On the Furstenberg closure of a class of binary recurrences

Kevin A. Broughan
Department of Mathematics
University of Waikato
Private Bag 3105, Hamilton, New Zealand
kab@waikato.ac.nz
Florian Luca
Instituto de Matemáticas
Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx

23rd January 2009

Abstract

In this paper, we determine the closure in the full topology over \mathbb{Z} of the set $\left\{u_{n}: n \geq 0\right\}$, where $\left(u_{n}\right)_{n>0}$ is a nondegenerate binary recurrent sequence with integer coefficients whose characteristic roots are quadratic units. This generalizes the result for the case when $u_{n}=F_{n}$ was the nth Fibonacci number.

Keywords: Full topology, Binary recurrence sequences, Primitive divisors

AMS Subject Classification: 1B39, 11B50

1 Introduction

Let \mathbb{Z} be the ring of integers equipped with the topology τ in which the base of neighborhoods for a point $a \in \mathbb{Z}$ is given by the sets

$$
\begin{equation*}
N_{a, b}=\{a+n b: n \in \mathbb{Z}\} \quad \text { for } b \in \mathbb{Z}, b \geq 1 . \tag{1}
\end{equation*}
$$

This topology was proposed by H. Fürstenberg in [7]. It can be used to give a very elegant proof of the fact that the set of prime numbers is infinite (see [1]). It is called the full topology. This topology was studied in detail in the recent paper [3], where the following conjecture was proposed.
Let $F=\left\{F_{n}\right\}_{n \geq 0}$ denote the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n} \quad \text { for all } n \geq 0 \tag{2}
\end{equation*}
$$

Let F^{-}denote the set $\left\{(-1)^{n+1} F_{n}: n \in \mathbb{N}\right\}$. Then the closure of $F \subset \mathbb{Z}$ in the topology τ is $F \cup F^{-}$. Some numerical evidence supporting the above conjecture was given in the last section of [3]. The above conjecture was confirmed in [8].

In this paper, we revisit the arguments from [8] and prove a more general version of the above result. Namely, let $\left(u_{n}\right)_{n \geq 0}$ be any sequence of integers satisfying the recurrence

$$
\begin{equation*}
u_{n+2}=r u_{n+1}+s u_{n} \quad \text { for all } n \geq 0 \tag{3}
\end{equation*}
$$

Here, r and s are some fixed integers. We assume that $r s\left(r^{2}+4 s\right) \neq 0$. It is then well-known that if one writes α and β for the two roots of the characteristic equation $x^{2}-r x-s=0$, then there exist constants γ and δ in $\mathbb{K}=\mathbb{Q}(\alpha)$ such that

$$
\begin{equation*}
u_{n}=\gamma \alpha^{n}+\delta \beta^{n} \quad \text { for all } n \geq 0 \tag{4}
\end{equation*}
$$

We assume further that $\gamma \delta \neq 0$ and that α / β is not a root of unity. Under these conditions, it is said that the sequence $\left(u_{n}\right)_{n \geq 0}$ is nondegenerate.

Here, we only consider the case when $s= \pm 1$. In this case, one checks easily that \mathbb{K} is a real quadratic field in which α and β are units. We may also define u_{n} for $n<0$, either recursively via formula (3), or simply by allowing n to be negative in formula (4). We have the following result.

Theorem 1. The closure of the set $\left\{u_{n}: n \geq 0\right\}$ in the full topology is the set $\left\{u_{n}: n \in \mathbb{Z}\right\}$.

The above result applies to the Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ which satisfies the recurrence relation (3) with $s=1$. Since $(-1)^{n+1} F_{n}=F_{-n}$, the main result of [8] is an immediate consequence of our Theorem 1.

2 Some Conventions

We first make some reductions. Put

$$
v_{n}=u_{2 n}=\gamma \alpha^{2 n}+\delta \beta^{2 n} \quad \text { and } \quad w_{n}=u_{2 n+1}=(\gamma \alpha) \alpha^{2 n}+(\delta \beta) \beta^{2 n}
$$

for all $n=0,1, \ldots$ Both $\left(v_{n}\right)_{n>0}$ and $\left(w_{n}\right)_{n>0}$ are binary recurrent sequences, with the same characteristic equation having roots α^{2} and β^{2}, and the closure $\overline{\mathcal{U}}$ of $\mathcal{U}=\left\{u_{n}: n \geq 0\right\}$ is the union of the closures of $\mathcal{V}=\left\{v_{n}: n \geq 0\right\}$ and $\mathcal{W}=\left\{w_{n}: n \geq 0\right\}$.

This argument shows that it suffices to prove Theorem 1 for the two sequences $\left(v_{n}\right)_{n \geq 0}$ and $\left(w_{n}\right)_{n \geq 0}$. In particular, it suffices to prove Theorem 1 when α and β are both positive. Thus, $r>0$ and $s=-1$. Furthermore, we use α for the root which is >1. We put $\Delta=r^{2}+4 s=r^{2}-4=d t^{2}$, where d is squarefree. Then

$$
\alpha=\frac{r+\sqrt{\Delta}}{2} \quad \text { and } \quad \beta=\frac{r-\sqrt{\Delta}}{2} .
$$

Since the multiplication by any nonzero integer is a continuous map, we may assume that $\gamma>0$ for if not, we may then replace the sequence $\left(u_{n}\right)_{n \geq 0}$ by the sequence $\left(-u_{n}\right)_{n \geq 0}$, which has as effect replacing the pair (γ, δ) by $(-\gamma,-\delta)$. Observe that with these conditions we have $u_{n}>0$ for all n sufficiently large, say $n>n_{0}$.

We write $\mathbb{K}=\mathbb{Q}(\sqrt{d})$ for the real quadratic field containing α and β. We also put α_{1} for the fundamental unit in \mathbb{K} and β_{1} for its conjugate. Since $\alpha>1$, it follows that there exists a positive integer k such that $\alpha=\alpha_{1}^{k}$. Clearly, $\beta=\beta_{1}^{k}$. Observe that k is even if the norm of α_{1}; i.e., the number
$\alpha_{1} \beta_{1}$, equals -1 . We write $N_{\mathbb{K} / \mathbb{Q}}$ for the norm of an element, or norm of an integer or fractional ideal, of \mathbb{K} relative to \mathbb{Q}.

Throughout, for three algebraic integers μ_{1}, μ_{2} and $\nu \neq 0$ we say that $\mu_{1} \equiv \mu_{2}(\bmod \nu)$ if $\left(\mu_{1}-\mu_{2}\right) / \nu$ is an algebraic integer.

We use the Landau symbol O and the Vinogradov symbols \gg and \ll with their usual meanings. We shall also use c_{1}, c_{2}, \ldots for positive computable constants depending on the sequence $\left(u_{n}\right)_{n \geq 0}$.

3 The Proof of Theorem 1

We first prove that $\left\{u_{n}: n \in \mathbb{Z}\right\} \subseteq \overline{\mathcal{U}}$. Indeed, since $s= \pm 1$, it is known that for every positive integer m the sequence $\left(u_{n}\right)_{n \geq 0}$ is periodic modulo m with some period $T(m)$. In fact, since α and β are units, it follows that they remain units in the finite ring $\mathbb{Z}[\alpha] /(\Delta m \mathbb{Z}[\alpha])$. Thus, there exists a positive integer $T(m)$ such that both relations $\alpha^{T(m)} \equiv 1(\bmod \Delta m)$ and $\beta^{T(m)} \equiv 1$ $(\bmod \Delta m)$ hold. Observe now that since

$$
u_{0}=\gamma+\delta \quad \text { and } \quad u_{1}=\gamma \alpha+\delta \beta,
$$

it follows that

$$
\gamma=\frac{u_{1}-\beta u_{0}}{\alpha-\beta} \quad \text { and } \quad \delta=\frac{\alpha u_{0}-u_{1}}{\alpha-\beta} .
$$

In particular, both numbers $(\alpha-\beta) \gamma$ and $(\alpha-\beta) \delta$ are algebraic integers. Now note that

$$
\begin{aligned}
(\alpha-\beta) u_{n+T(m)} & =((\alpha-\beta) \gamma) \alpha^{n+T(m)}+((\alpha-\beta) \delta) \beta^{n+T(m)} \\
& \equiv((\alpha-\beta) \gamma) \alpha^{n}+((\alpha-\beta) \delta) \beta^{n} \quad(\bmod \Delta m) \\
& \equiv(\alpha-\beta) u_{n} \quad(\bmod \Delta m),
\end{aligned}
$$

therefore $(\alpha-\beta)\left(u_{n+T(m)}-u_{n}\right) \equiv 0(\bmod \Delta m)$. Since $\Delta=(\alpha-\beta)^{2}$, it follows that $\left(u_{n+T(m)}-u_{n}\right) / m$ is an algebraic integer. Since it is also a rational number, it follows that it is an integer. The above argument was valid for all integers n. Thus, given any integer n and any modulus m, we
may let T be a sufficiently large positive integer such that $n+T(m) T$ is positive. Then $u_{n} \equiv u_{n+T(m) T}(\bmod m)$. Since m was arbitrary, we conclude that $\left\{u_{n}: n \in \mathbb{Z}\right\} \subseteq \overline{\mathcal{U}}$, which is what we wanted to prove.

We next demonstrate the reverse containment.
We let $\mathcal{U}=\left\{u_{n}: n \geq 0\right\}$ and let $a \in \overline{\mathcal{U}}$. We want to show that $a=u_{n}$ for some $n \in \mathbb{Z}$. We start with the case $a=0$.

The case $a=0$.
In this case, since $0 \in \overline{\mathcal{U}}$, it follows that the equation $u_{n} \equiv 0(\bmod p)$ has a solution n for each large prime p. Writing

$$
u_{n}=\gamma \beta^{n}\left(\alpha^{2 n}+\frac{\delta}{\gamma}\right)
$$

it follows that if p is sufficiently large, say if p is large enough so that it it is coprime with the prime ideals of \mathbb{K} appearing in the factorization of either γ or δ, then the congruence

$$
-\frac{\delta}{\gamma} \equiv \alpha^{2 n} \quad(\bmod p)
$$

has an integer solution n. It follows from the lemma [9, Page 108], that δ / γ is a unit in \mathbb{K}. In particular, $\delta / \gamma= \pm \alpha_{1}^{s}$ for some integer s. Thus,

$$
\begin{equation*}
u_{n}=\gamma \alpha_{1}^{-k n+s}\left(\alpha_{1}^{2 k n-s} \pm 1\right) . \tag{5}
\end{equation*}
$$

We next show that s is a multiple of k and that the sign is -1 . Consider the sequence with the general term

$$
V_{n}=\alpha_{1}^{n}-1 \in \mathcal{O}_{\mathbb{K}} \quad \text { for } n=1,2, \ldots
$$

We say a prime ideal \mathcal{P} of $\mathcal{O}_{\mathbb{K}}$ is primitive for V_{n} if it has the property that $\mathcal{P} \mid V_{n}$ but \mathcal{P} does not divide V_{m} for any $1 \leq m<n$. It follows from results of Schinzel [10] and Stewart [11, Theorem 1] that V_{n} always has primitive divisor \mathcal{P} if n exceeds some absolute constant.

If \mathcal{P} is such a primitive divisor and p is the prime number such that $\mathcal{P} \mid p$, then $p \gg n^{1 / 2}$: to see this since \mathbb{K} is quadratic, $N(\mathcal{P})=p$ or $N(\mathcal{P})=p^{2}$
where p is the unique rational prime with $\mathcal{P} \mid p$. Therefore the order of the multiplicative group of $\mathcal{O}_{\mathbb{K}} / \mathcal{P}$ is $p-1$ or $p^{2}-1$ and $\alpha_{1}^{N(P)-1} \equiv 1 \bmod \mathcal{P}$ shows that $n \mid p$ or $n \mid p^{2}-1$, from which the inequality follows [10].

Armed with these facts, let us go back to relation (5). Assume that s is not a multiple of k. Let m be large, let \mathcal{P} be a primitive prime for $V_{2 k m}$, and let p be the prime number such that $\mathcal{P} \mid p$. For large enough m, p is coprime with the prime ideals appearing in the factorization of either γ or δ in \mathbb{K}. There exists n such that $u_{n} \equiv 0(\bmod p)$. We may assume that $n>s /(2 k)$, for otherwise we may replace n by the sum of n and some large multiple of $T(p)$. This implies that $\mathcal{P}\left|\alpha_{1}^{2 k n-s} \pm 1\right| V_{4 k n-2 s}$. Since also $\mathcal{P} \mid V_{2 k m}$, we obtain $\mathcal{P} \mid V_{\operatorname{gcd}(4 k n-2 s, 2 k m)}$. To see this, we used the fact that if m and n are two positive integers with $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(V_{m}, V_{n}\right)=V_{d}$, which follows from the fact that there exist two polynomials $P(X)$ and $Q(X)$ with integer coefficients such that

$$
P(X)\left(X^{m}-1\right)+Q(X)\left(X^{n}-1\right)=X^{d}-1
$$

(see, for example, the proof of Lemma 1 in [4]). In particular, if α is an algebraic integer and \mathcal{I} is an ideal such that \mathcal{I} divides both V_{m} and V_{n}, then \mathcal{I} divides V_{d}.

Since s is not a multiple of k, it follows that the integer $\operatorname{gcd}(4 k n-2 s, 2 k m)$ is a proper divisor of $2 k m$, which contradicts the choice of \mathcal{P} as a primitive prime ideal divisor of $\alpha_{1}^{2 k m}-1$. Thus, $s=k s_{1}$.

We next show that the sign is -1 . Assume that it were +1 . Then

$$
u_{n}=\gamma \alpha_{1}^{-k\left(n+s_{1}\right)}\left(\alpha_{1}^{\left(2 n-s_{1}\right) k}+1\right)
$$

We now take a large prime q, put $m=k q$, and consider a primitive prime ideal \mathcal{P} of $V_{k q}$. Let p be the prime such that $\mathcal{P} \mid p$, and let n be such that $u_{n} \equiv 0(\bmod p)$. Again, we assume that $n>s /(2 k)=s_{1} / 2$. Since p is large, it follows that $\alpha_{1}^{\left(2 n-s_{1}\right) k} \equiv-1(\bmod \mathcal{P})$. But we also have that $\alpha_{1}^{k q} \equiv 1$ $(\bmod \mathcal{P})$. If $2 n-s_{1}$ is a multiple of q, we then get that $-1 \equiv \alpha_{1}^{\left(2 n-s_{1}\right) k}$ $(\bmod \mathcal{P}) \equiv 1(\bmod \mathcal{P})$, so $\mathcal{P} \mid 2$, giving $p=2$, which is false since we have assumed that p is large. So assuming q does not divide $\left(2 n-s_{1}\right)$, we then have $\mathcal{P}\left|\alpha_{1}^{\left(2 n-s_{1}\right) k}+1\right| V_{\left(4 n-2 s_{1}\right) k}$ and $\mathcal{P} \mid V_{k q}$, therefore $\mathcal{P}\left|V_{\operatorname{gcd}\left(\left(4 n-2 s_{1}\right) k, k q\right)}\right| V_{k}$, where we used the fact that $q>2$ and q does not divide $2 n-s_{1}$. This
contradicts the definition of \mathcal{P} as a primitive divisor of $V_{k q}$. Hence, the sign is -1 .

We have arrived at the conclusion that

$$
u_{n}=\gamma \beta^{n} \alpha_{1}^{s}\left(\alpha_{1}^{\left(2 n-s_{1}\right) k}-1\right) .
$$

Finally, we show that s_{1} is even. We use a similar method to that used above. If s_{1} were odd, let m be a large even number and choose a primitive prime factor \mathcal{P} of $V_{k m}$. With p the prime such that $\mathcal{P} \mid p$ and n such that $p \mid u_{n}$ and large, we get that $\mathcal{P} \mid V_{\left(2 n-s_{1}\right) k}$. Hence, $\mathcal{P}\left|V_{\operatorname{gcd}\left(\left(2 n-s_{1}\right) k, k m\right)}\right| V_{m k / 2}$, where we used the fact that $2 n-s_{1}$ and odd and m is even. This contradicts the choice of \mathcal{P} as a primitive prime factor of $V_{k m}$.

Thus, s_{1} is even and we can write it as $s_{1}=2 s_{0}$ for some integer s_{0}.
Thus,

$$
u_{n}=\gamma \beta^{n} \alpha_{1}^{s}\left(\alpha_{1}^{2\left(n-s_{0}\right) k}-1\right),
$$

and taking $n=s_{0} \in \mathbb{Z}$, we get that $a=0 \in\left\{u_{n}: n \in \mathbb{Z}\right\}$, which is what we wanted.

The case $a \neq 0$.
This case is much more interesting and harder. Here, we put $U_{n}=\left(\alpha^{n}-\right.$ $\left.\beta^{n}\right) /(\alpha-\beta)$ for all $n \geq 0$. The sequence $\left(U_{n}\right)_{n \geq 0}$ satisfies the same recurrence relation (3) as $\left(u_{n}\right)_{n>0}$ does and its initial values are $U_{0}=0$ and $U_{1}=1$.

We proceed in ten steps.

1. First we show that the sequence ($u_{n}: n \geq 0$), when taken modulo U_{m}, has a well determined period.
Lemma 2. Let $m \geq 1$. The sequence $\left(u_{n}\right)_{n \geq 0}$ is periodic modulo U_{m} with period $4 m$.

Proof. Note that

$$
\alpha^{4 m}-1=\alpha^{4 m}-(\alpha \beta)^{2 m}=\alpha^{2 m}\left(\alpha^{2 m}-\beta^{2 m}\right) \equiv 0 \quad\left(\bmod \alpha^{m}-\beta^{m}\right)
$$

Thus, $\alpha^{4 m} \equiv 1\left(\bmod \alpha^{m}-\beta^{m}\right)$. Similarly, $\beta^{4 m} \equiv 1\left(\bmod \alpha^{m}-\beta^{m}\right)$. Hence,

$$
\begin{aligned}
(\alpha-\beta) u_{n+4 m} & =((\alpha-\beta) \gamma) \alpha^{n} \alpha^{4 m}+((\alpha-\beta) \delta) \beta^{n} \beta^{4 m} \\
& \equiv((\alpha-\beta) \gamma) \alpha^{n}+((\alpha-\beta) \delta) \beta^{n} \quad\left(\bmod \alpha^{m}-\beta^{m}\right) \\
& \equiv(\alpha-\beta) u_{n} \quad\left(\bmod \alpha^{m}-\beta^{m}\right)
\end{aligned}
$$

Canceling the factor of $(\alpha-\beta)$, we get that $u_{n+4 m} \equiv u_{n}\left(\bmod U_{m}\right)$, which is what we wanted.
2. We next take a close look at the number $u_{n}-a$. Observe that

$$
\begin{aligned}
u_{n}-a & =\gamma \alpha^{n}+\delta \beta^{n}-a=\gamma \beta^{n}\left(\alpha^{2 n}-\frac{a}{\gamma} \alpha^{n}+\frac{\delta}{\gamma}\right) \\
& =\gamma \beta^{n}\left(\alpha^{n}-z_{1}\right)\left(\alpha^{n}-z_{2}\right)
\end{aligned}
$$

where

$$
z_{1,2}=\frac{a \pm \sqrt{\Delta_{1}}}{2 \gamma} \quad \text { and } \quad \Delta_{1}=a^{2}-4 \gamma \delta .
$$

Recall that a primitive prime factor of U_{m} is a rational prime dividing U_{m} which does not divide U_{ℓ} for any $1 \leq \ell<m$ and which does not divide Δ either. It is known that if $m>12$, then U_{m} has primitive divisors [11, Theorem 1]. In fact, putting

$$
W_{m}=\prod_{\substack{p^{a_{p} p} \mid U_{m} \\ p \text { primitive }}} p^{a_{p}}
$$

then we have the following lemma due to Stewart [12, Page 603], but see also [2, Eqn. 17]. In the next statement we use $P(n)$ for the largest prime factor of n and $\Phi_{n}(X, Y)$ for the homogeneous cyclotomic polynomial of order n.

Lemma 3. For all $n>12, P\left(\frac{n}{\operatorname{gcd}(n, 3)}\right) W_{n} \geq \Phi_{n}(\alpha, \beta)$.
Proof. Any primitive prime divisor of U_{n} divides $\Phi_{n}:=\Phi_{n}(\alpha, \beta)$. If p is a prime divisor of Φ_{n} and $p \nmid n$ then p is a primitive divisor of Φ_{n}. The only possible prime dividing both n and Φ_{n} is $P(n / \operatorname{gcd}(n, 3))$ and it divides Φ_{n} to the first power, so the lemma follows from the prime factorization of Φ_{n}.

Therefore

$$
\begin{aligned}
W_{m} & \geq \frac{1}{m} \prod_{\substack{1 \leq \ell \leq m \\
\operatorname{gcd}(\ell, m)=1}}\left(\alpha-\mathbf{e}^{2 \pi i \ell / m} \beta\right)>\frac{(\alpha-\beta)^{\phi(m)}}{m} \\
& =\exp ((\log (\alpha-\beta)) \phi(m)-\log m)
\end{aligned}
$$

where $\phi(m)$ is the Euler function. Using the fact that $\phi(m) \gg m / \log \log m$, it follows that for all large m we have

$$
W_{m} \geq \exp \left(c_{1} \phi(m)\right)
$$

where we can take $c_{1}=(\log (\alpha-\beta)) / 2=(\log \Delta) / 4$.
3. Next we take a large positive integer m which is a multiple of $8 k$ and we shall look at the simultaneous solutions n of the congruences

$$
u_{n}-a \equiv 0 \quad(\bmod M)
$$

with

$$
M \in\left\{W_{m}, W_{m / 2} W_{m / 4}, W_{m} W_{m / 2} W_{m / 4}\right\}
$$

for reasons which will become clear later. Since $M \mid U_{m}$, it follows, by Lemma 2 , that we can take $n \in[4 m, 8 m)$. We have

$$
\begin{aligned}
e^{c_{1} \phi(m)} & \leq M \ll N_{\mathbb{L} / \mathbb{Q}}\left(\operatorname{gcd}\left(M,\left(\alpha^{n}-z_{1}\right)\left(\alpha^{n}-z_{2}\right)\right)\right. \\
& \ll N_{\mathbb{L} / \mathbb{Q}}\left(\operatorname{gcd}\left(M, \alpha^{n}-z_{1}\right) N_{\mathbb{I} / \mathbb{Q}}\left(\operatorname{gcd}\left(M, \alpha^{n}-z_{2}\right)\right) .\right.
\end{aligned}
$$

In the above, the greatest common divisors are to be thought of as fractional ideals of $\mathcal{O}_{\mathbb{L}}$, where $\mathbb{L}=\mathbb{K}\left(z_{1}\right)$. It now follows that there exists a constant c_{2}, which can be taken to be $c_{1} / 3$, such that if m is large, then for some $i \in\{1,2\}$ we have

$$
\begin{equation*}
N_{\mathbb{L} / \mathbb{Q}}\left(\operatorname{gcd}\left(M, \alpha^{n}-z_{i}\right)\right)>\exp \left(c_{2} \phi(m)\right) . \tag{6}
\end{equation*}
$$

4. The following argument has appeared in the proof of the main result in [8]. We supply the proof of it for convenience.

Lemma 4. With the previous notations, if z_{i} and α are multiplicatively independent, and $n \in[4 m, 8 m)$, then

$$
\begin{equation*}
N_{\mathbb{L} / \mathbb{Q}}\left(\operatorname{gcd}\left(M, \alpha^{n}-z_{i}\right)\right)=\exp (O(\sqrt{m})) . \tag{7}
\end{equation*}
$$

Proof. Let

$$
\mathcal{S}=\left\{\lambda n+2 \mu m: \lambda, \mu \in\left\{1, \ldots,\left\lfloor m^{1 / 2}\right\rfloor\right\} .\right.
$$

If $s=\lambda n+2 \mu m$, then $1 \leq s \leq(n+2 m) m^{1 / 2}<10 m^{3 / 2}$. Since there are $\left(\left\lfloor m^{1 / 2}\right\rfloor\right)^{2}$ pairs of positive integers (λ, μ) with $\lambda, \mu \in\left\{1, \ldots,\left\lfloor m^{1 / 2}\right\rfloor\right\}$, it follows, by the Pigeon-Hole Principle, that there exist two distinct pairs $\left(\lambda_{1}, \mu_{1}\right) \neq\left(\lambda_{2}, \mu_{2}\right)$ such that
$\left|\left(\lambda_{1}-\lambda_{2}\right) n+2\left(\mu_{1}-\mu_{2}\right) m\right|<\frac{10 m^{3 / 2}}{\left\lfloor m^{1 / 2}\right\rfloor^{2}-1}<11 m^{1 / 2} \quad$ for m large enough.
Writing $x=\lambda_{1}-\lambda_{2}$ and $y=\mu_{1}-\mu_{2}$, we get that $(x, y) \neq(0,0)$, that $x, y \in\left[-m^{1 / 2}, m^{1 / 2}\right]$, and that if we write $s=n x+2 m y$, then $|s|<11 m^{1 / 2}$. Note now that \star if we define the fractional ideals

$$
\mathcal{I}_{i}=\operatorname{gcd}\left([M],\left[\alpha^{n}-z_{i}\right]\right),
$$

where $[\theta]$ represents the principal ideal generated by θ in $\mathbb{L} \star$, then since $M\left|\left(\alpha^{m}-\beta^{m}\right)\right|\left(\alpha^{2 m}-1\right)$, we have

$$
\alpha^{2 m} \equiv-1 \quad\left(\bmod \mathcal{I}_{i}\right) \quad \text { and } \quad \alpha^{n} \equiv z_{i} \quad\left(\bmod \mathcal{I}_{i}\right)
$$

Here, z_{i} is invertible modulo \mathcal{I}_{i} for large m although z_{i} might not be an algebraic integer. The reason here is that M consists only of primitive prime factors of U_{m}, or of $U_{m / 2}$, or of $U_{m / 4}$, and all of them are congruent to ± 1 modulo $m / 4$. In particular, if m is sufficiently large, then z_{i} is invertible modulo \mathcal{I}_{i}.

Raising the first congruence to the power y and the second to the power x (notice that such operations are justified even if x and y are negative since α is a unit in \mathbb{K}, therefore also in \mathbb{L}), and multiplying the resulting congruences we get

$$
\alpha^{s} \equiv(-1)^{y} z_{i}^{x} \quad\left(\bmod \mathcal{I}_{i}\right)
$$

Thus, \mathcal{I}_{i} divides $\left(\alpha^{s}-(-1)^{y} z_{i}^{x}\right)$. Note that this last ideal is not zero. Indeed, for if not, then we would get that $\alpha^{2 s}=z_{i}^{2 x}$. Since we are assuming that α and z_{i} are multiplicatively independent, we get $x=s=0$, and since $s=n x+2 m y$, we get that $y=0$ as well, which contradicts the fact that $(x, y) \neq(0,0)$. Hence, \mathcal{I}_{i} divides the nonzero ideal $\left(\alpha^{s}-(-1)^{y} z_{i}^{x}\right)$. Taking norms in \mathbb{L} and observing that the degree of \mathbb{L} over \mathbb{Q} is at most 4 , we get that

$$
N_{\mathbb{L} / \mathbb{Q}}\left(\mathcal{I}_{i}\right) \leq\left(Z^{|x|} \alpha^{|s|}+\max \left\{\left|Z_{i}^{(j)}\right|: i, j\right\}^{|x|}\right)^{4}=\exp (O(\sqrt{m}))
$$

where we put $z_{i}=Z_{i} / Z$ with some integer Z and algebraic integer Z_{i} and let $Z_{i}^{(j)}$ stand for all the conjugates of Z_{i} in \mathbb{L} for $i=1,2$. This is what we wanted to prove.
5. From Lemma 4, we conclude that if both z_{1} and z_{2} are both multiplicatively independent with respect to α, then both

$$
N_{\mathbb{L} / \mathbb{Q}}\left(M, \alpha^{n}-z_{i}\right)=\exp (O(\sqrt{m})) \quad \text { hold for } i=1,2 .
$$

Since $\phi(m) \gg m / \log \log m$, we get a contradiction with estimate (6) for large m. Thus, there exists $i \in\{1,2\}$ such that z_{i} and α are multiplicatively dependent. Let it be z_{1}.
6. We next show that $z_{1} \in \mathbb{K}$. If $\Delta_{1}=0$, there is nothing to prove. If not, write $\Delta_{1}=d_{1} t_{1}^{2}$, where d_{1} is a squarefree integer and t_{1} is a nonzero rational. Then, since z_{1} and x are multiplicatively dependent, there exist integers x and y not both zero and $\varepsilon \in\{ \pm 1\}$ such that $z_{1}^{x}=\alpha^{y}$ i.e.

$$
\begin{equation*}
\left(\frac{a+\varepsilon t_{1} \sqrt{d_{1}}}{2}\right)^{x}=\gamma^{x} \alpha^{y} \tag{8}
\end{equation*}
$$

By replacing x with $-x$ if needed, we may assume that $x \geq 0$. By replacing the pair (x, y) by the pair $(2 x, 2 y)$, we may assume that both x and y are even. The left hand side is in $\mathbb{Q}\left(\sqrt{d_{1}}\right)$, while the right hand side is in $\mathbb{Q}(\sqrt{d})$. If $d_{1}=1$ or d, then $z_{1} \in \mathbb{K}$, which is what we wanted. Assume that $d_{1} \neq 1, d$. Then the two numbers in both sides of (8) are in $\mathbb{Q}(\sqrt{d}) \cap \mathbb{Q}\left(\sqrt{d_{1}}\right)=\mathbb{Q}$. Since the right hand side is real and positive (since γ and α_{1} are real and x and y are even), it follows that there exists a positive rational number q such that $\gamma^{x} \alpha_{1}^{k y}=q$. Thus, $\gamma^{x}=q \alpha_{1}^{-k y}$. Conjugating we get $\delta^{x}=q \beta_{1}^{-k y}$. Multiplying the above relations and using the fact that $\left(\alpha_{1} \beta_{1}\right)^{-k y}=1$ (because y is even), we get $(\gamma \delta)^{x}=q^{2}$. Now $\gamma \delta=q_{1}$ is a rational number. Thus, $q_{1}^{x}=q^{2}$, and since q is positive, we get that $q=\left|q_{1}\right|^{x / 2}$. Hence,

$$
\left(\frac{a+\varepsilon t_{1} \sqrt{d_{1}}}{2}\right)^{x}=q=\left|q_{1}\right|^{x / 2}
$$

leading to

$$
\left(\frac{a+\varepsilon t_{1} \sqrt{d_{1}}}{2}\right)^{2}= \pm q_{1}
$$

We are thus lead to

$$
\left(a^{2}+d_{1} t_{1}^{2}\right)+2 \varepsilon a t_{1} \sqrt{d_{1}}= \pm 4 q_{1}
$$

which is false for $a t_{1} \neq 0$ and $d_{1} \neq 1$ and squarefree. Thus, indeed $z_{1} \in \mathbb{K}$. Since $z_{1} \in \mathbb{K}$ and is multiplicatively dependent with respect to α, it follows that it is an algebraic integer since from what we have seen above it is a solution $X=z_{1}$ of an equation of the form $X^{x}-\alpha_{1}^{k y}$ with some integers $x>0$ and even and y, and $\alpha_{1}^{k y}$ is an algebraic integer. Thus, $z_{1} \in \mathcal{O}_{\mathbb{K}}$ and some power of it is a unit, therefore itself is a unit. Thus, $z_{1}= \pm \alpha_{1}^{s}$ for some integer s.
7. It remains to prove that s is a multiple of k and that the sign is +1 . (Compare this with the case $a=0$ where the sign was -1 .) Indeed, to see that we have finished in this way, observe that if this is the case, then writing $s=k s_{1}$ for some integer s_{1}, the relation

$$
\begin{equation*}
\frac{a+\varepsilon t_{1} \sqrt{d_{1}}}{2}=\gamma \alpha_{1}^{k s_{1}}=\gamma \alpha^{s_{1}} \tag{9}
\end{equation*}
$$

holds. Conjugating this relation in \mathbb{K}, we also get

$$
\begin{equation*}
\frac{a-\varepsilon t_{1} \sqrt{d_{1}}}{2}=\delta \beta^{s_{1}} \tag{10}
\end{equation*}
$$

and summing up relations (9) and (10) we arrive at

$$
a=\gamma \alpha^{s_{1}}+\delta \beta^{s_{1}}=u_{s_{1}} \in\left\{u_{n}: n \in \mathbb{Z}\right\}
$$

which is what we wanted.
8. So, let us assume first that $z_{1}= \pm \alpha_{1}^{s}$, where s is not a multiple of k. Then

$$
\alpha^{n}-z_{1}=\alpha_{1}^{s}\left(\alpha_{1}^{k n-s} \pm 1\right) \mid\left(\alpha_{1}^{2 k n-2 s}-1\right) .
$$

We now take $M=W_{m}$ and observe that $W_{m}\left|\left(\alpha^{m}-\beta^{m}\right)\right| \alpha_{1}^{2 k m}-1$. Thus,

$$
\begin{aligned}
\operatorname{gcd}\left(M, \alpha^{n}-z_{1}\right) \quad \mid & \operatorname{gcd}\left(\alpha_{1}^{2 k m}-1, \alpha_{1}^{2 k n-2 s}-1\right) \\
= & \operatorname{gcd}\left(V_{2 k m}, V_{2 k n-2 s}\right)=V_{\operatorname{gcd}(2 k m, 2 k n-2 s)} .
\end{aligned}
$$

Since k does not divide s, it follows that $\operatorname{gcd}(2 k m, 2 k n-2 s)$ is a proper divisor of $2 k m$. Thus, there exists a prime q dividing $k m$ such that $\operatorname{gcd}(2 k m, 2 k n-$ $2 s) \mid 2 k m / q$, and so

$$
\operatorname{gcd}\left(M, \alpha^{n}-z_{1}\right) \mid V_{2 k m / q}=\alpha_{1}^{2 k m / q}-1=\alpha_{1}^{k m / q}(\alpha-\beta) U_{m / q} .
$$

Here, we used the fact that m is a multiple of 4 (so, $k m / q$ is even for all prime factors q of $k m$), as well as the fact that m is divisible by k. However, since $M=W_{m}$ consists of the primitive prime factors of U_{m}, it follows that M is coprime to $U_{m / q}$. We thus get that

$$
\operatorname{gcd}\left(M, \alpha^{n}-z_{1}\right)=O(1)
$$

contradicting (6) with $i=1$ for large m. Thus, $s=k s_{1}$ holds with integer s_{1}.
9. Now assume that the sign is -1 , i.e. $z_{1}=-\alpha_{1}^{k s_{1}}=-\alpha^{s_{1}}$. Here we take $M=W_{m} W_{m / 2} W_{m / 4}$ and we look at the solutions n of the congruence

$$
u_{n}-a \equiv 0 \quad(\bmod M)
$$

The left hand side is

$$
\gamma \beta^{n}\left(\alpha^{n}-z_{1}\right)\left(\alpha^{n}-z_{2}\right)
$$

We have

$$
\alpha^{n}-z_{1}=\alpha_{1}^{k n}+\alpha_{1}^{k s_{1}}=\alpha_{1}^{k s_{1}}\left(\alpha^{n-s_{1}}+1\right)
$$

Now M divides $\alpha^{m}-\beta^{m}=\beta^{m}\left(\alpha^{2 m}-1\right)$. Writing $v_{2}(u)$ for the exact power of 2 appearing in a positive integer u we have the following result which is implicit in [5,6] for integers a and which is easily extended to algebraic integers:
Lemma 5. If $u, v, a \geq 1$ and $v_{2}(v) \leq v_{2}(u)$ then $\operatorname{gcd}\left(a^{u}+1, a^{v}-1\right) \mid 2$, otherwise $\operatorname{gcd}\left(a^{u}+1, a^{v}-1\right)=a^{\operatorname{gcd}(u, v)}+1$.
Proof. If $v_{2}(v) \leq v_{2}(u)$, set $g=\operatorname{gcd}\left(a^{u}+1, a^{v}-1\right)$ and $k=\operatorname{gcd}(2 u, v)$. Then

$$
g \mid \operatorname{gcd}\left(a^{2 u}-1, a^{v}-1\right)=a^{\operatorname{gcd}(2 u, v)}-1=a^{k}-1
$$

so $g \mid a^{k}-1$. But if we write $u=2^{v_{2}(u)} u_{1}$ and $v=2^{v_{2}(v)} v_{1}$ then

$$
\frac{k}{2^{v_{2}(v)}}=\operatorname{gcd}\left(u_{1} \cdot 2^{1+v_{2}(u)-v_{2}(v)}, v_{1}\right)
$$

which is an odd integer. Hence $k\left|2^{v_{2}(v)} u_{1}\right| u$. Therefore $-1 \equiv a^{u} \equiv a^{k \cdot \frac{n}{k}} \equiv$ $1 \bmod g$ so $g \mid 2$. If $v_{2}(v)>v_{2}(u)$, first set $b=a^{2^{v_{2}(u)}}$ so

$$
\operatorname{gcd}\left(a^{u}+1, a^{v}-1\right)=\operatorname{gcd}\left(b^{u_{1}}+1, b^{v_{1} \cdot 2^{v_{2}(v)-v_{2}(u)}}-1\right)
$$

where $r=u_{1}$ is odd and $s=2^{v_{2}(v)-v_{2}(u)} v_{1}$ is even. Then $b^{\operatorname{gcd}(r, s)}+1 \mid$ $\operatorname{gcd}\left(b^{r}+1, b^{s}-1\right)$. There exist y, z with $y r+z s=\operatorname{gcd}(r, s)$ and y must be odd. If $x \mid \operatorname{gcd}\left(b^{r}+1, b^{s}-1\right)$ then $b^{r} \equiv-1 \bmod x$ and $b^{s} \equiv 1 \bmod x$ implies $b^{\operatorname{gcd}(r, s)} \equiv b \equiv(-1)^{y r} \equiv-1 \bmod x$ so $x \mid b^{\operatorname{gcd}(r, s)}+1$. Hence $\operatorname{gcd}\left(b^{r}+1, b^{s}-\right.$ $1)=b^{\operatorname{scd}(r, s)}+1$ and the lemma is proved.

It follows that

$$
\operatorname{gcd}\left(\alpha^{n-s_{1}}+1, \alpha^{2 m}-1\right)=\alpha^{\operatorname{gcd}\left(n-s_{1}, 2 m\right)}+1
$$

provided that 2^{u} divides m. Otherwise, the greatest common divisor appearing on the left hand side above is $O(1)$. By estimate (6), it follows that we may assume that 2^{u} divides m. Now

$$
(\alpha-\beta) U_{m}=\beta^{m}\left(\alpha^{2 m}-1\right)=\beta^{m}\left(\alpha^{m}+1\right)\left(\alpha^{m}-1\right),
$$

and $\operatorname{gcd}\left(\alpha^{n}-z_{1}, \alpha^{2 m}-1\right)$ divides one of the two factors $\alpha^{m}+1$ or $\alpha^{m}-1$, and has a bounded greatest common divisor with the other factor. In particular, $\alpha^{n}-z_{1}$ is coprime to either W_{m}, which divides $\alpha^{m}+1=\beta^{m / 2} U_{m} / U_{m / 2}$, or to $W_{m / 2} W_{m / 4}$, which divides $\alpha^{m}-1=\beta^{m / 2} U_{m / 2}$. Since at any rate we have that $u_{n} \equiv 0(\bmod M)$, we must deduce that with either $N=W_{m}$, or $N=W_{m / 2} W_{m / 4}$, the estimate

$$
N \ll N_{\mathbb{I} / \mathbb{Q}}\left(\operatorname{gcd}\left(N, \alpha^{n}-z_{2}\right)\right)
$$

holds. Since also $N \geq \exp \left(c_{1} \phi(m / 2)\right)$, Lemma 4 shows that z_{2} and α must also be multiplicatively dependent. In particular, $z_{2}= \pm \alpha^{s^{\prime}}$ for some integer s^{\prime}.

Thus,

$$
\alpha^{n}-z_{2}=\alpha_{1}^{s^{\prime}}\left(\alpha_{1}^{k n-s^{\prime}} \pm 1\right) \mid\left(\alpha_{1}^{2 k n-2 s^{\prime}}-1\right) .
$$

Again we show that s^{\prime} is a multiple of k. Assume that it is not. Then $N \mid \alpha_{1}^{2 k m}-1$.Thus,

$$
\operatorname{gcd}\left(N, \alpha^{n}-z_{2}\right)\left|\operatorname{gcd}\left(V_{2 k m}, V_{2 k n-2 s^{\prime}}\right)\right| V_{\operatorname{gcd}\left(2 k m, 2 k n-2 s^{\prime}\right)} \mid V_{k m / 8}
$$

Indeed, the last relation above follows from the fact that $2 k$ cannot divide the greatest common divisor of $2 k m$ and $2 k n-2 s^{\prime}$, together with the fact that m is a multiple of 8 . However, since $N \mid W_{m} W_{m / 2} W_{m / 4}$, we get that N is coprime to $V_{k m / 8}$, so $N_{\mathbb{L} / \mathbb{Q}}\left(\operatorname{gcd}\left(N, \alpha^{n}-z_{2}\right)\right)=O(1)$, which is false. Thus, $s^{\prime}=k s_{1}^{\prime}$.
10. If the sign is +1 we are through. So, assume again that the sign is -1 , i.e. $z_{2}=-\alpha^{s^{\prime}}$. Then

$$
u_{n}-a=\gamma \beta^{n} \alpha_{1}^{s+s^{\prime}}\left(\alpha^{n-s_{1}}+1\right)\left(\alpha^{n-s_{1}^{\prime}}+1\right) .
$$

Putting now u_{1} for the exact power of 2 in the factorization of $n-s_{1}^{\prime}$; i.e., such that $2^{u_{1}} \| n-s_{1}^{\prime}$, we see that the only situation in which the $\operatorname{gcd}\left(\alpha^{n-s_{1}^{\prime}}+\right.$ $\left.1, \alpha^{2 m}-1\right)$ is not $O(1)$ is when $2^{u_{1}} \mid m$. In this case, the given greatest common divisor is $\alpha^{\operatorname{gcd}\left(n-s_{1}^{\prime}, 2 m\right)}+1$ and, as in a previous argument, this number can be divisible by only one of $W_{m}, W_{m / 2}$ or $W_{m / 4}$ and must be coprime to the other two. To summarize, in this last case,

$$
\operatorname{gcd}\left(u_{n}-a, W_{m} W_{m / 2} W_{m / 4}\right) \ll W_{m} W_{m / 2} .
$$

Since the number on the left should in fact be $\gg W_{m} W_{m / 2} W_{m / 4}$, we get a contradiction for large m. The theorem is therefore proved.

Acknowledgements

Research of F. L. was supported in part by Grant SEP-CONACyT 79685 and PAPIIT 100508.

References

[1] M. Aigner and G. M. Ziegler, Proofs from the book, Springer-Verlag, 1998.
[2] Yu. Bilu, G. Hanrot and P. M. Voutier (with an appendix by M. Mignotte), 'Existence of primitive divisors of Lucas and Lehmer numbers', J. Reine Angew Math. 539 (2001), 75-122.
[3] K. A. Broughan, 'Adic Topologies for the Rational Integers' Canad. J. Math. 55 (2003), 711 - 723.
[4] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, Perfect powers from products of terms in Lucas sequences, J. Reine Angew. Math. 611 (2007), 109-129.
[5] R. D. Carmichael, 'On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$ Annals of Math. 15 (1913/14) 30-48.
[6] R. D. Carmichael, 'On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Annals of Math. 15 (1913/14) 49-70.
[7] H. Fürstenberg, 'On the infinitude of primes', Amer. Math. Monthly 62 (1955), 353.
[8] S. Hernández and F. Luca, 'On a question of Broughan', Proc. Amer. Math. Soc. 136 (2008), 403-407.
[9] F. Luca and F. Pappalardi, 'Members of binary recurrent sequences on lines of the Pascal triangle', Publ. Math. (Debrecen) 67 (2005), 103-113.
[10] A. Schinzel, 'Primitive divisors of the expression $A^{n}-B^{n}$ in algebraic number fields', J. reine angew Math. 268/269 (1974), 27-33.
[11] C. L. Stewart, 'Primitive divisors of Lucas and Lehmer numbers', in Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 79-92.
[12] C. L. Stewart, 'On the greatest prime factor of terms of a linear recurrence sequence', Rocky Mountain J. Math. 15 (1985), 599-608.

