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ABSTRACT 

Full field range imaging cameras are used to simultaneously measure the distance for every pixel in a given scene using 

an intensity modulated illumination source and a gain modulated receiver array. The light is reflected from an object in 

the scene, and the modulation envelope experiences a phase shift proportional to the target distance. Ideally the 

waveforms are sinusoidal, allowing the phase, and hence object range, to be determined from four measurements using 

an arctangent function. In practice these waveforms are often not perfectly sinusoidal, and in some cases square 

waveforms are instead used to simplify the electronic drive requirements. The waveforms therefore commonly contain 

odd harmonics which contribute a nonlinear error to the phase determination, and therefore an error in the range 

measurement. We have developed a unique sampling method to cancel the effect of these harmonics, with the results 

showing an order of magnitude improvement in the measurement linearity without the need for calibration or lookup 

tables, while the acquisition time remains unchanged. The technique can be applied to existing range imaging systems 

without having to change or modify the complex illumination or sensor systems, instead only requiring a change to the 

signal generation and timing electronics.  

Keywords: Phase detection, harmonic rejection, harmonic cancellation, aliasing, linearity, range imaging, 3D camera 

1. INTRODUCTION

A number of full field image ranging systems, which are capable of simultaneously measuring the distance for every 

pixel in a given scene, are being developed by various groups1-10. These “3D cameras” are suitable for a wide range of 

applications such as automated factory processes, automotive safety and control, surveying, multimedia integration, and 

shape reconstruction. Measuring the entire scene in parallel, rather than serially scanning the collimated laser beam of a 

single point range-finder, allows a much higher data acquisition rate and does not require moving parts (which can be 

sensitive to vibration).  

The sensor arrays used, typically a gain-modulated intensified CCD (ICCD) camera1-5 or custom built CMOS/CCD 

array6-10, output data at a similar speed to conventional video cameras – typically 30 frames per second. The object 

distance is temporally encoded into the intensity of the recorded data, so multiple frames are required to determine range 

within the scene. Reducing the required number of image frames increases the range data acquisition rate, which is 

particularly important in a dynamic scene where objects, or the camera, may be moving. However, when using a small 

number of data points to encode/decode the object range, systematic errors can have significant impact on the results.  

A method to significantly reduce systematic error caused by signal harmonics is presented here. Although theoretically 

the error can be calibrated out in a traditional system, this incurs additional time and expense, particularly if system 

parameters are likely to change. Utilizing the method described here, we demonstrate up to an order of magnitude 

improvement in the uncalibrated range precision. 

2. PRINCIPLE OF OPERATION OF A FULL-FIELD IMAGE RANGER 

A light source is intensity modulated at a high frequency, usually between 10 100 MHz, and illuminates the field of 

view. Objects within the field reflect the light back towards a lens which images the light onto a receiver array. Due to 

the round-trip time, the phase angle  of the light source modulation envelope is retarded as given by equation (1), where  
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fmod is the modulation frequency, d is the distance to the object, and c is the speed of light. 

c

dfmod4
 (1) 

The receiver array synchronously samples the incoming reflected optical signal. Typically four samples A0 A3 per 

modulation period Tmod are used5-10 as shown in figure 1.  

Fig. 1. Synchronous sampling of the reflected sinusoidal intensity modulated waveform. 

The four measurements allow the three unknown variables to be determined7, 9, namely the signal amplitude A and 

phase , and the background illumination B:
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By measuring the phase angle of the modulation envelope using equation (4), substituting into equation (1) and 

rearranging, the distance d to each object in the scene can be determined. A diverging light source and a receiver array 

allow all points in the scene to be acquired simultaneously, producing extremely fast range acquisition for applications 

requiring a high resolution range image. 

3. WORKING WITH FOUR DATA POINTS 

Some image ranging systems capture two data frames to determine the scene range1-3, either by sampling the modulation 

waveform at 0° and 180°, or by sampling at 0° and turning off the light source for the second frame. Speed is maximized 

for these systems; however it is not possible to uniquely determine all three dynamic variables, namely the signal 

amplitude, signal phase, and the background light amplitude. Optical bandpass filters centred at the emitted wavelength, 

and control of the wavelengths of surrounding light sources, allows the two remaining variables to be uniquely 

determined; however this constrains the operating environment, for example to a studio3. Acquiring three data frames4

allows all three variables to be uniquely solved, however it is often more efficient to capture four frames to determine the 

range, especially if a multi-tap custom sensor is used6-10. As this is the most common method employed we will consider 

only this method for the remainder of this paper. 

The aforementioned method is suited to sinusoidal intensity modulation of the light source, where only one fundamental 

frequency exists. In practice, a simplified electronic switching circuit can be utilized to produce square-wave 
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modulation, thereby reducing circuit size and complexity, and increasing electrical efficiency. The actual response 

usually falls somewhere between a square-wave and a sine-wave due to circuit bandwidth limitations, creating a signal 

containing a number of harmonics. Systems which do attempt to operate with sinusoidal modulation can also 

unintentionally introduce higher order harmonics due to non-linearity of the components used.  

A frequency spectrum of a square-wave signal, showing the fundamental frequency and the first few harmonics, is given 

in Fig 2. Harmonics which occur above the Nyquist frequency are aliased down to a lower baseband frequency. For a 

given signal frequency fsig, and sampling frequency fsamp, the harmonics which are aliased onto the fundamental 

frequency are given by 

sigsamp fiff , (5) 

where i is an integer 1,2,…. With a synchronized sampling rate of fsamp = 4fsig, all of the odd order harmonics are aliased 

onto the fundamental frequency as illustrated in figure 2.  

Fig. 2. Odd harmonics of a square wave are aliased onto the fundamental frequency when four data points are acquired. 

In other electronic applications a low-pass filter is added to the input before the signal is sampled, rejecting frequencies 

above the Nyquist frequency (anti-aliasing filter). In our case the receiver is sampling an optical input and therefore 

cannot be filtered in this manner. The addition of harmonics onto the sampled fundamental frequency causes an error in 

the phase angle calculation when using equation (4), hence an error in the measured range to an object.  

In practice, the input waveform sampling occurs over a window period t at each of the shaded regions labeled A0,…,A3

in figure 1. This is achieved by modulating the receiver gain synchronously at the same frequency as the light source 

modulation, and integrating the output over a large number of modulation periods. The next frame repeats the process, 

but the modulation of the receiver gain is shifted by 90°. The period t results in a reduction of the original amplitude A

by a magnitude of 

modT

t
sinc , (6) 

where Tmod is the input waveform modulation period. Receiver gain modulation with a 50% duty cycle square-wave 

( t/Tmod = 1/2) is typical for optimal performance7 and reduces the fundamental signal amplitude to 64% of the true 

value. This sampling window does not alter the phase of the measured signal; hence the range measurement remains 

valid. Amplitude reduction of the third harmonic is more pronounced as Tmod is reduced by a factor of 3 for the 

harmonic, but t remains constant ( t/Tmod = 3/2), reducing the harmonic amplitude to 21% of its original value. This 

amplitude reduction continues for all harmonics, hence if both the light source and receiver gain modulation are square 

waves, the mixing process results in a triangular wave. 

To illustrate the error introduced due to harmonics, a simulation was performed by creating an approximation to a 

triangular waveform by adding frequency components up to the ninth order and sampling it at four points separated by 
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90° for various input phase angles. The phase of the fundamental component was calculated using equation (4), and the 

result plotted in figure 3. The resultant error has a distinctive cyclic nature, and the peak to peak error amplitude is 

approximately 150 mrad. Four cycles occurring over a 2  period result from the third and fifth order harmonics. It is 

worth noting that even numbered harmonics were therefore not included in the simulation because they do not contribute 

any error in the recovered phase as they are not aliased onto the fundamental frequency during sampling (refer figure 2).  

Furthermore, in the case of perfect square-wave modulation, even harmonics are not present. 

Fig. 3. Phase error incurred using equation (4) with a resultant triangle wave, where the illumination and receiver 

modulation waveforms are square. 

This cyclic error is visible in experimental results presented by other groups11, 12. The range errors are analysed in detail 

by Kahlmann and Ingensand12, and the peak-to-peak cyclic range errors can be seen to be approximately 10 15 cm, 

equivalent to 80 125 mrad (calculated using equation (1), using  fmod = 20 MHz for their system). This error closely 

matches the amplitude and shape of the waveform in figure 3. The measurement precision reported by Kahlmann and 

Ingensand12 is 6 mm in the centre of the image, an order of magnitude smaller than the cyclic error; hence harmonic 

error is a significant contributor to the accuracy of the system.  

4. DEALING WITH HARMONICS 

To influence the phase measurement each harmonic must be present in both the light source waveform and receiver gain 

modulation waveform. If one of these waveforms is reduced to a sinusoid, the error will not be present. Due to the 

frequencies involved (typically 20 44 MHz7-10) and the bandwidth limits of CMOS/CCD receiver arrays and LEDs, this 

can be a demanding requirement.  

For a typical modulation waveform the harmonic amplitude decreases rapidly with increasing order. By taking a large 

number of samples, separated by an equal phase step, fsamp in equation (5) is increased. The harmonic frequencies which 

are aliased down to the fundamental frequency now have significantly smaller amplitude, thus result in smaller errors. 

The additional data acquisition time required limits the usefulness of this method for dynamic applications due to motion 

blur and errors; therefore it is only suitable where the scene is static.  
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If the light source and receiver gain modulation waveform shapes are known (thus each harmonic’s amplitude and phase 

are known), then the error can be predicted in advance in the same manner used to generate the plot in figure 3. A 

correction factor can then be generated, and a look-up table can be used to correct the result of equation (4) to achieve 

the true phase13. In practice this can be achieved by calibrating the image ranging system against targets at various 

distances12. This is a time consuming task, and must be repeated each time an influencing factor changes, which may be 

as intricate as a change in manufacturing parameters, or as simple as altering the modulation frequency. A change in 

modulation frequency is required where the scene depth exceeds c/2fmod, as the recovered phase angle is periodic over 2

radians and leads to an ambiguous range measurement. By using multiple modulation frequencies, the resultant range 

ambiguity can be removed14.   

5. HARMONIC REJECTION SAMPLING 

A unique sampling method has been developed which is capable of rejecting a predetermined number of interfering 

harmonics during the data acquisition process15. This is a preferable solution as it removes the influence of the harmonics 

during data acquisition, rather than attempting to correct for it through calibration and post processing.  The acquisition 

time also remains unchanged using the new sampling method. 

Under normal operation, data are acquired by integrating the signal over a relatively long period. The long integration 

time improves the measurement SNR, but is primarily due to the limited data read out speed of the CCD/CMOS array (a 

typical video frame rate is 30 fps). If the phase of the illumination modulation waveform is shifted during the integration 

period, then the resultant waveform is an averaged ratio of the waveform before and after the phase shift occurred. 

Figure 4 shows a square modulation waveform, which has been shifted twice by 45°, and combined using a ratio 

1:2:1 . The ratio is achieved by varying the integration time at each phase step relative to the total frame integration 

time, where the values are selected to result in a quantized approximation to a sinusoid. The resultant effective waveform 

over the camera integration period is shown in the lower half of figure 4. The frequency spectrum of the new signal is 

shown in figure 5, and clearly illustrates that the third and fifth order harmonics have been cancelled. 

Fig. 4. Harmonic rejection sampling waveform generation. Upper: Original waveform phase stepped twice by 45°; 

Lower: Resultant effective waveform after integration is a quantized approximation to a sinusoid. 
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Fig. 5. Frequency spectrum of resultant waveform generated using 45° steps during the integration period. 

To understand the harmonic rejection, the square modulation waveform can be expanded using a Fourier series. The 

components up to the fifth order are given in equations (7)-(9), where summation using the ratio 1:2:1  results in total 

cancellation of the third and fifth harmonics. 
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A similar technique has been applied to digital RF mixers, where the circuit simultaneously combines three phase shifted 

waveforms from three separate mixers producing the complex modulation waveform16. This is in contrast to the method 

here where the square wave modulation is retained (requiring little or no change to the existing electronic hardware) and 

the complex waveform is created by phase stepping the modulation waveform during the frame integration time. As 

stated previously, each harmonic must occur in both the light source waveform and the receiver gain modulation 

waveform to be present in the resultant data – now that the effective illumination modulation waveform does not contain 

these harmonics they are not present in the acquired data. 

Applying this sampling method to the simulation above where both the light and receiver modulation waveforms are 

square, the peak to peak error is reduced from 147 mrad to 16 mrad; a reduction of almost an order of magnitude. The 

error plot is shown in figure 6, and similar to before, contains a distinctive cyclic response, although this time at twice 

the angular frequency. This error is due to the seventh and ninth order harmonics.  

Fig. 6. Error after using the modified sampling scheme with 45° phase steps (solid line) compared to a standard homodyne 

system (dashed line). 

Repeating the procedure above, using phase steps with a finer resolution of 30°, and an integration time ratio of 

1:3:2:3:1 , the seventh and ninth order harmonics are also suppressed. The errors are further reduced as the first 

influencing harmonic is eleventh order, which has minimal amplitude. This procedure can be repeated to suppress any 

number of odd order harmonics, and is only limited by the resolution of the available phase step size, and the resolution 

of the timer which is responsible for controlling the integration time at each phase step (to generate the correct ratio). 
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These simple simulations do not take into consideration noise within the measurements. The amplitude of the 

fundamental component when utilising this method with phase steps of 45° reduces to ( 22 )/( 22 ) = 0.828. With 

finer phase step resolution, the amplitude approaches /4 = 0.785. Equation (4) itself is not affected by this reduction; 

however in practical applications the signal to noise ratio (SNR) is reduced resulting in an increase in random error. The 

range precision of an amplitude modulated laser range finder is given by equation (10), where fmod is the modulation 

frequency, and m is the modulation index17.

SNRmf

c
R

mod4
 (10) 

The modulation index is a measure of the amplitude of the fundamental frequency component divided by the DC offset. 

A modulation index decrease to 0.785 corresponds to increase in random measurement error by approximately 27%. The 

systematic errors caused by harmonics are typically much larger than the random errors, so it is likely that this trade off 

is acceptable. Table 1 gives the modulation index for various illumination and receiver modulation waveforms; it is 

worth noting that if the light source were amplitude modulated with a sinusoidal waveform instead of a square waveform 

to remove harmonics as suggested in section 4, then the same reduction in the modulation index, hence measurement 

precision, occurs.  

Table. 1. Modulation waveform comparison. A larger modulation index leads to smaller random errors. The presence of 

harmonics can create a systematic error, reducing the measurement accuracy. 

Illumination 

waveform 

Receiver 

waveform 

Modulation 

index

Harmonics 

Square Square 0.81 Present 

Sine Square 0.64 None 

Sine Sine 0.50 None 

Square
Square

(Harmonic 
Rejection) 

0.64 None 

6. EXPERIMENTAL RESULTS 

To experimentally verify the harmonic rejection modulation principle, an existing range imaging system14 was 

reconfigured with a new signal generator. The system was configured as shown in figure 7. A diverging laser light 

source was amplitude modulated at a frequency of 66.67 MHz, illuminating a flat panel object. The reflected light is 

collected by a focusing lens onto the input window of an image intensifier. The photocathode voltage of the image 

intensifier is also modulated at 66.67 MHz, producing gain modulation at this frequency. The output of the image 

intensifier is coupled via a relay lens to a digital CCD video camera (Dalsa Pantera TF 1M60), which delivers the images 

to a PC at 25 fps. The camera was configured to use 8 by 8 binning to improve the SNR for this experiment, producing 

an image of 128×128 pixels. 

Fig. 7. Experimental configuration. 

The two high frequency modulation signals, and a frame trigger for the camera, were produced with an Altera Stratix II 

FPGA. A phase locked loop (PLL) within the FPGA can generate multiple outputs, and the phase of each output can be 

reconfigured dynamically while the PLL is running. Using this feature, the 66.67 MHz signal to the light source 

remained at a fixed phase, while the phase of the signal to the image intensifier was advanced. One concern with using a 

PC

FPGA

Light source 

Camera

Image 

Intensifier

Object
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PLL is its inherent phase noise; however since both outputs are generated by the same PLL, any phase noise is common 

to the outputs and does not contribute any error to the results. The camera frame integration time was divided by the 

required ratio (e.g. 1:2:1  for phase steps of 45°), and a counter within the FPGA is used to trigger the camera 

integration period and advance the image intensifier signal phase at the required times. Data acquisition consists of 

capturing four image frames where the image intensifier phase had been advanced by 90° for each frame. Using 

equations (2) and (4), the signal amplitude and phase respectively are calculated for each pixel in the image. 

A more traditional method of measuring system linearity by physically moving the distance to the object for the next 

capture was substituted with an electronic approach of introducing delays of 125 ps to the laser signal from the FPGA. 

This allows the effect of harmonics on equation (4) to be investigated while any other conditions which may influence 

the error are held constant. The most notable consequence here is that the reflected light intensity remained constant as 

additional delays are introduced; instead of decreasing by an inverse square with distance which would change the signal 

to noise ratio (SNR). A stationary object also cancels out any errors due to lens distortion and CCD pixel variation as the 

object always remains at the focal point and the same pixel(s) can be used during analysis. 

6.1 Linearity 

Data were captured using the traditional homodyne method in which the phase of the image intensifier signal remains 

constant during the frame integration time. A region of 5×5 pixels was averaged (to enhance SNR), and the phase 

calculated using equation (4). The error between the input phase (controlled using the introduced 125 ps delays) and the 

measured phase is shown in figure 8. The experiment was repeated five times, and a line has been plotted through the 

mean error value. 

Fig. 8. Measured phase error in a traditional homodyne system. The 3rd and 5th order harmonics are responsible for the 

evident oscillation. 

The measured error in figure 8 closely resembles that predicted in figure 3, with a distinct oscillation at a frequency of 

4 . The peak-to-peak amplitude is approximately 125 mrad, which is slightly less than that predicted (147 mrad). This is 

due to the fact that the laser output waveform and image intensifier gain modulation waveform are not perfect square 

waves, in this case reducing the amplitude of the 3rd and 5th harmonics, thereby reducing the amplitude of the error. A 

linear variation occurs from left to right across figure 8 which is most probably due to the image intensifier (and driver 

circuit) heating during each acquisition sequence. The equipment used is unable to sustain extended periods of operation 

(required to reach thermal equilibrium) so this trend is visible in all acquisition sequences. 

The same experiment was repeated, this time applying the harmonic rejection method described above. The image 

intensifier signal was phase stepped in increments of 45° during the CCD integration period, with the resultant error 

shown in figure 9. The peak-to-peak error has reduced significantly from approximately 125 mrad to 16 mrad. The 

principal systematic error (ignoring the linear trend) is now due to the 7th and 9th order harmonics, which contribute an 

error with angular frequency 8  matching that predicted in figure 6.  

Repeating the experiment using finer resolution phase steps of 30° during the integration period, the peak-to-peak error 

is reduced to approximately 12 mrad as illustrated in figure 10. Again the angular frequency component of the error has 

increased (to 12 ), and is now due to the 11th and 13th order components. 
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Fig. 9. Measured phase error using the harmonic rejection method, using phase steps of 45°. The error due to 3rd and 5th

harmonics is cancelled. 

Fig. 10. Measured phase error using the harmonic rejection method, using phase steps of 30°. The error due to 3rd, 5th, 7th

and 9th order harmonics are cancelled. 

6.2 Precision

To determine the change in SNR between the traditional homodyne method and the harmonic rejection method, the 

precision of the phase measurement of each pixel was measured. An acquisition was performed using the homodyne 

method, capturing 120 samples of the illumination waveform. This large number of samples prevents any significant 

harmonics from being aliased onto the fundamental signal (as described in section 4), and allows an accurate 

measurement of the scene due to the high resultant SNR. The acquisition time is 30 times longer than the four frame 

method, and therefore this technique is only suitable for a static scene. The orientation of the flat plane in the scene is 

measured from the captured data, providing a high precision reference measurement. 

The flat plane object was again measured, this time using the standard four frame homodyne method and the four frame 

harmonic rejection method. The resultant measurement was segmented into regions of 5×5 pixels, and an offset added to 

each region so that the object was aligned with the reference measurement (to compensate for the systematic linearity 

error in the homodyne method). The variation of each pixel about the reference provides a measure of the system 

precision. The received signal intensity is not only dependent on the modulation scheme used, but also lighting and 

reflectivity within the scene, so the mean signal amplitude of each 5×5 pixel region is also measured. Figure 11 shows 

the standard deviation of the error for each region plotted against its amplitude, with an inverse square-root fit through 

the measured points of each method. The measurement precision for the harmonic rejection method is approximately 

25% worse than that of the homodyne method, and is in agreement with the predicted change of 27% due to the 

reduction of the modulation index value in equation (10). 
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Fig. 11. One-sigma precision measurement for the traditional homodyne method and the harmonic rejection method. 

7. DISCUSSION 

The experimental results closely match those predicted despite the basic assumption that the laser amplitude modulation 

and image intensifier gain waveforms were square. This reinforces the suitability of this method for any modulation 

waveform shape, and that the only prerequisite required is to determine the minimum number of harmonics to cancel. It 

follows that by simply canceling an arbitrarily large number of harmonics, the waveform shape does not need to be 

known in advance.  

Increasing the phase step resolution requires an increase in the system clock frequency of the signal generator 

electronics. Practicalities may limit this clock speed, thereby inhibiting cancellation of all harmonics present in a given 

waveform. Figures 8 and 9 demonstrate that by reducing the 90° phase step size used in a homodyne system to 45° 

(which requires doubling the system clock), and applying the harmonic rejection technique, results in an improvement in 

accuracy of almost 8 times for the modulation waveforms used during our experiment. The harmonic rejection method is 

therefore beneficial even in its most simplistic form. 

It is important for full field range measurement systems to be both accurate and precise. From the results presented in 

figures 8 11, the performance of the range measurement system using the homodyne technique is expected to have a 

one-sigma precision of 2 mm (5 mrad), and an RMS accuracy of 16 mm (44 mrad), where the distance values are 

calculated using equation (1) with the modulation frequency of 66.67 MHz. This compares to a precision of 2.5 mm 

(7 mrad) and accuracy of 4 mm (12 mrad) for the harmonic rejection technique with 30° phase shift resolution. Although 

precision suffers using the harmonic rejection technique, the loss is minimal compared with the improvement in 

accuracy.

The error due to the 11th and 13th harmonics is still present in figure 10; hence future work will focus on increasing the 

phase shift resolution, with the aim of canceling an arbitrarily high number of harmonics (e.g. greater than 50th order) to 

ensure no influence is present in the range measurement linearity. Theoretically it is possible to calibrate the homodyne 

system to improve the accuracy while maintaining superior precision over the harmonic rejection technique, but as 

previously mentioned this is a time consuming task which must be repeated whenever an influencing factor changes.  

8. CONCLUSION 

The unique sampling method described has been shown to reduce the systematic errors due to harmonics in a full field 

image ranging system.  This improvement in performance is obtained with a new modulation signal generation system, 

while leaving the modulation drive electronics unchanged. The uncalibrated measurement linearity is dependent on the 

harmonic content of the modulation signals of a particular system. The experimental results shown here suggest that in 

the presence of harmonics, an improvement in accuracy by an order of magnitude is not unrealistic using the new 

technique. It was also shown that this is achieved at the expense of measurement precision; however as the original 

homodyne system provides high precision and low accuracy this trade-off is acceptable, resulting in a system producing 

both high measurement precision and measurement linearity.  
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