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Abstract. A genetic algorithm is used to learn a non-deterministic Petri net-
based model of non-linear gene interactions, or statistical epistasis. Petri nets 
are computational models of concurrent processes. However, often certain 
global assumptions (e.g. transition priorities) are required in order to convert a 
non-deterministic Petri net into a simpler deterministic model for easier analysis 
and evaluation. We show, by converting a Petri net into a set of state trees, that 
it is possible to both retain Petri net non-determinism (i.e. allowing local 
interactions only, thereby making the model more realistic), whilst also learning 
useful Petri nets with practical applications. Our Petri nets produce predictions 
of genetic disease risk assessments derived from clinical data that match with 
over 92% accuracy. 

Keywords: Petri net, genetic algorithm, epistasis, concurrency, systemic 
schlerosis, digital ulcers. 

1. Introduction 

Petri nets [13] are widely used abstract computational models of concurrent 
processes. Recently, they have found application as useful modeling tools in 
biochemistry, genetics and medicine (e.g. [2,6]). 

They are best described as executable graphs with two different types of node: 
places and transitions. In a biochemical modeling situation, a place usually represents 
a substance and a transition stands for a reaction or process in which one or more 
input substances are transformed over time into one or more output substances. Petri 
nets have potential to realistically model what could be happening in real world 
situations because they are inherently concurrent. For example, in a net, two pathways 
of multiple transitions may fire simultaneously, thus simulating two concurrent 
processes. 

Figure 1 depicts a simple Petri net with three places and two transitions. The 
places, P0, P1 and P2, represent three different chemical substances, and the 
transitions, T0 and T1, represent two different reactions that can occur between them. 
Petri nets represent the concentration of a substance at a particular point in time by 
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“marking” each place with an integer number of tokens. These tokens move around 
the net as the transitions fire. 

For example, suppose in Figure 1 that there are 10 
tokens at P0, and no tokens at P1 and P2. The overall 
marking of the entire net is the vector <10,0,0>. The 
arcs indicate either transition inputs or outputs, 
depending on the directionality. They are labeled with 
a quantity of tokens consumed or produced. T0, for 
example, represents a chemical process in which P0 is 
being converted into P2, with one unit of P0 being 
consumed for every three units of P2 being produced. 

If T0 fires once, the marking of the net will become <9,0,3>. If it fires twice, it will 
become <8,0,6>. T1, on the other hand, represents an entirely different reaction with 
P0 and P2 as inputs, and P1 as output. Because T1 requires three units of P2 as an input, 
it cannot fire until T0 has fired at least once. If this happens, the marking will change 
from <10,0,0> to <9,0,3> (after T0 fires) and then to <7,5,0> (after T1 fires). 

Transitions can only fire if there are sufficient input tokens available (i.e. the 
number of tokens at an input place cannot fall below zero), and if they are not 
inhibited. An example of an inhibitor in Figure 1 is the arc from P1 to T0: if ever P1 
has a non-zero quantity of tokens present, then T0 is effectively turned off. 

The only other time that a transition cannot fire is if one of its output places has 
insufficient capacity. For example, suppose the maximum capacity of all places in 
Figure 1 is 10 tokens, and the current marking is <7,6,9>. Although T1 has sufficient 
inputs available at P0 and P2, there is insufficient capacity at the output place P2, so T1 
cannot fire. 

It should be evident by now that Petri nets are concurrent and non-deterministic 
models. Transitions may fire in any order, and if they do not share common inputs or 
outputs, they can fire concurrently. 

Non-determinism does have some issues when models are to be executed on serial 
computers. If there are two or more transitions enabled, which one should fire first? 
The simplest answer to this question is to enforce an arbitrary priority amongst the 
transitions [13]. For example, in Figure 1, T0 may have a higher priority and therefore 
always fire before T1, if they are both enabled at the same time. This strategy 
simplifies a non-deterministic Petri net into a deterministic model. 

An alternative answer is to make the transitions fire stochastically. Of those that 
are enabled, one of them is selected to fire at random; and sometimes, in order to give 
all enabled transitions a fair chance of firing, those that have recently fired are not 
permitted to fire again until a certain amount of time has elapsed. 

A significant issue with both of these solutions is that they require global 
coordination. In other words, in order to select the next transition to fire, all 
transitions must be examined globally. Nature, however, is unlikely to employ this 
level of global coordination; natural systems are more likely to evolve gradually with 
many local, concurrent interactions. The issue is therefore how to relax the 
requirement of global coordination from our Petri net models in order to make them 
more realistic and therefore more interesting. 

In this paper, we address this specific problem in the context of modeling disease-
causing epistatic interactions between genes. Our solution is to convert the Petri net 

 
Fig. 1. Example of a Petri Net. 
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model into an alternative representation called a set of state trees, which represents all 
possible orderings in which the transitions can fire. The leaves of these trees therefore 
represent all possible final outcomes. 

We show that it is possible to evolve a Petri net using a genetic algorithm whose 
state tree outcomes match clinical observations in over 92% of the outcomes. 
Furthermore, it is also possible to limit the depth and size of the trees so that the tree 
remains relatively small, thereby permitting inspection. 

This new approach eliminates the need for global coordination of the transition 
firings in the Petri net. Instead, transitions can fire in any order, and the Petri net 
therefore exhibits only more realistic local interactions. 

2. Method 

We describe firstly our Petri net models of non-linear gene interaction, and then 
discuss the conversion of a Petri net to a multiple state trees. Finally we describe the 
specific genetic algorithm that we employed to learn our Petri net-based models. 

2.1 Petri Net Models of Epistasis 

Epistasis [11] refers to the phenomenon of non-linear gene interaction. In the 
context of genetic disease, it manifests when no single genetic cause for a disease can 
be isolated; instead, scientists determine that it is the curious interaction between 
multiple genes that causes the disease. The main question is how this interaction 
could be happening, and Petri nets are useful as a means of hinting at a hypothesis 
explaining the interaction. 

In biological reality, each gene is actually a sequence comprising hundreds of 
thousands of nucleotides. Mutations to these sequences may occur in many ways, but 
one of the most common is a change to a single nucleotide, known as a Single 
Nucleotide Polymorphism (SNP). A single SNP may completely alter the behavior of 
a gene. In this paper, we will refer to the value of an SNP as A (the original, wild-
type) or a (its mutant form). In an individual, nucleotides come in unordered pairs 
(alleles); so therefore an individual has three possible genotypes per SNP: AA, Aa, or 
aa1. 

For modeling purpose, the nucleotide level of detail is far too 
complex. We therefore model entire genes as “gene units” 
within our Petri nets. Each gene unit is assumed to vary only by 
a single SNP; that is, all nucleotides except for one are assumed 
constant. This representation is depicted in Figure 2.  

As Figure 2 illustrates, a gene is modeled as two places and a 
transition. The first place is called the “activating place” (AP) 
and represents the substance that activates or turns on the gene; 
the second substance is the “product place” (PP), and represents 

                                                           
1 This is a convention we use in this paper for readability by non-geneticists.  To be technically 

correct, we should use nucleotide notation, e.g. CC/CG/GG. 

 
Fig. 2. A gene unit. 
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the output of the gene. There is also an optional “inhibitory place” (I) that can turn the 
gene unit off completely. The key point is that the rate of production of the gene unit, 
the value g, is controlled by a genotype varying only by a single SNP. 

Following biological investigations [3,5,12], it is assumed that the SNP’s mutant 
form a causes an over-production of the gene’s output substance at some fixed ratio. 
The values of g in Figure 2, therefore, have been set to 3 for genotype AA; 6 for 
genotype Aa; and 9 for genotype aa.  

     Figure 3 shows an overall Petri net-based 
architecture comprising several gene units. It 
should evident that whenever n genes are being 
modeled, there must be up to 3n different 
genotypes involved. 
     There are two additional places in this 
architecture: P0 and P1. P0 denotes the initial 
source of tokens in the network, or from a 
biological point of view, it is the trigger event 
that initiates the chain of reactions leading up 
to the disease. P1 represents the output of this 
process; it is the toxic disease-causing 
substance. Following previous studies [1,7,9], 
we use a threshold to determine whether the 
toxic substance is in such abundance as to 
cause a high risk of the disease. In all of our 
simulations, this threshold is set to 50% of the 

maximum capacity of P1. Thus, if the threshold at P1 is reached or exceeded, it is 
assumed that the current genotype leads to a high risk of disease; otherwise, there is 
only a low risk. 

Besides the gene units and P0 and P1, we also assume the existence of an arbitrary 
additional number of places and transitions. These are places and transitions not 
forming the parts of any specific gene unit, but they do have significant influence 
because they connect to the gene unit’s APs and PPs. 

In all of our simulations the maximum place capacity and arc weights are set to 10. 

2.2 From Petri Nets To Sets Of State Trees 

Petri nets are inherently non-deterministic, concurrent computational models. That is, 
transitions that are co-enabled can fire in any order, as long as one of the transitions 
does not disable the other, and transitions that do not share common inputs and 
outputs may fire concurrently. In order to evaluate the behaviour of such a model it is 
necessary to “unroll” its non-deterministic aspects into a deterministic form that can 
be properly assessed. 

We propose a tree representation that we call a state tree as the deterministic form 
of a Petri net. A state tree is an alternative representation of a Petri net in which nodes 
represent markings, and arcs represent transitions. A path from the root of the state 
tree to a leaf represents, therefore, a single execution of the Petri net from start state to 

 
Fig 3. A generalized Petri net 
architecture comprising n gene units. 
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final state. Figure 4 depicts a state tree for the very simple Petri net depicted in Figure 
1. 

In Figure 4, the starting state is <10,0,0>, indicating 10 tokens at P0 and no tokens 
anywhere else. Only transition T0 is enabled initially, but after it fires once, both T0 
and T1 are thereafter enabled. The final states that are reached, which depend on the 
ordering of transition firings, are <7,0,9>, <6,5,3>, or <7,5,0>. 

Clearly, for a Petri net of significant size or 
complexity, the state tree can be very large. 
Furthermore, if a state is visited more than once, then 
at that point the state tree can have effectively infinite 
depth. To resolve these problems, we limited the depth 
of our state trees to 10 and automatically excluded 
from consideration any Petri nets whose state tree 
exceeded this depth limit. We also limited the number 
of leaves per tree to 100 or less, again excluding from 
consideration any trees that did not conform. Finally, 
we also made use of a domain-specific heuristic to 
further trim the tree. Since P1 only ever accumulates 
tokens and is never the input place for another 
transition, it is possible to stop growing the state tree as 
soon as the number of tokens at P1 exceeds the threshold of 50%, since the risk 
assessment will thereafter not change. 

These measures for the most part kept the size of the state trees manageable, whilst 
still being practical for solving the problem of non-linear gene modeling. 

 As Figure 3 shows, there are n variables g0, g1, …, gn-1, that are genotype 
dependent within each net. As each gene has 3 different possible values (AA/3, Aa/6 
or aa/9), this means that there are 3n possible genotypes. Now, each genotype will 
produce a different Petri net execution dynamics, and therefore a different state tree 
must be constructed for each and every genotype. Thus, in our problem domain, every 
single Petri net is converted into not one but a set of 3n state trees. 

2.3 Evolving Petri Nets 

We propose the use of a genetic algorithm to learn a Petri net model of the observed 
non-linear gene interactions. Genetic algorithms [4] use random mutations and 
crossover operators to gradually optimize solutions to problems. In the specific field 
of gene interaction modeling, Moore and Hahn [9], Mayo [7], Mayo and Beretta [14], 
and Beretta et al. [1] all apply genetic algorithms to learn Petri nets. The key 
difference between those previous works and our current work presented here is that 
previously, deterministic Petri nets were used, whereas now we are concerned with 
relaxing the determinism criteria and instead learning Petri nets that may execute non-
deterministically (i.e. the transitions may fire in any order) whilst still remaining a 
highly accurate model of the interaction. 

In our case, we have a set of 3n genotypes, each genotype being labeled either 
“high risk” or “low risk”, and we want a Petri net that, after all transitions have fired, 
always reaches or exceeds the threshold at P1 for high risk genotypes, but never 

 
Fig 4. A state tree for the 
Petri net depicted in Figure 1. 
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exceeds the threshold at P1 for low risk genotypes. Construction of a state tree for 
each genotype, therefore, is essential in order to assess all possible outcomes. The 
model should show how the genes activate, produce, and interact in all situations in 
order to produce the correct desired behavior. 

Our representation of a Petri net for the genetic algorithm is as follows: we fix the 
number of places to 2n+2 and the number of transitions to n+10, where n is the 
number of genes, and model each net as a list of directed arcs. Arcs can be either 
weighted or inhibitory. Our genetic algorithm randomly constructs its initial Petri 
nets, putting a random arc with random weight between a place and transition with 
probability 0.2. Of those arcs, 10% of them are chosen randomly to be inhibitors. 

Our genetic algorithm has a population size of 2,000 individuals. From the random 
initial population and for each subsequent generation, the top 5% of individuals are 
retained for the following generation. The rest are created via either the mutation 
operator or the crossover operator. The mutation operator either (i) adds one, two or 
three random arcs to the net; or, (ii) deletes a random arc, or (iii) modifies an existing 
arc by changing its weight or type, with equal probability. The crossover operator 
merges the arc lists of two parent nets, while maintaining the criteria that there is no 
more than one arc between any pair of nodes. 

In our initial testing, we found that the mutation operator was far more effective 
than the crossover operator, and so set the probability of crossover to 5% and the 
probability of mutation to 95%. Parent nets are selected stochastically with 
probability proportionate to fitness. The genetic algorithm continues to iterate until 
2,000 generations pass without any gains in fitness. At that point, the search is 
complete and the best net is returned. 

In our non-linear gene modeling scenario, there are 3n genotypes, and therefore 3n 
state trees per net. To compute the fitness of each net, we iterate over the genotypes 
and generate for each genotype its corresponding state tree. For example, if n=3, then 
the genotypes will be AA-AA-AA, AA-AA-Aa, AA-AA-aa, …, aa-aa-aa, where AA 
corresponds to arc weight 9, Aa to weight 6, and aa to weight 3. 

Since each genotype will have a risk assessment (either high or low), we examine 
the leaves of its state tree and compute the proportion of leaves with the correct 
predicted assessment. This is what we term the accuracy of the state tree. The overall 
fitness is then the average accuracy across all genotypes, with a small bias against net 
size subtracted. During testing, we also found that squaring this fitness value tended 
to give marginally better results than not squaring it, and so the final result is squared. 
In mathematical terms, the fitness function is given by the equation below, where r is 
a genotype. 

€ 

fitness(net) =

accuracy(net,r)
r= 0

3n−1

∑
3n
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 
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2

 

The fitness function ranges in value between 0.0 and 1.0, with a greater value 
indicating a better solution. The size component of the function is determined by 
dividing the actual number of arcs by the maximum possible number. 
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Figure 5 illustrates the computation of the fitness value for the very simple Petri 
net from Figure 1, assuming that the P0-T0-P2 portion of the net is now a single gene 
unit. Since g can take three possible values, specifically 3,6 or 9, there are three 
possible state trees. If the AA genotype is low risk (P1 must be less than 50% of 
maximum capacity) whilst the Aa and aa genotypes are high risk (P1 must be greater 
than or equal to 50% capacity, which is 5 tokens), then Figure 5 shows that this net is 
only 33.3% accurate when g=3, but 100% accurate when g=6 or 9. Overall, then, the 
fitness of this net is (0.33+1.0+1.0)/3.0-0.01(6/6)≈0.77 

 

 

 
Fig. 5. (a) A Petri net with a single gene unit and (b) its corresponding state trees for g=3, 6 and 
9 respectively. 

3. Evaluation 

3.1 Non-Linear Gene Interaction Model of Digital Ulcers 

A recently discovered disease-causing non-linear gene interaction is used as a test-
bed for our method [1]. This model, depicted in Figure 6, describes the risk of 
developing digital ulcers in a population of 200 Italian systemic sclerosis patients and 
was built using the Multifactor Dimensionality Reduction (MDR) kernel [10]. The 
model concerns two SNPs (IL-2 C-330G SNP and IL-6 G-174C SNP, hereafter 
referred to as IL2 and IL6), and one non-SNP mutation (HLA-B35, hereafter referred 
to B35). Due to the complexity of B35, only the presence or absence of a particular 
mutant allele (HLA-B*3501) is recorded; we refer to the absence of this allele as AA, 
and its presence as Aa/aa. 

In each cell of Figure 6, there are two bars. The left bars indicate the frequency of 
patients (cases) with digital ulcers, and the right bars indicate the frequency of 
patients without digital ulcers (the controls). If the ratio of cases to controls exceeds a 
certain threshold, patients are labeled as high risk (which are the dark-shaded cells), 
otherwise they are low risk (the light-shaded cells).  

We want to use our genetic algorithm to learn a Petri net model corresponding to 
the architecture in Figure 3 that shows how the various genotypes could lead to either 
a high risk or low risk of the disease, for each of the 18 genotypes in the matrix.  
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Fig. 6. Multifactor dimensionality reduction (MDR) model of non-linear gene-gene interaction. 
Key: For IL2 and IL6, cell indices 0, 1 and 2 denote genotypes AA, Aa and aa respectively. For 
B35, cell index 1 indicates Aa/aa and index 0 indicates genotype AA. 

3.2 Results and Analysis 

We performed 32 runs of our genetic algorithm. The maximum fitness value after a 
run obtained was 0.85, and the minimum was 0.64. The mean best fitness value was 
0.70. We examined the Petri net, depicted in Figure 7, with the maximum fitness of 
0.85. This net required 5,558 generations to learn, and it has 40 arcs. Rather than 
showing the net graphically, which would be difficult to interpret, we present it 
instead as a list of transitions. 

TB35: APB35(1)       ⇒ PPB35(gB35)  
TIL6: APIL6(1)       ⇒ PPIL6(gIL6)  
TIL2: APIL2(1),P1(i)    ⇒ PPIL2(gIL2)  
T3: PPB35(8),PPIL6(9)  ⇒ P1(10)  
T4: PPIL2(7)       ⇒ P1(3),APIL2(9)  
T5: PPIL6(3)       ⇒ P1(4),APB35(4),APIL2(8),APIL6(9)  
T6: PPIL2(7),PPIL6(i)  ⇒ P1(4)  
T7: PPIL6(6)       ⇒ APB35(3),APIL2(2)  
T8: PPIL2(7)       ⇒ P1(2),APIL2(7)  
T9: P0(4)         ⇒ APB35(9),APIL6(1)  
T10: PPIL2(3)       ⇒ P1(3) APIL6(7)  
T11: PPIL2(7)       ⇒ P1(2),APIL6(2)  
T12: PPIL2(3),PPIL6(i)  ⇒ P1(6),APIL2(10)  

Fig 7. Best Petri net obtained with our genetic algorithm. In the figure, P0 is the initial token 
source for the net, and P1 is the toxic output that is thresholded to determine the risk 
assessment. The LHS of each transition is a list of inputs and weights (or i if the input is an 
inhibitor), and the RHS is a list of outputs and weights. APk and PPk are the activating and 
product places of gene k, and gk denotes the genotype-controlled weight for gene k.  

We generated all 18 state trees (each state tree being derived from one genotype, as 
described in Section 2), and calculated the number of different outcomes (leaf nodes) 
for each tree. Of those, the number that gave the correct risk assessment (high or low 
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according to the model in Figure 
6) were computed for each 
genotype. This enabled us to 
compute an overall average 
accuracy across all of the 
genotypes of 92.6% for this net. 
The results of the genotype-by-
genotype analysis are given in 
Table 1. As can be observed, the 
net performs well for all but one 
of the genotypes. 
    Finally, we also examined the 
significance of each individual 
transition in the network. Taking 
the Petri net depicted in Figure 7, 
and iteratively deleting each 
transition and all arcs incident on 
it achieved this. We then 
recomputed the value of the 
network without the transition, 
before replacing the transition and 
its arcs. The recomputed values 

give an indication of each transition’s significance, and can be compared to the 
original value of 0.85. Table 2 lists, for each transition, these recomputed values. The 
lower the value of the transition, the greater its 
significance on the Petri net’s dynamics. 

As can be observed in Table 2, transitions TB35, TIL6 
and T9 are the most significant: remove them, and the 
network fails almost completely. This is clearly because 
the source of the initial tokens (P0) is only accessible via 
T9, which feeds into B35 and IL6 gene units. All of the 
remaining transitions except for the final three have 
different degrees of significance. Interestingly, the final 
three transitions, T4, T8, and T11, have almost no 
significant impact on the Petri net’s behaviour. They 
could, therefore, be entirely removed, thereby reducing 
the size of the net from 40 arcs to 31 arcs. This transition 
analysis could be employed during the genetic algorithm 
search process itself in order to reduce the size of Petri 
nets without relying on the random mutation operator. 

4. Conclusion 

We have shown how to construct a Petri net-based model of a set of concurrent 
processes. Unlike previous approaches to Petri net learning that require global 

Table 1. Analysis by genotype of each state tree 
derived from the Petri net depicted in Figure 7. 

B35 IL2 IL6 Correct Total %  
AA AA AA 4 4 100.0 
AA AA Aa 50 54 92.6 
AA AA aa 36 39 92.3 
AA Aa AA 4 4 100.0 
AA Aa Aa 95 99 96.0 
AA Aa aa 57 61 93.4 
AA aa AA 4 4 100.0 
AA aa Aa 68 68 100.0 
AA aa aa 56 60 93.3 
Aa/aa AA AA 2 2 100.0 
Aa/aa AA Aa 2 2 100.0 
Aa/aa AA aa 0 2 0.0 
Aa/aa Aa AA 2 2 100.0 
Aa/aa Aa Aa 2 2 100.0 
Aa/aa Aa aa 2 2 100.0 
Aa/aa aa AA 2 2 100.0 
Aa/aa aa Aa 2 2 100.0 
Aa/aa aa aa 2 2 100.0  

Table 2. Recomputed 
values of the Petri Net by 
transition. 

Transition Value 
TB35 0.25 
TIL6 0.25 
T9 0.25 
TIL2 0.42 
T7 0.56 
T3 0.58 
T6 0.66 
T10 0.67 
T5 0.67 
T12 0.76 
T4 0.84 
T8 0.84 
T11 0.84  
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coordination (in the form of transition priorities or randomised transition firing), our 
approach “unrolls” the non-determinism by converting a Petri net into a set of state 
trees, and evaluates the trees rather than the net. This gives an indication of the net’s 
behavior when the transitions are allowed to fire concurrently or in any order 
whatsoever – a situation most suitable for modeling real world processes. 

We have applied this approach to the modeling of non-linear gene interactions, and 
shown that not only is this approach computationally feasible for a practical 
application, but also that the analysis of the Petri net’s learned using this method may 
lead to useful insight into the problem being modeled. 
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