A. The numerical data points are presented as circles

where the different theoretical lines are identified by their respective line types. The true

Wilcoxon with no reference error was 0.86. The theoretical prediction matches the numer-

ical simulation well, where it is clear in figure 3.2 which theoretical line matches which

set of numerical data points.





Chapter 4

Hardware

This chapter describes the design, theory and use of the physical system. The hardware

consists of an optical light projection system to encode light patterns on the sample and

a visible/near infrared spectrometer to collect reflected light. The projector uses a Texas

Instruments Digital Micromirror Array (DMA) as the opticalengine. The DMA was

chosen because it is fully controllable at individual mirror level and for the broad spectral

characteristics of the mirrors.

Before modern light modulation devices such as DMAs, light modulation was tradi-

tionally implemented via mechanical multiple aperture gratings and grids. Cyclic ma-

trices were traditionally very popular in optical multiplexing because a physically self

supporting mechanical grid could be constructed accordingto the first row, where self

supporting means that the grid holds itself together. We explain the principle in more

detail. For a cyclic S-matrix generated from a cyclic sequence of length 2m − 1 = ab, the

sequence is wrapped into a matrix of dimensionsa × b. Each row of the new matrix is a

lengthb fragment of generating sequence. The code fragment on each row of thea × b

wrapped matrix is continued to the right to generate ana × ab matrix. Each row of this

new matrix is the same row above it but shifted cyclicallyb times. The firsta×b ‘window’

of the new matrix is the wrapped first row of the S-matrix, the seconda× b ‘window’ the

wrapped second row and so on. Careful selection of the S-matrix and the dimensions

a andb ensures that the wrapped cyclic matrix is self supporting, namely that every ‘1’

entry is vertically, horizontally and/or diagonally adjacent to another ‘1’, likewise every

‘0’ is adjacent to another ‘0.’ A physical self supporting grid of holes and occlusions to

represent the 1’s and 0’s can therefore be made to represent acyclic S-matrix.

Modern light modulation devices completely remove the needfor self supporting en-

coding schemes. Figure 4.1 shows an image of a DMA chip (with apicture drawn on

the mirror region) and a close up drawing of nine mirrors on the chip. Each mirror in a

DMA can be individually addressed and programmed to deflect into the nominally on or

off state (respectively towards the optical path or away into free space or a light dump).

67
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(a) (b)

Figure 4.1: (a) A DMA chip and (b) a close up drawing of the mirrors. (Source:http:
//www.dlp.com/tech/what.aspx, date accessed 16/02/2009,c©Copyright 2009 Texas
Instruments Incorporated. Used by permission.)

Any binary encoding pattern of order equal to or less than thenumber of mirrors in the

DMA can conceivably be used (barring aliasing). A typical DMA might have a grid of

800× 600, 1024× 768 or even more mirrors. The degree of flexibility permittedallows

the use of non-cyclic Hadamard matrices (Streeteret al., 2009) and the random patterns

required for compressed sensing (Streeteret al., 2008a). Furthermore, unlike traditional

mechanical methods, the same optical system can implement Hadamard multiplexing or

compressed sensing of any order without replacement of any parts.

4.1 Optics and Operational Theory
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Figure 4.2: Diagram of the optical setup. Arrows indicate the light path. The spectrometer
measures light from the sample and light piped directly fromthe source. The light chopper
rate is controlled by the spectrometer.

Figure 4.2 shows the optical arrangement. For the illumination system a custom
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DMAProjection Lens

Light Source Housing

(b)

Figure 4.3: a) The optical arrangement, the dashed arrow indicates the sample light path.
The DMA based custom light projector is identified at the top right and is comprised of the
digital projector, with optics stripped down to the DMA and replaced with slide projector
optics. A sample (a piece of meat) is seen on the left. The spectrometer sensor housing
is on a pole to the right of the sample in the image. The blue optical fibre is the reference
beam, conducting light directly from the source to the lightchopper. b) A close up detail
of the custom projector without the reference beam fibre. Thelarge black box with the
red taped wires is the light bulb housing that contains the backreflector, condenser and
shaper optics. The light source is pointed at the mirrors on the DMA and the projection
lens is held in place in front the the DMA.
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broadband digital micromirror array (DMA) projector was built (Streeteret al., 2007,

2008b, 2009). The projector illuminates the sample with multiplexing patterns, encoding

the spatial information of the sample. To build the custom projector, the optics of a com-

mercially available digital data projector (PD100D, ACER, Taiwan) were stripped back

to provide full access to the DMA, and replaced with a light source suitable for Vis/NIR

spectroscopy and an appropriate projection lens. The lightsource, DMA and projection

lens together form the projector. The particular DMA has a grid of 800× 600 mirrors.

The light source is a 250 W tungsten halogen bulb (Osram, Germany) with a back re-

flector and condenser and shaper lenses from a Hanimex Syllabus 2000 slide projector

(Hanimex Australia, now part of Fujifilm Australia1). The Hanimex light source illumi-

nates the DMA. Mirrors on the DMA that are set to the on state reflect light through a

50 mm projection lens taken from a Leitz Pradovit 153DU slideprojector (Ernst Leitz

AG, a former German corporation), which images the mirror pattern on to the sample.

Light incident on DMA mirrors in the off state deflect into free space, landing on the ceil-

ing of the room a good ten metres from the DMA and out of view of the spectrometer.

The custom projector illuminates the sample with a ‘view’ window at the sample of ap-

proximately 100 mm× 130 mm. S-matrix encoding uses the full 130 mm width whereas

H-matrix encoding utilises the central 100 mm width of the view window.

A diode array spectrometer (100 series, KES Analysis Inc., NY, USA) collects and

measures light reflected from the sample. The spectrometer unit analyses the band 400–

1700 nm with wavelength spacing ranging from 6 nm at 400 nm to 10 nm at around 1300–

1400 nm. The light from the sample is collected by a direct view input, which is simply

a collection lens in front of the entrance slit of the spectrometer. The collection lens does

not appear to precisely image the sample onto the entrance slit, otherwise the spectrome-

ter would only sample light from a thin slit on the sample, rather the lens is partially out

of focus with the entrance slit so that a blurred area is sampled. The blurred entrance slit

image on the sample is then an oval collection region. The direct view input is standard

on the KES 100 series spectrometer and collects light from the numerical aperture cone

in front of it. The spectrometer is positioned as close to thesample as possible to collect

a maximum amount of light, but is as far away from the sample asnecessary so that light

from the entire sample is collected. Images were captured and examined and the spec-

trometer repositioned to minimise edge effects (minimise the presence of corner pixels

from which light does not reach the sensor).

The spectrometer has an inbuilt light chopper arrangement that is synchronised with

the spectrometer’s data acquisition sequence. The chopperwas detached from the main

spectrometer body and mounted externally for full access. Agradient index lens focuses

light from the halogen bulb of the Hanimex light source into a1 mm diameter optical fibre

1http://hanimex.co.nz/, date accessed 02/07/2009
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that conducts the light from the light source to the chopper.The chopped reference beam

is conducted to the spectrometer via a fibre optic bundle. Dueto physical constraints the

light to the sample is not chopped. When the chopper is closed the spectrometer receives

light from the sample only, when the chopper is open the spectrometer receives light from

the sample and the reference beam.

The DMA and spectrometer are computer controlled via Matlab(v2007a, The Math-

works, MA, USA). KES Inc. ActiveX libraries provide the interface between Matlab

and the Spectrometer. The ACER data projector controller hardware is left intact and

the DMA chip controlled via the computer VGA interface. The Psychophysics Tool-

box (Brainard, 1997; Pelli, 1997) is used to interface Matlabwith the projector.

A physical masking system is not used to prevent light from outside of the sample to

reach the entrance slit. Instead, assuming that unwanted light is not changing between

sequent spectral acquisitions, the data acquisition and reconstruction method described

below (section 4.1.2) removes unwanted light, producing a virtual masking effect. There

is ample opportunity for the optical arrangement to cause unwanted spatial and spectral

effects, such as attenuation at optical surfaces and uneven sampling of the sample by the

spectrometer: the centre is seen as brightest, even if the sample is evenly illuminated. An

internal study performed at AgResearch independent of this thesis observed the uneven

collection with the centre being brightest.2 These effects are multiplicative in nature and

are easily corrected (see Section 4.1.5 below).

Figure 4.3 shows a) an image of the experimental setup and b) acloseup of the custom

image projector. The experimental setup is the final setup used for the meat spectral

imaging application in chapter 5. The spectral imaging is inprocess in a), so the light

source is on and the DMA cannot be seen because of the bright light illuminating it.

The picture of the close up of the custom projector in b) was taken early in the setup

process, so a minimum number of components are seen (in particular the reference beam

is absent, which was added later). The light source housing (with the red taped wires) and

projection lens (held in place with a retort stand arm) are clearly seen in the picture. The

DMA is the rectangular grey object to the right of the projection lens. There is a black

mask object in front of the DMA that permits only the mirror region to be seen.

4.1.1 Data Acquisition

Before discussing multiplexing on the optical system we explain acquisition of one spec-

trum with an associated reference beam measurement. Every acquired measurement com-

prises of two parts: the spectrum via the sample,a, and the spectrum including the light

source reference,ar. The acquired sample spectrum,a, consists of: the sample spectrump

2Private Communication.
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(an attenuation), the light source spectrumr (with associated noiseeP of variancer), the

backgroundt which includes stray light and the spectrometers baseline and the random

additive noisee. Now

aλ = αs,λ(rλ + eP,λ)pλ + tλ + eλ, (4.1)

whereλ is the index of wavelength observed by any particular diode of the spectrometer

andαs,λ is the attenuation of light due to the optics. As stated above, due to physical con-

straints with the available equipment, the light to the sample is not chopped whereas the

reference beam is. Therefore the second part of the spectrum, ar, includes, in addition to

the reference beam,r, and the associated random additive noise,er, the sample spectrum

a. Thus

ar,λ = αrλ(rλ + eP,r,λ) + αs,λ(rλ + eP,r,λ)pλ + tλ + er,λ. (4.2)

whereαr,λ is the attenuation through the reference optics and the subscript r denotes ref-

erence. The time difference between the acquisition of isa andar assumed small enough

that t does not change between the two measurements. The estimate of the reference, ˆr,

is recovered by subtraction

r̂λ = ar,λ − aλ = αr,λrλ + (αr,λ + αs,λ)eP,r,λ − αs,λeP,λpλ + er,λ − eλ. (4.3)

With any reference beam system the optics are designed to pass as much light as possible,

soαr,λ ≫ αs,λ andαr,λeP,r,λ ≫ er,λ − eλ and we can approximate the reference estimate as

r̂λ ≈ αr,λrλ + αr,λeP,r,λ. (4.4)

The subtraction betweenar anda in equation 4.3 causesa and r̂ to have non-zero co-

variance. The simplification made in equation 4.4 does not mean that the covariance is

approximately zero. The covarianceσ2
a,r̂ is the variance of the noise terms that appear in

both equations 4.1 and 4.3. Letσ2
0 be the variance of the random additive noise and since

the variance of the source term is equal to the meanr, the covariance is

σ2
a,r̂ = −αsrpλ − σ2

0. (4.5)

4.1.2 Complement Encoding

Consider the Hadamard encoding matrixH with +1 and−1 entries. The optical system

of Figure 4.2 cannot directly implement the−1’s of H. We split the encoding matrixH

into two parts, each with entries of 0 and 1: a positive partH+ and negative partH− such
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 +1 +1 −1 +1 −1    H

H

H
+

−

 +1 +1 +1 0  0

 0  0  0+1 +1

=

−

Figure 4.4: Illustration of splitting the Hadamard matrix intoH+ andH− components. In
H+ the−1s of the original H-matrix are converted to 0’s. InH− the+1s are converted to
0s and the−1’s are converted to+1s.

thatH = H+ −H−, where

H+
=

1+H

2
,

H−
=

1−H

2
.

TheH+ andH− encode complementary subsets of the pixels. Figure 4.4 illustrates the

splitting process. Davis (1995) used occlusion and reflection to split the Hadamard ma-

trix to perform hyperspectral imaging. The optics of our system in conjunction with the

splitting of the multiplexing matrix facilitates background illumination removal (Streeter

et al., 2007), which was not considered by Davis. The splitting process was also proposed

in optical communications for code division multiple access systems (Nguyen and Young,

1995) to boost the SNR of identifying a single user from multiple signals.

The spectrometer measures a set of bands, each labelled witha particular wavelength.

We drop the subscriptλ as the operations described are applied simultaneously andinde-

pendently to each measured band. To acquire the spectra thejth row ofH+ is wrapped

into a two dimensional pattern, projected onto the sample and the correspondingjth entry

of a+ is acquired. Immediately after each row ofH+ the corresponding row ofH− is

similarly wrapped and projected onto the sample and the correspondingjth entry ofa−

acquired. The spectra are contaminated by random additive instrument noisee and the

additive combination of dark current, background and straylight, all represented byT .

The light source in our experimental setup has been shown to be stable during the data

acquisition period (Streeteret al. (2008b), also see Section 4.3.2), as no significant im-

provement in measurement repeatability was seen after correcting for light source drift

in spectral regions of usable SNR in that study. Regardless wemodel the effect of light

source drift during the data acquisition as multiplicationby the diagonal matrixR. The
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illumination has random fluctuation following Poisson statistics represented by the diag-

onal matrix of random errorsEP . For pixel responses 0≤ {p}i ≤ 1 at pixel i on the

sample, the acquired spectra are then:

a+
= αs(R

+
+ E+

P )H+p + T + e+,

a−
= αs(R

−
+ E−

P )H−p + T + e−,
(4.6)

The variance of the diagonal entries inEP are

var
(

{EP}j,j
)

= {R}j,j = 〈r〉j , and{E}i,j = 0 for all i 6= j. (4.7)

where var(·) denotes variance. Equation 4.7 states that the illumination over the sample

has random fluctuation with variance equal to the mean intensity; characteristics typified

by Poisson statistics. The superscripts onR,EP andehighlight that random noise sources

change between acquisitions.

There is a second source of intensity dependent noise known as shot noise, that occurs

in the sensor diodes and is proportional to the current induced by photon interaction with

the sensor. The effect of shot noise is a constant modifier, greater than one, on the right

hand side of the first equation in 4.7. Furthermore this constant modifier is dependent on

the width of the band (not truly a bandwidth in the sense that the diodes do not have a

Gaussian sensitivity profile) of the diode in the same way theintensity noise is dependant

on the bandwidth of the observation. In a spectrometer the band dependence may not be

precisely identical between diodes and thus may cause a ‘wavelength’ dependent noise

effect in the spectra. We do not explicitly model shot noise as the theoretical results and

associated interpretations that follow are not altered in asignificant way. Regardless we

recognise that the shot noise effect exists.

The combined stray and background light,T , is assumed to be slowly changing and,

because of the source encoding (equation 4.6),T is independent ofH. As each row of the

positive and negative encodings are taken in quick succession we make the approximation

R ≈ R+ ≈ R−. Thus taking the difference between positive and negative encoding parts

gives

a = a+ − a−
= αsRHp + ea,P + e, (4.8)

wheree= e+ − e− is the total additive noise and

ea,P = αs(E
+

PH
+ − E−

PH
−)p (4.9)

is the total Poisson photon noise. The variance ofe is σ2
= 2σ2

0 due to the subtraction
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operation. The value ofσ2 is not to be identified or confused with the theoreticalσ2 of the

previous chapter. The encoding is performed according to matrices with positive entries

and theH+ andH− encode complement subsets ofp, thus the signal dependent noise

variance for thejth acquisition isσ2
a,P,j = αs|hj| · p where|hj| is a vector consisting of the

absolute values of the entries of thejth row of H. For the G-matrix (section 3.1.1) we

substitute|gj| for |hj|.

4.1.3 Decoding and Noise in Complement Encoding

Application of the inverse transform to the acquired spectra gives

p̂ =
1
N

Ha

=
αs

N
HRHp +

αs

N
H (E+

PH
+ − E−

PH
−)p +

1
N

He.
(4.10)

The last term in equation 4.10 is the reduced additive noise.The first term in equation 4.10

is the reconstructed pixel values but now contaminated by a multiplicative matrix factor.

If the light source drifts over time then the factor corruptsthe relative magnitude of the

entries inp̂ by
αs

N
HRH. (4.11)

If the light source does not drift thenR = 〈r〉 I so

αs

N
H 〈r〉 IH = αs 〈r〉 I, (4.12)

and the multiplicative error factor is constant over the entries inp̂.

The second term in equation 4.10 is the photon noise. If we were to illuminate the

entire sample then the photon noise variance isαs 〈r〉j N 〈p〉 where〈p〉 is the mean pixel

value,N 〈p〉 is the attenuation of the entire imaged region and〈r〉j is the light intensity

at the time that thejth acquisition is taken. Recall that each positive encoding pattern

(row in H+) illuminates a subset of the pixels and the corresponding negative encoding

from H− illuminates the complement subset. Thus there exists the fraction 0< δj < 1

such that the photon noise variance of thejth acquisition of the positive encoding is

(σ+

j,P )2
= δjαs 〈r〉j N 〈p〉 and the negative encoding (σ−

j,P )2
= (1− δj)αs 〈r〉j N 〈p〉. The

photon noise varianceσ2
j,a,P of thejth acquisition in equation 4.8 is then

σ2
j,a,P = (σ+

j,P )2
+ (σ−

j,P )2
= αs 〈r〉j N 〈p〉 . (4.13)

The photon noise for the G-matrix at acquisition is approximately the same as equa-

tion 4.13 becauseG has no 0 entries.
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H-matrix decoding averages the error values (with sign flipping due to the negative

entries inH) and reduces the random noise MSE by a factor of 1/N. The MSE of the

estimates due to photon noise at decoding (equation 4.10) istherefore

ǫp̂,P = αs 〈r〉 〈p〉 . (4.14)

Thus for the H-matrix the average MSE is

ǫ =
1
N

σ2
+ αs 〈r〉 〈p〉 +

1
N

bTb, (4.15)

whereb is the bias error due to the light drift (section 3.2.4) whichdepends onH, namely

b = αs

(

〈r〉 I − 1
N

HRH

)

p. (4.16)

When the light source does not drift then from equation 4.12,b = 0. Multiplicative bias

that alters the relative magnitude of the estimates inp̂ also results in nonzerob. A constant

bias is easily correctable, however a non constant bias is more difficult if not impossible

to correct without auxiliary measurement of the cause.

Decoding for the G-matrix does not reduce the photon noise tothe same degree as the

H-matrix. The average MSE for G-matrix multiplexing at decoding is

ǫ ≈ 2
N − 1

σ2
+ 2αs 〈r〉 〈p〉 +

1
N − 1

bTb. (4.17)

The biasb in equation 4.17 is dependent onG. Thus the bias error in equation 4.17 is not

the same as that of equation 4.15. ForG, b is

b = αs

(

〈r〉 I − 2
N

SRG

)

p. (4.18)

For pointwise encoding, it is necessary to acquire a measurement of the background il-

lumination/baseline/stray with every pixel measurement.The continual background mea-

surement is to mitigate any error effects due to background drift, but causes the ran-

dom additive error in acquisition to beσ2
= 2σ2

0, the same as the complement encoding.

The background measurement is subtracted from the pixel measurement, thus the average

MSE for pointwise encoding is

ǫ ≈ σ2
+ αs 〈r〉 〈p〉 +

1
N

bTb. (4.19)
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Again the biasb is dependent on the acquisition matrix, in this case the matrix identity

b = αs (〈r〉 I − R) p. (4.20)

In the above the noise was averaged to produce a single noise characteristic, namely

the A-optimality (average optimality, see section 3.2.1).Considering the pointwise pho-

ton noise MSE per pixel (which is also per acquisition for pointwise acquisition) we have

σ2
j,P = αs 〈r〉j 〈p〉j. In multiplexing (H or G for example) the noise per-pixel after recon-

struction is the average of the noise at acquisition. This isa subtle but important point,

because the Poisson noise is increased for lower than average pi (Hassleret al., 2005).

If the image has a high dynamic range then dark pixels have Poisson noise increased by

multiplexing. Likewise bright pixels have Poisson noise decreased. Whether the increase

of Poisson noise in dark pixels is important is application dependent.

4.1.4 Reference Beam Correction

For theoretical purposes we have made the simplification that light source drift between

positive and negative encodings is negligible. This simplification is purely a theoretical

device and in practice a reference measurement is acquired for and applied to each of the

2N measurements. The purpose of light drift correction is to remove the bias due toR in

the first term of equation 4.10. The simplest correction method for light source drift is to

acquire reference spectra and divide the acquired spectra by the reference spectra before

decoding. Assuming that the reference beam is acquired veryquickly before or after the

sample spectrum, light drift between sample and reference is negligible. The measured

reference is represented by the diagonal matrix,Rr, and is the combination of the true

light level values,R, and error terms, with entries

{Rr}i,i = αr{R + EP,r}i,i + {er}i, (4.21)

whereEP,r is the reference photon noise ander is the instrument noise. The reference

beam is designed to pass the maximum amount of light to the sensor, thus{R}i,i =

var
(

{EP,r}i,i
)

≫ var
(

{er}i
)

, moreover{R}i,i ≫ var
(

{EP,r}i,i
)1/2

. The total error vari-

ance in the reference beam is then well approximated by the photon noise,σ2
r,i = αr 〈r〉.

Application of the reference beam correction and then decoding gives

p̂ =
1
N

H
1
αr
R−1

r [αsRHp] + et

=
αs

αr
p + et,

(4.22)

whereet is the total random error in the estimate, that is, the noise due to instrument and
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photon effects combined with the reference beam noise. The total MSE after reference

correction is

ǫt =
1
N

var
( a
R

)

=
1

N 〈Rr〉2

(

σ2
a +

〈a〉2

〈Rr〉2
σ2
r − 2

〈a〉
〈Rr〉

σ2
a,r

)

,

(4.23)

where the second line in equation 4.23 uses the equation for the variance of the ratio of two

variables with random error (Pearson, 1897),〈a〉 is the expected value of the acquisition

andσ2
a,r is the covariance between the the sample spectra and the reference beam spectra.

Substitutingσ2
a = αs 〈r〉N 〈p〉 + σ2, σ2

r = 〈Rr〉 = αr 〈r〉 and〈a〉 = αs 〈r〉N 〈p〉 gives

ǫt =
1

N (αr 〈r〉)2

(

αs 〈r〉N 〈p〉 + σ2
+

α2
s 〈r〉2N2 〈p〉2

α2
r 〈r〉2

αr 〈r〉 − 2
αs 〈r〉N 〈p〉

αr 〈r〉
σ2
a,r

)

.

(4.24)

Only the reference beam is chopped (section 4.1.1), thus theraw measurements include

light from both the sample and the reference beam. The reference beam measurements

are easily obtained by subtracting the sample measurement from the raw measurement.

This subtraction results in a covariance ofσ2
a,r = −σ2 − αs 〈r〉N 〈p〉. Substituting and

rearranging, the MSE of the reference corrected estimates is

ǫt =
Nαs 〈r〉 〈p〉 + σ2

Nα2
r 〈r〉2

(

1+
2Nαs 〈p〉

αr

)

+
N 〈p〉2

αr 〈r〉
α2
s

α2
r

. (4.25)

There is a factor ofN on the top line in the brackets and in the second term. This factor

of N corresponds to the sameN that appeared in equation 3.53, which was considered

disadvantageous. Note that the effect of the optical pathway is given byαs andαr, and that

typically the light path of any reference beam system is designed to pass as much light as

possible, thusαr ≫ αs. To a close approximation

ǫt ≈
Nαs 〈r〉 〈p〉 + σ2

Nα2
r 〈r〉2

. (4.26)

The decoding performs an averaging operation of the noise, so the average MSE isǫ = ǫt.

Comparing equation 4.26 to equation 4.15 we see that the errordue to the bias is removed

and the error is reduced by a factor ofα2
r 〈r〉2. The mean squared signal is also reduced

by the factor ofα2
r 〈r〉2 and so the overall signal to noise ratio is not reduced by this

factor. The removal of the bias term is significant if the drift is significant. If the additive

noise variance,σ2, is larger than the multiplicative noise, then the noise is reduced by

the Hadamard multiplexing. However ifNαs 〈r〉 〈p〉 ≫ σ2 then the noise is not reduced,

so in such cases multiplexing is not necessary. In situations where both may occur then
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equation 4.26 may be considered a preferential noise reduction, which is demonstrably

useful when the main noise source is indeterminate or varying.

For G-matrix multiplexing with reference correction it follows that the total noise

variance, hence the average MSE is twice that of the H-matrix

ǫt ≈
2Nαs 〈r〉 〈p〉 + 2σ2

Nα2
r 〈r〉2

. (4.27)

For pointwise encoding the total MSE per pixel is

ǫt,j ≈
αs 〈r〉j pj + σ2

α2
r 〈r〉2

j

. (4.28)

The average MSE is then the average of theǫt,j, thus

ǫ =
1

α2
rN

∑

j

(

αspj

〈r〉j
+

σ2

〈r〉2
j

)

. (4.29)

In equation 3.43 we made an approximation that the mean of a product is the product of

the means. This approximation is not valid for ratios so equation 4.29 is the simplest form

of the average MSE for reference corrected pointwise measurement.

4.1.5 Reference Object Correction: the White Tile Effect

The optics used in the multiplexing produce spatial and spectral inhomogeneities that

cause systematic error. Furthermore the error was assumed constant over the spatial and

spectral dimensions. In practice the error due to the opticsis not constant but rather

varies in space and wavelength, however the optics effect is multiplexed with the pixels

and subsequently recovered intact at decoding thus the above theoretical results hold. In

precision measurement we want to obtain the variation due tothe sample only and any

systematic error must be corrected for. The Standard practice in reflectance spectroscopy

is to measure a white reference tile with very high diffuse reflectance. We use a Spectralon

reference white tile (Labsphere, North Sutton, NH, USA) which the manufacturers claim

to have the highest known diffuse reflectance in the visible and near infrared domain.

Furthermore the Spectralon white tile has a very flat reflectance profile both spatially and

spectrally in the spectral domain of interest (approximately 400–1700 nm).

The purpose of white tile reference correction is to correctfor optical effects not di-

rectly due to the sample. A spectroscopic measurement obtains the mathematical product

of the attenuation due to each optical substance and boundary encountered by the light,

including the optical glass, mirrors, the light source, thespectrometer diffuser, the sensors
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and even air as well as the sample. Replacing the sample with a reference tile and acquir-

ing spectra we essentially assume that the attenuation due to the reference tile is known,

to which sample reflectances are compared. Taking the ratio of the sample spectra to the

white tile spectra removes the effect due to the optics.

Recall that the reconstructed image pixels of an object with reference beam correction,

p̂, are (equation 4.22)

p̂i =
αs,i

αr
pi + et,i.

The reference white image,p̂W , is accordingly

p̂W,i =
αs,i

αr
ρW + et,W,i. (4.30)

whereρW is a real number less than but close to 1 that represents the reflectance of the tile.

In practical situations it is nearly impossible to accurately assessρW with high precision,

so we use the pragmatic approximation that the reference tile is a perfect reflector, i.e.

ρW = 1. Taking the pixelwise ratio of the pixel to reference tile measurements gives

p̂i

p̂W,i

= pi + eC,i (4.31)

where theeC,i are the noise errors after white tile correction.

White tile correction, like the reference beam correction, removes a bias to make the

estimate ofp more accurate. However such corrections also increase the noise variance.

Returning to the assumption that theαs,i have the same value, the noise MSE for the

reference corrected pixel values is (equation 4.26)

ǫt ≈
Nαs 〈r〉 〈p〉 + σ2

Nα2
r 〈r〉2

.

Immediately we can see that the MSE for the reference corrected white tile measurements

is

ǫt,W ≈ Nαs 〈r〉 + σ2

Nα2
r 〈r〉2

. (4.32)

We observe that〈p〉 < 1, thusǫt,W > ǫt in the presence of Poisson noise. This is a

sensible result as the white tile diffusely reflects more light to the sensor than any other

known sample.

The average MSE due to the white tile correction, using Pearson’s formula and using
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the fact that white tile measurements are independent of theimage measurement, is

ǫC = Var

(

p̂

p̂W

)

,

=
1

〈p̂W 〉2

(

ǫt +
〈p̂〉
〈p̂W 〉ǫt,W

)

.

(4.33)

Using the above expressions for the MSEs,〈p̂〉 = αs 〈p〉 /αr and〈p̂W 〉 = αs/αr,

ǫC ≈
α2
r

α2
s

(

Nαs 〈r〉 + σ2

Nα2
r 〈r〉2

+ 〈p〉2 Nαs 〈r〉 + σ2

Nα2
r 〈r〉2

)

,

=
Nαs 〈r〉 〈p〉 + σ2

N 〈r〉2 α2
s

+ 〈p〉2 Nαs 〈r〉 + σ2

N 〈r〉2 α2
s

.

(4.34)

In equation 4.34 we see the multiplexing mitigation of the effect of additive noise. How-

ever there is a sharp increase in noise variance over the reference corrected measurements

due to the optics variable,α2
s , appearing on the bottom line of both terms. The light in-

tensity term,〈r〉, is typically large, so the increase in variance is counteracted somewhat

by the multiplication ofα2
s by 〈r〉2. Further compounding the noise increase is a near

doubling of noise variance seen by the presence of two terms of similar magnitude. The

theoretical analysis leads to the common sense conclusionsthat, apart from the multi-

plex advantage, more light from the light source and less attenuation due to the optics

ultimately leads to better signal quality. Equation 4.34 takes the interpretation further in

showing how poor light levels and high light attenuation notonly causes a low signal at

capture, but causes high noise levels when all the necessarycorrections are applied.

4.2 Testing Methodology

To test the hardware we take images and examine:

1. the accuracy and repeatability of measurement and

2. the usability of the spectra produced.

Hadamard multiplexing is assumed accurate thus for Hadamard multiplexing we only

assess the SNR per wavelength. For compressed sensing the accuracy and precision varies

with the number of measurements so we need to test for the similarity to the true values as

well as the SNR. In practical cases it is typically not possible to know the true values so we

must use the best estimate of the true values possible. Sincethe Hadamard multiplexing

is assumed accurate we use the average of a number of Hadamardacquired images as the

best estimate of the true values.
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SNR is simply the square root of the mean squared signal over the variance. To char-

acterise the SNR for hyperspectral imaging we:

• capture a set of images;

• compute the mean and variance for each pixel at each wavelength and

• compute the SNR hyperspectral image.

Clearly for a hyperspectral system there is a SNR value associated with each pixel at each

wavelength and we must reduce the rich information down intoan easily interpretable

form. The imager performs the multiplexing operation simultaneously to all the wave-

lengths measured, thus spectral variation in the SNR and SNRboost are informative of

the nature of the noise per wavelength. We take the mean SNR over the pixels to obtain

a single SNR spectrum. Computing an average SNR spectrum is consistent with the con-

cept of A-optimality (section 3.2.1). The multiplexing operates over the pixels, and we

want to quantify on average the power of multiplexing to improve signal quality.

When a spectral image is obtained that is sufficiently accurate and precise then it is

usable. Spectral images that are usable can be processed to yield a discrete segmentation

or continuous range of values that represent some characteristic of the object. Spatial

representations, such as the mean image, principal components over the wavelengths or

multivariate calibrations, are interesting when there is spatial variation in the object. The

processed versions of the hyperspectral image typically have much lower dimensionality

so it is a simple matter to view and qualitatively assess gross features. Spatial repre-

sentations are further transformable. Simple thresholding or grey scale slicing, or more

complex processing techniques such as clustering, can be employed to return a classifi-

cation of pixels. Calibration techniques such as regressionon the principal components

against some reference value return a single continuous prediction image. In this chapter

we are interested in simple examples which demonstrate thatthe hyperspectral imager

provides useful data.

4.2.1 G-matrix (Complement S-matrix) Multiplexing

In addition to H-matrix complement encoding we test G-matrix encoding via S-matrix

complement encoding (see Section 3.1.1 for an overview of the matrices). Recall from

Section 4.1.2 that complement coding, in conjunction with the source modulated multi-

plexing optics, facilitates the removal of background illumination effects from the mea-

surements. G-matrix complement encoding is implemented byacquiring data according

toS and byJ −S, whereG = S− (J −S) = 2S−J and the two encodings acquire com-

plement information. Each row ofS is wrapped and projected onto the sample, following
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immediately by the corresponding row ofJ − S so that drift effects between acquisitions

are minimised. The acquired data are reference beam corrected and subtracted to give

a = (J − S)p − Sp + et,

= (J − 2S)p + et,

= Gp + et,

(4.35)

whereet is the total noise. Previously 2S−J was referred to as the total encoding (Streeter

et al., 2007, 2008b); here we correctly identify the total encoding with G. If G is order

N − 1, then the estimate from decoding is

p̂ =
2
N

Sa

= p +
2
N

Set.
(4.36)

From Sections 3.2.1 and 3.2.3 we expect a reduction in additive random noise variance of

2/N and a doubling of the Poisson noise variance. The overall effect on the SNR depends

on the relative contributions of the two noise sources.

4.2.2 Compressed Sensing

For compressed sensing (CS) we used the same encoding patternΦ of randomly entered

ones and negative ones in each image acquisition (Streeteret al., 2008a). Complement

encoding is used to acquire the data:Φ is split into complement positive and negative

partsΦ+ andΦ− with entries that consist of ones and zeros. We acquire

a+
= Φ

+p,

a−
= Φ

−p,
(4.37)

and take the difference which gives

a = a+ − a−
= Φp. (4.38)

To compare the Hadamard and CS encoding on a fair basis we useΨ = H, the

Hadamard matrix, as the compression basis. This choice is further motivated by the fact

that if one concatenates the rows of an image, as we have, thenstrong almost square

shaped periodicity occurs. Periodic information is exactly the type of information that the

Hadamard transform can represent in a sparse manner. For theCS decoding the following

was carried out:

1. for l from 50 to 256,



84 Hardware

2. estimatêp from l measurements.

We ran the CS decoding as per equation 2.24, i.e. non-noise aware, and with the noise

aware option (Tsaig and Donoho, 2006). The Sparselab package (see Section 2.4) has a

basis pursuit denoising option which is invoked by settingδ = 1 in equation 2.25. The

reference beam correction reduces the magnitude of the datapassed into the basis pursuit

reconstruction, so noise aware CS used a noise parameter ofδ = 0.001. This noise

parameter term appears somewhat small, but is further motivated by the expected noise

level with respect to the reference corrected signal. Afterreference beam correction and

subtraction of the negative from the positive encoding thisnoise parameter is of the same

order of magnitude as the measurements.

The SNR was used to examine precision and the RMS difference from the best esti-

mate of the true signal used to examine accuracy. For precision the mean and standard

deviation for each type of imaging were taken and the SNR hyperspectral images com-

puted. The ratio of SNRs between the Hadamard to pointwise andthe CS to pointwise

were computed. The mean SNR over the pixels were taken to givea single average SNR

boost spectrum for each case. For accuracy the mean of the Hadamard images was used

as the best estimate of the true pixel values. The difference between the CS and mean

Hadamard reconstructions were computed to obtain a hyperspectral difference image. For

each number of measurements used in reconstruction the RMS error was computed over

the acquisitions and the mean RMS error was computed and plotted.

4.2.3 Objects Imaged

A set of objects were imaged to provide interesting hyperspectral images. In some cases

the objects are intended to simply show upon visual inspection that the imager produces a

sensible spatial pattern, that is, the image looks correct.Other objects were fabricated to

provide contrasting signals so that we can observe the spectral shape. Segmentation of the

hyperspectral images by simple chemometric techniques then demonstrates the usability

of the spectra produced by the imaging system.

A spatial grid pattern was generated and is shown in Figure 4.5. The image shown

is slightly larger than the view area used in the hyperspectral imaging. However in the

hyperspectral image a white square in the top lefthand region is approximately 6 mm2

where in the bottom righthand corner a square is less than 3 mm2. The grid pattern is for

performing imaging at different spatial resolutions. The pattern is comprised of a square

wave sequence that varies with increasing rate from left to right and from top to bottom.

Where two peaks in the sequences intersect then a white regionresults, when two troughs

intersect then a black region results and where a trough meets a peak then a 50% grey

region results. A given imaging resolution that is able to resolve the top left may produce
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Figure 4.5: The testpattern for examining spatial variation in the reconstruction. The rate
of change of the bright-dark patterns increases from the topleft to the bottom right.

Figure 4.6: The wood and acrylic object. The acrylic is on theleft and the wood on the
right.
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aliasing at the bottom right. Furthermore if the imaging method is valid then the pattern, or

some aliased corruption of the pattern, should be clearly apparent in reconstructed image

data. The spatial grid pattern was printed using a typical laser jet printer on printer paper

and glued onto a cardboard back using PVA. Also a fully black image was printed from

the same printer to test the ink. The ink exhibited reasonably homogeneous absorption

over the entire spectral region of the spectrometer (400–1700 nm wavelength) with no

obvious peaks.

Figure 4.6 shows the wood and acrylic object used by Streeteret al. (2007) and imaged

using G-matrix encoding. Streeteret al. (2007) used photographic white paper on an

aluminium backing as the reference white. While not ideal thewhite paper provided the

means to correct for spatial inhomogeneities, albeit without the optimised reflectance of a

Spectralon tile. The wood is pine (pinus radiata) and the acrylic is the material commonly

used in engineering workshops. The wood is approximately 20mm thick and the acrylic

approximately 3 mm thick. The two materials are held together by PVA glue, with another

piece of pine glued to the wood behind the acrylic, onto whichthe acrylic is glued. Acrylic

was chosen for this object because of its distinct spectral absorption regions in the NIR.

In contrast wood was chosen because it is a highly inhomogeneous material that can be

expected to have a distinct general shape but with considerable variability. The wood used

in this sample is quite dry, so distinct water absorption bands should not be obvious.

Figure 4.7 shows the polystyrene object with diagonal inlays of Rimu wood (dacry-

dium cupressinum) strips. This object was used in Streeteret al. (2007, 2009). In the

latter publication imaging was performed with H-matrix encoding. Both the wood and

the polystyrene are approximately 15 mm thick and glued directly onto a cardboard back.

The shape of this object is to show spectral imaging of an object with a more interest-

ing spatial pattern than simply two halves. Polystyrene is highly particulate so spectra

produced are expected to have a high degree of scattering effect. Also the material was

deliberately obtained from a engineering workshop where a reasonable chance of con-

tamination is possible by dust or other substances, so ‘interesting’ spectra are expected.

Similarly the Rimu wood was from a discarded piece of furniture, although surfaces with-

out paint or polish were used.

In Streeteret al. (2008b) a sample with acrylic on the left hand side and white card-

board on the right hand side was used to demonstrate the usability of the spectra and

examine the SNR boost of the multiplexing with reference beam correction. Forty im-

ages were taken of the object over five days to allow for the possibility of changes in the

imager to occur and to examine if the reference correction reduced these changes. The

Spectralon tile was used as the white reference. G-matrix encoding was employed as the

imaging method. A Figure of this sample is not included because in the visible domain it

appears as a plain white object with a crack down the middle. To the eye the cardboard
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and the acrylic are distinguishable, however a colour machine vision system would have

considerable difficulty separating the two substances. Cardboard, like wood, is likely to

have considerable chemical variation. While the white cardboard board and acrylic look

similar in the visible domain, in the NIR there are strong differences and discrimination

is a simple matter.

The acrylic and printed circuit board (PCB) object in Figure 4.8 was fabricated as an

alternative to the acrylic and wood object and was used in Streeteret al. (2009). The

sample consists of the same type of acrylic used in the acrylic and wood sample with

PCB fibreboard fastened with electrical tape. When imaging theobject the tape was kept

out of the optical pathway. The PCB board is semi-transparentand yellowish to the eye.

The spectral effect of the PCB was largely unknown at the time of fabrication. However

general attenuation of the light was expected.

The Spectralon white tile was imaged to act as a reference white object. Pointwise

division of sample images by the Spectralon images correctsfor unwanted variability

due to the imager. Also the images of the Spectralon tile indicate the spatial variation

due to the imager. We use the Spectralon tile for performing SNR measurements on

the system. For the G-matrix imaging we use a 255 order matrixderived from a cyclic

SRS S-matrix wrapped to acquire 15× 17 pixel images. For H-matrix we use a 256

order Sylvester construction matrix wrapped to acquire 16× 16 pixel images. For each

SNR boost experiment pointwise images were acquired concurrently with the multiplexed

images of the same dimension and resolution. The white tile has the highest diffuse

reflection of any object available to us. Thus the light levelfrom the tile, hence the photon

noise, is greatest when using the Spectralon tile. The SNR ofimaging with the white

tile will be greatest with respect to additive signal independent noise, but the SNR boost

reduction due to multiplicative signal dependent noise is maximised. Thus the SNR of

the white tile images provide the most interesting and informative SNR data.

4.3 Results and Discussion

4.3.1 Images and Spectra

Images of the spatially varying pattern in figure 4.5 are shown in Figure 4.9. Both images

were taken with Hadamard H-matrices and are displayed at 1178 nm. The pattern is ho-

mogeneous over the wavelengths where there is sufficient SNR. Both images were filtered

in the spectral dimension to reduce noise. There is an edge effect on the top and bottom

right due to the spectrometer not quite capturing light fromthis region. The images have

been white corrected which exacerbates the error in the edgeeffects considerably where

the signal, hence SNR, is small in magnitude. The imaging system was designed for
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Figure 4.7: The wood and polystyrene object.

Figure 4.8: The acrylic and PCB object. The acrylic is on the left and the PCB covering
the acrylic on the right. Marks are imperfections such as scuffs on the material.
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(a) (b)

Figure 4.9: Images of the test pattern. a) A 16× 16 pixel image and b) a 64× 64 pixel
image. Both images were of an approximately 100×100 mm square region on the object.

imaging a round object centred in the middle of the field of view (see the next chapter),

so the corner edge effects are not significantly detrimental for practical applications. The

left hand image has resolution of 16× 16 pixels over approximately 100× 100 mm. This

corresponds to a pixel size of about 6×6 mm, far too low resolution to resolve the pattern.

Indeed visual inspection immediately confirms that the pattern is severely aliased. On the

left and to a lesser degree at the top a square pattern is seen,but is completely lost at the

right hand bottom. The right hand image has a resolution of 64× 64 pixels over approx-

imately 100× 100 mm, resulting in pixel size of about 1.6× 1.6 mm. The square pattern

of varying rate of change is clearly visible. Some aliasing is present, especially towards

the right and bottom of the image.

With the available equipment the lower resolution image took 2.5-3 minutes to acquire

and another 2.5-3 minutes for the accompanying white reference tile image, for a total

of 5 minutes. The higher resolution image took over 40 minutes, 80 minutes including

the white tile image. The acquisition time for one spectrum is the length of time from

the computer command to change the pattern until the image completely forms on the

DMA plus the acquisition time of the spectrum for that pattern, in total about 8/25s.

During the spectral acquisition four spectra are taken and averaged to reduce noise which

represents about half the acquisition time. Reducing the number of spectra would reduce

the acquisition time but will also increase the noise. DMA driver hardware is available off

the shelf (albeit expensive) with a frame rate of 100 fps, that potentially can reduce the

acquisition times drastically. With DMA frame rate of 100 fps data acquisition is limited

by the capture rate of the spectrometer.

Figure 4.10 shows spectra from the tenth row from the top of the image of the wood

and acrylic object. The object was imaged with G-matrix encoding wrapped into a

15 × 17 pixel pattern. Some of the spectra have reflectance substantially greater than
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Figure 4.10: Acrylic and wood object imaged using G-matrix encoding. a) Reference
corrected spectra and b) the standard normal variate transform of the same spectra.

Figure 4.11: The first principal component of the image of thewood and acrylic object.
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unity which is due to the use of photographic paper in this particular instance. Regardless

there are obvious differences in the spectral shapes of the two substances. The differences

are emphasised in the SNV transformed spectra. The acrylic spectra are quite uniform

in shape whereas the wood spectra show considerable variation due to chemical variation

in the wood. The familiar water absorption bands are not present in the wood due to the

wood being sufficiently dry. The acrylic has the usual absorption bands around 1150 nm,

1200 nm, 1400 nm and towards 1700 nm. A mixed boundary spectrum is apparent, par-

ticularly in the regions around 1150 nm and 1200 nm.

Figure 4.11 shows the first principal component of the SNV spectra from the wood and

acrylic hyperspectral image. The difference between the two substances is clearly visible.

There are edge effects in the top left and bottom left corners due to the positioning of the

spectrometer. Mixed spectra down the centre of the image areapparent and correspond to

where the pixels straddle both the wood and the acrylic.
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Figure 4.12: Wood and polystyrene object imaged using G-matrix encoding. a) Reference
corrected spectra and b) the standard normal variate transform of the same spectra.

Figure 4.12 shows the spectra from the diagonal wood and polystyrene object (Fig-

ure 4.7) acquired using G-matrix encoding and reference corrected with the photographic

white paper. The encoding was wrapped into a 15× 17pixel pattern for imaging. There is

some reflectance greater than unity due to the white paper nothaving optimal reflectance.

The spectra are messy due to contamination in the sample and possibly due to scattering in

the polystyrene. The SNV of the spectra clarifies the grouping between the two groups of

spectra somewhat, but the noise is still a dominant feature.Figure 4.13 shows the second

principal component of the wood and polystyrene image. The diagonal wood inlays are

clearly visible, appearing as dark regions. The fact that the second principal component

and not the first describes the between group variation is most likely due to both random

and non-random error in the spectra.

Figure 4.14 shows spectra from the eighth row of image thirtyof the white cardboard
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Figure 4.13: The second principal component of the image of the wood and polystyrene
object. The imaging was performed with a 255 order G-matrix.
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Figure 4.14: Spectra from the eighth row of an acrylic and white cardboard object.
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Figure 4.15: The thirtieth spectral image of the acrylic andcardboard object at 1150 nm.

and acrylic object. In this Figure we show the full spectral range of the spectrometer

to display the severity of the noise in the extreme regions, particularly in the visible do-

main. Both substances have high reflectance so the reflectanceaxis starts at 0.4 to show

clearly the detail of the spectral shape. The spectra of the acrylic are easily identifiable

from the absorption bands around 1150 nm, 1200 nm, 1400 nm andtowards 1700 nm.

The cardboard spectra are predominately flat but have some spectral inhomogeneity. The

spectrum with gross low reflectance is from an edge pixel. Allreflectances greater than

unity are due to noise. Figure 4.15 shows the spatial variation of the same spectral image

at 1150 nm. The two substances are clearly distinguishable with acrylic on the left and

cardboard on the right. The object was not perfectly alignedvertically which is seen as

the slight diagonal lean of the boundary.

Figure 4.16 shows spectra from images taken using H-matrix encoding. The image

resolution is 16×16 pixels over approximately 100 mm2. The spectra are from the eighth

row of each image. These spectra were white corrected using the Spectralon tile. The

wood spectra are easily identified by the lower overall reflectance and the water absorp-

tion bands about 1200 nm and 1450 nm. Comparing the wood and polystyrene object

spectra with that of Figure 4.12 the increase in water features in the wood spectra is

apparent. A period of some months transpired between the acquisition of the G-matrix

image and the H-matrix image, during which the object was stored near a window in an

office where it was undeliberately exposed to moisture. Regardless the difference in the

spectral shapes are interesting. The acrylic and PCB object spectra are distinguishable by
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Figure 4.16: Spectra acquired by H-matrix encoding. The wood and polystyrene object is
on the left and the acrylic and PCB fibreboard object is on the right.

(a) (b)

Figure 4.17: a) The wood and polystyrene object at 1533nm imaged using H-matrix
encoding. b) The PCB and fibreglass object.

gross absorption, where the PCB attenuates the light travelling too and from the acrylic.

Some alteration of the spectra shape due to the PCB fibreboard is seen.

Images acquired using the H-matrix encoding are in Figure 4.17. The wood and

polystyrene object is on the left with the diagonal dark regions due to the wood. Here

the wood and polystyrene object is positioned so that the endof the wood strips are in the

field of view. The acrylic and PCB object is on the right. The PCB fibreboard region is

apparent as the darker region on thee right side of the image.In both images there is an

edge effect in the bottom right hand corner.

4.3.2 Signal to Noise Ratios and Noise Features

Figure 4.18 shows the SNR for G-matrix encoding, G-matrix with reference correction

per acquisition and G-matrix encoding with reference correction by the average reference
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Figure 4.18: a) SNRs for the G-matrix encoding with no reference correction, correction
per acquired spectrum and the average reference spectrum over an acquisition period for
the entire encoding matrix. b) Significance test of reference correction using the of the
reference measurements and the per sample reference measurements.

spectrum for each encoding period. An ANOVA test (Ott and Mendenhall, 1985) for the

difference between the treatments with a 99% confidence threshold shows no significance

above 550 nm. The T-statistic (the square root of the F-statistic used in ANOVA) is shown

as we compared the SNR of each reference correction method tothe non-corrected SNR

separately in a two treatment manner. Below 550 nm the reference correction causes a

significant degradation in the SNR. The precise reason why theSNR decreases is un-

known. Regardless the low wavelength region corresponds to where the SNR is too poor

for any use of the data. The rest of the spectral region shows no significance in the change

of SNR due to reference correction. The lack of change indicates two things, 1) that the

light source is stable during the data acquisition, so that the bias due to light source drift

is small, and 2) that the reference beam is sufficiently intense, thus the noise level is not

significantly increased by the correction.

Figure 4.19 shows the SNR boost for G-matrix encoding and forG-matrix encoding

with reference correction. The smallest SNR boost around 750− 800 nm, where the light

from the source, hence the photon noise, is greatest. The boost reaches the theoretical

maximum of
√

255/2 = 11.29 at the lowest and highest wavelengths where the light from

the source is least and the boost is most needed. SNR boost values exceeding 11.29 are

ascribed to random effects. The sharp discontinuity near 950 nm occurs at the boundary

between the two types of sensor in the spectrometer.

Figure 4.20 shows the average SNR for H-matrix multiplexed imaging of a Spectralon

white tile. The SNR is much greater than that seen in Figure 4.18 for G-matrix imaging,

but the G-matrix images were white reference corrected where these are not, so a direct

comparison is unfair. Below we compare SNR boosts which is a fair test. The H-matrix
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Figure 4.19: The SNR boost over pointwise imaging due to G-matrix encoding.
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spectra were reference corrected per spectrum before decoding. The SNR is greatest about

800 nm, has a sharp discontinuity near 950 nm and is very low inthe visible domain. The

G-matrix SNR has similar features.
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Figure 4.21: The SNR boost over pointwise imaging due to H-matrix encoding.

Figure 4.21 shows the SNR boost for H-matrix encoding over pointwise imaging with

reference correction. The horizontal line shows the theoretical maximum boost of 16.

The boost curve shows the same general shape as the G-matrix boost effect but is greater

in value. The curve shows maximum boost at the highest and lowest wavelength ranges

where the light intensity is least, shows minimum boost about 700–800 nm where the light

intensity, hence photon noise, is greatest and has a sharp discontinuity near 950 nm at the

change in the sensor material. Notably the greatest SNR boost is delivered in the low light

level regions where it is most needed. The relative drop in SNR due to Poisson noise is not

as pronounced for the H-matrix as for the G-matrix. For example between 1000–1200 nm

the H-matrix boost is about 3/4 of the maximum possible, where for the G-matrix the SNR

boost is about 1/2 the maximum possible in the same spectral region. Furthermore that

for the H-matrix encoding we used a Spectralon white tile whereas for the G-matrix we

used a white acrylic and cardboard object. Thus the H-matrixmultiplexing was subjected

to slightly more photon noise than the G-matrix (the reflectance ratio of the two objects

is seen in Figure 4.14). The theoretical prediction that H-matrix multiplexing is better

suited to situations where both additive and Poisson noise is present is confirmed.

Figure 4.22 shows the ratio of the SNR boosts from the H-matrix to G-matrix encod-
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Figure 4.22: The ratio of the H-matrix SNR boost to the G-matrix SNR boost.

ing. For additive noise only the H-matrix was predicted to outperform the G-matrix by a

factor of
√

2, as is seen in Figure 4.22 above 1600 nm. For Poisson noise the H-matrix is

predicted to outperform the G-matrix by a factor of 2, which is the theoretical maximum

of the ratio of the two boosts. From 400–1400 nm the SNR boost from H-matrix encoding

is about twice that of the G-matrix, ranging up to around 2.5 times between 950–1150 nm,

suggesting that Poisson noise is dominant in these regions.

The reason why the ratio of the H-matrix to G-matrix multiplexing boosts exceeded

the theoretical prediction is not precisely known. It is possible however that other noise

effects not explicitly discussed come into play. We can only conjecture about what these

effects may be. For example if the photon noise of ambient light during the H-matrix

acquisitions was greater than during the G-matrix then moreencoding independent noise

would be present, increasing the SNR boost. Also mechanicalvibration in the system

may have degraded the signal and reduced the SNR boost unpredictably.

4.3.3 Comparison of Compressed Sensing with Hadamard Imaging

Figure 4.23 shows the average reconstructed rows from the Hadamard technique of the

Spectralon tile. There is a strong almost periodic pattern that arises from the concatenation

of the rows. The low intensity (y axis) is due to normalisation by the highly intense

reference beam.
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Figure 4.23: The average concatenated rows from Hadamard imaging of the Spectralon
tile. This represents the best estimate of the true pixel values.

Figure 4.24 shows the SNRs for Hadamard, CS and pointwise imaging. Recall that the

Hadamard and pointwise imaging use 256 measurements in accordance with the number

of pixels. The CS reconstruction in Figure 4.24 was performedwith 150 measurements.

Interestingly the noise aware CS has not performed as well as the non-noise aware case.

The SNRs in each case peak around 600–900 nm which correspondsto the peak output

of the light source. Also there is a noticeable discontinuity near 950 nm that is due to

the use of two types of sensor material in the spectrometer, one for the visible and very

near infrared and the other for the near infrared. The Hadamard encoding outperforms

the other techniques on our system in terms of SNR, particularly at the lower wavelengths

where the photon noise is greater. In the near infrared region the non-noise aware CS

approaches the Hadamard imaging.

Figure 4.25 shows the SNR boost of Hadamard and CS imaging overthe pointwise

imaging. The CS reconstruction was performed with 150 measurements. Again the

Hadamard imaging outperforms CS on our system. Both methods have a SNR boost

greater than one which means that they provide an advantage over pointwise imaging. In

both Hadamard and CS there is a sharp drop in the SNR boost wherethe output of the light

source and sensor response is greatest. This drop in SNR boost is therefore dependent on

the relative level of photon and instrument noise.

Figure 4.26 shows the peak SNR of the CS against the number of measurements used
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Figure 4.24: Signal to noise ratios for Hadamard, compressed sensing and pointwise
imaging.

in the reconstruction. The non-noise aware reconstructionhas an negative almost linear

relationship with the number of measurements. CS seeks a sparse solution, so fewer

measurements causes a solution with more entries near to zero. This in turn leaves less

room for random fluctuation in the smaller coefficients. The shape of the noise aware

CS SNR in Figure is similar to that of the theoretical SNR shownin Figure 3.1. In

Figure 4.26 the experimental SNR was computed by comparing the reconstructed signal

with the known true signal. Here the SNR was computed by examination of the fluctuation

around the average reconstructed signal, so is more similarto the theoretical prediction,

especially as the SNR does not drop at a low number of measurement. It is worthwhile to

note that while the SNR, hence repeatability, from fewer measurement is higher than from

more, it is likely to be repeatably inaccurate. The noise aware CS reconstruction achieves

maximum peak SNR at 130 measurements, but does not reach the Hadamard peak SNR.

Also the noise aware reconstruction is much closer in SNR to the pointwise imaging than

to the Hadamard imaging.

Figure 4.27 shows the reconstruction error percentage against the number of measure-

ments used. The non-noise aware reconstruction follows a typical shape in CS reconstruc-

tion for a non-sparse compressible signal. The error in reconstruction increased with the

SNR, a trade off between accuracy and precision of measurement. At 256 measurements

there is a slight upturn in error, presumably due to the reconstruction not taking account

noise effects. The noise aware reconstruction is very inaccurate. Despite the peak SNR
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Figure 4.25: SNR boost comparison between Hadamard encoding and CS.

for noise aware reconstruction being greatest at 130 measurements the corresponding re-

construction error is greater than 60%. So while the noise aware CS reconstruction may

be repeatable at 130 measurements, it is repeatably incorrect. Clearly the data acquired do

not satisfy the model of noise aware reconstruction used by the basis pursuit algorithm.
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Chapter 5

Volumetric Mapping of Beef

M. Longissimus Dorsi

This chapter is concerned with an application of the hardware to prove the concept, that

is, to show that the hyperspectral imaging system produces spectra that are of sufficient

quality for use in practical applications. Ultimately it would be useful to have a gen-

eral system for chemometric applications with spatial mapping. The primary application

however is to map spectral variability in products and produce.

To demonstrate the applicability of the imaging technique we examine variability in

beefM. Longissimus Dorsi (LD)1. The LD, also known as the strip loin, is a compound

muscle that runs along each side of the spine from the 12th vertebrae to the tail end of the

animal. The LD is the source of many important retail cuts such as the porterhouse steak,

the ribeye steak and beef rib steak. NIR spectroscopy and analysis represents significant

potential in nondestructive grading of meat. As such it is a topic of investigation, see

section 2.7.

Ultimately an indication of quality features in the entire carcass from as few measure-

ments as possible is desired. A grading system might return indicators of meat quality

from possibly one measurement at a specific location on the animal. Meat grading by

NIR is an ongoing project at AgResearch, with the objective ofgrading a whole carcass

from a few measurements. Such lofty goals are not aimed for inthis work. Here we

examine the variability in the important LD.

When analysing spectra of meat to perform some estimation of the meat quality it is

important to ensure that the spectra are of lean. If a given spectrum is of a part of the meat

that has a high proportion of fat, connective tissue or even air, then an estimation of quality

features from that spectrum might be unacceptably biased. For example it makes no sense

to measure pH or tenderness of fat, so estimation of such features must not be performed

1A description is found athttp://bovine.unl.edu/bovine3D/eng/muscleIndex.jsp, date ac-
cessed 4/3/2009. Identified as ‘Longissimus’
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on spectra of fat. Thus we examine classification of spectra into lean and nonlean groups.

To verify classification colour imaging and image processing was used as the reference

method. The classification is therefore against visible content.

Characterisation of the nature of the variation in the spectra down the length of the

muscle was performed by variography. Variography estimates the correlation of any point

to any other point a certain distance away, thus variographyreveals features such as in-

creasing or decreasing similarity and periodicity with distance. We also piggyback some

basic quality assessment pilot studies of the meat. The pH down the length of the LD

and between LDs, tenderness and blooming of the meat with NIRspectroscopy are exam-

ined. These extra quality features, in particular the pH andtenderness, inform about the

variation in the samples examined. As described below in Section 5.1.1, steps are taken

to prevent shortening of the meat so a broad range of tenderness and pH values are not

expected.

5.1 Meat Collection and Instrumental Apparatus

This section outlines the data collection apparatus, collection scheme and describes the

analysis procedures used. LDs were collected early post slaughter and stored at until rigor,

on which spectra and colour images were taken. A steak from the head end of the muscle

was subjected to tenderometry readings and a bloom curve over one hour after slicing was

acquired. Down the length of the LD muscle hyperspectral andcolour images were taken

of successive slices. Image processing of the colour imageswas utilised to determine the

visible content of each spectrum in each slice. Classification of each spectrum as lean and

nonlean was performed using chemometric analysis. Variography was applied to the slice

spectra per wavelength down the length of the muscle. Measurements of pH were taken

on each slice and the pH correlated with the spectra.

5.1.1 Meat Collection

Fourteen beefm. longissimus dorsi with connecting muscles were harvested. The left and

right sides of seven animals were taken, cut from between the12th and 13th vertebrae and

the tail. The breeds were four Angus cross and three Herefordcross. The tail muscle was

removed from the LD then the LD was rolled in clingwrap to prevent shortening (Devine

et al., 1999) with one continuous piece that wrapped around the muscle five times. The

wrapped LDs were stored at 15◦C for 72 hours to allow onset of rigor.
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5.1.2 Instrumental Configuration

The wrapped meat was placed in a stainless steel tube that waselevated above the equip-

ment table. The data collection apparatus consisted of the hyperspectral imager, a Jai

CV-M90 RGB colour machine vision camera (Copenhagen, Denmark)with a Fujinon

CL11052 Closeup TV Lens (Saitama City, Japan), a Mettler Toledo1140 pH meter

(Greifensee, Switzerland) with a Mettler Toledo InLab 427 probe, and a MIRINZ meat

tenderometer (MacFarlane and Marer, 1966).

Figure 5.1 shows a diagram of the imagers for the experimental setup. The hyper-

spectral image is comprised of the light pattern projector and the spectrometer, with meat

in the sample holder completing the optical pathway of lightfrom the source to detector.

The colour camera and the light projector are trained on the meat face along very close to

the optical axis’ (causing specular reflection issues discussed below). Light from the pro-

jector is incident on the sample at approximately 5◦ to the meat face surface normal and

the camera is slightly elevated above the projector and at normal angle to the meat face

from the plane view. The spectrometer views the meat face at approximately 60◦ on the

same side as the projector, so specular reflection from the normal surface on the sample is

at 65◦ degrees to the spectrometer. Use of the tube for presentation of the meat provides

consistent positioning with respect to the imagers. The hyperspectral imager light source,

with all the mirrors on the DMA set to the on position, is also the illumination for the

colour imager.

CameraMeat Holder

Spectrometer

Light Projector

Colour 

Figure 5.1: Diagram of the experimental setup.

5.1.3 Data Collection

During data collection the room temperature was set to 16◦C, but ranged from 15–17◦C.

A first steak around 120mm thick, but at least 100mm thick, wastaken from the head

end, cooked by boiling and subjected to tenderometry readings. The meat was placed

in a non-sealed plastic bag and immersed in 100◦C water and monitored continuously
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until the centre reached 75◦C. Slices were cut 10 mm wide from which ten bites were

cut 10× 10 mm and about 30 mm long. The ten bites were sheared at right angles to the

muscle fibre direction using a MIRINZ tenderometer (MacFarlane and Marer, 1966) to

measure the shear force. The average shear force of the ten bites was taken as the shear

force measurement.

Immediately after the initial slice the bloom readings began. A colour image, hy-

perspectral image rotation proceeded for one hour to sufficiently capture the breadth of

colour change during blooming.

Twenty 13 mm slices were taken, proceeding down the length ofthe muscle to volu-

metrically map the LD. At least three colour images were taken of each slice immediately

after it was cut. Fluid on the meat face caused some specularity in the colour images.

Blotting with absorbent paper before each colour image reduced the specularity, nonethe-

less some specularity remained but the repeated blotting caused the specularity to appear

in different locations in each image. After taking the colour images a 16× 16 (N = 256)

Hadamard hyperspectral image was acquired. The slow spectral image acquisition time

(approximately 2.5 minutes per image) and the time constraint that we sought to complete

the mapping of two LD muscles per day are the reasons why a low spatial resolution was

used. The next slice was cut and the pH measured on the meat just imaged. Five pH

measurements of each slice were taken.

Colour Image Processing

The colour image processing was similar to that of Streeteret al. (2006a) (which was in

turn informed by earlier work (Streeteret al., 2005)) but with some adaptations and im-

provements. Despite the blotting, some specularity appearing as small bright regions was

present in all the colour images. The blotting used to reducethe specularity also ensured

that most specularities occurred in different locations in each image. The minimum over

the set of colour images at each pixel for each meat face was calculated, producing one

colour image per slice that was cleaner than the raw images.
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Desired Object Desired Object

Artifact

Marker

Mask

Figure 5.2: Illustration of the action of the morphologicalreconstruction. On the left is
the mask and the marker and on the right is the result after reconstruction.

After the minimum operation further cleaning of the image was performed with a
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morphological reconstruction to each colour plane (Vincent, 1993). The morphological

reconstruction operation requires two images, a marker anda mask where each pixel in

the marker is less than or equal to the mask pixel at the same location. The minimum im-

age was used as the mask and a morphological opening with a 3× 3 structuring element

of the minimum image as the marker. The marker image indicates where to begin and the

mask determines the maximum pixel value the reconstructioncan attain. Beginning from

the pixel values in the marker image, morphological reconstruction spreads out laterally

until a pixel in the mask image indicates to stop. Figure 5.2 illustrates the action of the

morphological reconstruction. The mask in the illustration contains two objects, one is

desired and an the other is an artefact. The marker indicateswhich object is desired and

the reconstruction fills out this object. The artefact is suppressed because the reconstruc-

tion cannot return values greater than the boundary betweenthe artefact and the desired

object.

The region just inside the meat holder tube was manually located and masked in the

image to remove the metal tube and outside region. The image was transformed into CIE

La*b* colour space. A threshold value was computed for, and used on, the a* plane using

Otsu’s method (Otsu, 1979). The result of the threshold formed an estimate of the lean

region. Fat was identified as bright areas in the green plane of the RGB image. The green

plane was selected because red objects were minimised. The blue plane was not useful

as the images were taken directly after slicing, so had a purplish appearance due to de-

oxymyoglobin (blooming had not occurred). The fat surrounding the lean was identified

using a different threshold computed again using Otsu’s method on the green plane. The

resultant fat estimate was refined by excluding the lean region and the region outside of

the meat. Excluding the lean region also excluded marbling.Marbling appeared as bright

objects inside the lean region. These marbling objects wereidentified as statistical outliers

in the green plane assuming normal statistics. Any pixel in the lean region with intensity

at least three standard deviations greater than the mean waslabelled as marbling. The

final fat binary image was the combination of the outer fat andmarbling. Streeteret al.

(2006a) used a pattern recognition classifier method to improve the specificity of marbling

object detection. Here the colour image acquisition was sufficiently improved so that the

segmentation was considered specific enough to not warrant afurther classification.

Figure 5.3 shows two (of three) replicate images of the same slice, the result after tak-

ing the minimum and morphological reconstruction and the colour segmentation. Small

bright specularities are in both the colour images on the toprow, but appear in different

locations on the face of the slice due to the blotting of the meat face with absorbent paper.

Around the edge, especially on the top left there is a bright reflection due to the plastic

wrapping used on the meat. The plastic wrapping causes bright areas that confuse the fat

detection scheme, as seen in the segmentation image on the top left. A morphological
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Figure 5.3: Images of animal 5, left hand side, slice eight. The top row shows two different
colour images of the same slice with blotting between captures. The bottom row, left
shows the preprocessed image formed from the images of the same slice. Bottom row,
right, shows the segmentation where red is the pixels classified as lean and green as fat.

opening was considered to remove the edge region on the final segmentation to remove

false fat objects due to the plastic wrap, but was dismissed because opening changes the

morphology of the object which is not desired.

The colour image processing result was registered to the hyperspectral images to en-

able estimation of the visible content of the meat for each spectrum. To perform the

registration, two complement checkerboard patterns with squares corresponding to the

hyperspectral image pixel locations were projected on to a flat white object in the place of

the imaged meat surface. Images were taken of the checkerboard patterns, were processed

and the locations of each square registered. In this way the areas on each colour image that

corresponded with each pixel in the hyperspectral images were identified. The reference

visible content proportion for the hyperspectral image pixels was calculated. Spectral

pixels were identified as lean if there was more lean that any other visible constituent.

We have the opportunity here to assess not only the quality ofthe primary analysis

method (classification of NIR spectra) but also the reference method. The colour im-

age processing is essentially the automation of class assignment that otherwise would

have been performed manually. Manual rechecking of the colour image processing re-

sult allows us to obtain an estimate of the error in the reference method. Ten slices were
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selected at random from the dataset. The original images andthe colour segmentation

image were displayed on screen. Regions in the image where incorrect segmentation had

occurred were manually ‘clicked’ and the pixel locations recorded, with even and moder-

ately dense coverage of the incorrect regions aimed for. Spectral pixels with at least one

identified error location were labelled as having error. Having some error does not nec-

essarily mean that the spectral pixel was incorrectly labelled, it means that mislabelling

could have occurred, so the method of estimation of reference error employed indicates

the upper limit of the error level. The ratio of spectral pixels with error to total number

of spectral pixels was taken as an estimate of the upper limitof error in the reference

method. For each image the percentage of spectral pixels with error in the reference was

computed, and the mean and standard deviation of the error percentages were taken over

the ten images.

5.1.4 Data Summary

Table 5.1: Enumeration of the breeds from which the muscles were taken.
Animal/Day Breed

1 Angus cross
2 Hereford cross
3 Hereford cross
4 Angus cross
5 Angus cross
6 Hereford cross
7 Angus cross

The LDs were taken from steer carcasses, shot with captive bolt and electrically stim-

ulated and harvested from breeds on an as available basis. Table 5.1 lists the breeds per

animal. The two LDs for each animal were used for each day of data collection, so a

reference to day three, for example, corresponds to animal three.

The hyperspectral images of the volumetric mapping consistof twenty 16× 16 pixel

images per muscle over the fourteen muscles corresponding to seven sets, that is, one

set per animal. In total this gave a raw data set of 71680 slicespectra. Spectral pixels

of the air around the meat face were considered outliers and were easily identified by

Table 5.2: Breakdown of the number of spectra per animal obtained after the removal of
air spectra.

Animal 1 2 3 4 5 6 7
No. of Spectra 8347 7952 6626 6348 8004 8556 6380

No. of Lean Spectra 6647 6449 5495 5240 6600 6725 5123
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Table 5.3: Summary of the reference data. The variablesa∗0 down are defined in Sec-
tion 5.4.

Variable Name n Mean± Standard Deviation Minimum Maximum
Tenderometry(kgF) 14 5.92± 1.10 4.26 7.75

pH 12 5.37± 0.15 5.08 5.75
a∗0 12 17.6± 2.47 14.7 22.9
a∗f 12 20.4± 2.75 17.0 25.9
ka 12 0.172± 0.075 0.0684 0.322
b∗0 12 6.71± 2.02 3.01 11.4
b∗f 12 10.6± 2.09 7.60 14.8
kb 12 0.225± 0.103 0.0854 0.440

simple thresholding and removed leaving 52213 spectra. Table 5.2 gives a breakdown

of the usable nonair slice spectra for each muscle. The number of spectra per animal is

determined by the size of the muscle. Bloom spectra are a different set of data and are

not included in the counts listed in Table 5.2. The maximum error in the visible content

reference was estimated to be 3.7± 1.6% to two significant figures.

Table 5.3 summarises the statistics of the reference data. In each case there is one

sample per muscle. For the pH twenty measurements per musclewere taken, but as de-

tailed below, the intramuscular spread in pH was small compared to the variation between

muscles. The parameters for the bloom represent one bloom curve per muscle.

5.2 Lean Pixel Classification

Classification of the hyperspectral pixels as lean dominant was investigated. The reference

classification was designated lean dominant if there was more lean in that pixel than any

other content. ECVA (see Section 2.5.3) was employed to builda linear classification

model for the two class problem. The power of classification was assessed using ROC

(see Section 2.6.3) analysis. We compute the ROC AUC using the trapezoidal rule and use

the SE (equation 3.102) of the Wilcoxon to estimate the SE of the AUC. This work was

informed by earlier investigations into visible content calibration Streeteret al. (2006b),

specifically that study considered calibration of visible fat content by NIR.

The data were divided into three groups. The first group included all data except

those from two animals. The second and third groups were comprised of the data of one

animal only, each group being one animal not included in the first group. The second and

third group were simply chosen as data from the last two animals acquired, however the

choice was supported by the fact that a different breed was represented in each of the last

two animals. The classification was analysed in three stages. The first stage was cross

validation per-animal on the first group to probe if classification was possible. Per-animal



5.2 Lean Pixel Classification 111

cross validation was used to maintain as much independence between groups as possible.

The second stage was testing. Here ECVA models were built fromthe first group using

a range of number of PLS factors, with the models tested on thesecond group. From the

second stage the number of factors to use in the model was chosen. The third and final

stage was validation. A model was constructed using the datafrom both group one and

two together as one set, with the number of factors as determined in the second stage. The

model was then used to classify the data from the third group and the AUC computed.
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Figure 5.4: Average spectra from the slice images for days 2-6. The average lean and fat
are shown as solid lines and the one standard deviation intervals are dashed lines. After
removal of air spectra the fat is the dominant nonlean constituent.

The colour images from the first day’s data acquisition were problematic and difficult

to segment, so the last six days were used for pixel classification. The data from the six

animals formed six subsets. Cross validation was used per-animal on the first four sets to

probe the data for classification power. The fifth animals data was used to test the model.

The number of factors was chosen at the point where no increase in AUC (accounting for

SE) can be obtained by adding more factors. To validate the model the spectra from the

sixth animal was classified and the AUC computed.

Figure 5.4 shows the average lean and fat spectra with one standard deviation inter-

vals, computed on spectra identified as completely lean and completely fat by the visible

content reference. There are obvious differences in the shape with the most notable being

that the lean has higher overall absorbance. The lean absorbance rises dramatically below

650 nm and at higher wavelengths towards the water absorption peak at 1500 nm. Around



112 Volumetric Mapping of BeefM. Longissimus Dorsi

500 1000 1500
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Lean Classification Vector

S
ep

ar
at

io
n 

V
ec

to
r

Wavelength (nm)

Figure 5.5: The classification vector. Regions greater than zero are indicative of the
location of spectral features that distinguish the lean group from the nonlean group (the
nonlean group is predominantly fat).
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Figure 5.6: Box and whisker plot of the first score per animal, a) the lean group and b)
the nonlean group.
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Figure 5.7: Box and whisker plot of the second score per animal, a) the lean group and b)
the nonlean group.
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Figure 5.8: Box and whisker plot of the third score per animal,a) the lean group and b)
the nonlean group.

1000 nm the lean has one peak where the fat has two peaks on either side. At 1200 nm

there is an absorption peak due to the combination of the water and hydrocarbon peaks

in both the lean and the fat. The lean spectra, being more influenced by the water, has its

peak slightly to the left of the fat peak and does not decreasearound 1300 nm like the fat

spectra do.

Figure 5.5 shows the classification vector built from the data of five animals data

during the validation stage. Notable features include the large weighting given to the rise

in lean absorption at shorter wavelengths; the small bump at750 nm corresponding with

the small water peak in the lean; the peak at 950–1000 nm that sharply drops off below

zero either side corresponding with the water feature in thelean and hydrocarbon features

in the fat spectra at the same wavelength region; the peak just below 1200 nm and the

large positive region above 1200 nm that peaks at 1350 nm corresponding to where the
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Figure 5.9: Box and whisker plot of the overall classifier output per animal, a) the lean
group and b) the nonlean group. This is the result of the classification vector on the data
it was computed on so is likely to be favourably biased.

separation between the two groups of spectra is large due to the edge of the large water

peak in the lean and fat, but is more dominant in the lean than the fat. Qualitatively we

see that the ECVA classifier has sensibly utilised the major features of difference between

the lean and nonlean groups.

Figures 5.6, 5.7 and 5.8 show box plots respectively of the first second and third score

of the training data loadings per animal per group. The factors shown are due to the ECVA

computed at the training for the validation stage. The scorefor none of the animals is ob-

viously different to the rest, barring perhaps animal two for the first loading on the lean

group, but animal two is not greatly different to the rest. The lean and nonlean scores for

animal three and four are not separated as well as the second,fifth and sixth in the first

score. Figure 5.4 shows that gross absorbance is a strong discriminating feature between

the lean and fat. The first score is heavily dependent on the difference in the average

absorbance in the lean and fat groups. The variation in the first score seen in Figure 5.6

might lead one to conclude that this gross effect should be removed by preprocessing,

however this gross absorbance difference is too important a spectral feature to be thrown

away by using a preprocessing step such as the SNV transform.One could alternatively

use MSC or EMSC (Section 2.5.2) so that the gross effect is normalised per animal while

the gross difference between lean and fat is retained. Unfortunately suchpreprocessing

requires prior knowledge of the animal which is not necessarily available when analysing

a spectrum from a new animal at random. Still EMSC could have been used with an

average spectrum over all the animals instead of per-animal, but was not considered nec-

essary. Ultimately gross absorbance is an important feature but is not necessarily the

strongest discriminating feature in all the natural groups(animals) present.

The first and second scores have a large number of points that look like outliers. These
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supposed outliers do not sit at a large distance from any other measurements and are

not due to grossly erroneous measurements or true outliers (such measurements were

removed earlier with the air spectra). Furthermore any new measurement may reside

in the ‘outlier’ regions so it is appropriate to include themin the calibration data set.

Figure 5.9 shows the classifier output before thresholding per animal on the training data.

The separation between the lean and nonlean groups is apparent, although the plots do

show application of the classifier on the same data the classifier was computed on, so are

likely to be favourably biased.

#Factors Cross Validation Testing
1 0.6824(0.0037) 0.6983(0.0063)
2 0.9048(0.0018) 0.9070(0.0031)
3 0.9614(0.0010) 0.9755(0.0014)
4 0.8923(0.0019) 0.9779(0.0014)
5 0.9702(0.0009) 0.9817(0.0012)

Table 5.4: AUC(SE) for pixel classification.
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Figure 5.10: ROC curve for the validation data.

The AUC and associated SE for the cross validation and testing are shown in Table 5.4.

In every case the AUC via the trapezoidal rule and the Wilcoxon were computed and found

to be the same. In the cross validation the AUC increases fromone to three factors and

then drops at the fourth. The AUC(SE) for the third factor is 0.9614(0.0010) indicating



116 Volumetric Mapping of BeefM. Longissimus Dorsi

strong classification power. The test AUC increases until the third factor, beyond which

the increase is small and the intervals indicated by the SE overlap, thus we select a three

component ECVA model.

Figure 5.10 shows the validation ROC for hyperspectral pixel classification as visible

lean. The validation AUC(SE) is 0.9515(0.0025). The ROC curve tracks close to zero

false positives until TPF= 0.64 where FPF starts to increase dramatically. The curve

does not reach TPF= 1 until FPF= 1, indicating that the spread of the true class (lean)

reaches to the far side of the false group, that is, the minimum classifier result for the lean

pixels is as small as the minimum result for the nonlean pixels. There are many more lean

spectra than nonlean spectra, as evidenced by the large leanarea compared to the fat area

seen in Figure 5.3, so the spread of the lean classifier resultis enough to reach the far side

of the nonlean group. One might conclude that a Bayesian like approach is appropriate,

in which the prior knowledge that there is more lean than nonlean is incorporated to bias

the classifier towards classification of spectra as lean, increasing sensitivity. However

the objective of this exercise is to identify specifically the lean spectra with a minimum

of false positives so that analyses are guaranteed to be performed on lean spectra only.

Biasing the classifier to classify spectra as lean runs the risk of reducing specificity.

Now we examine what the true value or the AUC might be taking into account the

error in the reference. From Section 5.1.4 the maximum errorin the reference is 3.7 ±
1.6% and in the validation set there were 6380 spectra, of which5123 were labelled lean

by the reference method and 1257 were labelled not lean. We need to assess whether

Equation 3.97 or (preferably, due to the simpler form) Equation 3.98 is more appropriate.

We recompute the Wilcoxon on the classified validation data (before thresholding) one

thousand times, each time using a subset or 1257 lean spectra, so that the lean and nonlean

groups are balanced. The mean and standard deviation of the resampled Wilcoxon over

the thousand random resamplings was 0.9514 and 0.0036, so the AUC figure above is

within one standard deviation of resampled Wilcoxon. Because the figures are so close

we approximate the error effect as a straight line and use equation 3.98. We highlight that

if the error in the reference was much larger than it was in this case then the difference

in the Wilcoxons may have been larger and the straight line approximation would not

be appropriate, but in this case we can not conclude from the data that the straight line

approximation is different from the nonlinear change in AUC due to error in the reference.

Substitution of the data into the rearranged equation 3.98,namely equation 3.101, gives a

maximum possible AUC(SE) of 0.98(0.02). So, concluding, the AUC of classification of

the validation data is at least 0.94 (no error in the reference) and is at most 1 (error in the

reference plus the SE).

Studies conducted by others focussed on fat content in meat,where we focus on iden-

tification of lean spectra. For example González-Mart́ın et al. (2003) and Sierraet al.
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(2008) examined the detailed content of different types of fatty acids as identified by

chemical testing. We consider lean and fat in general as identified by visible content.

However like them we see that NIR spectroscopy is effective for identification of the ma-

jor constituents of meat, albeit we do not examine the detailthat they do. Qiaoet al.

(2007a) performed marbling assessment using spectroscopyin the range 400–1000 nm, a

band that overlaps ours but encompasses the visible domain which we have not been able

to use here. They had much higher spatial resolution than what we have and were able

to use features computed over the spatial dimension, whereas we performed classification

using spectral information only. Regardless, classification of lean spectra is successful in

this trial.

5.3 Variography

Variation in the spectra was examined down the length of the muscles by variography.

The lean spectra were extracted from the data set using the derived classifier. The average

spectrum for each slice was taken and the variogram of each muscle at each wavelength

was computed. The average variogram for each wavelength wascomputed over the mus-

cles and notable features of interest observed.
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Figure 5.11: The average variogram for each wavelength downthe length of the LDs.
Each line represents one wavelength. The variograms for allthe wavelengths are shown
together in this manner so that the general shape of the variation against lag down the
muscle can be seen.
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Figure 5.12: The average variogram for each wavelength downthe length of the LDs
after EMSC. The effect due to water and the average lean spectrum was removed before
computation of the variograms.

The variography was performed down the length of the twelve muscles for days 2 to

7. The lean pixel classifier was applied to the spectra to segment the lean spectra and the

average lean spectrum was taken for each slice. The variogram was taken for each muscle

at each wavelength and the variograms averaged over the muscles resulting in one average

variogram for each wavelength.

Figure 5.11 shows the computed average variograms. There are two obvious dominant

effects: first the correlation between positions increases with distance down the length

of the muscle and second there is a periodic effect in the variograms with period about

65 mm. Furthermore the trough in the periodic effect occurs at about 65 mm lag. The

vertebrae in the animal are also about 65 mm in length. When themuscle is cut from

the carcass an alternating pattern is formed of bare lean andlean covered with intact

connective tissue, which has periodicity due to the the vertebrae, that is, about 65 mm.

There are two possible reasons why the vertebrae might causea periodic effect down

the muscle. The first possible reason is after the beast is slaughtered, and while it is

butchered and dressed, the halves of the carcass are hung by the Achilles tendon. Me-

chanical stress from the weight on the carcass pulls down on the muscles, with some

counter force at the connection between the vertebrae and the LD. The result is possible

micro changes in the fibres of the muscle that cause a scattering effect on the spectra. The

second possible reason is the connective tissue sheath around the LD causes moisture to
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be retained in the lean, but where the muscle is cut from the carcass the connective tissue

is removed from around the lean. Thus one might expect a periodic effect due to periodic

variation of moisture in the meat. In section 5.2 we observeda number of features in the

spectra that are due to water to varying degrees. These waterdependent features proved

useful in the discrimination between lean and nonlean groups (recall the nonlean group

was predominantly fat). Again water appears to be a major source of variation in the

spectra.

EMSC was performed on the average lean spectra and the variography repeated. Fig-

ure 5.12 shows the result. A representative water spectrum and the mean of all the slice

spectra were used as the reference spectra in the EMSC. The water spectrum was ac-

quired with a KES 200 series spectrometer by transmission oflight through 1 mm of

water at 20◦C and reflected off a Fluorilon (Avian Technologies, Wilmington, OH, USA)

white reference tile. The temperature of the water at spectral acquisition was chosen as

the closest available in our database to the ambient temperature at data acquisition for the

meat (15–17◦C). Polynomial order zero was used in the EMSC. A polynomial order 2

was also tried but yielded no difference in the variograms. Two major differences that

occur in the variograms after EMSC are the reduction of grossvariation by a factor of

ten and the removal of the 65 mm periodicity. There is still some shape to the variogram

but nothing obviously consistent over the wavelengths. It is difficult to say whether the

normalisation against the mean spectrum or removal of the water spectrum effect is pre-

dominant in removing the periodicity. The mean lean spectrum is greatly influenced by

water so the mean effect is also highly correlated to the water effect. Regardless it is clear

that the EMSC has removed the periodicity which arises either due to the water effect

or some other effect that correlates strongly with the water. In future studies of spectra

taken of meat not acquired in situ, particularly of the LD muscle, both the effect due to

connective tissue removal from the exterior of a muscle, andthat this effect is likely due

to water seepage, should be born in mind.

To our knowledge this is the first study to examine spectral variation within the LD

using variography. Hansenet al. (2004) and Janzet al. (2006) showed that variation in

quality features occurs within other muscles. Variation within the LD is not surprising

given that it is a relatively large compound muscle, so it is reasonable to expect variation

to exist pre-rigor and to occur during the rigor process. Thewrapping however was used to

homogenise the meat and reduce variation. The wrapping, applied pre-rigor, stretches the

muscle fibres so they have less opportunity to contract before they cool and the muscle

hardens. A detailed description on the effect of wrapping was given by Devineet al.

(1999).
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5.4 Bloom

For the bloom time series colour images, the lean region was identified using the colour

image processing method described above for each image in time, and the meanL, a∗ and

b∗ taken. In the corresponding hyperspectral images the lean region was identified as per

the ECVA model.

Bloom over the first hour after slicing is due to the oxygenation of myoglobin, causing

a change from purple to red (Hedricket al., 1994). At first none of the myoglobin is oxy-

genated so the rate of change is greatest. As the oxygenationproceeds less unoxygenated

myoglobin is available so the rate of change decreases. Assuming the rage of change pro-

portional to the amount of unoxygenated myoglobin then the oxygenation process follows

an exponential decay process. A parametric exponential curve was fit to thea* data over

time, t, with the model

a∗(t) = a∗0 + ∆a∗(1− e−k(t−t0)), (5.1)

wherea∗0 is the initial value,∆a∗ is the change in value during the blooming period,k is

the rate of blooming andt0 is the slice time. A similar curve was obtained forb∗. To fit

the blooming model to the colour image data a custom implementation of iterative least

squares was used.

The L data, being luminance, is strongly influenced by surface scattering effects,

hence is erratic over time so modelling theL values is not sensible. The La*b* colour

space does not completely separate the chroma from the intensity soa∗ andb∗ may be

influenced by the erratic behaviour ofL. PLS models for each of the six parametersa∗0,

a∗f = a∗0 + ∆a∗, ka, b
∗
0, b

∗
f = b∗0 + ∆b∗ andkb were evaluated using per animal cross

validation.
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Figure 5.13: Example bloom curves from animal 6, left side, and the parametric curve
fit to them. a) Thea∗ component and b) theb∗ component over the blooming period are
shown.
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Unlike the slice images, the bloom colour images from the first day were salvage-

able. The bloom image acquisition was repeated on one slice over time so there was less

variability to account for when processing the bloom imagesthan the slice images. Fur-

thermore many of the bloom images were taken when the lean hadreached, or was near,

the bright red colour characteristic of bloomed meat so segmentation of the lean region

in the a∗ plane was frequently easier in the bloom images than the slice images. Seg-

mentation of the lean region and computation of the colour values were successful, which

resulted in seven groups with two bloom curves per group.

Thea∗ andb∗ bloom curves increased in a manner similar to an exponentialapproach

to a maximum over the bloom period. Figure 5.13 shows the example bloom for animal

6, left side and the parametric curves fit. Over the fourteen muscles the average RMS

error of the fit fora∗ ± σ is 0.019± 0.009 and forb∗ ± σ, 0.03± 0.01. The change in

L over the bloom period was erratic and not consistent betweensamples. Some samples

increased inL, others decreased, and some exhibited increase followed bydecrease or

vice versa. The most likely explanation is that the luminance was heavily influenced by

specular reflection due to fluid on the meat face. This fluid wasprone to change over the

data collection period due to secretion, in which even dripsformed and ran down the face

of the meat. Such aggregation and movement of moisture affected the colour images much

more than the hyperspectral imaging because the colour imager and the illumination were

both near normal to the meat face whereas the spectrometer entrance slit was at about 60◦

to the surface normal of the meat, although influence on the hyperspectral images cannot

be ruled out.

The lean spectra were identified by application of the lean pixel classifier (Section 5.2)

and the mean lean spectrum taken for each spectral image. Thespectrum from the initial

time point, the final time point, the average over the bloom period and the difference

between the initial and final spectra were compared to the computeda∗0, a
∗
f , ka, b

∗
0, b

∗
f and

kb using PLS via per animal cross validation. The PLS models were built against each

response individually. Crossvalidation was performed per animal, with the two samples

per animal. Due to the small number of observations we use at most three PLS factors,

but those models that reach three factors are considered tentative.

Table 5.5: Optimal number of factors, correlation and probability of spurious correlation
for crossvalidation of the spectra against the bloom curve parameters. The numbers are
formatted as: # Factors,R2 (p value).

a*0 a*f ka b*0 b*f kb
Initial spectra 2, 0.81(0.00) 2, 0.77(0.00) × 3, 0.46(0.01) 2, 0.69(0.00) ×
Final Spectra 2, 0.81(0.00) 2, 0.83(0.00) × 2, 0.46(0.01) 2, 0.74(0.00) ×

Difference Spectra × × 3, 0.40(0.02) × × 3, 0.31(0.04)

Table 5.5 lists the number of factors and correlations for the different spectra and

responses after crossvalidation. Models marked with an× indicate that no clear relation-
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ship was observed, that is, there was no obvious optimal number of factors and a p test

showed that for any number of factors the correlation was insignificant. The initial and

final spectra resulted in a reasonable prediction of the initial and finala∗ andb* values

and no prediction of the rate values. The prediction of the initial b* values required three

factors thus is tentative. The difference spectra resulted in weak correlation and poor

tentative prediction of the bloom rate values. The most useful result here is that spectra

taken immediately after cutting correlate with the final colour values. A larger scale study

is required to investigate the prediction of final bloom on muscle prerigor and at various

pertinent time points postrigor, in particular to study if spectra acquired at certain time

points soon after slaughter can predict the final bloom valueat time points consistent with

the time of retail presentation.

Qiaoet al. (2007b) and Andŕeset al. (2008) both obtained good correlation with lu-

minance,L, but not for the chroma,a∗ andb∗. Our result is in contrast. Presumably in

those studies measures were taken to prevent specularity contamination of the La*b* mea-

surements. Here, despite the blotting processed used to remove excess surface moisture,

specularity made modellingL impractical. Obtaining significant correlations witha∗ and

b∗ is encouraging and future studies with many more samples will allow us to expound on

the relationship in more detail.

5.5 Tenderometry and pH Correlation

The correlation of the spectra per-wavelength with the pH and tenderometry data was

calculated. The band that best described the response variables were chosen.

5.5.1 pH

Detrimental effects, such as an aging pH probe requiring more careful recalibration of the

pH meter, impacted on the pH data from the first animal. None ofthe issues were insur-

mountable, but the first day’s data was considered unreliable. Careful pH data acquisition

left us with the remaining six animals data. Figure 5.14 shows the pH per slice, with

vertical dashed lines to delineate each muscle. The data areordered day two, left, slices

1–20; day two, right, slices 1–20; day three, left, and so on.Some of the muscles have

drift in the pH measurements over the slices due to the issuessurrounding the pH meter.

The drift in measured pH is possibly increased by change in the meat pH during the data

acquisition period (approximately two hours per muscle), however pH in meat normally

decreases with time as aging occurs and the fact that some pH readings increase suggests

issues with the meter is the more reasonable explanation. Inthe small number of ani-

mals represented there is a trend for the left side muscle to have lower pH than the right,
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Figure 5.14: The pH readings down twelve LD muscles (the firstanimal is excluded).
Vertical dashed lines separate one muscle from the next. Thedata are ordered per animal,
left side followed by the right side. There is a tendency for the right side pH readings to
be slightly higher than the left.
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Figure 5.15: Correlation (r value) of each wavelength with the pH. The average of the
selected region indicated is compared with the pH referencevalues.
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Figure 5.16: Scatter of the mean NIR reflectance in the band 598–949 nm against the pH.

possibly due to the carcass being hung by one leg at the Achilles tendon after slaughter

causing more strain down one side than the other. More measurements on new carcasses

are needed to confirm the trend of one side having lower pH thanthe other.

The Intra-LD spread in pH is small compared to inter-LD spread in our results. Ef-

fectively there are twelve unique pH measurements which is too small a set for any

calibration-validation process. The lean spectra were identified using the lean pixel clas-

sifier described above. The mean lean spectrum and mean pH foreach muscle was com-

puted. Correlations were obtained per wavelength to observethe presence of a relation-

ship between the spectra and the pH readings, and are shown inFigure 5.15. Strong

correlation was observed between 600 and 950 nm, indicated as the selected region. The

average of the spectra within 600 and 950 nm was taken and scatter plotted against the pH

readings, as shown in Figure 5.16. A linear relationship is visible and has a correlation

with R2
= 0.797 (p = 0.0001). Fitting a line to the scatter in Figure 5.16 yields an RMS

of the residuals of 0.068, about 10 % of the spread in the pH values.

The pH values here are in a very narrow range (5.08–5.75). Andersenet al. (1999)

used 46 pork samples measured the day after slaughter, obtaining a pH range of 5.46–

6.97 in thesemimembranosus muscle which was subsequently used in calibration. Using

PLS with leave one out crossvalidation Andersenet al. (1999) obtained a correlation of

R2
= 0.53 on spectra of LD muscles over the band 1000–2630 nm. They also exam-

ined correlations per wavelength over 360–777 nm and 1000–2630 nm but did not obtain
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the high and almost steady correlation over any of the band 598–949 nm that we did.

This may be because of the different animal type examined (pig, not cow) or the time

of measurement post mortem. Rosenvoldet al. (2009) studied pH values over an exten-

sive period of time post-mortem (from 1h to about 90h) with various treatments involving

temperature while cooling and wrapping to influence the meatas rigor developed. As a

result, they obtained a broad range of pH values 5.15–7.17. PLS was used to model the

pH based on the spectra. Over the 253 samples used in the validation set they obtained

R2
= 0.84. The work of Rosenvoldet al. (2009) is a much more comprehensive study

than what is presented here, regardless the fact that a good correlation could be found in

our data is in accordance with their result.

5.5.2 Tenderometry
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Figure 5.17: Correlation (r value) of tenderness readings against the wavelengths.

Figure 5.17 shows the correlation of the tenderness over thecrossvalidation data

against wavelength. There are no spectral regions that correlate well with the tenderom-

etry readings. Any relationship between spectral effects and the tenderometry readings,

if it exists at all, is not simple and is unlikely to be seen clearly or reliably with the

small number of samples obtained. Five tenderometry measurements were taken of each

steak, where the correlations in Figure 5.17 are of the wavelengths against the mean ten-

derometry for each muscle. The upshot is that each muscle’s tenderometry reading has
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an associated standard deviation, with the mean of the standard deviations to be 0.95 kgF.

The spread in the average tenderometry readings is 3.49 kgF, so the ratio of the average

standard deviation over the spread is 0.272. The uncertainty is nearly 30% of the spread.

Clearly with the tenderometry measurement equipment available much greater spread in

the tenderometry values is required before any useful correlation can be observed.

In the literature a mix of tenderness classification and calibration is reported. The

purpose of investigating tenderness via spectroscopy is tofind a way to grade the meat

without damaging it. Grading for tenderness means assigning a label of tender or not

tender, so classification is reasonable. We do not have enough samples to attempt classifi-

cation, nor did we intend to, and the samples that we have do not fall into obvious groups.

Rather we sought to measure quality features of the meat to inform the variography and

pixel classification. Hildrumet al. (1994) and Naes and Hildrum (1997) obtained good

classification and calibration of tenderness. They concluded that classification was bet-

ter because calibration tended to return intermediate values, causing the more tender and

tough samples to be misclassified.

Rødbottenet al. (2000), like us, did not obtain good prediction of tenderness (R2

values up to 0.46) but they were seeking a prediction of tenderness in the future, that

is, they ask whether spectra taken early post-mortem can predict tenderness much later.

Bowling et al. (2009) reported low correlation (R2 ≤ 0.23) and observed that others who

obtained good correlation had a broad range in tenderness values. Rødbottenet al. (2001)

incorporated information regarding the treatment of the meat postmortem in performing

prediction of tenderness in the future. They obtained better results in future prediction

when treatment information was used than when it was not used(R2 in the range 0.27–

0.69 without treatment information, 0.50–0.72 with treatment information). Rosenvold

et al. (2009) obtained moderate prediction of tenderness (R2
= 0.58) but had a broad

range of tenderness values (19–265N) obtained from meat subjected to a range of treat-

ments and measured at various times post-mortem. We have only used one treatment, that

resulted in the narrow range of tenderness measurements stated above. Differing treat-

ments of the meat potentially could have provided a broader range of tenderness values

and produced better results. Varying treatments may also have yielded different results

in the variography, potentially even drowning out the watereffect observed. Regardless

variography, along with tenderness, under different treatments is an interesting topic for

future investigation.



Chapter 6

Conclusion and Future Work

This thesis presented the successful acquisition of hyperspectral images using source

modulated spatial multiplexing. A projector system was developed that used a digital

micromirror array (DMA) to project light patterns onto a sample. A spectrometer mea-

sured the spectral information reflected from the sample. The light patterns encoded the

spatial information in such a way that the signal quality wasimproved over measuring

each point on the sample at a time.

The theory for multiplexing was developed. In particular, discussion of all types of

realistic error under multiplexing with the Hadamard matrices was presented. This discus-

sion incorporated theoretical development that had gone before, encompassing the results

into a single theoretical development. The effect of compressed sensing on multiplexing

precision and some results concerning the use of strongly regular graph matrices were

also discussed and developed.

The hyperspectral imager was tested and characterised for signal to noise ratio (SNR)

behaviour. Aspects of the developed theory were verified, inparticular, the reduction of

the benefit in SNR due to Poisson noise was observed. The Hadamard matrices were

also seen to be useful despite the SNR boost being reduced in certain high Poisson noise

situations, especially when the main noise source (Poissonor additive Gaussian) is inde-

terminant or varying.

An important issue in all the work presented is that the hyperspectral imager is proof

of concept in its design and implementation. As such funds were limited which impacted

significantly in the selection of parts and equipment used. While the imager took good

spectral images, it took a long period of time to do so (about 2.5 minutes to acquire

a 16× 16 pixel image, up to about 40 minutes to acquire a 64× 64 pixel image) and

the equipment is fragile. Better (and more expensive) parts are expected to reduce the

acquisition time significantly and to enable development toimprove the ruggedness of the

device.

The imager was used to acquire spectra of beefm. Longissimus Dorsi from the right

127
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and left sides of seven animals. The spectra were analysed for the classification power

between lean and nonlean groups, variation down the length of the muscles, pH, bloom

(change in colour after cutting) and tenderness (force required to sheer the meat after

cooking). The proof of concept nature of the work meant that alarge scale study was not

sensible at this time. The positive results concerning the usability of the spectra produced

by the system and the interesting features observed on the meat validate the approach.

Furthermore, from a technical standpoint, further development of the imaging system and

larger scale investigation of the meat is warranted.

6.1 Theory

The theory for multiplexing by the Hadamard matrices under additive and multiplicative

systematic and random error was developed. Results from prior art were integrated into

a single notational system under which the effect of the Hadamard H,G and S matrices

on the different noise types were compared. For random additive noise the well known

result surrounding noise reduction was derived. That is theH-matrix provides the best

noise reduction, followed by the G-matrix and the S-matrix has the least noise reduction.

For Poisson (random multiplicative) noise we confirmed thatthe S-matrix increased the

noise variance, that the H-matrix has no effect on the average variance and it was shown

that the G-matrix has the same noise increase as the S-matrix.

Systematic additive error (offset) was divided into two type, offset that is multiplexed

and offset that is not multiplexed. It was observed that elimination of offset that is multi-

plexed is preferable, that is, any offset should be independent of the encoding. Additive

offset that is independent of the encoding is corrected for before decoding and any random

noise effects associated with the measurement used to make the correction is reduced in

the subsequent decoding operation. If the offset is multiplexed, then the correction must

be made after decoding and any random noise associated with the correction is not re-

duced.

The effect of systematic multiplicative drift at decoding was seento be difficult to

assess in the general sense. Because the error was mixed per entry into the multiplexing

matrix the signal measured and the drift itself were required to compute the resultant er-

ror. Correction of multiplicative drift removed the bias butincreased the overall noise

level. Computation of the overall noise level was performed assuming additive and mul-

tiplicative noise were present in the signal and reference measurements. The reference

measurements and the signal measurements were assumed independent, but the case of

non independent measurements was recognised as possible and stated as requiring ad-hoc

treatment. The correction of multiplicative drift produced new noise variance terms in

addition to the terms that arise due to random noise. One of these terms showed a distinct
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multiplexing disadvantage of the order ofN, the size of the multiplexing matrix, how-

ever analysis in a later chapter with consideration of instrumental effects showed that this

disadvantageous factor was mitigated by ensuring that attenuation though the reference

beam is small. The H-matrix was better overall than the othertwo Hadamard matrices in

terms of noise variance. Some variance terms in the S-matrixwere smaller than for the

G-matrix and others were larger, so neither had a distinct advantage.

The link between strongly regular graphs (SRGs) and HadamardH and G-matrices

was explored. The link between SRGs and the S-matrix was established by Ratneret al.

(2007) herein the connection to the other Hadamard matricesis explored. The SRG ma-

trices have useful properties for multiplexing when Poisson noise is present, especially

when the relative Poisson and additive noise levels are known before multiplexing takes

place. One construction procedure for the S-matrix is to start from the H-matrix, from

which the G-matrix and subsequently the S-matrix are derived. Starting with the SRG

matrix, this construction procedure was reversed to produce H-like and G-like matrices.

The properties of the new matrices were examined via the matrix trace and eigenvalue

structure. It was found that the G-like matrix has properties closer to the Hadamard H-

matrix. The H-like matrix, while providing a good multiplexboost, was not quite as

good as the G-like matrix. We take this as evidence that whilethe S-matrix shares many

properties with a SRG matrix under certain conditions, they are not exactly equivalent.

Regardless, SRG matrices form attractive multiplexing patterns for certain situations.

Compressed sensing (CS) theoretical precision using a randomencoding matrix was

examined against the number of measurements. It was shown that the random error in

a CS reconstruction depends only on the inversion of the acquisition pattern acting on

the random error in the acquisition. For a large random matrix, as the number of rows

increases the spread in the eigenvalues increases. From theeigenvalue structure it is in-

ferred that the precision decreases as the number of measurements increases. A numerical

simulation was performed in which a sparse signal was CS ‘multiplexed’ using a random

acquisition pattern to which random error was added. The signal was subsequently re-

constructed using basis pursuit for a range of the number of measurements and the SNR

computed for each reconstruction. The theoretical SNR was computed assuming that ran-

dom noise at acquisition was the only error source. The SNR inCS reconstruction was

small for very few measurements in accordance with others analyses. The SNR increased

until it met the theoretical SNR from our model and then decreased closely tracking to

the theoretical prediction.

The Wilcoxon and the area under the receiver operator curve (ROC AUC) are two

equivalent statistics for assessing the power of a classification system to assign data to

groups. The effect of error in the reference in computing the Wilcoxon was derived and

discussed. A direct link between the two statistics was established by beginning with the
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the definition of the AUC and deriving a result which was seen to match the definition of

the Wilcoxon. The resultant equation was then modified and analysed under the presence

of error in the reference which manifested as the transference of members between groups.

The Wilcoxon was found to be reduced by error in the reference. Given an estimate of

the number of data transferred, we showed that an estimate ofthe Wilcoxon without error

could be computed. Numerical simulations of computing the Wilcoxon on data with

varying numbers of data transferred between groups verifiedthe theoretical prediction of

the effect of error in the reference on the Wilcoxon.

6.2 Hardware

A hyperspectral imager was built and tested. The imager utilised source modulated multi-

plexing using a custom digital image projector with a broadband light source. The pro-

jector imaged multiplexing patterns onto the sample and a single point spectrometer in-

tegrated light from the sample. The light source projected ‘on-off’ patterns of squares

onto the sample with each square corresponding to one pixel.Changing the patterns over

time while taking spectra built a linear transformation of the spectral image pixels. Later

decoding returned the individual spectral pixel responses. The spatial domain was mul-

tiplexed while the spectral domain was examined by the spectrometer, so each spectral

band, or wavelength, was multiplexed in parallel. The errortypes considered in the the-

ory chapter were interpreted for the optical system. Additive random error occurred in

the spectrometer and multiplicative random noise occurredas photon fluctuations from

the light source that followed Poisson statistics. Systematic additive error occurred as

background illumination and the baseline offset in the spectrometer while systematic mul-

tiplicative error occurred as light source drift. The theory was reworked to incorporate

hardware specific considerations such as the important inclusion of the optical attenua-

tion effect.

A complement encoding scheme was used to remove additive offset. Assuming that

the encoding matrix (Hadamard or otherwise) had both positive and negative entries, then

the pixels at locations that corresponded to the positive entries were illuminated, then im-

mediately following were illuminated according to the negative entries, and spectra were

taken for each illumination. The positive and negative encodings are complementary,

hence we call the process complement encoding. Since the positive and negative encod-

ings were taken in quick succession there is minimal chance for drift in the background

offset to occur, so the additive offsets in both spectra were the same and subtraction of

the negative encoding from the positive encoding performedthe necessary correction.

Since the encodings were complementary no desired spectralresponse from the sample

was lost. For multiplexing matrices that have no negative entries, such as the Hadamard
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S-matrix and pointwise acquisition, a background measurement was required for each en-

coding. The background measurement was acquired by settingthe encoding to uniformly

zero (no illumination of the sample) and taking a spectrum. To perform the correction the

background spectrum was subsequently subtracted from the encoding spectrum.

A reference beam monitored the light source intensity over the acquisition period. The

reference beam measurements were subsequently used for light drift correction. A refer-

ence spectrum was taken with and subsequently divided from every encoding spectrum.

Due to physical size constraints the acquired raw referencebeam measurements actually

were the combination of the reference beam and sample so to obtain the reference beam

the sample spectrum without the reference beam was subtracted from the raw reference.

The subtraction operation caused the sample and reference measurements to be depen-

dent. The theory surrounding the effect on random error of reference beam correction

was reworked to account for the lack of independence which increased the noise variance

slightly. There was a disadvantageous term in Hadamard multiplexing that occurred due

to correction of multiplicative drift. Accounting for optical effects showed that if the ref-

erence beam optics attenuate much less than the sample optics then the combined optical

effect mitigates the disadvantage. Also the rise in noise variance due to the lack of inde-

pendence between the sample and reference measurements wasgreatly mitigated by the

relatively low attenuation by the reference beam optics.

In decoding the image spectra the optical attenuation effect remained after the cor-

rections and were applied. A reference white tile was used toobtain an image of the

attenuation effect. The reference white tile was assumed to have a very high and flat re-

flectance profile over the spectral band of interest. Dividing the sample image by the white

tile image removed the optics effect. The only error remaining after this final correction

was the random noise. The theoretical noise variance was computed for the white tile

corrected spectra. It was found that a low light level through the sample optics resulted

in an increase in noise variance, but was mitigated by a sufficiently intense light source.

The overall noise variance was approximately doubled by thewhite tile correction. The

theoretical analysis lead to the commonsense conclusion that more light from the light

source and less attenuation by the optics ultimately lead toless noise in the final corrected

spectra.

Hadamard matrix and compressed sensing patterns were implemented. SRG matrix

multiplexing was not implemented because the relative additive and multiplicative noise

level varied over the wavelengths, so a multiplexing pattern designed to give the optimal

boost where the photon noise was greatest would not have beenoptimal where the light

level, hence the signal, was low. Instead, prompted by the theory, the Hadamard multi-

plexing was expected to provide a good multiplexing advantage at wavelengths of low

light level where it was most needed and that the advantage would be smaller where the
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light level, hence the SNR, was already good. Since the H-matrix does not reduce Poisson

noise variance on average, the varying SNR boost was interpreted as a preferential noise

reduction at lower light levels which is demonstrably useful when the main noise source

is indeterminate or varying, which is the case with our system.

Hadamard G-matrix and H-matrix encodings were implemented. These Hadamard

encoding matrices used have both positive and negative entries so complement encoding

was used. Complement encoding, with its inherent advantagesand disadvantages, is one

of the key features of the work herein. S-matrix encoding does not require complement

encoding and provides no theoretical advantage over the other Hadamard matrices so was

not used here. The complement encoding is used to remove background illumination and

the baseline offset in the spectrometer. To do the same for S-matrix encodingrequires

measurement of the baseline with no added value in terms of acquiring information about

the sample. Complement encoding performs the background correction using measure-

ments that have spectral information from the sample, a qualitative reason why the G-

matrix encoding is better than the S-matrix with regards to signal independent additive

noise.

In a multiplexing situation where the correction of systematic additive error is not

required then complement encoding is not necessary, and thesubtraction operation that

doubles the random noise may even render complement encoding disadvantageous. One

must assess the benefits of the encoding system for the particular situation. We believe

that Hadamard H-matrix encoding using complement encodingis the best approach for

the hardware configuration described herein. There was a background offset inherent in

the spectrometer; zero illumination did not return a zero spectrum and the baseline point

could drift over time. Background illumination due to light sources not related to the

spectrometer system and stray light from the spectrometer light source both contributed

to the additive offset. Also, as stated above, the H-matrix, which can only be implemented

on our system by complement encoding, provides the useful preferential boost.

Hyperspectral images of simple objects were taken and the system was assessed by

examination of the signal to noise ratio of the spectra. Visual examination of the images of

the simple objects showed that the images produced are sensible. Processing of the spectra

using SNV, SVD and thresholding segmented the images successfully, demonstrating that

in simple objects the spectral imager produces usable spectra.

SNR experiments were conducted to examine the SNR boost overpointwise imaging

for the G and H-matrices. For the G-matrix multiplexing aN = 255 matrix was used to

capture 17× 15 pixel images. The SNR boost reached the maximum of
√

255/2 = 11.29

at the highest and lowest wavelengths, which is where the light output from the bulb

and the detector sensitivity were both lowest. The SNR boostdropped greatly where the

light bulb output, hence the photon noise, was greatest and the detector sensitivity, hence
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relative instrument noise, was least. The SNR boost was least where the SNR is greatest,

and was greatest where the SNR was least, indicating that theSNR boost was delivered

where it was most needed.

For the H-matrix encoding aN = 256 matrix was used to capture 16× 16 pixel

images. Like with the G-matrix multiplexing, the maximum SNR boost of
√

256 = 16

was reached at the lowest and highest wavelengths and the minimum SNR boost occurred

where the SNR was greatest. The H-matrix maximum SNR boost, which occurs when

additive noise dominates the noise processes, was approximately
√

2 times that of the G-

matrix boost as predicted. The general shape of the SNR boostwas the same for the two

encoding matrices but with the important difference that the photon noise did not reduce

the boost relative to the maximum possible boost to the same degree that the G-matrix

encoding did, as predicted. For a complement encoding scheme H-matrix multiplexing is

superior to the G-matrix.

Compressed sensing (CS) was implemented using aN = 256 matrix of randomly

assigned ones and negative ones to perform 16× 16 pixel spectral imaging. With CS it

was necessary to perform SNR experiments to assess measurement precision and error

experiments to assess accuracy. Both accuracy and precisionvaried with the number of

measurements taken. As the number of measurements increased the SNR decreased as

predicted and the accuracy increased as indicated by the literature, thus there is a tradeoff

between accuracy and precision. The software used to perform the CS reconstruction has a

noise aware reconstruction option. The noise aware reconstruction performed very poorly

indicating that the real data acquired did not satisfy the assumptions in the algorithm in

accounting for random fluctuations.

6.3 Application

To demonstrate the applicability of the imaging system a larger and more difficult prob-

lem than imaging simple objects was attempted. Spectral volumetric mapping of beef

m. longissimus dorsi (LD) muscles was performed. LDs are long and after collection

they were rolled producing a long tubular shape. Volumetricmapping was performed

by slicing the meat and taking hyperspectral images of each slice. Concurrent with the

hyperspectral imaging colour images were acquired and subsequently processed to iden-

tify the visible content of each spectral pixel. The pH of each slice was measured and

tenderometry readings were taken on a steak cut from each muscle.

Classification of the spectra as lean or nonlean was trialled.Air spectra were easily

identified and removed as part of the data cleaning process, thus the air spectra were

not processed as part of the lean pixel classification. The main visible components left

were lean and fat. Some connective tissue was visible in the colour images but the image
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processing did not segment out the connective tissue regions well. No preprocessing,

such as SNV or MSC, was used on the spectra as such methods remove gross intensity

which was considered an important spectral feature. Extended canonical variates analysis

(ECVA) was used to discriminate between the lean and nonlean groups. ECVA is the

application of PLS to solve a Fisher linear discriminant analysis problem when there is

a large degree of covariance between the wavelengths in spectral data. Being based on

PLS, ECVA produces factors that can be examined individually. A three factor model was

chosen from the testing stage for use in validation. The firstfactor did not produce strong

separation of the lean and nonlean groups for all the musclesused in the training data

set, indicating that gross intensity difference was not always the strongest discriminating

factor. The other two factors produced good separation between the groups over the

different muscles. The AUC of a ROC curve, equivalently the Wilcoxon statistic, was

used to assess the classification power. The AUC of validation was 0.9515. In other

words the ECVA model returned a higher score for the lean than the nonlean in about

95% of the validation spectral pixels indicating very good classification power.

The technique of variography was used to examine the nature of the variation in the

spectra down the length of the muscles. Variography examines the similarity on average

(correlation) between data at different points for varying distances between points. The

shape of the variogram is indicative of the type of variationin the samples from which

the data (spectra) are taken. The variography indicated that the variation within a given

muscle is small, but increased with distance down the length. There was a periodic effect

in the variography that corresponded with the spatial period of the vertebrae that the LDs

were cut from. There are two possible explanations for the periodicity in the variograms.

The first is that a spatially periodic removal of connective tissue corresponding with the

vertebrae that is produced when the LD is cut from the carcass. Connective tissue retains

water, so where the connective tissue is removed from the lean more seepage is likely.

The second explanation is a possible strain effect on the muscle fibres when the carcass is

hung postslaughter. Each vertebrae could pull on the musclecausing a periodic effect.

A bloom curve was obtained for each muscle using both colour and hyperspectral

imaging. The colour images were processed to obtain CIE La*b*values for each time

point. Exponential decay parametric curves were fit to the a*and b* values to obtain the

initial values, final values and the rate of change of the bloom. The L values were erratic

and unusable, most likely due to specularities in the colourimages. The lean spectra in the

bloom spectral images were identified using the ECVA classifier and averaged to obtain

one spectrum per muscle per time point. Using SIMPLS and per animal cross validation

the initial spectra, final spectra and difference spectra were related to the parameters of

the bloom curve. The initial and final spectra both related well to both the initial and

final bloom parameters. The difference spectra related moderately well to the bloom rate
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parameter, but the model should be considered tentative. A much larger scale study is

required to assess if initial spectra can predict the bloom rate and if spectra taken at some

time point soon after slaughter can predict the final colour at a time point consistent with

retail presentation.

Variation of pH within each muscle was small compared to inter-muscle variation,

so the average pH for each muscle was taken, giving twelve data points (a very small

number). The wavelength band from 598 to 949 nm was found to correlate well with the

pH and the average absorbance in this band returnedR2
= 0.7973 withp = 0.0001. Given

the small number of measurements correlation with such a lowp-value is a good result,

yet many more measurements are needed to establish a calibration of pH from spectral

reflectance. Other limiting factors are the small spread in pH values and the use of one

time point post slaughter. The small spread in pH values is undoubtedly related to the

use of one time point, but is further exacerbated by the collection and handling protocol

which was intended to optimise the tenderness in the meat.

Prediction of tenderometry failed in this study. The principle cause of difficulty was

the small range of tenderometry values caused by the handling procedure. No useful cor-

relations were observed. Varying the handling procedure and timepoints for measurement

was identified as necessary to broaden the range of tenderometry readings. The literature

that we compared our work to contained a mix of classificationand calibration approaches

to the prediction of tenderness via NIR. The work presented here is not intended to create

a data set suitable for classification.

6.4 Future Directions

The foremost concern of future direction is the improvementof the light projector system.

The heart of the imager is the DMA chip in the projector. The DMA used is from an

off-the-shelf digital data projector and is limited in speed bythe associated electronic

hardware. Better suited hardware to drive the DMA will improve data acquisition speed

significantly. The optical system is proof of concept in nature and is fragile. Investment

into the physical design will result in a more robust opticalsystem. The visible domain

and the high wavelength end of the NIR region were too noisy. Research into improving

the spectral breadth of the light source output will improvethe width of the spectral region

not dominated by noise. The most obvious improvement to makeis to use a tungsten

halogen bulb with a higher colour temperature than what was used herein (2800 Kelvin).

A higher colour temperature has greater emission in the visible domain. The overall

intensity output increases with colour temperature, so care will be required to ensure that

the DMA chip is not harmed if a similar optical scheme to what is described here is

employed.
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The actual physical construction shown in Chapter 4 is fragile and nonportable. A fu-

ture construction should be more robust and self contained.Ultimately desired is a single

box unit containing the projector optics and spectrometer,with a view window on top to

place samples on for imaging. In a new construction both the reference beamand the

light to the sample should be chopped so that the covariance between the sample and ref-

erence measurements is zero. Purchasing a DLP kit from TexasInstruments that includes

the chip and driver hardware and software is critical for thesuccessful implementation of

a more robust unit. The modified data projector approach taken here to get access to a

working DMA, while sufficient at proof of concept level, is the main cause of fragility in

the system. Like the hardware presented in this thesis, the next iteration in development

would involve pulling together the appropriate parts from ‘off the shelf’ sources. Fur-

ther iterations may require the development of specialisedelectronic driver circuitry for

optimised speed and synchronisation of the modulated illumination and data acquisition

process.

Calibration transfer, that is the use of a model built from data from one spectrometer

on data from other spectrometers, is always an issue. We anticipated that if a two dimen-

sional sensor like a CCD was used then there would even be a transfer problem within

the data generated by the one spectrometer, thus a single point spectrometer with one sen-

sor per wavelength was used. Regardless if development of this system progresses then

transfer of calibrations between different units built will no doubt be necessary.

We have identified a tradeoff between precision and accuracy in compressed sensing.

Some outstanding issues remain. The precise interpretation of the tradeoff between ac-

curacy and precision and the relationship with overfitting verses wrong model error that

can occur in least squares regression problems are issues for further consideration. The

theoretical effect on random noise, computable from the eigenvalues of the random ac-

quisition system, assumes that the acquisition matrix has entries drawn at random from

a Gaussian distribution. The numerical example given meetsthe assumption of entries

drawn at random from a Gaussian, however the acquisition of real data was performed

using an acquisition system of randomly assigned ones and negative ones. The theoret-

ical connection of the effect on precision between the two similar but different types of

acquisition matrices need to be established. The results were as expected but with one

exception. The denoising option in the basis pursuit technique did not improve the recon-

struction, in fact the opposite occurred. We can only conclude that the data did not meet

the assumptions of the basis pursuit denoising technique, however the reason why is not

currently known and should be investigated further.

The theoretical result concerning the Wilcoxon statistic when there is error in the ref-

erence has room for further development. In particular we have assumed that the reference

method and the new method under examination are independent, hence are uncorrelated.
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We havenot studied in detail the effect of correlation between the reference method and

a new classification technique. Independence between reference and the new method

means that data misclassified by the reference method are transferred between groups

without bias from the perspective of the new method. Correlation between the two meth-

ods means that there is bias from the perspective of the new method. For example, if

the two methods are positively correlated then the misclassification is more likely to oc-

cur at the boundary between the two classes in the new method.Conversely, negatively

correlated methods mean that the misclassification is more likely to occur at the opposite

extreme values away from the boundary in the new method. Precisely how to mathemat-

ically model the effect of error in the reference method on the new method when there is

correlation is not known at this time. Modelling independent of any particular distribu-

tion is preferred, but it may be that assumptions about the type of distribution are required

to facilitate analysis. There is also scope for numerical modelling with non-Gaussian

distributions to broaden the verification of the theory.

The application of the hyperspectral imager is limited in scope. Repetition of the meat

spectra analysis with many more samples is necessary to establish commercially viable

calibrations and clearer understanding of the variabilitystudies. The variography will

benefit greatly from the inclusion of many more samples. Spectra for variography need

to be taken of meat that has undergone varying handling protocols and at different time

points post slaughter. The bloom analysis requires many more samples to establish cali-

brations that are not considered tentative in nature. The work presented in this thesis can

inform the design of experiment analysis to establish how many samples are necessary.

The work of Rosenvoldet al. (2009) answers many of the questions surrounding pH pre-

diction that might arise from this work. Regardless pH measurement is always useful and

informative in the analysis of meat, so subsequent comparison of pH readings with spec-

tra is sensible. The cause of the difficulties in predicting tenderometry reading, namely

the lack of breadth of measurements that we obtained, were identified. Varying handling

protocols and time points for variography will also cause a greater range of tenderometry

readings. Causing variation in the tenderness readings willalso allow the classification of

spectra into different tenderness groups to be investigated.





References

Andersen, J., C. Borggaard, A. Rasmussen, and L. Houmøller. Optical measurements of

pH in meat.Meat Science, 53, pp. 135–141 (1999).

Andrés, S., A. Silva, A. Soares-Pereira, C. Martins, A. Bruno-Soares, and I. Murray. The

use of visible and near infrared reflectance spectroscopy topredict beefM. longissimus

thoracis et lumborum quality attributes.Meat Science, 78, pp. 217–224 (2008).

Baraniuk, R., M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted

isometry property for random matrices.Constructive Approximation, 28(3), pp. 253–

263 (2008).

Barker, M. and W. Rayens. Partial least squares for discrimination. Journal of Chemo-

metrics, 17(3), pp. 166–173 (2003).

Barnes, R., M. Dhanoa, and S. Lister. Standard normal variate transformation and

de-trending of near-infrared diffuse reflectance spectra.Applied Spectroscopy, 43,

pp. 772–777 (1989).

Barrett, H., C. K. Abbey, and E. Clarkson. Objective assessmentof image quality. III.

ROC metrics, ideal observers, and likelihood-generating functions. JOSA A, 15(6),

pp. 1520–1535 (1998).

Becker, E. Fourier transform spectroscopy.Science, 178(4059), pp. 361–368 (1972).

Bowling, M., D. Vote, K. Belk, J. Scanga, J. Tatum, and G. Smith.Using reflectance

spectroscopy to predict beef tenderness.Meat Science, 82, pp. 1–5 (2009).

Brainard, D. H. The psychophysics toolbox.Spatial Vision, 10, pp. 443–436 (1997).

Cand̀es, E. The restricted isometry property and its implications for compressed sensing.

Theory of Signals/Mathmetical Analysis, 346(9-10), pp. 589–592 (2008).

Candes, E., J. Romberg, and T. Tao. Robust uncertainty principles: exact signal recon-

struction from highly incomplete frequency information.IEEE Transactions on Infor-

mation Theory, 52(2), pp. 489–509 (2006).

139



140 References

Cand̀es, E. and T. Tao. Decoding by linear programming.IEEE Transactions on Infor-

mation Theory, 51(12), pp. 4203– 4215 (2005).

Chen, S. S., D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.

SIAM J. Sci. Comput., 20(1), pp. 33–61 (1998).

Cortes, C. and M. Mohri. AUC optimization vs. error rate minimization. Advances in

Neural Information Processing Systems, 16 (2004). MIT Press.

Damaschini, R. Limitation of the multiplex gain in Hadamard transform spectroscopy.

Pure and Applied Optics: Journal of the European Optical Society Part A, 2(3),

pp. 173–177 (1993).

Davis, D. S. Multiplexed imaging by means of optically generated kronecker products:

1. the basic concept.Applied Optics, 34(7), pp. 1170–1176 (1995).

DeVerse, R., R. Hammaker, and W. Fateley. Hadamard transform raman imagery with a

digital micro-mirror array.Vibrational Spectroscopy, 19(2), pp. 199–186 (1999).

DeVerse, R., R. Hammaker, and W. Fateley. Realization of the Hadamard multiplex ad-

vantage using a programmable optical mask in a dispersive flat-field near-infrared spec-

trometer.Applied Spectroscopy, 54(12), pp. 1751–1758 (2000).

Devine, C., N. Wahlgren, and E. Tornberg. Effect of rigor temperature on muscle short-

ening and tenderisation of restrained and unrestrained beef m. longissimus thoracis et

lumborum. Meat Science, 51, pp. 61–72 (1999).

Dhanoa, M., S. Lister, R. Sandersona, and R. Barnes. The link between multiplicative

scatter correction (MSC) and standard normal variate (SNV)transformations of NIR

spectra.Journal of Near Infrared Spectrosc, 2, pp. 43–47 (1994).

Donoho, D. Compressed sensing.IEEE Transactions on Information Theory, 52(4),

pp. 1289 – 1306 (2006).

Fateley, W., R. Hammaker, R. DeVerse, R. Coifman, and F. Geshwind. The other spec-

troscopy: demonstration of a new de-dispersion imaging spectrograph. Vibrational

Spectroscopy, 29, pp. 163–170 (2002).

Fateley, W. G., R. M. Hammaker, and R. A. DeVerse. Modulations used to transmit

information in spectrometry and imaging.Journal of Molecular Strucure, 550-551,

pp. 117–122 (2000).



141
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