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Abstract—Amplitude Modulated Continuous Wave imaging
lidar systems use the time-of-flight principle to determine the
range to objects in a scene. Typical systems use modulated
illumination of a scene and a modulated sensor or image
intensifier. By changing the relative phase of the two modulation
signals it is possible to measure the phase shift induced in the
illumination signal, thus the range to the scene. In practical

systems, the resultant correlation waveform contains harmonics
that typically result in a non-linear range response. Nevertheless,
these harmonics can be used to improve range precision. We
model a waveform continuously variable in phase and intensity
as a linear interpolation. By approximating the problem as
a Maximum Likelihood problem, an analytic solution for the
problem is derived that enables an entire range image to be
processed in a few seconds. A substantial improvement in overall
RMS error and precision over the standard Fourier phase
analysis approach results.

I. INTRODUCTION

Amplitude Modulated Continuous Wave (AMCW) lidar

systems use the Time-Of-Flight (TOF) principle to determine

the range to objects in a scene. By measuring the phase offset

in modulated scene illumination, the TOF, thus the range to

objects in the scene is determined. Heterodyne lidar systems

work by modulating the illumination at a high frequency and

modulating a sensor or image intensifier at a slightly different

frequency. The two signals are gain mixed, which results in

a beating signal at a much lower frequency, with the phase

offset of the beat signal proportional to the range to the object.

Conventionally, Fourier analysis of the sampled beat signal is

used to produce range data.

In practice, many systems use non-sinusoidal modulation

signals [1]–[3]. In this case the recorded signal contains

harmonics as the beat waveform is actually the correlation

of the illumination and sensor modulation waveforms. In

quadrature based systems this results in aliasing, requiring

complex calibration or modulation techniques in order to

produce linear range measurements [4]. In this paper, we show

that flexible systems that can take a larger number of samples

per beat can use this harmonic content to improve ranging

precision.

In previous work [5] we applied a sparse spike train

deconvolution technique to extract multiple returns within a

pixel. In more recent work [6] we modelled the correlation

(or beat) waveform using two different models. The first was

a parametric truncated-triangle model and the second was an

interpolation based method we called the Base-Ratio method.
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Fig. 1. University of Waikato Full-Field Lidar System

The new algorithm analytically calculates the phase offset of

the waveform by maximising a weighted Gaussian likelihood

function.

A. The Waikato Full-Field Heterodyne Lidar System

The University of Waikato Range-Imager [3] uses modu-

lated laser light and an image intensifier to measure range

(fig. 1). The system uses a Direct Digital Synthesiser (DDS)

to generate sinusoids that are further processed to produce

near rectangular laser and image intensifier modulation signals.

The laser modulation signal is squared by passing it through

a comparator, which compares the voltage to a user selectable

reference voltage. By changing the laser duty cycle the shape

of the correlation waveform can be changed, as shown in fig. 2.

This leads to changes in the precision and accuracy of the

phase measurements. A CCD camera records the correlation

waveform over time and the acquired signal is processed by

a general purpose computer to calculate range. A narrowband

filter is installed on the primary optics to limit ambient light.

There are three noise sources – Photon shot noise, readout

noise and DDS jitter. Readout noise is insignificant compared

to the others, so can be ignored. DDS jitter manifests as tem-

poral waveform shape variation, i.e. the correlation waveform

contains anharmonic frequencies.

II. THEORY

A. Fourier Phase Analysis Approach

For rectangular modulation waveforms most of the corre-

lation waveform energy is concentrated in the fundamental.
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Fig. 2. Waveform Shape Versus Laser Duty Cycle.

A simple and reliable range measurement approach is to

calculate the Fourier bin corresponding to the fundamental

frequency. Since the entire Fourier Transform does not need to

be calculated, this is bounded by O(n) in Bachmann-Landau

notation, where n is the number of samples. This method is

particularly reliable if there are a large number of samples as

aliasing induced non-linearities are removed.

B. Base-Ratio Model

In ref. [6] we developed two models for the correlation

waveform, allowing phase determination. One was a paramet-

ric piecewise truncated triangle model and the other was the

Base-Ratio method, based on linear interpolation between a

sampled waveform and a version translated by a single sample.

The Base-Ratio model is fit to samples of the correlation

waveform over time on a per pixel basis, and can be written

as

g[x] = I(ψ[x − Υ] + α∆ψ[x − Υ]), (1)

where g[x] is the estimated value of sample number x, ψ is a

cyclic waveform of infinite domain, ∆ψ[x] = ψ[x+1]−ψ[x] is

the discrete derivative of the waveform, and I is the relative

intensity of the waveform. In order to allow a continuously

phase variable waveform, the phase offset is composed of two

summed components: Υ ∈ Z is the coarse offset and α ∈ R,

where 0 ≤ α ≤ 1, is the fine offset. The resultant phase

offset is θ = 2π(Υ + α)/n, where n ∈ Z
+ is the number

of samples per cycle. This was posed as a Poisson Maximum

Likelihood numerical optimisation problem in order to find

(I, θ) for each pixel in a range image. This method resulted

in a significant improvement in range precision and overall

error versus the Fourier phase analysis approach, however, the

numerical optimisation led to an extremely long processing

time that was unviable for realistic applications. The structure

of the problem also ignored the problem of background

lighting passing through the band-pass filter (shown in fig. 1),

which reduces the dynamic range of the system and causes

constant offsets in the data.

C. Proposed Model

We extend eqn. 1 to account for background light, namely

g2[x] = I(ψ[x − Υ] + α∆ψ[x − Υ]) + β, (2)

where g2[x] is the estimated value of sample x and β is the

amount of ambient light passing through the narrowband filter.

We make the assumption that the ambient light is either non-

varying, or at a sufficiently high frequency that it can be

modelled as a constant.

With sufficient light, Poisson distributed shot noise can be

modelled as Gaussian distributed, σ2
i = κv[i] + ε2i , where σ2

i

is the power of the noise present in sample i, where v[i] is

sample i of the recorded data, εi is readout noise and κ is DN

per photon. We do not currently know κ, although it could be

determined. For this model G2 = {g2[i]; 0 ≤ i < n} and the

recorded data V = {v[i]; 0 ≤ i < n}, we wish to find

arg max
I,θ

P (G2|V ) (3)

which is equivalent to finding the maxima of the log-likelihood

L(I, Υ, α|V ) = c − ρLr (4)

Lr =
n−1∑
i=0

ω[i](g2[i] − v[i])2, (5)

where c and ρ are arbitrary constants, which we ignore, L r

is a cost function and the weighting ω is the reciprocal of

the variance of the noise at each point. Since κv[i] � ε i, we

approximate ω as

ω[i] =
1

v[i]
. (6)

strictly, ω[i] = g2[i]−1 would be more correct, but is more

difficult to optimise for. If the noise levels are particularly

low, then the mismodelling of the linear interpolation can

lead to errors, particularly at the waveform tail and leading

edge, where the waveform is blurred due to the interpolatory

convolution and is extremely heavily weighted due to eqn. 6.

Without further correction in the low noise situation we end

up with poor results. We handle this by limiting the dynamic

range of the weightings to 16: 1 – any weightings above this

threshold are truncated.

D. Maximum Likelihood Solution

The Maximum likelihood solution for (I, θ, β), given V and

Υ is found by setting the partial derivatives ∂Lr

∂I , ∂Lr

∂α and ∂Lr

∂β
to zero and solving the resultant simultaneous equations. In

order to simplify the equations, the following helper functions

are defined:

ζy,z =
n−1∑
i=0

ω[i]y[i]z[i], (7)

ηy =
n−1∑
i=0

ω[i]y[i], (8)

Ω =
n−1∑
i=0

ω[i], (9)
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for y, z ∈ {v, ψ, ∆ψ}. In total 10 unique values are computed.

Excluding the trivial case where I = 0, then

I = −αd

βd
, α =

αn

αd
, β =

βn

βd
, (10)

where αn, αd, βn, and βd are defined by

αn =ζv,∆ψΩζψ,ψ − Ωζψ,∆ψζv,ψ + ζψ,∆ψηvηψ

− ζv,∆ψηψηψ + η∆ψηψζv,ψ − ηvη∆ψζψ,ψ, (11)

αd =ζψ,∆ψηvη∆ψ − ζψ,∆ψΩζv,∆ψ + η∆ψηψζv,∆ψ

− ηvηψζ∆ψ,∆ψ + ζv,ψΩζ∆ψ,∆ψ − ζv,ψη2
∆ψ, (12)

βn = − ηψζψ,∆ψζv,∆ψ + ηψζv,ψζ∆ψ,∆ψ

+ η∆ψζv,∆ψζψ,ψ − η∆ψζψ,∆ψζv,ψ

+ ηvζψ,∆ψζψ,∆ψ − ηvζψ,ψζ∆ψ,∆ψ, (13)

βd =ζψ,∆ψζψ,∆ψΩ − 2ζψ,∆ψη∆ψηψ − ζψ,ψΩζ∆ψ,∆ψ

+ ζψ,ψη∆ψη∆ψ + ηψηψζ∆ψ,∆ψ. (14)

Despite the apparent complexity, the above is still computa-

tionally simpler than trying to optimise eqn. 2 numerically.

The cost function can also be calculated as

Lr =I2ζψ,ψ + 2I2αζψ,∆ψ + 2Iβηψ

− 2Iζv,ψ + I2α2ζ∆ψ,∆ψ + 2Iαβη∆ψ

− 2Iαζv,∆ψ + β2Ω − 2βηv + ζv,v,

(15)

which allows one to compare the likelihoods of several differ-

ent coarse phase bins.

There are several ways in which the problem can be

structured once we have this system of equations. One way

is to explicitly enumerate all the possible values of Υ and

calculate estimated values for I and θ for each, then choose Υ
with minimum Lr. This naive algorithm is O(n2) and wastes

a large amount of time calculating estimates for improbable

coarse alignments. However, if the noise level is sufficiently

low a more informed choice can be made. Herein we choose to

use the fundamental Fourier bin to find the two nearest phase

bins. In most cases only one of the phase bins produces valid

values, if both are valid the smallest Lr is chosen, if neither

is valid then the Fourier phase is used. In practice, with low

noise levels, one is always valid. This results in an algorithm

that is O(n), although a constant factor slower than the Fourier

analysis approach.

We do not explicitly constrain the values of I and α because

in low to moderate noise situations sensible values tend to be

obtained. In high noise cases it is possible to massively overfit

the data resulting, for example, in large negative values of α.

III. METHODOLOGY

A flat board was placed in front of the range-imager and

several sequence of beat cycles were captured at different

laser modulation duty cycles at 20 MHz modulation frequency,

48 samples per beat, 1 beat per second. The correlation

waveform was sampled and then convolutionally blurred in

order to simulate a worst case interpolation scenario. Range

measurements were produced by post-processing these data

using the Fourier analysis method, Base-Ratio method and the
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Fig. 3. Phase Measurement Precision
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Fig. 4. Overall Phase Measurement Error (including systematic and random
components)

new ML method. Precision was estimated by taking the sample

standard deviation of each pixel’s range measurements over

time. Since the number of frames per cycle was sufficiently

high to avoid aliasing, a range model was created by taking the

Fourier analysis data, averaging it over time and then blurring

it in the complex domain using a σ = 5 pixels Gaussian blur.

This model was then considered to be an accurate estimate

of the actual range. The overall error was then calculated as

the RMS error of the range measurements versus this model.

Fig. 5 was produced by taking the sampled 35.8% duty cycle

beat waveform, adding varying amounts of Poisson distributed

noise and then taking range measurements via the Fourier and

new ML approach.

IV. RESULTS

Precision results in fig. 3 show a clear improvement in pre-

cision in the case of high duty cycles, with little improvement

at low duty cycles. A contributing factor is the more complex

shape of the lower duty cycle waveforms. Out of the five
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Fig. 5. Improvement in phase precision versus mean number of photons
per sample for the new method versus Fourier analysis. Results generated via
simulation from sampled 35.8% laser duty cycle correlation waveform.

different duty cycles sampled, 35.8% was clearly the best in all

cases. Comparing overall error (fig. 4) to precision indicates

an increase in systematic error components as the duty cycles

increase. It is not due to simple offsets in the data and may

be related to noise properties.

A simulation (fig. 5) shows how the amount of light col-

lected affects the precision improvement. Low mean Poisson

distributions are leptokurtic, thus poorly modelled by Gaussian

distributions – hence below about 20 photons per sample, there

is no precision improvement.

A. Discussion

The expected squared phase error is

σ2
e = E[(x − µ)2] =

∫ π

−π

x2P (µ + x|V )dx, (16)

where µ is the actual phase and P (µ + x) is the probability

of producing an output phase µ+x, given input data V using

correct Poisson statistics. Due to the structure of the algorithm

it is very difficult to directly minimise this in order to generate

an ideal waveform. There are also several physical constraints

that make it difficult to generate an arbitrary waveform, for

example, the correlation waveform is the convolution of an

image intensifier modulation signal, a laser modulation signal

and the impulse responses of both devices. This means that

waveforms with substantial high frequency content are not

possible – in our current setup we are limited to truncated-

triangle waveforms.

For the Fourier analysis method we know that precision

is inversely proportional to the square root of the SNR. If

we assume that Poisson distributed shot noise is the only

noise source, then the noise power is proportional to the total

integrated light intensity. We can calculate the signal strength

as the absolute value of the fundamental Fourier bin giving

precision ∝
√∑n−1

i=0 v[i]

|∑n−1
i=0 v[i]e−2jπ i

n | . (17)

However, since we are limited to rectangular modulation this

becomes

precision ∝ 1√
x sincx

(18)

where {x ∈ R; 0 ≤ x ≤ 1} is the duty cycle. This is a convex

function with a global minimum at a 37.1% duty cycle that

very closely matches the curve of the results in fig. 3. Since

this relationship is separable, this means that in the Fourier

analysis case 37.1% is the optimum duty cycle for both the

laser duty cycle and intensifier duty under all circumstances.

However, this does not necessarily hold when other noise

sources are taken into account and when the new method

is analysed. From an intuitive perspective on overall phase

information content, 44.7% might have been expected to have

the greatest overall phase information content as the sloped

region could be considered to be a superset of the sloped

region of any other waveform. Correct determination of the

factors that influence the precision of the new method requires

further analysis, although it appears to follow the general trend

of the precision of the Fourier analysis method.

V. CONCLUSION

The algorithm substantially improves overall RMS error and

precision across a range of laser duty cycles versus the stan-

dard Fourier analysis method, also performing slightly better

than the Base-Ratio fitting method. The measurement precision

depends upon the laser duty cycle, which can be optimised

based on the parameters of the intensifier modulation using a

simple relationship. Because the new method does not require

numerical optimisation, it is over two orders of magnitude

faster than the original Base-Ratio method.
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