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Abstract 

 

It may sometimes be desirable to introduce bounds into probability distributions to 

formalise the presence of upper or lower physical limits to data to which the distribution 

has been applied. For example, an upper bound in raindrop sizes might be represented by 

introducing an upper bound to an exponential drop-size distribution. However, the 

standard method of truncating unbounded probability distributions yields distributions 

with non-zero probability density at the resulting bounds. In reality it is likely that 

physical bounding processes in nature increase in intensity as the bound is approached, 

causing a progressive decline in observation relative frequency to zero at the bound. 

Truncation below a y-axis point is proposed as a simple alternative means of creating 

more natural truncated probability distributions for application to data of this type. The 

resulting “y-truncated” distributions have similarities with the traditional truncated 

distributions but probability densities have the desirable feature of always declining to 

zero at the bounds.  In addition, the y-truncation approach can also serve in its own right 

as a means of creating a rich new class of bounded probability distributions when 

transformations of y-truncated distributions are included. 

 

 

1. Introduction 

 

There will sometimes be a need to impose upper or lower bounds on the x-axis of 

unbounded standard probability distributions to better represent recorded variables which 

are constrained in their magnitude range because of some physical bounding process. For 

example, exponential distributions can give reasonable first approximation to histograms 

of raindrop diameters [6][8], but a truncated exponential distribution might be utilised to 

allow for the physical reality of an upper limit to raindrop size while still maintaining the 

approximate exponential form. Distribution bounding in this way is distinct from 

bounding resulting from censored observations which cannot be recorded beyond a 

certain magnitude.  

 

The familiar text-book truncated distributions are referred to in this paper as “x-

truncated” distributions and are natural choices for representing data with censoring 

beyond threshold values [4]. However, their value for representing situations with a 

physical upper or lower bound is more questionable because the mathematical truncation 

process creates finite probability density at the bounds. In reality it would be more likely 

that environmental bounding processes such as raindrop break-up or maximum storm 

precipitation limitation will progressively increase in intensity as the bound is 

approached, giving rise to observation frequencies which decline progressively to zero at 

the bound. 

 

One approach would be to discard the original unbounded distribution altogether and 

replace it with an existing flexible bounded distribution such as the beta distribution 

which include unimodal forms declining to zero at the bounds.  It is likely, however, that 

the original unbounded distribution would have had some history of successful data 

fitting in the field and the users would prefer to modify this distribution so as to 
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incorporate an upper or lower bound. For this situation, it would be helpful to have an 

alternative truncation procedure available such that the resulting  bounded distributions 

possess probability density declining to zero as the bounds are approached. This brief 

paper describes a particularly simple “y-truncation” process which achieves this end.  

 

 

2. Definitions 

 

A “y-truncated distribution” is defined here to be that portion of the original distribution 

which is above a given horizontal line drawn parallel to the x-axis, with rescaling to an 

integral of 1.0. There is a connection between x- and y-truncated distributions in that any 

y-truncated distribution also defines a corresponding x-truncated distribution which can 

be thought of as a two-component finite mixture distribution comprised of the y-truncated 

distribution and a rectangular distribution defined over the same x-axis interval. The y- 

mode of truncation is a purely geometrical contrivance and is somewhat analogous to the 

familiar hydrograph quickflow separation concept, although for the purposes of this paper 

y-truncated distributions are defined as always arising from horizontal separation lines.  

 

It is assumed ( )w x  is a probability density function (pdf) subject to y-truncation by a 

horizontal line corresponding to some value of probability density * max0 y y , where 

maxy  is the maximum value of ( )w x . Two general ( )w x  forms will be considered here: 

form (i) is defined such that  ( ) 0w x  for distributions defined over 0 x , and form 

(ii) represents unimodal ( )w x  types. For example, (i) includes the exponential 

distribution and (ii) incorporates a wide variety of standard distributions including the 

normal, lognormal, Gumbel, and inverse Gaussian distributions. 

 

With respect to (i), introducing an upper bound at x  gives the general definition of 

the cumulative distribution function (cdf) of this class of y-truncated distributions as 

 

 

( ) ( )
( ) 0

( ) ( )

W x w x
F x x

W w
     (1) 

 

where ( )W x  is the cdf corresponding to the probability density function ( )w x . If ( )F x  in 

(1) is mapped to the interval A,B then this gives: 

 

( ) ( )
( )

( ) ( )

x x

x

W v w v x A
F x v

W w B A
  A x B   (2) 

 

and the associated y-truncated pdf is given by 

 

( ) ( )
( )

( ) ( ) ( )

xw v w
f x

B A W w
       (3) 
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For the unimodal case (ii), a horizontal y-truncation line through ( )w x  now defines two 

bounding values 1  < 2  on the x axis such that 1 2( ) ( )w w  and 1  and 2  are 

respectively to the left and right of the ( )w x  mode. Mapping the resulting y-truncated 

distribution to some A,B interval then gives the y-truncated cdf and pdf respectively as: 

 

1 1 1

2 1 1 2 1

( ) ( ) ( )( )
( )

( ) ( ) ( )( )

x xW k W w k
G x

W W w
   A x B    (4) 

 

1 2 1

2 1 1 2 1

[ ( ) ( )]( ) /( )
( )

( ) ( ) ( )( )

xw k w B A
g x

W W w
      (5) 

 

where 1 2 1( )( ) /( )xk x A B A . 

 

The rth moment about zero r  of any y-truncated distribution can be conveniently 

represented as a function of the equivalent moments of a rectangular distribution and the 

corresponding x-truncated distribution possessing the same bounding points 1  , 2 : 

 

2 1 2 2 1

2 1 2 2 1

[ ( ) ( )] ( )( )

( ) ( ) ( )( )

r r

r

W W w

W W w
      (6) 

 

where r  is the rth moment about zero of the corresponding x-truncated distribution and 

r  is the  rth moment about zero of  a rectangular distribution defined over 1  , 2 . The 

lower bound  1  is set to zero for the specific case  ( ) 0w x  over the region 0 x . 

Expressions for the moments of a number of x-truncated distributions are summarised in 

[3] and could be incorporated in (6) as r  to provide expressions for moments about zero 

for a range of specific y-truncated distributions. Central moment expressions of y-

truncated distributions can also be obtained by way of (6) using standard relations linking 

absolute and central moments. 

 

 

3. Example 

 

The y-truncation process and an estimation example is given here with respect to the y-

truncated exponential distribution with an upper bound at some point x . From (1) 

and (3) the cdf and pdf of  the y-truncated exponential distribution are obtained 

respectively as: 

 

1 exp( / ) exp( / ) ( / )
( ) 0, 0

1 exp( / ) (1 / )

x x
F x x   (7) 
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[exp( / ) exp( / )] /
( )

1 exp( / ) (1 / )

x
f x       (8) 

 

where  is the mean of the untruncated exponential distribution.  

 

Some example plots of (8) for are shown in Fig. 1 for =1  and various values of , 

illustrating decline of ( )f x  to zero at ( )f . Both  x- and y-truncated exponential 

distributions can have similar properties even though they differ in near-boundary form. 

For example, the hazard function ( )h x  of both distribution types is of similar form 

(Fig.2) , with ( )h x  increasing slowly at first and then more rapidly toward infinity as the 

upper bound is approached.  

 

 
Fig. 1. Selected y-truncated exponential distributions for =1 and various values of . 
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Fig. 2. Comparison of hazard functions ( )h x for y- and x-truncated exponential distributions (upper and 

lower plots respectively). Both truncated distributions are derived from truncation of an exponential 

distribution with mean value =0.5 and with upper truncation at x = = 1. 

 

 

Substituting for r  and r  in (6) yields the y-truncated exponential distribution 

expressions for 1  and 2  respectively as: 

 

1 [ exp( / )( )] /[1 exp( / )]      (9) 

 
2 2 2

2 [2 exp( / )( 2 2 )]/[1 exp( / )]    (10) 

 

which also defines the distribution variance through 2  = 2

2 1
. 

 

The expressions (9) and (10) are not helpful for yielding simple moment estimators for y-

truncated exponential distributions and bounded distributions generally are awkward to 

deal with when considering optimal estimators applicable to small samples. It might 

happen that some suitable modification could be applied to methodologies developed for 

parameter estimation for x-truncated exponential distributions [2], although investigating 

formal estimation procedures is beyond the scope of this paper. However, some 

environmental recordings such as raindrop frequencies will generate large samples which 

allow application of more informal estimation techniques. 
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Assuming a large sample, the estimation approach utilised here is to first obtain ˆ  as 

distribution-free estimate of  and then estimate  by maximising the liklihood function 

with    fixed at ˆ  . This estimation procedure was applied to 1000 “data” values which 

might be called raindrop diameters but were generated as random numbers from (7)  with 

1 and 3,  with the simulations being achieved  though generating random  ( )F x  

values from the standard rectangular distribution coupled with numerical solution to 

obtain each x.  

 

The Robson-Whitlock bound estimator [5] was utilised to estimate  as: 

 

1
ˆ 2 N NX X          (11) 

 

where NX  and 1NX  are respectively the largest and second largest recorded observation 

in the sample. An alternative bound estimator such as [7] could have been employed to 

give a reduced estimation error at the expense of some increase in complexity. 

 

For the simulated sample NX  and 1NX  were respectively 2.90 and 2.86, giving ˆ  =2.94 

from (11). With  fixed at 2.94, ˆ  was obtained as 1.20 through maximising the 

likelihood function – in this case using the Excel solver. Fig. 3 shows the actual y-

truncated exponential pdf from which data were simulated together with the estimated 

pdf as obtained from inserting the ˆ , ˆ  estimates into (8). Fig 4 shows an expansion of 

the lower part of Fig. 3, illustrating that a simple exponential distribution fitted to the data 

gives a poor fit near  because of the bounded nature of the data. Fitting was via 

equating the exponential  parameter to the sample mean. The simulated data set is 

listed in an Excel spreadsheet as an electronic attachment to this paper. 

 

 

Fig.3. The y-truncated 

exponential distribution ( =1, 

=3) used to simulate 1000 

random values, together with the 

distribution defined by the ˆ , 

ˆ  estimates from the sample. 
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Fig. 4. Expansion of the lower portion of Fig. 3, also showing part of an exponential distribution with the 

same mean value as the simulated sample.  

 

The reasonably close correspondence between the actual and estimated distributions in 

Fig. 3 is aided by the dual advantages of large sample size and the fact that the data were 

generated exactly from a y-truncated exponential distribution. However, two-stage 

estimation methods should be applicable to any large real-world data sample provided the 

recorded values are not too far removed from some y-truncated exponential distribution 

form.  

 

Some properties of the y-truncated exponential distribution may find application in areas 

outside of environmental science. In particular, the x-truncated exponential distribution 

has been argued as an alternative for describing component life testing situations because 

the increasing hazard function is seen as more realistic than the constant ( )h x  of the 

exponential distribution [2]. However, if the failure  process is such that upper time 

bound is never reached in practice then the y-truncated exponential distribution would be 

the more appropriate alternative to the exponential distribution. 

 

 

4. Discussion and conclusion 

 

The main attribute of y-truncated distributions is their more natural appearance for 

environmental applications in comparison with the traditional x-truncated distributions. 

There is, however, a need for further work to develop estimation theory up to a 

comparable level with x-truncated distributions and bounded distributions in general. 
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An additional more general aspect of the y-truncation process is that it generates a rich 

new class of bounded probability distributions when transformation of variables is taken 

into account. For example, a power transformation applied to random variables from a y-

truncated exponential distribution yields a bounded distribution with respective cdf and 

pdf given respectively by: 

 

 

1 exp[ ( / ) ] exp[ ( / ) ]( / )
( ) , 0, 0

1 exp[ ( / ) ][1 ( / ) ]

c c c

c c

x B x
F x c x B

B B
 (12) 

 
1{exp[ ( / ) exp[ ( / ) ( / ) /

( )
1 exp[ ( / ) ][1 ( / ) ]

] ]}c c c

c c

x B x c
f x

B B
    (13) 

 

where c and /B  are shape parameters and the y-truncated exponential distribution 

corresponds to the special case of 1c .  

 

The pdf (13) is unimodal for 1c and some of the unimodal forms have similarities with 

some beta distribution unimodal forms (Fig. 5), suggesting that (13) might sometimes be 

suitable as an alternative to the beta distribution. One possible application here would be 

to multiply (13) by a scale factor and use this simply as an empirical function to describe  

quickflow hydrographs as an alternative to similar application of the beta distribution. 

[1][9]. The use of (13) in this way may or may not offer an improvement in 

representation of hydrograph form over the beta distribution but does have the 

convenience of avoiding the need to import a beta function macro for hydrograph 

evaluation in a standard Excel spreadsheet.  

 

Many other bounded probability density functions could be derived through 

transformations of different y-truncated distributions and this opens an interesting area 

for further work in distribution development. The utility value of these new distributions 

will ultimately depend on the extent to which workable estimation methodologies can be 

developed. 
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Fig. 5. Unimodal distributions on the 0,1 interval: (a) some unimodal forms of (13) for different shape 

parameter combinations; (b) some unimodal beta distribution forms for selected shape parameters. The beta 

distribution is defined here as 
1 1 1( ) ( , ) (1 )a bf x B a b x x  where a  and b  are shape parameters, 

and (.)B  is the beta function. 
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