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Abstract 

E. coli O157:H7, a serious food-borne pathogen, is capable of adapting to 

distinctly different environments, ranging from the ruminant, to soil and water.  

Critical to the success of this pathogen, is the ability to adapt rapidly to changes in 

the environment. These changes rarely occur in isolation and bacteria, through 

regulatory networks, can respond to multiple challenges simultaneously, often 

through master regulators. Understanding the adaptive process of E. coli 

O157:H7, particularly in response to cold temperatures, is vital for elucidating the 

pathogens ability to persist during food processing. Of major concern to the meat 

industry, is the ability of E. coli O157:H7 to survive multiple hurdle intervention 

strategies that include both chilling and freezing.  

 

The aim of this project was to identify genes involved in the cold shock response 

of E. coli O157:H7 when exposed to refrigeration temperatures (4, 0, -1.5°C). We 

hypothesized that E. coli O157:H7 is able to withstand chill temperatures by up-

regulating genes that allow survival in unfavorable conditions, for example, when 

the cell is expelled from the ruminant host, into soil or water environments. It is 

likely that E. coli O157:H7, utilizing similar adaptive mechanisms can withstand 

prolonged periods at refrigeration temperatures. Furthermore, we speculated that 

quorum sensing (QS) has overtime become integrated into these adaptive 

pathways, potentially forming an integrated component of the E. coli O157:H7 

adaptive stress response, including the cold shock response.   

 

A number of genes were identified as being up-regulated in E. coli O157:H7 

during incubation at 4°C on meat. Of these, four were of particular interest, as 

they had been previously linked to cell survival processes: slp (carbon starvation 

lipoprotein), hslJ (heat inducible protein), mdtI (multidrug efflux pump) and mdtJ 

(multidrug efflux pump). RT-PCR data showed that slp and the mdtJI complex are 

expressed more at refrigeration temperatures than at 37°C while hslJ expression 

was greatest at 37°C.  mdtJI was selected for further analysis, because mdtJI was 

the only gene that was not expressed at 37°C when grown on BHI media, plus 



Abstract 

 

ii 

 

these genes had, at the initiation of this project, not been annotated or assigned 

function. Using a luxCDABE promoter reporter, real time analysis of the effect of 

temperature downshift on mdtJI expression was confirmed. Furthermore, 

expression was demonstrated to increase at high cell density at 37°C, suggesting a 

regulatory connection to quorum sensing. This coupled with the finding that 400nt 

upstream of the mdtJI promoter was a gene encoding a transporter of AI-2, a QS 

autoinducer, suggested a link to the LuxS/AI-2 QS regulatory network. Data 

presented here was unable to confirm a regulatory link to AI-2 itself but it did 

reveal a link to LuxS.     

 

In conclusion, data presented in this thesis has confirmed that mdtJI is involved in 

the adaptive response, specifically adaptation to cold temperatures in E. coli 

O157:H7, and possibly, to growth cessation. The influence of LuxS on mdtJI 

expression in E. coli O157:H7 is most likely to be through metabolic activity, 

rather than via a QS mechanism. 
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Chapter 1: Introduction 

1.1 Escherichia coli  

Escherichia coli (E. coli) is a gram negative, facultatively anaerobic bacterium, 

belonging to the Family Enterobacteriaeceae.   Commensal E. coli are usually 

harmless, and typically colonise the mucosal layer of mammalian and avian 

gastro-intestinal tract (Caprioli et al., 2005).  However, they can become 

opportunistic pathogens in cases where the intestinal lumen is breached, or if the 

host is immunocompromised (Nataro & Kaper, 1998). Furthermore, numerous 

pathogenic strains of E. coli, differentiated by pathotypes and serotypes, have 

evolved virulence factors that enable them to cause a broad range of diseases in 

humans (Kaper et al., 2004). Such diseases include urinary tract infections, sepsis 

and severe diarrhoea.  Well-described categories of diarrhoea causing 

(diarrhoeagenic) E. coli include, Enteropathogenic E. coli (EPEC), 

Enteroaggregative E. coli (EAEC), Enterotoxigenic E. coli (ETEC), 

Enteroinvasive E. coli (EIEC), Diffusely adherent E. coli (DAEC) and 

Enterohaemorrhagic E. coli (EHEC).  Of specific interest, are the Shiga toxin 

producing EHEC strains (STEC), also known as Verocytotoxin producing E. coli 

(VTEC), of which the most notorious member, associated with the majority of 

diseases within this group, is E. coli O157:H7.  

 

1.2 E. coli O157:H7 

E. coli O157:H7 is a highly adapted, pathogenic variant of E. coli that is part of a 

genetically distinctive STEC group of EHEC that can produce shiga toxins (Stxs).  

This virulent O157 strain is of public health concern due to the low infectious 

dose required to cause food poisoning and the organism‟s ability to produce stx, 

which can cause severe, and potentially fatal, diseases such as haemorrhagic 

diarrhea and haemolytic uremic syndrome (HUS).  Furthermore, E. coli O157:H7 

is capable of persisting in distinctly different environments, ranging from the large 

intestine of mammals and birds, to soil and water.  The robust and adaptive nature 

of E. coli O157:H7 is of particular concern to the food and meat industry.  Not 

only does E. coli O157 typically reside in ruminant animals, particularly cattle, 
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which providing a potential transmission route into the human food chain, but 

E. coli O157 is capable of withstanding many of the current intervention practices, 

such as chemical washes and chilling procedures, designed to reduce or eliminate 

pathogens. 

 

E. coli  O157:H7 strains can produce two different Shiga-like toxins, Stx1 and 

Stx2 (Mainil & Daube, 2005).   Reports by Karmali (1989, 2005) describe the 

virulence and pathogenicity of E. coli O157:H7 as being the combination of  

Shiga-toxin production and attaching and effacing (AE) adherence to the bowel.  

However, there is some confusion over the nomenclature of EHEC, and whether 

the toxins are named Shiga-, or Vero-toxins.   Nataro and Kaper (1998) refer to 

this confusion as “parallel nomenclature”, which is due to simultaneous research 

occurring as a result of E. coli outbreaks in the early 1980s. As a consequence, 

there are numerous references to both Shiga-like toxin producing E. coli (STEC) 

and Verocytotoxin, or Vero-toxin producing E. coli (VTEC).  Historically, VTEC 

were so named for their ability to produce toxins that were cytotoxic to Vero cells 

(Konowalchuk et al., 1977).  In 1982, O‟Brien et al., observed that E. coli isolates 

from HUS and haemorrhagic colitis (HC) outbreaks produced two cytotoxins, 

which had similar cytotoxic effects on HeLa cells as the toxins produced by 

Shigella dysenteriae type 1. These toxins were subsequently named Shigella-like 

toxin 1 and 2 (SLT-I and SLT-II) (O' Brien & Holmes, 1987).  Concurrently, 

Verotoxin research revealed that two distinct forms of VT existed, which were 

named VT1 and VT2  (Scotland et al., 1985).  VT1 and VT2 were subsequently 

found to be identical to SLTI and SLTII (O' Brien & Holmes, 1987).  SLT-I has 

been shown,  by cloning and sequencing,  to have  >99% homology with the 

Shiga toxin (Stx) produced by S. dysenteriae (Strockbine et al., 1988). 

Henceforth, for the purpose of this thesis, the toxins produced by E. coli O157:H7 

will be referred to only as Shiga, or Shiga-like toxins Stx1 and Stx2.  

Additionally, Shiga-toxin producing E. coli will be referred to as STEC. 

 

1.3 Pathogenicity and Virulence 

Sequencing has shown that the genomes of E. coli O157:H7 strains, EDL 993 

(Hayashi et al., 2001) and Sakai (Perna et al., 2001) are approximately 5.5Mb 
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compared with the smaller 4.5 Mb genome of K-12 E. coli strain MG1655.  While 

these three strains share a common core of 4.1Mb, the genomes of O157 strains 

are approximately 1.34 Mb larger than K-12 genomes (Hayashi et al., 2001; 

Karmali et al., 2009; Perna et al., 2001).  Much of this extra genome is likely to 

have been acquired by horizontal gene transfer (Hacker & Carniel, 2001; Hacker 

& Kaper, 2000), and  is comprised of mobile gene cassettes, known as O-islands 

(Karmali et al., 2003), or pathogenicity islands (PAI) (Jores et al., 2004). Many of 

these cassettes are associated with bacteriophages, and contain the virulence genes 

which are attributed with the virulence and pathogenicity of E. coli O157:H7, for 

example the phage encoding Stx (Reid et al., 2000; Wick et al., 2005).  It is 

suggested that E. coli O157:H7 evolved from the non-toxigenic EPEC strain 

O55:H7, through the acquisition of the bacteriophages encoding the Stxs (Reid et 

al., 2000; Wick et al., 2005), the acquisition of the O157 antigen and the large 

pO157 plasmid (Feng et al., 1998; Wick et al., 2005).  Additionally, octamer-

based genome sequencing has shown two distinct lineages (I and II) of GUD- and 

SOR- E. coli O157:H7 strains (Kim et al; 1989 and 2001).  One lineage developed 

through acquisition of the stx1-encoding phage, but lost both beta- glucuronidase 

(GUD) and sorbitol fermentation (Sor-) properties. The second lineage, lost 

motility and retained both SOR and GUD.  The strains most commonly associated 

with human disease are those deriving from lineage I. (Kim et al., 2001)    

 

The virulence and pathogenicity of E. coli O157:H7 is considered to be largely 

due to the organism‟s ability to produce Shiga-toxins, Stx1 and Stx2 encoded by 

bacteriophages (Karch et al., 2005; Spears et al., 2006).  The induction of phage 

expression, and therefore the induction of Stx expression is an important factor in 

disease caused by E. coli O157:H7 Stx2 is more toxic to endothelial cells than 

Stx1(Karmali, 2004).  Shiga toxins pass through the epithelial layer of the 

intestine, and exacerbate the microvascular endothelial cells that line the blood 

vessels of the colon, which leads to the bloody diarrhea associated with EHEC 

infection (Kaper et al., 2004; Karch et al., 2005; Spears et al., 2006). These toxins 

are responsible for the development of Haemolytic Uremic Syndrome (HUS), due 

to their action on the endothelial cells of the glomeruli of the kidney (M 

Bielaszewska & Karch, 2005). However, production of Shiga toxins alone is not 
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enough to cause the disease associated with EHEC.  Adherence and subsequent 

colonization of the intestinal mucosa is also a key determinant of EHEC virulence 

(Caprioli et al., 2005; Paton & Paton, 1998). 

 

The mechanism, by which E. coli O157:H7 adheres to the mucosal lining of the 

intestine, and subsequently induces lesions (Figure 1.1) is known as attaching and 

effacing (A/E) (Kaper et al., 2004).  A/E lesions are typified by effacement of 

microvilli, and intimate adherence of the bacterial cell to the epithelial membrane.  

Following adhesion, actin is accumulated beneath the bacteria and cytoskeletal 

changes occur (Karmali et al., 2009; Nataro & Kaper, 1998).  The genes 

associated with A/E adhesion are located on a large PAI known as the Locus of 

Enterocyte Effacement (LEE) (Jores et al., 2004).  The LEE locus is comprised of 

5 operons which are all essential for the establishment of intimate adherence of 

EHEC (Caprioli et al., 2005; Naylor et al., 2005).  These include genes encoding 

intimin, the translocated intimin receptor (Tir) and the type III secretion system 

(TTSS) components, EspA, B and D (Caprioli et al., 2005).  Intimin is a bacterial 

adhesin encoded by eae, which mediates intimate attachment of E. coli O157:H7 

to eukaryotic cells.  Tir is an effector protein that binds intimin following insertion 

into the epithelial cell membrane (Naylor et al., 2005).  It is the interaction of 

Intimin with Tir that results in intimate attachment of the bacteria to the host cell, 

ultimately resulting in the pedestal formation.  TTSS is utilised to inject several 

effector proteins, including Tir, into the endothelial cells, which then subvert the 

cellular functions of the host, for the benefit of the pathogen.   

 

Figure 1.1 Pathogenic Schema for E. coli O157:H7 

 

E. coli O157:H7  adheres to the epithelial cells of the colon, and induces attaching and effacing 

lesions.  The Shiga toxin (Stx) is transported from the bacteria through to the host blood stream, to 

the kidney where it causes potentially fatal disease.  Adapted from Kaper et al.,  (2004), Page 124. 
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1.4 Symptoms of E. coli O157:H7 infection 

E. coli O157:H7 food poisoning is normally a result of infection following 

colonization of the host‟s intestines.  The infectious dose for E. coli  O157:H7 is 

very low, with reports of disease caused by as few as 5-500 organisms (Karmali, 

1989, 2005), and generally below 100 organisms (Tilden et al., 1996).  Symptoms 

of E. coli O157:H7 infection range from mild diarrhea to haemorrhagic colitis 

characterised by haemorrhagic diarrhea and severe abdominal cramps.  The 

severest symptoms usually occur in children under the age of five, or in the 

elderly or the immune-compromised. These symptoms result from Haemolytic 

Uremic Syndrome (Robson, 2000), and Thrombotic Thrombocytopenic Purpura 

(TTP) (Karch et al., 2005).  Symptoms of HUS and TTP include abnormal 

bleeding, acute kidney failure, seizures, and coma and can lead to death.  HUS 

develops in approximately 5-10% of children with haemorrhagic colitis caused by 

E. coli  O157:H7 (Robson, 2000), and of these, 3-5% cases will result in death 

(Nataro & Kaper, 1998). Many survivors experience long term complications 

(Robson, 2000).   

 

1.5 Reservoirs, modes of transmission and significance in the food 

industry 

E. coli O157:H7 is transmitted by faecal-oral route.  The intestine of warm-

blooded animals is the primary niche (Savageau, 1983), however its survival in 

both soil and water environments has been well documented  (Vital et al., 2008).   

Transmission routes (Figure 1.2) for E. coli O157:H7 include contaminated food, 

particularly of animal origin; contact with live animals carrying E. coli O157:H7; 

or through person-to-person contact following human infection (Karch et al., 

2005; Michino et al., 1998). 

 

1.5.1 Animals as reservoirs for E. coli O157:H7 

A wide range of animals can act as reservoirs for E. coli O157:H7.  Studies 

indicate that STECS in general are more prevalent in ruminants than other animals 

(Hussein, 2007; Karmali, 1989; Mainil & Daube, 2005)  with beef and dairy cattle 

most often implicated in E. coli  O157:H7-associated illness in humans (Hussein, 

2007).  Other reservoirs include sheep (Chapman et al., 1997), goats (M. 
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Bielaszewska et al., 1997), horses, dogs, deer, (Karch et al., 2005), pigs, rabbits, 

poultry, (Leclercq & Mahillon, 2003; Naylor et al., 2005),  and house-flies 

(Sasaki et al., 2000).  

 

1.5.2 Ruminants as principal reservoirs for E. coli O157:H7  

Ruminants, particularly cattle, are the principal reservoirs for E. coli  O157:H7 

(Karch et al., 2005), where the organism colonizes the recto-anal junction (Rice et 

al., 2003).  Importantly, although strains of E. coli O157:H7 isolated from cattle 

have been implicated in human disease, the majority of these strains are not 

associated with disease in cattle.   

 

Between 2002 and 2005, the prevalence of E. coli O157:H7 in beef cattle was 

estimated to be between 10 and 28% in North America. with similar levels  

estimated in Europe for beef and dairy cattle between 1999-2007 (Karmali et al., 

2009).  Recent research in New Zealand looking at prevalence on three Waikato 

dairy farms, revealed overall that 77% of adult dairy cows sampled, were positive 

for E. coli O157:H7(H Withers et al., 2009).   However prevalence levels can vary 

depending on numerous factors which may include the diet of livestock (Hancock 

et al., 2001), pasture management or animal husbandry practices (H Withers et al., 

2009), seasonal variation (Chapman et al., 1997; Ogden et al., 2004), all of which 

alter the shedding rate and therefore the detectability of E. coli O157:H7. 

Furthermore variations in sampling and enumeration techniques make it difficult 

to draw accurate comparisons (La Ragione et al., 2009).  

 

Generally, transmission from ruminants to humans is through the consumption of 

foods of ruminant origin, such as undercooked beef patties and unpasteurised milk 

and cheeses (Karmali et al., 2009).  However, transmission can occur by direct 

contact with live animals including cattle and calves (Ellis-Iversen et al., 2009; 

Karch et al., 2005), which can occur on farm or at petting zoos (Caprioli et al., 

2005).  Interestingly, E. coli  O157:H7 has been isolated from farm workers that 

have not presented with symptoms of E. coli  O157:H7 disease (Caprioli et al., 

2005), which suggests that farm workers may develop  a carrier state, and have 

immunity to E. coli  O157:H7. 
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1.5.3 Other Sources for E. coli O157:H7 

There are numerous animals other than ruminants suggested as a source for E. coli 

O157:H7.  However, there is little evidence presented to date, that proves that 

non-ruminants are as important as ruminants with regard to E. coli O157:H7 

transmission (Naylor et al., 2005).  

 

Dispersal of animal manure can occur throughout the environment (Caprioli et al., 

2005) and as a result, secondary fomites, such as farming equipment, water, fruits, 

vegetables and people may become vehicles for E. coli O157:H7 transmission.   

Water, either consumed (Caprioli et al., 2005) or used for recreational purposes 

such as swimming,  has been implicated in large outbreaks of E. coli O157:H7 

(Holme, 2003; Karch et al., 2005; Vital et al., 2008).  Fruit and vegetables linked 

to outbreaks or sporadic infections of E. coli O157:H7 include alfalfa, radish, 

broccoli and mung bean seed (Bari et al., 2009); iceberg lettuce (Taormina et al., 

2009); apple cider and unpasteurised fruit juices (Besser et al., 1993; Caprioli et 

al., 2005).   

 

Figure 1.2. Current understanding regarding the potential modes of transmission for 

E. coli O157:H7. 

 

Adapted with permission from Tauxe (1998).  Chapter 45, page 448. 
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1.6 Significance of E. coli O157:H7 in the food and meat industry 

E. coli O157:H7 has become one of the most significant and recognised food-

borne pathogens known (Meng & Doyle, 1998), with cases being reported 

worldwide.    According to a summary of notifiable diseases, reported by the 

United States (US) Centers for Disease control and Prevention (CDC, 2008), 

approximately one case of E. coli  O157:H7 infection has occurred per 100 000 

people in the US.  In New Zealand, the incidence of E. coli  O157:H7 has 

increased from 80 confirmed isolates in 2006, to 120 confirmed isolates in 2008 

(ESR, 2008).  It is possible that this increase is the result of improved screening 

and isolation methods for this pathogen.   

 

A review by Stopforth et al., (2007) indicated that in the US alone, a total of 

US$0.7 billion was lost due to medical costs, loss of productivity and premature 

death resulting from E. coli O157:H7 infections. Most outbreaks were food-borne 

in origin.  Furthermore, current trends in food processing result in the rapid 

distribution of immense quantities of potentially contaminated products, over 

large geographic areas in relatively short time periods (Karmali et al., 2009), 

which creates the potential for large scale outbreaks to occur world-wide.  In the 

US, E. coli O157:H7 has been declared an adulterant in consumables, hence pre- 

and post production interventions designed to eliminate E. coli  O157:H7 from 

food are critical to food processing industries (Hussein, 2007).   

 

Over the last 20 years, many E. coli  O157:H7 outbreaks were attributed to the 

consumption of undercooked, or improperly pasteurized beef and dairy products, 

and are therefore considered to be the key vehicles by which E. coli  O157:H7 can 

enter the food chain (Karch et al., 2005).  Understanding the relationship between 

this pathogen and its primary reservoir, namely cattle, has become important to 

both the dairy and beef industry.  Hence most studies have focused on beef and 

dairy cattle (Hussein, 2007).   

 

The chief source for E. coli O157:H7 contamination of meat, is faecal material 

present on cattle hides (Meng & Doyle, 1998).  Beef carcasses are normally 

contaminated with E. coli O157:H7 during the removal of the hide or during 
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evisceration (Hussein, 2007).  A correlation does exist between carcass hygiene 

and the level of  intestinal infection, faecal excretion (Mainil & Daube, 2005), and 

prevalence of E. coli O157:H7 on hides (Elder et al., 2000).  Mainil and Daube 

(2005) proposed that if 30% of beef carcasses were positive for the presence of 

E. coli O157:H7, at some point in the slaughter process, a further 7% of the 

remaining carcasses could become contaminated.  Importantly, because E. coli 

O157:H7 is a microbe which is well adapted to a transient life-style, it follows 

that secondary contamination can occur throughout the entire food chain.  

Secondary contamination can occur despite attempts by food manufacturers to 

implement critical control methods to reduce pathogen proliferation. 

 

Operating under the Hazard Analysis and Critical Control Point (HACCP) 

programme published in 1996 (Hulebak & Scholsser, 2001), meat processors 

employ various technologies and intervention strategies to reduce pathogens, 

improve overall microbial quality of carcasses and comply with food safety 

regulations set by the United States Department of Agriculture – Food Safety and 

Inspection Service (Edwards & Fung, 2006; Stopforth et al., 2007).  Standard 

practices include spot cleaning by knife trimming or steam vacuum (Edwards & 

Fung, 2006),  carcass washing with hot or cold water (Sofos & Smith, 1998), 

refrigeration or freezing, and acid or antimicrobial sprays and carcass washes 

(Stopforth et al., 2007; Stopforth et al., 2004). Use of combinations of these 

intervention strategies is referred to as multiple hurdle interventions ((Karmali et 

al., 2009; Koohmaraie et al., 2007).  One of the most important strategies 

employed to reduce microbial growth is the controlled reduction of carcass 

temperature, through processes such as spray chilling, refrigeration (Lovatt, 2004) 

and freezing (Dickson, 1991; Lenahan et al., 2009; Stopforth et al., 2004).  

 

Although HACCP strategies have been shown to reduce general microbial 

contamination, (Carlson et al., 2008; Hardin et al., 1995), there is concern that 

E. coli O157:H7  will adapt, survive and eventually proliferate in the niche 

environments created by these practices (Samelis et al., 2005; Stopforth et al., 

2007).  For example it has been demonstrated that E. coli O157:H7 can grow at 

carcass chill temperatures (Edwards & Fung, 2006; Stopforth et al., 2004).  
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Survival studies performed by Dykes et al., (2001) on preservatively packaged 

(vacuum and carbon dioxide) primal beef cuts, established that numbers of E. coli 

O157:H7 did not change significantly over a period of 6 weeks at -1.5°C, nor after 

a further 2 weeks at 4°C.  Additionally, while studies have shown that freezing 

can cause damage to cells (Meng & Doyle, 1998), E. coli O157:H7 can survive in 

ground beef which has initially been stored at -80°C and then held at -20°C for up 

to 9 months. Furthermore, in three different freezing profiles tested by Dykes et 

al., (2006) where beef trim samples, starting at the initial temperature of 25°C, 

were frozen over different time frames (32, 40 and 44 hours) to a final 

temperature of -23°C,  no significant changes in numbers of E. coli O157:H7 

occurred.   In the same study however, the authors suggested that a slight but 

significant decrease in the pathogen number was seen if the freezing profiles 

started at 12°C rather than 25°C.   

 

E. coli O157:H7 is tolerant of acidic environments, (Oh et al., 2008).  This 

tolerance enables E. coli O157:H7 to survive in foods, such as salami, which 

traditionally rely on acidic or low pH conditions to inactivate pathogens 

(Buchanan & Edelson, 1996; Leyer et al., 1995; Meng & Doyle, 1998).  Studies 

by Bracket et al., (1994) and Conner et al., (1997)  demonstrated that organic acid 

solutions sprayed on beef carcasses are relatively ineffectual against E. coli 

O157:H7.  Furthermore, E. coli O157:H7 can overcome a number of the 

components of multiple hurdle interventions, where adaptation to one 

intervention, such as acid sprays, may bring about increased adaptation to others 

with the process.  For example, acid adaptation of E. coli O157:H7, has been 

shown to increase the survival for up to 14 days in acid-wash stored at 4°C and 

10°C (Samelis et al., 2002).   

 

Non-meat examples of E. coli O157:H7 resistance to intervention strategies 

include low pH products such as mayonnaise and yoghurt (Meng & Doyle, 1998); 

acidic fruit juices, such as apple juice (Caprioli et al., 2005; McDowell & 

Sheridan, 2001).  In addition E. coli O157:H7 survives better in reduced water 

activity (aw) foods such as dry rice cereal at refrigeration temperatures (Beuchat, 

1996). 
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Overall, studies suggest that E. coli O157:H7 can adapt to stresses, targeted at its 

reduction or elimination.  The potential exists for these pathogens to establish 

niches within food processing environments, from which future cross 

contamination can occur.   

 

1.7 Adaptive stress responses in E. coli O157:H7 

E. coli O157:H7 is capable of living in complex environments, both within the gut 

of an animal host, and in the external environment.  Such surroundings undergo 

constant chemical and physical changes, and to survive E. coli O157:H7 must 

respond and adapt rapidly to these changes.  Using coordinated regulatory 

networks, E. coli  O157:H7 senses environmental stressors and expresses proteins 

critical counteract the negative impacts such changes may have (Giuliodori et al., 

2007). Stimuli that E. coli  O157:H7 would need to respond to rapidly include 

changes in, pH, oxygen concentration, nutrient availability and shifts in 

temperature (Wick & Egli, 2004).  

 

Overall, the general stress response for bacteria involves a cascade of changes in 

gene expression and protein activity, which enable bacteria to survive rapidly 

changing environmental conditions (Giuliodori et al., 2007).  Nucleic acids (DNA 

and RNA), proteins and small effector molecules  are all involved in the 

regulation and coordination of bacterial stress responses (Wick & Egli, 2004).  

The general stress response for E. coli is mediated by the sigma factor, RpoS (σ
S
) 

(Wick & Egli, 2004). In E. coli, RpoS activity is regulated at the level of 

proteolysis, protein activity, transcription and translation (Hengge, 2008).  

Various triggers, such as entry into stationary phase, acid pH, oxidative stress, 

heat and cold shock can trigger the induction of σ
S  

(Wick & Egli, 2004).  

According to Hengge (2008), approximately 10% of the E. coli genome (almost 

500 genes), are under some form of RpoS control, either directly or indirectly. 

Using E. coli K-12, White-Zeigler et al., (2008) used microarrays to demonstrate 

that 297 genes, approximately 7% of the genome, have increased expression at 

23°C compared with 37°C.  Many of those genes are regulated by RpoS, 

supporting the theory that in the environment, low temperature is a primary trigger 

for the general stress response.   
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1.7.1 Cold Shock response 

Rapid temperature down-shift  (e.g., from 37°C to below 20°C) also known as 

cold shock (Giuliodori et al., 2004; Giuliodori et al., 2007),  is one of the major 

environmental stresses that E. coli O157:H7 must adapt to.  Such transitions in 

temperature would occur for example when the organism is shed from the colon 

of a warm-blooded animal into soil or water (Phadtare et al., 2000).  Specific 

information regarding the cold shock response in E. coli O157:H7 itself is limited 

with most information derived from research using lab-adapted E. coli K-12 

strains.  

 

Generally, a reduction in temperature brings about physical changes in the 

bacterial cell, which have a negative effect on cell functioning.  Cell membrane 

fluidity tends to decrease (Phadtare et al., 2000), protein folding becomes less 

efficient, ribosome functions are stalled and secondary nucleic acid structures 

stabilise, which reduces the efficiency of mRNA translation and transcription 

(Wick & Egli, 2004). All of these ultimately result in the arrest cell growth 

(Phadtare, 2004).  Adaptation to these new unfavourable conditions, is required in 

order for E. coli O157:H7 to survive (Wick & Egli, 2004), adapt to, and 

depending on temperature, eventually resume growth (Jones et al., 1987).  

 

The strategy employed by E. coli, to counteract the effects brought about by 

temperature downshift, is complex, and lasts approximately 4 hours (Giuliodori et 

al., 2004). The process largely involves the induction of cold shock genes from 

the CspA family which act to regulate the expression of proteins required for 

adaptation (Wick & Egli, 2004).  During this time, a set of at least 25 to 27 cold-

shock proteins is selectively expressed (Giuliodori et al., 2004) which include 

nucleic acid-binding proteins involved in the numerous cellular processes such as 

translation, transcription, DNA replication and supercoiling, RNA degradation, 

and ribosome maturation.  Bulk synthesis of proteins is also repressed.    

 

There are at least five cold shock inducible members of the cold shock protein 

family of E. coli -  CspA, the major cold shock protein (Al-Fageeh & Smales, 

2006; Wick & Egli, 2004), CspB, CspE, CspG and CspI (Giuliodori et al., 2007). 
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Members of the CspA family are capable of substituting for each other during 

adaptation to cold temperature (Phadtare & Inouye, 2004).  Although there are 

approximately nine proteins in E. coli showing high homology to CspA (Wick & 

Egli, 2004), not all are inducible by cold shock (Giuliodori et al., 2007)  Al-

Fageeh & Smales (2006) suggest  three mechanisms that increase synthesis of the 

key CSPs: the presence of cis-elements in mRNAs that enhance translation during 

cold-shock; trans-acting factors which form part of the translational mechanisms 

of cold shocked cells, and target cold-shock mRNAs; and modification of 

translational machinery in order to bring about selective mRNA translation.  Some 

cold shock proteins enable ribosomes to become cold-adapted ribosomes (Figure 

1.3), which enables the cell to restore translation of bulk mRNA (Wick & Egli, 

2004).   

 

The major cold shock protein CspA, is an RNA-binding protein, which is thought 

to improve translation by specifically binding to single stranded non-duplexed 

RNA regions, preventing the formation of  mRNA secondary structures (Al-

Fageeh & Smales, 2006). Levels of CspA , the major cold shock protein, increase 

to more than 10% of the cell‟s total protein following temperature downshift, due 

to stabilisation of cspA mRNA.  Al-Fageeh & Smales (2006), suggested that CspA 

is only synthesized upon cold-shock exposure, however Brandi et al., (1999) 

demonstrated that cspA is expressed under non-stress conditions, and that 

transcription of cspA is regulated by Fis and H-NS DNA-binding proteins. 

Furthermore Brandi et al., (1999) showed that CspA is involved in its own 

feedback auto-repression. CspA acts as a transcriptional activator and a 

transcription anti-terminator (Wick & Egli, 2004) leading to the induction of the 

additional cold shock proteins. CspA becomes unstable, following the adaptation 

of E. coli cells to cold temperature (Goldenberg et al., 1996), and the mRNA is 

selectively degraded by the polynucleotide phosphorylase enzyme PNP (Wick & 

Egli, 2004). 

    

Initiation of translation, or protein synthesis, is a key determinant in the growth 

and survival of a cell. Bacteria require initiation factors (IFs), IF1, IF2 and IF3 for 

this.  After a down-shift in temperature, the number of ribosomes decrease, and 
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the level of IFs  increase, resulting in an imbalance in the ratio of IFs to ribosomes 

(Giangrossi et al., 2007).  This ratio imbalance creates a cold-shock induced 

translational bias (Giuliodori et al., 2004), causing  translation of cold-shock 

mRNAs at low temperature.  Using the E. coli strain MRE600, Giangrossi et al., 

(2007) studied the regulation of infA gene, which encodes IF1, as a model for pre- 

and post-cold-shock regulation.  The results of that study showed that within the 

first few hours of cold adaptation, due to de novo transcription and translation of 

infA, IF1 increased three-fold.  But this increase varies, depending on the basal 

level of the transcript at the time of stress.  Upon cold-shock, activation of 

transcription from the promoter (P1) is brought about by the induction of cold-

shock protein CspA, and the reduced repression of H-NS (transcriptional 

regulator).  Interestingly, Guilodori et al., (2004) also demonstrate that if the basal 

level of infA is low at the time of cold-shock, then transcription of infA is brought 

about by P1 only.  Conversely, if cell density is high, and hence the basal level of 

infA is also high, then cold-shock transcription involves 2 promoters, P1 and P2, 

albeit P1 is still the main cold shock promoter (Giuliodori et al., 2004).   

 

Another factor that may be important for gene regulation in bacteria undergoing 

cold-shock is DNA supercoiling.  DNA supercoiling can effect DNA transcription 

and hence gene expression (Drlica, 1992).  Negative DNA supercoiling has been 

shown to increase after a temperature downshift resulting in decrease RNA 

polymerase DNA interaction (Phadtare, 2004).  It has also been suggested 

chaperones are important to cold tolerance and adaptation in bacterial cell 

systems.  By using a series of strains in which key cold adaptation genes were deleted, 

Strocchi et al., (2006) were able to show that the inability of E. coli to grow at 4°C 

was due to the inactivation of GroELS chaperonins. The lack of GroELS prevented 

proteins such as Dps, ClpB, DnaK and RpsB from refolding and regaining 

function at low temperatures. 

 

While many of the cold shock processes are now understood, the cold shock 

response system is possibly one of the most complex bacterial response systems 

(Phadtare & Inouye, 2004) and it is likely, particularly in the case of E. coli 
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O157:H7 which has a massive genome, that many more genes and systems remain 

to be elucidated. 

 

 

 

Figure 1.3 The cold shock response.  Adapted from Wick and Egli (2004)  Page 21. 
 
a)  Following cold shock, un-dapted ribosomes are unable to translate mRNA.  An exception 

is mRNA for the major cold shock protein CspA (and probably others: CspB, CspI, CspG, 

CsdA, RbfA).  cspA mRNA is stabilized at low temperatures, which increases the levels 

of cellular CspA.   

b) CspA functions as a transcriptional activator and a transcription antiterminator.  Further 

cold shock proteins are induced.  CspA might also operate as a chaperone for mRNA, 

possibly resolving secondary structures which will then enable bulk mRNA to be 

translated. The ribosome is changed to a cold-adapted ribosome by some of the cold 

shock proteins, restoring the cells ability to translate bulk mRNA. 

c) After acclimation, cold shock proteins are reduced to a basal level. A negative feedback 

loop, mediated by PNP, degrades mRNAs of cold shock proteins.  CspA negatively 

regulates its own synthesis.  The Dashed line represents degradation of mRNA by RNase 

activity or by PNP.   
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 1.7.2 Other stress responses 

Other continuously changing environmental cues that E. coli O157:H7 responds 

to include osmolarity, nutrients, oxygen availability, pH, and chemicals including 

quorum sensing molecules.  The most well defined responses to such stressors 

include the envelope stress response, which is in response to changes in the 

extracytoplasmic space of gram negative bacteria (Wick & Egli, 2004); the 

stringent response, which reduces cellular protein synthesis when substrates for 

protein synthesis are limited (Wick & Egli, 2004); and the acid stress resistant 

systems, including the acid induced oxidative system, a glutamate-dependent 

system and the arginine-dependent system (Meng & Doyle, 1998).  The acid 

stress response is of particular importance in EHEC, as it is the ability of EHEC to 

survive gastric acidity which has been correlated to the low infectious dose 

required to cause disease in humans (Gorden and Small, 1993).   

 

Many of the adaptive stress responses can be effective against other types of 

stressors.  Studies have shown that a variety of stresses have similar effects on the 

molecular activity of cells (Wick & Egli, 2004), and stress mechanisms often 

appear to be linked to each other.  Thus, the adaptation to one stress can lead to 

resistance to another. 

 

Furthermore, upon transition from the animal host to the external environment, 

E. coli O157:H7 faces changes in population density and composition.  

Concentrations of E. coli in its principal habitat can vary between 10
5
 and 10

8
 

colony forming units (cfu) per gram of faeces,  with much lower numbers reported  

in soil and water (Vital et al., 2008).  Considering that the population density can 

change, it follows that changes in the chemical signals to which the organism 

responds to will occur.  Bacteria are known to monitor population density, and 

modify their cellular processes accordingly (H. Withers et al., 2001).  The process 

in which bacteria monitor population density through chemical signaling is known 

as quorum sensing (QS).   It has been suggested that QS is intimately involved 

with stress and starvation mediated cellular activity in E. coli (DeLisa et al., 

2001).   
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1.8 Quorum Sensing 

Quorum sensing (QS) is a term used to describe a complex process in which 

bacteria secrete and utilise small diffusible signaling molecules, known as 

autoinducers, in order to communicate cell-to-cell in a density dependent manner 

(J. M. Henke & B. L. Bassler, 2004; Schauder et al., 2001; Zhang et al., 2008). 

Bacteria are capable of monitoring their environment by detecting concentrations 

of autoinducers (E. P. Greenberg et al., 1979; H. Withers et al., 2001), and 

subsequently altering gene expression and regulation of a number of cellular 

functions.  Altered cellular functions, include expression of virulence factors, 

swarming behavior, antibiotic production, formation of biofilms (Rezzonico & 

Duffy, 2008). QS has also been implicated in the stress response (DeLisa et al., 

2001). Henke and Bassler (2004) suggested that this form of chemical 

communication can occur, not only between bacterial species (inter-species), but 

also between the bacteria and the host, (inter-kingdom communication).  Walters 

and Sperandio (2006), point out that the potential for quorum sensing to occur 

between the bacteria and host, in which the organisms can coordinate adaptive 

responses, should not be surprising, considering the diversity and high 

concentration of bacteria that reside in the gastrointestinal tract (10
11

-10
12

 

bacterial cells/ml).  However, while quorum sensing is very popular, an 

alternative hypothesis for the function for autoinducers was suggested (Redfield, 

2002),.   This phenomenon, called diffusion sensing (Redfield, 2002), uses 

autoinducers to sense the dynamics of their immediate environment, and not 

necessarily the population density alone (Redfield, 2002.  Although the opinion 

has thus far been overlooked by many researchers, Turovskiy et al., in a critical 

review of the quorum sensing phenomenon (2007) suggested that perceptions may 

eventually shift more towards an environmental sensing theory.   

 

1.8.1 QS In Gram negative bacteria 

Originally, QS was used to describe the regulation of bioluminescence in the gram 

negative marine symbiont Vibrio fischeri (V. fischeri) (Nealson et al., 1970; 

Walters & Sperandio, 2006).  At high cell density, bioluminescence occurs in 

these marine bacteria due to the expression of luciferase (Figure 1.4A), which is 

regulated by two proteins, LuxI and LuxR (Winans & Bassler, 2002). LuxI 
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synthesizes acylated homoserine lactone (AHL) (Walters & Sperandio, 2006), 

also known as autoinducer-1 (AI-1) (B Bassler et al., 1997). LuxR detects and 

binds the AHL (3-oxo-C6-HSL).  This complex binds to the lux promoter 

inducing expression of luciferase (Stevens et al., 1994).  Following the discovery 

of this first quorum sensing pathway, homologues of LuxR-LuxI have been 

identified in over 70 gram negative species (Henke & Bassler, 2004). So far,  12 

AHL autoinducers (AI-1) have been identified, differing only on the AHL-acyl 

side chain moiety (Rezzonico & Duffy, 2008; Steindler & Venturi, 2007).  

Moreover, five further QS systems, have been identified along with their 

respective QS molecules (Yoon & Sofos, 2008a).  These molecules include: 

AHL/AI-1, associated with gram negative bacteria (Bassler et al., 1997); 

Autoinducer 2 (AI-2), a furanosyl borate diester, also found in gram negative and 

positive bacteria; a newly described Autoinducer 3 (AI-3), which is an aromatic 

compound (Walters & Sperandio, 2006) that may be involved in cross-

communication between bacteria and host cells (Sperandio et al., 2003); 

Pseudomonas quinolone signal family (PQS) (Dubern & Diggle, 2008); and for 

gram positives only, the AI-peptides (Miller & Bassler, 2001; Yoon & Sofos, 

2008a).  

  

Some gram negative bacteria utilise more than one QS system.  Vibrio harveyi 

(V. harveyi) has two interlinked QS systems (Figure 1.4B), in which AI-1 is 

synthesized by LuxM, and detected by the sensor LuxN, while AI-2 is produced 

by LuxS and detected by LuxPQ (B Bassler et al., 1997; Mok et al., 2003).  LuxS 

converts S-ribosyl-homocysteine (SRH) into homocysteine releasing 4,5-

dihydroxy-2,3-pentanedione (DPD), which cyclises to yield the AI-2 molecule 

(Schauder et al., 2001).  Exogenous AI-2 is subsequently detected by the sensor 

kinase LuxPQ (Rezzonico & Duffy, 2008).  Both AHL and AI-2 QS systems  are 

partially connected and share the same transduction pathway, through LuxU 

(signal relay protein) to LuxO (terminal response regulator) (Reading & 

Sperandio, 2006).   The LuxS/AI-2 system, is currently recognised as the most 

widely spread bacterial QS system  and has been identified in numerous bacterial 

species  including E. coli O15:H7 (M. G. Surette et al., 1999).      
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Unlike AI-1/AHLs, which are highly specific and for the most part only used for 

intra-species communication  (Zhang et al., 2008), LuxS and its synthase AI-2, 

are highly conserved among numerous bacterial species, (Bassler, 2002; Soni et 

al., 2008).  Hence, AI-2  has been suggested to be a universal bacterial signal 

molecule, likened to a form of bacterial Esperanto  (Turovskiy et al., 2007; 

Winans, 2002), and not surprisingly this molecule has commanded much interest.  

Before the AI-2 QS system was fully characterized, Bassler et al., (1997) 

constructed a V. harveyi reporter strain, named BB170 (∆luxN), allowing 

detection of the signaling molecule in spent media. This AI-2 biosensor detection 

system has been widely used for the detection of AI-2 production by different 

bacterial species.   

 

1.8.2 LuxS/AI-2 QS in E. coli O157:H7 

Although AHL detection occurs in E. coli O157:H7, it has not been shown to 

secrete AHLs.  Like Salmonella enterica, E. coli species have a LuxR homologue 

known as SdiA (Wang et al., 1991), but no homologues for LuxI have been 

identified (Subramoni and Venturi, 2009).  However, AHLs have been shown to 

influence gene expression in an SdiA-dependent manner in E. coli K-12 (van 

Houdt et al, 2006). LuxS/AI-2 and possibly AI-3 are also  active in   E. coli 

O157:H7 (Schauder et al., 2001; Walters & Sperandio, 2006). 

 

Several studies, involving the comparison of LuxS mutants with wild type strains, 

have described diverse roles for LuxS in E. coli.  For example,  LuxS has been 

shown to control virulence determinants such as motility and biofilm formation 

(Rezzonico & Duffy, 2008), and the regulation of LEE-encoded type III secretion 

system (TTSS) and flagella expression (Walters & Sperandio, 2006).  

Interestingly, while LuxS was linked to the expression of LEE genes (Sperandio 

et al., 1999),  it was later suggested that it was not AI-2 that was responsible, but  

AI-3 (Reading & Sperandio, 2006).  Although AI-3 synthesis is not directly 

attributable to LuxS activity, the metabolic effect on cellular activities of 

disturbing the methyl cycle resulted in decreased levels of AI-3 (Walters et al, 

2006). Complementation using Pseudomonas aeruginosa (P. aeruginosa) S-

adenosylhomocysteine hydrolase (SAH) that synthesizes homocysteine directly 
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from SAH in the luxS mutant restored AI-3  but not AI-2 synthesis (Walters et al, 

2006). 

 

Regulation of E. coli LuxS and AI-2 production is influenced by a variety of 

environmental cues such as the presence of certain carbon sources, pH and 

osmolarity (DeLisa et al., 2001; M. G. Surette et al., 1999).  There is 

accumulating evidence to support the theory that AI-2 regulation may be used for 

channeling conditions of stress into the QS- dependent regulatory circuit. For 

example, E. coli conditioned medium (CM) contains a factor, later named AI-2, 

that stimulates expression of rpoS (σ
s
) (DeLisa et al., 2001). Furthermore, stimuli 

that are known to induce rpoS responses, such as heat shock and 4% ethanol, have 

been shown to reduce AI-2 levels, albeit the reduction was then followed by 

oscillating increases and decreases of AI-2 levels before finally stabilizing.  

(Winzer et al., 2003).  Searches in literature, for a potential role of QS, 

specifically in cold stress responses, have proven scarce.  However, AI-2 has been 

shown to be produced in foods such as milk and chicken broth by E. coli O157:H7 

at various storage temperatures, including 4°C (Yoon & Sofos, 2008b). DeLisa et 

al., (2001) suggest that autoinduction is linked to the stress response for abnormal 

protein formation.  Because cold temperature can effect protein formation, it could 

be speculated that QS might be involved in the regulation of the cold stress 

response. 

   

There is, however, some ongoing debate regarding the primary role of LuxS, and 

AI-2.  Apart from in V. harveyi, it is been suggested that LuxS is more involved in 

metabolism than QS, because it is plays an integral role as an enzyme in the 

activated methyl cycle, where it recycles S-adenosylmethionine (SAM) (Winzer et 

al., 2003).  Furthermore, in V. harveyi, only the signal itself, and not the AI-2 

molecule, is transduced inside the cell, whereas in E. coli, AI-2 is phosphorylated 

inside the cell, where it purportedly interacts with LsrR which can act as a 

regulator of gene expression by repressing the lsr-operon.  It has thus been 

suggested that AI-2 is actually being released as a waste product and then being 

reused as a metabolite (Rezzonico & Duffy, 2008), rather than being at true 

signaling molecule. 
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Figure 1.4. Quorum-sensing systems in Gram negative bacteria.   

 

A) LuxI-like proteins produce AHLs (red triangles).  AHLs diffuse across the cell membrane 

and into the surrounding environment, increasing in concentration in proportion to the 

population density.  Autoinducers are bound by LuxR-type proteins, which bind specific 

promoter DNA elements and activate transcription of target genes (xyz). 

B) Quorum sensing in V. harveyi. Two interlinked QS systems produce and detect AI-1 (AHL) 

and AI-2.  AI-1 is produced by LuxLM, and detected by the sensor LuxN, while AI-2 is 

produced by LuxS and detected by sensor LuxPQ.  Both systems share the same 

transduction pathway through LuxU (signal relay protein) to LuxO (terminal response 

regulator).  In the absence of autoinducers, the sensors autophosphorylate.  Phosphate is 

sequentially transferred to LuxU, then LuxO.  Phospho-LuxO represses luxCDABE 

transcription. Binding of Autoinducers by LuxN and LuxPQ dephosphorylates LuxU and 

LuxO.  Dephosphorylation of LuxO alleviates luxCDABE repression.  The transcriptional 

regulator, LuxR (not the same as LuxR in figure A) is required for luxCDABE expression. 

 

Adapted from Federle and Bassler (2003) pg 1292 
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1.9 Statement of Hypothesis 

Understanding the adaptive process of E. coli O157:H7 at cold temperatures could 

provide answers regarding the pathogens ability to survive and persist during food 

production, which often involves multiple interventions targeted to the elimination 

of this pathogen. One key intervention is chilling, particularly in the meat 

industry. 

 

Despite the fact that many genes and regulatory systems, have been identified in 

literature (Giuliodori et al., 2007; Turovskiy et al., 2007; Wick & Egli, 2004) that 

enable E. coli  O157:H7 to adapt to its complex and ever changing milieu. 

Between 30 to 50% of the genome for this pathogen is made of hypothetical 

proteins for which no function has yet been assigned (Hayashi et al., 2001). 

Additionally, an area requiring further exploration is the highly conserved LuxS 

gene (B. L. Bassler, 2002; Soni et al., 2008) and the AI-2 sensing molecule.  

Since QS has been implicated in the regulation of a number of cellular processes, 

it could be speculated that QS is not only important to the survival of E. coli 

O157:H7, but potentially contributes to the organism‟s ability to adapt to 

environmental changes, including temperature change. 

 

The overall hypothesis for this study is that E. coli O157:H7 is able to withstand 

chilled temperature by up-regulating genes, many of which may be currently 

assigned that allow this organism to persist and survive in unfavorable conditions.  

It is further speculated that QS transitions have overtime become integrated in 

these stress response pathways, potentially forming an integrated component of 

the E. coli O157:H7 adaptive stress response, including the cold shock response. 

 

The main aim for this project is to identify genes differentially expressed in 

response to refrigeration temperatures, to confirm their link to temperature down 

shifts and to identify other factors which might influence their expression. 

Methods such as: Random Arbitrarily primed polymerase chain reaction (RAP- 

PCR) (Rivera-Marrero et al., 1998); Reverse Transcription PCR (RT-PCR) 

(Fislage et al., 1997), and biological sensors such as luxCDABE bioluminescent 
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reporters (Winson et al., 1998) will be used to monitor gene expression upon 

temperature down-shift.   

 

One additional factor that will be analysed in this project is QS, particularly the 

LuxS/AI-2 system. luxCDABE reporters will be used in conjunction with luxS 

deletion strain of E. coli O157:H7, CLEN34.  Expression of genes in parental and 

luxS
-
 strains will be assessed using growth studies and light reporter assays.  AI-2 

in the form of CM will be complimented back to the luxS- E. coli O157:H7 

strains, and monitored to assess any effect AI-2 may have on the expression 

genes, identified in the course of this research. 
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Chapter 2: Materials and Methods 

2.1 Bacterial strains  

E. coli strains used throughout this study are listed in Table 2.1.  Likewise,  

V. harveyi strains are listed in Table 2.2. 

 

Table 2.1. Escherichia coli 

Strain Genotype Source/Reference 

NZRM 3614 (NCTC 12900) 

 

O157:H7 Verotoxin negative 

(VT-) 

New Zealand Reference 

Culture collection 

CLEN34 NZRM 3614 luxS::Kan Katy Enfield 

MG1655 F
-
λ

-
 Jensen (1993) 

DH5α Φ80δlacZ∆M15, recA1, 

endA1, gyrA96, thi-1, 

hsdR17(rk
-
, mk

+
) supE44, 

relA1, deoR,  ∆(lacZYA-

argF V169), luxS 

Hanahan (1983) 

One Shot™ TOP10 F
-
 mcrA, ∆(mrr-hsdRMS-

mcrBC), Φ80lacZ∆M15, 

∆lacX74, recA1, araD139, 

∆(ara-leu)7697, galU, galK, 

rpsL, (Str
R
) endA1, nupG 

Invitrogen 

 

Table 2.2. Vibrio harveyi  

Strain Genotype Source/Reference 

BB120 (ATCC BAA-1116) Wild Type Bassler et al. (1997) 

BB170 (ATCC BAA-1117) luxN::Tn5:Kan Bassler et al. (1993) 

MM32 (ATCC BAA-1121) luxN::Cm, luxS::Tn5:Kan Miller et al. (2004) 
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2.2 Plasmids  

Plasmids utilised in this study are listed in Table 2.3. 

 

Table 2.3. Plasmids 

Plasmid Description Source/Reference 

pCR2.1  TA cloning vector, ColE1 origin, Amp
R
, Kan

R
 Invitrogen 

pSB377 Promoterless luxCDABE, Amp
R
 Winson et al., (1998) 

pWU1           pCR2.1 with mdtJI promoter region cloned into 

MCS 

This study 

pWU2 pSB377 mdtJI::luxCDABE 

promoter reporter – mdtJI promoter region inserted 

on an EcoR1 – SnaB1 fragment from pWU1 

This study 

 

2.3 Media and Antibiotics 

2.3.1 Luria-Bertani Broth (LB) 

LB, consisting of tryptone (10g/l) (Bacto™, BD), yeast extract (5g/l) (Bacto
™

, 

BD) and NaCl (5g/l) (BDH), was prepared in dH2O.  The pH was adjusted to 7.4 

prior to autoclaving.  

 

2.3.2 Luria-Bertani Agar (LA) 

LA was prepared as LB with the addition of agar at15g/l, (Bacto
™

, BD). The pH 

was adjusted to 7.4 prior to autoclaving. 

 

2.3.3 Brain Heart Infusion Broth (BHI broth) 

BHI broth (Bacto
™

, BD) was prepared according to manufacturer‟s instructions.  

  

2.3.4 Brain Heart Infusion Agar (BHI agar) 

BHI agar was prepared as BHI broth with the addition of agar at 15g/L (Bacto
™

, 

BD). 

 

2.3.5 Plate Count Agar (PCA) 

PCA (Difco, BD) was prepared according to manufacturer‟s instructions or 

purchased as poured plates (Fort Richard). 
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2.3.6 Marine Agar (MA) 

Marine agar was made from Marine broth (Difco
™

, BD) which was prepared 

according to manufacturer‟s instructions, with the addition of agar at 15g/L 

(Bacto
™

, BD).  

 

2.3.7 Autoinducer Bioassay Media (AB) 

AB medium was based on that described by Greenberg et al. (1979).  AB was 

composed of 0.3M NaCl, 0.05M MgSO4 (Sigma) and 0.2% (w/v) Vitamin-Free 

Casamino Acids (Bacto
™

, Difco) in dH2O. Before autoclaving, pH was adjusted 

to 7.5.  Prior to use, the autoclaved base medium was supplemented with filter 

sterilized 1% (v/v) 1M Potassium Phosphate buffer (1M K2HPO4 and 1M 

KH2PO4; BDH) (pH7), 1% (v/v) 0.1M L-arginine (SERVA) and 2% (v/v) 50% 

Glycerol (BDH). 

  

2.3.8 Maximum Recovery Diluent (MRD)    

MRD (Difco
™

, BH) was prepared according to manufacturer‟s instructions. 

 

2.3.9 Preparation of Meat plates 

Meat plates were prepared by aseptically cutting circular disks from beef steaks 

and transferring them to sterile petri dishes (Figure 2.1 A-F).  Beef was purchased 

as whole, untreated striploin from a local abattoir and processed within 12 hours 

post-slaughter.  The outer layer of striploin was doused in 70% ethanol and 

flamed, before the entire surface was seared with a hot plate.  The hot plate was 

heated for at least 2 minutes over a Bunsen flame before use.  After placing on a 

sterile cutting board, the outer layer of striploin was removed aseptically with a 

scalpel and forceps.  Striploins were portioned into steaks (0.5 cm thick), and 

disks were cut from the meat using a circular cutting die (35 mm diam.).  To 

obtain uniformity of plates, meat disks were aseptically transferred to petri dishes 

(35, 0/10 mm; Griener Bio-one) and pressed with a pressing tool.   Aseptic 

technique was followed throughout the procedure, and all tools and surfaces that 

were in contact with the meat, were sterilized before use.  The pressing tool was 

designed by the author of this study and both cutting and pressing implements 

were manufactured by Brian Atkins (AgResearch, MIRINZ Site Services).  Meat 
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plates were stored at -1.5°C for less than 48 hours before use, and pH measured 

from two representative plates.   

 

Figure 2.1. Use of sterile cutting and pressing implements for manufacture of meat plates.   

 

A) Striploin steak; B) Cutting and pressing implements; C) Use of cutting implement; D) 

Pressing meat disk into petri dish E) Final meat plate product; F) BHI control agar plates.  

 

2.3.10 Antibiotics  

Antibiotics were added as required at the following final concentrations: 

Kanamycin (Sigma) - 25µg/ml 

Carbenicillin (Fluka) - 50µg/ml 

Ampicillin (Sigma) - 50µg/ml 

 

2.4 Bacterial Growth Conditions  

All bacteria were maintained as frozen stocks in LB with 25% glycerol at -80°C.  

Strain-appropriate antibiotics were added to media, as required. 

 

2.4.1 Standard E. coli Growth Conditions 

Unless stated otherwise, all E. coli cultures were grown at 37°C.  E. coli was 

grown for 24 hours on LA plates from frozen stocks. 2-3 freshly isolated colonies 

were used to inoculate overnight LB or BHI broths for each experiment.   Broth 

cultures were grown with shaking at 37°C at 200rpm.   

A CB

ED F
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2.4.2  Standard V. harveyi growth conditions 

V. harveyi cultures were grown at 30°C.  V. harveyi was grown for 48 hours on 

Marine agar plates from frozen stocks.  AB medium was inoculated with 2-3 

freshly isolated colonies and incubated for 14-24 hours with shaking at 200rpm.   

 

2.5 DNA Isolation and Amplification 

2.5.1 Genomic DNA Isolation  

Genomic DNA was isolated from bacteria grown on culture plates.   A loopful of 

bacterial cells, was suspended in 200µl of PrepMan™ Ultra Sample Preparation 

Reagent (Applied Biosystems).  The suspension was heated for 10 minutes at 

100°C and centrifuged (eppendorf miniSPIN) for 3 minutes at 16000xg to pellet 

cells.  Supernatants were transferred to a fresh micro-centrifuge tube, and cell 

pellets discarded. DNA was stored at -20°C until required. 

 

2.5.2 Plasmid isolation and purification  

Plasmids were purified using the QIAprep Spin Miniprep Kit (Qiagen Ltd), 

following the manufacturers protocol. 

 

2.5.3 Polymerase Chain Reaction (PCR) 

2.5.3.1 Primers  

Primers used for PCR and sequencing are listed in Table 2.4. 
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Table 2.4. Primers 

Primer Sequence 5΄-3΄ Features 

LuxCRseq TTGGCAGGTAAACACTA Sequencing primer: 

specifically for 

pSB377 insert:luxC 

junction confirmation 

Z2593F TTCATCAGGCAAGTTTCAC  

Z2593R CCTTTAGTGCGCTTTCTCAG  

Z2594F TAACCCGGCAATTTTCATC  

Z2594R TACCGGTACGCTGTCTATG  

ZPROM1 GTGAATTCATGGTCATCAAAATCGACACTGC EcoR I 

ZPROM2 GTGTACGTATTCTCCTGCAAGAGAATTATTTT

AA 

SnaB I 

23SFOR AAAATTAGCGGATGACTTG  

23SREV TATTAACCTGTTTCCCATC  

hslJ1 AATCCGCCAGAAATCAGC  

hslJ2 CACTTGTGCACCTTCTTTC  

slp1 TGACAAAAGGTGGCACTCATA  

slp2 ACGGTAATACAGCGATTTCT  

 

2.5.3.2  PCR conditions 

PCR conditions used throughout this study for each of the primer pair are 

summarized in Table 2.5.  

 

Table 2.5. PCR conditions and the expected product size 

Gene Primer Pair Product size 

(nt) 

Annealing Extension 

23S 23SF/23SR 645 48°C, 1 min 72°C, 1 min 

mdtI z2594F/z2594R 191 52°C, 30 sec 72°C, 45 sec 

mdtJ z2593F/z2594R 228 52°C, 30 sec 72°C, 45 sec 

hslJ hslJ1/hslJ2 197 52°C, 30 sec 72°C, 45 sec 

slp slp1/slp2 225 54°C, 30sec 72°C, 45sec 

mdtJI promoter ZPROM1/ZPROM2 620 55°C, 1 min 72°C, 1 min 
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2.5.3.3 PCR protocol 

For a 50µl PCR reaction, the following components were combined: 5µl of10x 

Mg
2+

-free PCR buffer (Invitrogen); 1.5µl 50mM MgCl2 (Invitrogen); 1µl 10mM 

dNTP mix (2.5mM each of dATP, dGTP, dCTP and dTTP; Invitrogen); 0.5µl of 

10mM Sense primer; 0.5µl of 10mM Antisense primer, 0.5µl of Taq DNA 

polymerase (5U/µl; Roche), 2µl of DNA template and nuclease-free water 

(Ambion) to a final volume of 50µl. The reaction was heated to 94°C for 2 

minutes to denature the DNA. A total of 25-30 cycles were performed using 

annealing and extension conditions specific for each primer pair (Table 2.5). A 

final extension step was included (72°C for 7 minutes).    

 

2.5.4 Agarose Gel Electrophoresis  

Gels were prepared as 1% (w/v) agarose (GIBCO, BRL) in 0.5x TBE (Tris-

borate-EDTA) buffer , (10xTBE buffer stock; Invitrogen).  Ethidium bromide 

(BIORAD) was added to the gel to a final concentration of 0.25µg/ml.  Gel 

loading buffer (GLB; 50% glycerol, 1mM EDTA and 0.4% Bromophenol Blue) 

was added to the samples prior to loading.  DNA was electrophoresed as 

described by Sambrook et al., (1998).   Visualisation of the DNA was by exposure 

to UV light and the image captured by Gel Doc 1000 and Quantity One imaging 

software version 4.5.2 (BIORAD). To determine the PCR product sizes, a1Kb 

plus DNA molecular weight marker (1.0µg/µl; Invitrogen) was used. 

 

2.5.5 Gel extraction 

DNA bands were excised from agarose gels and DNA extracted using the Qiagen 

gel extraction kit (Qiagen Ltd) according to the manufacturer‟s protocol. 

 

2.6 DNA manipulation 

2.6.1 Restriction digests 

The following restriction enzymes were used to digest DNA:   

EcoR I 5΄-G
↓
AATTC-3΄ (Invitrogen) 

SnaB I (Eco1051) 5΄-TAC
↓
GTA-3΄ (Fermentas) 

The manufacturer‟s protocol was followed for each restriction digest according to 

the enzyme used. Briefly, 2-10µl of plasmid DNA was mixed with 2µl of 10x 
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buffer, 5U enzyme and sterile distilled water to a volume of 20µl in a sterile 1.5ml 

eppendorf tube. The content of the tube was briefly spun prior to incubation at 

37°C for 2 hours. 

 

2.6.2   PCR product Topoisomerase-mediated ligations 

For cloning of PCR products generated using recombinant Taq DNA polymerase, 

TOPO TA Cloning
®
 kit (Invitrogen) topoisomerase reactions were used. Briefly, 

1µl of vector, 1µl of salt solution was mixed with 2-4µl of PCR product. Sterile 

distilled nuclease-free water was added to achieve a final volume of 6µl. The 

mixture was left at room temperature for a minimum of 5 minutes. The mixture 

was either used immediately for transformation or stored at -20°C.   

 

2.6.3 T4 DNA ligase-mediated ligations 

Ligation reactions of restriction digested fragments into plasmid vectors were 

carried out using T4 DNA ligase. Ligations reactions were carried out in a final 

volume of 10µl, containing 1µl of 10xT4 DNA ligase buffer, 2-5µl of digested 

purified vector, 2 µl of insert, 1U of T4 DNA ligase and an appropriate volume of 

sterile distilled nuclease-free water.   Reactions were incubated at 16°C overnight 

in a PCR thermocycler (TC-512; Techne) or (PTC-1000; MJ Research, Inc.). 

Ligation reactions were purified using a PCR Purification Kit (Qiagen) prior to 

transformation. 

  

2.7 Bacterial transformation 

2.7.1 Chemical Transformations of E. coli O157:H7 

30ml LB was inoculated with 300µl of an overnight culture, and grown for 2-3 

hours.  At mid-exponential phase cells were harvested by centrifugation at 4200 

rpm for 5 min in a refrigerated bench-top centrifuge (Eppendorf 5417R) and 

resuspended in 500µl chilled polyethylene glycol (PEG; Promega) 8000 in 50mM 

CaCl2.  Cells were left on ice for a minimum of 30 minutes before 2-10µl of 

plasmid DNA was added to 100µl of cells. Cells and DNA were mixed gently and 

left on ice for 30 minutes.  Cells were heat shocked at 42°C for 2 minutes.  250µl 

of S.O.C. (Invitrogen) was added and cells were allowed to recover at 37°C for 60 
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minutes with shaking.  The cells were plated onto LB agar containing the 

appropriate antibiotics and incubated at 37°C overnight. 

 

2.7.2 Transformation of commercial TOP10 cells 

2-4µl of ligated DNA was added to chemically competent TOP10 cells 

(Invitrogen), mixed gently and left on ice for 30 minutes. Cells were heat shocked 

at 42°C for 1 minute and returned to ice for 5 minutes.  250µl of S.O.C medium 

(Invitrogen) was added.  Cells were left to recover at 37°C for 30-60 minutes with 

shaking.  The cells were plated onto LB agar containing the appropriate antibiotics 

and incubated at 37°C overnight. 

 

2.8 DNA sequencing 

Sequencing was performed at the Waikato DNA sequencing facility by the 

Canterbury sequencing and genotyping unit.  Resulting sequences were analysed 

using the GenBank Basic Local Alignment Search Tool (BLAST) available from 

the National Centre for Biotechnology Information (NCBI) website 

(www.ncbi.nlm.nih.gov/sites/entrez). 

 

2.9 RNA isolation and detection 

2.9.1 Fixing of cells for RNA isolation 

Cells were simultaneously washed from plates and fixed, by gently pipetting a 5:1 

volume of 95% (v/v) ethanol: 5% (v/v) acid phenol (Gibco BRL) solution over the 

culture plates.  Pipette action was used, to wash and remove the bacteria-phenol 

mixture from the plates.  The mixture was transferred to a sterile 2ml micro-

centrifuge tube.  The cell mixture was inverted and flash frozen in a dry ice and 

methanol bath.  The fixed samples were stored at -80°C.   

2.9.2 RNA isolation 

Total RNA was isolated from fixed, frozen bacterial cells using the TRIzol
®

 

Max™ Bacterial RNA Isolation Kit (Invitrogen). Samples were simultaneously 

thawed and centrifuged in a bench-top centrifuge (Heraeus Multifuge 3 S-R) at 

6000xg (4°C) for 5 minutes.  All subsequent centrifugation steps were carried out 

at 4°C.  Supernatants were discarded and the cell pellet resuspended in 200µl of 

Max Bacterial Enhancement Reagent, preheated to 95°C.  The suspension was 
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incubated for 4 minutes at 95°C before adding 1ml of TRIzol
® 

Reagent.  The 

lysate suspension was mixed by inversion and incubated at room temperature for a 

further 5 minutes before the addition of 200µl of cold chloroform (Ajax 

Chemicals) for phase separation.  The chloroform-lysate suspensions were mixed 

vigorously by hand for 15 seconds, incubated at room temperature for 2-3 minutes 

and centrifuged at 12000xg for 15 minutes.  The upper aqueous phase containing 

the RNA was removed, and transferred to a sterile 2ml eppendorf tube. RNA was 

precipitated by the addition of 500µl of cold isopropanol (Propan-2-ol; BIOLAB).  

The resulting mixture was incubated at RT for 10 minutes before centrifugation at 

15000xg for a further 10 minutes.  Supernatants were discarded, the RNA pellet 

resuspended in 1ml of 75% ethanol and centrifuged at 7500xg for 5 minutes.  

Supernatants were discarded and the RNA pellet was dried at room temperature.  

RNA pellets were resuspended 50µl RNAse-free H2O (Ambion) containing 1U/µl 

RNAsin® Plus RNase Inhibitor (Promega).  RNA samples were stored at -80°C. 

   

2.9.3 DNAse I treatment of RNA samples 

To remove any DNA, the RNA samples were treated with RQ1 RNase-Free 

DNase (Promega).  5µl of RNA was combined with 1µl of RNAse free DNAse 

10x reaction buffer and 4µl of DNase I.  Reactions were incubated at 37°C for 30 

minutes before the addition RQ1 DNase Stop Solution.  DNAse I was inactivated 

by incubation at 65°C for 10 minutes. 

 

2.9.4 Measurement of RNA concentration and purity 

RNA was measured at 260 and 280nm using a nanophotometer (IMPLEN, TLS).  

The manufacturer‟s instructions for RNA measurement were followed.  

 

2.9.5 RNA detection by ReverseTranscription Polymerase Chain Reaction 

(RT-PCR) 

2.9.5.1 First-strand cDNA synthesis 

For a 20µl first-strand cDNA synthesis reaction, the following components were 

added to a sterile nuclease-free micro-centrifuge tube: 2pmol primer; 5µl of 

DNase I-treated RNA preparation (10pg to 5µg of total bacterial RNA); 1µl of 

10mM dNTP mix (10mM each dATP, dGTP, dCTP and dTTP; Invitrogen); 
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nuclease-free DEPC H20 (Qiagen) to a final volume of 13µl.  The mixture was 

heated to 65°C for 5-minutes and incubated on ice for at least 1minute.  The 

contents were collected by a brief centrifugation before the addition of 4µl 5X 

First-Strand Buffer (250mM Tris-HCl, pH8.3, 375mM KCl, 15mM MgCl2), 1ul 

of 0.1M DTT and 1µl of SuperScript™III Reverse Transcriptase (200U/µl; 

Invitrogen).  The reaction was mixed by gentle pipetting and incubated for 30-60 

minutes at 55°C.  To inactivate the enzyme the reaction was heated to 70°C for 

15-minutes.  The resulting cDNA was used as a template for second strand 

synthesis and amplification by PCR.  Reagent blanks were included to control for 

DNA contamination and non-specific reactions. 

 

2.9.5.2 Second strand synthesis 

Second strand synthesis was performed following the standard PCR protocol 

(Section 2.5.3.3) using 2µl of cDNA.   RT-PCR products were separated and 

visualised according to the gel electrophoresis protocol (Section 2.5.4). 

 

2.9.6 Densitometry  

Size and band intensity of RT-PCR products were measured and compared 

(Figure 2.2) using the Alliance UVIBAND (TLS), software version 12.11.  Data 

were expressed as arbitrary units (AU) of intensity.  These were calculated as the 

sum of intensities in the defined area.  The density of a spot is calculated from its 

volume and is made of the sum of all pixel intensities composing the spot.  Spot 

density is dependent on the number of pixels inside the area of a spot, and the 

intensity of these points (V = ∑ni li).  Fold inductions were calculated compared 

with band intensity of products at 37°C (AU of sample/AU of sample at 37°C).  

Ratios to 23SrRNA were calculated (AU of 23S at test temperature/AU of 23S at 

37°C), such that band intensity at 37°C equals 1.  These values were used to 

adjust for any differences in RNA concentrations, used in the RT-PCR reactions.   
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Figure 2.2. Flow diagram outlining the basic method for densitometry/Band intensity 

quantification using Alliance UVIBAND (TLS) software version 12.11 

 

2.10 E. coli Growth experiments 

E. coli growth experiments in liquid cultures were carried out in volumes of 10mls 

or more.  A single pure colony was inoculated by sterile loop, into 5ml of broth 

and grown overnight at 37°C, with shaking at 200rpm.  Overnight cultures were 

grown for 14-17 hours to an absorbance of between 5 and 6 at OD600  (IMPLEN, 

DNA bands in agarose gel
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Alliance UVBAND 
image analysis
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Generated band 
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To Excel
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TLS).  Overnight cultures were diluted 1:1000 in fresh media and incubated at the 

required test temperature.  For temperature down-shift experiments, cultures were 

grown post-dilution for one or two hours at 37°C, before being shifted directly to 

the test temperature.  Samples were taken at specified time intervals for 

absorbance measurements (OD600) and/or cfu/ml by aerobic plate counting (APC).  

For APCs, a series of 10-fold dilutions were performed in fresh sterile media, 

tempered to the same temperature as the culture to be sampled.  Duplicate agar 

plates (LA, PCA or BHI agar) were spread with 100µl of each dilution and 

incubated at 37°C for 24 hours.  Cfus were enumerated by colony counting under 

magnification and cfu/ml calculated.  Non-inoculated controls were incubated to 

confirm media sterility.  Variations to this method are indicated in the results 

section. 

 

2.11 E. coli temperature down-shift for RNA isolation  

2.11.1 On BHI agar plates 

E. coli O157:H7 was inoculated into BHI broth and grown at 37°C for 18 hours to 

10
8 
cfu/ml.  1ml was transferred directly to the surface of replicate BHI agar plates 

(35mm diam.) that had been tempered to 37°C.  Inoculated plates were incubated 

for 3 hours at 37°C before being shifted directly to the required temperatures (4, 0 

and –1.5°C) for a further 3 hours.  One set of plates was left at 37°C for 

comparison.  Upon completion of the incubation, cells were fixed by addition of a 

5% acidic phenol/95% ethanol solution. Cells were harvested and flash frozen 

using a dry ice/methanol mix (Section 2.9.1).  Non-inoculated controls for all 

media were incubated to determine sterility.   To determine the inoculum level, 

APCs were performed as per E. coli growth experiments (Section 2.10).   

 

2.11.2 On Meat Plates 

Temperature down-shift experiments on meat plates, were performed as per the 

BHI agar experiments (Section 2.11.1), including controls.  One set of BHI agar 

plates was also incorporated at 37°C to confirm culture viability.   
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2.12 V. harveyi Bioluminescence Assay (VHBA) 

2.12.1 Preparation of Conditioned Media (CM)  

V. harveyi BB120 was grown in AB at 30°C for 14 hours to an absorbance of 1.5 

at OD600.  E. coli cultures were grown in LB at 37°C, either overnight, to a 

specific time or OD600 as outlined in the results section.  Cultures were 

centrifuged at 10000 rpm for 10 minutes (Heraeus Multifuge 3 S-R) to remove 

bacterial cells.  Supernatants were filter sterilized using 0.22µm filters (Millex 

GP).   CM was frozen at -20°C until required for use. 

 

2.12.2 VHBA using V. harveyi BB170  

The BB170 VHBA was adapted from methods by Greenberg et al., (1979), 

Bassler et al., (1997)  and Surrette and Bassler (1998).  V. harveyi strain BB170, 

was grown in AB at 30°C with shaking at 200rpm to an absorbance between 1.5 

and 1.6 at OD600 and diluted 1:1000 in fresh AB.  Test strain CMs were added to a 

final volume of 10% (v/v) to the diluted BB170 cultures and incubated at 30°C 

with shaking at 200rpm. Hourly samples of 100µl aliquots were dispensed into a 

96-well microtitre plate (Greiner Bio-one).  Light emission was measured using a 

POLARstar Galaxy Luminometer (BMG) and FLUOstar Galaxy software version 

4.31.0.   

 

2.12.3 VHBA using V. harveyi MM32  

The MM32 VHBA was adapted from Miller et al. (2004).  V. harveyi strain 

MM32 was grown in AB at 30°C with shaking at 200rpm for 14-hours to an 

absorbance of 1.7 at OD600 and diluted 1:5000 in fresh AB.  Test strain CM was 

added to a final volume of 10% (v/v) to the diluted MM32 cultures and incubated 

at 30°C with shaking at 200rpm.  Hourly samples were taken and measured as per 

the BB170 VHBA (Section 2.12.2). 

 

2.13 Bioluminescence luxCDABE promoter reporter assays 

Bioluminescence was used as a measure of promoter activity. Promoters were 

cloned upstream of the luxCDABE operon in pSB377 (Section 3.2.1).  Conditions 

for growth are varied according to the specific experimental conditions being 

tested and are outlined in the appropriate result sections. In all cases, duplicate 
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100µl aliquots were removed from the cultures and placed into a 96-well micro-

titre plate. Bioluminescence was measured using a luminometer (POLARstar 

Galaxy; BMG) and analysed using FLUOstar Galaxy software version 4.31.0.  At 

each time-point optical density was measured at 600nm, to assess culture growth. 

Where appropriate aerobic plate counts were performed to assess the number of 

cells (cfu/ml). Bioluminescence was reported as relative light units (RLU).  

Adjustment to optical density and to cell number were made as appropriate 

(RLU/OD600 and Lcfu (luminescence/cfu/ml) respectively).   

 

2.15 Statistical Analyses 

All growth curves, luminescent reporter and bioluminescent assays were carried 

out in either duplicate or triplicate.  Statistical analysis was carried out using 

appropriate methods including: means, ratios, standard deviation, standard error of 

the mean, t-tests and pairwise analysis of variance (ANOVAs) via Microsoft 

Excel.  Multiple pairwise comparisons were carried out using Genstat.  Statistical 

significance was defined as p <0.05 or a fold-difference of ≥ 2.0. 
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Chapter 3:  Results 

Temperature dependent gene expression in E. coli O157:H7  

 

3.1 Identifying E. coli O157:H7 genes differentially expressed at 

refrigeration temperatures. 

Studies have shown that E. coli O157:H7 is exceptionally resistant to external 

stress factors, including changes in temperature (Dykes et al., 2001; Oh et al., 

2008; J.D. Stopforth et al., 2007; Vital et al., 2008).  The organism‟s ability to 

adapt to and survive cold temperature is of particular importance since cold 

temperature is one of the major intervention strategies used in the control of food 

pathogens.  Differential expression of genes, in E. coli O157:H7 exposed to cold 

temperatures on a meat surface, was previously observed (Li, personal 

communication, 2007) using Random Arbitrarily Primed Polymerase Chain 

Reactions (RAP-PCR).  This chapter describes the identification of four 

differentially expressed E. coli O157:H7 genes associated with cold temperature, 

the confirmation of their expression by directed reverse transcription PCR (RT-

PCR) and the use of plasmid reporters for direct monitoring of their expression.  

 

3.1.1 Identification of Differentially expressed genes associated with 

changes in temperature by RAP-PCR. 

A number of the differentially expressed products, previously identified by RAP-

PCR (Li, personal communication, 2007) were sequenced and analysed as part of 

this study. RAP-PCR products were cloned into pCR2.1. Ligated DNA was 

transformed into TOP10 cells and transformants were selected using LA 

containing 50 µg/ml kanamycin. Resulting clones were re-streaked for purity. 

Plasmid DNA was prepared and sequenced. The identity of the sequences was 

made using the Basic Local Alignment Search Tool (BLAST) from the National 

Centre for Biotechnology Information (NCBI) website 

(www.ncbi.nlm.nih.gov/sites/entrez) (Table 3.1). A range of RNA-derived 

products were identified, including sequences from Bos taurus, and E. coli 
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O157:H7, as well as sequences which had no match in the online database. RAP-

PCR products 2991, 2981, 265A and 295A were derived from RNAs encoded by 

mdtI, mdtJI, hslJ and slp respectively (Figure 3.1, 3.2, 3.3 and 3.4; Table 3.2). 

Raw sequence BLAST analysis of 295A revealed a sequence match to slp (216nt 

with 98% identity) (Figure 3.1). slp encodes an outermembrane lipoprotein which 

is expressed during carbon starvation (White-Ziegler et al., 2008). Raw BLAST 

sequence analysis of 265A revealed a sequence match with hslJ (457nt with 99% 

identity) (Figure 3.2). hslJ encodes a stress response protein that through 

conceptual translation and protein identity to the MG1655 HslJ protein was 

identified as a heat shock-inducible protein (GenBank: AAG56381.1). Further 

studies have revealed roles for HslJ in novobiocin resistance and the regulation of 

virulence and transmission (Dowd & Ishizaki, 2006; Lilic et al., 2003).  Raw 

sequence BLAST analysis of 2991revealed a sequence match of 203 nt to mdtI 

(316nt) with 98% identity (Figure 3.3). Analysis of 2981 also aligned to mdtI 

sequence (115nt with 98% identity) but the majority of the fragment matched to 

mdtJ (291nt with 95% identity) (Figure 3.4). This result suggested that these two 

genes are transcribed as a single RNA transcript. Interestingly, mdtJ and mtdI lie 

next to each other, with mtdJ terminating within the coding sequence of mdtI by 

10nt, and forming a two-gene operon driven from a putative promoter located at 

the 29 nt upstream of mtdJ (Figure 3.5, 3.6; Tables 3.1, 3.2). These genes encode 

a putative multi-drug transporter, which belongs to the small multidrug resistance 

(SMR) family, and are reported to transport small molecules such as spermidine, 

nalidixic acid, sodium dodecyl sulfate (SDS), deoxycholate and fosfomycin 

(Higashi et al., 2008; Nishino & Yamaguchi, 2001). Approximately, 310nt 

downstream of these genes lies a divergent promoter for tqsA (Figure 3.5, 3.6). 

tqsA has been reported to encode a transporter of the quorum-sensing molecule, 

AI-2 (Herzberg et al., 2006). 

 

Although  mdtI, mdtJ  slp and hslJ were observed as being differentially expressed 

at cold temperature on meat by RAP-PCR, further analysis was required for 

confirmation of these findings.   
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Table 3.1. Identification of RAP-PCR products 

Fragment 

ID 

Sequence Match* Function 

213A 

295A 

2924A 

2991A 

27A 

215B 

266A 

2981A 

226A 

234 

2022 

2035A 

2401 

2913B 

2922 

29122B 

29135 

243 

2024B 

265A 

Vector + unknown 

slp 

Vector + unknown 

mdtI 

Vector + unknown 

Vector + unknown 

hchA (yedU) 

mdtJI 

yodB  

Bos taurus seq. 
¥
pO157 L7011 

Bos taurus seq. 

Vector + unknown 

Vector + unknown 

16SRNA partial 

yeaJ 

Z3271 
¥
pO157 espP 

Z5897 

hslJ 

 

Carbon starvation associated lipoprotein 

 

Multidrug transporter/small molecule 

 

 

Chaperone involved in heat shock 

Multidrug transporter/small molecule 

Putative cytochrome 

Dihydropyrimidine dehydrogenase 

Plasmid Stabilisation Factor (RelE/ParE) 

Mitochondrian 

 

 

 

Diguanylate cyclase (GGDEF) domain protein 

Hypothetical protein 

Extracellular serine protease 

Hypothetical protein 

Heat shock protein 
 

*NC 002655  E. coli O157:H7 EDL933 

¥AF074613 E. coli O157:H7 pO157 

Genes identified for further analysis are indicated in bold. 

 

 

Table 3.2. Genes of interest.  

Products Sequence Coordinates* Tag Locus* Gene Id.  NCBI 

accession 

mdtI c2347907-2348223 z2593 961546 NP_288034 

mdtJ c2348236-2348588 z2594 961548 NP_288035 

slp 4454268-4454867 z4908 961185 NP_290077 

hslJ 2109817-2190460 z2330 961015 NP_287767 

*Accession number: NC 002655 Escherichia coli O157:H7 EDL993 
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A. 

NAAGTGCGGT TAACAGCGGC GTCTAAACCA CTGTCGNCTA CACCCCGTCC CTCGTCCCGT 

CGGGCCCGGG TTGGGCCCCC CGGGTCCTCG CCGTCGTTGT TAGAAATCGC TGTATTACCG 

TTGGATAGCT ATGCGAAGCC TGATATTGAA GCCAACTATC TGGGCCGACT GCTCGCCAGA 

CAAAGCGGCT TCCTTGATCC AGTGAACTAT CGTAATCACT TTGTATACCA TCCTCGGCAC 

CATTCAGGGT GAACAACCTG GCTTTATCAA TAAAGTCCCG TATAACTATC CTGGAAGTGA 

ATATGTCAGG  

 

B. 

 gb|AE005174.2|  Escherichia coli O157:H7 EDL933, complete genome 

 Length=5528445 

  Features in this part of subject sequence: 

    outer membrane protein induced after carbon starvation 

  Score =  374 bits (202),  Expect = 2e-100 

  Identities = 212/216 (98%), Gaps = 3/216 (1%) 

  Strand=Plus/Plus 

 

Query  95       CGTTGTTAGAAATCGCTGTATTACCGTTGGATAGCTATGCGAAGCCTGATATTGAAGCCA  154 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4454506  CGTTGTTAGAAATCGCTGTATTACCGTTGGATAGCTATGCGAAGCCTGATATTGAAGCCA  4454565 

 

Query  155      ACTATCTGGGCCGACTGCTCGCCAGACAAAGCGGCTTCCTTGATCCAGTGAACTATCGTA  214 

                |||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4454566  ACTATCAGGGCCGACTGCTCGCCAGACAAAGCGGCTTCCTTGATCCAGTGAACTATCGTA  4454625 

 

Query  215      ATCACTTTGTATACCATCCTCGGCACCATTCAGGGTGAACAACCTGGCTTTATCAATAAA  274 

                |||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4454626  ATCACTTTGT-TACCATCCTCGGCACCATTCAGGGTGAACAACCTGGCTTTATCAATAAA  4454684 

 

Query  275      GTCCCGTATAACTATCCTGGAAGTGAATATGTCAGG  310 

                ||||||||||||| ||||||||||||||||| |||| 

Sbjct  4454685  GTCCCGTATAACT-TCCTGGAAGTGAATATG-CAGG  4454718 

 

C. 

 

 

Figure 3.1. Sequence detection from sequencing of RAP-PCR products 

A. Raw sequence obtained from sequencing clone 295A. 

B. BLAST sequence analysis result. 

C. Schematic diagram showing the alignment of the RAP-PCR fragment to the identified gene. 

  

4454268 4454867
Z4908 - slp

4454506 4454718

http://blast.ncbi.nlm.nih.gov/blast/dumpgnl.cgi?db=nr&na=1&gnl=gb|AE005174.2|&gi=56384585&term=56384585[gi]&RID=1BT84ARA012&QUERY_NUMBER=1&segs=4454505-4454717
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A. 

AGCAGCGTTT  TGGGTAGGGT  GTGCCGCTTT  ATTGTTGTCG  GCGTGTAGTC 

GTGAGCCTGT  TCAGCAGGCG  ACTGCGGCGC  ACGTAGCGCC  AGGTTTAAAA 

GCGTCGATGT  CCAGTAGTGG  AGAAGCAAAT  TGTGCAATGA  TCGGCGGTTC 

GCTTTCTGTT  GCCCGTCAAC  TGGATGGTAC  GGCGATTGGG  ATGTGTGCAT 

TACCCAACGG  CAAACGCTGT  AGCGAACAGT  CACTTGCCGC  CGGGAGCTGT 

GGCAGCTATT  AATTCATTAA  ATCCGCCAGC  TTATAAGTTA  ATGTCTGTTT 

CGCGGTCGCC  AGCGTTAACT  GGTTCGCGGT  CAGATCCACT  TGTGCACCTT 

CTTTCAGCAT  TTCGCTAATG  GTGTTATCGA  GTTCATTAAG  CTGCGGGTTA 

GCGCACATCA  TACGGGTCAT  TGCCAGCCCT  TTGGCTGTCA  GTTCACCATT 

AGACAGTCTG  AAGCTTAAGT  GGCAAATTCG  TATAAACCTA  CAGGAGTA 

B. 

 gb|AE005174.2|  Escherichia coli O157:H7 EDL933, complete genome 

 Length=5528445 

  Features in this part of subject sequence: 

    heat shock protein hslJ 

  Score =  839 bits (454),  Expect = 0.0 

  Identities = 456/457 (99%), Gaps = 0/457 (0%) 

  Strand=Plus/Minus 

 

Query  1        AGCAGCGTTTTGGGTAGGGTGTGCCGCTTTATTGTTGTCGGCGTGTAGTCGTGAGCCTGT  60 

                ||||||||||||||||||||||||||||||||||||||||||||||||| |||||||||| 

Sbjct  2109916  AGCAGCGTTTTGGGTAGGGTGTGCCGCTTTATTGTTGTCGGCGTGTAGTAGTGAGCCTGT  2109857 

 

Query  61       TCAGCAGGCGACTGCGGCGCACGTAGCGCCAGGTTTAAAAGCGTCGATGTCCAGTAGTGG  120 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109856  TCAGCAGGCGACTGCGGCGCACGTAGCGCCAGGTTTAAAAGCGTCGATGTCCAGTAGTGG  2109797 

 

Query  121      AGAAGCAAATTGTGCAATGATCGGCGGTTCGCTTTCTGTTGCCCGTCAACTGGATGGTAC  180 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109796  AGAAGCAAATTGTGCAATGATCGGCGGTTCGCTTTCTGTTGCCCGTCAACTGGATGGTAC  2109737 

 

Query  181      GGCGATTGGGATGTGTGCATTACCCAACGGCAAACGCTGTAGCGAACAGTCACTTGCCGC  240 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109736  GGCGATTGGGATGTGTGCATTACCCAACGGCAAACGCTGTAGCGAACAGTCACTTGCCGC  2109677 

 

Query  241      CGGGAGCTGTGGCAGCTATTAATTCATTAAATCCGCCAGCTTATAAGTTAATGTCTGTTT  300 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109676  CGGGAGCTGTGGCAGCTATTAATTCATTAAATCCGCCAGCTTATAAGTTAATGTCTGTTT  2109617 

 

Query  301      CGCGGTCGCCAGCGTTAACTGGTTCGCGGTCAGATCCACTTGTGCACCTTCTTTCAGCAT  360 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109616  CGCGGTCGCCAGCGTTAACTGGTTCGCGGTCAGATCCACTTGTGCACCTTCTTTCAGCAT  2109557 

 

Query  361      TTCGCTAATGGTGTTATCGAGTTCATTAAGCTGCGGGTTAGCGCACATCATACGGGTCAT  420 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109556  TTCGCTAATGGTGTTATCGAGTTCATTAAGCTGCGGGTTAGCGCACATCATACGGGTCAT  2109497 

 

Query  421      TGCCAGCCCTTTGGCTGTCAGTTCACCATTAGACAGT  457 

                ||||||||||||||||||||||||||||||||||||| 

Sbjct  2109496  TGCCAGCCCTTTGGCTGTCAGTTCACCATTAGACAGT  2109460 

C. 

 

Figure 3.2. Sequence detection from sequencing of RAP-PCR products 

A) Raw sequence obtained from sequencing clone 265A. B) BLAST sequence analysis result and 

C) Schematic diagram showing the alignment of the RAP-PCR fragment to the identified gene. 

2109236 2109658

2109916 2109460  

Z2330 - hslJ

http://blast.ncbi.nlm.nih.gov/blast/dumpgnl.cgi?db=nr&na=1&gnl=gb|AE005174.2|&gi=56384585&term=56384585[gi]&RID=3F6GERXG01R&QUERY_NUMBER=1&segs=2109459-2109915
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A. 

AGATATCTGC CGCGTTAAAC GCGGCAGTCA TAAACACTGG CGTCGTTANN GCCATCCGAT 

ACGGGTGCTG GCTGGCATCG TGCTGGATCG TGCTACGTCT GAATGAGGTC GCGCATGGCT 

GCTCTCCCTG CGGCGGTGCT GGCTGCCTTT AGTGCGCTTT CTCAGGCCGT TAAAGGGATC 

GACTTGTCTG TCGCTTATGC ATTGTGGGGC GGGTTTGGTA TTGCCGCCAC GTTAGCCGCA 

GGTTGGATCT TGTTTGGTCA ACGGTTAAAT CGTNACAGGC TGGATTGGCC TGGTCTTGCT 

GTATGGCTGG AATGATCATG GTGCAAGCTT AAGGGCGAAT TCGTTTAACC TGCAGGACTA 

GTCCCTTTAG TGAGGGTTAA TTCTGAGCTT GGCGTAATCA TGGTCATAGC TGTTTCCTGT 

GTGAAATTGT TATCCGCTCA CAAATTCCAA CACAACATAC GAGCCGGAAG CATAAAGTGT 

AAAGCCTGGG GTGCCTAATG AGTGAGCT 

 

B. 

 gi|56384585|gb|AE005174.2|  Escherichia coli O157:H7 EDL933, complete 

         genome 

 Length=5528445 

  Features in this part of subject sequence:   possible chaperone 

  Score =  353 bits (178),  Expect = 4e-94 

  Identities = 201/205 (98%), Gaps = 3/205 (1%) 

  Strand=Plus/Minus 

 

Query  120      TGCTCTCCCTG-CGGCGGTGCTGGCTGCCTTTAGTGCGCTTTCTCAGGCCGTTAAAGGGA  178 

                ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2348121  TGCTCTCCCTGGCGGCGGTGCTGGCTGCCTTTAGTGCGCTTTCTCAGGCCGTTAAAGGGA  2348062 

 

Query  179      TCGACTTGTCTGTCGCTTATGCATTGTGGGGCGGGTTTGGTATTGCCGCCACGTTAGCCG  238 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2348061  TCGACTTGTCTGTCGCTTATGCATTGTGGGGCGGGTTTGGTATTGCCGCCACGTTAGCCG  2348002 

 

Query  239      CAGGTTGGATCTTGTTTGGTCAACGGTTAAATCGTNACAGGCTGGATTGGCCTGGTCTTG  298 

                ||||||||||||||||||||||||||||||||||| | |||||||||||||||||||||| 

Sbjct  2348001  CAGGTTGGATCTTGTTTGGTCAACGGTTAAATCGTAA-AGGCTGGATTGGCCTGGTCTTG  2347943 

 

Query  299      CTGTATGGCTGGAATGATCATGGTG  323 

                |||| |||||||||||||||||||| 

Sbjct  2347942  CTGT-TGGCTGGAATGATCATGGTG  2347919 

 

C. 

 

Figure 3.3. Sequence detection from sequencing of RAP-PCR products 

A) Raw sequence obtained from sequencing clone 2991A. B) BLAST sequence analysis result and 

C) Schematic diagram showing the alignment of the RAP-PCR fragment to the identified gene. 

2347907 2348223

2347919 2348121

Z2593 - mdtI

http://www.ncbi.nlm.nih.gov/blast/dumpgnl.cgi?db=nr&na=1&gnl=gb|AE005174.2|&gi=56384585&term=56384585[gi]&RID=1159998440-3800-521329524.BLASTQ4&QUERY_NUMBER=1&segs=2347918-2348120,423069-423181
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A.  
AANATAAGCT NGCTGTCGTC TACAACGCCG GCAGTNNATA TAACTACTAG GCCTGTCTNC 

TTACCATTGC CCATCCGCGG GTGCTTGACC ACTTACTTTG GTCGCTGATA GCGAATAAAT 

ATCTCTTGCG TGAGAAGTGA CAATGTATAT ATTGGATATT AAGTGTCTTG GCTATTTGCT 

ACAGAAATTA CCTGGTACGC TGTCTATGAA ATGGGCGAGC GTCAGTGATG GAAATGGCGG 

CTTTATTTTA ATGCTGGTGA TGATTTCTCT GTCGTATATA TTTCTCTCTT TCGCTGTTAA 

AAAAATAGCC TTAGTGTGTG GCTTATGCGC TGTGNGGAAG TGTATCGNGT ATTTCTATTT 

ATTACCTTGT TTAGCGTTTT TGTTATTCTG ACGAAAGTTT ATCGCTGATG AAAATTTGCC 

TGGGTTAACC ACCCTGGTCG CCGGGATAGT TGTTTGATCA AATCAGTGTA CCCTGTAAAA 

TGCTGCTGTC AAACCTGAAC TGGAGTGTGA ACCATGGCTG CAGTTTGAAT GGGTTCACTG 

CCTGCCTGGC TTGGCATTGG CAAATCTGTG CTGGAAATCG TTGCTAACTG TCTTTTTGAA 

ATTTTC 

B. 

 gi|56384585|gb|AE005174.2|  Escherichia coli O157:H7 EDL933, complete  

         genome 

 Length=5528445 

  Features in this part of subject sequence: 

  possible chaperone 

  Score =  339 bits (171),  Expect = 7e-90 

  Identities = 277/291 (95%), Gaps = 12/291 (4%) 

  Strand=Plus/Minus 

 

Query  176      TTGCTACAGAAATTACCTGGTACGCTGTCTATGAAATGGGCGAGCGTCAGTGATGGAAAT  235 

                ||||||||||||||||| ||||||||||||||||||||||||||||||||||| |||||| 

Sbjct  2348554  TTGCTACAGAAATTACC-GGTACGCTGTCTATGAAATGGGCGAGCGTCAGTGAGGGAAAT  2348496 

 

Query  236      GGCGGCTTTATTTTAATGCTGGTGATGATTTCTCTGTCGTATATATTTCTCTCTTTCGCT  295 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2348495  GGCGGCTTTATTTTAATGCTGGTGATGATTTCTCTGTCGTATATATTTCTCTCTTTCGCT  2348436 

 

Query  296      GTTAAAAAAATAGCCTTAGTGTGTGGCTTATGCGCTGTGNGGAAGTGTATCGNGTATTTC  355 

                ||||||||||||||||||| ||||||||||||||||||| ||||| |||||| ||||||  

Sbjct  2348435  GTTAAAAAAATAGCCTTAG-GTGTGGCTTATGCGCTGTG-GGAAG-GTATCG-GTATTT-  2348381 

 

Query  356      TATTTATTACCTTGTTTAGCGTTTTTGTTATTCTGACGAAAGTTTATCGCTGATGAAAAT  415 

                ||||||||||||||||||||| ||||||||||| |||||||||||||||||||||||||  

Sbjct  2348380  TATTTATTACCTTGTTTAGCG-TTTTGTTATTC-GACGAAAGTTTATCGCTGATGAAAA-  2348324 

 

Query  416      TTGCCTGGGTTAACCACCCTGGTCGCCGGGATAGTTGTTTGATCAAATCAG  466 

                ||||| |||||||||||||||||||||||||||||   ||||||||||||| 

Sbjct  2348323  TTGCC-GGGTTAACCACCCTGGTCGCCGGGATAGT--GTTGATCAAATCAG  2348276 

 

  Features in this part of subject sequence: 

    possible chaperone 

   possible chaperone 

  Score =  103 bits (52),  Expect = 7e-19 

  Identities = 108/116 (93%), Gaps = 8/116 (6%) 

  Strand=Plus/Minus 

Query  491      AAACCTGAACTGGAGTGTGAACCATGGCTGCAGTTTGAATGGGTTCACTGCCTGCCTGGC  550 

                ||||||||||||||| |||||||||||| ||||||||||||||||||| ||| ||||||| 

Sbjct  2348258  AAACCTGAACTGGAG-GTGAACCATGGC-GCAGTTTGAATGGGTTCAC-GCC-GCCTGGC  2348203 

 

Query  551      TTGGCATTGGCAAATCTGTGCTGGAAATCGTTGCTAACTGTCTTTTTGAAATTTTC  606 

                | ||||||||||| || ||||||||||||||||||||| ||||||||||||||||| 

Sbjct  2348202  T-GGCATTGGCAA-TC-GTGCTGGAAATCGTTGCTAAC-GTCTTTTTGAAATTTTC  2348151 

C. 

 
Figure 3.4. Sequence detection from sequencing of RAP-PCR products 

A) Raw sequence obtained from sequencing clone 2981A, B) BLAST sequence analysis result. 
And C) Schematic diagram showing the alignment of the RAP-PCR fragment to the identified 
gene. 

2348236 2348588

2348554 (176)2348276 (466)

Z2594 - mdtJ

i.

ii.

2347907 2348223

2348258 (491)2348151 (606)

Z2594 - mdtI

http://www.ncbi.nlm.nih.gov/blast/dumpgnl.cgi?db=nr&na=1&gnl=gb|AE005174.2|&gi=56384585&term=56384585[gi]&RID=1160023131-11923-28831737139.BLASTQ2&QUERY_NUMBER=1&segs=2348275-2348553,2348150-2348257
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Figure 3.5. Schematic alignment of mdtJI genes in E. coli O157:H7 EDL933 

 

Showing the location of the promoters and genes within this region. Primers used in this study are 

indicated by the arrows and the size of product is indicated in brackets. Sequence orientation and 

coordinates for EDL933 (Accession Number: NC 002655 Escherichia coli O157:H7 EDL993) are 

shown in brackets under the upper blue line. 
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Figure 3.6. E. coli O157:H7 mdtJI and tqsA sequence with primer sites indicated.   

Start and stop codons are indicated in bold (mdtJ –blue; mdtI –red; tqsA –black).  Putative 

promoters are indicated, with the -10 and -35 sites underlined.  The sequence coordinates are 

from NC 002665. 

CTTCATCAGGCAAGTTTCACCATGATCATTCCAGCCAACAGCAAGACCAGGCCAATCCAGCCTTTACGATTTAACCGTTGACCAAACAAGATCCAACCTG
2348000

GAAGTAGTCCGTTCAAAGTGGTACTAGTAAGGTCGGTTGTCGTTCTGGTCCGGTTAGGTCGGAAATGCTAAATTGGCAACTGGTTTGTTCTAGGTTGGAC

Z2593F

CGGCTAACGTGGCGGCAATACCAAACCCGCCCCACAATGCATAAGCGACAGACAAGTCGATCCCTTTAACGGCCTGAGAAAGCGCACTAAAGGCAGCCAG
2348100

GCCGATTGCACCGCCGTTATGGTTTGGGCGGGGTGTTACGTATTCGCTGTCTGTTCAGCTAGGGAAATTGCCGGACTCTTTCGCGTGATTTCCGTCGGTC

Z2593R

CACCGCCGCCAGGGAGAGCAAGCCAAATATTTTGCGACGAAAGCCGTCAGAAAATTTCAAAAAGACGTTAGCAACGATTTCCAGCACGATTGCCAATGCC
2348200

GTGGCGGCGGTCCCTCTCGTTCGGTTTATAAAACGCTGCTTTCGGCAGTCTTTTAAAGTTTTTCTGCAATCGTTGCTAAAGGTCGTGCTAACGGTTACGG

AGCCAGGCGGCGTGAACCCATTCAAACTGCGCCATGGTTCACCTCCAGTTCAGGTTTACGTGCTTTACGGGTACCTGATTTGATCAACACTATCCCGGCG
2348300

TCGGTCCGCCGCACTTGGGTAAGTTTGACGCGGTACCAAGTGGAGGTCAAGTCCAAATGCACGAAATGCCCATGGACTAAACTAGTTGTGATAGGGCCGC

ACCAGGGTGGTTAACCCGGCAATTTTCATCAGCGATAAACTTTCGTCGAATAACAAAACGCTAAACAAGGTAATAAATAAAATACCGATACCTTCCCACA
2348400

TGGTCCCACCAATTGGGCCGTTAAAAGTAGTCGCTATTTGAAAGCAGCTTATTGTTTTGCGATTTGTTCCATTATTTATTTTATGGCTATGGAAGGGTGT

Z2594F

GCGCATAAGCCACACCTAAGGCTATTTTTTTAACAGCGAAAGAGAGAAATATATACGACAGAGAAATCATCACCAGCATTAAAATAAAGCCGCCATTTCC
2348500

CGCGTATTCGGTGTGGATTCCGATAAAAAAATTGTCGCTTTCTCTCTTTATATATGCTGTCTCTTTAGTAGTGGTCGTAATTTTATTTCGGCGGTAAAGG

CTCACTGACGCTCGCCCATTTCATAGACAGCGTACCGGTAATTTCTGTAGCAATAGCCAGACCTAATAAAATCCAATAAATATACATTGTCCTTCTCCTG
2348600

GAGTGACTGCGAGCGGGTAAAGTATCTGTCGCATGGCCATTAAAGACATCGTTATCGGTCTGGATTATTTTAGGTTATTTATATGTAACAGGAAGAGGAC

Z2594R

CAAGAGAATTATTTTAATTTTCGCTTAATTCAGCGAAACCAAAGTAAAGTGGTCAAGCCCCGCGTATAGGGCAAGCTTAGGCAGAAGAAAGGACTAAAGC
2348700

GTTCTCTTAATAAAATTAAAAGCGAATTAAGTCGCTTTGGTTTCATTTCACCAGTTCGGGGCGCATATCCCGTTCGAATCCGTCTTCTTTCCTGATTTCG

ZPROM2

GCGTTGCGCCAGTGCTGCTCACCTACGAGCAAGATAGTGGATGAGGTACGAAGATGGGTAAATGTAGAAAATAACGTCCTGAACAAATTGTCCATAATAT
2348800

CGCAACGCGGTCACGACGAGTGGATGCTCGTTCTATCACCTACTCCATGCTTCTACCCATTTACATCTTTTATTGCAGGACTTGTTTAACAGGTATTATA

TACAATTATCCGCAGTGTTGCTTCTCGTCATCGCGGATGATAATTGTCCTCGGTAGTTGAACACSCCTGATTTGTATCATAGCTTAAGAATTAACTCAAA
2348900

ATGTTAATAGGCGTCACAACGAAGAGCAGTAGCGCCTACTATTAACAGGAGCCATCAACTTGTGSGGACTAAACATAGTATCGAATTCTTAATTGAGTTT

ATATTTTCACTTCTTTACCTGAGCGGTTTGATTTTCGTTATGATGACGGAGCGAAAAAGACATTATTATTAGCAAAGGAAGAAAAAACGGGGACAAGCAT
2349000

TATAAAAGTGAAGAAATGGACTCGCCAAACTAAAAGCAATACTACTGCCTCGCTTTTTCTGTAATAATAATCGTTTCCTTCTTTTTTGCCCCTGTTCGTA

GGCAAAGCCGCTCATCACGCTCAATGGCCTAAAAATCGTCATTATGTTGGGAATGCTGGTCATTATTCTCTGCGGTATCCGTTTTGCCGCCGAGATCATC
2349100

CCGTTTCGGCGAGTAGTGCGAGTTACCGGATTTTTAGCAGTAATACAACCCTTACGACCAGTAATAAGAGACGCCATAGGCAAAACGGCGGCTCTAGTAG

GTGCCGTTTATTCTCGCATTATTTATTGCTGTTATTCTTAACCCGCTGGTGCAACACATGGTCCGCTGGCGTGTGCCGCGTGTACTGGCAGTGTCGATTT
2349200

CACGGCAAATAAGAGCGTAATAAATAACGACAATAAGAATTGGGCGACCACGTTGTGTACCAGGCGACCGCACACGGCGCACATGACCGTCACAGCTAAA

TGATGACCATCATCGTGATGGCTATGGTGTTGCTGTTAGCTTATCTGGGTTCCACGCTCAACGAGTTGACGCGGACGTTACCGCAATATCGCAACTCTAT
2349300

ACTACTGGTAGTAGCACTACCGATACCACAACGACAATCGAATAGACCCAAGGTGCGAGTTGCTCAACTGCGCCTGCAATGGCGTTATAGCGTTGAGATA

ZPROM1

TATGACGCCGCTGCAAGCTCTTGAGCCGTT
2349330

ATACTGCGGCGACGTTCGAGAACTCGGCAA

-35

-35

-10

Figure 2.??. E. coli O157:H7 mdtJI and tqsA sequence with primer sites indicated.
Start and stop codons are indicated in bold (mdtJ –blue; mdtI – red; tqsA – black.
Putative promoters are indicated, with the  -10 and -35 sites are underlined. 

The sequence coordinates are from NC 002665.

-10

PmdtJI

PtqsA
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3.1.2 Confirmation of altered gene expression associated with cold 

temperature exposure using RT-PCR 

Specific analysis of mRNA expression can provide information regarding the 

transcriptional activity within a bacterial population. Gene-specific RT-PCR was 

the first strategy employed to monitor gene expression after E. coli O157:H7 had 

been exposed to a down-shift from optimal growth temperature to refrigeration 

temperatures. 

 

To detect specific mRNA produced in response to cold temperature, E. coli cells 

were exposed to a rapid down-shift in temperature (cold shock) prior to RNA 

isolation. RT-PCR was performed to detect the presence of specific mRNAs and 

confirm that the genes identified by RAP-PCR (Section 3.1.1) were expressed in 

response to cold temperature. 

 

3.1.2.1 Temperature down-shift on BHI agar plates  

Although the identified genes were originally isolated from experiments 

conducted on meat, the initial conformation cold-shock experiments were carried 

out using BHI broth and agar.  BHI is a rich medium that has similarities with 

meat, but provides a more consistent matrix where potential experimental 

variables are more easily controlled.   

 

E. coli O157:H7 was inoculated into BHI broth and grown at 37°C for 18 hours, 

to a cell density of 10
8 

cfu/ml. The final cell density was confirmed by Aerobic 

plate count (APC) at 37°C.  1ml of culture was transferred to the surface of 37°C-

tempered replicate BHI agar plates (35mm diam.). Non-inoculated controls for all 

media were incubated to determine media sterility.    Inoculated plates were 

incubated for 3 hours at 37°C to allow the culture to stabilise, before being down-

shifted to the required test temperatures of 4, 0 and -1.5°C. The stabilisation 

period was used to ensure that observed changes in gene expression were, in fact, 

induced by the temperature change, and not induced by the shift from liquid BHI 

to solid BHI agar.  Plates were incubated for a further 3 hours at the new 

temperatures.  As a control for gene expression at the optimal growth temperature, 

one set of plates remained at 37°C.  Upon completion of the incubation period, 
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cells were fixed by the addition of 5% acidic phenol/95% ethanol fixative 

solution, harvested and flash frozen using a dry ice/methanol bath.   

 

Following fixation, total bacterial RNA was isolated, and RT-PCR performed 

using specific primers and protocols designed for detection of MdtI, MdtJ, Slp, 

HslJ and 23SrRNA RNAs (Table 2.4).  PCR products were mixed at a ratio of 

5µl:1µl with gel loading buffer (glb), and loaded onto 1% (w/v) agarose gels. Gel 

electrophoresis was performed as described by Sambrook et al., (1998).  

Visualisation of DNA was by exposure to UV light and the image captured by Gel 

Doc 1000 and Quantity One imaging software version 4.5.2 (BIORAD). To 

determine the PCR product sizes, a 1Kb plus (Invitrogen) DNA molecular weight 

marker was used.    

 

RT-PCR with gene specific primers for 23SrRNA, MdtI, MdtJ, Slp, and HslJ 

yielded amplicons of expected sizes:  23S (645 bp); MdtI (191bp); MdtJ (225.bp); 

Slp (225 bp) and HslJ (197 bp). Control reactions, which did not contain SSIII 

reverse transcriptase, did not yield any PCR products (Figure 3.7).   23SrRNA, a 

stable RNA, used as a control for RNA preparation efficiency and normalization, 

yielded product at all temperatures tested (37, 4, 0 and -1.5°C).  Similarly, PCR 

products were generated with slp-specific primers indicating that slp mRNA was 

expressed at all four temperatures, however, less slp mRNA was present at 37°C 

than at the colder temperatures. hslJ mRNA was also present in cultures incubated 

at all temperatures, however more HslJ product was generated at 37°C than at the 

colder temperatures.  mdtI and mdtJ mRNA was only detected by RT-PCR in 

cultures held at the three cold temperatures, 4, 0 and -1.5°C and not at 37°C.  

 

To clearly define the differences in gene expression at the different temperatures, 

the intensity of the RT-PCR bands was quantified using UVIBAND (TLS), 

software version 12.11 (Figure 3.8).  Data are expressed as arbitrary units of 

intensity.  Ratios to 23SrRNA were calculated to normalize RNA loading.   

 

Quantification of the intensities of the 23SrRNA RT-PCR products revealed that 

there were differences in RNA loading for each of the temperatures (Figure 3.8).  
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The differences in 23SrRNA were calculated and reported as relative band 

intensity:  Relative band intensities = Arbitrary units (AU) of test samples/AU of 

37°C samples.  Ratios of RT-PCR rRNA loading at 37°C:4°C, 37°C:0°C and 37: 

-1.5°C were calculated as 1:1.16; 1:1.46 and 1:1.48 respectively (Figure 3.9).  

These 23SrRNA product-loading ratios were used for normalization of the Slp, 

HslJ, MdtI and MdtJ RT-PCR products.  

 

Densitometry performed on MdtI PCR products (Figure 3.10 A) revealed that no 

MdtI was expressed at 37°C. However mdtI mRNA was expressed at refrigeration 

temperatures (124-152AU), with 124-152 times more expression at cold 

temperature than at 37°C (4°C = 152:1; 0°C = 124:1; -1.5°C = 127:1).  A similar 

trend was observed for mdtJ expression (Figure 3.10B), although the ratios were 

much higher.   mdtJ  was expressed between 30849 -41539 times more at 

refrigeration temperatures compared with 37°C (4°C= 36695:1; 0°C = 30849:1; 

-1.5°C= 41539:1).  The high ratios observed were potentially an artifact arising 

from high gel exposure, combined with non-detection of mdtJ mRNA at 37°C.  

The differences in exposure are clearly apparent when comparing the intensities 

for the molecular weight marker (1Kb plus) across all gels (Figure 3.7). Band 

intensity quantification of the Slp RT-PCR products (Figure 3.10C) revealed that 

while slp was expressed at 37°C, expression was up-regulated by 3.8-4.7 times at 

refrigeration temperatures (4°C = 4.68:1; 0°C = 3.91:1 and -1.5°C = 3.80:1).  

Conversely, hslJ (Figure 3.10D) was expressed approximately twice as much at 

37°C than at 4 and -1.5°C, and three times as much at 0°C.  (4°C = 0.43:1; 0°C = 

0.30:1; -1.5°C = 0.52:1).   
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Figure 3.7.  RT-PCR products generated from total bacterial RNA preparations isolated 

from E. coli O157:H7 cultures exposed to different temperatures on BHI agar. Products 

were separated on a 1% agarose gel.  

 

Lane MW, 1Kb plus molecular weight marker; lane 1, RNA isolated from culture grown at 37°C 

plus RT; lane 2, 37°C product minus RT; lane 3, 4°C product plus RT; lane 4, 4°C product minus 

RT; lane 5, 0°C product plus RT; lane 6, 0°C product minus RT; lane, -1.5°C product plus RT; 

lane 8, -1.5°C plus RT. 

 

 

Figure 3.8.  Densitometry analysis of band intensity for 23SrRNA RT-PCR product.  RNA 

was isolated from E. coli O157:H7 cultures grown at 37°C then incubated at either 37, 4, 0 or 

-1.5°C.  

 

Lane MW, 1Kb plus molecular weight marker; lane 1, RNA isolated from culture exposed to 37°C 

plus RT; lane 2, 37°C product minus RT; lane 3, 4°C product plus RT; lane 4, 4°C product minus 

RT; lane 5, 0°C product plus RT; lane 6, 0°C product minus RT; lane, -1.5°C product plus RT; 

lane 8, -1.5°C plus RT. 

Band intensity values are expressed as Arbitrary Units (AU) generated by analysis with 

UVIBAND (TLS), software version 12.11. 
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Figure 3.9. Relative band intensity ratios for 23S RT-PCR products.   

 

Ratios of RT-PCR rRNA loading at 37°C:4°C, 37°C:0°C and 37:-1.5°C were calculated as 1:1.16; 

1:1.46 and 1:1.48 respectively.  These product-loading ratios were used for normalization of the 

Slp, HslJ, MdtI and MdtJ RT-PCR products. 

 

 

Figure 3.10. RT-PCR densitometry results for expression of mdtI (A), mdtJ (B), slp (C) 

and hslJ (D) 

 

Post-temperature shift from 37°C to 37, 4, 0 and -1.5°C on BHI agar plates. Fold induction of 

relative expression is the ratio of band intensity (AU) at the test temperature/band intensity (AU) at 

37°C.  The results were normalized to 23SrRNA loading ratios prior to the calculation of 

fold induction. 
Lane MW, 1Kb plus molecular weight marker; lane 1, RNA isolated from culture exposed to 37°C 

plus RT; lane 2, 37°C product minus RT; lane 3, 4°C product plus RT; lane 4, 4°C product minus 

RT; lane 5, 0°C product plus RT; lane 6, 0°C product minus RT; lane, -1.5°C product plus RT; 

lane 8, -1.5°C plus RT. 
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Analysis of the expression pattern of the four genes revealed that only mdtJ and 

mdtI were switched on at refrigeration temperatures, with no mRNA detected at 

37°C. Furthermore, sequence analysis had revealed that these genes formed an 

operon and are therefore transcriptionally linked. Based on this data it was 

decided to further investigate the expression of mdtJI operon at refrigeration 

temperatures. 

 

3.1.2.2 Temperature down-shift on meat plates 

On BHI agar, mdtI and mdtJ genes were highly expressed at cold temperatures but 

were not detected at 37°C.  Temperature down-shift experiments on meat, were 

performed in the same way as those performed on BHI agar, to determine if mdtJ 

and mdtI expression was dependent on temperature within a chilled meat context.  

Experiments were performed on duplicate meat plates, and RT-PCR was carried 

out seperately for each set of samples. 

 

For both sets of RT-PCR, gene specific primers for 23SrRNA, MdtI and MdtJ 

yielded amplicons of the expected size.   Control reactions which did not contain 

SSIII reverse transcriptase (RT) did not yield PCR products.  23SrRNA was used 

as a control for RNA preparation efficiency and normalisation, and yielded 

product at all temperatures.  Similarly MdtI and MdtJ reactions yielded product at 

all temperatures, although the RT-PCR product bands were fainter in samples 

exposed to 37°C than those exposed to refrigeration temperatures (Figure 3.11), 

suggesting up-regulation in expression. 

 

To clearly define the differences in gene expression observed for mdtI and mdtJ at 

different temperatures, the intensity of the RT-PCR bands were quantified as for 

BHI agar experiments (Figures 3.8-3.10).  Quantification of the intensities of the 

23S RT-PCR products revealed slight differences in RNA loading for each of the 

temperature samples.  Relative band intensities reflected the ratios of rRNA 

loading and were calculated as Arbitrary units(AU) of test samples/AU of 37°C 

samples (Table 3.3).  These 23SrRNA loading ratios were used for normalisation 

of the MdtI and MdtJ RT-PCR products. 
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Average densitometry ratios, calculated for MdtI products (Figure 3.12 A) which 

had been extracted from E. coli O157:H7 cells on a meat surface, revealed that 

mdtI was expressed approximately twice as much at refrigeration temperatures 

compared to 37°C (4°C = 2.17:1; 0°C = 2.08:1; -1.5°C = 2.2:1).  Similar increases 

in expression were observed for mdtJ, with 2-3 times more product generated 

from the samples harvested at the refrigeration temperatures (Figure 3.12B) 

compared with 37°C (4 = 2.90:1, 0 = 2.1:1; -1.5°C = 2.98:1). 

  

 

Figure 3.11. RT-PCR products generated from total bacterial RNA preparations isolated 

from E. coli O157:H7 cultures exposed to different temperatures on meat.  Products were 

separated on a 1% agarose gel.  

 

Lane MW, 1Kb plus molecular weight marker; lane 1, RNA isolated from culture grown at 37°C 

plus RT; lane 2, 37°C product minus RT; lane 3, 4°C product plus RT; lane 4, 4°C product minus 

RT; lane 5, 0°C product plus RT; lane 6, 0°C product minus RT; lane, -1.5°C product plus RT; 

lane 8, -1.5°C plus RT. 

  

 

Table 3.3. Relative band intensities for 23S RT-PCR product* 

 37°C 4°C 0°C -1.5°C 

Set A 1.00 1.00 1.08 1.10 

Set B 1.00 0.96 1.07 0.87 

*Used for normalization of the MdtI and MdtJ RT-PCR products 
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Figure 3.12. RT-PCR densitometry results for expression of mdtI (A), and mdtJ (B) post-

temperature shift from 37°C to 37, 4, 0 and -1.5°C on Meat plates. 

 

Fold induction of relative expression is the ratio of band intensity (AU) over band intensity 

(AU) at 37°C. 

Data shown are the representative of two separate experiments.  Average fold inductions 

calculated for the experiments.  Standard Error of the Mean is indicated by error bars. 

 

 

3.2 Confirmation of mdtJI expression in response to temperature 

down-shifts using bioluminescent promoter reporters 

 Expression of mdtI and mdtJ was up-regulated in E. coli O157:H7 on BHI agar 

and on meat plates that were held at refrigeration temperatures compared to the 

optimal growth temperature of 37°C.  RT-PCR was used to measure the RNA 

levels present in samples taken at a single time point; 3 hours after temperature 

downshifts.  However, cell recovery difficulties were encountered with meat 

plates leading to low bacterial RNA recovery.   To directly monitor mdtJI 

promoter activity, a mdtJI::luxCDABE promoter reporter was constructed and 

transformed into E. coli O157:H7.   The expression of mdtJI in response to both 

optimal and refrigeration temperatures was monitored over growth.    

 

3.2.1 Construction of bioluminescent mdtJI promoter reporter 

A promoter reporter plasmid, pSB377, containing a promoterless  luxCDABE 

cassette (Winson et al., 1998)  was used to construct a bioluminescent reporter 

plasmid, pWU2 (Table 2.3) for mdtJI expression (Figure 3.13). Briefly, the 

promoter region, including the 500 bp upstream of the -35 RNA polymerase 

recognition site was PCR amplified and cloned initially into pCR2.1 to create 



Chapter 3: Results  

 

56 

 

pWU1. pWU1 DNA was isolated and confirmed by PCR amplification, as well as 

by DNA sequencing. The primers used for the original PCR amplification contain 

endonuclease restriction sites for EcoR 1 and SnaB 1 to facilitate transfer of the 

mdtJI promoter into the correct position upstream of the luxCDABE cassette in 

pSB377 (Table 2.4). To aid the selection of the correct promoter clone, the mdtJI 

promoter-pSB377 ligation was initially transformed into chemically competent 

TOP10 cells. Clone selection was carried out using carbenicillin in the media and 

via screening of colonies for light production (UVItech, Alliance 4.7; for an 

example, see Figure 3.14A-B). Light-producing colonies were re-streaked for 

purity, and stable light production confirmed. Plasmid DNA was isolated and 

sequenced to confirm the insert was correct and that the junction between the 

promoter and the start site of the luxC gene was aligned appropriately. The correct 

plasmid, pWU2, was transformed into E. coli O157:H7.  E. coli O157:H7 

transformants were selected by growth on LA-carbenicillin plates at 37°C and 

screened for light production (Figure 3.14A-B).  Bioluminescent transformants 

were purified by sub-culturing onto fresh selective medium (Figure 3.14C).  The 

stability of pWU2 in E. coli O157:H7 was confirmed by plating from both broth 

and agar plates and analyzing colonies for the ability to produce bioluminescence. 

No significant plasmid loss was detected. mdtJI::luxCDABE integrity in pWU2 

was confirmed by DNA sequencing.  E. coli O157:H7 pWU2 was used in 

subsequent light reporter assay experiments.  
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Figure 3.13. Schematic diagram illustrating the construction of pWU2 
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Figure 3.14 Bioluminescent colonies 

A)  Standard photograph of E. coli O157:H7 pWU2 transformants on LA +carbenicillin. Image 

capture (UVItech Alliance 4.7) 

B)  Biolumeniscent capture from transformant colonies.  Image capture time = 30 seconds 

(Uvitech Alliance 4.7). 

C)  Example of purity plate showing Positive (+) bioluminescence from E. coli O157:H7 pWU2 

and the Negative (-) bioluminescence E. coli O157:H7 pSB377. 

 

3.2.2 Does mdtJI promoter expression occur at the optimal growth 

temperature of 37°C? 

E. coli O157:H7 pWU2 was grown overnight in LB at 37°Cand subsequently 

diluted 1:1000 in fresh LB containing carbenicillin to obtain a cell density, of 

between 4 and 5 x 10
6
 cfu/ml (O.D600 0.000-0.006).  Cultures were placed at 37°C 

and incubated with shaking at 200 rpm for 8 hours. Hourly samples were taken to 

measure cell density and bioluminescence.  Cell density was measured using 

OD600 (Figure 3.15) and APCs to obtain cfu/ml (Figure 3.17). Exponential 

growth was attained for the first two hours of incubation (Figure 3.15). Growth 

rate slowed as the culture transitioned into stationary phase (2 to 4 hours). From 4 

to 8 hours no major increase in cell density was observed (3.2 and 6 respectively) 
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with a generation time of approximately 4 hours. Cell number continued to 

increase over the 8-hour experiment, with a 100-fold increase in cell number 

occurring over the first 4 hours of growth. Less than 0.5-fold increase was 

observed between hours 4-8, in agreement with the culture being in stationary 

phase.  

 

mdtJI promoter activity was recorded over the course of growth, by monitoring 

light production, produced by the LuxCDABE proteins expressed from pWU2 

(Figure 3.16). Cells in the overnight culture contained a significant amount of 

LuxCDABE proteins light at T0, after culture dilution was 23445 RLU.  From this 

high level, light emission was observed to decrease over 25-fold during the two 

hours of growth (T2: 938RLU compared to T0: 23445 RLU), suggesting that 

mdtJI promoter activity was insufficient to maintain this level of bioluminescence 

output. This decrease in expression continued to occur as the optical density 

increased exponentially. As cell growth slowed (2-3 hour readings), the level of 

light emission was observed to plateau and then to increase 10-fold during early 

stationary phase, suggesting that the promoter had become active during the 

transition period into stationary phase. At T8 there was a notable decline in 

expression. This data suggests that mdtJI expression is linked not only to 

temperature changes but also to cellular activity associated with changes in 

growth rate and therefore may have a broader range of activity.  

 

Bioluminescence per cell (Lcfu/ml) showed that there was a steady decrease in 

bioluminescence per cell over time, with a final expression of 1.7 times less per 

cell at T8 (0.00056 Lcfu) than at T0 (0.00096 Lcfu) (Figure 3.18).  No increase in 

mdtJI expression was observed per cell at 37°C, regardless of growth phase. 
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Figure 3.15. Growth of E. coli O157:H7 pWU2 at 37°C 

 

Duplicate experiments were performed. 

For each experiment, OD600 readings were carried out in triplicate. 

Results shown are the combined average of duplicate experiments.  

SEMs ≤0.036 

 

 

Figure 3.16.  Expression of mdtJI in LB at 37°C. 

 

Blue arrow indicates lowest level of expression, while the red arrow 

indicates peak induction 

Duplicate experiments were performed  

For each experiment, OD600 readings were carried out in triplicate, and 

luminescence readings in duplicate. 

Results shown are the combined average of duplicate experiments.  

RLU = Relative light units.  (Relative light units = light units (AU) / OD600) 

SEMs are indicated by error bars. 
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Figure 3.17. Growth of E. coli O157:H7 pWU2 at 37°C  

 

Duplicate experiments were performed 

In each experiment 

For each experiment, OD600 readings were carried out in triplicate. 

Results shown are the combined average of duplicate experiment 

SEMS are indicated by error bars. 

 

 

Figure 3.18. Expression of mdtJI in LB at 37°C. 

 

Lcfu = Light units expressed per colony forming unit (Light units (AU)/cfu/ml) 

Experiments were performed in duplicate.   

For each experiment, OD readings were carried out in triplicate and 

luminescence readings in duplicate. 

Results shown are the combined average of duplicate experiments. 

SEMs are indicated by error bars. 
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3.2.3 Temperature downshift from 37°C at hour 1 

To determine if mdtJI was expressed upon exposure to refrigeration temperatures, 

downshift experiments were performed using E. coli O157:H7 pWU2.  E. coli 

O157:H7 pWU2 was grown overnight in LB at 37°Cand subsequently diluted 

1:1000 in fresh LB containing carbenicillin to obtain between 4 and 5 x 10
6
 cfu/ml 

(O.D600 0.000-0.006). To allow the residual light level produced by cells during 

stationary phase to reduce, diluted cells were incubated at 37°C for 1 hour. 

Following this incubation, at the point of temperature downshift, the culture 

containing 5-6 x 10
6 

cfu/ml (O.D600 0.010-0.040) was divided into three equal 

aliquots.  Two aliquots were exposed to a temperature downshift, one to 7°C and 

one to 4°C.  The third aliquot was returned to 37°C as a control at the optimal 

growth temperature.  Every hour for 8 hours after the temperature shift, duplicate 

100µl aliquots were transferred from each culture into a 96-well microtitre plate.  

Bioluminescence was measured using a luminometer (POLARstar Galaxy; BMG) 

and analysed using FLUOstar Galaxy software version 4.31.0.  At each time 

point, OD600 was measured to assess growth at each temperature (Figure 3.19) 

and to adjust luminescence readings to Relative Luminescent Units (RLU = 

luminescence/O.D600).   Additionally, APC‟s were performed at each time point to 

assess the number of viable cells in the cultures at each temperature (cfu/ml) 

(Figure 3.21), and to calculate luminescence per colony forming unit (Lcfu:Lcfu 

= luminescence/cfu/ml).   

 

After the dilution during the pre-incubation period at 37°C, cell number and the 

OD continued to rise (Figure 3.19, 37°C). After the shift to 7°C and 4°C, there 

was no significant increase in either OD or cell number over the remaining period 

of the experiment (Figure 3.19, 4&7°C).  
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30 minutes (T0.5) after the downshift in temperature from 37°C to 4 and 7°C, 

there was a significant difference  in mdtJI expression (p = 0.001-0.002).  mdtJI 

expression at 37°C decreased from an average of 23445 RLU at T0, to 5211 RLU 

at T 0.5, while cultures shifted to 4 and 7°C maintained their expression of mdtJI  

with bioluminescence  levels of between 19000-22000 RLU (Figure 3.20).  There 

was no significant difference in expression of mdtJI seen at any time between 7°C 

and at 4°C (p ≥ 0.118).  mdtJI expression remained between 11000 – 23000 RLU, 

for the duration of the experiment following the temperature down-shift.  As 

previously noted, the level of bioluminescence produced, by the culture held at 

37°C continued to decrease.  T2 showed the greatest point of difference between 

expression of mdtJI at 37°C compared with the cold temperatures.  At T2, mdtJI is 

expressing between 14-18 times more at refrigeration temperatures (13029-16445 

RLU) than it is at 37°C (938 RLU; p = 0.000).  The observed peak in mdtJI 

expression during stationary phase at 37°C is still, however, significantly less 

(p ≤ 0.02) compared with expression at 4°C (12984 RLU) and 7°C (12439 RLU) 

respectively.  Finally mdtJI expression at 37°C, declines to 1069 RLU at T8, 

which is 11-13 x less than expression at refrigeration temperatures at T8 

(p = 0.000).   

 

Similar trends in mdtJI promoter activity per cell were observed at both 4 and 

7°C, with constant Lcfu observed over the duration of the experiment (Figure 

3.22). This is in contrast with expression of mdtJI per viable cell (cfu/ml) which 

continued to decline. At T8, expression of mdtJI was 10-15 times higher per cell, 

for cells shifted to 4°C (0.00058 Lcfu) and 7°C (0.00084 Lcfu) compared with 

those at 37°C.    
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Figure 3.19.  Growth of E. coli O157:H7 pWU2 following temperature shift from 

37°C to 7°C and 4°C  

Temperature shift was performed after growth at 37°C for 1 hour 

Time of shift occurs at T0, indicated by dashed red line. 

Experiments were performed in duplicate 

For each experiment OD600 readings were performed in triplicate 

Results shown are the combined average of duplicate experiments 

SEMs for 37°C, 7°C and 4°C were ≤0.036, ≤0.007 and ≤0.007 respectively 

 

 

Figure 3.20. Expression of mdtJI in LB following temperature shifts from 37°C to 7 and 4°C.   

 

Temperature shift carried out after initial growth at 37°C for 1 hour.   

Blue arrow indicates lowest level of expression, while the red arrow indicates peak induction 

For each experiment, OD600 readings were carried out in triplicate, and luminescence readings in 

duplicate.. Duplicate experiments were performed 

Results shown are the combined average of  duplicate experiments.  

RLU = Relative light units.  (Relative light units = light units (AU) / OD600) 

SEMs are indicated by error bars 

Expression of mdtJI in LB  at 37°C. 
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Figure 3.21 Growth E. coli O157:H7 pWU2 following temperature shift from 37°C 

to 7 and 4°C.   

Temperature down-shift to 7 and 4°C was performed after growth at 37°C for hour 1.  Time of 

shift is indicated by dashed red line. 

Experiments were performed in duplicate. 

For each experiment, OD600 readings were performed in duplicate 

Results shown are the combined average of duplicate experiments    

SEMs are indicated by error bars 
 

 

Figure 3.22.  Expression of mdtJI in LB following temperature shifts from 37°C to 7 and 4°C. 

Temperature shift carried out after initial growth at 37°C for 1 hour.  

Lcfu = Light units expressed per colony forming unit  (Light units (AU)/cfu/ml) 
Experiments were performed in duplicate. 

For each experiment OD600 readings were performed in triplicate and luminescence readings in 

duplicate. 

Results shown are the combined average of duplicate experiments 

SEMs are indicated by error bars. 
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3.2.4 Temperature shift from Hour 2 

To allow residual bioluminescence levels, produced by the culture during 

stationary phase to reduce further, diluted cells were pre-incubated at 37°C for 2 

hours instead of 1 hour, before the temperature downshift. Following this 

incubation, at the point of temperature downshift, the culture (average O.D600 

~0.260) was divided into four equal aliquots.  Three aliquots were exposed to a 

temperature downshift to: 7°C, 4°C and -1.5°C.  -1.5°C was included in these 

experiments since this is recognized as the (optimal long-term chill storage 

temperature for meat.  One aliquot was returned to 37°C as a control for mdtJI 

promoter activity at the optimal growth temperature.  Cultures were sampled and 

bioluminescence measured hourly for 3 hours after the temperature shift. At each 

time point OD600 was measured (Figure 3.23).  

 

After the dilution, during the pre-incubation at 37°C, the OD continued to rise 

(Figure 3.23). Following the shift to 7°C, 4°C and -1.5°C there was no significant 

increase in OD over the remaining period of the experiment. Growth continued at 

37°C for a further hour, before slowing as the culture transitioned into stationary 

phase. 

One hour (T1) after the downshift in temperature from 37°C to 7, 4 and –1.5°C,  

there was a significant difference  in mdtJI expression (p = 0.004, 0.007 and 0.000 

respectively). In line with previous observations, mdtJI expression at 37°C 

decreased, with a 3-fold reduction (2.86) from an average of  1831 RLU at T0, to 

640 RLU at T1, while cultures shifted to 7, 4 and -1.5°C maintained their 

expression of mdtJI  between 1568-2195 RLU (Figure 3.24).  No significant 

difference in bioluminescence output was observed between the cultures held at 

any of refrigeration temperatures, mdtJI expression remained between 1407-2194 

RLU, for the duration of the experiment following temperature down-shift. 

However, at 37°C, following the initial 3-fold reduction of mdtJI expression 

observed at T1, expression remained constant (~ 632 RLU) until T2, then 

increased to 1665 RLU by T3.  At 37°C, there is no significant difference in mdtJI 

expression at T3 compared with T0 (p = 0.774). When the temperature shift is 

carried out after 2 hours at 37°C, the greatest point of difference in expression 
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between at 37°C and cold temperatures occurred at T1 post temperature shift.  At 

T1, mdtJI is expressing between 2.5-3.5 times more  at refrigeration temperatures 

(1568-2194 RLU) than it is at 37°C (640 RLU; p ≤ 0.0007).  The observed rise in 

expression at 37°C for hour 3, coincides with the transition from exponential 

growth to stationary phase.     

 

 

 

Figure 3.23. Growth of E. coli O157:H7 pWU2 following temperature shift from 37°C to 7, 

4 and -1.5°C.   

 

Temperature shifts were performed after 2 hours growth at 37°C, as indicated by the dashed red 

line. 

Experiments were performed in duplicate. 

For each experiment, OD600 readings were performed in triplicate. 

Results shown are the combined average of duplicate experiments. 

SEMs for 37, 7, 4 and -1.5°C were ≤0.082, ≤0.054, ≤0.052 and ≤0.012 respectively 
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Figure 3.24. Expression of mdtJI in LB for 3 hours following temperature shifts from 37°C to 

7°C, 4°C.  and -1.5°C 

 

Temperature shifts were performed after initial growth at 37°C for 2 hours, results shown are from 

time of shift (T0).   

Results shown are the combined average of  duplicate experiments.  

RLU = Relative light units.  (Relative light units = light units (AU) / OD600) 

SEMs are indicated by error bars 

Expression of mdtJI in LB  at 37°C. 

Blue arrow indicates lowest level of expression, while the red arrow indicates peak induction 

Duplicate experiments were performed 

 

3.3 Conclusions 

In this chapter, a number of genes were identified as being expressed when 

Escherichia coli O157:H7 was exposed to refrigeration temperatures (Table 3.1). 

From these, four genes were selected for further study (Table 3.2). Although all 

four genes were regulated in a temperature dependent manner, only mdtJ and mdtI 

were expressed at refrigeration temperatures but not at 37°C when grown on BHI. 

However, further analysis revealed that when grown on meat, mdtJI was indeed 

expressed at 37°C but to a lesser degree than at 4°C (Figures 3.11 & 3.12). 

Transcription of mdtJ and mdtI arises from a single promoter. To monitor 
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temperature dependent with less light, and therefore less promoter activity, in 

cultures incubated at 37°C compared to those at refrigeration temperatures 

(Figures 3.20, 3.22 & 3.24). Curiously, we also observed increased light output 

from Escherichia coli O157:H7 cultures during early stationary phase (Figures 

3.16 & 3.20). This may explain why overnight cultures grown at 37°C were 

observed to produce light, which decreased exponentially on culture dilution and 

initiation of growth. 

 

In conclusion, data presented here has confirmed that mdtJI is involved in the 

adaptive response, specifically adaptation to cold temperatures in E. coli 

O157:H7, and possibly, to growth cessation which occurs during entry into 

stationary phase. In Chapter 4 we will explore the role of culture density in the 

regulation of mdtJI expression. 
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Chapter 4: Results   

The influence of quorum sensing on cold adaptation in 

E. coli O157:H7  
 

Sequence analysis established that the mdtJI operon is in close proximity to tqsA 

(also known as ydgG) (Section 3.1.1; Figure 3.5).  TqsA is a putative transporter 

of the QS signal, AI-2, generated by LuxS (Herzberg et al., 2006).  TqsA is a 

transmembrane protein which either exports AI-2 out of the cell, or inhibits the 

uptake of AI-2 (Herzberg et al., 2006).  There are approximately 400nt between 

the divergent promoters of mdtJI and tqsA.  The close proximity of these 

promoters suggests that they may influence each other‟s activity.  In light of this 

information, we hypothesized that quorum sensing and AI-2 may influence 

expression of MdtJI.  If mdtJI transcription is influenced by temperature down-

shift, as well as the presence of AI-2, it is possible that AI-2 and/or LuxS, through 

its role in central metabolism, maybe involved in the cold adaptation response.   

 

In addition, an increase in the expression of the mdtJI promoter was observed that 

coincided with the transition of E. coli O157:H7 pWU2 into stationary phase. This 

result suggests that high cell density and/or growth phase may also stimulate the 

expression of mdtJI.  This relationship with culture density further supports the 

hypothesis that QS and AI-2 may influence expression of mdtJI. 

 

To elucidate the role of quorum sensing and AI-2 in the adaptation of E. coli 

O157:H7 to cold temperature, a VHBA assay was used to detect when during 

growth exogenous AI-2 was produced.   
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4.1 Detection of AI-2 using the V. harveyi AI-2 Bioluminescence 

Assay (VHBA). 

LuxS is required for the production of AI-2 in both V. harveyi and E. coli. 

Standard assay methods (VHBA), for the detection of AI-2 in culture supernatants 

have been developed.  These assays incorporate a V. harveyi sensor strain that 

emits light in the presence of AI-2.  There are two different VHBA sensor strains, 

BB170 (M. Surette & Bassler, 1998) and MM32 (S. T. Miller et al., 2004) that 

can be used to detect exogenous AI-2 in conditioned medium (CM). 

 

4.1.1 Using the sensor strain V. harveyi  BB170 

One sensor strain often used for VHBA is BB170. This strain has a mutation in 

the luxN gene, which renders it incapable of sensing and responding to the AHL 

(AI-1) signal molecule whilst retaining the ability to respond to AI-2.  BB170 

does harbor an intact luxS gene however, and is able to produce endogenous AI-2 

during mid to late exponential phase.  Hence, the endpoint of the experiment is 

determined by monitoring the point at which the maximum light emission 

differential occurs.   

 

V. harveyi BB170 was grown in AB at 30°C with shaking to an absorbance 

between 1.5 and 1.6 at OD600 and subsequently diluted 1:1000 in fresh AB.  10% 

CM (v/v) prepared from wild type V. harveyi  BB120 (luxS
+
)  was added to the 

diluted V. harveyi BB170 culture and incubated at 30°C with shaking.  100µl 

aliquots were dispensed into a 96-well microtitre plate at hourly intervals, and 

light emission measured.    

 

Basal light emission was observed from BB170 which had either 10% (v/v) sterile 

LB or AB added (Figure 4.1), with the lowest level occurring at 4 hours. After 4 

hours the level of light increased exponentially. Higher levels of light were 

emitted from cultures mixed with 10% CM (v/v) made from BB120 during the 

first 4 hours of the experiment.   The highest light emission differential occurs at 

this point. For VHBAs, which incorporate BB170 as the sensor strain, this would 

be the optimal time at which CMs from test strains can be assessed for AI-2.  This 

background luminescence makes this assay difficult to work with, as the point of 
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highest light emission differential is variable for each experiment, and has to be 

determined for each sample.  One possible solution to this would be to use a 

sensor strain that does not contain LuxS and therefore cannot produce AI-2.  

MM32 offers this alternative.    

 

 

 

Figure 4.1. VHBA measuring the presence of AI-2 in media using the sensor strain, BB170 

 Quantity of light emitted (AU) by BB170.  This strain will eventually produce an endogenous AI-

2 signal upon 10% (v/v) addition of a variety of media.  LB and AB are culture media that have 

not been exposed to bacteria, whereas BB120 is preconditioned medium (CM).  BB120 culture 

was grown to an OD600 of 1.5-1.6.  3-4 hours is the time point at which the greatest effect of 

addition of CM on light emission is seen. 

AU = Arbitrary Units 

 

4.1.2 Using the sensor strain V. harveyi  MM32 

V. harveyi sensor strain MM32 was chosen as an AI-2 reporter because it lacks 

both the LuxN receptor needed to respond to AHL, and the LuxS enzyme needed 

to synthesize DPD, the precursor of AI-2 (S. T. Miller et al., 2004).  Hence, 

MM32 cannot produce AI-2, (Pereira et al., 2008) and therefore should be ideal 

for detecting the presence of exogenous AI-2 present in conditioned medium 

(CM).   
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A VHBA was performed using MM32 to determine the detection profile  

V. harveyi MM32 was grown as per BB170, but to a final OD600 of 1.7 and 

subsequently diluted 1:5000 into fresh AB.  Test strain CM was added at a final 

concentration of 10% (v/v).  Incubation, sampling and light measurement was the 

same as for VHBA using BB170, however hourly samples were measured for 9 

hours.     

 

Where AI-2 was present, MM32 produced an exponential induction of 

bioluminescence (Figure 4.2), which occurred after 6 hours of incubation.  All 

control CMs, which did not contain AI-2, did not induce luminescence from the 

MM32 sensor strain at any stage during the assay.  Based on this data, an assay 

window of between 6 to 8 hours can be used for determining the presence of AI-2 

in culture supernatants.   

 

Although the MM32 results appear cleaner, with no background interference 

caused by the presence of endogenous AI-2 which occurs with BB170, a trade off 

exists since the MM32 assay takes up to 8 hours to complete.    For this study, the 

additional time required for the MM32 assay was acceptable, and VHBA‟s using 

MM32 as the sensor strain to detect the presence of AI-2 were used to determine 

AI-2 levels in CM. 
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Figure 4.2. VHBA measuring the presence of AI-2 in media using the sensor strain, MM32 

 

Quantity of light emitted by MM32.  This strain has no endogenous AI-2 signal upon 10% (v/v) 

addition of a variety of media.  LB and AB are culture media that have not been exposed to 

bacteria whereas BB120 is a positive AI-2 preconditioned medium (CM).  BB120 culture was 

grown to an OD600 of 1.7.  For future VHBAs using MM32, 7-8 hours will be the time point at 

which luminescence is recorded.   

BB120 = 10% conditioned media, exposed to growth of BB120 positive AI-2 producing strain.   

DH5a –ve = 10% conditioned media, exposed to growth of DH5α, strain that does not produce. 

AI-2.  10% LB –ve = 10% fresh LB only added to MM32.   

LB blk = LB media only blank, without BB120 or MM32.   

AB blk = AB media only blank, without MM32  

AU = Arbitrary Units 
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4.2 AI-2 production by E. coli O157:H7 during growth at optimal 

temperature (37°C). 

A number of studies have indicated that E. coli O157:H7 can produce AI-2 

(Sperandio et al., 1998; Sperandio et al., 1999) however no data has been 

published profiling AI-2 expression during growth at 37°C.  To confirm the 

optimal point in growth to prepare AI-2 containing conditioned media, E. coli 

O157:H7 and CLEN34  were inoculated into LB and grown at 37°C with shaking 

for 12 hours (Figure 4.3).   Samples were harvested hourly, and CM prepared by 

centrifugation followed by filter sterilisation to remove any remaining bacterial 

cells. VHBAs using MM32 were performed for each CM sample.  Data has been 

normalized such that light emission measurements are expressed as fold- 

induction compared with the negative control sample produced from CLEN34 

cultures. 

 

AI-2 levels in CM increased 20-fold during exponential growth (T0 – T4);   

(Figure 4.3 and 4.4; T0-T4).  AI-2 levels were highest in early stationary phase 

between hours 4-8, where levels of AI-2 had increased approximately 108 times 

(~111.34 RLU) compared with T0 (1.03 RLU).  The level of AI-2 in the CM 

reduced at T10, dropping from 111.34 at hour 8, to 13 RLU at hour 10, and this 

level was maintained in the final sampling at T12.  No light was produced by 

MM32 in response to any of the CLEN34 luxS
-
 negative control CM samples 

(data not shown).  A representative CLEN34 CM sample taken at T6, when AI-2 

levels would be maximal in the parental strain, is shown (Figure 4.4. Sample - 

neg LuxS
-
).  In addition, light was not produced in the presence of DH5α CM 

(luxS
-
), or LB medium alone (Figure 4.4. Sample - neg DH5 and blk 

respectively). MM32 did produce light in response to CM made from BB120 

(Figure 4.4 Sample - pos). Based on this data, CM was harvested during early 

stationary phase, between hours 4-8, for use in subsequent experiments requiring 

the addition of exogenous AI-2.   
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Figure 4.3. Growth of E. coli O157:H7 (LuxS
+
) and CLEN34 (LuxS

-
) in LB at 37°C 

Experiments were performed in duplicate 

For each experiment, OD600 readings were performed in triplicate.   

Results shown are the combined average of duplicate experiments. 

Standard Error of the Mean (SEM) for OD600 was ≤0.106 for LuxS+ and ≤ 0.093 for LuxS- 

 

 

Figure 4.4.  AI-2 production by E. coli O157:H7 at 37°C  

RLU = Luminescence produced by MM32 in presence of 10% AI-2 containing CM/Luminescence 

produced by MM32 in response to 10% CM without AI-2 (LB grown with LuxS- culture). 

Duplicate independent experiments were performed. 

SEMs are indicated by Error bars. 

pos = AI-2 positive CM, exposed to growth of V. harveyi BB120. 

Neg DH5 and Neg luxS-  = AI-2 negative CM, exposed to growth of LuxS- strains DH5α and 

CLEN34.  The representative LuxS- CM shown, was exposed to growth of CLEN34 for 6 hours. 
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4.3 Effect of temperature downshift on AI-2 expression in E. coli 

O157:H7 

To determine whether or not AI-2 is produced when E. coli O157:H7 is exposed 

to refrigeration temperatures; temperature down-shift experiments were 

performed. Two refrigeration temperatures were selected: 4 and -1.5°C. 

 

E. coli O157:H7 was grown overnight (14-17 hours) with shaking in LB at 37°C 

to an OD600 of 1.5-1.6.  Overnight cultures were diluted in fresh LB.  Diluted cells 

were incubated at 37°C for 2 hours prior to the temperature down-shift. Samples 

were harvested hourly, both before and after the temperature down-shift, and 

tested for the presence of AI-2. AI-2 data is reported as the ratio (or fold 

induction) of RLU induced by 10% (v/v) test culture CM to RLU induced by 10% 

(v/v) control BB120 CM. Absorbance at OD600 was measured to determine growth 

phase of the culture. Luminescence was induced by the addition of the control 

BB120 CM to confirm that the assay was working appropriately (see Figure 4.4. 

Sample - pos). No light was produced in response to either of the negative CM 

controls: DH5α or CLEN34 (see Figure 4.4. Sample - neg DH5 and neg LuxS
-
 

respectively).  

 

Immediately prior to the temperature shift (T2) from 37°C to 4°C (Figure 4.5), 

E. coli O157:H7 CM induced 0.650-fold lighter than BB120. CM harvested 1 

hour later at T3, from E. coli O157:H7 culture at 37°C, produced 2.4-fold more 

light than BB120. . This data suggests that exogenous AI-2 production continued 

to increase during the first three hours of growth at 37°C.  CM harvested from 

cultures incubated at 4°C, showed only a slight but statistically insignificant fold 

increase in the level of bioluminescence compared to that observed prior to the 

temperature shift (0. 992 compared to 0.656 respectively). These findings suggest 

that AI-2 levels are not increasing upon exposure to 4°C but remaining at a level 

consistent with cell density.  There was approximately 4-fold less relative light 

produced in response to CM harvested from 4°C, than that from 37°C, which is 

consistent with the observed increase in culture density which occurred at 37°C. 

CM harvested from 37°C after 4 hours (T4), resulted in only a 1.4-fold light 

induction, approximately half that observed at T3 (T3 = 2.4, T4 = 1.4) suggesting 
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that AI-2 levels in the CM had diminished by approximately 2-fold, after 4 hours 

growth at 37°C.  No significant change was observed for light induction from CM 

harvested from 4°C, between T3 (0.992) and T4 (0.932) suggesting that AI-2 

levels did not increase or decrease in the CM maintained at 4°C. 

  

Light production induced by cultures shifted to -1.5°C in LB, showed similar 

trends in AI-2 levels as those seen for 4°C (Figure 4.6). 

 

These temperature downshift assays were repeated using BHI media to determine 

whether the nutritional status of the culture influenced AI-2 production.  Similar 

trends in fold induction of light were observed for CMs harvested from cultures 

grown in BHI as LB at the three test temperatures: 37°C, 4°C and -1.5°C; with a 

significant increase in AI-2 levels occurring at 37°C.  However, in BHI medium, 

luminescence in response to CM harvested from 37°C at T3 and T4, did not 

decrease but remained steady  (2.2/2.2 and 1.6/1.2; Figure 4.7 and Figure 4.8 

respectively).  While similar trends showing a constant level of AI-2 production  

in line with that observed at the point of downshift to refrigeration temperatures 

were observed, the difference in ratios between AI-2 produced at 37°C compared 

with the cold temperatures was greater (Figure 4.5 and 4.6; LB and 4.7 and 4.8; 

BHI).   

 

This data suggests that while AI-2 is produced during growth at 37°C, significant 

AI-2 levels are not produced upon exposure to the refrigeration temperatures, 4 or 

-1.5°C. AI-2 production is maintained at a level in line with the OD of the culture 

at transfer.   
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Figure 4.5. AI-2 production in LB upon temperature down-shift from 37°C to 4°C 

Time of temperature shift (T2) is indicated by a dashed red line 

AI-2 fold induction = Light emitted by MM32 in response to test CM divided by RLU emitted by 

MM32 in response to positive CM control (BB120). 

Duplicate experiments were performed 

OD600 readings were performed in triplicate and Luminescence readings in duplicate. 

Results shown are the average of the duplicate experiments. 

SEMs are indicated by error bars. 

 

  

0.001

0.010

0.100

1.000

10.000

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 2 3 4

Lo
g 

O
.D

6
0

0

A
I-

2 
 F

o
ld

-i
n

d
u

ct
io

n

Time (Hours)

37°C AI-2 4°C AI-2 37°C O.D 4°C O.D



Chapter 4: Results  

 

80 

 

 

 

Figure 4.6. AI-2 production in LB upon temperature down-shift from 37°C to -1.5°C 

Time of temperature shift (T2) is indicated by a dashed red line 

AI-2 fold induction = Light emitted by MM32 in response to test CM divided by RLU 

emitted by MM32 in response to positive CM control (BB120). 

Duplicate experiments were performed 

OD600 readings were performed in triplicate and Luminescence readings in duplicate. 

Results shown are the average of the duplicated experiments. 

SEMs are indicated by error bars. 
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Figure 4.7.  AI-2 production in BHI upon temperature down-shift from 37°C to 4°C 

Time of temperature shift (T2) is indicated in red. 

AI-2 fold induction = Light emitted by MM32 in response to test CM divided by RLU emitted by 

MM32 in response to positive CM control (BB120). 

Duplicate experiments were performed. 

For each experiment, luminescent readings were carried out in duplicate. 

Results shown are the average of the duplicated experiments. 

SEMs are indicated by error bars. 

 

 

Figure 4.8. AI-2 production in BHI upon temperature down-shift from 37°C to -1.5°C 

 

Time of temperature shift (T2) is indicated in red 

AI-2 fold induction = Light emitted by MM32 in response to test CM divided by RLU emitted by 

MM32 in response to positive CM control (BB120). 

Duplicate experiments were performed. 
For each experiment, luminescence was read in duplicate. 

Results shown are the average of the duplicated experiments. 

SEMs are indicated by error bars. 
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4.4 Does LuxS influence the survival of E. coli O157:H7 at 

refrigeration temps? 

Data presented here has shown that AI-2 production does not change within the 

first 2 hours following exposure to refrigeration temperatures (Section 4.3). 

However, the question remains as to whether the metabolic role of LuxS, within 

the activated methyl cycle, has any influence over growth and survival of E. coli 

O157:H7, following exposure to refrigeration temperatures. 

 

To determine if the presence of LuxS affects survival of this pathogen at 

refrigeration temperatures, experiments were performed, in which the growth of  

E. coli O157:H7 (luxS
+
),  was compared to CLEN34 (luxS

-
) following a 

temperature down-shift from 37°C to the refrigeration temperatures of 4 and 

-1.5°C.    

 

Both E. coli cultures were grown for 14-17 hours in LB, with shaking to OD600 5 – 

6. Cultures were diluted in fresh LB and grown for 1 hour before samples were 

split and a temperature shift from 37°C to 4°C was performed.  Samples were 

taken hourly for absorbance measurements (OD600), Aerobic plate counts (APC) 

were performed every 2 hours to enumerate viable colonies and establish survival 

curves (cfu/ml). 

 

Both luxS
+
 and luxS

-
 cultures grew exponentially (Figure 4.9) for the first 4 hours 

of growth, with generation times of 21 and 18 minutes respectively. This 

difference in growth rate resulted in the optical density of the luxS- culture being 

higher at the point of temperature shift.  No significant increase in growth was 

observed for either culture, from hour 5 to hour 9 (T4-T8) as both cultures entered 

into stationary phase (stationary phase generation time equaled 216 minutes).   

Both cultures ceased exponential growth immediately upon exposure to 4°C.  

E. coli O157:H7 OD levels remained between 0.025 and 0.047 for 8 hours 

following temperature down-shift. Likewise, CLEN34 maintained OD levels 

(0.068 to 0.107) throughout the same time period.    To determine if there was any 

significant difference in survival for cultures with or without luxS when exposed 

to 4°C  and to allow  for the difference in optical density at the point of downshift,  



Chapter 4: Results  

 

83 

 

calculations were performed for each time point, in order to assess growth over 

time.  Growth over time equals OD at a chosen time point, divided by OD at the 

time of shift (T0).  No significant difference between E. coli O157:H7 cultures 

were observed at any time point during the experiment (37°C, p ≥2.57; 4°C, p ≥ 

0.10).   

 

Growth curves constructed using cfu/ml (Figure 4.10) confirmed the results 

observed using absorbance (OD600).  No significant difference in cell number was 

observed for both luxS
+
 or luxS

-
 cultures at 37°C or upon exposure to 4°C (37°C p 

≥ 0.823; 4°C, p ≥ 0.074). 

 

A second temperature shift experiment was performed, to determine (a) whether 

allowing cultures to grow for longer prior to the temperature down-shift, and (b) 

whether the refrigeration temperature used, would have any effect on the growth 

or survival for either culture.  The temperature shift was therefore performed after 

2 hours exponential growth at 37°C, and cultures were shifted to both 4°C and 

-1.5°C.   Since similar results were observed previously for OD and APC, only 

OD was used to measure growth (Figure 4.11). OD600 was monitored hourly for 3 

hours post temperature shift.   

 

After 2 hours of exponential growth at 37°C, both E. coli O157:H7 and CLEN34 

behaved in the same way, when exposed to 4 and -1.5°C (Figure 4.10). Growth 

was arrested upon exposure to either of the refrigeration temperatures for both 

cultures, in a manner similar to that observed at 4°C in the previous experiment 

(Figure 4.8).   There was no significant difference in growth or survival at 4 or 

-1.5°C for 3 hours following exposure to these temperatures.   

 

This data, suggests that LuxS is not involved in the survival of E. coli O157:H7 

during short term exposure to refrigeration temperatures. 
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Figure 4.9. Growth of E. coli O157:H7 parental strain (LuxS
+
) and CLEN34 (LuxS

-
) 

following a temperature down-shift from 37°C to 4°C.   

Temperature shift was performed after initial growth at 37°C for 1 hour, and is indicated by a 

dashed black line. 

Duplicate experiments were performed. 

For each experiment, OD600 readings were carried out in triplicate. 

Results shown are the combined average of  duplicate experiments. 

SEMs are indicated by error bars. 

 

 

Figure 4.10. Growth of E. coli O157:H7 parental strain (LuxS
+
) and CLEN34 (LuxS

-
)  

following a temperature down-shift from 37°C to 4°C.  

Temperature shift was performed after initial growth at 37°C for 1 hour, and is indicated by 

dashed black line. 

Duplicate experiments were performed. 

For each experiment, APCs were performed in duplicate. 

Results shown are the combined average of duplicate experiments. 

SEMs are indicated by error bars. 
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Figure 4.11. Growth of E. coli O157:H7 parental strain (LuxS
+
) and CLEN34 (LuxS

-
) , 

following a temperature down-shift  from 37°C  to 4°C and -1.5°C.   

Temperature shift was performed 2 hours after growth at 37°C, and is indicated by dashed 

black line. 

Duplicate experiments were performed. 

For each experiment, OD readings were performed in triplicate. 

Results shown are the combined average of duplicate experiments. 

SEMs:  37°C LuxS+, ≤0.082; 37°C LuxS-, ≤0.161; 4°C LuxS+, ≤0.052; 4°C LuxS-, ≤0.066; -1.5°C 

LuxS+, ≤0.012; -1.5°C LuxS-, ≤0.036. 

 

4.5 Does LuxS or AI-2 affect the expression of mdtJI? 

To determine whether QS, specifically the LuxS/AI-2, is involved in the 

regulation of mdtJI expression, pWU2 was transformed into CLEN34 (luxS
-
). 

The parental and luxS
-
 strains containing the mdtJI reporter were grown in LB at 

37°C, with shaking for 9 hours.  Light reporter assays were performed hourly as 

previously described (Section 3.2.2), with both APCs and OD600 measurements 

performed to ascertain growth, and population density.   

 

4.5.1 Effect of luxS on the expression of mdtJI at 37°C (optimal growth) 

It was previously noted that mdtJI expression decreased during exponential 

growth at 37°C in the parental strain of E. coli O157:H7 (Figures 3.16 & 3.20) 

and   increased during early stationary phase (Figure 3.16 & 3.20).   
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In the absence of luxS, the expression of mdtJI was observed to continuously 

decrease at 37°C, for the duration of the experiment (Figure 4.12, 37°C LuxS
-
). 

Specifically, mdtJI expression in CLEN34, underwent a 25-fold reduction from  

6498 RLU at T0, to 258 RLU at T8.  Unlike the parental strain,  no increase in 

expression was observed during early stationary phase. The most significant 

difference between the parental strain and the luxS mutant, was observed at hour 

4, when mdtJI expression in CLEN34 was 4 times less than that observed for  

E. coli O157:H7 (753 RLU and 3019 RLU respectively). This RLU data suggests 

that LuxS has an influence on the mdtJI expression at 37°C. 

 

Conversely, mdtJI expression results related to viable cell number showed a 

different outcome.  Data using Lcfu (Figure 4.13) showed that mdtJI expression 

at 37°C, continuously decreased in both strains, for the duration of the experiment 

(T0 to T8).  mdtJI expression decreased approximately 56-fold, from 8.47x10
-5

 to 

1.50x10
-6  

Lcfu in the parental E. coli O157:H7, while expression in CLEN4 

decreased approximately 117-fold from 3.51 x 10
-4

 to 3.00 x 10
-7

 Lcfu.  Initial 

observations suggested that mdtJI expression at 37°C is always lower in the 

absence of luxS (Figure 4.13).  Statistically, there is a very significant difference 

between the parental strain and CLEN34 at T4 (p= 0.000).  This data supports the 

positive role of luxS in the expression of mdtJI at 37°C.  However, the differences 

observed are potentially due to CLEN34 having grown slightly faster within the 

first hour at 37°C, (T-1 to T0), creating an initial difference in cell numbers by T0 

(luxS
+
,  5.5 x 10

6 
cfu/ml; luxS

-
, 1.27 x 10

7 
cfu/ml).  In addition, mdtJI expression 

in both strains, was slightly, yet significantly different (p = 0.034) from the start 

(luxS
+
,8.47x10

-5
 Lcfu ; luxS

-
, 3.51x10

-5
 Lcfu ).  To address this, further statistical 

analysis was carried out to determine the change in expression of mdtJI over time 

(T1-8/T0) for both strains.  Results of this analysis, showed no significant 

difference in the expression of mdtJI, between the parental and mutant strains at 

any time during growth at 37°C (p ≥ 0.070).   
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4.5.2 Effect of luxS on the expression of mdtJI at refrigeration 

temperatures 

It has been established for the parental strain (Section 3.2.3; Figures 3.20 & 3.22) 

that mdtJI expression remains constant following exposure to refrigeration 

temperatures.   

 

To determine if LuxS influences the expression of mdtJI at 4°C, temperature 

down-shift experiments were performed using CLEN34 pWU2.  RLU results, 

showed that mdtJI expression remained relatively constant, ranging between 

11907 to 23445 RLU for 8 hours following exposure to 4°C (Figure 4.12, 4°C). 

Similar results were seen for Lcfu (Figure 4.13, 4°C).  No significant differences 

in the expression of mdtJI were observed at any time, between the parental strain 

and the luxS
-
deletion strain.  This was confirmed using both RLU (p ≥ 0.421) and 

Lcfu (p ≥ 0.183) as units of luminescent measurement.   Similar results were 

observed for temperature down-shift experiments performed at -1.5°C (Figure 

4.14).  Based on this data, LuxS does not influence the expression of mdtJI upon 

exposure to refrigeration temperatures. 
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Figure 4.12. Expression of mdtJI in E. coli O157:H7 parental strain (LuxS
+
) and CLEN34 

(LuxS
-
) at 37°C and upon exposure to 4°C.   

Temperature shift was performed 2 hours after growth at 37°C, and is indicated by dashed black 

line. 

RLU = Relative light units.  (Relative light units = light units (AU) divided by O.D) 

Experiments were performed in duplicate. For each experiment, OD readings were carried out in 

triplicate and luminescence readings in duplicate. 

Results shown are the combined average of duplicate experiments. 

SEMs are indicated by error bars. 

 

 
Figure 4.13. Expression of mdtJI in E. coli O157:H7 (luxS

+
) and CLEN34 (luxS

-
) at 37°C and 

upon exposure to 4°C.   

Lcfu  = Luminescence  per colony forming unit (cfu).  Lcfu = light units (AU) divided by cfu/ml 

Experiments were performed in duplicate. 

For each experiment, APCs were performed in duplicate, to obtain cfu/ml.  Luminescence was also 

measured in duplicate. Results shown are the combined average of duplicate experiments. 

Standard Error of the mean (SEM) is indicated by error bars. 

Dashed black line indicates time of temperature shift 
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Figure 4.14. Expression of mdtJI  in E. coli O157:H7 parental strain (LuxS
+
) and CLEN34 

(LuxS
-
) following exposure to -1.5°C 

 

RLU = Relative light units.  (Relative light units = light units (AU) divided by O.D) 

Experiments were performed in duplicate. 

For each experiment, OD readings were carried out in triplicate.  Luminescence measurements 

were performed in duplicate. 

Results shown are the combined average of duplicate experiments. 

Standard Error of the mean (SEM) is indicated by error bars. 

Dashed black line indicates time of temperature shift 

 

4.6 Is AI-2 and QS responsible for the differential expression of 

mdtJI at 37°C?    

The only observable affect of LuxS on mdtJI expression occurred at 37°C, using 

RLU as the unit of measurement for luminescence.  The question remained, as to 

whether this affect was due to AI-2 and QS, or due to the metabolic activities of 

LuxS.  Hence AI-2 complementation studies using conditioned media were 

performed at 37°C.   

 

To determine whether the addition of exogenous AI-2 was able to restore mdtJI 

expression at 37°C, 10% (v/v) AI-2 positive CM (CM+) and AI-2 negative (CM-) 

were added to parental and luxS mutant cultures at T5.  A culture the E. coli 

O157:H7 parental strain was left untampered at 37°C, without the addition of CM 

(Neat), as a control for the dilution effects that may have occurred upon addition 

of CM. 
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mdtJI expression for both strains at 37°C (Figure 4.15), showed the same trends 

as previously described (Figures 3.16 & 4.12)  despite the presence of exogenous 

AI-2 from T5 onwards.  The addition of CM containing AI-2 had no significant 

affect on the expression of mdtJI in CLEN34 (luxS
-
).  There was no significant 

difference in the expression of mdtJI in CLEN34 grown with CM+ or with CM-, 

either at the time of addition (T5) or for the 3 hours following (p ≥ 0.156).  This 

data suggests that under these conditions, exogenous AI-2 is unable to 

complement the absence of LuxS and it is likely that the observed effect may be 

metabolic rather than QS-based.  

 

 

Figure 4.15. Effect of the addition of exogenous AI-2 (CM) on the expression of mdtJI in 

E  coli O157:H7 (LuxS
+
) and CLEN34 (LuxS

-
) grown at 37°C.   

 

RLU = Relative light units.  (Relative light units = light units (AU) divided by O.D) 

Experiments were performed in duplicate.  For each experiment, OD measurements were 

performed in triplicate and luminescent readings were carried out in duplicate. 

Results shown represent the combined average of  duplicate experiments. 

Blue arrow indicates time of CM+ and CM- addition. 

Dashed black line indicates time of temperature shift. 

LuxS+ Neat = E. coli O157:H7 Parental strain grown in LB with no addition of CM 

LuxS+ CM- = E. coli O157:H7 Parental strain grown in LB, with the addition of CM+ (AI-2+) 

LuxS- CM+ = CLEN34 grown in LB, with the addition of CM+  

LuxS- CM- = CLEN34 grown in LB with the addition of CM- (AI-2-) 
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4.7 Conclusions 

In Chapter 3, we determined that mdtJI expression occurred in E. coli O157:H7 

not only at refrigeration temperatures but also during stationary phase at 37°C 

(Figure 3.16). This observation lead us to hypothesize that population density 

might influence expression of mdtJI. Further supporting this hypothesis was the 

observation that 400nt upstream of the mdtJI operon promoter, was the promoter 

for tqsA (Figure 3.6), a transporter for the QS signal molecule, AI-2.  E. coli 

O157:H7 does produce AI-2 during early stationary phase growth at 37°C (Figure 

4.4). In addition, AI-2 was recovered in CM from cultures held at refrigeration 

temperatures; the level of AI-2 reflected the culture density at the time of the shift 

(Figure 4.5, 4.6). Viability of E. coli O157:H7 cells lacking a functional luxS 

gene was found to be the similar to the parental strain at refrigeration temperatures 

(Figure 4.9, 4.10). Using pWU2 to report mdtJI expression, we determined that 

LuxS but not AI-2 affected mdtJI expression at 37°C (Figure 4.15). No 

significant difference in mdtJI expression was observed at refrigeration 

temperatures for cells containing luxS compared to those without (Figure 4.12, 

4.13).  

 

Based on the data presented here, the influence of LuxS on mdtJI expression in 

E. coli O157:H7   is most likely to be through metabolic activity, rather than QS 

activity. 

 



Chapter 5: Discussion  

 

92 

 

 

Chapter 5: Discussion 

 

E. coli O157:H7 is a major food-borne pathogen, mainly associated with the 

consumption of undercooked beef products.  Using co-ordinate regulatory 

networks, and expressing specific stress related proteins, this pathogen is capable 

of surviving and adapting to a wide range of environments.  For example, 

reservoirs for E. coli O157:H7 range from the intestine of warm blooded animals, 

particularly cattle, to soil and water.  Rapid adaptation to these changeable 

environments, including temperature down-shift, is critical to the survival of this 

pathogen.  Understanding the adaptive processes of E. coli O157:H7, including 

the pathogens ability to survive the cold temperatures associated with 

refrigeration, is of particular importance to the food and meat industry. 

 

The initial intention of this study was to identify genes or operons, within E. coli 

O157:H7, involved in adaptation to cold temperatures and ultimately their long 

term survival during refrigeration. This ability to survive has major implications 

for the meat industry, where the presence of E. coli O157:H7 can lead to product 

rejection. Although extensive studies have been conducted on survival under 

stress, most have used the related lab-adapted E. coli K-12 strain.  E. coli 

O157:H7 has a very large genome, with an additional 1.3Mb of DNA compared to 

E. coli  K-12, much of which has yet to be assigned function. Numerous studies 

have demonstrated that E. coli O157:H7 is extremely hardy, capable of surviving 

in what would otherwise be considered hostile environments for an enteric 

organism.  It is not therefore, unrealistic to expect that novel genes may be 

identified, within the E. coli O157:H7 genome that have yet to be associated with 

cold shock and adaptation to temperatures less than optimal for growth.  

 

RAP-PCR (Li, personal communication, 2007) revealed that a number of genes in 

E. coli O157:H7, were differentially expressed at cold temperatures, within a meat 

context.  Sequencing analysis revealed that a wide range of functionally different 

genes were expressed under these conditions (Table 3.1).  A range of gene types 
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were identified, and from those slp, hslJ, mdtJ and mdtI were selected for further 

analysis (Table 3.2).  Surprisingly, these genes had been reported in literature as 

being involved in the adaptive processes for environmental stress conditions other 

than cold temperature.   

 

hsIJ encodes HsIJ, a heat shock inducible protein.  In addition to temperature 

response this protein has been linked with novobiocin resistance, the regulation of 

virulence and transmission (Dowd & Ishizaki, 2006; Lilic et al., 2003).  In this 

study,  we observed a 2-fold increase in expression at 37°C compared to 4, 0 or 

-1.5°C (Figures 3.7 hslJ and 3.10 D), which is consistent with its role in heat 

shock as reported in literature (Dowd & Ishizaki, 2006; Lilic et al., 2003). It is 

unclear at this stage why hslJ expression appeared to increase in the preliminary 

cold shock experiments, but this may be an artifact of the RAP-PCR 

methodology.   

 

In contrast, slp was also expressed at 37°C, but showed a 3.4-4.7-fold increase in 

expression at refrigeration temperatures (Figures 3.7 slp and 3.10 C).  slp 

encodes a lipoprotein, located in the outer membrane, which is induced upon 

carbon starvation (starvation lipoprotein) (White-Ziegler et al., 2008).  Along with 

7% of the E. coli K-12 genome, slp expression was shown to be higher at 23°C 

compared with 37°C.  Of those 7%, 40% of genes, including slp, were regulated 

by RpoS, a major regulator of stress gene expression (White-Ziegler et al., 2008). 

While these studies utilised parallel cultures grown at 23 and 37°C, with a 14°C 

temperature difference, rather than temperature down-shifts, their findings do 

support those reported in this study. 

 

The final set of genes examined, are reported to form a membrane-associated 

complex which functions as a putative multi-drug transporter. The MdtJ/MdtI 

complex is reported to transport nalidixic acid, sodium dodecyl sulfate (SDS), 

deoxycholate and fosfomycin (Higashi et al., 2008; Nishino & Yamaguchi, 2001) 

and spermidine (Higashi et al., 2008).  Detailed analysis of the RAP-PCR 

products revealed that mdtJ and mdtI are transcribed as a single mRNA molecule. 

Examination of the genome sequence confirmed that the genes form a discrete 
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operon. Preliminary experiments carried out using BHI agar confirmed the RAP-

PCR result, demonstrating that both genes are expressed at refrigeration 

temperatures (Figures 3.7 mdtI & mdtJ and 3.10 A&B).   mdtI and mdtJ genes 

were chosen for further study, because they were the only genes examined in the 

preliminary experiments of this study, to be detected at cold temperature, and not 

at the optimal growth temperature (37°C).  Furthermore, no temperature-

dependent regulation has thus far been reported.   

 

Interestingly, in contrast to E. coli O157:H7 grown on BHI agar, mdtJ and mdtI 

mRNA was expressed in cells cultured on a meat surface at 37°C (Figures 3.11 

and 3.12).  The meat substrate is far more complex than BHI medium, and it is 

likely that there are a number of factors, present in the meat matrix, which could 

have activated the mdtJI promoter, for example, spermidine.  Spermidine (SPD), 

as well as spermine (SPM) and putrescine (PUT), are dietary polyamines which 

occur naturally in meat and are essential for normal cell growth (Higashi et al., 

2008; Kalac, 2006).  Usually, PUT, SPD and SPM can be found in fresh meat at 

levels of, <2, <5 and 20-40mg/kg respectively (Kalac, 2006).   Immediately post-

slaughter, high levels of spermine and spermidine can be detected in red meat, 

although spermine is the most prevalent polyamine at approximately 70% of the 

total amine levels (Kalac, 2006). Spermidine is also prevalent at 4°C in beef 

product. This polyamine is important in cellular metabolism since it converts S-

adenosylmethionine (SAM) to spermine, which is an essential growth factor for 

some bacteria (Kalac, 2006). However, an over-accumulation of spermidine can 

be toxic in E. coli, inhibiting protein synthesis by binding to and precipitating 

RNA polymerase, thereby inhibiting growth.  Two options available to deal with 

excess spermidine in the cell are metabolism by acetylation, via spermidine 

acetyltransferase (Carper et al., 1991; Limsuwun & Jones, 2000) and active 

excretion. The MdtJI complex is involved in the excretion of spermidine from 

E. coli cells (Higashi et al., 2008).  This may explain why mdtJI was expressed in 

bacteria, located on a meat surface at 37°C, but not on BHI agar. 

 

Nonetheless, mdtJ and mdtI were expressed more at cold temperature than at 37°C 

in the meat matrix.  This data suggests that temperature is an important regulator 
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of mdtJI expression.  Studies have reported, that alternative spermidine reduction 

systems, such as acetylation catalysed by spermidine acetylase, are increased in 

response to the exposure of E. coli  to 7°C (Limsuwun & Jones, 2000).  

Limsuwun and Jones (2000) determined that spermidine acetyltransferase is 

required to prevent spermidine toxicity at low temperatures, in E. coli. Data 

presented here also showed that mdtJI expressed more at 7°C compared with 37°C 

(Figure 3.20). Furthermore, there was no significant difference in the expression 

of mdtJI at 7°C compared to 4°C. It would appear that cold temperature increases 

the need for the bacterial cell to reduce spermidine concentrations, which may be 

in part due to the need to release any additional protein inhibition, resulting from 

the presence of spermidine, which could impair adaptation processes. 

 

BHI medium was used for the mdtJI expression studies because BHI bares 

nutritional similarities to meat, but is a more consistent and defined 

bacteriological medium. However, it was demonstrated in this study that results 

can differ when using the more complex matrix of meat.  These findings highlight 

the care that must be taken when extrapolating conclusions from results observed 

using standard laboratory media, to the more complex environment of food and 

meat.     

 

The cold temperatures chosen for this study reflect preservation and refrigeration 

temperatures used for domestic purposes, such as in the home or in supermarket 

displays (4°C and 0°C), and chill storage temperatures relevant to the meat 

industry (-1.5°C). 7°C was included in these studies for completion as there are a 

number of studies which use this as the lower temperature. Furthermore, 7°C can 

be used to represent chill temperature abuse scenarios, which can create problems 

in the preservation of meat and other fresh produce.  No significant difference in 

the expression of mdtI or mdtJ, was observed between any of the cold 

temperatures used, suggesting that the degree of downshift may be more 

important than the final temperature per se. The reduction threshold required to 

stimulate mdtJI expression, has not been defined in this study, but the degree of 

down-shift in temperature is likely to be less than 30°C.  It is important to realize, 

of course, that this response to refrigeration temperatures is brought about by 
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evolutionary responses to temperature down-shifts within the environment, and 

not to refrigeration itself.   

 

E. coli O157:H7 growth ceases upon exposure to 4 or -1.5°C (Figures 3.19, 3.21, 

3.23, 4.5, 4.6, 4.9, 4.10 & 4.11).  However, a whole cascade of gene expression 

will be activated as part of the cold shock response (Phadtare, 2004). How to 

capture the change in mRNA profiles for the bacterial populations at the different 

temperatures and compare them is a major issue; each method has its drawbacks. 

In this study we chose to carry out the initial confirmation analysis using RT-PCR 

of single points, before and after the temperature shift.  This was complemented 

with the use of bioluminescence promoter reporters which provided expression 

data over time. The use of these reporters eliminates experimental problems 

associated with RNA extraction, amplification efficiencies, normalization of 

sample concentration and gel loading. Use of appropriate experimental controls is 

paramount as is sample normalization using a stable RNA, in this case 23SrRNA, 

to overcome these issues. A number of alternative methods to RT-PCR are 

available to directly measure mRNA concentrations but each has limitations. 

Methods include real time or quantitative RT-PCR (qRT-PCR), quantitative 

northern analysis and microarrays. In recent years a number of plasmid borne gfp 

and luxS promoter fusion reporters have been developed and used to monitor in 

situ promoter expression, giving real time data on promoter activity. For this 

study, an mdtJI promoter::luxCDABE plasmid-based reporter was constructed.  

 

Interestingly, the overnight cultures of E. coli O157:H7 pWU2 showed high levels 

of light emission suggesting that mtdJI was expressed during established 

stationary phase. Upon culture dilution, light emission was observed to decrease 

steadily during exponential growth at 37°C with a 25-fold drop in expression. 

Curiously, light emission was observed to increase and subsequently decrease 

during the early stages of stationary phase (Figure 3.16). 

 

Traditionally, light emission has been reported as RLU with normalization to 

culture optical density. To determine light production per viable cell, APCs were 

used to calculate the viable cell number present.  Conversely to the OD related 
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data, light emission and therefore mdtJI expression continuously decreased, up to 

56-fold for the duration of the experiment at 37°C. No increase in expression, 

transient or otherwise, was observed during early stationary phase.  The reason for 

this difference is unclear, but it does highlight differences in methods used for 

analysing gene expression by population.  There are a few reasons why this 

difference may exist.  Firstly, the Lcfu data was based on 2 hourly samples as 

opposed to the hourly intervals used for OD measurements.  It is therefore 

possible that the increase in light expression, seen upon transition into stationary 

phase using RLU, was missed using Lcfu, merely due to the timeframe in which 

the sample was taken.  However, if this were the case, it would be likely that some 

indication of change in gene expression would have been seen.  Alternatively, 

cells within the population may not be expressing a uniform level of MdtJI and 

light. It is likely that expression within these sub-populations and the size of the 

population is dynamic and therefore, expression per cell may vary over time. It is 

not possible to determine from the methods used and the data presented here, if 

these sub-populations exist.  These results have highlighted the need to look at 

how individual cells behave within a population.  Flow cytometry would allow 

individual cell light emissions to be measured to determine the amount of mdtJI 

expression per cell, and determine whether sub-populations do exist. However, the 

first step would be to confirm the Lcfu results, by performing APCs more 

frequently. 

 

Following exposure to refrigeration temperatures, mdtJI expression remained 

constant for up to 8 hours. This was confirmed using both RLU and Lcfu (Figures 

3.2.0 and 3.22).  Curiously, the level of expression appeared to be linked to the 

bacterial concentration at the time of the shift. This data supports the RT-PCR 

results, which showed that mdtJI was expressed more at refrigeration 

temperatures, than at 37°C.  We hypothesized that the MdtJI complex is required 

at cold temperatures, as well as involved in the overall stress response. This is 

supported by the expression observed on meat compared to BHI agar and by the 

increase in expression observed upon entry into stationary phase.  Stationary 

phase presents a number of stress conditions for the organism, including nutrient 

limitation and toxin build up, which may explain mdtJI expression upon transition 
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to stationary phase. Protein multi-tasking is not unusual in bacteria, a number of 

proteins have been suggested in literature to be multifunctional, and MdtJI has 

been shown to increase resistance to nalidixic acid, and combat spermidine 

toxicity.  Stress responses are linked as part of a regulatory network, and it is 

likely that MdtJI is part of this network. 

 

Plasmid-based luxCDABE reporter constructs were used in this study.  The 

plasmid luxCDABE::mdtJI constructs were useful and allowed real-time 

visualisation of mdtJI expression from the E. coli O157:H7. However, some 

plasmid-lux constructs have been reported by Amin-Hanjani et al. (1993) to 

exhibit higher luminescence than those incorporated into the chromosome, most 

likely due to the higher copy number.  Furthermore, antibiotic selection is 

required to maintain the plasmid.  This imparts a metabolic load on the cell that 

may influence cell activities. However in spite of these limitations, valuable data 

of a comparative nature, rather than absolute values of total promoter activity, can 

be collected 

 

To fully capture the regulation of a given promoter, 500nt of sequence upstream 

of the -35 is cloned in addition to the promoter sequence. This sequence is 

important because it will contain the binding site for any regulatory proteins or 

cofactors which will influence the binding efficiency of RNA polymerase to the 

-35 and -10 recognition sites of the promoter.  An extra 500nt of upstream 

sequence was duly incorporated into mtdJI::luxCDABE reporter.  Interestingly, 

analysis of this upstream sequence revealed the presence of a divergent promoter, 

located approximately 400nt upstream of the mdtJI promoter (Figure 3.5).  The 

gene transcribed by this promoter encodes tqsA, which is implicated in the 

transport of AI-2, a QS autoinducer molecule (Herzberg et al., 2006).   

 

QS systems have been implicated in the adaptive stress response systems of 

bacterial populations (DeLisa et al., 2001).  Furthermore, it has been suggested 

that this form of chemical communication, can occur, not only between bacterial 

species, but also between bacteria and host in inter-kingdom signaling  (B. Bassler 

& Losick, 2006; J. M. Henke & B. L. Bassler, 2004), between the bacteria and the 



Chapter 5: Discussion  

 

99 

 

host.  This communication, in which bacteria sense their host, and vice versa is 

not unexpected, considering the diversity and concentration of bacteria that reside 

in the host (Walters & Sperandio, 2006), combined with the fact that both micro-

organisms and their hosts have co-existed, and co-evolved for millions of years 

(Hughes & Sperandio, 2008).  LuxS, the AI-2 synthase, has been linked to the 

expression of AI-3, a molecule similar to the neurotransmitter, noradrenaline. The 

concentrations of neurotransmitters such as noradrenaline are known to rise when 

the host is under stress.  Bacteria can sense these molecules and alter their 

behavior accordingly.  It is interesting that an exporter of AI-2 is situated in such 

close proximity, and may therefore be transcriptionally linked, to a spermidine 

and multi-drug transporter, mdtJI.  The order of genes within a genome is rarely 

coincidental, with evolution driving genetic organisation. The finding that mdtJI 

and tqsA are so close, lead us to hypothesise that QS, specifically AI-2 and LuxS, 

may be involved in the regulation of mdtJI expression.   

 

To test out this hypothesis, pWU2 was transformed into CLEN34, a luxS deletion-

insertion mutant. There was no significant difference in mdtJI expression between 

the parental or CLEN34 cultures, with regard to the expression of mdtJI upon 

exposure to refrigeration temperatures (Figures 4.12, 4.13 and 4.14).  However, 

LuxS/AI-2 did influence expression of mdtJI at 37°C in E. coli O157:H7.  RLU 

data showed that in the presence of LuxS, mdtJI expression decreased during 

exponential growth and increased again during early stationary phase.  In the 

absence of LuxS however, mdtJI expression in CLEN34 was shown to 

continuously decrease, even during stationary phase. (Figure 4.12).  Lcfu data 

showed a similar decrease in mdtJI expression in CLEN34 with an approximately 

117-fold reduction.  Initial observations suggested that mdtJI expression at 37°C 

was always lower in the absence of luxS (Figure 4.13). However, further 

statistical analysis showed that no significant difference in the expression of mdtJI 

existed between the parental and mutant strains at any time during growth at 37°C 

(p ≥ 0.070), suggesting there may be little or no influence of  LuxS on mdtJI 

expression at 37°C.  These results conflict with RLU results obtained using OD600 

as the measurement of cell density, again highlighting the difference seen using 

these two methods. 
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There are two ways in which the LuxS may influence the expression of mdtJI.  

One is through metabolism and the other is via the AI-2 QS pathway (Winzer et 

al., 2003).  To ascertain if AI-2 was responsible for the observable effect of LuxS 

on the expression of mdtJI, conditioned medium containing the signal molecule 

was added to E. coli O157:H7 pWU2, and CLEN34 pWU2, growing at 37°C.  

There was no discernable difference in the expression of mdtJI upon the addition 

of AI-2 positive, or AI-2 negative CM in either strain (Figure 4.15). This suggests 

that AI-2 does not have an effect on the expression of mdtJI and that any effect is 

likely to be driven metabolically rather than through a QS based mechanism.  

However, the addition of AI-2 was performed at a single time point, during 

stationary phase (Figure 4.15, T5).  Further work needs to be carried out to 

confirm whether or not the addition of AI-2, has any influence on the expression 

of mdtJI at other times during growth.  Furthermore, AI-2 was added in the form 

of CM only.  Ideally the signal molecule should be added in purified form, as CM 

can contain compounds other than AI-2 which may have an influence.  

Unfortunately, this is not commercially available, and it is both costly and time 

consuming to manufacture.  An appropriate negative AI-2 CM, made from 

CLEN34 (luxS
-
 strain) was used as a control for these experiments to minimise 

any culture-dependent variables, which may be associated with the addition of 

CM.  Since there was no observable affect upon the addition of either AI-2 

positive or negative CM, the lack of pure AI-2 was not considered a limiting 

factor for these experiments.  

                                                                                                                                                                                                                

CLEN34 is lacking the luxS gene, which means the expression of the lsr gene 

(LuxS regulated) which encodes the LsR transport system may be disrupted.  The 

LsR transport system internalizes endogenously produced AI-2, as well external 

AI-2 (Taga et al., 2003; Taga et al., 2001).  Therefore, questions remain as to 

whether the addition of exogenous AI-2 truly had no effect on the mdtJI gene 

(Figure 4.14), or if the lack of response was merely because luxS
-
 cells were 

unable to import the AI-2 molecule.  Complementation of CLEN34 with luxS 

would return the metabolic function, but would also return AI-2 production.  This 

would not resolve whether or not the observed effects were metabolic of QS 

derived.  An alternative method, for returning the metabolic function of luxS, 
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without restoring the QS function could be achieved by replacing the missing luxS 

gene with sahH (Walters & Sperandio, 2006).  sahH encodes the enzyme, S-

adenosylhomocysteine (SAH) hydrolase, and is part of an alternative pathway for 

the detoxification of SAH.   

  

Importantly, the absence of LuxS had no observable affect on the growth or 

survival of E. coli O157:H7, at 37°C or upon exposure to refrigeration 

temperatures (Figures 4.9 and 4.10).  These findings confirm that the differences 

seen between the expression of mdtJI in the parental strain, and luxS
- 
strain, were 

not merely due to any growth differences, which could have occurred due to the 

deletion of luxS.  However, these observations are limited short incubations at 

refrigeration temperatures.  During long term exposure to 4°C, the presence of 

LuxS does adversely affect the survival of E. coli O157:H7 being luxS
-
 was 

advantageous (Appendix 1). 

 

In line with the literature, AI-2 levels increased at 37°C, with increasing OD 

(Figures 4.5 and 4.6).  Additionally, AI-2 levels remained constant, following a 

temperature down-shift from 37°C to both 4 and -1.5°C, in line with the 

population density (Figures 4.5 to 4.8).  It is not clear, whether the lack of change 

with respect to exogenous AI-2 is due to a lack of AI-2 production, altered AI-2 

transport, impaired AI-2 degradation or a combination of all three scenarios.  This 

data, does suggest however, that AI-2 is unlikely to be involved in the cold 

temperature response.  This theory is further supported by the findings that LuxS, 

which is responsible for the production of AI-2, has no influence, at least in the 

short term, over the growth or survival of E. coli O157:H7, or the expression of 

mdtJI at refrigeration temperatures.   

 

In summary, the main findings in this study were; 

 slp, hslJ and the mdtJI are differentially expressed in E. coli O157:H7 at 

refrigeration temperatures.  

 mdtJI is involved adaptive response, specifically adaptation to cold 

temperatures in E. coli O157:H7, and possibly to growth cessation which 

occurs during entry into stationary phase.    
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 Although mdtJI was situated in close proximity to tqsA, LuxS and AI-2 

have not been shown in this study to influence expression of mdtJI at 

refrigeration temperatures 

 LuxS/A-2 does not affect short term survival of E. coli O157:H7 at 

refrigeration temperatures.   

 LuxS but not AI-2, influences mdtJI expression at 37°C; most likely 

metabolically rather than QS based.   
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Chapter 6: Future directions and 

recommendations 

 

In light of the potential enormity of this topic, it is important to recognise that the 

experiments in this thesis were carried out in the manner of a “shot gun” 

approach, with the intention of identifying areas worthy of further investigation.  

Most of the experiments, while designed to answer questions, often gave rise to 

new questions, which only serves to highlight the complexity of studies of this 

nature. The interactions of bacteria with their environment and the responses they 

generate are rarely simple, and this study has merely touched on the variables 

associated with these interactions. Further experiments will need to be carried out 

in order to confirm these preliminary findings, and further elucidate their 

meaning.  Some of the key experiments and questions for the future are listed 

below: 

 

What is the role of QS in mdtJI expression? 

 Metabolic versus QS  

 Metabolic only complementation of the luxS
 
mutation using the 

P. aeruginosa S-adenosylhomocysteine hydrolase (sahH) gene  

 QS complementation - Addition of purified AI-2  

 Total complementation of the luxS mutation with luxS to confirm that 

the effects observed are due to the absence of LuxS rather than to any 

secondary  mutation generated during construction of the deletion strain 

or subsequent growth 

 Timing – is timing of AI-2 addition important in the regulation of mdtJI 

expression? 

 Add AI-2 at different time points during growth at 37°C to determine if 

a role for AI-2 can be determined.  

 tqsA -  is the location of this gene significant in the regulation of mdtJI? 
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What is the role of mdtJI in E. coli O157:H7? 

Construct an mdtJI deletion mutation to investigate the role of mdtJI in E. coli 

O157:H7.  

Construct a chromosomal-based mdtJI promoter reporter to reduce copy number 

effects in the expression assays.  

Investigate further the roles that mdtJI has within E. coli O157:H7  

Stress responses  

Multi-drug exporter, including spermidine.   

How do these influence survival at cold temperatures? Including on Meat? 

mdtJI expression modification 

What other stresses influence mdtJI expression?   

Investigate the discrepancies seen with regards to mdtJI expression at 37°C using 

RLU and Lcfu data. Extra APC sample points will be included, to confirm if the 

continuous reduction of mdtJI expression seen at 37°C using Lcfu, was not merely 

due missing data.   Also, flow cytometry experiments can be used to ascertain if 

there are actually subpopulations of E. coli O157:H7 which vary in their 

expression of mdtJI.  

 

What does effect survival of E. coli O157:H7 on meat?  

A role for QS? 

Development of methods  

For VHBA assays - what is the influence of meat and meat extracts on the 

viability of V. harveyi strains? Can the traditional assay be used?  

Investigate alternative AI-2 detection assays, or alternative biological sensors. 

 In situ analysis tools - Use of luxCDABE-reporters or gfp-reporters 

technology to monitor survival of E. coli O157:H7 at cold temperature 

on the meat surface   

 Other genes? 

 slp and hslJ were observed as being differentially expressed at 37°C 

compared with refrigeration temperatures. Use similar experimental 

strategies as those used and discussed in this thesis to examine their role 

in survival at cold temperatures on meat. 
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Bacteria become lab-adapted very quickly and this is known to influence 

behavior.  What is the affect of lab adaptation on the response to stress? 

 Using similar assays as those described in this thesis, assess the role of these 

genes in the cold shock response/survival using strains of E. coli O157:H7 

that have been recently isolated from meat and the meat processing 

environment and are not lab-adapted. 

 

What other experimental procedures can be used, or methodologies 

improved?  

 Strengthen the results and conclusions by increasing the number of 

experimental replicates, thus improving the statistical analysis.  

 As discussed earlier, all experimental techniques have limitations and it is 

important to determine which procedure will generate the data required.   

 RNA analysis  

 quantitative northern analysis  

 Real Time PCR (qRT-PCR) analysis using SBYR Green 

 DNA Microarrays probed using Cy-3 and Cy-5 labeled cDNA 

populations 

 Growth/expression analysis 

 Biological gfp-tagging of bacterial cells for detection in complex 

media. For example, on the meat surface  

 Chemical fluorescent cell labeling for detection in complex 

media using, for example,  4´,6-diamidino-2-phenylindole, 

dihydrochloride  (DAPI),  a DNA interchelator; 

carboxyfluorescein diacetate, succinimidyl (CDFA) a membrane 

bound  

 Flow cytometry to measure individual cells in the population 
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