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1 Introduction
Let Z be the ring of integers equipped with the topology � in which the baseof neighborhoods for a point a 2 Z is given by the sets

Na;b = fa+ nb : n 2 Zg for b 2 Z; b � 1: (1)
This topology was proposed by H. F�urstenberg in [7]. It can be used to givea very elegant proof of the fact that the set of prime numbers is in�nite (see[1]). It is called the full topology. This topology was studied in detail in therecent paper [3], where the following conjecture was proposed.Let F = fFngn�0 denote the Fibonacci sequence given by F0 = 0, F1 = 1and Fn+2 = Fn+1 + Fn for all n � 0: (2)Let F� denote the set f(�1)n+1Fn : n 2 Ng. Then the closure of F � Z inthe topology � is F [ F�. Some numerical evidence supporting the aboveconjecture was given in the last section of [3]. The above conjecture wascon�rmed in [8].In this paper, we revisit the arguments from [8] and prove a more generalversion of the above result. Namely, let (un)n�0 be any sequence of integerssatisfying the recurrence

un+2 = run+1 + sun for all n � 0: (3)
Here, r and s are some �xed integers. We assume that rs(r2 + 4s) 6= 0.It is then well-known that if one writes � and � for the two roots of thecharacteristic equation x2 � rx � s = 0, then there exist constants  and �in K = Q(�) such that

un = �n + ��n for all n � 0: (4)
We assume further that � 6= 0 and that �=� is not a root of unity. Underthese conditions, it is said that the sequence (un)n�0 is nondegenerate.Here, we only consider the case when s = �1. In this case, one checkseasily that K is a real quadratic �eld in which � and � are units. We mayalso de�ne un for n < 0, either recursively via formula (3), or simply byallowing n to be negative in formula (4). We have the following result.
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Theorem 1. The closure of the set fun : n � 0g in the full topology is theset fun : n 2 Zg.
The above result applies to the Fibonacci sequence (Fn)n�0 which satis�esthe recurrence relation (3) with s = 1. Since (�1)n+1Fn = F�n, the mainresult of [8] is an immediate consequence of our Theorem 1.

2 Some Conventions
We �rst make some reductions. Put

vn = u2n = �2n + ��2n and wn = u2n+1 = (�)�2n + (��)�2n
for all n = 0; 1; : : :. Both (vn)n�0 and (wn)n�0 are binary recurrent sequences,with the same characteristic equation having roots �2 and �2, and the closureU of U = fun : n � 0g is the union of the closures of V = fvn : n � 0g andW = fwn : n � 0g.

This argument shows that it su�ces to prove Theorem 1 for the twosequences (vn)n�0 and (wn)n�0. In particular, it su�ces to prove Theorem 1when � and � are both positive. Thus, r > 0 and s = �1. Furthermore, weuse � for the root which is > 1. We put � = r2 + 4s = r2 � 4 = dt2, whered is squarefree. Then
� = r +p�2 and � = r �p�2 :

Since the multiplication by any nonzero integer is a continuous map, we mayassume that  > 0 for if not, we may then replace the sequence (un)n�0 by thesequence (�un)n�0, which has as e�ect replacing the pair (; �) by (�;��).Observe that with these conditions we have un > 0 for all n su�ciently large,say n > n0.We write K = Q(pd) for the real quadratic �eld containing � and �. Wealso put �1 for the fundamental unit in K and �1 for its conjugate. Since� > 1, it follows that there exists a positive integer k such that � = �k1.Clearly, � = �k1 . Observe that k is even if the norm of �1; i.e., the number
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�1�1, equals �1. We write NK=Q for the norm of an element, or norm of aninteger or fractional ideal, of K relative to Q.
Throughout, for three algebraic integers �1; �2 and � 6= 0 we say that�1 � �2 (mod �) if (�1 � �2)=� is an algebraic integer.
We use the Landau symbol O and the Vinogradov symbols� and� withtheir usual meanings. We shall also use c1; c2; : : : for positive computableconstants depending on the sequence (un)n�0.

3 The Proof of Theorem 1
We �rst prove that fun : n 2 Zg � U . Indeed, since s = �1, it is knownthat for every positive integer m the sequence (un)n�0 is periodic modulo mwith some period T (m). In fact, since � and � are units, it follows that theyremain units in the �nite ring Z[�]=(�mZ[�]). Thus, there exists a positiveinteger T (m) such that both relations �T (m) � 1 (mod �m) and �T (m) � 1(mod �m) hold. Observe now that since

u0 =  + � and u1 = � + ��;
it follows that

 = u1 � �u0�� � and � = �u0 � u1�� � :
In particular, both numbers (� � �) and (� � �)� are algebraic integers.Now note that

(�� �)un+T (m) = ((�� �))�n+T (m) + ((�� �)�)�n+T (m)
� ((�� �))�n + ((�� �)�)�n (mod �m)� (�� �)un (mod �m);

therefore (� � �) �un+T (m) � un� � 0 (mod �m). Since � = (� � �)2, itfollows that (un+T (m) � un)=m is an algebraic integer. Since it is also arational number, it follows that it is an integer. The above argument wasvalid for all integers n. Thus, given any integer n and any modulus m, we
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may let T be a su�ciently large positive integer such that n + T (m)T ispositive. Then un � un+T (m)T (mod m). Since m was arbitrary, we concludethat fun : n 2 Zg � U , which is what we wanted to prove.
We next demonstrate the reverse containment.
We let U = fun : n � 0g and let a 2 U . We want to show that a = unfor some n 2 Z. We start with the case a = 0.
The case a = 0.
In this case, since 0 2 U , it follows that the equation un � 0 (mod p) hasa solution n for each large prime p. Writing

un = �n��2n + �
� ;

it follows that if p is su�ciently large, say if p is large enough so that it it iscoprime with the prime ideals of K appearing in the factorization of either or �, then the congruence
� � � �2n (mod p)

has an integer solution n. It follows from the lemma [9, Page 108], that �=is a unit in K. In particular, �= = ��s1 for some integer s. Thus,
un = ��kn+s1 ��2kn�s1 � 1� : (5)

We next show that s is a multiple of k and that the sign is �1. Consider thesequence with the general term
Vn = �n1 � 1 2 OK for n = 1; 2; : : :

We say a prime ideal P of OK is primitive for Vn if it has the property thatP j Vn but P does not divide Vm for any 1 � m < n. It follows from resultsof Schinzel [10] and Stewart [11, Theorem 1] that Vn always has primitivedivisor P if n exceeds some absolute constant.If P is such a primitive divisor and p is the prime number such that P j p,then p � n1=2: to see this since K is quadratic, N(P) = p or N(P) = p2
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where p is the unique rational prime with P j p. Therefore the order of themultiplicative group of OK=P is p�1 or p2�1 and �N(P )�11 � 1 mod P showsthat n j p or n j p2 � 1, from which the inequality follows [10].Armed with these facts, let us go back to relation (5). Assume that s isnot a multiple of k. Let m be large, let P be a primitive prime for V2km, andlet p be the prime number such that P j p. For large enough m, p is coprimewith the prime ideals appearing in the factorization of either  or � in K.There exists n such that un � 0 (mod p). We may assume that n > s=(2k),for otherwise we may replace n by the sum of n and some large multiple ofT (p). This implies that P j �2kn�s1 � 1 j V4kn�2s. Since also P j V2km, weobtain P j Vgcd(4kn�2s;2km). To see this, we used the fact that if m and nare two positive integers with d = gcd(m;n), then gcd(Vm; Vn) = Vd, whichfollows from the fact that there exist two polynomials P (X) and Q(X) withinteger coe�cients such that
P (X)(Xm � 1) +Q(X)(Xn � 1) = Xd � 1

(see, for example, the proof of Lemma 1 in [4]). In particular, if � is analgebraic integer and I is an ideal such that I divides both Vm and Vn, thenI divides Vd.Since s is not a multiple of k, it follows that the integer gcd(4kn�2s; 2km)is a proper divisor of 2km, which contradicts the choice of P as a primitiveprime ideal divisor of �2km1 � 1. Thus, s = ks1.We next show that the sign is �1. Assume that it were +1. Then
un = ��k(n+s1)1 ��(2n�s1)k1 + 1� :

We now take a large prime q, put m = kq, and consider a primitive primeideal P of Vkq. Let p be the prime such that P j p, and let n be such thatun � 0 (mod p). Again, we assume that n > s=(2k) = s1=2. Since p is large,it follows that �(2n�s1)k1 � �1 (mod P). But we also have that �kq1 � 1(mod P). If 2n � s1 is a multiple of q, we then get that �1 � �(2n�s1)k1(mod P) � 1 (mod P), so P j 2, giving p = 2, which is false since we haveassumed that p is large. So assuming q does not divide (2n�s1), we then haveP j �(2n�s1)k1 + 1 j V(4n�2s1)k and P j Vkq, therefore P j Vgcd((4n�2s1)k;kq) j Vk,where we used the fact that q > 2 and q does not divide 2n � s1. This
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contradicts the de�nition of P as a primitive divisor of Vkq. Hence, the signis �1.We have arrived at the conclusion that
un = �n�s1 ��(2n�s1)k1 � 1� :

Finally, we show that s1 is even. We use a similar method to that used above.If s1 were odd, let m be a large even number and choose a primitive primefactor P of Vkm. With p the prime such that P j p and n such that p j un andlarge, we get that P j V(2n�s1)k. Hence, P j Vgcd((2n�s1)k;km) j Vmk=2, wherewe used the fact that 2n � s1 and odd and m is even. This contradicts thechoice of P as a primitive prime factor of Vkm.Thus, s1 is even and we can write it as s1 = 2s0 for some integer s0.Thus, un = �n�s1 ��2(n�s0)k1 � 1� ;
and taking n = s0 2 Z, we get that a = 0 2 fun : n 2 Zg, which is what wewanted.The case a 6= 0.This case is much more interesting and harder. Here, we put Un = (�n��n)=(���) for all n � 0. The sequence (Un)n�0 satis�es the same recurrencerelation (3) as (un)n�0 does and its initial values are U0 = 0 and U1 = 1.We proceed in ten steps.1. First we show that the sequence (un : n � 0), when taken modulo Um,has a well determined period.
Lemma 2. Let m � 1. The sequence (un)n�0 is periodic modulo Um withperiod 4m.
Proof. Note that

�4m � 1 = �4m � (��)2m = �2m(�2m � �2m) � 0 (mod �m � �m):
Thus, �4m � 1 (mod �m� �m). Similarly, �4m � 1 (mod �m� �m). Hence,

(�� �)un+4m = ((�� �))�n�4m + ((�� �)�)�n�4m
� ((�� �))�n + ((�� �)�)�n (mod �m � �m)� (�� �)un (mod �m � �m):
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Canceling the factor of (�� �), we get that un+4m � un (mod Um), which iswhat we wanted. ut
2. We next take a close look at the number un � a. Observe that

un � a = �n + ��n � a = �n��2n � a�n + �
�

= �n(�n � z1)(�n � z2);
where

z1;2 = a�p�12 and �1 = a2 � 4�:
Recall that a primitive prime factor of Um is a rational prime dividing Umwhich does not divide U` for any 1 � ` < m and which does not divide� either. It is known that if m > 12, then Um has primitive divisors [11,Theorem 1]. In fact, putting

Wm = Y
papkUmp primitive

pap ;
then we have the following lemma due to Stewart [12, Page 603], but see also[2, Eqn. 17]. In the next statement we use P (n) for the largest prime factorof n and �n(X; Y ) for the homogeneous cyclotomic polynomial of order n.
Lemma 3. For all n > 12, P ( ngcd(n;3))Wn � �n(�; �).
Proof. Any primitive prime divisor of Un divides �n := �n(�; �). If p is aprime divisor of �n and p - n then p is a primitive divisor of �n. The onlypossible prime dividing both n and �n is P (n= gcd(n; 3)) and it divides �n tothe �rst power, so the lemma follows from the prime factorization of �n. ut

Therefore
Wm � 1m Y

1�`�mgcd(`;m)=1
(�� e2�i`=m�) > (�� �)�(m)

m
= exp((log(�� �))�(m)� logm);
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where �(m) is the Euler function. Using the fact that �(m)� m= log logm,it follows that for all large m we have
Wm � exp(c1�(m));

where we can take c1 = (log(�� �))=2 = (log�)=4.
3. Next we take a large positive integer m which is a multiple of 8k andwe shall look at the simultaneous solutions n of the congruences

un � a � 0 (mod M);
with M 2 fWm;Wm=2Wm=4;WmWm=2Wm=4gfor reasons which will become clear later. SinceM j Um, it follows, by Lemma2, that we can take n 2 [4m; 8m). We have

ec1�(m) � M � NL=Q (gcd(M; (�n � z1)(�n � z2))� NL=Q (gcd(M;�n � z1)NL=Q (gcd(M;�n � z2)) :
In the above, the greatest common divisors are to be thought of as fractionalideals of OL, where L = K(z1). It now follows that there exists a constantc2, which can be taken to be c1=3, such that if m is large, then for somei 2 f1; 2g we have

NL=Q (gcd(M;�n � zi)) > exp(c2�(m)): (6)
4. The following argument has appeared in the proof of the main result in[8]. We supply the proof of it for convenience.
Lemma 4. With the previous notations, if zi and � are multiplicatively in-dependent, and n 2 [4m; 8m), then

NL=Q (gcd(M;�n � zi)) = exp(O(pm)): (7)
Proof. Let S = f�n+ 2�m : �; � 2 f1; : : : ; bm1=2cg:
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If s = �n + 2�m, then 1 � s � (n + 2m)m1=2 < 10m3=2: Since there are(bm1=2c)2 pairs of positive integers (�; �) with �; � 2 f1; : : : ; bm1=2cg, itfollows, by the Pigeon-Hole Principle, that there exist two distinct pairs(�1; �1) 6= (�2; �2) such that
j(�1 � �2)n+ 2(�1 � �2)mj < 10m3=2

bm1=2c2 � 1 < 11m1=2 for m large enough:
Writing x = �1 � �2 and y = �1 � �2, we get that (x; y) 6= (0; 0), thatx; y 2 [�m1=2; m1=2], and that if we write s = nx+2my, then jsj < 11m1=2.Note now that ? if we de�ne the fractional ideals

Ii = gcd([M ]; [�n � zi]);
where [�] represents the principal ideal generated by � in L ?, then sinceM j (�m � �m) j (�2m � 1), we have

�2m � �1 (mod Ii) and �n � zi (mod Ii):
Here, zi is invertible modulo Ii for large m although zi might not be analgebraic integer. The reason here is that M consists only of primitive primefactors of Um, or of Um=2, or of Um=4, and all of them are congruent to �1modulo m=4. In particular, if m is su�ciently large, then zi is invertiblemodulo Ii.Raising the �rst congruence to the power y and the second to the power x(notice that such operations are justi�ed even if x and y are negative since �is a unit in K, therefore also in L), and multiplying the resulting congruenceswe get �s � (�1)yzxi (mod Ii):Thus, Ii divides (�s� (�1)yzxi ). Note that this last ideal is not zero. Indeed,for if not, then we would get that �2s = z2xi . Since we are assuming that� and zi are multiplicatively independent, we get x = s = 0, and sinces = nx + 2my, we get that y = 0 as well, which contradicts the fact that(x; y) 6= (0; 0). Hence, Ii divides the nonzero ideal (�s � (�1)yzxi ). Takingnorms in L and observing that the degree of L over Q is at most 4, we getthat

NL=Q(Ii) � (Z jxj�jsj +maxfjZ(j)i j : i; jgjxj)4 = exp(O(pm));
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where we put zi = Zi=Z with some integer Z and algebraic integer Zi andlet Z(j)i stand for all the conjugates of Zi in L for i = 1; 2. This is what wewanted to prove. ut
5. From Lemma 4, we conclude that if both z1 and z2 are both multi-plicatively independent with respect to �, then both

NL=Q(M;�n � zi) = exp(O(pm)) hold for i = 1; 2:
Since �(m) � m= log logm, we get a contradiction with estimate (6) forlarge m. Thus, there exists i 2 f1; 2g such that zi and � are multiplicativelydependent. Let it be z1.6. We next show that z1 2 K. If �1 = 0, there is nothing to prove. If not,write �1 = d1t21, where d1 is a squarefree integer and t1 is a nonzero rational.Then, since z1 and x are multiplicatively dependent, there exist integers xand y not both zero and " 2 f�1g such that zx1 = �y i.e.�a+ "t1pd12

�x = x�y: (8)
By replacing x with �x if needed, we may assume that x � 0. By replacingthe pair (x; y) by the pair (2x; 2y), we may assume that both x and y areeven. The left hand side is in Q(pd1), while the right hand side is in Q(pd).If d1 = 1 or d, then z1 2 K, which is what we wanted. Assume that d1 6= 1; d.Then the two numbers in both sides of (8) are in Q(pd)\Q(pd1) = Q. Sincethe right hand side is real and positive (since  and �1 are real and x and yare even), it follows that there exists a positive rational number q such thatx�ky1 = q. Thus, x = q��ky1 . Conjugating we get �x = q��ky1 . Multiplyingthe above relations and using the fact that (�1�1)�ky = 1 (because y is even),we get (�)x = q2. Now � = q1 is a rational number. Thus, qx1 = q2, andsince q is positive, we get that q = jq1jx=2. Hence,�a+ "t1pd12

�x = q = jq1jx=2;
leading to �a+ "t1pd12

�2 = �q1:
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We are thus lead to
(a2 + d1t21) + 2"at1pd1 = �4q1;

which is false for at1 6= 0 and d1 6= 1 and squarefree. Thus, indeed z1 2 K.Since z1 2 K and is multiplicatively dependent with respect to �, it followsthat it is an algebraic integer since from what we have seen above it is asolution X = z1 of an equation of the form Xx � �ky1 with some integersx > 0 and even and y, and �ky1 is an algebraic integer. Thus, z1 2 OK andsome power of it is a unit, therefore itself is a unit. Thus, z1 = ��s1 for someinteger s.
7. It remains to prove that s is a multiple of k and that the sign is +1.(Compare this with the case a = 0 where the sign was �1.) Indeed, to seethat we have �nished in this way, observe that if this is the case, then writings = ks1 for some integer s1, the relation

a+ "t1pd12 = �ks11 = �s1 (9)
holds. Conjugating this relation in K, we also get

a� "t1pd12 = ��s1 ; (10)
and summing up relations (9) and (10) we arrive at

a = �s1 + ��s1 = us1 2 fun : n 2 Zg;
which is what we wanted.

8. So, let us assume �rst that z1 = ��s1, where s is not a multiple of k.Then �n � z1 = �s1 ��kn�s1 � 1� j (�2kn�2s1 � 1):
We now take M = Wm and observe that Wm j (�m � �m) j �2km1 � 1:Thus,

gcd(M;�n � z1) j gcd(�2km1 � 1; �2kn�2s1 � 1)= gcd(V2km; V2kn�2s) = Vgcd(2km;2kn�2s):
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Since k does not divide s, it follows that gcd(2km; 2kn�2s) is a proper divisorof 2km. Thus, there exists a prime q dividing km such that gcd(2km; 2kn�2s) j 2km=q, and so
gcd(M;�n � z1) j V2km=q = �2km=q1 � 1 = �km=q1 (�� �)Um=q:

Here, we used the fact that m is a multiple of 4 (so, km=q is even for allprime factors q of km), as well as the fact that m is divisible by k. However,since M = Wm consists of the primitive prime factors of Um, it follows thatM is coprime to Um=q. We thus get that
gcd(M;�n � z1) = O(1);

contradicting (6) with i = 1 for large m. Thus, s = ks1 holds with integers1. 9. Now assume that the sign is �1, i.e. z1 = ��ks11 = ��s1 . Here wetake M = WmWm=2Wm=4 and we look at the solutions n of the congruence
un � a � 0 (mod M):

The left hand side is �n(�n � z1)(�n � z2):We have �n � z1 = �kn1 + �ks11 = �ks11 (�n�s1 + 1):Now M divides �m � �m = �m(�2m � 1). Writing v2(u) for the exact powerof 2 appearing in a positive integer u we have the following result whichis implicit in [5, 6] for integers a and which is easily extended to algebraicintegers:
Lemma 5. If u; v; a � 1 and v2(v) � v2(u) then gcd(au + 1; av � 1) j 2,otherwise gcd(au + 1; av � 1) = agcd(u;v) + 1:
Proof. If v2(v) � v2(u), set g = gcd(au+1; av� 1) and k = gcd(2u; v). Then

g j gcd(a2u � 1; av � 1) = agcd(2u;v) � 1 = ak � 1:
so g j ak � 1. But if we write u = 2v2(u)u1 and v = 2v2(v)v1 then

k2v2(v) = gcd(u1 � 21+v2(u)�v2(v); v1)
13



which is an odd integer. Hence k j 2v2(v)u1 j u. Therefore �1 � au � ak�nk �1 mod g so g j 2. If v2(v) > v2(u), �rst set b = a2v2(u) so
gcd(au + 1; av � 1) = gcd(bu1 + 1; bv1�2v2(v)�v2(u) � 1)

where r = u1 is odd and s = 2v2(v)�v2(u)v1 is even. Then bgcd(r;s) + 1 jgcd(br + 1; bs � 1). There exist y; z with yr + zs = gcd(r; s) and y must beodd. If x j gcd(br + 1; bs � 1) then br � �1 mod x and bs � 1 mod x impliesbgcd(r;s) � b � (�1)yr � �1 mod x so x j bgcd(r;s) + 1. Hence gcd(br + 1; bs �1) = bgcd(r;s) + 1 and the lemma is proved. ut
It follows that

gcd(�n�s1 + 1; �2m � 1) = �gcd(n�s1;2m) + 1
provided that 2u divides m. Otherwise, the greatest common divisor appear-ing on the left hand side above is O(1). By estimate (6), it follows that wemay assume that 2u divides m. Now

(�� �)Um = �m(�2m � 1) = �m(�m + 1)(�m � 1);
and gcd(�n�z1; �2m�1) divides one of the two factors �m+1 or �m�1, andhas a bounded greatest common divisor with the other factor. In particular,�n � z1 is coprime to either Wm, which divides �m + 1 = �m=2Um=Um=2,or to Wm=2Wm=4, which divides �m � 1 = �m=2Um=2. Since at any rate wehave that un � 0 (mod M), we must deduce that with either N = Wm, orN = Wm=2Wm=4, the estimate

N � NL=Q (gcd(N;�n � z2))
holds. Since also N � exp(c1�(m=2)), Lemma 4 shows that z2 and � mustalso be multiplicatively dependent. In particular, z2 = ��s0 for some integers0. Thus, �n � z2 = �s01 (�kn�s01 � 1) j (�2kn�2s01 � 1):Again we show that s0 is a multiple of k. Assume that it is not. ThenN j �2km1 � 1. Thus,

gcd(N;�n � z2) j gcd(V2km; V2kn�2s0) j Vgcd(2km;2kn�2s0) j Vkm=8:
14



Indeed, the last relation above follows from the fact that 2k cannot dividethe greatest common divisor of 2km and 2kn � 2s0, together with the factthat m is a multiple of 8. However, since N j WmWm=2Wm=4, we get that Nis coprime to Vkm=8, so NL=Q (gcd(N;�n � z2)) = O(1), which is false. Thus,s0 = ks01.10. If the sign is +1 we are through. So, assume again that the sign is�1, i.e. z2 = ��s0 . Then
un � a = �n�s+s01 (�n�s1 + 1)(�n�s01 + 1):

Putting now u1 for the exact power of 2 in the factorization of n � s01; i.e.,such that 2u1kn�s01, we see that the only situation in which the gcd(�n�s01 +1; �2m � 1) is not O(1) is when 2u1 j m. In this case, the given greatestcommon divisor is �gcd(n�s01;2m) + 1 and, as in a previous argument, thisnumber can be divisible by only one of Wm; Wm=2 or Wm=4 and must becoprime to the other two. To summarize, in this last case,
gcd(un � a;WmWm=2Wm=4)� WmWm=2:

Since the number on the left should in fact be � WmWm=2Wm=4, we get acontradiction for large m. The theorem is therefore proved.
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