On the Furstenberg closure of a class of binary recurrences

KEVIN A. BROUGHAN Department of Mathematics University of Waikato Private Bag 3105, Hamilton, New Zealand kab@waikato.ac.nz

FLORIAN LUCA Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58089, Morelia, Michoacán, México fluca@matmor.unam.mx

23rd January 2009

Abstract

In this paper, we determine the closure in the full topology over \mathbb{Z} of the set $\{u_n : n \geq 0\}$, where $(u_n)_{n\geq 0}$ is a nondegenerate binary recurrent sequence with integer coefficients whose characteristic roots are quadratic units. This generalizes the result for the case when $u_n = F_n$ was the *n*th Fibonacci number.

Keywords: Full topology, Binary recurrence sequences, Primitive divisors

AMS Subject Classification: 1B39, 11B50

1 Introduction

Let \mathbb{Z} be the ring of integers equipped with the topology τ in which the base of neighborhoods for a point $a \in \mathbb{Z}$ is given by the sets

$$N_{a,b} = \{a + nb : n \in \mathbb{Z}\} \qquad \text{for } b \in \mathbb{Z}, \ b \ge 1.$$

$$\tag{1}$$

This topology was proposed by H. Fürstenberg in [7]. It can be used to give a very elegant proof of the fact that the set of prime numbers is infinite (see [1]). It is called the *full topology*. This topology was studied in detail in the recent paper [3], where the following conjecture was proposed.

Let $F = \{F_n\}_{n \ge 0}$ denote the Fibonacci sequence given by $F_0 = 0, F_1 = 1$ and

$$F_{n+2} = F_{n+1} + F_n$$
 for all $n \ge 0$. (2)

Let F^- denote the set $\{(-1)^{n+1}F_n : n \in \mathbb{N}\}$. Then the closure of $F \subset \mathbb{Z}$ in the topology τ is $F \cup F^-$. Some numerical evidence supporting the above conjecture was given in the last section of [3]. The above conjecture was confirmed in [8].

In this paper, we revisit the arguments from [8] and prove a more general version of the above result. Namely, let $(u_n)_{n\geq 0}$ be any sequence of integers satisfying the recurrence

$$u_{n+2} = ru_{n+1} + su_n$$
 for all $n \ge 0$. (3)

Here, r and s are some fixed integers. We assume that $rs(r^2 + 4s) \neq 0$. It is then well-known that if one writes α and β for the two roots of the *characteristic equation* $x^2 - rx - s = 0$, then there exist constants γ and δ in $\mathbb{K} = \mathbb{Q}(\alpha)$ such that

$$u_n = \gamma \alpha^n + \delta \beta^n \qquad \text{for all } n \ge 0.$$
(4)

We assume further that $\gamma \delta \neq 0$ and that α/β is not a root of unity. Under these conditions, it is said that the sequence $(u_n)_{n>0}$ is nondegenerate.

Here, we only consider the case when $s = \pm 1$. In this case, one checks easily that K is a real quadratic field in which α and β are units. We may also define u_n for n < 0, either recursively via formula (3), or simply by allowing n to be negative in formula (4). We have the following result.

Theorem 1. The closure of the set $\{u_n : n \ge 0\}$ in the full topology is the set $\{u_n : n \in \mathbb{Z}\}$.

The above result applies to the Fibonacci sequence $(F_n)_{n\geq 0}$ which satisfies the recurrence relation (3) with s = 1. Since $(-1)^{n+1}F_n = F_{-n}$, the main result of [8] is an immediate consequence of our Theorem 1.

2 Some Conventions

We first make some reductions. Put

$$v_n = u_{2n} = \gamma \alpha^{2n} + \delta \beta^{2n}$$
 and $w_n = u_{2n+1} = (\gamma \alpha) \alpha^{2n} + (\delta \beta) \beta^{2n}$

for all $n = 0, 1, \ldots$ Both $(v_n)_{n \ge 0}$ and $(w_n)_{n \ge 0}$ are binary recurrent sequences, with the same characteristic equation having roots α^2 and β^2 , and the closure $\overline{\mathcal{U}}$ of $\mathcal{U} = \{u_n : n \ge 0\}$ is the union of the closures of $\mathcal{V} = \{v_n : n \ge 0\}$ and $\mathcal{W} = \{w_n : n \ge 0\}$.

This argument shows that it suffices to prove Theorem 1 for the two sequences $(v_n)_{n\geq 0}$ and $(w_n)_{n\geq 0}$. In particular, it suffices to prove Theorem 1 when α and β are both positive. Thus, r > 0 and s = -1. Furthermore, we use α for the root which is > 1. We put $\Delta = r^2 + 4s = r^2 - 4 = dt^2$, where d is squarefree. Then

$$\alpha = \frac{r + \sqrt{\Delta}}{2}$$
 and $\beta = \frac{r - \sqrt{\Delta}}{2}$.

Since the multiplication by any nonzero integer is a continuous map, we may assume that $\gamma > 0$ for if not, we may then replace the sequence $(u_n)_{n\geq 0}$ by the sequence $(-u_n)_{n\geq 0}$, which has as effect replacing the pair (γ, δ) by $(-\gamma, -\delta)$. Observe that with these conditions we have $u_n > 0$ for all n sufficiently large, say $n > n_0$.

We write $\mathbb{K} = \mathbb{Q}(\sqrt{d})$ for the real quadratic field containing α and β . We also put α_1 for the fundamental unit in \mathbb{K} and β_1 for its conjugate. Since $\alpha > 1$, it follows that there exists a positive integer k such that $\alpha = \alpha_1^k$. Clearly, $\beta = \beta_1^k$. Observe that k is even if the norm of α_1 ; i.e., the number

 $\alpha_1\beta_1$, equals -1. We write $N_{\mathbb{K}/\mathbb{Q}}$ for the norm of an element, or norm of an integer or fractional ideal, of \mathbb{K} relative to \mathbb{Q} .

Throughout, for three algebraic integers μ_1 , μ_2 and $\nu \neq 0$ we say that $\mu_1 \equiv \mu_2 \pmod{\nu}$ if $(\mu_1 - \mu_2)/\nu$ is an algebraic integer.

We use the Landau symbol O and the Vinogradov symbols \gg and \ll with their usual meanings. We shall also use c_1, c_2, \ldots for positive computable constants depending on the sequence $(u_n)_{n>0}$.

3 The Proof of Theorem 1

We first prove that $\{u_n : n \in \mathbb{Z}\} \subseteq \overline{\mathcal{U}}$. Indeed, since $s = \pm 1$, it is known that for every positive integer m the sequence $(u_n)_{n\geq 0}$ is periodic modulo mwith some period T(m). In fact, since α and β are units, it follows that they remain units in the finite ring $\mathbb{Z}[\alpha]/(\Delta m\mathbb{Z}[\alpha])$. Thus, there exists a positive integer T(m) such that both relations $\alpha^{T(m)} \equiv 1 \pmod{\Delta m}$ and $\beta^{T(m)} \equiv 1 \pmod{\Delta m}$ hold. Observe now that since

$$u_0 = \gamma + \delta$$
 and $u_1 = \gamma \alpha + \delta \beta$,

it follows that

$$\gamma = \frac{u_1 - \beta u_0}{\alpha - \beta}$$
 and $\delta = \frac{\alpha u_0 - u_1}{\alpha - \beta}$.

In particular, both numbers $(\alpha - \beta)\gamma$ and $(\alpha - \beta)\delta$ are algebraic integers. Now note that

$$(\alpha - \beta)u_{n+T(m)} = ((\alpha - \beta)\gamma)\alpha^{n+T(m)} + ((\alpha - \beta)\delta)\beta^{n+T(m)}$$

$$\equiv ((\alpha - \beta)\gamma)\alpha^n + ((\alpha - \beta)\delta)\beta^n \pmod{\Delta m}$$

$$\equiv (\alpha - \beta)u_n \pmod{\Delta m},$$

therefore $(\alpha - \beta) (u_{n+T(m)} - u_n) \equiv 0 \pmod{\Delta m}$. Since $\Delta = (\alpha - \beta)^2$, it follows that $(u_{n+T(m)} - u_n)/m$ is an algebraic integer. Since it is also a rational number, it follows that it is an integer. The above argument was valid for all integers n. Thus, given any integer n and any modulus m, we

may let T be a sufficiently large positive integer such that n + T(m)T is positive. Then $u_n \equiv u_{n+T(m)T} \pmod{m}$. Since m was arbitrary, we conclude that $\{u_n : n \in \mathbb{Z}\} \subseteq \overline{\mathcal{U}}$, which is what we wanted to prove.

We next demonstrate the reverse containment.

We let $\mathcal{U} = \{u_n : n \ge 0\}$ and let $a \in \overline{\mathcal{U}}$. We want to show that $a = u_n$ for some $n \in \mathbb{Z}$. We start with the case a = 0.

The case a = 0.

In this case, since $0 \in \overline{\mathcal{U}}$, it follows that the equation $u_n \equiv 0 \pmod{p}$ has a solution *n* for each large prime *p*. Writing

$$u_n = \gamma \beta^n \left(\alpha^{2n} + \frac{\delta}{\gamma} \right),$$

it follows that if p is sufficiently large, say if p is large enough so that it it is coprime with the prime ideals of \mathbb{K} appearing in the factorization of either γ or δ , then the congruence

$$-\frac{\delta}{\gamma} \equiv \alpha^{2n} \pmod{p}$$

has an integer solution n. It follows from the lemma [9, Page 108], that δ/γ is a unit in K. In particular, $\delta/\gamma = \pm \alpha_1^s$ for some integer s. Thus,

$$u_n = \gamma \alpha_1^{-kn+s} \left(\alpha_1^{2kn-s} \pm 1 \right).$$
(5)

We next show that s is a multiple of k and that the sign is -1. Consider the sequence with the general term

$$V_n = \alpha_1^n - 1 \in \mathcal{O}_{\mathbb{K}}$$
 for $n = 1, 2, \dots$

We say a prime ideal \mathcal{P} of $\mathcal{O}_{\mathbb{K}}$ is *primitive* for V_n if it has the property that $\mathcal{P} \mid V_n$ but \mathcal{P} does not divide V_m for any $1 \leq m < n$. It follows from results of Schinzel [10] and Stewart [11, Theorem 1] that V_n always has primitive divisor \mathcal{P} if n exceeds some absolute constant.

If \mathcal{P} is such a primitive divisor and p is the prime number such that $\mathcal{P} \mid p$, then $p \gg n^{1/2}$: to see this since \mathbb{K} is quadratic, $N(\mathcal{P}) = p$ or $N(\mathcal{P}) = p^2$

where p is the unique rational prime with $\mathcal{P} \mid p$. Therefore the order of the multiplicative group of $\mathcal{O}_{\mathbb{K}}/\mathcal{P}$ is p-1 or p^2-1 and $\alpha_1^{N(P)-1} \equiv 1 \mod \mathcal{P}$ shows that $n \mid p$ or $n \mid p^2 - 1$, from which the inequality follows [10].

Armed with these facts, let us go back to relation (5). Assume that s is not a multiple of k. Let m be large, let \mathcal{P} be a primitive prime for V_{2km} , and let p be the prime number such that $\mathcal{P} \mid p$. For large enough m, p is coprime with the prime ideals appearing in the factorization of either γ or δ in K. There exists n such that $u_n \equiv 0 \pmod{p}$. We may assume that n > s/(2k), for otherwise we may replace n by the sum of n and some large multiple of T(p). This implies that $\mathcal{P} \mid \alpha_1^{2kn-s} \pm 1 \mid V_{4kn-2s}$. Since also $\mathcal{P} \mid V_{2km}$, we obtain $\mathcal{P} \mid V_{gcd(4kn-2s,2km)}$. To see this, we used the fact that if m and n are two positive integers with d = gcd(m, n), then $gcd(V_m, V_n) = V_d$, which follows from the fact that there exist two polynomials P(X) and Q(X) with integer coefficients such that

$$P(X)(X^{m} - 1) + Q(X)(X^{n} - 1) = X^{d} - 1$$

(see, for example, the proof of Lemma 1 in [4]). In particular, if α is an algebraic integer and \mathcal{I} is an ideal such that \mathcal{I} divides both V_m and V_n , then \mathcal{I} divides V_d .

Since s is not a multiple of k, it follows that the integer gcd(4kn-2s, 2km) is a proper divisor of 2km, which contradicts the choice of \mathcal{P} as a primitive prime ideal divisor of $\alpha_1^{2km} - 1$. Thus, $s = ks_1$.

We next show that the sign is -1. Assume that it were +1. Then

$$u_n = \gamma \alpha_1^{-k(n+s_1)} \left(\alpha_1^{(2n-s_1)k} + 1 \right).$$

We now take a large prime q, put m = kq, and consider a primitive prime ideal \mathcal{P} of V_{kq} . Let p be the prime such that $\mathcal{P} \mid p$, and let n be such that $u_n \equiv 0 \pmod{p}$. Again, we assume that $n > s/(2k) = s_1/2$. Since p is large, it follows that $\alpha_1^{(2n-s_1)k} \equiv -1 \pmod{\mathcal{P}}$. But we also have that $\alpha_1^{kq} \equiv 1 \pmod{\mathcal{P}}$. If $2n - s_1$ is a multiple of q, we then get that $-1 \equiv \alpha_1^{(2n-s_1)k} \pmod{\mathcal{P}} \equiv 1 \pmod{\mathcal{P}}$, so $\mathcal{P} \mid 2$, giving p = 2, which is false since we have assumed that p is large. So assuming q does not divide $(2n-s_1)$, we then have $\mathcal{P} \mid \alpha_1^{(2n-s_1)k} + 1 \mid V_{(4n-2s_1)k} \pmod{\mathcal{P}} \mid V_{kq}$, therefore $\mathcal{P} \mid V_{\text{gcd}((4n-2s_1)k,kq)} \mid V_k$, where we used the fact that q > 2 and q does not divide $2n - s_1$. This

contradicts the definition of \mathcal{P} as a primitive divisor of V_{kq} . Hence, the sign is -1.

We have arrived at the conclusion that

$$u_n = \gamma \beta^n \alpha_1^s \left(\alpha_1^{(2n-s_1)k} - 1 \right).$$

Finally, we show that s_1 is even. We use a similar method to that used above. If s_1 were odd, let m be a large even number and choose a primitive prime factor \mathcal{P} of V_{km} . With p the prime such that $\mathcal{P} \mid p$ and n such that $p \mid u_n$ and large, we get that $\mathcal{P} \mid V_{(2n-s_1)k}$. Hence, $\mathcal{P} \mid V_{\text{gcd}((2n-s_1)k,km)} \mid V_{mk/2}$, where we used the fact that $2n - s_1$ and odd and m is even. This contradicts the choice of \mathcal{P} as a primitive prime factor of V_{km} .

Thus, s_1 is even and we can write it as $s_1 = 2s_0$ for some integer s_0 . Thus,

$$u_n = \gamma \beta^n \alpha_1^s \left(\alpha_1^{2(n-s_0)k} - 1 \right),$$

and taking $n = s_0 \in \mathbb{Z}$, we get that $a = 0 \in \{u_n : n \in \mathbb{Z}\}$, which is what we wanted.

The case $a \neq 0$.

This case is much more interesting and harder. Here, we put $U_n = (\alpha^n - \beta^n)/(\alpha - \beta)$ for all $n \ge 0$. The sequence $(U_n)_{n\ge 0}$ satisfies the same recurrence relation (3) as $(u_n)_{n\ge 0}$ does and its initial values are $U_0 = 0$ and $U_1 = 1$.

We proceed in ten steps.

1. First we show that the sequence $(u_n : n \ge 0)$, when taken modulo U_m , has a well determined period.

Lemma 2. Let $m \ge 1$. The sequence $(u_n)_{n\ge 0}$ is periodic modulo U_m with period 4m.

Proof. Note that

$$\alpha^{4m} - 1 = \alpha^{4m} - (\alpha\beta)^{2m} = \alpha^{2m}(\alpha^{2m} - \beta^{2m}) \equiv 0 \pmod{\alpha^m - \beta^m}.$$

Thus, $\alpha^{4m} \equiv 1 \pmod{\alpha^m - \beta^m}$. Similarly, $\beta^{4m} \equiv 1 \pmod{\alpha^m - \beta^m}$. Hence,

$$(\alpha - \beta)u_{n+4m} = ((\alpha - \beta)\gamma)\alpha^n \alpha^{4m} + ((\alpha - \beta)\delta)\beta^n \beta^{4m}$$

$$\equiv ((\alpha - \beta)\gamma)\alpha^n + ((\alpha - \beta)\delta)\beta^n \pmod{\alpha^m - \beta^m}$$

$$\equiv (\alpha - \beta)u_n \pmod{\alpha^m - \beta^m}.$$

Canceling the factor of $(\alpha - \beta)$, we get that $u_{n+4m} \equiv u_n \pmod{U_m}$, which is what we wanted.

2. We next take a close look at the number $u_n - a$. Observe that

$$u_n - a = \gamma \alpha^n + \delta \beta^n - a = \gamma \beta^n \left(\alpha^{2n} - \frac{a}{\gamma} \alpha^n + \frac{\delta}{\gamma} \right)$$
$$= \gamma \beta^n (\alpha^n - z_1) (\alpha^n - z_2),$$

where

$$z_{1,2} = \frac{a \pm \sqrt{\Delta_1}}{2\gamma}$$
 and $\Delta_1 = a^2 - 4\gamma\delta$.

Recall that a primitive prime factor of U_m is a rational prime dividing U_m which does not divide U_{ℓ} for any $1 \leq \ell < m$ and which does not divide Δ either. It is known that if m > 12, then U_m has primitive divisors [11, Theorem 1]. In fact, putting

$$W_m = \prod_{\substack{p^{a_p} || U_m \\ p \text{ primitive}}} p^{a_p}$$

then we have the following lemma due to Stewart [12, Page 603], but see also [2, Eqn. 17]. In the next statement we use P(n) for the largest prime factor of n and $\Phi_n(X, Y)$ for the homogeneous cyclotomic polynomial of order n.

Lemma 3. For all n > 12, $P(\frac{n}{\gcd(n,3)})W_n \ge \Phi_n(\alpha,\beta)$.

Proof. Any primitive prime divisor of U_n divides $\Phi_n := \Phi_n(\alpha, \beta)$. If p is a prime divisor of Φ_n and $p \nmid n$ then p is a primitive divisor of Φ_n . The only possible prime dividing both n and Φ_n is $P(n/\gcd(n,3))$ and it divides Φ_n to the first power, so the lemma follows from the prime factorization of Φ_n . \Box

Therefore

$$W_m \geq \frac{1}{m} \prod_{\substack{1 \leq \ell \leq m \\ \gcd(\ell, m) = 1}} (\alpha - e^{2\pi i \ell/m} \beta) > \frac{(\alpha - \beta)^{\phi(m)}}{m}$$
$$= \exp((\log(\alpha - \beta))\phi(m) - \log m),$$

where $\phi(m)$ is the Euler function. Using the fact that $\phi(m) \gg m/\log \log m$, it follows that for all large m we have

$$W_m \ge \exp(c_1\phi(m)),$$

where we can take $c_1 = (\log(\alpha - \beta))/2 = (\log \Delta)/4$.

3. Next we take a large positive integer m which is a multiple of 8k and we shall look at the simultaneous solutions n of the congruences

$$u_n - a \equiv 0 \pmod{M},$$

with

$$M \in \{W_m, W_{m/2}W_{m/4}, W_mW_{m/2}W_{m/4}\}$$

for reasons which will become clear later. Since $M \mid U_m$, it follows, by Lemma 2, that we can take $n \in [4m, 8m)$. We have

$$e^{c_1\phi(m)} \leq M \ll N_{\mathbb{L}/\mathbb{Q}} \left(\gcd(M, (\alpha^n - z_1)(\alpha^n - z_2)) \\ \ll N_{\mathbb{L}/\mathbb{Q}} \left(\gcd(M, \alpha^n - z_1) N_{\mathbb{L}/\mathbb{Q}} \left(\gcd(M, \alpha^n - z_2) \right) \right).$$

In the above, the greatest common divisors are to be thought of as fractional ideals of $\mathcal{O}_{\mathbb{L}}$, where $\mathbb{L} = \mathbb{K}(z_1)$. It now follows that there exists a constant c_2 , which can be taken to be $c_1/3$, such that if m is large, then for some $i \in \{1, 2\}$ we have

$$N_{\mathbb{L}/\mathbb{Q}}\left(\gcd(M,\alpha^n - z_i)\right) > \exp(c_2\phi(m)).$$
(6)

4. The following argument has appeared in the proof of the main result in [8]. We supply the proof of it for convenience.

Lemma 4. With the previous notations, if z_i and α are multiplicatively independent, and $n \in [4m, 8m)$, then

$$N_{\mathbb{L}/\mathbb{Q}}\left(\gcd(M,\alpha^n - z_i)\right) = \exp(O(\sqrt{m})).$$
(7)

Proof. Let

$$\mathcal{S} = \{\lambda n + 2\mu m : \lambda, \mu \in \{1, \dots, \lfloor m^{1/2} \rfloor\}.$$

If $s = \lambda n + 2\mu m$, then $1 \leq s \leq (n + 2m)m^{1/2} < 10m^{3/2}$. Since there are $(\lfloor m^{1/2} \rfloor)^2$ pairs of positive integers (λ, μ) with $\lambda, \mu \in \{1, \ldots, \lfloor m^{1/2} \rfloor\}$, it follows, by the *Pigeon-Hole Principle*, that there exist two distinct pairs $(\lambda_1, \mu_1) \neq (\lambda_2, \mu_2)$ such that

$$|(\lambda_1 - \lambda_2)n + 2(\mu_1 - \mu_2)m| < \frac{10m^{3/2}}{\lfloor m^{1/2} \rfloor^2 - 1} < 11m^{1/2} \qquad \text{for } m \text{ large enough}$$

Writing $x = \lambda_1 - \lambda_2$ and $y = \mu_1 - \mu_2$, we get that $(x, y) \neq (0, 0)$, that $x, y \in [-m^{1/2}, m^{1/2}]$, and that if we write s = nx + 2my, then $|s| < 11m^{1/2}$. Note now that \star if we define the fractional ideals

$$\mathcal{I}_i = \gcd([M], [\alpha^n - z_i])$$

where $[\theta]$ represents the principal ideal generated by θ in $\mathbb{L} \star$, then since $M \mid (\alpha^m - \beta^m) \mid (\alpha^{2m} - 1)$, we have

$$\alpha^{2m} \equiv -1 \pmod{\mathcal{I}_i}$$
 and $\alpha^n \equiv z_i \pmod{\mathcal{I}_i}$.

Here, z_i is invertible modulo \mathcal{I}_i for large m although z_i might not be an algebraic integer. The reason here is that M consists only of primitive prime factors of U_m , or of $U_{m/2}$, or of $U_{m/4}$, and all of them are congruent to ± 1 modulo m/4. In particular, if m is sufficiently large, then z_i is invertible modulo \mathcal{I}_i .

Raising the first congruence to the power y and the second to the power x (notice that such operations are justified even if x and y are negative since α is a unit in \mathbb{K} , therefore also in \mathbb{L}), and multiplying the resulting congruences we get

$$\alpha^s \equiv (-1)^y z_i^x \pmod{\mathcal{I}_i}.$$

Thus, \mathcal{I}_i divides $(\alpha^s - (-1)^y z_i^x)$. Note that this last ideal is not zero. Indeed, for if not, then we would get that $\alpha^{2s} = z_i^{2x}$. Since we are assuming that α and z_i are multiplicatively independent, we get x = s = 0, and since s = nx + 2my, we get that y = 0 as well, which contradicts the fact that $(x, y) \neq (0, 0)$. Hence, \mathcal{I}_i divides the nonzero ideal $(\alpha^s - (-1)^y z_i^x)$. Taking norms in \mathbb{L} and observing that the degree of \mathbb{L} over \mathbb{Q} is at most 4, we get that

$$N_{\mathbb{L}/\mathbb{Q}}(\mathcal{I}_i) \le (Z^{|x|} \alpha^{|s|} + \max\{|Z_i^{(j)}| : i, j\}^{|x|})^4 = \exp(O(\sqrt{m})),$$

where we put $z_i = Z_i/Z$ with some integer Z and algebraic integer Z_i and let $Z_i^{(j)}$ stand for all the conjugates of Z_i in \mathbb{L} for i = 1, 2. This is what we wanted to prove.

5. From Lemma 4, we conclude that if both z_1 and z_2 are both multiplicatively independent with respect to α , then both

$$N_{\mathbb{L}/\mathbb{Q}}(M, \alpha^n - z_i) = \exp(O(\sqrt{m}))$$
 hold for $i = 1, 2$.

Since $\phi(m) \gg m/\log \log m$, we get a contradiction with estimate (6) for large m. Thus, there exists $i \in \{1, 2\}$ such that z_i and α are multiplicatively dependent. Let it be z_1 .

6. We next show that $z_1 \in \mathbb{K}$. If $\Delta_1 = 0$, there is nothing to prove. If not, write $\Delta_1 = d_1 t_1^2$, where d_1 is a squarefree integer and t_1 is a nonzero rational. Then, since z_1 and x are multiplicatively dependent, there exist integers x and y not both zero and $\varepsilon \in \{\pm 1\}$ such that $z_1^x = \alpha^y$ i.e.

$$\left(\frac{a+\varepsilon t_1\sqrt{d_1}}{2}\right)^x = \gamma^x \alpha^y. \tag{8}$$

By replacing x with -x if needed, we may assume that $x \ge 0$. By replacing the pair (x, y) by the pair (2x, 2y), we may assume that both x and y are even. The left hand side is in $\mathbb{Q}(\sqrt{d_1})$, while the right hand side is in $\mathbb{Q}(\sqrt{d})$. If $d_1 = 1$ or d, then $z_1 \in \mathbb{K}$, which is what we wanted. Assume that $d_1 \ne 1$, d. Then the two numbers in both sides of (8) are in $\mathbb{Q}(\sqrt{d}) \cap \mathbb{Q}(\sqrt{d_1}) = \mathbb{Q}$. Since the right hand side is real and positive (since γ and α_1 are real and x and y are even), it follows that there exists a positive rational number q such that $\gamma^x \alpha_1^{ky} = q$. Thus, $\gamma^x = q \alpha_1^{-ky}$. Conjugating we get $\delta^x = q \beta_1^{-ky}$. Multiplying the above relations and using the fact that $(\alpha_1 \beta_1)^{-ky} = 1$ (because y is even), we get $(\gamma \delta)^x = q^2$. Now $\gamma \delta = q_1$ is a rational number. Thus, $q_1^x = q^2$, and since q is positive, we get that $q = |q_1|^{x/2}$. Hence,

$$\left(\frac{a+\varepsilon t_1\sqrt{d_1}}{2}\right)^x = q = |q_1|^{x/2},$$

leading to

$$\left(\frac{a+\varepsilon t_1\sqrt{d_1}}{2}\right)^2 = \pm q_1.$$

We are thus lead to

$$(a^2 + d_1 t_1^2) + 2\varepsilon a t_1 \sqrt{d_1} = \pm 4q_1$$

which is false for $at_1 \neq 0$ and $d_1 \neq 1$ and squarefree. Thus, indeed $z_1 \in \mathbb{K}$. Since $z_1 \in \mathbb{K}$ and is multiplicatively dependent with respect to α , it follows that it is an algebraic integer since from what we have seen above it is a solution $X = z_1$ of an equation of the form $X^x - \alpha_1^{ky}$ with some integers x > 0 and even and y, and α_1^{ky} is an algebraic integer. Thus, $z_1 \in \mathcal{O}_{\mathbb{K}}$ and some power of it is a unit, therefore itself is a unit. Thus, $z_1 = \pm \alpha_1^s$ for some integer s.

7. It remains to prove that s is a multiple of k and that the sign is +1. (Compare this with the case a = 0 where the sign was -1.) Indeed, to see that we have finished in this way, observe that if this is the case, then writing $s = ks_1$ for some integer s_1 , the relation

$$\frac{a + \varepsilon t_1 \sqrt{d_1}}{2} = \gamma \alpha_1^{ks_1} = \gamma \alpha^{s_1} \tag{9}$$

holds. Conjugating this relation in \mathbb{K} , we also get

$$\frac{a - \varepsilon t_1 \sqrt{d_1}}{2} = \delta \beta^{s_1},\tag{10}$$

and summing up relations (9) and (10) we arrive at

$$a = \gamma \alpha^{s_1} + \delta \beta^{s_1} = u_{s_1} \in \{u_n : n \in \mathbb{Z}\},\$$

which is what we wanted.

8. So, let us assume first that $z_1 = \pm \alpha_1^s$, where s is not a multiple of k. Then

$$\alpha^n - z_1 = \alpha_1^s \left(\alpha_1^{kn-s} \pm 1 \right) \mid (\alpha_1^{2kn-2s} - 1).$$

We now take $M = W_m$ and observe that $W_m \mid (\alpha^m - \beta^m) \mid \alpha_1^{2km} - 1$. Thus,

$$gcd(M, \alpha^{n} - z_{1}) \mid gcd(\alpha_{1}^{2km} - 1, \alpha_{1}^{2kn-2s} - 1) \\ = gcd(V_{2km}, V_{2kn-2s}) = V_{gcd(2km, 2kn-2s)}.$$

Since k does not divide s, it follows that gcd(2km, 2kn-2s) is a proper divisor of 2km. Thus, there exists a prime q dividing km such that gcd(2km, 2kn - 2s) | 2km/q, and so

$$\gcd(M, \alpha^n - z_1) \mid V_{2km/q} = \alpha_1^{2km/q} - 1 = \alpha_1^{km/q} (\alpha - \beta) U_{m/q}.$$

Here, we used the fact that m is a multiple of 4 (so, km/q is even for all prime factors q of km), as well as the fact that m is divisible by k. However, since $M = W_m$ consists of the primitive prime factors of U_m , it follows that M is coprime to $U_{m/q}$. We thus get that

$$gcd(M, \alpha^n - z_1) = O(1),$$

contradicting (6) with i = 1 for large m. Thus, $s = ks_1$ holds with integer s_1 .

9. Now assume that the sign is -1, i.e. $z_1 = -\alpha_1^{ks_1} = -\alpha_1^{s_1}$. Here we take $M = W_m W_{m/2} W_{m/4}$ and we look at the solutions n of the congruence

$$u_n - a \equiv 0 \pmod{M}.$$

The left hand side is

$$\gamma\beta^n(\alpha^n-z_1)(\alpha^n-z_2).$$

We have

$$\alpha^{n} - z_{1} = \alpha_{1}^{kn} + \alpha_{1}^{ks_{1}} = \alpha_{1}^{ks_{1}}(\alpha^{n-s_{1}} + 1).$$

Now M divides $\alpha^m - \beta^m = \beta^m (\alpha^{2m} - 1)$. Writing $v_2(u)$ for the exact power of 2 appearing in a positive integer u we have the following result which is implicit in [5, 6] for integers a and which is easily extended to algebraic integers:

Lemma 5. If $u, v, a \ge 1$ and $v_2(v) \le v_2(u)$ then $gcd(a^u + 1, a^v - 1) \mid 2$, otherwise $gcd(a^u + 1, a^v - 1) = a^{gcd(u,v)} + 1$.

Proof. If $v_2(v) \le v_2(u)$, set $g = \gcd(a^u + 1, a^v - 1)$ and $k = \gcd(2u, v)$. Then $g \mid \gcd(a^{2u} - 1, a^v - 1) = a^{\gcd(2u, v)} - 1 = a^k - 1.$

so $g \mid a^k - 1$. But if we write $u = 2^{v_2(u)}u_1$ and $v = 2^{v_2(v)}v_1$ then

$$\frac{k}{2^{v_2(v)}} = \gcd(u_1 \cdot 2^{1+v_2(u)-v_2(v)}, v_1)$$

which is an odd integer. Hence $k \mid 2^{v_2(v)}u_1 \mid u$. Therefore $-1 \equiv a^u \equiv a^{k \cdot \frac{n}{k}} \equiv 1 \mod g$ so $g \mid 2$. If $v_2(v) > v_2(u)$, first set $b = a^{2^{v_2(u)}}$ so

$$gcd(a^{u}+1, a^{v}-1) = gcd(b^{u_{1}}+1, b^{v_{1} \cdot 2^{v_{2}(v)-v_{2}(u)}}-1)$$

where $r = u_1$ is odd and $s = 2^{v_2(v)-v_2(u)}v_1$ is even. Then $b^{\operatorname{gcd}(r,s)} + 1 \mid \operatorname{gcd}(b^r + 1, b^s - 1)$. There exist y, z with $yr + zs = \operatorname{gcd}(r, s)$ and y must be odd. If $x \mid \operatorname{gcd}(b^r + 1, b^s - 1)$ then $b^r \equiv -1 \mod x$ and $b^s \equiv 1 \mod x$ implies $b^{\operatorname{gcd}(r,s)} \equiv b \equiv (-1)^{yr} \equiv -1 \mod x$ so $x \mid b^{\operatorname{gcd}(r,s)} + 1$. Hence $\operatorname{gcd}(b^r + 1, b^s - 1) = b^{\operatorname{gcd}(r,s)} + 1$ and the lemma is proved.

It follows that

$$\gcd(\alpha^{n-s_1}+1,\alpha^{2m}-1) = \alpha^{\gcd(n-s_1,2m)} + 1$$

provided that 2^u divides m. Otherwise, the greatest common divisor appearing on the left hand side above is O(1). By estimate (6), it follows that we may assume that 2^u divides m. Now

$$(\alpha - \beta)U_m = \beta^m(\alpha^{2m} - 1) = \beta^m(\alpha^m + 1)(\alpha^m - 1),$$

and $\operatorname{gcd}(\alpha^n - z_1, \alpha^{2m} - 1)$ divides one of the two factors $\alpha^m + 1$ or $\alpha^m - 1$, and has a bounded greatest common divisor with the other factor. In particular, $\alpha^n - z_1$ is coprime to either W_m , which divides $\alpha^m + 1 = \beta^{m/2} U_m / U_{m/2}$, or to $W_{m/2} W_{m/4}$, which divides $\alpha^m - 1 = \beta^{m/2} U_{m/2}$. Since at any rate we have that $u_n \equiv 0 \pmod{M}$, we must deduce that with either $N = W_m$, or $N = W_{m/2} W_{m/4}$, the estimate

$$N \ll N_{\mathbb{L}/\mathbb{Q}} \left(\gcd(N, \alpha^n - z_2) \right)$$

holds. Since also $N \ge \exp(c_1\phi(m/2))$, Lemma 4 shows that z_2 and α must also be multiplicatively dependent. In particular, $z_2 = \pm \alpha^{s'}$ for some integer s'.

Thus,

$$\alpha^{n} - z_{2} = \alpha_{1}^{s'}(\alpha_{1}^{kn-s'} \pm 1) \mid (\alpha_{1}^{2kn-2s'} - 1).$$

Again we show that s' is a multiple of k. Assume that it is not. Then $N \mid \alpha_1^{2km} - 1$. Thus,

$$gcd(N, \alpha^n - z_2) \mid gcd(V_{2km}, V_{2kn-2s'}) \mid V_{gcd(2km, 2kn-2s')} \mid V_{km/8}.$$

Indeed, the last relation above follows from the fact that 2k cannot divide the greatest common divisor of 2km and 2kn - 2s', together with the fact that m is a multiple of 8. However, since $N \mid W_m W_{m/2} W_{m/4}$, we get that Nis coprime to $V_{km/8}$, so $N_{\mathbb{L}/\mathbb{Q}} (\gcd(N, \alpha^n - z_2)) = O(1)$, which is false. Thus, $s' = ks'_1$.

10. If the sign is +1 we are through. So, assume again that the sign is -1, i.e. $z_2 = -\alpha^{s'}$. Then

$$u_n - a = \gamma \beta^n \alpha_1^{s+s'} (\alpha^{n-s_1} + 1) (\alpha^{n-s'_1} + 1).$$

Putting now u_1 for the exact power of 2 in the factorization of $n - s'_1$; i.e., such that $2^{u_1} || n - s'_1$, we see that the only situation in which the $gcd(\alpha^{n-s'_1} + 1, \alpha^{2m} - 1)$ is not O(1) is when $2^{u_1} | m$. In this case, the given greatest common divisor is $\alpha^{gcd(n-s'_1,2m)} + 1$ and, as in a previous argument, this number can be divisible by only one of W_m , $W_{m/2}$ or $W_{m/4}$ and must be coprime to the other two. To summarize, in this last case,

$$gcd(u_n - a, W_m W_{m/2} W_{m/4}) \ll W_m W_{m/2}.$$

Since the number on the left should in fact be $\gg W_m W_{m/2} W_{m/4}$, we get a contradiction for large m. The theorem is therefore proved.

Acknowledgements

Research of F. L. was supported in part by Grant SEP-CONACyT 79685 and PAPIIT 100508.

References

- M. Aigner and G. M. Ziegler, *Proofs from the book*, Springer-Verlag, 1998.
- [2] Yu. Bilu, G. Hanrot and P. M. Voutier (with an appendix by M. Mignotte), 'Existence of primitive divisors of Lucas and Lehmer numbers', J. Reine Angew Math. 539 (2001), 75–122.

- [3] K. A. Broughan, 'Adic Topologies for the Rational Integers' Canad. J. Math. 55 (2003), 711 - 723.
- [4] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, Perfect powers from products of terms in Lucas sequences, J. Reine Angew. Math. 611 (2007), 109-129.
- [5] R. D. Carmichael, 'On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$ ' Annals of Math. **15** (1913/14) 30–48.
- [6] R. D. Carmichael, 'On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$ ' Annals of Math. **15** (1913/14) 49–70.
- [7] H. Fürstenberg, 'On the infinitude of primes', Amer. Math. Monthly 62 (1955), 353.
- [8] S. Hernández and F. Luca, 'On a question of Broughan', Proc. Amer. Math. Soc. 136 (2008), 403–407.
- [9] F. Luca and F. Pappalardi, 'Members of binary recurrent sequences on lines of the Pascal triangle', *Publ. Math. (Debrecen)* **67** (2005), 103–113.
- [10] A. Schinzel, 'Primitive divisors of the expression $A^n B^n$ in algebraic number fields', J. reine angew Math. **268/269** (1974), 27–33.
- [11] C. L. Stewart, 'Primitive divisors of Lucas and Lehmer numbers', in Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 79–92.
- [12] C. L. Stewart, 'On the greatest prime factor of terms of a linear recurrence sequence', Rocky Mountain J. Math. 15 (1985), 599-608.