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Abstract

In this paper, we determine the closure in the full topology over
Z of the set {u, : n > 0}, where (u,)n>0 is a nondegenerate binary
recurrent sequence with integer coefficients whose characteristic roots
are quadratic units. This generalizes the result for the case when
u,, = F, was the nth Fibonacci number.
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1 Introduction

Let Z be the ring of integers equipped with the topology 7 in which the base
of neighborhoods for a point a € Z is given by the sets

Nop={a+nb:neZ} forbe Z, b > 1. (1)

This topology was proposed by H. Fiirstenberg in [7]. Tt can be used to give
a very elegant proof of the fact that the set of prime numbers is infinite (see
[1]). It is called the full topology. This topology was studied in detail in the
recent paper [3], where the following conjecture was proposed.

Let F' = {F,},>0 denote the Fibonacci sequence given by Fy = 0, Iy =1
and
Foo=F, 1+ F, for all n > 0. (2)

Let F~ denote the set {(—1)""'F, : n € N}. Then the closure of F' C Z in
the topology 7 is /' U F'~. Some numerical evidence supporting the above
conjecture was given in the last section of [3]. The above conjecture was
confirmed in [8].

In this paper, we revisit the arguments from [8] and prove a more general
version of the above result. Namely, let (u,),>¢ be any sequence of integers
satisfying the recurrence

Up o = Tipy1 + Sly for all n > 0. (3)

Here, r and s are some fixed integers. We assume that rs(r? + 4s) # 0.
It is then well-known that if one writes a and 3 for the two roots of the
characteristic equation v? — rx — s = 0, then there exist constants v and ¢

in K = Q(«) such that
up, = ya" + 64" for all n > 0. (4)

We assume further that vJ # 0 and that a/f is not a root of unity. Under
these conditions, it is said that the sequence (uy),>¢ is nondegenerate.
Here, we only consider the case when s = £1. In this case, one checks
easily that K is a real quadratic field in which « and [ are units. We may
also define u,, for n < 0, either recursively via formula (3), or simply by
allowing n to be negative in formula (4). We have the following result.
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Theorem 1. The closure of the set {u, : n > 0} in the full topology is the
set {u, : n € L}.

The above result applies to the Fibonacci sequence (F},),>o which satisfies
the recurrence relation (3) with s = 1. Since (—1)"*'F, = F,,, the main
result of [8] is an immediate consequence of our Theorem 1.

2 Some Conventions

We first make some reductions. Put
Up = Ugp = 72"+ 647" and  w, = ugen = (Ya)o + (68) 5%

foralln =0,1,.... Both (v,),>0 and (wy,)n>0 are binary recurrent sequences,
with the same characteristic equation having roots o and 32, and the closure
U of U = {u, : n > 0} is the union of the closures of V = {v, : n > 0} and
W ={w, :n > 0}.

This argument shows that it suffices to prove Theorem 1 for the two
sequences (vp)p>0 and (wp)p>0. In particular, it suffices to prove Theorem 1
when o and § are both positive. Thus, r > 0 and s = —1. Furthermore, we
use « for the root which is > 1. We put A =72 + 45 = r2 — 4 = dt?, where
d is squarefree. Then

7“+\/Z r—\/z
:T and ﬁ:T

«
Since the multiplication by any nonzero integer is a continuous map, we may
assume that v > 0 for if not, we may then replace the sequence (uy),>¢ by the
sequence (—uy,)n>0, which has as effect replacing the pair (v, d) by (—v, —9).
Observe that with these conditions we have u,, > 0 for all n sufficiently large,
say n > ng.

We write K = Q(v/d) for the real quadratic field containing « and 3. We
also put oy for the fundamental unit in K and (3, for its conjugate. Since
a > 1, it follows that there exists a positive integer k such that a = of.

Clearly, 3 = 3*. Observe that k is even if the norm of «ay; i.e., the number



a1, equals —1. We write Nk, for the norm of an element, or norm of an
integer or fractional ideal, of K relative to Q.

Throughout, for three algebraic integers 11, ps and v # 0 we say that
p1 = po (mod v) if (p — p2)/v is an algebraic integer.

We use the Landau symbol O and the Vinogradov symbols > and < with
their usual meanings. We shall also use ¢, co, ... for positive computable
constants depending on the sequence (u,)n>o-

3 The Proof of Theorem 1

We first prove that {u, : n € Z} C U. Indeed, since s = %1, it is known
that for every positive integer m the sequence (uy),>¢ is periodic modulo m
with some period T'(m). In fact, since a and § are units, it follows that they
remain units in the finite ring Z[a]/(AmZ]a]). Thus, there exists a positive
integer 7'(m) such that both relations o”™ =1 (mod Am) and 7™ =1
(mod Am) hold. Observe now that since

ug=7v+9 and up = ya + 90,

it follows that

~up — Bug _aug — Uy
_—a—ﬁ and 5_—a_ﬂ .

In particular, both numbers (o« — )y and (a — 3)d are algebraic integers.
Now note that

(= B)upsrim) = ((a— ﬂ)/y)a”*T(m) + ((a — ﬂ)5)5n+T(m)
((a = B)y)a” + ((a — B)8)5"  (mod Am)
= (a—PBu, (mod Am),

therefore (o — ) (Upsr(m) — un) = 0 (mod Am). Since A = (o — )%, it
follows that (upi7(m) — un)/m is an algebraic integer. Since it is also a
rational number, it follows that it is an integer. The above argument was
valid for all integers n. Thus, given any integer n and any modulus m, we



may let T be a sufficiently large positive integer such that n + T'(m)T is
positive. Then u, = wyy7(m)T (mod m). Since m was arbitrary, we conclude
that {u, : n € Z} C U, which is what we wanted to prove.

We next demonstrate the reverse containment.

We let U = {u, : n > 0} and let a € Y. We want to show that a = u,
for some n € Z. We start with the case ¢ = 0.

The case a = 0.

In this case, since 0 € U, it follows that the equation u, = 0 (mod p) has
a solution n for each large prime p. Writing

u, = 3" <a2n + é) )
Y

it follows that if p is sufficiently large, say if p is large enough so that it it is
coprime with the prime ideals of K appearing in the factorization of either ~
or ¢, then the congruence

=a™" (mod p)

has an integer solution n. It follows from the lemma [9, Page 108], that §/
is a unit in K. In particular, §/v = a7 for some integer s. Thus,

Uy = yo " (a%k"’s +1). (5)

We next show that s is a multiple of £ and that the sign is —1. Consider the
sequence with the general term

Vo=0af —1€ Ok forn=1,2,...

We say a prime ideal P of Ok is primitive for V,, if it has the property that
P | Vi, but P does not divide V;,, for any 1 < m < n. It follows from results
of Schinzel [10] and Stewart [11, Theorem 1] that V;, always has primitive
divisor P if n exceeds some absolute constant.

If P is such a primitive divisor and p is the prime number such that P | p,
then p > n'/%: to see this since K is quadratic, N(P) = p or N(P) = p?
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where p is the unique rational prime with P | p. Therefore the order of the
multiplicative group of Ox /P is p—1 or p* —1 and oziv(P)_l = 1 mod P shows
that n | p or n | p? — 1, from which the inequality follows [10].

Armed with these facts, let us go back to relation (5). Assume that s is
not a multiple of k. Let m be large, let P be a primitive prime for V5, and
let p be the prime number such that P | p. For large enough m, p is coprime
with the prime ideals appearing in the factorization of either v or ¢ in K.
There exists n such that u, =0 (mod p). We may assume that n > s/(2k),
for otherwise we may replace n by the sum of n and some large multiple of
T(p). This implies that P | a?** % £ 1 | Vign_os. Since also P | Vory, we
obtain P | Vacd(4kn—25,26m)- 10 see this, we used the fact that if m and n
are two positive integers with d = ged(m,n), then ged(V;,, V,,) = Vy, which
follows from the fact that there exist two polynomials P(X) and Q(X) with
integer coefficients such that

PX)(X™ -1 +QX)(X"-1)=X"~1

(see, for example, the proof of Lemma 1 in [4]). In particular, if « is an
algebraic integer and Z is an ideal such that Z divides both 1}, and V;,, then
7T divides V.

Since s is not a multiple of k, it follows that the integer ged(4kn—2s, 2km)
is a proper divisor of 2km, which contradicts the choice of P as a primitive
prime ideal divisor of a?*™ — 1. Thus, s = ks.

We next show that the sign is —1. Assume that it were +1. Then

u, = ’}/()él_k(n+sl) (a?n—sl)k n 1) .

We now take a large prime ¢, put m = kq, and consider a primitive prime
ideal P of Vi,. Let p be the prime such that P | p, and let n be such that
up, =0 (mod p). Again, we assume that n > s/(2k) = s1/2. Since p is large,

it follows that /"% = —1 (mod P). But we also have that o/’ =

(mod P). If 2n — s; is a multiple of ¢, we then get that —1 = o{***
(mod P) =1 (mod P), so P | 2, giving p = 2, which is false since we have
assumed that p is large. So assuming ¢ does not divide (2n—s;), we then have
Pl al™ % 41| Vi a5k and P | Vi, therefore P | Vyeaqun- s kka) | Ves

where we used the fact that ¢ > 2 and ¢ does not divide 2n — s;. This
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contradicts the definition of P as a primitive divisor of Vj,. Hence, the sign
is —1.
We have arrived at the conclusion that

U, = ,yﬂnaiq (a?nfsl)k . 1) .

Finally, we show that s, is even. We use a similar method to that used above.
If s; were odd, let m be a large even number and choose a primitive prime
factor P of Vi,,. With p the prime such that P | p and n such that p | u, and
large, we get that P | Vign_s, k. Hence, P | Vcd(2n—si)kpem) | Vimk/2, where
we used the fact that 2n — s; and odd and m is even. This contradicts the
choice of P as a primitive prime factor of V,,.

Thus, sy is even and we can write it as s; = 25y for some integer sg.

Thus,

u, = 4" (af(n_s(’)k - 1)
and taking n = so € Z, we get that a = 0 € {u, : n € Z}, which is what we
wanted.
The case a # 0.

This case is much more interesting and harder. Here, we put U, = (o™ —
B")/(ac—B) for all n > 0. The sequence (U, ),>o satisfies the same recurrence
relation (3) as (u,)n>o does and its initial values are Uy = 0 and U; = 1.

We proceed in ten steps.

1. First we show that the sequence (u,, : n > 0), when taken modulo U,,,
has a well determined period.

Lemma 2. Let m > 1. The sequence (uy)n>o is periodic modulo U, with
period 4m.

Proof. Note that
0™ =1 = 0 (@) = (e ) =0 (mod o™ — ).
Thus, o' =1 (mod o™ — ™). Similarly, 44 =1 (mod o™ — 3™). Hence,
(= Btnsam = ((a@—B)y)a"a™ + ((a — B)d)s" 5

((a = B)y)a” + ((a = p)d)p"  (mod o™ — 5™)
= (a—fB)u, (moda™ — ™).
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Canceling the factor of (o — 3), we get that u, 4, = u, (mod Up,,), which is
what we wanted. O

2. We next take a close look at the number u,, — a. Observe that

4]
Up — Q@ = ’ya"+5ﬂ”—a:’yﬂ”<a2"—ga”+—>
Y

Y
= 8" (" — z1)(a" — 2),

where

a£ VA
2y

Recall that a primitive prime factor of U,, is a rational prime dividing U,

which does not divide U, for any 1 < ¢ < m and which does not divide

A either. It is known that if m > 12, then U, has primitive divisors [11,

Theorem 1]. In fact, putting

Wi, = H papj

PP ||Un
p primitive

and Ay = a? — 476,

212 =

then we have the following lemma due to Stewart [12, Page 603], but see also
[2, Eqn. 17]. In the next statement we use P(n) for the largest prime factor
of n and ®,(X,Y) for the homogeneous cyclotomic polynomial of order n.

Lemma 3. For all n > 12, P(m)Wn > P, (a, §).

Proof. Any primitive prime divisor of U, divides ®,, := @, («, ). If p is a
prime divisor of ®,, and p { n then p is a primitive divisor of ®,. The only
possible prime dividing both n and ®,, is P(n/ ged(n, 3)) and it divides ®,, to
the first power, so the lemma follows from the prime factorization of ®,,. 0O

Therefore
1 g (2= B
w,, > — H (Oz eZmZ/mﬁ) >
m 1<e<m m
ged(£,m)=1
= exp((log(a — B))p(m) — logm),



where ¢(m) is the Euler function. Using the fact that ¢(m) > m/loglogm,
it follows that for all large m we have

Wi > exp(ci¢(m)),

where we can take ¢; = (log(a — 3))/2 = (log A) /4.

3. Next we take a large positive integer m which is a multiple of 8% and
we shall look at the simultaneous solutions n of the congruences

up —a =0 (mod M),

with
M e {Wm; Wm/QWm/47 Wme/QWm/4}

for reasons which will become clear later. Since M | U,,, it follows, by Lemma
2, that we can take n € [4m,8m). We have

e <M < Noyo (ged(M, (0 — 21) (0" — 2))
< Ny (ged(M, " — 21) Nijg (ged(M, o — 23)) .

In the above, the greatest common divisors are to be thought of as fractional
ideals of Or, where L = K(z1). It now follows that there exists a constant
¢9, which can be taken to be ¢;/3, such that if m is large, then for some
i € {1,2} we have

N (ged(M, o™ — 2;)) > exp(capp(m)). (6)

4. The following argument has appeared in the proof of the main result in
[8]. We supply the proof of it for convenience.

Lemma 4. With the previous notations, if z; and o are multiplicatively in-
dependent, and n € [4m,8m), then

Nijg (ged(M, o™ — z;)) = exp(O(v'm)). (7)

Proof. Let
S={\n+2um : N\ pei{l,.. . |m7%]}.



If s = An + 2um, then 1 < s < (n + 2m)m'/? < 10m*2. Since there are
(|m'/2])? pairs of positive integers (A, u) with A\, u € {1,...,|m"?|}, it
follows, by the Pigeon-Hole Principle, that there exist two distinct pairs
()\1,/,61) # ()\2, /1,2) such that

10m>3/2
[mb2]2 — 1

Writing x = Ay — XAy and y = gy — pg, we get that (z,y) # (0,0), that
z, y € [-m!'/?, m!/?], and that if we write s = nx + 2my, then |s| < 11m!/2.
Note now that x if we define the fractional ideals

L, = ged([M], [o" — z]),

|(A1L — Ao+ 2(py — po)m| < < 11m'/? for m large enough.

where [] represents the principal ideal generated by 6 in L x, then since
M| (a™ — ™) | (&®™ — 1), we have

o = —1 (mod I;) and o =z (mod I).

Here, z; is invertible modulo Z; for large m although z; might not be an
algebraic integer. The reason here is that M consists only of primitive prime
factors of Uy, or of U, 2, or of U, /4, and all of them are congruent to %1
modulo m/4. In particular, if m is sufficiently large, then z; is invertible
modulo Z;.

Raising the first congruence to the power y and the second to the power x
(notice that such operations are justified even if 2 and y are negative since «
is a unit in K, therefore also in L), and multiplying the resulting congruences
we get

= (—1)Y2 (mod Z;).

a’ :
Thus, Z; divides (a® — (—1)¥27). Note that this last ideal is not zero. Indeed,
for if not, then we would get that a? = 22*. Since we are assuming that
a and z; are multiplicatively independent, we get x+ = s = 0, and since
s = nx + 2my, we get that y = 0 as well, which contradicts the fact that
(z,y) # (0,0). Hence, Z; divides the nonzero ideal (a® — (—1)¥z7¥). Taking
norms in I and observing that the degree of I over Q is at most 4, we get
that

Nijo(T) < (27l + max{| 2| : i, j})* = exp(O(v/m),
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where we put z; = Z;/Z with some integer Z and algebraic integer Z; and

let Zi(j) stand for all the conjugates of Z; in L for 7 = 1,2. This is what we
wanted to prove. O

5. From Lemma 4, we conclude that if both z; and 2, are both multi-
plicatively independent with respect to «, then both

Npjo(M,a™ — z) = exp(O(v/m))  hold for i =1,2.

Since ¢(m) > m/loglogm, we get a contradiction with estimate (6) for
large m. Thus, there exists ¢ € {1,2} such that z; and « are multiplicatively
dependent. Let it be z;.

6. We next show that z; € K. If A; = 0, there is nothing to prove. If not,
write A, = d;t?, where d, is a squarefree integer and ¢, is a nonzero rational.
Then, since z; and x are multiplicatively dependent, there exist integers x
and y not both zero and € € {£1} such that z{ = a¥ i.e.

(a+st1\/d_1)”” .y
_ =7y a’.

: )

By replacing x with —z if needed, we may assume that > 0. By replacing
the pair (z,y) by the pair (2x,2y), we may assume that both x and y are
even. The left hand side is in Q(v/dy), while the right hand side is in Q(+/d).
If d; = 1 or d, then z; € K, which is what we wanted. Assume that d; # 1, d.
Then the two numbers in both sides of (8) are in Q(v/d)NQ(v/d;) = Q. Since
the right hand side is real and positive (since v and ay are real and x and y
are even), it follows that there exists a positive rational number ¢ such that
Yok = ¢. Thus, 4 = ga;*. Conjugating we get 6% = ¢f; . Multiplying
the above relations and using the fact that (o 3;) % = 1 (because y is even),
we get (70)* = ¢*>. Now 78 = ¢ is a rational number. Thus, ¢¢ = ¢?, and
since ¢ is positive, we get that ¢ = |g;|*/?. Hence,

<a+at1\/ﬁ>’” B

— = g |
5 q=|ql"?,

leading to



We are thus lead to
(a® + dyt]) + 2eat,\/dy = F4qi,

which is false for at; # 0 and d; # 1 and squarefree. Thus, indeed z; € K.
Since z; € K and is multiplicatively dependent with respect to «, it follows
that it is an algebraic integer since from what we have seen above it is a
solution X = z; of an equation of the form X* — o/fy with some integers
x > 0 and even and y, and o/fy is an algebraic integer. Thus, z; € Ok and
some power of it is a unit, therefore itself is a unit. Thus, z; = *af for some
integer s.

7. Tt remains to prove that s is a multiple of £ and that the sign is +1.
(Compare this with the case a = 0 where the sign was —1.) Indeed, to see
that we have finished in this way, observe that if this is the case, then writing
s = ks; for some integer s1, the relation

CL—FStl\/dl . ks1 51
— =t =

(9)
holds. Conjugating this relation in K, we also get

a—et1\/dy

5 =08, (10)

and summing up relations (9) and (10) we arrive at
a=ya’ +05° =u, € {u, :n €L},

which is what we wanted.

8. So, let us assume first that z; = £aj, where s is not a multiple of k.
Then
o — 2z =of (o/f"_s + 1) | (a2kn=25 1),

We now take M = W,, and observe that W, | (o™ — ™) | a2F™ — 1.
Thus,

ged(M,a" — z) 2km

2kn—2s
, O - 1)

ged(a
= ng(‘/Zk:my ‘/anf%) — ‘/gcd(Qk:m,kaf%)-
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Since k does not divide s, it follows that ged(2km, 2kn—2s) is a proper divisor
of 2km. Thus, there exists a prime ¢ dividing km such that ged(2km, 2kn —
2s) | 2km/q, and so

ed(M, " = 20) | Vamgg = 277 — 1 = 0™/ = )V

Here, we used the fact that m is a multiple of 4 (so, km/q is even for all
prime factors g of km), as well as the fact that m is divisible by k. However,
since M = W,, consists of the primitive prime factors of U,,, it follows that
M is coprime to Up,/,. We thus get that

ng(Ma a — Zl) = 0(1)7
contradicting (6) with ¢ = 1 for large m. Thus, s = ks; holds with integer

S1.
9. Now assume that the sign is —1, i.e. 2y = —a®*' = —a®. Here we

take M = W,,W,,2Wp,/4 and we look at the solutions n of the congruence
up —a =0 (mod M).
The left hand side is
VA" (" — z1) (" — z2).
We have
o — 2 = a4 o =M (0" 1),

Now M divides o™ — ™ = 3™(a*™ — 1). Writing ve(u) for the exact power
of 2 appearing in a positive integer u we have the following result which
is implicit in [5, 6] for integers a and which is easily extended to algebraic
integers:

Lemma 5. If u,v,a > 1 and va(v) < wva(u) then ged(a® + 1,a” — 1) | 2,
otherwise ged(a® + 1,a” — 1) = a#d®v) 41,

Proof. If va(v) < va(u), set g = ged(a*+1,a” — 1) and k = ged(2u, v). Then
g ged(a® —1,a° — 1) = a®4®v) — 1 =gk — 1.
o ¢ | ab — 1. But if we write u = 222y, and v = 292y, then

k
2112(11)

= gcd(ul . 21+v2(u)—v2(v)7 Ul)

13



k-

=3
Il

which is an odd integer. Hence & | 2"2(")u; | u. Therefore —1 = a* = a

1 mOd g S0 g ’ 2 If UZ(U) > ,UZ(U); ﬁrSt Set b = a2v2(u) SO

ged(a® +1,a° — 1) = ged (b + 1,527 1)

where r = wuy is odd and s = 2%y ig even. Then 84s) 4 1 |
ged(b” + 1,b° — 1). There exist y, z with yr + zs = ged(r, s) and y must be
odd. If = | ged(d” + 1,b° — 1) then 8" = —1 mod x and b* = 1 mod = implies
peed(ms) = h = (1) = —1 mod z so x | 840*) + 1. Hence ged(b” + 1,b° —
1) = b8°d() + 1 and the lemma is proved. O

It follows that
gcd(an—sl +1, a2m . 1) — agcd(n—sl,2m) +1

provided that 2" divides m. Otherwise, the greatest common divisor appear-
ing on the left hand side above is O(1). By estimate (6), it follows that we
may assume that 2" divides m. Now

(0 = B)Um = ™ (a*™ — 1) = (™ + 1) (™ — 1),

and ged(a” — 21, a*™ —1) divides one of the two factors o™ +1 or o™ — 1, and
has a bounded greatest common divisor with the other factor. In particular,
o — z; is coprime to either W,,, which divides o™ + 1 = ﬁm/zUm/Um/g7
or to Wy, sWi,a, which divides o™ — 1 = $™/2U,, /5. Since at any rate we
have that u, = 0 (mod M), we must deduce that with either N = W,,, or
N = W,,/sWy, /4, the estimate

N < Nyjg (ged(N, o — 2))

holds. Since also N > exp(c1¢(m/2)), Lemma 4 shows that z; and « must

also be multiplicatively dependent. In particular, zo = +a* for some integer

s

Thus,
Q" — zp = af (F £ 1) | (22 1),

Again we show that s’ is a multiple of k. Assume that it is not. Then
N | af¥™ — 1. Thus,

ng(N7 a” — 22) ’ ng(‘/ka7 ‘/an72s’) ‘ vacd(?k:mﬂk:ans’) ’ Vk:m/S
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Indeed, the last relation above follows from the fact that 2k cannot divide
the greatest common divisor of 2km and 2kn — 2s', together with the fact
that m is a multiple of 8. However, since N | Wy, Wy, oW, 4, we get that N
is coprime to Vim/s, o Nig (ged(N, o™ — 25)) = O(1), which is false. Thus,
s’ = ks).

10. If the sign is +1 we are through. So, assume again that the sign is
—1,i.e. 2p = —a*. Then

un = 1 = 903 (" 1) (0" 4 1)

Putting now u; for the exact power of 2 in the factorization of n — §/; i.e.,
such that 2t||n — s}, we see that the only situation in which the ged(a”*1 +
1,a®™ — 1) is not O(1) is when 2“* | m. In this case, the given greatest
common divisor is a8d("=s1.2m) 4 1 and, as in a previous argument, this
number can be divisible by only one of W,,, W,,;, or W,,/, and must be
coprime to the other two. To summarize, in this last case,

ng(un —a, Wme/QWm/ZL) <K Wme/2

Since the number on the left should in fact be > W,,W,, oWy, /4, we get a
contradiction for large m. The theorem is therefore proved.
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