
Evolving Concurrent Petri Net Models of Epistasis

Michael Mayo1, Lorenzo Beretta2

1Dept. of Computer Science, University of Waikato, New Zealand
2Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ospedale Maggiore

Policlinico di Milano, Italy
1mmayo@cs.waikato.ac.nz, 2lorberimm@hotmail.com

Abstract. A genetic algorithm is used to learn a non-deterministic Petri net-
based model of non-linear gene interactions, or statistical epistasis. Petri nets
are computational models of concurrent processes. However, often certain
global assumptions (e.g. transition priorities) are required in order to convert a
non-deterministic Petri net into a simpler deterministic model for easier analysis
and evaluation. We show, by converting a Petri net into a set of state trees, that
it is possible to both retain Petri net non-determinism (i.e. allowing local
interactions only, thereby making the model more realistic), whilst also learning
useful Petri nets with practical applications. Our Petri nets produce predictions
of genetic disease risk assessments derived from clinical data that match with
over 92% accuracy.

Keywords: Petri net, genetic algorithm, epistasis, concurrency, systemic
schlerosis, digital ulcers.

1. Introduction

Petri nets [13] are widely used abstract computational models of concurrent
processes. Recently, they have found application as useful modeling tools in
biochemistry, genetics and medicine (e.g. [2,6]).

They are best described as executable graphs with two different types of node:
places and transitions. In a biochemical modeling situation, a place usually represents
a substance and a transition stands for a reaction or process in which one or more
input substances are transformed over time into one or more output substances. Petri
nets have potential to realistically model what could be happening in real world
situations because they are inherently concurrent. For example, in a net, two pathways
of multiple transitions may fire simultaneously, thus simulating two concurrent
processes.

Figure 1 depicts a simple Petri net with three places and two transitions. The
places, P0, P1 and P2, represent three different chemical substances, and the
transitions, T0 and T1, represent two different reactions that can occur between them.
Petri nets represent the concentration of a substance at a particular point in time by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29197221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Michael Mayo, Lorenzo Beretta

“marking” each place with an integer number of tokens. These tokens move around
the net as the transitions fire.

For example, suppose in Figure 1 that there are 10
tokens at P0, and no tokens at P1 and P2. The overall
marking of the entire net is the vector <10,0,0>. The
arcs indicate either transition inputs or outputs,
depending on the directionality. They are labeled with
a quantity of tokens consumed or produced. T0, for
example, represents a chemical process in which P0 is
being converted into P2, with one unit of P0 being
consumed for every three units of P2 being produced.

If T0 fires once, the marking of the net will become <9,0,3>. If it fires twice, it will
become <8,0,6>. T1, on the other hand, represents an entirely different reaction with
P0 and P2 as inputs, and P1 as output. Because T1 requires three units of P2 as an input,
it cannot fire until T0 has fired at least once. If this happens, the marking will change
from <10,0,0> to <9,0,3> (after T0 fires) and then to <7,5,0> (after T1 fires).

Transitions can only fire if there are sufficient input tokens available (i.e. the
number of tokens at an input place cannot fall below zero), and if they are not
inhibited. An example of an inhibitor in Figure 1 is the arc from P1 to T0: if ever P1
has a non-zero quantity of tokens present, then T0 is effectively turned off.

The only other time that a transition cannot fire is if one of its output places has
insufficient capacity. For example, suppose the maximum capacity of all places in
Figure 1 is 10 tokens, and the current marking is <7,6,9>. Although T1 has sufficient
inputs available at P0 and P2, there is insufficient capacity at the output place P2, so T1
cannot fire.

It should be evident by now that Petri nets are concurrent and non-deterministic
models. Transitions may fire in any order, and if they do not share common inputs or
outputs, they can fire concurrently.

Non-determinism does have some issues when models are to be executed on serial
computers. If there are two or more transitions enabled, which one should fire first?
The simplest answer to this question is to enforce an arbitrary priority amongst the
transitions [13]. For example, in Figure 1, T0 may have a higher priority and therefore
always fire before T1, if they are both enabled at the same time. This strategy
simplifies a non-deterministic Petri net into a deterministic model.

An alternative answer is to make the transitions fire stochastically. Of those that
are enabled, one of them is selected to fire at random; and sometimes, in order to give
all enabled transitions a fair chance of firing, those that have recently fired are not
permitted to fire again until a certain amount of time has elapsed.

A significant issue with both of these solutions is that they require global
coordination. In other words, in order to select the next transition to fire, all
transitions must be examined globally. Nature, however, is unlikely to employ this
level of global coordination; natural systems are more likely to evolve gradually with
many local, concurrent interactions. The issue is therefore how to relax the
requirement of global coordination from our Petri net models in order to make them
more realistic and therefore more interesting.

In this paper, we address this specific problem in the context of modeling disease-
causing epistatic interactions between genes. Our solution is to convert the Petri net

Fig. 1. Example of a Petri Net.

Evolving Concurrent Petri Net Models of Epistasis 3

model into an alternative representation called a set of state trees, which represents all
possible orderings in which the transitions can fire. The leaves of these trees therefore
represent all possible final outcomes.

We show that it is possible to evolve a Petri net using a genetic algorithm whose
state tree outcomes match clinical observations in over 92% of the outcomes.
Furthermore, it is also possible to limit the depth and size of the trees so that the tree
remains relatively small, thereby permitting inspection.

This new approach eliminates the need for global coordination of the transition
firings in the Petri net. Instead, transitions can fire in any order, and the Petri net
therefore exhibits only more realistic local interactions.

2. Method

We describe firstly our Petri net models of non-linear gene interaction, and then
discuss the conversion of a Petri net to a multiple state trees. Finally we describe the
specific genetic algorithm that we employed to learn our Petri net-based models.

2.1 Petri Net Models of Epistasis

Epistasis [11] refers to the phenomenon of non-linear gene interaction. In the
context of genetic disease, it manifests when no single genetic cause for a disease can
be isolated; instead, scientists determine that it is the curious interaction between
multiple genes that causes the disease. The main question is how this interaction
could be happening, and Petri nets are useful as a means of hinting at a hypothesis
explaining the interaction.

In biological reality, each gene is actually a sequence comprising hundreds of
thousands of nucleotides. Mutations to these sequences may occur in many ways, but
one of the most common is a change to a single nucleotide, known as a Single
Nucleotide Polymorphism (SNP). A single SNP may completely alter the behavior of
a gene. In this paper, we will refer to the value of an SNP as A (the original, wild-
type) or a (its mutant form). In an individual, nucleotides come in unordered pairs
(alleles); so therefore an individual has three possible genotypes per SNP: AA, Aa, or
aa1.

For modeling purpose, the nucleotide level of detail is far too
complex. We therefore model entire genes as “gene units”
within our Petri nets. Each gene unit is assumed to vary only by
a single SNP; that is, all nucleotides except for one are assumed
constant. This representation is depicted in Figure 2.

As Figure 2 illustrates, a gene is modeled as two places and a
transition. The first place is called the “activating place” (AP)
and represents the substance that activates or turns on the gene;
the second substance is the “product place” (PP), and represents

1 This is a convention we use in this paper for readability by non-geneticists. To be technically

correct, we should use nucleotide notation, e.g. CC/CG/GG.

Fig. 2. A gene unit.

4 Michael Mayo, Lorenzo Beretta

the output of the gene. There is also an optional “inhibitory place” (I) that can turn the
gene unit off completely. The key point is that the rate of production of the gene unit,
the value g, is controlled by a genotype varying only by a single SNP.

Following biological investigations [3,5,12], it is assumed that the SNP’s mutant
form a causes an over-production of the gene’s output substance at some fixed ratio.
The values of g in Figure 2, therefore, have been set to 3 for genotype AA; 6 for
genotype Aa; and 9 for genotype aa.

 Figure 3 shows an overall Petri net-based
architecture comprising several gene units. It
should evident that whenever n genes are being
modeled, there must be up to 3n different
genotypes involved.
 There are two additional places in this
architecture: P0 and P1. P0 denotes the initial
source of tokens in the network, or from a
biological point of view, it is the trigger event
that initiates the chain of reactions leading up
to the disease. P1 represents the output of this
process; it is the toxic disease-causing
substance. Following previous studies [1,7,9],
we use a threshold to determine whether the
toxic substance is in such abundance as to
cause a high risk of the disease. In all of our
simulations, this threshold is set to 50% of the

maximum capacity of P1. Thus, if the threshold at P1 is reached or exceeded, it is
assumed that the current genotype leads to a high risk of disease; otherwise, there is
only a low risk.

Besides the gene units and P0 and P1, we also assume the existence of an arbitrary
additional number of places and transitions. These are places and transitions not
forming the parts of any specific gene unit, but they do have significant influence
because they connect to the gene unit’s APs and PPs.

In all of our simulations the maximum place capacity and arc weights are set to 10.

2.2 From Petri Nets To Sets Of State Trees

Petri nets are inherently non-deterministic, concurrent computational models. That is,
transitions that are co-enabled can fire in any order, as long as one of the transitions
does not disable the other, and transitions that do not share common inputs and
outputs may fire concurrently. In order to evaluate the behaviour of such a model it is
necessary to “unroll” its non-deterministic aspects into a deterministic form that can
be properly assessed.

We propose a tree representation that we call a state tree as the deterministic form
of a Petri net. A state tree is an alternative representation of a Petri net in which nodes
represent markings, and arcs represent transitions. A path from the root of the state
tree to a leaf represents, therefore, a single execution of the Petri net from start state to

Fig 3. A generalized Petri net
architecture comprising n gene units.

Evolving Concurrent Petri Net Models of Epistasis 5

final state. Figure 4 depicts a state tree for the very simple Petri net depicted in Figure
1.

In Figure 4, the starting state is <10,0,0>, indicating 10 tokens at P0 and no tokens
anywhere else. Only transition T0 is enabled initially, but after it fires once, both T0
and T1 are thereafter enabled. The final states that are reached, which depend on the
ordering of transition firings, are <7,0,9>, <6,5,3>, or <7,5,0>.

Clearly, for a Petri net of significant size or
complexity, the state tree can be very large.
Furthermore, if a state is visited more than once, then
at that point the state tree can have effectively infinite
depth. To resolve these problems, we limited the depth
of our state trees to 10 and automatically excluded
from consideration any Petri nets whose state tree
exceeded this depth limit. We also limited the number
of leaves per tree to 100 or less, again excluding from
consideration any trees that did not conform. Finally,
we also made use of a domain-specific heuristic to
further trim the tree. Since P1 only ever accumulates
tokens and is never the input place for another
transition, it is possible to stop growing the state tree as
soon as the number of tokens at P1 exceeds the threshold of 50%, since the risk
assessment will thereafter not change.

These measures for the most part kept the size of the state trees manageable, whilst
still being practical for solving the problem of non-linear gene modeling.

 As Figure 3 shows, there are n variables g0, g1, …, gn-1, that are genotype
dependent within each net. As each gene has 3 different possible values (AA/3, Aa/6
or aa/9), this means that there are 3n possible genotypes. Now, each genotype will
produce a different Petri net execution dynamics, and therefore a different state tree
must be constructed for each and every genotype. Thus, in our problem domain, every
single Petri net is converted into not one but a set of 3n state trees.

2.3 Evolving Petri Nets

We propose the use of a genetic algorithm to learn a Petri net model of the observed
non-linear gene interactions. Genetic algorithms [4] use random mutations and
crossover operators to gradually optimize solutions to problems. In the specific field
of gene interaction modeling, Moore and Hahn [9], Mayo [7], Mayo and Beretta [14],
and Beretta et al. [1] all apply genetic algorithms to learn Petri nets. The key
difference between those previous works and our current work presented here is that
previously, deterministic Petri nets were used, whereas now we are concerned with
relaxing the determinism criteria and instead learning Petri nets that may execute non-
deterministically (i.e. the transitions may fire in any order) whilst still remaining a
highly accurate model of the interaction.

In our case, we have a set of 3n genotypes, each genotype being labeled either
“high risk” or “low risk”, and we want a Petri net that, after all transitions have fired,
always reaches or exceeds the threshold at P1 for high risk genotypes, but never

Fig 4. A state tree for the
Petri net depicted in Figure 1.

6 Michael Mayo, Lorenzo Beretta

exceeds the threshold at P1 for low risk genotypes. Construction of a state tree for
each genotype, therefore, is essential in order to assess all possible outcomes. The
model should show how the genes activate, produce, and interact in all situations in
order to produce the correct desired behavior.

Our representation of a Petri net for the genetic algorithm is as follows: we fix the
number of places to 2n+2 and the number of transitions to n+10, where n is the
number of genes, and model each net as a list of directed arcs. Arcs can be either
weighted or inhibitory. Our genetic algorithm randomly constructs its initial Petri
nets, putting a random arc with random weight between a place and transition with
probability 0.2. Of those arcs, 10% of them are chosen randomly to be inhibitors.

Our genetic algorithm has a population size of 2,000 individuals. From the random
initial population and for each subsequent generation, the top 5% of individuals are
retained for the following generation. The rest are created via either the mutation
operator or the crossover operator. The mutation operator either (i) adds one, two or
three random arcs to the net; or, (ii) deletes a random arc, or (iii) modifies an existing
arc by changing its weight or type, with equal probability. The crossover operator
merges the arc lists of two parent nets, while maintaining the criteria that there is no
more than one arc between any pair of nodes.

In our initial testing, we found that the mutation operator was far more effective
than the crossover operator, and so set the probability of crossover to 5% and the
probability of mutation to 95%. Parent nets are selected stochastically with
probability proportionate to fitness. The genetic algorithm continues to iterate until
2,000 generations pass without any gains in fitness. At that point, the search is
complete and the best net is returned.

In our non-linear gene modeling scenario, there are 3n genotypes, and therefore 3n
state trees per net. To compute the fitness of each net, we iterate over the genotypes
and generate for each genotype its corresponding state tree. For example, if n=3, then
the genotypes will be AA-AA-AA, AA-AA-Aa, AA-AA-aa, …, aa-aa-aa, where AA
corresponds to arc weight 9, Aa to weight 6, and aa to weight 3.

Since each genotype will have a risk assessment (either high or low), we examine
the leaves of its state tree and compute the proportion of leaves with the correct
predicted assessment. This is what we term the accuracy of the state tree. The overall
fitness is then the average accuracy across all genotypes, with a small bias against net
size subtracted. During testing, we also found that squaring this fitness value tended
to give marginally better results than not squaring it, and so the final result is squared.
In mathematical terms, the fitness function is given by the equation below, where r is
a genotype.

€

fitness(net) =

accuracy(net,r)
r= 0

3n−1

∑
3n

− 0.01× size(net)



















2

The fitness function ranges in value between 0.0 and 1.0, with a greater value
indicating a better solution. The size component of the function is determined by
dividing the actual number of arcs by the maximum possible number.

Evolving Concurrent Petri Net Models of Epistasis 7

Figure 5 illustrates the computation of the fitness value for the very simple Petri
net from Figure 1, assuming that the P0-T0-P2 portion of the net is now a single gene
unit. Since g can take three possible values, specifically 3,6 or 9, there are three
possible state trees. If the AA genotype is low risk (P1 must be less than 50% of
maximum capacity) whilst the Aa and aa genotypes are high risk (P1 must be greater
than or equal to 50% capacity, which is 5 tokens), then Figure 5 shows that this net is
only 33.3% accurate when g=3, but 100% accurate when g=6 or 9. Overall, then, the
fitness of this net is (0.33+1.0+1.0)/3.0-0.01(6/6)≈0.77

Fig. 5. (a) A Petri net with a single gene unit and (b) its corresponding state trees for g=3, 6 and
9 respectively.

3. Evaluation

3.1 Non-Linear Gene Interaction Model of Digital Ulcers

A recently discovered disease-causing non-linear gene interaction is used as a test-
bed for our method [1]. This model, depicted in Figure 6, describes the risk of
developing digital ulcers in a population of 200 Italian systemic sclerosis patients and
was built using the Multifactor Dimensionality Reduction (MDR) kernel [10]. The
model concerns two SNPs (IL-2 C-330G SNP and IL-6 G-174C SNP, hereafter
referred to as IL2 and IL6), and one non-SNP mutation (HLA-B35, hereafter referred
to B35). Due to the complexity of B35, only the presence or absence of a particular
mutant allele (HLA-B*3501) is recorded; we refer to the absence of this allele as AA,
and its presence as Aa/aa.

In each cell of Figure 6, there are two bars. The left bars indicate the frequency of
patients (cases) with digital ulcers, and the right bars indicate the frequency of
patients without digital ulcers (the controls). If the ratio of cases to controls exceeds a
certain threshold, patients are labeled as high risk (which are the dark-shaded cells),
otherwise they are low risk (the light-shaded cells).

We want to use our genetic algorithm to learn a Petri net model corresponding to
the architecture in Figure 3 that shows how the various genotypes could lead to either
a high risk or low risk of the disease, for each of the 18 genotypes in the matrix.

8 Michael Mayo, Lorenzo Beretta

Fig. 6. Multifactor dimensionality reduction (MDR) model of non-linear gene-gene interaction.
Key: For IL2 and IL6, cell indices 0, 1 and 2 denote genotypes AA, Aa and aa respectively. For
B35, cell index 1 indicates Aa/aa and index 0 indicates genotype AA.

3.2 Results and Analysis

We performed 32 runs of our genetic algorithm. The maximum fitness value after a
run obtained was 0.85, and the minimum was 0.64. The mean best fitness value was
0.70. We examined the Petri net, depicted in Figure 7, with the maximum fitness of
0.85. This net required 5,558 generations to learn, and it has 40 arcs. Rather than
showing the net graphically, which would be difficult to interpret, we present it
instead as a list of transitions.

TB35: APB35(1) ⇒ PPB35(gB35)
TIL6: APIL6(1) ⇒ PPIL6(gIL6)
TIL2: APIL2(1),P1(i) ⇒ PPIL2(gIL2)
T3: PPB35(8),PPIL6(9) ⇒ P1(10)
T4: PPIL2(7) ⇒ P1(3),APIL2(9)
T5: PPIL6(3) ⇒ P1(4),APB35(4),APIL2(8),APIL6(9)
T6: PPIL2(7),PPIL6(i) ⇒ P1(4)
T7: PPIL6(6) ⇒ APB35(3),APIL2(2)
T8: PPIL2(7) ⇒ P1(2),APIL2(7)
T9: P0(4) ⇒ APB35(9),APIL6(1)
T10: PPIL2(3) ⇒ P1(3) APIL6(7)
T11: PPIL2(7) ⇒ P1(2),APIL6(2)
T12: PPIL2(3),PPIL6(i) ⇒ P1(6),APIL2(10)

Fig 7. Best Petri net obtained with our genetic algorithm. In the figure, P0 is the initial token
source for the net, and P1 is the toxic output that is thresholded to determine the risk
assessment. The LHS of each transition is a list of inputs and weights (or i if the input is an
inhibitor), and the RHS is a list of outputs and weights. APk and PPk are the activating and
product places of gene k, and gk denotes the genotype-controlled weight for gene k.

We generated all 18 state trees (each state tree being derived from one genotype, as
described in Section 2), and calculated the number of different outcomes (leaf nodes)
for each tree. Of those, the number that gave the correct risk assessment (high or low

Evolving Concurrent Petri Net Models of Epistasis 9

according to the model in Figure
6) were computed for each
genotype. This enabled us to
compute an overall average
accuracy across all of the
genotypes of 92.6% for this net.
The results of the genotype-by-
genotype analysis are given in
Table 1. As can be observed, the
net performs well for all but one
of the genotypes.
 Finally, we also examined the
significance of each individual
transition in the network. Taking
the Petri net depicted in Figure 7,
and iteratively deleting each
transition and all arcs incident on
it achieved this. We then
recomputed the value of the
network without the transition,
before replacing the transition and
its arcs. The recomputed values

give an indication of each transition’s significance, and can be compared to the
original value of 0.85. Table 2 lists, for each transition, these recomputed values. The
lower the value of the transition, the greater its
significance on the Petri net’s dynamics.

As can be observed in Table 2, transitions TB35, TIL6
and T9 are the most significant: remove them, and the
network fails almost completely. This is clearly because
the source of the initial tokens (P0) is only accessible via
T9, which feeds into B35 and IL6 gene units. All of the
remaining transitions except for the final three have
different degrees of significance. Interestingly, the final
three transitions, T4, T8, and T11, have almost no
significant impact on the Petri net’s behaviour. They
could, therefore, be entirely removed, thereby reducing
the size of the net from 40 arcs to 31 arcs. This transition
analysis could be employed during the genetic algorithm
search process itself in order to reduce the size of Petri
nets without relying on the random mutation operator.

4. Conclusion

We have shown how to construct a Petri net-based model of a set of concurrent
processes. Unlike previous approaches to Petri net learning that require global

Table 1. Analysis by genotype of each state tree
derived from the Petri net depicted in Figure 7.

B35 IL2 IL6 Correct Total %
AA AA AA 4 4 100.0
AA AA Aa 50 54 92.6
AA AA aa 36 39 92.3
AA Aa AA 4 4 100.0
AA Aa Aa 95 99 96.0
AA Aa aa 57 61 93.4
AA aa AA 4 4 100.0
AA aa Aa 68 68 100.0
AA aa aa 56 60 93.3
Aa/aa AA AA 2 2 100.0
Aa/aa AA Aa 2 2 100.0
Aa/aa AA aa 0 2 0.0
Aa/aa Aa AA 2 2 100.0
Aa/aa Aa Aa 2 2 100.0
Aa/aa Aa aa 2 2 100.0
Aa/aa aa AA 2 2 100.0
Aa/aa aa Aa 2 2 100.0
Aa/aa aa aa 2 2 100.0

Table 2. Recomputed
values of the Petri Net by
transition.

Transition Value
TB35 0.25
TIL6 0.25
T9 0.25
TIL2 0.42
T7 0.56
T3 0.58
T6 0.66
T10 0.67
T5 0.67
T12 0.76
T4 0.84
T8 0.84
T11 0.84

10 Michael Mayo, Lorenzo Beretta

coordination (in the form of transition priorities or randomised transition firing), our
approach “unrolls” the non-determinism by converting a Petri net into a set of state
trees, and evaluates the trees rather than the net. This gives an indication of the net’s
behavior when the transitions are allowed to fire concurrently or in any order
whatsoever – a situation most suitable for modeling real world processes.

We have applied this approach to the modeling of non-linear gene interactions, and
shown that not only is this approach computationally feasible for a practical
application, but also that the analysis of the Petri net’s learned using this method may
lead to useful insight into the problem being modeled.

References

1. Beretta L, Santaniello A, Mayo M, Cappiello F, Marchini M and Scorza R (2009.) Genetic
and Biological Models of Epistasis to Predict Digital Ulcer Occurrence in Italian Systemic
Sclerosis Patients. Article In Submission to Annals of Human Genetics.

2. Cheng S, Yeh H, Lin Y, Lin S, Soo V. (2007). Inferring Gene Regulatory Networks from
Microarray Data Based on Transcription Factor Analysis and Conditional Independency.
BIOCOMP 2007: 65-71

3. Fishman D, Faulds G, Jeffery R, et al. (1998) The effect of novel polymorphisms in the
interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association
with systemic-onset juvenile chronic arthritis. J Clin Invest. 102:1369-76.

4. Goldberg, D (1989.) Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley.

5. Hoffmann SC, Stanley EM, Darrin Cox E, et al. (2001) Association of cytokine
polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated
peripheral blood lymphocytes. Transplantation. 72:1444-50..

6. Lin Y, Yeh H, Cheng S, and Soo V. (2007). Comparing Cancer and Normal Gene
Regulatory Networks Based on Microarray Data and Transcription Factor Analysis. In
Proc. of the 7th IEEE International Conference on Bioinformatics and Bioengineering,
BIBE 2007, pp. 151-157.

7. Mayo M. (2005). Learning Petri net models of non-linear gene interactions. BioSystems,
82(1), 74-82.

8. McGarry K, Loutfi M and Moscardini A. (2007). Stochastic Simulation of the Regulatory
Pathways involved in Diabetes using Petri-nets. In Proc. of the International Conference
on Computer Theory and Applications (ICCTA2007), Alexandria, Egypt.

9. Moore J, and Hahn L. (2003.) Petri net modelling of high-order genetic systems using
grammatical evolution. BioSystems 72, 177–186

10. Moore J. (2004.) Computational analysis of gene-gene interactions using multifactor
dimensionality reduction. Expert Review of Molecular Diagnostics 4:6, pp. 795-803.

11. Phillips, PC. (2008) Epistasis--the essential role of gene interactions in the structure and
evolution of genetic systems. Nat Rev Genet. 9:855-67.

12. Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J (1995). A TaqI polymorphism in
the human interleukin-1β (IL-1β) gene correlates with IL-1β secretion in vitro. Eur J Clin
Invest. 22:396–402.

13. Reisig W. (1985.) Petri nets: an introduction. In: EATCS Monographs on Theoretical
Computer Science. Springer-Verlag.

14. Mayo M. and Beretta L. (2009.) Modelling Epistasis in Genetic Disease using Petri Nets,
Evolutionary Computation and Frequent Itemset Mining. In submission, Expert Systems
with Applications: An International Journal.

